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Abstract

People living in urban areas spend a considerable amount of time on public transport. During

these periods, opportunities for inter-personal networking present themselves, as many of us

now carry electronic devices equipped with Bluetooth or other wireless capabilities. Using these

devices, individuals can share content (e.g., music, news or video clips) with fellow travellers

that happen to be on the same train or bus. Transferring media takes time; in order to maximise

the chances of successfully completing interesting downloads, users should identify neighbours

that possess desirable content and who will travel with them for long-enough periods.

In this thesis, a peer-to-peer content distribution system for wireless devices is proposed,

grounded on three main contributions: (1) a technique to predict colocation durations (2) a

mechanism to exclude poorly performing peers and (3) a library advertisement protocol. The

prediction scheme works on the observation that people have a high degree of regularity in their

movements. Ensuring that content is accurately described and delivered is a challenge in open

networks, requiring the use of a trust framework, to avoid devices that do not behave appro-

priately. Content advertising methodologies are investigated, showing their effect on whether

popular material or niche tastes are disseminated.

We first validate our assumptions on synthetic and real datasets, particularly movement

traces that are comparable to urban environments. We then illustrate real world operation using

measurements from mobile devices running our system in the proposed environment. Finally,

we demonstrate experimentally on these traces that our content sharing system significantly

improves data communication efficiency, and file availability compared to naive approaches.
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1
Introduction

Among three men who walk with me, there must be a teacher of mine.

Confucius

The increased affordability and gradual miniaturisation of computer hardware has not only

created the capability to have personal computers in our homes; now nearly everyone in the de-

veloped world carries a portable electronic device on their person. These devices range in

functionality from mobile phones and Personal Music Players (PMPs) to highly capable laptop

computers. The mobile phone is, in many ways, one of the most rapidly adopted technologies

ever invented, with over 4 billion subscriptions in the world today [Int09]. Portable consumer

electronic devices are used for communication, entertainment, organisation and indeed com-

putation, with more features and capabilities being developed all the time. The concept of

convergence has been proposed, stating that all these devices will combine their functionalities

and we will be left with a single portable computing device for all purposes. Presently, we

commonly have the ability to play media, such as music, and transmit data over wireless links.

It is estimated that a majority of the earth’s inhabitants now live in urban areas [Fun07].

1



Introduction 1.1 Hypothesis and Contributions

The urban population can spend a considerable amount of time travelling to work, school or

recreational places, e.g., coffee shops, gyms and pubs [LC08]. While travelling, such as during

a daily commute through a city, people enjoy listening to music or watching movies to entertain

themselves in what would otherwise be unused time. With other passengers’ digital content in

such close physical proximity, it would be useful to provide access to it, expanding the playable

libraries of all users and so increasing everyone’s pleasure and utility.

A significant proportion of portable devices possess short range wireless network inter-

faces, meaning ad hoc connections can be formed, opening the door to a wide range of de-

centralised and ubiquitous content exchanges between fellow passengers, including not just file

sharing, but interactive games, media streaming and Internet connection sharing. These inter-

faces become particularly useful when centralised connectivity is expensive or unavailable. The

presence of these interfaces on portable devices enables spontaneous, though not always reli-

able, communication between devices. Despite their lack of administration and organisation,

these connections can still be utilised for opportunistic data transmission and content sharing.

However, a key issue for these devices is how to decide whom to interact with among the

plethora of available peers.

People use their consumer electronic equipment as multimedia computers, especially in

developing regions, where home computers are not readily available or affordable. They can

currently collect media from many sources, e.g., physical shops, websites, peer-to-peer systems

or even manually download from friends. A distribution system for such content, requiring

no user management, would not only provide user satisfaction, but would increase content

consumption and possibly encourage individuals to participate in and realise the potential of

opportunistic networking.

1.1 Hypothesis and Contributions

Automatically performing all steps of user profiling and subsequent content acquisition is fun-

damental to having a system that will function without requiring a lot of attention from the

user. Moreover, by using historical information to accurately predict colocation length, not

only can automatically initiated file transfer completion be increased, but more files in total can

be shared between users. The method of description, advertisement and selection of files to

download from a given peer impacts upon how peoples’ tastes are satisfied, as well as perfor-

mance of the system as a whole. Particular care can be taken to favour replicating uncommon

files, ensuring that even users with niche tastes can expand their libraries. The informed se-

lection of a peer to download from (including past colocations and sharing behaviour), as well

2



Introduction 1.1 Hypothesis and Contributions

as considering the properties of the track to download, leads to a more reliable, resilient and

efficient content sharing network.

