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Abstract—Low-dimensional statistics of measurements play an
important role in detection problems, including those encoun-
tered in sensor networks. In this work, we focus on learning low-
dimensional linear statistics of high-dimensional measurement
data along with decision rules defined in the low-dimensional
space in the case when the probability density of the mea-
surements and class labels is not given, but a training set
of samples from this distribution is given. We pose a joint
optimization problem for linear dimensionality reduction and
margin-based classification, and develop a coordinate descent
algorithm on the Stiefel manifold for its solution. Although
the coordinate descent is not guaranteed to find the globally
optimal solution, crucially, its alternating structure enables us to
extend it for sensor networks with a message-passing approach
requiring little communication. Linear dimensionality reduction
prevents overfitting when learning from finite training data. In
the sensor network setting, dimensionality reduction not only
prevents overfitting, but also reduces power consumption due
to communication. The learned reduced-dimensional space and
decision rule is shown to be consistent, and its Rademacher
complexity is characterized. Experimental results are presented
for a variety of datasets, including those from existing sensor
networks, demonstrating the potential of our methodology in
comparison with other dimensionality reduction approaches.

Index Terms—supervised classification, linear dimensionality
reduction, Stiefel manifold, sensor networks

I. I NTRODUCTION

SENSOR networks are systems used for distributed de-
tection and data fusion that operate with severe resource

limitations; consequently, minimizing complexity in terms of
communication and computation is critical [3]. A current in-
terest is in deploying wireless sensor networks with nodes that
take measurements using many heterogeneous modalities such
as acoustic, infrared, and seismic to monitor volcanoes [4],
detect intruders [5], [6], and perform many other classification
tasks. Sensor measurements may contain much redundancy,

Manuscript received July 11, 2010; revised December 30, 2010. The
associate editor coordinating the review of this manuscriptand approving
it for publication was Dr. Anna Scaglione. Portions of the material in this
paper were first presented in [1], [2]. This work was supported in part by
a National Science Foundation Graduate Research Fellowship, by a MURI
funded through ARO Grant W911NF-06-1-0076, by the Air Force Office
of Scientific Research under Award No. FA9550-06-1-0324, and by Shell
International Exploration and Production, Inc. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the AirForce.

K. R. Varshney was with and A. S. Willsky is with the Laboratory for Infor-
mation and Decision Systems, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 USA (e-mail: krvarshn@us.ibm.com; willsky@mit.edu).

both within the measurement dimensions of a single sensor
and between measurement dimensions of different sensors due
to spatial correlation.

Resources can be conserved if sensors do not transmit
irrelevant or redundant data, but it is usually not known in
advance which measurement dimensions or combination of
dimensions are most useful for the detection or classification
task. The transmission of irrelevant and redundant data can
be avoided through dimensionality reduction; specifically, a
low-dimensional representative form of measurements may
be transmitted by sensors to a fusion center, which then
detects or classifies based on those low-dimensional measure-
ment representations. As measurements or low-dimensional
measurement representations are transmitted from sensor to
sensor, eventually reaching the fusion center, dimensionality
reduction at the parent node eliminates redundancy between
parent and child node measurements. Even a reduction from
two-dimensional measurements to one-dimensional features
is significant in many hostile-environment monitoring and
surveillance applications.

Decision rules in detection problems, both in the sensor
network setting and not, are often simplified through sufficient
statistics such as the likelihood ratio [7]. Calculation ofa
sufficient statistic losslessly reduces the dimensionality of
high-dimensional measurements before applying a decision
rule defined in the reduced-dimensional space, but requires
knowledge of the probability distribution of the measurements.
The statistical learning problemsupervised classificationdeals
with the case when this distribution is unknown, but a set
of labeled samples from it, known as the training dataset, is
available. For the most part, however, supervised classification
methods (not adorned with feature selection) produce decision
rules defined in the full high-dimensional measurement space
rather than in a reduced-dimensional space, motivating feature
selection or dimensionality reduction for classification.

In this paper, we propose a method for simultaneously
learning both a dimensionality reduction mapping and a classi-
fier defined in the reduced-dimensional space. Not only does
dimensionality reduction simplify decision rules, but it also
decreases the probability of classification error by preventing
overfitting when learning from a finite training dataset [8]–
[11]. We focus onlinear dimensionality reduction mappings
represented by matrices on the Stiefel manifold [12] and
on margin-basedclassifiers, a popular and effective class of
classifiers that includes logistic regression, the supportvector
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machine (SVM), and the geometric level set (GLS) classifier
[13]–[15]. The importance of the Stiefel manifold is its role as
the set of all linear subspaces with basis specified and hence
it provides precisely the right object for exploring different
subspaces on which to project measurements.

Many methods for linear dimensionality reduction, includ-
ing the popular principal component analysis (PCA) and Fisher
discriminant analysis (FDA), can be posed as optimization
problems on the Stiefel or Grassmann manifold with different
objectives [12]. In this paper, we propose an optimization
problem on the Stiefel manifold whose objective is that of
margin-based classification and develop an iterative coordinate
descent algorithm for its solution. PCA, FDA, and other meth-
ods do not have margin-based classification as their objective
and are consequently suboptimal with respect to that objec-
tive. Coordinate descent is not guaranteed to find the global
optimum; however, as seen later in the paper, an advantage
of coordinate descent is that it is readily implemented in
distributed settings and tends to find good solutions in practice.
We successfully demonstrate the learning procedure on several
real datasets from different applications.

The idea of learning linear dimensionality reduction map-
pings from labeled training data specifically for the purpose
of classification is not new. For example, the goal of FDA
is classification, but it assumes that the class-conditional
distributions generating the data are Gaussian with identical
covariances; it is also not well suited to datasets of small car-
dinality [16]. We reserve discussion of several such methods
until Section I-A.1 Our work fits into the general category
of learning data representations that have traditionally been
learned in an unsupervised manner, appended with known
class labels and consequently supervision. Examples from this
category include learning undirected graphical models [20],
sparse signal representations [21], [22], directed topic models
[23], [24], quantizer codebooks [25], and linear dimensionality
reduction matrices, which is the topic of this paper and others
described in Section I-A.

Statistical learning theory characterizes the phenomenonof
overfitting when there is finite training data. The generalization
error of a classifier—the probability of misclassification on
new unseen measurements (the quantity we would ideally
like to minimize)—can be bounded by the sum of two
terms [8]: the classification error on the training set, and a
complexity term, e.g. the Rademacher complexity [26], [27].
We analytically characterize the Rademacher complexity asa
function of the dimension of the reduced-dimensional space
in this work. Finding it to be an increasing function of the
dimension, we can conclude that dimensionality reduction
does in fact prevent overfitting and that there exists some
optimal reduced dimension.

As the cardinality of the training dataset grows, the gen-
eralization error of aconsistentclassifier converges to the
Bayes optimal probability of error, i.e., the error probability
had the joint probability distribution been known. We show

1Our paper focuses on general linear dimensionality reduction and not on
feature subset selection, which is a separate topic in its own right, e.g. see
[17]–[19].

that our proposed joint linear dimensionality reduction and
margin-based classification method is consistent.

The problem ofdistributeddetection has been an object of
study during the last thirty years [28]–[31], but the majority
of the work has focused on the situation when either the
joint probability distribution of the measurements and labels
or the likelihood functions of the measurements given the
labels are assumed known. Recently, there has been some work
on supervised classification for distributed settings [32]–[34],
but in that work sensors take scalar-valued measurements and
dimensionality reduction is not involved. Previous work on
the linear dimensionality reduction of sensor measurements in
distributed settings, including [35]–[37] and referencestherein,
have estimation rather than detection or classification as the
objective.

In this paper, we show how the linear dimensionality reduc-
tion of heterogeneous data specifically for margin-based clas-
sification may be distributed in a tree-structured multisensor
data fusion network with a fusion center via individual Stiefel
manifold matrices at each sensor. The proposed coordinate
descent learning algorithm is amenable to distributed imple-
mentation. In particular, we extend the coordinate descent
procedure so that it can be implemented in tree-structured
sensor networks through a message-passing approach with the
amount of communication related to the reduced dimension
rather than the full measurement dimension. The ability to
be distributed is a key strength of the coordinate descent
optimization approach.

