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Linear Dimensionality Reduction for Margin-Based
Classification: High-Dimensional Data and
Sensor Networks
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Abstract—Low-dimensional statistics of measurements play an both within the measurement dimensions of a single sensor
important role in detection problems, including those encoun- and between measurement dimensions of different sensers du
tered in sensor networks. In this work, we focus on learning low- to spatial correlation

dimensional linear statistics of high-dimensional measurement R b d if d tt it
data along with decision rules defined in the low-dimensional esources can be conserve .' .Sensors 0 no ran§m|
space in the case when the probability density of the mea- irrelevant or redundant data, but it is usually not known in
surements and class labels is not given, but a training set advance which measurement dimensions or combination of
of samples from this distribution is given. We pose a joint dimensions are most useful for the detection or classifinati
optimization problem for linear dimensionality reduction and {451 The transmission of irrelevant and redundant data can
margin-based classification, and develop a coordinate descentb ided th h di . lit duction: ifical
algorithm on the Stiefel manifold for its solution. Although e aYO' e . roug 'me“S'F’”a'y reauction; speciicaaty
the coordinate descent is not guaranteed to find the globally Iow-dlmens',lonal representative form _Of measuremepts may
optimal solution, crucially, its alternating structure enables us to be transmitted by sensors to a fusion center, which then
extend it for sensor networks with a message-passing approach detects or classifies based on those low-dimensional mesasur
requiring little communication. Linear dimensionality reduction ment representations. As measurements or low-dimensional

prevents overfitting when learning from finite training data. In ¢ tati ¢ itted f t
the sensor network setting, dimensionality reduction not only measurement representations are transmitted irom seasor

prevents overfitting, but also reduces power consumption due S€NSOT, eventually reaching the.fu_sion center, dimenttgna
to communication. The learned reduced-dimensional space and reduction at the parent node eliminates redundancy between

decision rule is shown to be consistent, and its Rademacher parent and child node measurements. Even a reduction from
complexity is characterized. Experimental results are presented two-dimensional measurements to one-dimensional fesiture

for a variety of datasets, including those from existing sensor . ianificant i hostil . t itori d
networks, demonstrating the potential of our methodology in IS signimcant in many hostile-environment monitoring an

comparison with other dimensionality reduction approaches. surveillance applications.

Decision rules in detection problems, both in the sensor
network setting and not, are often simplified through suéfiti
statistics such as the likelihood ratio [7]. Calculation af
sufficient statistic losslessly reduces the dimensionatit
[. INTRODUCTION high-dimensional measurements before applying a decision

ENSOR networks are systems used for distributed dle defined in the reduced-dimensional space, but requires

ection and data fusion that operate with severe resoutgowiedge of the probability distribution of the measuretse
limitations; consequently, minimizing complexity in tesnof The statistical learning prob_leﬂype_rwsgd classificatioteals
communication and computation is critical [3]. A current inWith the case when this distribution is unknown, but a set
terest is in deploying wireless sensor networks with notlas t Of 1abeled samples from it, known as the training dataset, is
take measurements using many heterogeneous modalities @ilable. For the most part, however, supervised claasiic
as acoustic, infrared, and seismic to monitor volcanoes [4f€thods (not adorned with feature selection) produce idecis
detect intruders [5], [6], and perform many other classiiiza rules defme_d in the full h|gh-d|n1_en5|onal measurement spac
tasks. Sensor measurements may contain much redundafﬁﬁf‘,er than in a reduced-dimensional space, motivatingifea

selection or dimensionality reduction for classification.
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machine (SVM), and the geometric level set (GLS) classifitlnat our proposed joint linear dimensionality reductiord an
[13]-[15]. The importance of the Stiefel manifold is itse@ds margin-based classification method is consistent.
the set of all linear subspaces with basis specified and henc&he problem ofdistributeddetection has been an object of
it provides precisely the right object for exploring di#et study during the last thirty years [28]-[31], but the maipri
subspaces on which to project measurements. of the work has focused on the situation when either the
Many methods for linear dimensionality reduction, includjoint probability distribution of the measurements andelab
ing the popular principal component analysis (PCA) anddiishor the likelihood functions of the measurements given the
discriminant analysis (FDA), can be posed as optimizatidabels are assumed known. Recently, there has been some work
problems on the Stiefel or Grassmann manifold with différelon supervised classification for distributed settings {824],
objectives [12]. In this paper, we propose an optimizatidput in that work sensors take scalar-valued measuremedts an
problem on the Stiefel manifold whose objective is that afimensionality reduction is not involved. Previous work on
margin-based classification and develop an iterative ¢oatel the linear dimensionality reduction of sensor measuresnient
descent algorithm for its solution. PCA, FDA, and other metldistributed settings, including [35]-[37] and referenterein,
ods do not have margin-based classification as their obgecthave estimation rather than detection or classificationhas t
and are consequently suboptimal with respect to that objebjective.
tive. Coordinate descent is not guaranteed to find the globalln this paper, we show how the linear dimensionality reduc-
optimum; however, as seen later in the paper, an advantdige of heterogeneous data specifically for margin-basad-cl
of coordinate descent is that it is readily implemented igification may be distributed in a tree-structured mulissen
distributed settings and tends to find good solutions intipac data fusion network with a fusion center via individual &tle
We successfully demonstrate the learning procedure omadevenanifold matrices at each sensor. The proposed coordinate
real datasets from different applications. descent learning algorithm is amenable to distributed émpl
The idea of learning linear dimensionality reduction magnentation. In particular, we extend the coordinate descent
pings from labeled training data specifically for the pugpogprocedure so that it can be implemented in tree-structured
of classification is not new. For example, the goal of FDAensor networks through a message-passing approach with th
is classification, but it assumes that the class-conditiorgmount of communication related to the reduced dimension
distributions generating the data are Gaussian with idehtirather than the full measurement dimension. The ability to
covariances; it is also not well suited to datasets of snaaH cbe distributed is a key strength of the coordinate descent
dinality [16]. We reserve discussion of several such metho@ptimization approach.
until Section I-Al Our work fits into the general category Multisensor networks lead to issues that do not typically
of learning data representations that have traditionadlgrb arise in statistical learning, where generalization ersothe
learned in an unsupervised manner, appended with kno@mly criterion. In sensor networks, resource usage present
class labels and consequently supervision. Examples fngn tadditional criterion to be considered, and the architectfr
category include learning undirected graphical modeld,[26he network presents additional design freedom. In wiseles
sparse signal representations [21], [22], directed topidets Sensor networks, the distance between nodes affects energy
[23], [24], quantizer codebooks [25], and linear dimenaldyg  usage in communication, and must therefore be considered in
reduction matrices, which is the topic of this paper and istheselecting network architecture. We give classificatiorultes
described in Section I-A. on real datasets for different network architectures andtio
Statistical learning theory characterizes the phenomerfionon these issues empirically.
overfitting when there is finite training data. The genesdion
error of a classifier—the probability of misclassification o 5 Relationship to Prior Work

new unseen measurements (the quantity we would ideally ) ) ) . )
like to minimize)—can be bounded by the sum of two The most popular method of linear dimensionality reduction
terms [8]: the classification error on the training set, and f@r data analysis is PCA. PCA and several other methods only

complexity term, e.g. the Rademacher complexity [26], {zﬂnal_(e use of_the measurement vectors, not the clasg labels,
We analytically characterize the Rademacher complexitg adn finding a dimensionality reduction mapping. If the dimen-
function of the dimension of the reduced-dimensional spagi®nality reduction is to be done in the context of supedvise
in this work. Finding it to be an increasing function of thélassification, the class labels should also be used. Severa
dimension, we can conclude that dimensionality reductigiyPervisedlinear dimensionality reduction methods exist in

does in fact prevent overfitting and that there exists sorffé literature. We can group these methods into three broad
optimal reduced dimension. categories: those that separate likelihood functions rdaug

fo some distance or divergence [38]-[44], those that try to
make the probability of the labels given the measurements
and the probability of the labels given the dimensionality-
\X,educed measurements equal [45]-[50], and those thatatttem
to minimize a specific classification or regression obje&ctiv
, AT | [12], [51]-[54].
Our paper focuses on general linear dimensionality reducia not on . . . .
feature subset selection, which is a separate topic in its Bght, e.g. see AS_ m.ent'oned preV'OUSIV In the_seCt'.On’ FDA assumes. that
[171-[19]. the likelihood functions are Gaussian with the same comaga

As the cardinality of the training dataset grows, the ge
eralization error of aconsistentclassifier converges to the
Bayes optimal probability of error, i.e., the error probiypi
had the joint probability distribution been known. We sho
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and different means. It returns a dimensionality reductiatiscussed, but also some key differences. First of all, we do
matrix on the Stiefel manifold that maximally separates (inot makeany assumption, and indeed do not explicitly make
Euclidean distance) the clusters of the different label.[1 use of any assumptions on the statistics of likelihood fionst
The method of [39] also assumes Gaussian likelihoods wil.g., no assumption of Gaussianity is employed). Moreover
the same covariance and different means, but with an evaur method does not require nor involve estimation of the
stronger assumption that the covariance matrix is a scapapbability density functions under the two hypotheses afor
multiple of the identity. The probability of error is expliy the likelihood ratio. Indeed, we are directly interestedyon
minimized using gradient descent; the gradient updatekeo in learning decision boundaries and using margin-basesl los
dimensionality reduction matrix do not enforce the Stiefdlnctions to guide both this learningnd the optimization
manifold constraint, but the Gram-Schmidt orthonormaiora over the Stiefel manifold to determine the reduced-dineei
procedure is performed after every step to obtain a matek ttspace in which decision making is to be performed. Density
does meet the constraint. With a weaker assumption only tlestimation is a harder problem than finding classifier deuisi
the likelihood functions are Gaussian, but without retibic boundaries and it is well known that when learning from
on the covariances, other methods maximize Bhattachanyfidte data, it is best to only solve the problem of interest
divergence or Chernoff divergence, which are surrogates fnd nothing more. Similarly, the desire that the conditiona
minimizing the probability of error [43]. distributions of the class label given the high-dimensiareal
The method of [38], like FDA, maximally separates theeduced-dimensional measurements be equal is more im/olve
clusters of the different labels but does not make the strotitan wanting good classification performance in the reduced
Gaussian assumption. Instead, it performs kernel density dimensional space.
timation of the likelihoods and separates those estimatespaiher than nearest neighbor classification or linear re-