This thesis proposes a user-centric prediction scheme that collects historical colocation

information to determine a long term neighbouring source to use for content download. Con-

tent advertising methodologies are also investigated, showing their effect on distribution and

availability of both popular and niche material. Ensuring information is accurately described

and delivered is a challenge in open networks, encouraging the use of systems such as trust

frameworks, to allow the avoidance of devices that do not behave appropriately. Some simple

methods for avoiding interaction with hosts possessing poor historical records are also demon-

strated. We validate our assumptions and approach on synthetic and real datasets, particularly

traces that are comparable to urban transport environments. We then demonstrate experimen-

tally on these traces that our content sharing system significantly improves application data

communication efficiency, and file availability compared to naive approaches.

The following contributions are presented in this thesis:

Peer Selection – We propose a method for estimating the length of a short-range wireless

neighbour’s future connectivity duration using historical information. The method re-

quires a low amount of state storage (less than 0.5KB per host) and does not require

significant computation for each prediction. It uses a matrix to store user specific and

temporally relevant information about previous durations. A simple lookup to this matrix

gives an estimation of a user’s predicted duration; if no user history is present, then user

agnostic temporally relevant information is used. Using these predictions to select down-

load sources is compared against a random approach and perfect future knowledge of

user movement to examine its comparative efficacy. Previous work has attempted to pre-

dict link duration for network stability, but applying this to specific mobile peer-to-peer

transfers is novel.

Advertising Strategies – We present an item advertising/ordering strategy for hosts in an op-

portunistic sharing network. The manner that subsets of a user’s library are described to

others affects which tracks are selected for download. The advertisement’s item ordering

process and its impact on the movement of files through the network is examined, we

specifically examine how this satisfies the different music tastes of users. We show how

the order that (un)popular files are shared between hosts, when the amount of files that

can be shared is limited, has a large effect upon the distribution of files in user’s libraries.

Moreover, that if particular care is not taken to prioritise unpopular files, they will be-
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come completely marginalised in the network. File sharing choice has analysed in many

contexts, though not with concern for the overall popularity distribution.

Music Tastes – A measurement study of 10,000s of users’ music tastes from a popular so-

cial music website. The resulting dataset gathered the top 50 artists listened to by users

over three different time frames. All the artists then had their associated tag information

collected, which had been applied by users. This large body of information facilitated

the construction of a model for users’ digital libraries and music tastes. The music taste

models allow informed investigation of the various advertising policies and file selection

procedures when applied to realistic user libraries and taste distributions.

Prototype Deployment – An application for mobile phones that implements the ideas and

algorithms is presented in this thesis. This application was operated in actual urban trans-

port conditions and its behaviour is timed, recorded and analysed. It was tested during

rush hour and quiet periods to see how its behaviour would be affected by the environ-

ment. We are not aware of any previous work experimenting with mobile peer-to-peer in

real life subway systems.

System Evaluation – Using details gathered from the prototype we then performed a large-

scale simulation of the proposed system. The user study was used to create realistic user

tastes/libraries and the peer selection and item advertising algorithms were applied to

them. Mobility was simulated using real-life traces from a variety of urban and sub-urban

situations. Parameters of the input and algorithms were varied to examine the system’s

operation in a range of environments. It is demonstrated that careful consideration of a

download source is important to ensure successful file transfers. Also, the order of items

being shared between peers has a decisive impact on the evolution of users’ libraries.

Furthermore, we show how systems such as ours naturally affect the balance of popular-

ity in multi-category systems and how to limit this possibly homogenising effect. The

metropolitan city scale of the simulations is a particularly novel aspect of this work.

1.1.1 Assumptions

Many assumptions and generalisations have been made to facilitate meaningful analysis of the

problems and hypotheses. The most important and overarching ones are presented below, with

more specific assumptions introduced in the relevant sections.

• All content files are encoded in an open or commonly understood format, and thus may

4



Introduction 1.2 Constituent Papers

be utilised by any device. This is simply to avoid any potential problems of some items

being indecipherable to some nodes.

• Device battery power is not modelled, nor its effect of causing devices to stop functioning.

However, attempts are made to not needlessly waste battery power. It is assumed that

users will always try to keep their battery power from running out by charging it when

possible (meaning a device only has to last while they are away from home).

• A user’s music taste does not change significantly over the time frames we are consider-

ing. Equally, users do not frequently manually modify their library, by either adding to

or removing from it: changes only occur from peer-to-peer transfers.

• Users’ devices do not perform any other significant activities over the short range wireless

interfaces, such as other bulk data transfers when performing device synchronisation.

This stipulation avoids the requirement to model other user actions on the devices in

question.

1.2 Constituent Papers

Part of the research presented in this thesis has been published in the following papers.

• Media Sharing based on Colocation Prediction in Urban Transport

Liam McNamara, Cecilia Mascolo and Licia Capra

Presented at Mobicom 2008 San Francisco, CA, USA [MMC08].

• Content Source Selection in Bluetooth Networks

Liam McNamara, Cecilia Mascolo and Licia Capra

Presented at Mobiquitous 2007 Philadelphia, PA, USA [MMC07].