Multisensor networks lead to issues that do not typically
arise in statistical learning, where generalization erroris the
only criterion. In sensor networks, resource usage presents an
additional criterion to be considered, and the architecture of
the network presents additional design freedom. In wireless
sensor networks, the distance between nodes affects energy
usage in communication, and must therefore be considered in
selecting network architecture. We give classification results
on real datasets for different network architectures and touch
on these issues empirically.

A. Relationship to Prior Work

The most popular method of linear dimensionality reduction
for data analysis is PCA. PCA and several other methods only
make use of the measurement vectors, not the class labels,
in finding a dimensionality reduction mapping. If the dimen-
sionality reduction is to be done in the context of supervised
classification, the class labels should also be used. Several
supervisedlinear dimensionality reduction methods exist in
the literature. We can group these methods into three broad
categories: those that separate likelihood functions according
to some distance or divergence [38]–[44], those that try to
make the probability of the labels given the measurements
and the probability of the labels given the dimensionality-
reduced measurements equal [45]–[50], and those that attempt
to minimize a specific classification or regression objective
[12], [51]–[54].

As mentioned previously in the section, FDA assumes that
the likelihood functions are Gaussian with the same covariance
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and different means. It returns a dimensionality reduction
matrix on the Stiefel manifold that maximally separates (in
Euclidean distance) the clusters of the different labels [12].
The method of [39] also assumes Gaussian likelihoods with
the same covariance and different means, but with an even
stronger assumption that the covariance matrix is a scalar
multiple of the identity. The probability of error is explicitly
minimized using gradient descent; the gradient updates to the
dimensionality reduction matrix do not enforce the Stiefel
manifold constraint, but the Gram-Schmidt orthonormalization
procedure is performed after every step to obtain a matrix that
does meet the constraint. With a weaker assumption only that
the likelihood functions are Gaussian, but without restriction
on the covariances, other methods maximize Bhattacharyya
divergence or Chernoff divergence, which are surrogates for
minimizing the probability of error [43].

The method of [38], like FDA, maximally separates the
clusters of the different labels but does not make the strong
Gaussian assumption. Instead, it performs kernel density es-
timation of the likelihoods and separates those estimates.
The optimization is gradient ascent and orthonormalization is
performed after every step. Similarly, information preserving
component analysis also performs kernel density estimation
and maximizes Hellinger distance, another surrogate for min-
imizing the probability of error, with optimization through
gradient ascent and the Stiefel manifold constraint maintained
in the gradient steps [44]. Other approaches with information-
theoretic criteria include [40]–[42].

Like [38], [44], the method of [49] also estimates probability
density functions for use in the criterion for linear dimension-
ality reduction. The particular criterion, however, is based on
the idea that the dimensionality reduction mapping should be
such that the probability of the class labels conditioned on
the unreduced measurements equal the probability conditioned
on the reduced measurements. The same criterion appears in
[45], [46], [48], [50] and many references given in [47]. These
papers describe various methods of finding dimensionality
reduction mappings to optimize the criterion with different
assumptions.

Some supervised dimensionality reduction methods explic-
itly optimize a classification or regression objective. A lin-
ear regression objective and a regression parameter/Stiefel
manifold coordinate descent algorithm is developed in [53].
The support vector singular value decomposition machine of
[52] has a joint objective for dimensionality reduction and
classification with the hinge loss function. However, the matrix
it produces is not guaranteed to be on the Stiefel manifold, and
the space in which the classifier is defined is not exactly the
dimensionality-reduced image of the high-dimensional space.
It also changes the regularization term from what is standardly
used for the SVM. Maximum margin discriminant analysis
is another method based on the SVM; it finds the reduced-
dimensional features one by one instead of giving a complete
matrix at once and it does not simultaneously give a classifier
[54]. The method of [12], [51] is based on the nearest neighbor
classifier.

The objective function and optimization procedure we pro-
pose in Section II has some similarities to many of the methods

discussed, but also some key differences. First of all, we do
not makeany assumption, and indeed do not explicitly make
use of any assumptions on the statistics of likelihood functions
(e.g., no assumption of Gaussianity is employed). Moreover,
our method does not require nor involve estimation of the
probability density functions under the two hypotheses norof
the likelihood ratio. Indeed, we are directly interested only
in learning decision boundaries and using margin-based loss
functions to guide both this learningand the optimization
over the Stiefel manifold to determine the reduced-dimensional
space in which decision making is to be performed. Density
estimation is a harder problem than finding classifier decision
boundaries and it is well known that when learning from
finite data, it is best to only solve the problem of interest
and nothing more. Similarly, the desire that the conditional
distributions of the class label given the high-dimensional and
reduced-dimensional measurements be equal is more involved
than wanting good classification performance in the reduced-
dimensional space.

Rather than nearest neighbor classification or linear re-
gression, the objective in the method we propose is margin-
based classification. Our method finds all reduced-dimensional
features in a joint manner, and gives both the dimensionality
reduction mapping and the classifier as output. Unlike in
[52], the classifier is defined exactly without approximation
in the reduced-dimensional subspace resulting from applying
the dimensionality reduction matrix that is found. Additionally,
the regularization term and consequently inductive bias ofthe
classifier is left unchanged.

The preceding represent the major conceptual differences
between our framework and that considered in previous work.
We use coordinate descent optimization procedures in Sec-
tion II, which are also employed in other works, e.g. [52], [53],
but the setting in which we use these are new. Our framework
also allows us to develop some new theoretical results on con-
sistency and Rademacher complexity. Moreover, as developed
in Section III, our framework allows a natural generalization to
distributed dimensionality reduction for classification in sensor
networks, a problem that has not been considered previously.

Ji and Ye presented an approach to linear dimensionality
reduction for classification with linear decision boundaries
[55] after the initial presentation of this work [1], which is
similar to our formulation as well as the formulation of [53].
Ji and Ye restrict themselves to the regularization term of
the SVM and either a regression objective like [53], or the
hinge loss. In our formulation, any regularization term and
any margin-based loss function may be used, and the decision
boundaries are generally nonlinear. With the hinge loss, the
optimization in [55] is through coordinate descent similarto
ours, but the dimensionality reduction matrix optimization step
is carried out via a convex-concave relaxation (which is not
guaranteed to find the optimum of the true unrelaxed problem)
rather than gradient descent along Stiefel manifold geodesics
that we do. The work of Ji and Ye also considers the learning
problem when training samples may have either zero, one,
or more than one assigned class label, which is known as
multilabel classification [56] and is not the focus of our work.
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B. Organization of Paper

The paper is organized as follows. Section II combines the
ideas of margin-based classification and optimization on the
Stiefel manifold to give a joint linear dimensionality reduction
and classification objective as well as an iterative algorithm.
An analysis of Rademacher complexity and consistency is
also presented in the section. Section III shows how the
basic method of Section II extends to multisensor data fusion
networks, including wireless sensor networks. In Section IV,
an illustrative example and results on several real datasets are
given. Also given are experimental results of classification
performance as a function of transmission power in wireless
sensor networks. Section V concludes.

II. L INEAR DIMENSIONALITY REDUCTION FOR

MARGIN-BASED CLASSIFICATION

In this section, we formulate a problem for composite
dimensionality reduction and margin-based classification. We
develop a coordinate descent minimization procedure for this
formulation, characterize the complexity of the formulation
from a statistical learning theory perspective, and show the
consistency of the formulation.

A. Formulation

Consider the binary detection or classification problem with
measurement vectorsX ∈ Ω ⊂ R

D and class labelsY ∈
{+1,−1} drawn according to the probability density function
pX,Y (x, y). We would like to find the classifier̂y : Ω →
{+1,−1} that minimizes the error probabilityPr[Y 6= ŷ(X)].
We do not have access topX,Y (x, y), but instead are given
training data{(x1, y1), . . . , (xn, yn)}. The true objective we
would like to minimize in learninĝy is the generalization error
Pr[Y 6= ŷ(X)], but a direct minimization is not possible since
the joint distribution ofX andY is not known. In practice, the
classifierŷ is selected from a function classF to minimize a
loss function of the training data.