The optimization is gradient ascent and orthonormaliratso gression, the objective in the method we propose is margin-

performed after every step. Similarly, information prewey ;56 classification. Our method finds all reduced-dimeasio
component analysis also performs kernel density estimatiQ, ;¢ res in a joint manner, and gives both the dimensignalit
and maximizes Hellinger distance, another surrogate foF Migqction mapping and the classifier as output. Unlike in
imizing the probability of error, with optimization throbg |571 the classifier is defined exactly without approximatio
gradient ascent and the Stiefel manifold constraint maiath i, the reduced-dimensional subspace resulting from apglyi
in the gradient steps [44]. Other approaches with inforamati e gimensionality reduction matrix that is found. Additidly,

theoretic criteria include [40]-[42]. _ __the regularization term and consequently inductive biathef
Like [38], [44], the method of [49] also estimates probdbili | ssifier is left unchanged.

density functions for use in the criterion for linear dimigms ) ) )
ality reduction. The particular criterion, however, is edon "€ preceding represent the major conceptual differences

the idea that the dimensionality reduction mapping shoeld f€tween our framework and that considered in previous work.

such that the probability of the class labels conditioned o€ US€ coordinate descent optimization procedures in Sec-
the unreduced measurements equal the probability coneiio ion I, which are also employed in other works, e.g. [52B]i5

on the reduced measurements. The same criterion appear@4hthe setting in which we use these are new. Our framework
[45], [46], [48], [50] and many references given in [47]. Bee a_Iso allows us to develop some new theoretical results on con

papers describe various methods of finding dimensionalfjStency and Rademacher complexity. Moreover, as dewetlope

reduction mappings to optimize the criterion with differenin Section Ill, our framework allows a natural generaliaatto
assumptions. distributed dimensionality reduction for classificationsensor

Some supervised dimensionality reduction methods explfe€Works, a problem that has not been considered previously

itly optimize a classification or regression objective. A-li  Ji and Ye presented an approach to linear dimensionality
ear regression objective and a regression paramete#lStieéduction for classification with linear decision boundari
manifold coordinate descent algorithm is developed in.[53pb5] after the initial presentation of this work [1], whicls i
The support vector singular value decomposition machine sifmilar to our formulation as well as the formulation of [53]
[52] has a joint objective for dimensionality reduction andi and Ye restrict themselves to the regularization term of
classification with the hinge loss function. However, thaénra the SVM and either a regression objective like [53], or the
it produces is not guaranteed to be on the Stiefel manifold, ahinge loss. In our formulation, any regularization term and
the space in which the classifier is defined is not exactly tlamy margin-based loss function may be used, and the decision
dimensionality-reduced image of the high-dimensionakepa boundaries are generally nonlinear. With the hinge loss, th
It also changes the regularization term from what is statigar optimization in [55] is through coordinate descent simiiar
used for the SVM. Maximum margin discriminant analysisurs, but the dimensionality reduction matrix optimizatgiep
is another method based on the SVM,; it finds the reduced-carried out via a convex-concave relaxation (which is not
dimensional features one by one instead of giving a complagearanteed to find the optimum of the true unrelaxed problem)
matrix at once and it does not simultaneously give a classifimther than gradient descent along Stiefel manifold gdosles
[54]. The method of [12], [51] is based on the nearest neighbthat we do. The work of Ji and Ye also considers the learning
classifier. problem when training samples may have either zero, one,
The objective function and optimization procedure we prar more than one assigned class label, which is known as
pose in Section Il has some similarities to many of the methornhultilabel classification [56] and is not the focus of our wor
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B. Organization of Paper a reproducing kernel Hilbert spadé, and J is the squared
The paper is organized as follows. Section Il combines th@rm in that spacey||3, [13], [14]. In the GLS classifier,
ideas of margin-based classification and optimization @ tgnY margin-based loss function may be used and the decision
Stiefel manifold to give a joint linear dimensionality redion functions are in the space of signed distance functions [2],
and classification objective as well as an iterative alparit [15]- The magnitude of(x) equals the Euclidean distance of

An analysis of Rademacher complexity and consistency ¥st0 the decision boundary. The regularization tefnis the
also presented in the section. Section Il shows how t¥rface area of the zero level setfi.e., J(¢) = §,_ ds,
basic method of Section Il extends to multisensor data fusi¥/nere ds is an infinitesimal surface area element on the
networks, including wireless sensor networks. In Sectign | d€cision boundary.

an illustrative examp|e and results on several real daaset The new contribution of this section is the formulation of
given. Also given are experimental results of classifigatic® joint linear dimensionality reduction and classificatmimi-
performance as a function of transmission power in wirele§¥zation problem by extension of the margin-based funetion

sensor networks. Section V concludes. (1). The decision functiony is defined in the reduced-
dimensional space and a linear dimensionality reductiop-ma
Il. LINEAR DIMENSIONALITY REDUCTION EOR ping appears in its argument, but otherwise, the classditat
MARGIN-BASED CLASSIFICATION objective is left unchanged. In particular, the regulditma

t%ermJ is not altered, thereby allowing any regularized margin-
dimensionality reduction and margin-based classificatitle ased classifier to be extended for dimensionality redactio

develop a coordinate descent minimization procedure fisr tri]n(;II—Sdee rgar;g;tnr}gzsznglffsx:fﬁ Z?ch;?;g Flyzslioﬁ:\f\?;ded o
formulation, characterize the complexity of the formudati * '

In this section, we formulate a problem for composit

from a statistical learning theory perspective, and shog th n

consistency of the formulation. L(p, A) =Y Uy;0(ATx))) + A (%), )
j=1

A. Formulation with the constraint thaf lie on theStiefel manifoldof D x d

Consider the binary detection or classification problenhwitmatrices, i.eA € V(D, d), where
measurement vectorX € Q c RP and class labeld ¢
{41, —1} drawn according to the probability density function V(D,d) = {A e R"*%,d < DIATA =T}. 3)
px,v(x,y). We would like to find the classifief : @ —
{+1, —1} that minimizes the error probabilifyr[Y" # §(X)].
We do not have access f& v (x,y), but instead are given
training data{(x1,1),- .-, (Xn,yn)}. The true objective we
would like to minimize in learningj is the generalization error =™~ >=" ="' F ) :
Pr[Y # (X)), but a direct minimization is not possible sincd'?/€ction, i.e., to the Stiefel manifold.
the joint distribution ofX andY is not known. In practice, the ~1ne formulation as presented is for a fixed valuedofif

classifierj is selected from a function class to minimize a 9€neralization error is the only criterion, then any popula
loss function of the training data. model selection method from the machine learning liteeatur

Margin-based classifiers take the fom) = sign(y(-)), including those based on cross-validation, bootstrappngl

where ¢ is a decision function whose specifics are tied tformation criteria, can be used to find a good value for

the specific margin-based classifier. The decision fundsontn€ reduced dimension. However, other criteria besides
chosen to minimize the functional generalization error become important in various setfings

n including sensor networks. System resource usage is ote suc
L(p) = Zf(yfp(xj)) + A J(p), 1) criterion; _|t .|s_no_t typlca}lly statlst_lcal in nature and_ iftem
a deterministic increasing function af. As such, it may
be used as an additional cost with information criteria or as
: e . a component in modified cross-validation and bootstrappin
to the distance betweenand the classifier decision boundar31f differpent types of errors such as false alarms and n?izsegd
g’(x).: 0. The function? is known. as a margm—basfeq los etections incur different costs, then the criterion isstattly
function. Examples of such functions are the logistic IOS&eneralization error, but cross-validation and bootgfirap

function: o .
may be modified accordingly.
Logistic(2) = log (1 + 6_2) y gy

and the hinge loss function:

bhinge(z) = max{0,1 — z}.

With a data vectox € R”, ATx is in d dimensions. Typically
—and especially in our framework—we are uninterested in
scalings of the reduced-dimensional da&d'x, so we limit
the set of possible matrices to those which involve orthagon

j=1

where the valugyp(x) is known as the margin; it is related

B. Coordinate Descent Minimization

An option for performing the minimization oL(p, A)
The second term on the right side of (1), with non-negatigven in (2) is coordinate descent: alternating minimzasi
weight ), represents a regularization term that penalizes thath fixed A and with fixedy. The problem is conceptually
complexity of the decision function [13], [14]. In the kefnesimilar to level set image segmentation along with pose esti
SVM, ¢ is the hinge loss, the decision functiogsare in mation for a shape prior [57]. WitlA fixed, we are left with a
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standard margin-based classification problem in the reluc@onzero in the remaining rows with values proportional to
dimensional space. The optimization step may be performée mutual informations of the remaining dimensions. Kerne
using standard methods for margin-based classifiers. density estimation is used in estimating mutual informatio
With ¢ fixed, we have a problem of minimizing a function

of A lying on the Stiefel manifold. For differentiable func-c Rrademacher Complexity

tions, several iterative minimization algorithms exis8560].
The functionL(A) = 7, £(y;»(A"x;)) is differentiable
with respect toA for differentiable loss functions. Usinga
to denote theD x d matrix with element® L /Ja;;, the first

The generalization error can be bounded by the sum of the
error of § on the training set, and a penalty that is larger
for more complexF. One such penalty is the Rademacher
complexity}?n(}-) [26], [27]. A classifier with good general-

derivative is: izability balances training error and complexity; this rsokvn
" , . as thestructural risk minimization principlg8].
La = Zng (45 p(Ax;)) With probability greater than or equal tb— §, Bartlett
=1 and Mendelson give the following bound on the generaliratio
xx;j [p1(ATx;) - wa(ATx;)]. (4 error for a specified decision rulg[27]:
Note that x; is a D x 1 wvector and that .
[p1(ATx;) -+ @a(ATx;)] is a1 x d vector, where Pr[Y%Z(X)] = B (P Y
ok(-) is the partial derivative of the decision function with 1 s ElR, n(l
respect to dimensiok. For the logistic loss function: n ;I(yj 7 90x;)) + 2 + 2n )
Chogistic(2) = — e” wherel is an indicator function. The first term on the right
I+e* hand side is the training error and the second term is com-
and for the hinge loss function: plexity. As discussed in [9]-[11], dimensionality redwacti
, reduces classifier complexity and thus prevents overfitting
Chingel2) = —step(1 — 2), Here, we analytically characterize the Rademacher coritplex
wherestep(-) is the Heaviside step function. term Rn(}') for the joint linear dimensionality reduction and
We perform gradient descent along geodesics of the Stiefdfrgin-based classification method proposed in this paper.
manifold [58]. The gradient is: is shown in [61] that the Rademacher average of a function

T classF satisfies:
G=La AL, A.