• Trust and Mobility aware Service Provision for Pervasive Computing

Liam McNamara, Cecilia Mascolo and Licia Capra

Presented at Requirements and Solutions for Pervasive Software Infrastructures

(RSPSI) (Colocated with Pervasive 2006) Dublin, Ireland [MMC06].

1.3 Related Work

A number of approaches have been developed in recent years to exploit the wireless connectivity

of portable devices to deliver content files. In terms of short range network exploitation for

media delivery, the following approaches share a similar vision to ours.
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Early work in this field, from the Haggle project [LLS+06] collected data about colocation

and inter-colocation in an urban setting. It applied the Delay Tolerant Network (DTN) concept

to urban settings. DTN is is an approach to networking architecture that attempts to dispense

with the requirement for end-to-end connectivity [Fal03]. Bundles of data are passed oppor-

tunistically, hop-by-hop toward their destination, hence information can be asynchronously

sent between hosts that never share a complete path connecting them. The Haggle system

uses real devices in a deployed experiment to monitor realistic human mobility; the architecture

also includes more advanced considerations for privacy, authentication, trust and advanced data

handling. Its focus was on feasible delivery ratios for bundles rather than actually performing

data transfers between devices. The relatively sparse nature of the results (due to the testbed

size and low density of the urban test area) differs from our proposed scenario.

Bluespots [LC06] is a public transport based content distribution system. Communication

occurs via a hub that is installed on a bus, rather than in a peer-to-peer manner. Content that is

deemed to be popular (e.g., music, news sites) is hosted on the hubs and is made available to

the public. This centralisation not only causes contention issues, but also restricts the flexibility

of what data can be shared and has single points of failure.

Bluetorrent [JLC+07] is a peer-to-peer file sharing system using Bluetooth. It is similar

in operation to BitTorrent, where files are split into small pieces, then downloaded and shared

amongst clients. Their goal is to support content downloads over multiple sessions, thus avoid-

ing the problem of independently moving hosts, with short connectivity patterns. Access Points

(APs) are used to seed and spread selected content, requiring the creation of this infrastructure

and management of the injection of content into the system. The work relies on enough people

serving the same version of a file to gain the advantage of swarming and includes a commu-

nication overhead of informing other peers of individual file progress. The highly temporally

disconnected nature of ad hoc networks would require an automatic method to purge partially

downloaded files that are unlikely to ever complete. This could be due to rarity of a file, destined

to never complete, or even corrupted/malicious files becoming available. We use a different ap-

proach, that is, to exploit the regularity of human movement to select a source from where we

can reliably download a complete file in a single session, and so only storing complete files.

A similar project is the Push!Music system [JRHH05], from the Viktoria Institute Fu-

ture Applications Lab. In this work a thorough, yet small scale, user feedback session is

performed [BWG+07]. Push!Music provides a distributed content dissemination system on

handheld devices; it focuses on being a system that gains or enriches social interactions. They

deployed the system upon the devices of thirteen subjects for three weeks, and held group
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feedback meetings to determine how such a system satisfied users. Users could give manual

feedback on what they liked/disliked through the application interface. Despite the system be-

ing technically able to automatically share music if user tastes are sufficiently alike, this feature

was not investigated in the study. This was apparently due to the users not playing enough music

for the system to identify similarities. Therefore, their collaborative filtering (see Section 4.1)

mechanism could not reach decisions about which files should be shared, an issue likely com-

pounded by the small testbed size. The users expressed a strong desire for automatic sharing as

it would require less attention on their part and was seen as ‘exciting’.

Rather than performing bulk transfers of music tracks, tunA [BMA04] allows live stream-

ing of the music being listened to on one device over to another. This gives a much more

immediate, socialised experience of sharing music between people. It has the benefit of cre-

ating relationships between users, and could feasibly initiate friendships between people that

would otherwise not have spoken, if they were impressed enough to pay attention to the source

of their music. The restriction of only being able to hear what is currently being played reduces

the probability that music of some interest can be found. Also, bulk data transfer allows music

to be collected at speeds faster than real time, allowing the consumption of collected music at

leisure at a later date.

1.4 Thesis Outline
This section gives a brief description of each subsequent chapter:

Chapter 2 – Motivates this work, describing the usefulness of this research, the state of the art

in the field and the envisaged scenario, followed by the challenges it presents.

Chapter 3 – Describes human movements and colocation prediction techniques developed

over the course of this work. It also introduces the notion of trust, and how it can be

dynamically updated and used to influence the selection of a source peer.

Chapter 4 – Discusses the methods for generating the content libraries and tastes, and how to

advertise content.

Chapter 5 – Presents the various synthetic and traced movement datasets, together with the

techniques used to collect and utilise user tastes from a popular social music website.

Chapter 6 – Describes the methods used to evaluate this work, particularly the simulator be-

haviour, together with the results collected from these experiments. Also presented is

the implementation created to demonstrate this work, together with some of the technical

issues that revealed themselves during the development.
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Chapter 7 – A model of the types of system we are considering is presented in this chapter,

together the model’s performance when different advertising policies are used.