Margin-based classifiers take the form̂y(·) = sign(ϕ(·)),
where ϕ is a decision function whose specifics are tied to
the specific margin-based classifier. The decision functionis
chosen to minimize the functional:

L(ϕ) =

n
∑

j=1

ℓ(yjϕ(xj)) + λ J(ϕ), (1)

where the valueyϕ(x) is known as the margin; it is related
to the distance betweenx and the classifier decision boundary
ϕ(x) = 0. The functionℓ is known as a margin-based loss
function. Examples of such functions are the logistic loss
function:

ℓlogistic(z) = log
(

1 + e−z
)

and the hinge loss function:

ℓhinge(z) = max{0, 1− z}.
The second term on the right side of (1), with non-negative
weight λ, represents a regularization term that penalizes the
complexity of the decision function [13], [14]. In the kernel
SVM, ℓ is the hinge loss, the decision functionsϕ are in

a reproducing kernel Hilbert spaceH, and J is the squared
norm in that space‖ϕ‖2

H
[13], [14]. In the GLS classifier,

any margin-based loss function may be used and the decision
functions are in the space of signed distance functions [2],
[15]. The magnitude ofϕ(x) equals the Euclidean distance of
x to the decision boundary. The regularization termJ is the
surface area of the zero level set ofϕ, i.e., J(ϕ) =

∮

ϕ=0
ds,

where ds is an infinitesimal surface area element on the
decision boundary.

The new contribution of this section is the formulation of
a joint linear dimensionality reduction and classificationmini-
mization problem by extension of the margin-based functional
(1). The decision functionϕ is defined in the reducedd-
dimensional space and a linear dimensionality reduction map-
ping appears in its argument, but otherwise, the classification
objective is left unchanged. In particular, the regularization
termJ is not altered, thereby allowing any regularized margin-
based classifier to be extended for dimensionality reduction.

The margin-based classification objective is extended to
include a matrixA ∈ R

D×d with elementsaij as follows:

L(ϕ,A) =

n
∑

j=1

ℓ(yjϕ(A
Txj)) + λ J(ϕ), (2)

with the constraint thatA lie on theStiefel manifoldof D×d
matrices, i.e.A ∈ V(D, d), where

V(D, d) = {A ∈ R
D×d, d ≤ D|ATA = I}. (3)

With a data vectorx ∈ R
D, ATx is in d dimensions. Typically

—and especially in our framework—we are uninterested in
scalings of the reduced-dimensional dataATx, so we limit
the set of possible matrices to those which involve orthogonal
projection, i.e., to the Stiefel manifold.

The formulation as presented is for a fixed value ofd. If
generalization error is the only criterion, then any popular
model selection method from the machine learning literature,
including those based on cross-validation, bootstrapping, and
information criteria, can be used to find a good value for
the reduced dimensiond. However, other criteria besides
generalization error become important in various settings,
including sensor networks. System resource usage is one such
criterion; it is not typically statistical in nature and is often
a deterministic increasing function ofd. As such, it may
be used as an additional cost with information criteria or as
a component in modified cross-validation and bootstrapping.
If different types of errors such as false alarms and missed
detections incur different costs, then the criterion is notstrictly
generalization error, but cross-validation and bootstrapping
may be modified accordingly.

B. Coordinate Descent Minimization

An option for performing the minimization ofL(ϕ,A)
given in (2) is coordinate descent: alternating minimizations
with fixed A and with fixedϕ. The problem is conceptually
similar to level set image segmentation along with pose esti-
mation for a shape prior [57]. WithA fixed, we are left with a
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standard margin-based classification problem in the reduced-
dimensional space. The optimization step may be performed
using standard methods for margin-based classifiers.

With ϕ fixed, we have a problem of minimizing a function
of A lying on the Stiefel manifold. For differentiable func-
tions, several iterative minimization algorithms exist [58]–[60].
The functionL(A) =

∑n

j=1 ℓ(yjϕ(A
Txj)) is differentiable

with respect toA for differentiable loss functions. UsingLA

to denote theD × d matrix with elements∂ L /∂aij , the first
derivative is:

LA =

n
∑

j=1

yj ℓ
′(yjϕ(A

Txj))

× xj

[

ϕ1(A
Txj) · · · ϕd(A

Txj)
]

. (4)

Note that xj is a D × 1 vector and that
[

ϕ1(A
Txj) · · · ϕd(A

Txj)
]

is a 1 × d vector, where
ϕk(·) is the partial derivative of the decision function with
respect to dimensionk. For the logistic loss function:

ℓ′logistic(z) = − e−z

1 + e−z

and for the hinge loss function:

ℓ′hinge(z) = − step(1− z),

wherestep(·) is the Heaviside step function.
We perform gradient descent along geodesics of the Stiefel

manifold [58]. The gradient is:

G = LA −ALT
A
A. (5)

Starting at an initialA(0), a step of lengthτ in the direction
−G to A(τ) is:

A(τ) = A(0)M(τ) +QN(τ), (6)

whereQR is the QR decomposition of(AATG−G), and
[

M(τ)
N(τ)

]

= exp

{

τ

[

−ATG −RT

R 0

]}[

I

0

]

.

The step sizeτ may be optimized by a line search.
The coordinate descent is not guaranteed to find the global

optimum, only a local optimum; however, as seen in the
illustrative example in Section IV-A, even poor initializations
lead to the globally optimal solution in practice. For the results
given in Section IV-B,A is initialized by making use of
estimates of the mutual informations between the labely
and individual data dimensionsxk, k = 1, . . . , D. Mutual
information provides an indication of whether a measurement
dimension is individually relevant for classification, andthus
projection onto dimensions with high mutual information is
a good starting point. Of course, these dimensions may be
correlated, and that is precisely what the Stiefel manifold
optimization iterations uncover. The first column ofA is taken
to be the canonical unit vector corresponding to the dimension
with the largest mutual information. The second column ofA

is taken to be the canonical unit vector corresponding to the
dimension with the second largest mutual information, and
so on. The last, i.e.dth, column ofA is zero in the rows
already containing ones in the first(d − 1) columns, and

nonzero in the remaining rows with values proportional to
the mutual informations of the remaining dimensions. Kernel
density estimation is used in estimating mutual information.

C. Rademacher Complexity

The generalization error can be bounded by the sum of the
error of ŷ on the training set, and a penalty that is larger
for more complexF . One such penalty is the Rademacher
complexityR̂n(F) [26], [27]. A classifier with good general-
izability balances training error and complexity; this is known
as thestructural risk minimization principle[8].

With probability greater than or equal to1 − δ, Bartlett
and Mendelson give the following bound on the generalization
error for a specified decision rulêy [27]:

Pr[Y 6= ŷ(X)] ≤
1

n

n
∑

j=1

I(yj 6= ŷ(xj)) +
E[R̂n(F)]

2
+

√

ln(1/δ)

2n
, (7)

where I is an indicator function. The first term on the right
hand side is the training error and the second term is com-
plexity. As discussed in [9]–[11], dimensionality reduction
reduces classifier complexity and thus prevents overfitting.
Here, we analytically characterize the Rademacher complexity
term R̂n(F) for the joint linear dimensionality reduction and
margin-based classification method proposed in this paper.It
is shown in [61] that the Rademacher average of a function
classF satisfies:

R̂n(F) ≤ 2ǫ+
4
√
2√
n

∫ ∞

ǫ
4

√

Hρ∞,ǫ′(F)dǫ′, (8)

whereHρ∞,ǫ(F) is theǫ-entropy ofF with respect to theL∞

metric.2

In classification, it is always possible to scale and shift
the data and this is often done in practice. Forgoing some
bookkeeping and without losing much generality, we consider
the domain of the unreduced measurement vectors to be the
unit hypercube, that isx ∈ Ω = [0, 1]D. The reduced-
dimensional domain is then the zonotope3 Z = ATΩ ⊂ R

d,
where A is on the Stiefel manifold. We denote the set of
decision functionsϕ defined onΩ asFΩ and those defined
on Z asFZ .

Given the generalization bound based on Rademacher com-
plexity (7) and the Rademacher complexity term (8), we

2The ǫ-covering number of a metric space is the minimal number of sets
with radius not exceedingǫ required to cover that space; theǫ-entropy is
the base-two logarithm of theǫ-covering number [62]. TheL∞ metric is
ρ∞(ϕ1, ϕ2) = sup |ϕ1(x)− ϕ2(x)|.