« 42 [ ,
Starting at an initialA (0), a step of length- in the direction R (F) < 2¢ + %[ V Hp o (F)de, (®)
-G to A(7) is: _ ‘ _
whereH,__ .(F) is thee-entropy of F with respect to the.,
A(r) = A(0)M(7) + QN(7), (6) metric?
. . T In classification, it is always possible to scale and shift
whereQR is the QR decomposition dfAA"G — G), and the data and this is often done in practice. Forgoing some
{M(T)] ~ex {T {—ATG —RT] } {I] bookkeeping and without losing much generality, we conside
N(r)| =P R 0 0]’ the domain of the unreduced measurement vectors to be the

. ) i D
The step size- may be optimized by a line search. unlt hypercube, that_ Ix € Q = [0’§] : TheT reducgd-
The coordinate descent is not guaranteed to find the g|oggpen3|onal domain 'S, then the' zonotope = A Q C R,
optimum, only a local optimum: however, as seen in th\e{hereA is on the Stiefel manifold. We denote the set of
illustrative example in Section IV-A, even poor initialtians decision functionsy defined on{2 as Fq and those defined

lead to the globally optimal solution in practice. For theuis ©N Z s/ z. o
given in Section IV-B, A is initialized by making use of Given the generalization bound based on Rademacher com-

estimates of the mutual informations between the lapel PI€Xity (7) and the Rademacher complexity term (8), we

fand '”d'Y'd“a' qata d|mgn§|0@k, k=1,...,D. Mutual 2The e-covering number of a metric space is the minimal number of sets
information provides an indication of whether a measurdmerith radius not exceeding required to cover that space; theentropy is
dimension is individually relevant for classification, atiuis the base-two logarithm of the-covering number [62]. Thel.o. metric is

At i ; it hi i ion i€ (P1,92) = sup [p1(x) — p2(x)|.
projection onto dimensions with high mutual information i€ 3The setZ = AT[0,1] C RY, the orthogonal shadow cast iy 1]2 due

a good starting point. Of course, these dimensions may @&he projectionA € V(D, d), is a zonotope, a particular type of polytope
correlated, and that is precisely what the Stiefel manifoldat is convex, centrally-symmetric, and whose faces are etsurally-

optimization iterations uncover. The first columnAfis taken Symmetric in all lower dimensions [63], [64]. For referenceg.FL shows
’ _several zonotopes fob = 4 andd = 2. The matrix AT is known as

to be the canonical unit vector corresponding to the din@ensithe generator of the zonotopé; we use the notatiorZ(A) to denote the
with the largest mutual information. The second colummof zonotope generated b ™. Also, let
is taker_1 to b(_a the canonical unit vector corr_espondlrjg to the Z(D,d) = {Z(A)|A € V(D,d)}. 9)
dimension with the second largest mutual information, and N _ _

The last. i.edth. column of A is zero in the rows Although the relationship between zonotopes and their rg¢oes is not
SO on. e Shy B 1 M : bijective, zonotopes provide a good means of visualizingf&timanifold
already containing ones in the firgt/ — 1) columns, and matrices, especially wheth = 2.
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Fig. 2. Rademacher average as a function of the reduced diometdor
D = 5 (dotted blue line),D = 10 (dashed and dotted green lind), = 15
—_22 0 > —_22 5 > (dashed red line), anfh = 20 (solid cyan line) fore = 0.01 andn = 1000.

(©) (d)
_ . For fixed reduced dimensiod, H, _.(Fz) increases as a
Fig. 1. Several zonotopes (4, 2). function of the measurement dimensién i.e., the classifier
function class is richer for larger measurement dimension
with the same reduced-dimension. Importanty, _ .(Fz)

must find an expression fof, _ (F7) to characterize the j, . ocas as a function dffor fixed D.

prevention of overfitting by linear dimensionality redwacti Substituting theH,_ .(F) expression (12) into (8), we
The function classF is tied to the specific margin-basedsj that for a fixed measurement dimensiby the more the
classification method employed. In order to make concreiG,engionality is reduced, that is the smaller the valué, dfie
statements, we select the GLS classifier; similar analysig M, 5ier the Rademacher complexity. This is shown in Fig. 2,
be performed for other margin-based classifiers such as ﬁlot of the complexity value as a function éffor different

kerne_l SVM' SUCh_ analysis WOUId_afISO be s!mi_lar t0 [11]. A§aiues of . Although larger measurement dimensibndoes
mentioned in Section II-A, the decision functignin the GLS  oq )it in arger complexity, the effect is minor in comparis
classifier is a signed distance function aRd is the set of all to the effect ofd.

signed distance functions whose domain is the zonope  gjnce training error increases as decreases, and the
For classification without dimensionality reduction, it iyeneralization error is related to the sum of the Rademacher
shown in [15] that complexity and the training error: the more we reduce the
11° dimension, the more we prevent overfitting. However, if we
H,_ Fa)< {-‘ (10) reduce the dimension too much, we end up underfitting the
¢ data; the training error component of the generalizatioorer

This result follows from the fact thaftl /e]” D-dimensional becomes large. There is an optimal reduced dimension that
hypercubes with side of lengthfit as a Cartesian grid into balances the training error and the complexity componefts o
Q = [0,1]°. To find an expression for the-entropy of the generalization errdr.
the dimensionality-reduced GLS classifier, the same aisalys
applies and consequently, we need to determine how rdanyD. Consistency
dimensional hypercubes with side of lengtliit into Z. The With a training dataset of cardinalitys drawn from
number of small hypercubes that fit insideis related to its px.v(x,y), a consistent classifier is one whose probability
contentV (Z). of error converges in the limit as goes to infinity to the

An upper bound forV(Z) is developed in [63] that is probability of error of the Bayes risk optimal decision riie
asymptotically of the correct order of magnitude for fixéd when both types of classification errors have equal T&sir

as D goes to infinity. Specifically,
4Note the purpose of generalization bounds in statisticahieg theory as

D) d stated by Bousquet [65]: “one should not be concerned aheugtiantitative
b

V(Z) < wq (wd_l =

(11) value of the bound or even about its fundamental form but ragbeut the
Wy d

terms that appear in the bound. In that respect a useful bauindd which
allows to understand which quantities are involved in therdeng process.
d . As a result, performance bounds should be used for what theygaod
where wy = /7 /T(1 + d/2) is the content of thed- for. They should not be used to actually predict the valuehef ¢éxpected

dimensional unit hypersphere aii-) is Legendre’s gamma error. Indeed, they usually contain prohibitive constamtextra terms that are
mostly mathematical artifacts. They should not be used dyrestla criterion

function. Based on (11), we find that to optimize since their precise functional form may also be aherattical
d artifact. However, they should be used to modify the desigtheflearning

1 d wa—1 [1 D algorithms or to build new algorithms.”
Hpoo,e(]:Z) < V(Z) ’76-‘ < wy Wa [6-‘ E . 5The Bayes optimal decision rule is a likelihood ratio testolming

px|y (xly = —1) ande‘y(x|y = +1) with threshold equal to the ratio

(12) of the class prior probabilities.
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consistency to be at all meaningful, we assume in this aigalysettings. In this section, we make use of and appropriately
that there is a reduced-dimensional statigti€x so that the extend the formulation of joint linear dimensionality retion
optimal Bayes decision rule based on this statistic ackiévwe and classification presented in Section Il for this task.dase
same performance as the optimal decision rule based on tfieexposition, we begin the discussion by first considering a
complete data, that is, we assume that there exists at leasétup with a single sensor, and then come to the generaigetti
one A* € V(D,d) such thatPr[Y” # §*(A*TX)] = Pr[Y # with m sensors networked according to a tree graph with a
7*(X)], whereg* takes the appropriate dimensional argumerfusion center at the root of the tree. Also for simplicity of
andd is known. We also assume that the optimization meth@xposition, we assume that the fusion center does not take
used in training finds the global optimum. The question measurements, that it is not also a sensor; this assumggtion i
whether for a sequence of classifiers learned from trainibhy no means necessary. We make the assumption, as in [32]-
datag(™ (x) = sign(p(™ (A(M7Tx)), where [34], that the class labelg; of the training set are available

at the fusion center.

1
(A ™) = arg  min min  —
AcV(D,d) pEFza) N

Zé(nga(Aij)),

J A. Network with Fusion Center and Single Sensor

doesPr[Y" # §™] — Pr[Y # §*] converge in probability to  Consider a network with a single sensor and a fusion
zero. Note thaPr[Y" # ()] is a random variable that dependgenter. The sensor measures data vegtarR? and reduces
on the data. its dimensionality usingA. The sensor transmit&s ,c =
The properties ofPr[Y" # ("] are affected by both the ATx ¢ R? to the fusion center, which applies decision rule
margin-based loss function and by the classifier function gjon((%¢ 1)) to obtain a classification fox. Clearly in its
spacef . Conditions on the loss function necessary for gperational phase, the linear dimensionality reductiauces
margin-based classifier to be consistent are given in [13he amount of transmission required from the sensor to the
[14], [66]. A loss function that meets the necessary coondgi fysion center.
is termedFisher consistenin [13]. Common margin-based \joreover, the communication required in training depends
loss functions including the logistic loss and hinge l0ss app the reduced dimensiahrather than the dimension of the
Fisher consisterft.Fisher consistency of the loss function ispeasurement®. The coordinate descent procedure described
not enough, however, to imply consistency of the classifigf Section 1I-B is naturally implemented in this distribdtset-
overall; the function class must also be analyzed. ting. With A fixed, the optimization forp occurs at the fusion
We apply Theorem 4.1 of [13], which is in turn an applicagenter. The information needed by the fusion center to perfo
tion of Theorem 1 of [67] to show consistency. The theoreppe optimization fory are thexs .t ;, the dimensionality-
is based onfl,__(Fz). In order to apply this theorem, Wereduced training examples. Witp fixed, the optimization
need to note three things. First, thais a Fisher consistent for A occurs at the sensor. Looking at (4), we see that the
loss function. Second, that signed distance function&@re  jnformation required by the sensor from the fusion center to

bounded in thel.. norm. Third, that there exists a constangptimize A includes only the scalar valug ¢ (y;0(Xsstc.;))
B > 0 such thatH,,_.(Fz) < Be~?, which follows from onq the column vector (R sie,) - pa(Reoes)] s
(12). Then, from [13] we have that which we denotepf, . ; € R, for? —1,....n. N
Pr[Y # "] — Pr[Y # §*] = Op(n™"), (13) Thus the alternatiné minimizations o_f the coordir_1ate_ de-
scent are accompanied by the alternating communication of
where L messagesks .fc; and Fp]iHS,j. The more computationally
3 d=1 demanding optimization fop (the application of a margin-
T=<1- l‘gﬁé‘égn”, d=2. based classification algorithm) takes place at the fusiorece
1 d>3 A computationally simple Stiefel manifold gradient update

o occurs at the sensdiOne may ask whether it is more efficient

The _dimensionality reduction and classification method {g perform training by just transmitting the full-dimensa
consistentPr[y’ # §] — Pr[Y" 5 §*] goes t0 zero as  measurements to the fusion center. The total communication
goes to infinity because™" goes to zero. involved in that case isD(n + d) scalar values, whereas
with the distributed implementation, this total {&d + 1)n
[1l. DIMENSIONALITY REDUCTION IN TREE-STRUCTURED multiplied by the number of coordinate descent iterati¢me-
NETWORKS qguently D is much larger tham (an example in Section 1V-B