Chapter 8 – Summarises findings and draws conclusions from them, finishing with a discus-

sion of the implications for the field of opportunistic data sharing.
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2
Motivation

The reasons for undertaking this work, together with the foreseen problem space, will now

be presented. When building a system facilitating content delivery between members of the

general public, many factors need to be considered. Firstly, we discuss which devices people

possess and what capabilities for exchanging/consuming content these devices have. Secondly,

we consider how people’s movements affect the possible wireless interactions between devices

and how these challenges can be overcome (covered in Chapter 3). Lastly, the categories of

data and interests that users have (investigated in Chapter 4) are presented, a point that is often

overlooked in previous data sharing research.

2.1 Motivating Scenario

In this section we describe a scenario where mobile automatic content sharing could be em-

ployed, and consider some of the required behaviour of such a system. Commuters commonly

move through a large city by means of a mass transport system (e.g., an underground metropoli-

tan railway), carrying devices (e.g., phone/PDA/music player) that can play audio/video files

and have wireless capability (namely, Bluetooth). They are looking for music of interest to

them, such as specific genres, e.g., rock or pop. A city’s transport system provides an environ-
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Figure 2.1: Scenario Diagram.

ment for significant mixing between people, giving the possibility of meeting people with very

similar tastes, or even new and interesting ones.

Imagine Alice is a commuter (seen in Figure 2.1), travelling to work along her usual route,

at her usual time, upon a rapid transit system train in a large city. She uses her phone as a

music player for entertainment while travelling. When in the transport system, she is unable to

connect to the Internet as there is no cellular network coverage (or because the connection cost

is too high). However, the large number of other passengers travelling with her offer a means

of procuring media for her enjoyment: during periods of peer-to-peer connectivity, devices may

transfer music tracks or video clips to her. Alice is interested in electronica and rock genres

of music and would like to acquire more from fellow travellers. Bob is another commuter who

travels to work along the same train line, and is often on the same train as Alice, as they both

start at work in the city centre at 9:00AM. He enjoys listening to rock and metal music. Carol

has taken the day off from work and is meeting her friends in the city centre for breakfast and

to do some shopping. She is on the same train, but would not normally use this line; she is

listening to her music collection of dance and electronica. Mallory is a fourth traveller, he

embarks with Alice as he has often done before, yet any previous time he was used as a source

the files were mislabelled/poor quality, he claims to like rock and pop. All mentioned devices

are within Bluetooth range and are potential sources of content for Alice, as they carry genres

of interest to Alice (in particular, rock from both Bob and Mallory or electronica from Carol).
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Alice’s device now has to select which user to download from.

If the content size were very small and could be transferred within a few seconds, the

choice of whom to download from, among those having relevant content, would not be critical.

However, when sharing media content (e.g., high quality music files or video clips) that require

minutes or longer to be transferred, it becomes important to select a source that will remain

colocated long enough for the download to complete. If the predicted colocation duration with

Bob, computed based on their previous encounters, is long enough to enable more of his data to

be shared, then Bob represents a more reliable choice than Carol. In fact, as Carol is a complete

stranger to Alice, the length of their colocation cannot be accurately predicted (she may be

getting off within the next minute), and thus she should not be favoured. Independent of the

colocation history with Mallory, the fact he has given many bad files to Alice in the past means

he should be dismissed from consideration.

Once Alice has chosen Bob as the source, she must decide which file to request from

him. She sends a request detailing what she is interested in receiving. Bob will respond with a

list containing files (artist and track names) out of his collection that he believes will be most

suitable. Alice can then perform a request for one that she does not already possess, and cache

the list of others that she may want in future from him. Any files in this list that Alice owns need

not be advertised back to Bob if he ever asks, as she knows he already has them; he also need

not re-advertise them. Through this process they can learn each other’s libraries and become

even more useful data sharing partners in future.

In this scenario, predictability of colocation time is a critical parameter upon which we

base the selection of the content provider. This is due to the high churn of people on the train,

with a large proportion of people leaving and boarding the train, especially at large stations with

many connecting lines.

2.2 Users’ devices

Though there is a huge amount of heterogeneity in mobile computing equipment, some com-

mon features unite a large proportion of them. We are considering small personal devices that

have the ability to play media files, possess considerable storage for them, as well as wireless

capabilities to transport them. The reduction of cost and physical size of digital storage has

made devices with gigabytes of storage commonplace, and extensible modules such as Secure

Digital (SD) cards make voluminous flexible storage a reality. Current portable consumer elec-

tronics can already store days’ worth of music: as of 2009, SD cards can store up to 32GB. So

whereas previously only a few audio files could be carried around, it is now feasible to hold a
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person’s whole music collection or a set of videos. This excess of, possibly unused, space offers

somewhere to store more files for a user’s entertainment at negligible additional cost.