3The setZ = A
T [0, 1]D ⊂ R

d, the orthogonal shadow cast by[0, 1]D due
to the projectionA ∈ V(D, d), is a zonotope, a particular type of polytope
that is convex, centrally-symmetric, and whose faces are alsocentrally-
symmetric in all lower dimensions [63], [64]. For reference, Fig. 1 shows
several zonotopes forD = 4 and d = 2. The matrixAT is known as
the generator of the zonotopeZ; we use the notationZ(A) to denote the
zonotope generated byAT . Also, let

Z(D, d) = {Z(A)|A ∈ V(D, d)}. (9)

Although the relationship between zonotopes and their generators is not
bijective, zonotopes provide a good means of visualizing Stiefel manifold
matrices, especially whend = 2.
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Fig. 1. Several zonotopes inZ(4, 2).

must find an expression forHρ∞,ǫ(FZ) to characterize the
prevention of overfitting by linear dimensionality reduction.
The function classFZ is tied to the specific margin-based
classification method employed. In order to make concrete
statements, we select the GLS classifier; similar analysis may
be performed for other margin-based classifiers such as the
kernel SVM. Such analysis would also be similar to [11]. As
mentioned in Section II-A, the decision functionϕ in the GLS
classifier is a signed distance function andFZ is the set of all
signed distance functions whose domain is the zonotopeZ.

For classification without dimensionality reduction, it is
shown in [15] that

Hρ∞,ǫ(FΩ) ≤
⌈

1

ǫ

⌉D

. (10)

This result follows from the fact that⌈1/ǫ⌉D D-dimensional
hypercubes with side of lengthǫ fit as a Cartesian grid into
Ω = [0, 1]D. To find an expression for theǫ-entropy of
the dimensionality-reduced GLS classifier, the same analysis
applies and consequently, we need to determine how manyd-
dimensional hypercubes with side of lengthǫ fit into Z. The
number of small hypercubes that fit insideZ is related to its
contentV (Z).

An upper bound forV (Z) is developed in [63] that is
asymptotically of the correct order of magnitude for fixedd
asD goes to infinity. Specifically,

V (Z) ≤ ωd

(

ωd−1

ωd

√

D

d

)d

, (11)

where ωd =
√
π
d
/Γ(1 + d/2) is the content of thed-

dimensional unit hypersphere andΓ(·) is Legendre’s gamma
function. Based on (11), we find that

Hρ∞,ǫ(FZ) ≤ V (Z)

⌈

1

ǫ

⌉d

≤ ωd

(

ωd−1

ωd

⌈

1

ǫ

⌉

√

D

d

)d

.

(12)
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Fig. 2. Rademacher average as a function of the reduced dimension d for
D = 5 (dotted blue line),D = 10 (dashed and dotted green line),D = 15
(dashed red line), andD = 20 (solid cyan line) forǫ = 0.01 andn = 1000.

For fixed reduced dimensiond, Hρ∞,ǫ(FZ) increases as a
function of the measurement dimensionD, i.e., the classifier
function class is richer for larger measurement dimension
with the same reduced-dimension. Importantly,Hρ∞,ǫ(FZ)
increases as a function ofd for fixed D.

Substituting theHρ∞,ǫ(FZ) expression (12) into (8), we
find that for a fixed measurement dimensionD, the more the
dimensionality is reduced, that is the smaller the value ofd, the
smaller the Rademacher complexity. This is shown in Fig. 2,
a plot of the complexity value as a function ofd for different
values ofD. Although larger measurement dimensionD does
result in larger complexity, the effect is minor in comparison
to the effect ofd.

Since training error increases asd decreases, and the
generalization error is related to the sum of the Rademacher
complexity and the training error: the more we reduce the
dimension, the more we prevent overfitting. However, if we
reduce the dimension too much, we end up underfitting the
data; the training error component of the generalization error
becomes large. There is an optimal reduced dimension that
balances the training error and the complexity components of
the generalization error.4

D. Consistency

With a training dataset of cardinalityn drawn from
pX,Y (x, y), a consistent classifier is one whose probability
of error converges in the limit asn goes to infinity to the
probability of error of the Bayes risk optimal decision ruleŷ∗

when both types of classification errors have equal cost.5 For

4Note the purpose of generalization bounds in statistical learning theory as
stated by Bousquet [65]: “one should not be concerned about the quantitative
value of the bound or even about its fundamental form but rather about the
terms that appear in the bound. In that respect a useful bound is one which
allows to understand which quantities are involved in the learning process.
As a result, performance bounds should be used for what they are good
for. They should not be used to actually predict the value of the expected
error. Indeed, they usually contain prohibitive constantsor extra terms that are
mostly mathematical artifacts. They should not be used directly as a criterion
to optimize since their precise functional form may also be a mathematical
artifact. However, they should be used to modify the design ofthe learning
algorithms or to build new algorithms.”

5The Bayes optimal decision rule is a likelihood ratio test involving
pX|Y (x|y = −1) and pX|Y (x|y = +1) with threshold equal to the ratio
of the class prior probabilities.
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consistency to be at all meaningful, we assume in this analysis
that there is a reduced-dimensional statisticATx so that the
optimal Bayes decision rule based on this statistic achieves the
same performance as the optimal decision rule based on the
complete datax, that is, we assume that there exists at least
oneA∗ ∈ V(D, d) such thatPr[Y 6= ŷ∗(A∗TX)] = Pr[Y 6=
ŷ∗(X)], whereŷ∗ takes the appropriate dimensional argument,
andd is known. We also assume that the optimization method
used in training finds the global optimum. The question is
whether for a sequence of classifiers learned from training
dataŷ(n)(x) = sign(ϕ(n)(A(n)Tx)), where

(A(n), ϕ(n)) = arg min
A∈V(D,d)

min
ϕ∈FZ(A)

1

n

n
∑

j=1

ℓ(yjϕ(A
Txj)),

doesPr[Y 6= ŷ(n)] − Pr[Y 6= ŷ∗] converge in probability to
zero. Note thatPr[Y 6= ŷ(n)] is a random variable that depends
on the data.

The properties ofPr[Y 6= ŷ(n)] are affected by both the
margin-based loss functionℓ and by the classifier function
spaceFZ . Conditions on the loss function necessary for a
margin-based classifier to be consistent are given in [13],
[14], [66]. A loss function that meets the necessary conditions
is termedFisher consistentin [13]. Common margin-based
loss functions including the logistic loss and hinge loss are
Fisher consistent.6 Fisher consistency of the loss function is
not enough, however, to imply consistency of the classifier
overall; the function class must also be analyzed.

We apply Theorem 4.1 of [13], which is in turn an applica-
tion of Theorem 1 of [67] to show consistency. The theorem
is based onHρ∞,ǫ(FZ). In order to apply this theorem, we
need to note three things. First, thatℓ is a Fisher consistent
loss function. Second, that signed distance functions onZ are
bounded in theL∞ norm. Third, that there exists a constant
B > 0 such thatHρ∞,ǫ(FZ) ≤ Bǫ−d, which follows from
(12). Then, from [13] we have that7

Pr[Y 6= ŷ(n)]− Pr[Y 6= ŷ∗] = OP (n
−τ ), (13)

where

τ =











1
3 , d = 1
1
4 − log logn

2 logn
, d = 2

1
2d , d ≥ 3

.

The dimensionality reduction and classification method is
consistent:Pr[Y 6= ŷ(n)] − Pr[Y 6= ŷ∗] goes to zero asn
goes to infinity becausen−τ goes to zero.

III. D IMENSIONALITY REDUCTION IN TREE-STRUCTURED

NETWORKS

As discussed in Section I, a classification paradigm that in-
telligently reduces the dimensionality of measurements locally
at sensors before transmitting them is critical in sensor network

6The conditions onℓ for it to be Fisher consistent are mainly related
to it being such that incorrect classifications incur more loss than correct
classifications.