As discussed in Section I, a classification paradigm that ii@s D = 10000 and optimald = 20), and the number of
telligently reduces the dimensionality of measuremertallp ~ iterations is typically small (usually less than ten or tvegl In

at sensors before transmitting them is critical in senstwork ~ SUch cases, the distributed implementation provides quiifi¢
of savings. This scheme extends to the more interestingafase

6The conditions on¢ for it to be Fisher consistent are mainly related
to it being such that incorrect classifications incur mores Itisan correct  8The Stiefel manifold constraint requires QR factorizatian ather or-
classifications. thonormalization which may be prohibitive on certain exigtdensor nodes,
“The notation¥,, = Op(v,) means that the random variable, = but as is demonstrated in [69] and references therein, effiiBGA imple-
YnEn, WhereZ,, is a random variable bounded in probability [68]. Thus, ifmentations of QR factorization have been developed and dmilidtegrated
1y, converges to zero, thedr,, converges to zero in probability. into existing or new sensor nodes.
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multisensornetworks, as we describe next. The transmissiavhere A; ser € RPi %% and A; chig, € Renila i) Xdi - AlsQ,
savings of training with distributed implementation aretffier

e pe . . ~/
magnified in the multisensor network case. Ptc—childy (fc),j —

Xechild, (fo) —fc, j
B. Multisensor Networks .

We now consider networks withn sensors connected
in a tree topology with the fusion center at the root.
We denote the xt children of the fusion center as :
child, (fc), .. ., child,, (fc); we also denote thg; children of Xechild; (fe)—fc,j
sensor; aschild, (i), ..., child,, (¢), and we denote the parent Pse_ g :
of sensori as parent(i). Training data vectok; ; € RP: is =t fehild (©)
measured by sensar® The sensor receives dimensionality- -
reduced measurements from its children, combines them wishthe slice of the decision function gradient correspogdm
its own measurements, and transmits a dimensionalityeestiu the dimensions transmitted leild, (fc) to the fusion center.
version of this combination to its parent. Mathematicahe Additionally, let:
transmission from sensarto its parent is:

QZQ;} denild (fe) +1
Xchildy,, (fc)—fc,j

Xchildy,, (fc)—fc,j

@;—mhildk (i),g — Ai7Chi|dk} Ca;)arcnt(i)—n',j' (16)
’ Then, the matrix partial derivative of the objective fuocti
, (14) (15) with respect taA,; is:

Xchildy (1) —1,j
Xi—parent(i),j — .

Xchildy, (1)—i,j Xchild, (fc)—fc,j

n
—_— . ! .
whereA; €V (.Dz + ZZL:I dchildk(i)7 di>. La, = Z Yj 4 Yyj®
As an extension to the margin-based classification and =1 Xchild, (fc) —c,j
linear dimensionality reduction objective (2), we propdse Xij

following objective for sensor networks: Reild, (1) sig
1 5 ~ T
. Lp;arent(i)%i,j' (17)

L((p,Al,...,Am) =

" Xchild; (fo)—fc, j Xchildy, (i)—i,j
AR : +AJ(¢). (15) Like in the single sensor network, the information requiatd
j=1 sensor; to optimize A; that it does not already have consists

Xchild,, (fo)—fc,j _
e of a scalar and a vector. The scalar vajué’ (y;) is common

Just as in the single sensor network in which the fusion centgo,ghout the network. The vector MESSEYE, ene(i) si,; NAS
needed to receive the message,rc ; from its child in order to length d; and is received fronparent(i). As seen iﬁj (16),
optimizggo, in the multisensor network the fusion center neeqge message a sensor passes onto its child is a simple linear
to receive 'the messageéthildl(fc)ﬂfc,j; S s Xehild, (fo)—»fe.j  function of the message received from its parent. To opemiz
from all of its children in order to optimize. The messages | of the A;, a message-passing sweep starting from the fusion
coming from the children of the fusion center are themselvggnter and going down to the leaves is required. Simple gradi
simple linear functions of the messages coming from thelht descent along Stiefel manifold geodesics is then pegdr
children, as given in (14). The same holds down the tree to t'&ally at each sensor. Overall, the coordinate desceining

leaf sensors. Thus, to gather the information required lay tBroceeds along with the passing of mesSa@eSparent () s

fusion center to optimize, a message-passing sweep 0CCUL§, @' enila, (i).;» Which are functions of incoming messages
from the leaf nodes in the tree up to the root. as seen in (’145Jand (16).

For fixed o and optimization of theA;, we also see
message-passing, this time sweeping back from the fusion , )
center toward the leaves that generalizes what occurs in fhe Consistency and Complexity
single sensor network. Before finding the partial derivat¥ The data vector that is received by the fusion center is

L(p,Aq,...,A,,) with respect toA;, let us first introduce reduced fromd_." | D; dimensions t&_ ;| depia, (tc) dimen-
further notation. We slice\; into blocks as follows: sions. The fact that the composition of linear dimensional-
A, cort ity reduction by two m_atrices on_the Stiefel manifold can
A, (;hildl be represented by a _smgle matrix on the_ Stle_fel manlf(_)Id
A, = - 7 leads to the observation that the dimensionality reduction
: performed by the sensor network has an equivalent matrix
A chid,, A€V (X" Dy, Y5 denilayte))- However, A has further

constraints than just the Stiefel manifold constraint duéhe
9n real-world situations, there is no reason to expect Ugitey likelihood topology of the network. For example the equivaleﬁntof
functions for different sensosx .|y, i = 1, ..., m to be identical. Different h Ki hich the fusi ,h hild
sensors will certainly be in different locations and may ebenmeasuring the network in which the fusion center has two child sensors
different modalities of different dimensions with differemmounts of noise. must be block-diagonal with two blocks.
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Thus in the tree-structured sensor network, there is anWe consider three network structures: parallel architegtu
equivalent matrix A € T(Zf":'l D;, >, dchildk(fc)) C serial or tandem architecture, and binary tree architectur
1% (Zi’il D;, >, dchildk(fc)), where 7 is a subset deter- the parallel architecture, ath sensors are direct children of
mined by the tree topology. The consistency analysis tife fusion center. In the serial architecture, the fusiomtere
Section II-D holds under the assumption that there exidtas a single child, which in turn has a single child, and so
an A* € T (X", Dy, 35 denilay(fe)) Such thatPr[Y” # on. In the binary tree architecture, the fusion center has tw
7*(A*TX)] = Pr[Y # §*(X)]. children, each of whom have two children on down the tree.

The constrained set of dimensionality reduction matrifes When the number of sensors is such that a perfect binary tree
may have a smaller maximum zonotope conteiitZ) than is not produced, i.em + 2 is not a power of two, the bottom
the full Stiefel manifold, which would in turn mean a smalletevel of the tree remains partially filled.
Rademacher complexity. The fusion center receivesythe The sensor and fusion center locations are modeled as
ary Cartesian product of dimensionality-reduced data fitsm follows. The fusion center is fixed at the center of a circle
children. The content of the Cartesian product is the produgith unit area and then sensor locations are uniformly

of the individual contents, and thus: distributed over that circle. Given the sensor node loaatio
e oy B 5 denitdy, (fo) e_md desired network.topology, we assume that p:.argn.t—child

V(Z) < H Wi < childy, (f¢) k ) links and correspondmgmpmm.@) are chpsen t.o minimize
i k Wdpina, (to) dehildy, (fe) (18). In a parallel network, the links are fixed with the fusio

which is less than or equal to the bound (11) fo enter as the parent of all sensors, and thus there is notparen
z (Zm Dy, S dapsian )) A more refined upper bound child link optimization to be performed. Exact minimizatio
=1 "1 k=1 Ychildg(fc) ) -

may be developed based on the specifics of the tree topolo (18) for the othgr architectures may not be traqtgble n
The tree-structured network has smaller Rademacher cofgPloyed ad hoc wireless sensor networks because it irs/olve

plexity than a dimensionality-reduced margin-based i:-Ias§°|\_/ing a \{ersion of the travel?ng salesmaq Pmb'em for t.he
fier of the same overall dimensions due to further corfe'ial architecture and a version of the minimum spanning

straints to the classifier function space resulting from ttE°€ Problem for the binary tree architecture. Neverthel.es
network structure. However, similar t® having a minor We @ssume that the minimization has been performed; we

effect on complexity seen in Fig. 2, this smaller compleﬁommem on this assumption later in the paper. For the garall

ity for T(Z:L D, Y dchildk(fc)) is not much less than architecture, the distances are [71]:

the complexity for the system without network constraints (paralle) | (i+ %) I'(m+1)

V(X Dy, Yo% denitay (1c) ) - The network constraints, how- Tinte — ; 3\
i=1 i 2 p=1 k(fc) ) T VAL ()T (m + 2)

ever, may increase the training error. The generalizaticor e

expression (7), being composed of both the training errgthere sensof is theith closest sensor to the fusion center.

and the complexity, increases with network constraints duéere is no closed form expression for the, ,arent(s) in the

to increases in training error that are not offset by de@gasserial or binary tree architectures, but we estimate itugho

in complexity, resulting in worse classification performman Monte Carlo simulation.