2.2.1 Network Capabilities

Wireless communication range is limited by the signal’s transmission power and its consequent

dissipation, which is heavily influenced by environmental factors and device placement. There

are many wireless standards with differing aims and technical requirements. A list of some pop-

ular wireless technologies available for mobile devices and their approximate ranges follows:

• Near Field Communication (NFC) – 15 centimetres, using magnetic induction in the

range 13.56 MHz. It is a recent technology increasingly being built into phones for uses

such as small monetary transactions.

• Bluetooth (Class 2) – 10 metres, using radio transmissions in the 2.4 GHz ISM band.

Extremely popular standard, designed to wirelessly replace RS232 serial cable links for

low power devices.

• WiFi – 100 metres, radio transmissions in either the 2.4 GHz or 5 GHz frequency bands.

An umbrella term for wireless Local Area Networks (LANs) based upon the IEEE 802.11

standards. It is usually limited to inclusion on more feature rich devices, due to its signif-

icant power requirements.

• WiMAX – 50 kilometres, using radio transmissions in the 2 – 60 GHz frequency range.

The WiMAX forum described it as last mile wireless broadband access as a replacement

for cable and Digital Subscriber Lines (DSL). This large range also requires significant

power to operate.

• Cellular Infrastructure – Though transmission is limited to tens of kilometres, complete

coverage (with inter-cellular handoff) can be assumed in urban areas.

If content is to be shared between people, possibly strangers, a wireless standard with the

range of at least a few metres is required, to avoid having to be extremely physically proximate.

The disruptive effect of mobility would be reduced by using a long range protocol, making dis-

connections mid-transfer unlikely. Unfortunately, long range technologies have drawbacks that

can make them unsuitable for ad hoc bulk data transfer. The greater the communication range

of devices, the more other devices can be overheard also using the medium. In an environ-

ment with a high density of users, being able to reach even more distant users may not provide

any additional advantage. In fact, with multiple concurrent transfers occurring in the network
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neighbourhood, there will be greater contention, limiting the achievable data rates. Hence, if

some suitable content is already available nearby, it can actually be detrimental to increase the

communication range. This concern has been addressed in the area of mesh networks, through

the process of topology control. One solution employs dynamic power control to ensure trans-

missions are only as powerful as they need to be to reach the next hop [LZZ+06]. Though we

will not discuss dynamic power levels any further, it is important to consider what effect the

choice of wireless technology, and its range, will have.

Devices may have access to infrastructure through cellular data interfaces such as

GPRS/HSPA. They allow network connectivity to communicate with non-local devices, and

usually the Internet as a whole. Connectivity to a huge number of hosts is one of the reasons the

Internet has become such a dominant force in modern life. Future cellular standards can theo-

retically approach current wired broadband speeds, with multi-megabit downlink bandwidth1.

Though the thought of using cellular networks to allow mobile devices to act as any other In-

ternet node is attractive, it suffers from some important limitations. Consumer packages that

charge for transferred data volume are often prohibitively expensive, whereas flat fee offers

usually impose limits on the usage [Peh07]. These range from data volume limits to explicit

banning of bulk peer-to-peer traffic in the terms of service. Service limitations by commercial

wired Internet Service Providers (ISPs) are common [DHGS07], and can be even more impor-

tant to cellular providers, due to the technological constraints of the network type. The sharing

of the cellular medium by so many users, and the operating costs of such hardware limits the

economic feasibility of allowing many users to perform bulk data transfers cheaply. There are

often some business concerns about allowing Voice over IP (VoIP) on a network that gains

most of its profits from transporting voice data, often at comparatively much higher cost to the

user. A more obvious limitation of using infrastructure is the requirement that the infrastructure

provides suitable coverage and capacity. Remote places may possess no cellular coverage or

reduced data service due to lack of subscriber density. Conversely, urban areas also present

environments with no coverage, such as underground (e.g., subways and basements) or within

large buildings.

The use of device-to-device wireless links does not suffer from requiring the presence

or permission of a third-party to provide the network link. This removes the ability to easily

monitor or censor the transfers between peers, possibly an increasingly important issue with

US Telecom companies performing mass surveillance of the public, and UK ISPs secretly pro-

filing users for advertising purposes. The 2009 political unrest in Iran lead to the suspension

13GPP Long Term Evolution (LTE) envisages around 170Mbit of downlink shared across 20MHz of spectrum.
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of cellular networks2, demonstrating how availability and cooperation can not always be ex-

pected from infrastructure. Another possibility for gaining connectivity to the Internet would

be through wireless APs, such as commercial, municipal or private WiFi access points. Despite

the obvious problems of connecting to static APs while on the move, an issue tackled by Bread-

crumbs [NN08], there are also financial and legal problems with performing bulk data transfers

over APs that are not your own. Again, connectivity does not always translate to an ability to

perform bulk data transfers.