7The notationΨn = OP (ψn) means that the random variableΨn =
ψnΞn, whereΞn is a random variable bounded in probability [68]. Thus, if
ψn converges to zero, thenΨn converges to zero in probability.

settings. In this section, we make use of and appropriately
extend the formulation of joint linear dimensionality reduction
and classification presented in Section II for this task. Forease
of exposition, we begin the discussion by first considering a
setup with a single sensor, and then come to the general setting
with m sensors networked according to a tree graph with a
fusion center at the root of the tree. Also for simplicity of
exposition, we assume that the fusion center does not take
measurements, that it is not also a sensor; this assumption is
by no means necessary. We make the assumption, as in [32]–
[34], that the class labelsyj of the training set are available
at the fusion center.

A. Network with Fusion Center and Single Sensor

Consider a network with a single sensor and a fusion
center. The sensor measures data vectorx ∈ R

D and reduces
its dimensionality usingA. The sensor transmits̃xs→fc =
ATx ∈ R

d to the fusion center, which applies decision rule
sign(ϕ(x̃s→fc)) to obtain a classification forx. Clearly in its
operational phase, the linear dimensionality reduction reduces
the amount of transmission required from the sensor to the
fusion center.

Moreover, the communication required in training depends
on the reduced dimensiond rather than the dimension of the
measurementsD. The coordinate descent procedure described
in Section II-B is naturally implemented in this distributed set-
ting. With A fixed, the optimization forϕ occurs at the fusion
center. The information needed by the fusion center to perform
the optimization forϕ are the x̃s→fc,j , the dimensionality-
reduced training examples. Withϕ fixed, the optimization
for A occurs at the sensor. Looking at (4), we see that the
information required by the sensor from the fusion center to
optimizeA includes only the scalar valueyj ℓ

′(yjϕ(x̃s→fc,j))

and the column vector
[

ϕ1(x̃s→fc,j) · · · ϕd(x̃s→fc,j)
]T

,
which we denotẽϕ′

fc→s,j ∈ R
d, for j = 1, . . . , n.

Thus the alternating minimizations of the coordinate de-
scent are accompanied by the alternating communication of
messages̃xs→fc,j and ϕ̃

′

fc→s,j . The more computationally
demanding optimization forϕ (the application of a margin-
based classification algorithm) takes place at the fusion center.
A computationally simple Stiefel manifold gradient update
occurs at the sensor.8 One may ask whether it is more efficient
to perform training by just transmitting the full-dimensional
measurements to the fusion center. The total communication
involved in that case isD(n + d) scalar values, whereas
with the distributed implementation, this total is(2d + 1)n
multiplied by the number of coordinate descent iterations.Fre-
quentlyD is much larger thand (an example in Section IV-B
hasD = 10000 and optimald = 20), and the number of
iterations is typically small (usually less than ten or twelve). In
such cases, the distributed implementation provides quitea bit
of savings. This scheme extends to the more interesting caseof

8The Stiefel manifold constraint requires QR factorization or other or-
thonormalization which may be prohibitive on certain existing sensor nodes,
but as is demonstrated in [69] and references therein, efficient FPGA imple-
mentations of QR factorization have been developed and couldbe integrated
into existing or new sensor nodes.
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multisensornetworks, as we describe next. The transmission
savings of training with distributed implementation are further
magnified in the multisensor network case.

B. Multisensor Networks

We now consider networks withm sensors connected
in a tree topology with the fusion center at the root.
We denote theχfc children of the fusion center as
child1(fc), . . . , childχfc(fc); we also denote theχi children of
sensori aschild1(i), . . . , childχi

(i), and we denote the parent
of sensori as parent(i). Training data vectorxi,j ∈ R

Di is
measured by sensori.9 The sensor receives dimensionality-
reduced measurements from its children, combines them with
its own measurements, and transmits a dimensionality-reduced
version of this combination to its parent. Mathematically,the
transmission from sensori to its parent is:

x̃i→parent(i),j = AT
i











xi,j

x̃child1(i)→i,j

...
x̃childχi

(i)→i,j











, (14)

whereAi ∈ V
(

Di +
∑χi

k=1 dchildk(i), di
)

.
As an extension to the margin-based classification and

linear dimensionality reduction objective (2), we proposethe
following objective for sensor networks:

L(ϕ,A1, . . . ,Am) =

n
∑

j=1

ℓ






yjϕ













x̃child1(fc)→fc,j
...

x̃childχfc (fc)→fc,j


















+ λ J(ϕ). (15)

Just as in the single sensor network in which the fusion center
needed to receive the messagex̃s→fc,j from its child in order to
optimizeϕ, in the multisensor network the fusion center needs
to receive the messages̃xchild1(fc)→fc,j , . . . , x̃childχfc (fc)→fc,j

from all of its children in order to optimizeϕ. The messages
coming from the children of the fusion center are themselves
simple linear functions of the messages coming from their
children, as given in (14). The same holds down the tree to the
leaf sensors. Thus, to gather the information required by the
fusion center to optimizeϕ, a message-passing sweep occurs
from the leaf nodes in the tree up to the root.

For fixed ϕ and optimization of theAi, we also see
message-passing, this time sweeping back from the fusion
center toward the leaves that generalizes what occurs in the
single sensor network. Before finding the partial derivative of
L(ϕ,A1, . . . ,Am) with respect toAi, let us first introduce
further notation. We sliceAi into blocks as follows:

Ai =











Ai,self

Ai,child1
...

Ai,childχi











,

9In real-world situations, there is no reason to expect underlying likelihood
functions for different sensorspXi|Y

, i = 1, . . . ,m to be identical. Different
sensors will certainly be in different locations and may evenbe measuring
different modalities of different dimensions with differentamounts of noise.

whereAi,self ∈ R
Di×di andAi,childk ∈ R

dchildk(i)×di . Also,

ϕ̃
′

fc→childk(fc),j =


























ϕ∑k−1
κ=1 dchildκ(fc)+1













x̃child1(fc)→fc,j
...

x̃childχfc (fc)→fc,j













...

ϕ∑
k
κ=1 dchildκ(fc)













x̃child1(fc)→fc,j
...

x̃childχfc (fc)→fc,j







































is the slice of the decision function gradient corresponding to
the dimensions transmitted bychildk(fc) to the fusion center.
Additionally, let:

ϕ̃
′

i→childk(i),j
= Ai,childkϕ̃

′

parent(i)→i,j . (16)

Then, the matrix partial derivative of the objective function
(15) with respect toAi is:

LAi
=

n
∑

j=1

yj ℓ
′






yjϕ













x̃child1(fc)→fc,j
...

x̃childχfc (fc)→fc,j



















×











xi,j

x̃child1(i)→i,j

...
x̃childχi

(i)→i,j











ϕ̃
′T
parent(i)→i,j . (17)

Like in the single sensor network, the information requiredat
sensori to optimizeAi that it does not already have consists
of a scalar and a vector. The scalar valueyj ℓ

′(yjϕ) is common
throughout the network. The vector messageϕ̃

′

parent(i)→i,j has
length di and is received fromparent(i). As seen in (16),
the message a sensor passes onto its child is a simple linear
function of the message received from its parent. To optimize
all of theAi, a message-passing sweep starting from the fusion
center and going down to the leaves is required. Simple gradi-
ent descent along Stiefel manifold geodesics is then performed
locally at each sensor. Overall, the coordinate descent training
proceeds along with the passing of messagesx̃i→parent(i),j

andϕ̃′

i→childk(i),j
, which are functions of incoming messages

as seen in (14) and (16).

C. Consistency and Complexity

The data vector that is received by the fusion center is
reduced from

∑m

i=1 Di dimensions to
∑χfc

k=1 dchildk(fc) dimen-
sions. The fact that the composition of linear dimensional-
ity reduction by two matrices on the Stiefel manifold can
be represented by a single matrix on the Stiefel manifold
leads to the observation that the dimensionality reduction
performed by the sensor network has an equivalent matrix
A ∈ V

(
∑m

i=1 Di,
∑χfc

k=1 dchildk(fc)

)

. However,A has further
constraints than just the Stiefel manifold constraint due to the
topology of the network. For example, the equivalentA of
the network in which the fusion center has two child sensors
must be block-diagonal with two blocks.
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Thus in the tree-structured sensor network, there is an
equivalent matrixA ∈ T

(
∑m

i=1 Di,
∑χfc

k=1 dchildk(fc)

)

⊂
V
(
∑m

i=1 Di,
∑χfc

k=1 dchildk(fc)

)

, where T is a subset deter-
mined by the tree topology. The consistency analysis of
Section II-D holds under the assumption that there exists
an A∗ ∈ T

(
∑m

i=1 Di,
∑χfc

k=1 dchildk(fc)

)

such thatPr[Y 6=
ŷ∗(A∗TX)] = Pr[Y 6= ŷ∗(X)].