However, for sensor networks, the performance criterion of To fully specify the network, we must also set the reduced

interest is generally a combination of generalizationreared ~ dimensions of the sensotk. The choice we make is to set

19)

power expenditure in communication. d; proportional to the number of descendants of sengus
one for itself. This choice implies that afl, are equal in the
D. Wireless Sensor Network Physical Model parallel network, and thaf; is proportional tom — ¢ + 1 in

Thus far in the section, we describe linear dimensionalifff® Serial network so that the number of dimensions passed
reduction for margin-based classification in sensor networ!P the chain to the fusion center increases the closer ose get

abstractly, without considering the physical implementat to the fusion cen'ter. We will see 'that with this choice@f '
or specific tree topologies. Here we set forth a specii?él three topolog_le_s have essentially the same Class_cirmatl
physical model for wireless sensor networks that is used f§rformance. This is not, however, generally true for dfe
Section IV-C. Considenn sensors and a fusion center irfi @ssignments; for example, if we take i to be equal

the plane that communicate wirelessly. The distance betwdB the serial network, the classification performance istegui

sensori and its Parent s, parent(s)» and the power required poor. The |mbalance inl; values among different nodes is

for communication fromi to its parent isd;r a shortcoming of our approach because nodes closer to the
i e

. . - i<>parent (i)’ i f .
where as before; is the reduced dimension output by thdusion center consume energy more quickly; future work may

sensor. The model arises by the common assumption of sighfisider adapting aggregation services with balanted2],
attenuation according to the square of the distance'f7Dhe which have been used for distributed PCA, to our problem

total transmission power used by the network is then: formulation.
m
transmission POWeE: > dir7, parent(i)- (18) IV. EXAMPLES AND RESULTS
=1 With high-dimensional data, dimensionality reductionsaid
10The modelre for values ofa other than two could also be IN Visualization and human interpretation, allows the iden

i<>parent ()

considered. tification of important data components, and reduces the
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computational and memory requirements of further analysis
An illustrative example is presented in this section, w
shows the proposed dimensionality reduction and me
based classification method. The key motivation of dimen
ality reduction is that it prevents overfitting, which is sim

in this section on several datasets.

Also in this section, we consider wireless sensor netv
and look at classification performance as a function of t
mission power expended. The phenomenon of overfitting
in the centralized case has an important counterpar
implication for wireless sensor networks: increasing thizl.
allowed transmission power—manifested either by increase (@ (b)
in the number of sensors or increases in the number of
mitted dimensions per sensor—does not necessarily
in improved classification performance. The examples it
section illustrate several tradeoffs and suggest furtinesl|o
research.

(ATX)2

(ATX)2
(ATX)Q

A. lllustrative Example

We now present an illustrative example showing the
eration of the classification—linear dimensionality retitarn
coordinate descent for training from a synthetic datasee T © (d)
dataset containg = 1000 measurement vectors, of wh ~
502 have labely; = —1 and 498 have labely; = +1.
The dimensionality of the measurementslis= 8. The firs
two dimensions of the data;; and x5, are informative fc
classification and the remaining six are completely unk
mative. In particular, an ellipse in the,—x5 plane separat
the two classes as shown in Fig. 3(a). The values in the
six dimensions are independent samples from an ide
G_aussiz_in di_stribution_ without regard fpr clf_iss label. ki (ATx), (ATx),
dimensionality reduction td = 2 dimensions is sought. Note
that the two class-conditional distributions have the semaan © ®
a_nd are not GaUSSIanS’, and thUS. not Ve,ry amenable to F%Z 3. lllustrative example. Magenta markers indicate label 1. Black +
Fig. 4 shows theA matrices obtained using PCA and FDAmarkers indicate labet-1. The blue line is the classifier decision boundary.
visualized using the zonotog&(A). Neither PCA nor FDA is The green line outlines a zonotope generatedA¥. (a) The first two
successful at recovering the informative subspace:rther, (s emert (mersers. () Rendon itlizaion fomnd frt - o
plane. classifier.

We run our coordinate descent minimization of (2) to
find both an A matrix and decision boundary using two
different margin-based classifiers: the SVM with radialibas
function kernel and the geometric level set classifier wht *
logistic loss function. The matriA is randomly initialized. A
convergence, the optimization procedure ought to giveAi
matrix with all zeroes in the bottom six rows, correspondio
a zonotope that is a possibly rotated square, and an il
decision boundary. Fig. 3(b) shows the decision bour
resulting from the first optimization forp using the GL:
classifier with the random initialization foA, before the fir:
gradient descent step on the Stiefel manifold. Fig. 3(¢
show intermediate iterations and Fig. 3(f) shows the (ATx), (ATx),
learned classifier and linear dimensionality reductionrixat @ ()

As the coordinate descent progresses, the zonotope becomes

more like a square, i.eA aligns with thez;—z, plane, and Fig. 4. lllustrative example. Magenta markers indicate label-1. Black
the decision boundary becomes more like an ellipse. Fig.ﬁ}Srj‘;"’}fkggsnjrg)cgtg A?Zizl(b;hpeo,%r,een line outlines a zonotope generated
shows the operation of the coordinate descent with the SVM.

Here also, the zonotope becomes more like a square and the

(ATX)2
(ATX)Q

(A.TX)2
(ATX)Q
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see that the resulting decision boundaries are indeedynearl
elliptical.** As this example indicates, the procedure is capable
of making large changes tA.

B. Classification Error For Different Reduced Dimensions

(ATX)2
(ATX)2

We present experimental classification results in this@ect
on several datasets from the UCI machine learning repgsitor
[73]. The joint linear dimensionality reduction and margin
based classification method proposed in Section Il is run
(@) (b) for different values of the reduced dimensiaih showing
that performing dimensionality reduction does in fact ioya
classification performance in comparison to not performing
dimensionality reduction. The margin-based classifiet tha
used is the SVM with radial basis function kernel and default
parameter settings from the Matlab bioinformatics toolbox

First, we look at training error and test effoas a function
of the reduced dimension on five different datasets from var-
ied application domains: Wisconsin diagnostic breast eanc
(D = 30), ionosphere P = 34), sonar O = 60), arrhythmia
(D = 274 after preprocessing to remove dimensions contain-

© () ing missing values), and arcen® (= 10000). On the first
Fig. 5. lllustrative example. Magenta markers indicate label 1. Black + four datasets, we look at the tenfold cross—valldatlomt@
markers indicate label-1. The blue line is the classifier decision boundary@nd test errors. The arcene dataset has separate trairdng an
The green line outlines a zonotope generateddy. (a) Random initialization validation sets which we employ for these purposes.
for A and firste from SVM. (b)—(c) Intermediate iterations. (d) FinAl and The tenfold cross-validation training error is shown with

(ATX)2
(ATX)Q

(ATx), (ATx),

 from SVM. blue triangle markers and the tenfold cross-validatiohea®r
TABLE | is shown with red circle markers for the ionosphere dataset i
INITIAL AND FINAL A MATRICES IN ILLUSTRATIVE EXAMPLE Fig. 6(a). The plot also contains error bars showing one-stan
dard deviation above and below the average error over the ten
folds. In Fig. 6(b), the test error for the joint minimizatiés
Random Initialization GLS Solution SVM Solution

compared to the test error if the linear dimensionality rztidun
00274 0 ic3s 03386 —0.9355 TP is first performed l_Jsing PCA, FDA infor_mation preserving
0.4275 0.2572 0.9401 0.3406 0.9446 0.3098 component analysis [44], or sufficient dimension reduction
8-3232 8-}&% 8-81(1]2 —8-8;1)2 8-8334; 8-8322 (structured principal fitted components [74]), followed by
00138 03373 | 00246 —o.0875] | 00061 —0.0318 cIa.SS|f|.cat|0n'V\./|th the kernel SVM. Fig. 7 shows tenfqlq Gros
0.5523 0.2793| | —=0.0172 0.0181| | —0.0716 0.0121 validation training and test error for other datasets. gigives
0.1333  0.0283 0.0186 —0.0580| |—0.0411 —0.0410 the training and test performance for the arcene dataset. Fo
05043 —0.5805] L-0.0108  —0.0027] 1=0.0151  —0.05371  tha \Wjisconsin diagnostic breast cancer, ionosphere, amaf so

datasets, we show classification performance for all ptessib

reduced dimensions. For the arrhythmia and arcene datasets

decision boundary becomes more like an ellipse throughdt¢ show reduced dimensions up do= 50 and d = 100,
the minimization. respectively.

The random initialA matrix and the finalA matrix solu- The first thing to notice in the plots is that the training
tions for the GLS classifier and the SVM are given in Table §TOr quickly converges to zero with an increase in the reduc

What we would want for this example is that the correct twdlimensiond. The margin-based classifier with linear dimen-
dimensional projection is identified and, assuming thas;t iSionality reduction perfectly separates the training setnhe

that the decision boundary is essentially elliptical. Firote réduced dimension is sufficiently large. However, this gerf
that if the correct projection is identified, we expect thet laS€Paration does not carry over to the test error—the error in
six rows of the finalA matrix to be small compared to theWhich we are most interested. In all of the datasets, the test
first two rows and the corresponding zonotopes to be neafiffor first decreases as we increase the reduced dimenaion, b
square. Since rotations and reflections of the space onichwhil€n starts increasing. There is an intermediate optimakva
we p_rolect are Inconsequentlal’ we_do n.Ot nece.ssanly eaXpe(‘“The curved piece of the decision boundary in the top righheoof the

the first two rows ofA to be the identity matrix, nor do gomain in Fig. 3(f) is an artifact of geometric level sets aneésiaot affect

we expect the orientation of the nearly square zonotopesclassification performance.

Fig. 3(f) and Fig. 5(d) to line up with the coordinate axes. 12Training error is the misclassification associated with tagadused to
arn the Stiefel manifold matrix and decision function. Testor is the

A . |
The result.s shown in F!g.- 3(), F'g' 5(d), and Tablf':' I _reﬂe‘?iisclassification associated with data samples that were seat in training
these desired characteristics. Given these final projegtive and is a surrogate for generalization error.