Due to the wide availability, we have chosen to motivate our work by assuming Bluetooth

network interfaces. Though this causes some loss of generality, Chapter 3 details techniques

that can be used irrespective of link speed. The prevalence of Bluetooth interfaces on modern

devices is well known. The Bluetooth Special Interest Group (SIG) claims over two billion

active devices. Class 2 Bluetooth devices have a range of 10 metres, which is suitable for com-

munication between devices in relatively stationary proximity, but will not necessarily provide

stable connections during free movement. In urban areas a lot of time is spent in close prox-

imity to many other people, e.g., when in mass transit systems, offices or commercial districts.

Most connections formed during these periods are highly transient, and are prone to being par-

ticularly unreliable. They vary from many short connections (people passing by in the street) to

a few long ones (friends travelling/shopping together). Devices would obviously benefit from

identifying the colocations that are not expected to last long, and avoiding setting up short con-

nections that would lead to failed (incomplete) data transmissions. The physical locality of

short range links provide an implicit method for presenting a subset of peers as suitable sources

of content.

2.2.2 Usage Patterns

People’s Bluetooth interfaces are increasingly being left switched on. A study [Eam06] per-

formed in 2006 in a small UK city demonstrated around 10% of the public carry discoverable

wireless devices, a figure likely to increase with deployed Bluetooth device numbers and poten-

tial benefits from leaving it switched on. Also, as battery technology improves and lower power

versions of Bluetooth become available, the penalty for leaving it on decreases. Bluetooth tech-

nology is spreading to Personal Music Players (PMPs) for use as a headphone connector or

manual data transfers, such as the StormBlue A9+ and Insignia NS-DVB4G devices (similar to

phones gaining music playing features). This will be an even more attractive possibility when

2Reporters Sans Frontières: News and Information Fall Victim to Electoral Coup. Website (accessed June 2009):

http://www.rsf.org/News-and-information-fall-victim.html
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the Ultra Low Power Bluetooth standard (previously WiBree) becomes widely available. The

presence of these networked devices, routinely in contact, sometimes for prolonged periods,

offers new possibilities for research in automated content (e.g., news, video clips, music files)

sharing and distribution.

The amount of time that people living in urban areas spend travelling to/from work is

significant. A study from the University of the West of England reported that, in 2006, the

average commuter living in large cities in the United Kingdom (e.g., Liverpool, London and

Manchester) spent 139 hours a year travelling to and from work, with this figure increasing

to a whole month per year for Londoners [LC08]. The prohibitive cost of personal transport,

and the increasing length of distances being travelled, has made public transport (e.g., bus,

train, subway) the preferred means of travel by many commuters, with the London Tube alone

carrying an average of 3.4 million people every weekday. This kind of travel often exhibits

routine patterns and the expression familiar strangers was coined by Stanley Milgram [PG04]

to designate someone that we may often see but do not personally know. In fact, one of the

original experiments for the paper was performed at a train station. The concept of the familiar

stranger, is a useful property for the creation of digital relationships; as computers do not have

the social barriers between each other that humans do. They can exchange information even on

a first meeting, and store historical data about other hosts indefinitely.

2.3 State of the Art

2.3.1 Commercial

Wireless file transfers between consumer electronic devices have been possible for years, using

popular protocols such as Bluetooth and WiFi. Bluetooth has been available on mobile phones

for 10 years, since the release of the Ericsson T36. The legacy standard for IEEE 802.11

was originally released in 1997 [Gro97]. Both of these popular standards allow short-range

connections to be made between electronic devices. They are however very different in their

behaviour, Bluetooth was aimed at small Personal Area Networks (PANs), whereas WiFi has

been described as “wireless Ethernet”.

Bluetooth constructs star-shaped piconets of up to eight hosts, with the central one being

the master, maintaining control of all connections in the network. Radio transmissions are

performed using Frequency Hopping Spread Spectrum (FHSS), where data is transmitted over a

pattern of 79 different frequencies. This spectrum spreading gives resilience from interference,

and allows other piconets to operate in the same physical space with minimal contention; as

it is unlikely they will choose the same frequency at exactly the same time. Over the past 10
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years, Bluetooth has been included in a myriad of electronic hardware, including phones, PDAs,

audio headsets and computer mice/keyboards. This huge deployment makes an abundance of

interactions possible.

The release of the Microsoft Zune PMP brought a new dimension to the field of electronic

media players. Their WiFi network interfaces allow communication of data (such as music

files) between Zune devices. The use of Digital Rights Management (DRM) technology allows

possibly copyrighted data to be shared without infringing the ownership rights of the copyright

holder. DRM restricted music is useful for music distributors as it allows their product to

be sampled by people, encouraging them to then purchase it. Besides DRM music, several

other data types are freely available to share, such as sample clips, movie trailers, and Creative

Commons [Cre09] licensed data.