The constrained set of dimensionality reduction matricesT
may have a smaller maximum zonotope contentV (Z) than
the full Stiefel manifold, which would in turn mean a smaller
Rademacher complexity. The fusion center receives theχfc-
ary Cartesian product of dimensionality-reduced data fromits
children. The content of the Cartesian product is the product
of the individual contents, and thus:

V (Z) ≤
χfc
∏

k=1

ωdchildk(fc)

(

ωdchildk(fc)−1

ωdchildk(fc)

√

Dk

dchildk(fc)

)dchildk(fc)

,

which is less than or equal to the bound (11) for
Z
(
∑m

i=1 Di,
∑χfc

k=1 dchildk(fc)

)

. A more refined upper bound
may be developed based on the specifics of the tree topology.

The tree-structured network has smaller Rademacher com-
plexity than a dimensionality-reduced margin-based classi-
fier of the same overall dimensions due to further con-
straints to the classifier function space resulting from the
network structure. However, similar toD having a minor
effect on complexity seen in Fig. 2, this smaller complex-
ity for T

(
∑m

i=1 Di,
∑χfc

k=1 dchildk(fc)

)

is not much less than
the complexity for the system without network constraints
V
(
∑m

i=1 Di,
∑χfc

k=1 dchildk(fc)

)

. The network constraints, how-
ever, may increase the training error. The generalization error
expression (7), being composed of both the training error
and the complexity, increases with network constraints due
to increases in training error that are not offset by decreases
in complexity, resulting in worse classification performance.
However, for sensor networks, the performance criterion of
interest is generally a combination of generalization error and
power expenditure in communication.

D. Wireless Sensor Network Physical Model

Thus far in the section, we describe linear dimensionality
reduction for margin-based classification in sensor networks
abstractly, without considering the physical implementation
or specific tree topologies. Here we set forth a specific
physical model for wireless sensor networks that is used in
Section IV-C. Considerm sensors and a fusion center in
the plane that communicate wirelessly. The distance between
sensori and its parent isri↔parent(i), and the power required
for communication fromi to its parent isdir2i↔parent(i),
where as before,di is the reduced dimension output by the
sensor. The model arises by the common assumption of signal
attenuation according to the square of the distance [70].10 The
total transmission power used by the network is then:

transmission power=
m
∑

i=1

dir
2
i↔parent(i). (18)

10The modelrα
i↔parent(i)

for values ofα other than two could also be
considered.

We consider three network structures: parallel architecture,
serial or tandem architecture, and binary tree architecture. In
the parallel architecture, allm sensors are direct children of
the fusion center. In the serial architecture, the fusion center
has a single child, which in turn has a single child, and so
on. In the binary tree architecture, the fusion center has two
children, each of whom have two children on down the tree.
When the number of sensors is such that a perfect binary tree
is not produced, i.e.,m+2 is not a power of two, the bottom
level of the tree remains partially filled.

The sensor and fusion center locations are modeled as
follows. The fusion center is fixed at the center of a circle
with unit area and them sensor locations are uniformly
distributed over that circle. Given the sensor node locations
and desired network topology, we assume that parent-child
links and correspondingri↔parent(i) are chosen to minimize
(18). In a parallel network, the links are fixed with the fusion
center as the parent of all sensors, and thus there is no parent-
child link optimization to be performed. Exact minimization
of (18) for the other architectures may not be tractable in
deployed ad hoc wireless sensor networks because it involves
solving a version of the traveling salesman problem for the
serial architecture and a version of the minimum spanning
tree problem for the binary tree architecture. Nevertheless,
we assume that the minimization has been performed; we
comment on this assumption later in the paper. For the parallel
architecture, the distances are [71]:

r(parallel)
i↔fc =

Γ
(

i+ 1
2

)

Γ (m+ 1)
√
πΓ(i)Γ

(

m+ 3
2

) , (19)

where sensori is the ith closest sensor to the fusion center.
There is no closed form expression for theri↔parent(i) in the
serial or binary tree architectures, but we estimate it through
Monte Carlo simulation.

To fully specify the network, we must also set the reduced
dimensions of the sensorsdi. The choice we make is to set
di proportional to the number of descendants of sensori plus
one for itself. This choice implies that alldi are equal in the
parallel network, and thatdi is proportional tom − i + 1 in
the serial network so that the number of dimensions passed
up the chain to the fusion center increases the closer one gets
to the fusion center. We will see that with this choice ofdi,
all three topologies have essentially the same classification
performance. This is not, however, generally true for different
di assignments; for example, if we take alldi to be equal
in the serial network, the classification performance is quite
poor. The imbalance indi values among different nodes is
a shortcoming of our approach because nodes closer to the
fusion center consume energy more quickly; future work may
consider adapting aggregation services with balanceddi [72],
which have been used for distributed PCA, to our problem
formulation.

IV. EXAMPLES AND RESULTS

With high-dimensional data, dimensionality reduction aids
in visualization and human interpretation, allows the iden-
tification of important data components, and reduces the
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computational and memory requirements of further analysis.
An illustrative example is presented in this section, which
shows the proposed dimensionality reduction and margin-
based classification method. The key motivation of dimension-
ality reduction is that it prevents overfitting, which is shown
in this section on several datasets.

Also in this section, we consider wireless sensor networks
and look at classification performance as a function of trans-
mission power expended. The phenomenon of overfitting seen
in the centralized case has an important counterpart and
implication for wireless sensor networks: increasing the total
allowed transmission power—manifested either by increases
in the number of sensors or increases in the number of trans-
mitted dimensions per sensor—does not necessarily result
in improved classification performance. The examples in this
section illustrate several tradeoffs and suggest further lines of
research.

A. Illustrative Example

We now present an illustrative example showing the op-
eration of the classification–linear dimensionality reduction
coordinate descent for training from a synthetic dataset. The
dataset containsn = 1000 measurement vectors, of which
502 have labelyj = −1 and 498 have labelyj = +1.
The dimensionality of the measurements isD = 8. The first
two dimensions of the data,x1 and x2, are informative for
classification and the remaining six are completely uninfor-
mative. In particular, an ellipse in thex1–x2 plane separates
the two classes as shown in Fig. 3(a). The values in the other
six dimensions are independent samples from an identical
Gaussian distribution without regard for class label. Linear
dimensionality reduction tod = 2 dimensions is sought. Note
that the two class-conditional distributions have the samemean
and are not Gaussians, and thus not very amenable to FDA.
Fig. 4 shows theA matrices obtained using PCA and FDA,
visualized using the zonotopeZ(A). Neither PCA nor FDA is
successful at recovering the informative subspace: thex1–x2

plane.
We run our coordinate descent minimization of (2) to

find both anA matrix and decision boundary using two
different margin-based classifiers: the SVM with radial basis
function kernel and the geometric level set classifier with the
logistic loss function. The matrixA is randomly initialized. At
convergence, the optimization procedure ought to give anA

matrix with all zeroes in the bottom six rows, correspondingto
a zonotope that is a possibly rotated square, and an elliptical
decision boundary. Fig. 3(b) shows the decision boundary
resulting from the first optimization forϕ using the GLS
classifier with the random initialization forA, before the first
gradient descent step on the Stiefel manifold. Fig. 3(c)–(e)
show intermediate iterations and Fig. 3(f) shows the final
learned classifier and linear dimensionality reduction matrix.
As the coordinate descent progresses, the zonotope becomes
more like a square, i.e.,A aligns with thex1–x2 plane, and
the decision boundary becomes more like an ellipse. Fig. 5
shows the operation of the coordinate descent with the SVM.
Here also, the zonotope becomes more like a square and the
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Fig. 3. Illustrative example. Magenta× markers indicate label−1. Black+
markers indicate label+1. The blue line is the classifier decision boundary.
The green line outlines a zonotope generated byA

T . (a) The first two
measurement dimensions. (b) Random initialization forA and firstϕ from
GLS classifier. (c)–(e) Intermediate iterations. (f) FinalA andϕ from GLS
classifier.
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Fig. 4. Illustrative example. Magenta× markers indicate label−1. Black
+ markers indicate label+1. The green line outlines a zonotope generated
by A

T from (a) PCA, and (b) FDA.
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Fig. 5. Illustrative example. Magenta× markers indicate label−1. Black+
markers indicate label+1. The blue line is the classifier decision boundary.
The green line outlines a zonotope generated byA

T . (a) Random initialization
for A and firstϕ from SVM. (b)–(c) Intermediate iterations. (d) FinalA and
ϕ from SVM.