12 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, 2011

0.4 1 0.35 1
S 5 03 ]
@ 0.3 b @
.5 = 0.25 b
5] g 02 8
goz 1 g
‘@ % 0.15
o L 2 il
it oo L
. Ll S O N S N
O0 5 10 15 d 20 25 30 35 00 é io f?j * 20 25 30
@ @
0.3 1 0.5 . { }L
§ 0.25% , o 0.4 {{BH{M}’H 1
5 = Eﬁﬁﬁ
e
S 0z ] § 0.3, Eﬁ ]
g 0.15 ‘% 0.2F {{{ { } H |
ke <
© ©
0.1 01 x 1
S
0.0 S N eoerierins erernanias eoeriiins .
0 10 20 33 40 50 60
(b)
Fig. 6. (a) Tenfold cross-validation training error (blugangle markers)
and test error (red circle markers) on ionosphere dataseir Bars indicate 0.5 ]
standard deviation over the ten folds. (b) Tenfold croditation test error =
on ionosphere dataset using PCA (dashed and dotted cya) A g 04 ]
(dashed magenta line), information preserving componentysisa(dotted @ =
blue line), sufficient dimension reduction (green line withrkeas), and joint E
minimization (solid red line). Error bars are not included &exe they would =03 ]
make the plot unreadable, but note that standard deviatiorad! five methods £
are approximately the same. § 0.2- . 1
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OO 1\0 20 AAZAAAA3AOA AAAAAAAA 4A d AAAAAAAA 5A O
a
for the reduced dimension. For the five datasets, thesessalue ©

ared =3,d =29, d =16, d = 10, andd = 20, respectively.

This test error behavior is evidence of overfitting dfis Fig. 7. Tenfold cross-validation training error (blue figge markers) and

too large. Dimensionality reduction improves classifizati (st eror (red circle markers) on (a) Wisconsin diagnostiagt cancer, (b)
. . ... sonar, and (c) arrhythmia datasets. Error bars indicateatdrdeviation over

performance on unseen samples by preventing overfittingh ten folds.

Remarkably, even the ten thousand-dimensional measutemen

in the arcene dataset can be linearly reduced to twenty dimu

sions. In the ionosphere dataset test error comparisoniplot 04 ot e

can be seen that the minimum test error is smaller with ti [+ - -

joint minimization than when doing dimensionality redocti 503 o - 1

separately with PCA, FDA, information preserving compdnel 5§ | " T ....-".’..’”"f“'.

analysis, or sufficient dimension reduction. Moreovers th ‘§ 0 - |

minimum test error occurs at a smaller reduced dimensignal = |,

than the minima for PCA, FDA, and sufficient dimensio & | _

reduction. Comparisons on other datasets are similar. L N 1
The classification error as a functiondftising our new joint % . s s e e -

linear dimensionality reduction and margin-based classifi d

tion method matches the structural risk minimization pphe
Rademacher complexity analysis supporting these empiri€&. 8. Training error (blue triangle markers) and test eired circle
findings is presented in Section II-C. markers) on arcene dataset.
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C. Classification Error For Different Networks

Given the sensor network model of Section 1lI-D, we look
at classification performance for the three different nekwo
architectures with different amounts of transmission powe
Different transmission powers are obtained by varying the
number of sensors and scaling tthevalues. We emulate data
coming from a sensor network by slicing the dimensions of
the ionosphere, sonar, and arcene datasets and assigaing
different dimensions to different sensors. With = 5 for all
sensors in the network for the ionosphere and sonar datase
and D; = 50 for the arcene dataset, we assign the dimension
in the order given in the UCI machine learning repository, so
the first sensor ‘measures’ the firBt, dimensions listed, the
second sensor ‘measures’ dimensidhst-1 through2D;, and
so on. The dimensions are not ordered according to relevanc
for classification in any way.

We plot results for the ionosphere dataset in Fig. 9. In
Fig. 9(a), we plot tenfold cross-validation training andtte
error obtained from the algorithm described in SectionBllI-
with the parallel network as a function of transmission powe
Each training and test error pair corresponds to a differen
value ofm =1,2,...,6 andd; = 1,2,...,5. In Section IV-B,
we plotted classification performance as a function of the
reduced dimension, but here the horizontal axis is trargaris
power, taking the distance between sensor nodes into atccoun
As in Section IV-B, the phenomenon of overfitting is quite
apparent.

In Fig. 9(b), classification error is plotted as a function of
transmission power for the serial architecture. The paimts
the plot are for different numbers of sensers=1,2,...,6
and different scalings of the reduced dimensihn= (m —
i+1),2(m —i+1),...,5(m — i+ 1). The classification
error values in Fig. 9(b) are quite similar to the ones for the
parallel casé? The plot for the parallel architecture appearing
to be a horizontally compressed version of the serial agchit
ture plot indicates that to achieve those similar clasgifica
performances, more transmission power is required by the
serial architecture. Although the distances between paren

and children tends to be smaller in the serial architectur,gg. 9

to higher transmission power.
The binary tree architecture’s classification error plot is
given in Fig. 9(c). The training and test error values are

classification error classification error

classification error

0.154

0.1 ;:oo ©

0.05-

A4 4
| A A s aa A, .

0o 1 2 o
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@
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0.1- g¢ o °

transmission power
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0.154

0.1 % o

0.05 *
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transmission power
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13

. ) Tenfold cross-validation training error (blue trige markers) and
the choserd; are larger closer to the fusion center leadingst error (red circle markers) on ionosphere dataset fquagllel, (b) serial,

and (c) binary tree network architectures.

similar to the other two architecturés.The transmission gne to five. For the arcene dataset,varies from one to ten,
power needed to achieve the given classification errors dfd d; of leaf nodes from one to fifteen. The same trends

similar to that of the parallel architecture and less thal tizan be observed as in the ionosphere dataset; similar plots
serial architecture. Among the three architectures withdth are produced for other datasets such as Wisconsin diagnosti
assigned as described in Section I1I-D, all have approxéiyat breast cancer and arrhythmia. All three network topologies
the same classification performance, but the serial netwqitoduce similar classification errors, but the serial netwo
uses more power. USes more power.

The same experiments are repeated for the sonar and arceng,me overall observations for wireless sensor networks are
datasets with plots given in Fig. 10 and Fig. 11. For the SON@fs following. There exist some optimal parameters of tie ne
datasetyn varies from one to eleven, amfl of leaf nodes from ok with a finite number of sensors and some dimensionality

_ ' ' reduction. One may be tempted to think that deploying more

13In fact, they are the same for the five pairs of points whee= 1 because Sensors a|WayS helps classification performance sincethk t
the parallel and serial networks are the same when there isgée Sensor. . . . . .

number of measured dimensions increases, but we find tlsat thi

14The binary tree is the same as the parallel networksios 1,2 and the : 3
serial network form = 1. is not generally true. For a fixed number of sampleonce
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Training error (blue triangle markers) and test rered circle

test error (red circle markers) on sonar dataset for (a) learéh) serial, and markers) on arcene dataset for (a) parallel, (b) serial, ahcifpary tree
(c) binary tree network architectures.

network architectures.

there are enough sensors to fit the data, adding more seng@ignt with the prevention of overfitting, which leads to
leads to overfitting and a degradation of test performanbet Timproved classification performance. Oftentimes there is a
a small number of sensors, which perform dimensionality rgadeoff between resource usage and performance, butsthat i

duction, yield optimal classification performance is goamhf

not the case in the overfitting regime. Additionally, among

the perspective of resource usage. Among different p@ssihe network architectures compared, the parallel and pinar
choices of network architectures, we have compared thrgge architectures use less power in communication than the
particular choices. Others are certainly possible, inogdhe serial architecture for equivalent classification perfance.
investigated topologies but with differedt proportions. For The plotted transmission power values, however, are based
the chosend; proportions, all three network topologies haveyn choosing the parent-child links to exactly minimize (18)

essentially the same classification performance, but shit

true for other choices.

In this empirical investigation of classification perfonnca
versus resource usage, the main observation is that the

in practice, this minimization will only be approximate for
the binary tree architecture and will require a certain ambou
of communication overhead. Therefore, the parallel agchit
tee, which requires no optimization, is recommended for

are not at odds. The decrease of resource usage is colis application. This new distributed dimensionality wed
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tion formulation and empirical study suggests a direction f 0.5 ;
future research, namely the problem of finding the number o <00 .
sensors, the network structure, and the sef;adhat optimize 504 ° ° ° . .
generalization error in classification for a given transios E . °
power budget and given number of training samples 803” o« o 9 °
© M °
o
202,
D. Spatially-Distributed Sensor Node Data & |
(&) 'S
As a confirmation of the results given for emulated senso T
network data in Section IV-C, here we present results on twc T YU R

datasets arising from spatially-distributed sensor nodée
first dataset is based on sensor measurements collected at
the Intel Berkeley Research Laboratory in 2004. The secon”

15
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transmission power

@

800

dataset is based on sensor measurements collected at tlye Ar 0.7
Research Laboratory in 2007 [75]. 0.6 .
The Intel Berkeley dataset as available contains temperatu EO g . Lo
relative humidity, and light measurements far sensors over e
more than a month. A classification task is required for the S04, = .. .
methodology developed in this paper, and thus we define tw ESo3 * . ’ :
classes based on the light measurements, dark and brigl ﬁozf R
The dark class corresponds to the average light being les © ‘e "
than 125 Ix and the bright class to greater thas Ix. Our 0L R
formulation requires a correspondence among measuremer % : o T R— “og

from different sensors in order to define a single samiptae
sensor measurements are time-stamped with an epoch number

transmission power

(b)