The Zune demonstrates the direction of modern PMPs and how our scenario can be a driver

for media industry sales. The Zune contains a WiFi interface that allows the devices to send

content files between each other, so users can listen to other people’s libraries. There are many

restrictions placed upon this behaviour though:

• A non-standard form of WiFi is used, restricting communication to only other Zunes or

APs to connect to the Zune Marketplace website, where more music can be bought.

• Content downloaded from other Zunes is restricted to three plays, after which tracks must

be purchased from their marketplace to be heard again. This is enforced by wrapping files

that are shared with DRM restrictions.

• File transfers must be initiated manually, with the finding, sending and receiving per-

formed by users having to interact with their device.

These features show how there is industry interest in allowing electronic devices to share music

content, and even that it does not have to be detrimental to their business. This has been termed

Superdistribution, which involves the encouragement by copyright holders for content files to

be freely shared as much as possible, while still retaining control over the actual playback of

the files [MK90].

Crucially, the aim of this research is to thoroughly investigate the feasibility of a system

that will work with current non-specialised hardware without the requirement of any special

infrastructure support, so that it can be deployed in the real world now. The target devices

have been available for a few years in developed regions, and so have a large deployed base;

they will also be widely available in developing regions at least in the next few years. The

content types being shared will not be limited by the system, and any device with the technical
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capabilities will be able to participate. This is not to say that technological advances will be

unable to increase the usefulness of the proposed system, with very low power Bluetooth soon

to be added to the standard and storage becoming even cheaper.

2.3.2 Academic

There has been much research in recent years into data sharing between mobile wireless hosts.

If we are explicitly aiming to share media content, such as music, then some extra assumptions

about the properties of such a sharing system can be made. The data being shared is relatively

static, a high quality encoding of a popular artist’s discography need only be updated on release

of a new album (usually the scale of years). New media will be gradually added to the global

library, as albums are released by artists, though this is proportionally very small. Each item

of content can be classified by many categories, such as rock, dance, live, 80s or heavy; these

categories will henceforth be referred to as genres. Possession of a partial file is of no interest to

a user, a person owning half of their favourite track is likely to be annoying, rather than almost

as useful as the complete track.

In a large distributed network, locating files of interest is one of the main challenges. The

lack of centralisation means there is no single place to store an index of files. Many approaches

overcome this limitation using a structured distributed information system, such as a Distributed

Hash Table (DHT) [SMLN+03] or information summary trees [JX07]. There has been investi-

gation into the applicability of DHTs to MANETs [HGRW06]. One such approach [GM03] is

a DHT based mobile peer-to-peer system that focuses on reducing the network overhead.

Such structured storage and retrieval of information can be very useful, particularly for

stable multihop wireless networks, where users desire a particular file and need to find its loca-

tion. Unfortunately, they also require maintenance of the virtual structure, this burden increases

as networks become more dynamic and suffer from greater churn. This maintenance will have

to occur even if no hosts in the network are attempting to find/acquire any files. The naviga-

tion of information overlays can cause needless communication with hosts that neither possess

the file, nor know where it is. Also, as with all distributed networks, partitioning may occur,

compromising the structure. To lookup the files in an overlay system, a key must be available

to map to the file, and this key must be available for hosts to perform a search for the file. This

requirement of already possessing a key for desired files limits the possibility of serendipitous

collection of files. Usually this key is formed from search terms that a user will manually enter.

The behaviour of overlays storing files at particular (key defined) locations is ill suited to file

distribution, as it actually only aims to provide a method of file storage/location in the network.
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Files (or indexes) having to be moved/stored around the network just to satisfy the structure,

and not user desires, could lead to much wasted communication.

Files may also be found in a distributed wireless network by unstructured means, such as

random walks, expanding ring searches (ESR) or even just flooding requests [PKGO09]. These

approaches are much simpler and more robust to network dynamism and node failures. They

are also reactive, in that they only initiate a search, and so cause traffic, in response to a desire

for a file’s location. Our scenario (covered in Section 2.1) is one of high churn and relatively

small, though frequently changing, groups of users; it would be more suited to an unstructured

information system.

Investigation of the inter-connectedness of devices has received significant research inter-

est, with areas such as Pocket Switched Networks (PSN), within the realm of Delay Tolerant

Networks (DTN), becoming established [HCS+05]. There is much interest in DTNs, using

personally carried mobile devices and the opportunistic connections between them to spread

information along multiple hops. Some work has focused particularly on content dissemina-

tion in such networks [SMM07], using explicit subscriptions by nodes to register their interest

in content types. Whilst they are inherently comparable, our work does not focus on routing

and/or remote message delivery percentage, but rather the behaviour of pair-wise interactions.

Knowledge about communities, social interaction and colocation has been employed in multi-

hop DTN [SDPG06, HCY08]. With respect to these, we also concentrate on gathering infor-

mation about human behaviour to inform and improve the operation of our network.