TABLE I
INITIAL AND FINAL A MATRICES IN ILLUSTRATIVE EXAMPLE

Random Initialization GLS Solution SVM Solution





















0.0274 −0.4639
0.4275 0.2572
0.4848 0.1231

−0.0644 0.4170
0.0138 0.3373
0.5523 0.2793
0.1333 0.0283
0.5043 −0.5805









































0.3386 −0.9355
0.9401 0.3406
0.0118 −0.0110
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decision boundary becomes more like an ellipse throughout
the minimization.

The random initialA matrix and the finalA matrix solu-
tions for the GLS classifier and the SVM are given in Table I.
What we would want for this example is that the correct two-
dimensional projection is identified and, assuming that it is,
that the decision boundary is essentially elliptical. First, note
that if the correct projection is identified, we expect the last
six rows of the finalA matrix to be small compared to the
first two rows and the corresponding zonotopes to be nearly
square. Since rotations and reflections of the space onto which
we project are inconsequential, we do not necessarily expect
the first two rows ofA to be the identity matrix, nor do
we expect the orientation of the nearly square zonotopes in
Fig. 3(f) and Fig. 5(d) to line up with the coordinate axes.
The results shown in Fig. 3(f), Fig. 5(d), and Table I reflect
these desired characteristics. Given these final projections, we

see that the resulting decision boundaries are indeed nearly
elliptical.11 As this example indicates, the procedure is capable
of making large changes toA.

B. Classification Error For Different Reduced Dimensions

We present experimental classification results in this section
on several datasets from the UCI machine learning repository
[73]. The joint linear dimensionality reduction and margin-
based classification method proposed in Section II is run
for different values of the reduced dimensiond, showing
that performing dimensionality reduction does in fact improve
classification performance in comparison to not performing
dimensionality reduction. The margin-based classifier that is
used is the SVM with radial basis function kernel and default
parameter settings from the Matlab bioinformatics toolbox.

First, we look at training error and test error12 as a function
of the reduced dimension on five different datasets from var-
ied application domains: Wisconsin diagnostic breast cancer
(D = 30), ionosphere (D = 34), sonar (D = 60), arrhythmia
(D = 274 after preprocessing to remove dimensions contain-
ing missing values), and arcene (D = 10000). On the first
four datasets, we look at the tenfold cross-validation training
and test errors. The arcene dataset has separate training and
validation sets which we employ for these purposes.

The tenfold cross-validation training error is shown with
blue triangle markers and the tenfold cross-validation test error
is shown with red circle markers for the ionosphere dataset in
Fig. 6(a). The plot also contains error bars showing one stan-
dard deviation above and below the average error over the ten
folds. In Fig. 6(b), the test error for the joint minimization is
compared to the test error if the linear dimensionality reduction
is first performed using PCA, FDA, information preserving
component analysis [44], or sufficient dimension reduction
(structured principal fitted components [74]), followed by
classification with the kernel SVM. Fig. 7 shows tenfold cross-
validation training and test error for other datasets. Fig.8 gives
the training and test performance for the arcene dataset. For
the Wisconsin diagnostic breast cancer, ionosphere, and sonar
datasets, we show classification performance for all possible
reduced dimensions. For the arrhythmia and arcene datasets,
we show reduced dimensions up tod = 50 and d = 100,
respectively.

The first thing to notice in the plots is that the training
error quickly converges to zero with an increase in the reduced
dimensiond. The margin-based classifier with linear dimen-
sionality reduction perfectly separates the training set when the
reduced dimension is sufficiently large. However, this perfect
separation does not carry over to the test error—the error in
which we are most interested. In all of the datasets, the test
error first decreases as we increase the reduced dimension, but
then starts increasing. There is an intermediate optimal value

11The curved piece of the decision boundary in the top right corner of the
domain in Fig. 3(f) is an artifact of geometric level sets and does not affect
classification performance.

12Training error is the misclassification associated with the data used to
learn the Stiefel manifold matrix and decision function. Testerror is the
misclassification associated with data samples that were not used in training
and is a surrogate for generalization error.
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Fig. 6. (a) Tenfold cross-validation training error (blue triangle markers)
and test error (red circle markers) on ionosphere dataset. Error bars indicate
standard deviation over the ten folds. (b) Tenfold cross-validation test error
on ionosphere dataset using PCA (dashed and dotted cyan line), FDA
(dashed magenta line), information preserving component analysis (dotted
blue line), sufficient dimension reduction (green line with markers), and joint
minimization (solid red line). Error bars are not included because they would
make the plot unreadable, but note that standard deviations for all five methods
are approximately the same.

for the reduced dimension. For the five datasets, these values
ared = 3, d = 9, d = 16, d = 10, andd = 20, respectively.
This test error behavior is evidence of overfitting ifd is
too large. Dimensionality reduction improves classification
performance on unseen samples by preventing overfitting.
Remarkably, even the ten thousand-dimensional measurements
in the arcene dataset can be linearly reduced to twenty dimen-
sions. In the ionosphere dataset test error comparison plot, it
can be seen that the minimum test error is smaller with the
joint minimization than when doing dimensionality reduction
separately with PCA, FDA, information preserving component
analysis, or sufficient dimension reduction. Moreover, this
minimum test error occurs at a smaller reduced dimensionality
than the minima for PCA, FDA, and sufficient dimension
reduction. Comparisons on other datasets are similar.

The classification error as a function ofd using our new joint
linear dimensionality reduction and margin-based classifica-
tion method matches the structural risk minimization principle.
Rademacher complexity analysis supporting these empirical
findings is presented in Section II-C.
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Fig. 7. Tenfold cross-validation training error (blue triangle markers) and
test error (red circle markers) on (a) Wisconsin diagnostic breast cancer, (b)
sonar, and (c) arrhythmia datasets. Error bars indicate standard deviation over
the ten folds.
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Fig. 8. Training error (blue triangle markers) and test error(red circle
markers) on arcene dataset.
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C. Classification Error For Different Networks

Given the sensor network model of Section III-D, we look
at classification performance for the three different network
architectures with different amounts of transmission power.
Different transmission powers are obtained by varying the
number of sensors and scaling thedi values. We emulate data
coming from a sensor network by slicing the dimensions of
the ionosphere, sonar, and arcene datasets and assigning the
different dimensions to different sensors. WithDi = 5 for all
sensors in the network for the ionosphere and sonar datasets
andDi = 50 for the arcene dataset, we assign the dimensions
in the order given in the UCI machine learning repository, so
the first sensor ‘measures’ the firstDi dimensions listed, the
second sensor ‘measures’ dimensionsDi+1 through2Di, and
so on. The dimensions are not ordered according to relevance
for classification in any way.

We plot results for the ionosphere dataset in Fig. 9. In
Fig. 9(a), we plot tenfold cross-validation training and test
error obtained from the algorithm described in Section III-B
with the parallel network as a function of transmission power.
Each training and test error pair corresponds to a different
value ofm = 1, 2, . . . , 6 anddi = 1, 2, . . . , 5. In Section IV-B,
we plotted classification performance as a function of the
reduced dimension, but here the horizontal axis is transmission
power, taking the distance between sensor nodes into account.
As in Section IV-B, the phenomenon of overfitting is quite
apparent.