such that measurements from different sensors with the same
epoch number correspond to the same time. However, e&@h 12. Training error (blue triangle markers) and test refred circle
epoch number corresponds to much fewer thdnsensors. g"gggts) on (a) Intel Berkeley dataset and (b) Army Researdjoragory
Thus we take lengthi0 blocks of epoch numbers and consider
all measurements within a block to correspond to the same
time. We take the first reading if a block contains more thdhe remaining samples. The fusion center is again placetein t
one reading from the same sensor. Even with this blockinggnter of the sensors and a minimum spanning tree network is
if we insist that a sample needs data fromllsensors, we used. Training error and test error are plotted in Fig. 12{b)
obtain very few samples. Thus we only considersensors, different numbers of sensors and differefatscalings. Again,
numbered 1, 2, 3, 4, 6, 31, 32, 33, 34, 35, 36, and 37 in tie see that an intermediate level of transmission power is
dataset. With such processing, we obtair- 2346 samples. optimal for classification test error, with overfitting faarge
Spatial locations of the sensors are given. For the netwdrRnsmission powers.
structure, we consider a fusion center located in the center
of the sensors and links between nodes according to the V. CONCLUSION
Euclidean minimum spanning tree with the fusion centerat th In this paper, we have formulated linear dimensionality
root. We train on the first quarter of the samples containingduction driven by the objective of margin-based classifi-
temperature and relative humidity measurements and testaation. We have developed an optimization approach that
the latter three quarters of the samples, varying the numlievolves alternation between two minimizations: one to up-
of sensors and the; scaling. The training and test errorsdate a classifier decision function and the other to update
as a function of total transmission power in the network i& matrix on the Stiefel manifold. We have both analytically
given in Fig. 12(a). As in previous results, we see the effecind empirically looked at the phenomenon of overfitting:
of overfitting. An intermediate transmission power level ianalytically through the Rademacher complexity, and empir
optimal for classification performance even with spatiallycally through experiments on several real datasets, rifltisg
distributed sensor node data. that dimensionality reduction is an important component in
The Army Research Laboratory data consists of sendorproving classification accuracy. We have also analyjical
nodes that take four acoustic, three seismic, one eleatl, fi characterized the consistency of the dimensionality-cedu
and four passive infrared measurements. Measurements dassifier. We have described how our proposed optimization
taken during the dropping of & pound steel cylinder from scheme can be distributed in a network containing a single
nine inches above the ground and during no significant humsensor through a message-passing approach, with thefielassi
activity. The cylinder dropping happens at various spatidecision function updated at the fusion center and the dimen
locations in relation to the sensors. In this dataset, wee hasionality reduction matrix updated at the sensor. Adddlin
200 samples of cylinder dropping an2D0 samples of no we have extended the formulation to tree-structured fusion
activity. We train on the first half of the samples and test ametworks.



16

Papers such as [32], [34] have advocated nonparamettig
learning, of which margin-based classification is a subset,
for inference in distributed settings such as wireless @eng; g
networks. Reducing the amount of communication is an impor-
tant consideration is these settings, which we have adehless
in this paper through a joint linear dimensionality redomti [19]
and margin-based classification method applicable to rmé&svo
in which sensors measure more than one variable. Reducinoq
communication is often associated with a degradation G
performance, but in this application it is not the case in the
regime when dimensionality reduction prevents overfitting21l
Thus, dimensionality reduction is important for two distin

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, 2011

J. Bi, K. P. Bennett, M. Embrechts, C. M. Breneman, and Mndg0
“Dimensionality reduction via sparse support vector machink Mach.
Learn. Res.vol. 3, pp. 1229-1243, Mar. 2003.

] B. Krishnapuram, A. J. Hartemink, L. Carin, and M. A. T. k@redo,

“A Bayesian approach to joint feature selection and classdesign,”
IEEE Trans. Pattern Anal. Mach. Intellvol. 26, no. 9, pp. 1105-1111,
Sep. 2004.

L. Wolf and A. Shashua, “Feature selection for unsuen and
supervised inference: The emergence of sparsity in a wéiabed
approach,”J. Mach. Learn. Resvol. 6, pp. 1855-1887, Nov. 2005.
V. Y. F. Tan, S. Sanghavi, J. W. Fisher, Ill, and A. S. \8kY, “Learning
graphical models for hypothesis testing and classificdtiltEE Trans.
Signal Process.vol. 58, no. 11, pp. 5481-5495, Nov. 2010.

K. Huang and S. Aviyente, “Sparse representation fgnai classifi-
cation,” in Adv. Neural Inf. Process. Syst..19Cambridge, MA: MIT
Press, 2007, pp. 609-616.

reasons: reducing the amount of resources consumed, il 3. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zissermaiscrimi-

obtaining good generalization.

[23]
ACKNOWLEDGMENT

The authors thank J. H. G. Dauwels, J. W. Fisher llI arlg4]
S. R. Sanghavi for valuable discussions, P. Bodik, W. Hong,
C. Guestrin, S. Madden, M. Paskin and R. Thibaux for col-
lecting the Intel Berkeley data, T. Damarla, S. G. lyengat ar’
A. Subramanian for furnishing the Army Research Laboratory
data, K. M. Carter, R. Raich and A. O. Hero Il for informatior26]
preserving component analysis software, and R. D. Co 12<7]
L. Forzani and D. Tomassi for sufficient dimension reduction

software.
[28]

REFERENCES

[1] K. R. Varshney and A. S. Willsky, “Learning dimensiongiteduced [29]
classifiers for information fusion,” iroc. Int. Conf. Inf. FusionSeattle,
WA, Jul. 2009, pp. 1881-1888.

K. R. Varshney, “Frugal hypothesis testing and clasatfan,” Ph.D.
Thesis, Mass. Inst. Technol., Cambridge, MA, 2010.

M. Cetin, L. Chen, J. W. Fisher, Ill, A. T. lhler, R. L. Mes, M. J.
Wainwright, and A. S. Willsky, “Distributed fusion in sensoetworks,”
IEEE Signal Process. Magvol. 23, no. 4, pp. 42-55, Jul. 2006.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and MelSM,
“Fidelity and yield in a volcano monitoring sensor networky’ Proc.
USENIX Symp. Operating Syst. Des. Implemeg&eattle, WA, Nov.
2006, pp. 381-396.

L. Zong, J. Houser, and T. R. Damarla, “Multi-modal unatted ground
sensor (MMUGS),” inProc. SPIE vol. 6231, Apr. 2006, p. 623118. (34]
Z. Zhu and T. S. Huangylultimodal Surveillance: Sensors, Algorithms,
and Systems Boston: Artech House, 2007. (35
H. L. Van TreesDetection, Estimation, and Modulation TheoryNew
York: Wiley, 1968.

V. N. Vapnik, The Nature of Statistical Learning TheoryNew York:
Springer, 1995.

L. Zwald, R. Vert, G. Blanchard, and P. Massart, “Kernebjpction
machine: A new tool for pattern recognition,” iAdv. Neural Inf. [37]
Process. Syst. 17 Cambridge, MA: MIT Press, 2005, pp. 1649-1656.

S. Mosci, L. Rosasco, and A. Verri, “Dimensionality retion and
generalization,” inProc. Int. Conf. Mach. Learn.Corvallis, OR, Jun.
2007, pp. 657-664.

G. Blanchard and L. Zwald, “Finite-dimensional project for classifi-
cation and statistical learninglEEE Trans. Inf. Theoryvol. 54, no. 9,
pp. 4169-4182, Sep. 2008.

A. Srivastava and X. Liu, “Tools for application-driwdinear dimension
reduction,”Neurocomputingvol. 67, pp. 136—-160, Aug. 2005.

Y. Lin, “A note on margin-based loss functions in clagsifion,” Stat.
Probabil. Lett, vol. 68, no. 1, pp. 73-82, Jun. 2004.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Corwity, classi-
fication, and risk boundsJ. Am. Stat. Assocvol. 101, no. 473, pp.
138-156, Mar. 2006.

K. R. Varshney and A. S. Willsky, “Classification usingametric level
sets,”J. Mach. Learn. Resvol. 11, pp. 491-516, Feb. 2010.

A. M. Martinez and A. C. Kak, “PCA versus LDAJEEE Trans. Pattern
Anal. Mach. Intell, vol. 23, no. 2, pp. 228-233, Feb. 2001.

(30]
(2]
(3]

(31]

(32]
(4]
(33]
(5]
(6]
(7]
(8]
(9]

(36]

[10] -

[11] [39]

[12] [40]
[13]
[41]
[14]
[42]

[15]
(43]
[16]

native learned dictionaries for local image analysis,Pioc. IEEE CS
Conf. Comput. Vis. Pattern RecogiAnchorage, AK, 2008.

D. M. Blei and J. D. McAuliffe, “Supervised topic modélsn Adv.
Neural Inf. Process. Syst. 20 Cambridge, MA: MIT Press, 2008, pp.
121-128.

S. Lacoste-Julien, F. Sha, and M. I. Jordan, “DiscLDAsd@iminative
learning for dimensionality reduction and classificatidn,/Adv. Neural
Inf. Process. Syst. 21 Cambridge, MA: MIT Press, 2009, pp. 897-904.

5] S. Lazebnik and M. Raginsky, “Supervised learning o&uwfizer code-

books by information loss minimization/[EEE Trans. Pattern Anal.
Mach. Intell, vol. 31, no. 7, pp. 1294-1309, Jul. 2009.

V. Koltchinskii, “Rademacher penalties and structursk minimiza-
tion,” IEEE Trans. Inf. Theoryvol. 47, no. 5, pp. 1902-1914, Jul. 2001.
P. L. Bartlett and S. Mendelson, “Rademacher and Gausianplex-
ities: Risk bounds and structural resultd,”Mach. Learn. Resvol. 3,
pp. 463—-482, Nov. 2002.

R. R. Tenney and N. R. Sandell, Jr., “Detection with wlistted sensors,”
IEEE Trans. Aerosp. Electron. Systol. AES-17, no. 4, pp. 501-510,
Jul. 1981.

J. N. Tsitsiklis, “Decentralized detection,” Lab. Iidecision Syst., Mass.
Inst. Technol., Tech. Rep. P-1913, Sep. 1989.

P. K. VarshneyDistributed Detection and Data Fusion New York:
Springer-Verlag, 1996.

J.-F. Chamberland and V. V. Veeravalli, “Decentralizédtection in
sensor networks [EEE Trans. Signal Processvol. 51, no. 2, pp. 407—-
416, Feb. 2003.

X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Nonparantedecen-
tralized detection using kernel methodt2EE Trans. Signal Process.
vol. 53, no. 11, pp. 4053-4066, Nov. 2005.

J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Consisteirtynodels for
distributed learning under communication constraintSEE Trans. Inf.
Theory vol. 52, no. 1, pp. 52-63, Jan. 2006.

——, “Distributed learning in wireless sensor netwqtkdEEE Signal
Process. Mag.vol. 23, no. 4, pp. 56—69, Jul. 2006.

] M. Gastpar, P. L. Dragotti, and M. Vetterli, “The didttted Karhunen—

Loeve transform,IEEE Trans. Inf. Theoryvol. 52, no. 12, pp. 5177—
5196, Dec. 2006.

I. D. Schizas, G. B. Giannakis, and Z.-Q. Luo, “Distried estimation
using reduced-dimensionality sensor observatiolisZE Trans. Signal
Process. vol. 55, no. 8, pp. 4284-4299, Aug. 2007.

0. Roy and M. Vetterli, “Dimensionality reduction for gdributed
estimation in the infinite dimensional regiméZEE Trans. Inf. Theory
vol. 54, no. 4, pp. 1655-1669, Apr. 2008.

E. A. Patrick and F. P. Fischer, Il, “Nonparametric featselection,”
IEEE Trans. Inf. Theoryvol. IT-15, no. 5, pp. 577-584, Sep. 1969.
R. Lotlikar and R. Kothari, “Adaptive linear dimensiditp reduction
for classification,” Pattern Recognitionvol. 33, no. 2, pp. 185-194,
Feb. 2000.

J. C. Principe, D. Xu, and J. W. Fisher, lll, “Informatitiheoretic
learning,” in Unsupervised Adaptive FilteringS. Haykin, Ed. New
York: Wiley, 2000, vol. 1, pp. 265-320.

K. Torkkola, “Feature extraction by non-parametric naltinformation
maximization,”J. Mach. Learn. Resvol. 3, pp. 1415-1438, Mar. 2003.
Z. Nenadic, “Information discriminant analysis: Fea&xtraction with
an information-theoretic objectiveJEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 8, pp. 1394-1407, Aug. 2007.

M. Thangavelu and R. Raich, “Multiclass linear dimemsieduction via
a generalized Chernoff bound,” irroc. IEEE Workshop Mach. Learn.
Signal Process.Candin, Mexico, Oct. 2008, pp. 350-355.



VARSHNEY AND WILLSKY: LINEAR DIMENSIONALITY REDUCTION FOR MARGIN-BASED CLASSIFICATION

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

(63]

[64]
(65]

(66]

[67]
[68]

[69]

K. M. Carter, R. Raich, and A. O. Hero, llIl, “An informatiogeometric
approach to supervised dimensionality reduction,’Piroc. IEEE Int.
Conf. Acoust., Speech, Signal Proce3aipei, Taiwan, Apr. 2009.
K.-C. Li, “Sliced inverse regression for dimension retian,” J. Am.
Stat. Assog.vol. 86, no. 414, pp. 316-327, Jun. 1991.

——, “On principal Hessian directions for data visualion and di-
mension reduction: Another application of Stein’s lemmh,Am. Stat.
Assoc, vol. 87, no. 420, pp. 1025-1039, Dec. 1992.

F. Chiaromonte and R. D. Cook, “Sufficient dimension reuurc and
graphics in regressionAnn. Inst. Stat. Math.vol. 54, no. 4, pp. 768—
795, Dec. 2002.

K. Fukumizu, F. R. Bach, and M. I. Jordan, “Dimensionaligduction
for supervised learning with reproducing kernel Hilberasps,”J. Mach.
Learn. Res.vol. 5, pp. 73-99, Jan. 2004.

Sajama and A. Orlitsky, “Supervised dimensionality retthn using
mixture models,” inProc. Int. Conf. Mach. Learn.Bonn, Germany,
Aug. 2005, pp. 768-775.

K. Fukumizu, F. R. Bach, and M. |. Jordan, “Kernel dimemsieduction
in regression,’Ann. Stat. vol. 37, no. 4, pp. 1871-1905, Aug. 2009.
X. Liu, A. Srivastava, and K. Gallivan, “Optimal lineagpresentations of
images for object recognition|EEE Trans. Pattern Anal. Mach. Intell.
vol. 26, no. 5, pp. 662—-666, May 2004.

F. Pereira and G. Gordon, “The support vector decomiposihachine,”

in Proc. Int. Conf. Mach. LearnPittsburgh, PA, Jun. 2006, pp. 689—696.

D.-S. Pham and S. Venkatesh, “Robust learning of disicrative projec-
tion for multicategory classification on the Stiefel manifbloh Proc.
IEEE CS Conf. Comput. Vis. Pattern RecggAnchorage, AK, Jun.
2008.

I. W.-H. Tsang, A. Kocsor, and J. T.-Y. Kwok, “Large-$eanaximum
margin discriminant analysis using core vector machingE Trans.
Neural Netw. vol. 19, no. 4, pp. 610-624, Apr. 2008.

S. Ji and J. Ye, “Linear dimensionality reduction for nidibel classi-
fication,” in Proc. Int. Joint Conf. Artificial Intell. Pasadena, CA, Jul.
2009, pp. 1077-1082.

S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared salspfor
multi-label classification,” irProc. ACM SIGKDD Int. Conf. Knowledge
Discovery Data MiningLas Vegas, NV, Aug. 2008, pp. 381-389.

M. Rousson and N. Paragios, “Prior knowledge, leversptesentations
& visual grouping,”Int. J. Comput. Vis.vol. 76, no. 3, pp. 231-243,
2008.

A. Edelman, T. A. Arias, and S. T. Smith, “The geometry ofaaithms
with orthogonality constraints SIAM J. Matrix Anal. A.vol. 20, no. 2,
pp. 303-353, Jan. 1998.

J. H. Manton, “Optimization algorithms exploiting uniyaconstraints,”
IEEE Trans. Signal Processvol. 50, no. 3, pp. 635-650, Mar. 2002.
Y. Nishimori and S. Akaho, “Learning algorithms utiliinquasi-
geodesic flows on the Stiefel manifoldfeurocomputingvol. 67, pp.
106-135, Aug. 2005.

U. von Luxburg and O. Bousquet, “Distance-based clasgion with
Lipschitz functions,”J. Mach. Learn. Resvol. 5, pp. 669-695, Jun.
2004.

A. N. Kolmogorov and V. M. Tihomirov, é-entropy ande-capacity of
sets in functional spacesfm. Math. Soc. Translations Seriesvdl. 17,
pp. 277-364, 1961.

G. D. Chakerian and P. Filliman, “The measures of the ptajas of
a cube,”Studia Scientiarum Mathematicarum Hungatical. 21, no.
1-2, pp. 103-110, 1986.

P. Filliman, “Extremum problems for zonotope§eometriae Dedicata
vol. 27, no. 3, pp. 251-262, Sep. 1988.

0. Bousquet, “New approaches to statistical learnhepty,” Ann. Inst.
Statist. Math, vol. 55, no. 2, pp. 371-389, Jun. 2003.

I. Steinwart, “Consistency of support vector machines ather regu-
larized kernel classifiers/EEE Trans. Inf. Theoryvol. 51, no. 1, pp.
128-142, Jan. 2005.

X. Shen and W. H. Wong, “Convergence rate of sieve esésyadnn.
Stat, vol. 22, no. 2, pp. 580-615, Jun. 1994.

A. W. van der VaartAsymptotic Statistics Cambridge, UK: Cambridge
University Press, 1998.

X. Wang and M. Leeser, “A truly two-dimensional systoticay FPGA
implementation of QR decompositionACM Trans. Embed. Comput.
Syst, vol. 9, no. 1, Oct. 2009.

17

[70] J. C. Maxwell,A Treatise on Electricity and MagnetismOxford, UK:
Clarendon Press, 1873.

P. Bhattacharyya and B. K. Chakrabarti, “The mean distaio the nth
neighbour in a uniform distribution of random points: An &pgtion
of probability theory,”Eur. J. Phys.vol. 29, no. 3, pp. 639-645, May
2008.

Y.-A. Le Borgne, S. Raybaud, and G. Bontempi, “Distriditprincipal
component analysis for wireless sensor networggjisorsvol. 8, no. 8,
pp. 4821-4850, Aug. 2008.

A. Asuncion and D. J. Newman, “UCI machine learning repmoyi”’
Available: http://archive.ics.uci.edu/ml, 2007.

R. D. Cook and L. Forzani, “Principal fitted components dimension
reduction in regressionStatist. Sci.vol. 23, no. 4, pp. 485-501, Nov.
2008.

R. Damarla, M. Beigi, and A. Subramanian, “Human activigperi-
ments performed at ARL,” Tech. Rep., Apr. 2007.

(71]

[72]

(73]

(74]

[75]

Kush R. Varshney (S'00-M'10) was born in
Syracuse, NY in 1982. He received the B.S. de-
gree (magna cum laude) in electrical and computer
engineering with honors from Cornell University,
Ithaca, NY in 2004. He received the S.M. degree
in 2006 and the Ph.D. degree in 2010, both in
electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT),
Cambridge.

He is a research staff member in the Business
Analytics and Mathematical Sciences Department at
the IBM Thomas J. Watson Research Center, Yorktown Heigh¥s,While
at MIT, he was a research assistant with the Stochastic iBgs@roup in
the Laboratory for Information and Decision Systems and ad¥atiScience
Foundation Graduate Research Fellow. He has been a visttidgnt aEcole
Centrale, Paris, and an intern at Lawrence Livermore Natibaaoratory,
Sun Microsystems, and Sensis Corporation. His researchegtigeinclude
statistical signal processing, statistical learning, andge processing.

Dr. Varshney is a member of Eta Kappa Nu, Tau Beta Pi, IEEE, aifd &
received a best student paper travel award at the 2009 &tienal Conference
on Information Fusion.

Alan S. Willsky (S'70-M'73-SM’'82—F'86) joined
the Massachusetts Institute of Technology, Cam-
bridge, in 1973 and is the Edwin Sibley Webster
Professor of Electrical Engineering and Director of
the Laboratory for Information and Decision Sys-
tems.

He was a founder of Alphatech, Inc. and Chief
Scientific Consultant, a role in which he continues at
BAE Systems Advanced Information Technologies.
From 1998 to 2002 he served on the U.S. Air Force
Scientific Advisory Board. He has received several
awards including the 1975 American Automatic Control Courigdnald
P. Eckman Award, the 1979 ASCE Alfred Noble Prize, the 1980HEE
Browder J. Thompson Memorial Award, the IEEE Control Systemsie®p
Distinguished Member Award in 1988, the 2004 |IEEE Donald GkHerize
Paper Award, Doctorat Honoris Causa from Univérsie Rennes in 2005,
and the 2009 Technical Achievement Award from the IEEE Sigmatessing
Society. In 2010, he was elected to the National Academy oireeging.

Dr. Willsky has delivered numerous keynote addresses andastleor of
the textSignals and Systemslis research interests are in the development
and application of advanced methods of estimation, machimaiten and
statistical signal and image processing.