In Fig. 9(b), classification error is plotted as a function of
transmission power for the serial architecture. The pointsin
the plot are for different numbers of sensorsm = 1, 2, . . . , 6
and different scalings of the reduced dimensiondi = (m −
i + 1), 2(m − i + 1), . . . , 5(m − i + 1). The classification
error values in Fig. 9(b) are quite similar to the ones for the
parallel case.13 The plot for the parallel architecture appearing
to be a horizontally compressed version of the serial architec-
ture plot indicates that to achieve those similar classification
performances, more transmission power is required by the
serial architecture. Although the distances between parents
and children tends to be smaller in the serial architecture,
the chosendi are larger closer to the fusion center leading
to higher transmission power.

The binary tree architecture’s classification error plot is
given in Fig. 9(c). The training and test error values are
similar to the other two architectures.14 The transmission
power needed to achieve the given classification errors is
similar to that of the parallel architecture and less than the
serial architecture. Among the three architectures with the di
assigned as described in Section III-D, all have approximately
the same classification performance, but the serial network
uses more power.

The same experiments are repeated for the sonar and arcene
datasets with plots given in Fig. 10 and Fig. 11. For the sonar
dataset,m varies from one to eleven, anddi of leaf nodes from

13In fact, they are the same for the five pairs of points whenm = 1 because
the parallel and serial networks are the same when there is a single sensor.

14The binary tree is the same as the parallel network form = 1, 2 and the
serial network form = 1.
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Fig. 9. Tenfold cross-validation training error (blue triangle markers) and
test error (red circle markers) on ionosphere dataset for (a)parallel, (b) serial,
and (c) binary tree network architectures.

one to five. For the arcene dataset,m varies from one to ten,
and di of leaf nodes from one to fifteen. The same trends
can be observed as in the ionosphere dataset; similar plots
are produced for other datasets such as Wisconsin diagnostic
breast cancer and arrhythmia. All three network topologies
produce similar classification errors, but the serial network
uses more power.

Some overall observations for wireless sensor networks are
the following. There exist some optimal parameters of the net-
work with a finite number of sensors and some dimensionality
reduction. One may be tempted to think that deploying more
sensors always helps classification performance since the total
number of measured dimensions increases, but we find that this
is not generally true. For a fixed number of samplesn, once
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Fig. 10. Tenfold cross-validation training error (blue triangle markers) and
test error (red circle markers) on sonar dataset for (a) parallel, (b) serial, and
(c) binary tree network architectures.

there are enough sensors to fit the data, adding more sensors
leads to overfitting and a degradation of test performance. That
a small number of sensors, which perform dimensionality re-
duction, yield optimal classification performance is good from
the perspective of resource usage. Among different possible
choices of network architectures, we have compared three
particular choices. Others are certainly possible, including the
investigated topologies but with differentdi proportions. For
the chosendi proportions, all three network topologies have
essentially the same classification performance, but this is not
true for other choices.

In this empirical investigation of classification performance
versus resource usage, the main observation is that the two
are not at odds. The decrease of resource usage is coin-
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Fig. 11. Training error (blue triangle markers) and test error (red circle
markers) on arcene dataset for (a) parallel, (b) serial, and (c) binary tree
network architectures.

cident with the prevention of overfitting, which leads to
improved classification performance. Oftentimes there is a
tradeoff between resource usage and performance, but that is
not the case in the overfitting regime. Additionally, among
the network architectures compared, the parallel and binary
tree architectures use less power in communication than the
serial architecture for equivalent classification performance.
The plotted transmission power values, however, are based
on choosing the parent-child links to exactly minimize (18);
in practice, this minimization will only be approximate for
the binary tree architecture and will require a certain amount
of communication overhead. Therefore, the parallel architec-
ture, which requires no optimization, is recommended for
this application. This new distributed dimensionality reduc-
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tion formulation and empirical study suggests a direction for
future research, namely the problem of finding the number of
sensors, the network structure, and the set ofdi that optimize
generalization error in classification for a given transmission
power budget and given number of training samplesn.

D. Spatially-Distributed Sensor Node Data

As a confirmation of the results given for emulated sensor
network data in Section IV-C, here we present results on two
datasets arising from spatially-distributed sensor nodes. The
first dataset is based on sensor measurements collected at
the Intel Berkeley Research Laboratory in 2004. The second
dataset is based on sensor measurements collected at the Army
Research Laboratory in 2007 [75].

The Intel Berkeley dataset as available contains temperature,
relative humidity, and light measurements for54 sensors over
more than a month. A classification task is required for the
methodology developed in this paper, and thus we define two
classes based on the light measurements, dark and bright.
The dark class corresponds to the average light being less
than 125 lx and the bright class to greater than125 lx. Our
formulation requires a correspondence among measurements
from different sensors in order to define a single samplej; the
sensor measurements are time-stamped with an epoch number
such that measurements from different sensors with the same
epoch number correspond to the same time. However, each
epoch number corresponds to much fewer than54 sensors.
Thus we take length60 blocks of epoch numbers and consider
all measurements within a block to correspond to the same
time. We take the first reading if a block contains more than
one reading from the same sensor. Even with this blocking,
if we insist that a sample needs data from all54 sensors, we
obtain very few samples. Thus we only consider12 sensors,
numbered 1, 2, 3, 4, 6, 31, 32, 33, 34, 35, 36, and 37 in the
dataset. With such processing, we obtainn = 2346 samples.

Spatial locations of the sensors are given. For the network
structure, we consider a fusion center located in the center
of the sensors and links between nodes according to the
Euclidean minimum spanning tree with the fusion center at the
root. We train on the first quarter of the samples containing
temperature and relative humidity measurements and test on
the latter three quarters of the samples, varying the number
of sensors and thedi scaling. The training and test errors
as a function of total transmission power in the network is
given in Fig. 12(a). As in previous results, we see the effects
of overfitting. An intermediate transmission power level is
optimal for classification performance even with spatially-
distributed sensor node data.

The Army Research Laboratory data consists of sensor
nodes that take four acoustic, three seismic, one electric field,
and four passive infrared measurements. Measurements are
taken during the dropping of a14 pound steel cylinder from
nine inches above the ground and during no significant human
activity. The cylinder dropping happens at various spatial
locations in relation to the sensors. In this dataset, we have
200 samples of cylinder dropping and200 samples of no
activity. We train on the first half of the samples and test on
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Fig. 12. Training error (blue triangle markers) and test error (red circle
markers) on (a) Intel Berkeley dataset and (b) Army Research Laboratory
dataset.

the remaining samples. The fusion center is again placed in the
center of the sensors and a minimum spanning tree network is
used. Training error and test error are plotted in Fig. 12(b)for
different numbers of sensors and differentdi scalings. Again,
we see that an intermediate level of transmission power is
optimal for classification test error, with overfitting for large
transmission powers.

V. CONCLUSION

In this paper, we have formulated linear dimensionality
reduction driven by the objective of margin-based classifi-
cation. We have developed an optimization approach that
involves alternation between two minimizations: one to up-
date a classifier decision function and the other to update
a matrix on the Stiefel manifold. We have both analytically
and empirically looked at the phenomenon of overfitting:
analytically through the Rademacher complexity, and empiri-
cally through experiments on several real datasets, illustrating
that dimensionality reduction is an important component in
improving classification accuracy. We have also analytically
characterized the consistency of the dimensionality-reduced
classifier. We have described how our proposed optimization
scheme can be distributed in a network containing a single
sensor through a message-passing approach, with the classifier
decision function updated at the fusion center and the dimen-
sionality reduction matrix updated at the sensor. Additionally,
we have extended the formulation to tree-structured fusion
networks.
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Papers such as [32], [34] have advocated nonparametric
learning, of which margin-based classification is a subset,
for inference in distributed settings such as wireless sensor
networks. Reducing the amount of communication is an impor-
tant consideration is these settings, which we have addressed
in this paper through a joint linear dimensionality reduction
and margin-based classification method applicable to networks
in which sensors measure more than one variable. Reducing
communication is often associated with a degradation in
performance, but in this application it is not the case in the
regime when dimensionality reduction prevents overfitting.
Thus, dimensionality reduction is important for two distinct
reasons: reducing the amount of resources consumed, and
obtaining good generalization.
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