Many of the mentioned mobile peer-to-peer systems assume that multihop communica-

tion is achievable and desirable. Being able to communicate with non-neighbouring hosts, by

multihop forwarding, is preferable if access to many hosts is required. However, if successful

interactions can be performed by one hop neighbours, then forwarding becomes a needless re-

quirement upon all hosts. Intermediate nodes on a forwarding path are burdened, by having to

store and forward data for others, rather than satisfy their own user’s interests. In fact, as ev-

idenced by Guptar & Kumar [GK00], when uniformly distributed multihop wireless networks

grow in size, then the achievable capacity of arbitrary paths decreases to zero. Forwarding data

along multihop paths causes more radio interference than if it was simply sent directly between

two hosts. Further work [JLM01] showed that if the average distance between source and des-

tination decreases as a power law, then the achievable path capacity can stay constant. This

implies that keeping paths locally bounded is the only way to allow such networks to function.

Also, the existence of host movement in a wireless network, while causing link instability, al-

lows for an alternative method of increasing capacity. If hosts retain transmissions for others
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and wait until their movement brings them closer to the destination, then arbitrary destinations

can be communicated with, at the cost of delay [GT02]. Our scenario does not require com-

munication with remote hosts as well as being unaffected by delay, hence these problems of

scalability are avoided. If hosts are having to spend some of their time forwarding data for

others, then there becomes a much greater likelihood of their own transfers not completing in

time over transient connections. Even interference/contention from neighbours will increase

transfer time due to reduced network performance. Experimental results [RNGT05] show that

even small scale multihop configurations can suffer significantly when multiple workloads are

active.

The requirement for hosts to forward data for others adds the problem of selfish nodes

possibly not fulfilling their duties. Enforcing a forwarding requirement leads to the introduction

of an incentive scheme, such as a trust or reputation system (covered in Section 3.5).

If hosts are operating in a wireless ad hoc environment, then negotiation of interactions

over arbitrary paths can be problematic in itself. For example, multihop ad hoc WiFi com-

munication would either require that all hosts communicate upon the same channel (causing

needless contention), or alternatively, have each host searching all channels for other hosts to

provide forwarding. Joining Bluetooth piconets together into arbitrary sized scatternets, while

theoretically possible, has had very few implementations due to technical limitations. Due to

the master/slave architecture, all communication in a piconet has to be between a master and

a slave device, creating bottlenecks at all masters. If a piece of data needs to traverse many

piconets, it must pass through all masters on the way, and also have some devices participate in

more than one piconet, requiring a change of FHSS sequence (the sequence is defined by the

piconet’s master). In addition, there is the issue of creating a system of routing on top of this

ill-suited architecture.

Our vision of wireless media sharing in dense urban environments is shared by Hy-

Cast [ABR07], which is a podcast (syndicated media source) dissemination system. As in our

approach, HyCast identifies peers with similar interests and expends energy communicating

with such hosts only. To combat the effects of network contention of many unicast transfers, it

forms clusters out of nodes with similar interests. It attempts to deal with transfer failures from

node mobility by simply waiting until churn stops before transferring data. This is implausible

in environments with constant churn and could result in wasting whatever connection oppor-

tunities are available. State is only maintained about other hosts with reference to the content

being shared between them, without leveraging any historical information about colocations

and their patterns. May et al [MLKW07] also focus on podcasting in MANETs, though they
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use WiFi as the network type. This work includes experimental testing of a prototype imple-

mentation, and shows the feasibility of wireless bulk sharing of media files. However, it also

shows how download times will increase, to possibly unworkable lengths, as the number of

participating nodes increases. Undersound [BBM+07] is a proposed system to gather music

when using urban transport and has quite a similar end user experience, however the internal

operation is drastically different to ours. It requires support from infrastructure installed in

the transport system, which in underground systems could have very poor coverage and conse-

quently require a lot of deployment overhead. The system considers each station in a transport

system to be a repository, with files being submitted to a station by users. Music files can also

be shared directly between users, but all files have to originally come from a station’s repos-

itory. Downloads are initiated manually by users to promote engagement with the process of

collecting music. There is more of a focus upon creating a community specific experience.

2.4 Challenges

Traditionally, finding ‘who to interact with’ has mainly been seen as a problem of understand-

ing who is offering the service required. Most service discovery and selection frameworks,

developed for both traditional distributed systems and ubiquitous systems [Edw06], focus on

how to describe services, how to formulate and spread queries, and then match queries with

service descriptions [LI04b]. However, in this formulation of the problem, the ad hoc nature of

pervasive interactions is not taken into account, in particular the following challenges have been

overlooked. First, how to identify, among the providers offering a desired service, those that

are likely to be connected long enough for the service provision to complete. Second, which

files would be most appropriate for the recipient and would lead to the recipient being able to

serve others in future. Thirdly, how to select trustworthy providers that will actually deliver the

service/content as promised.

The construction of a wireless content distribution system in the given scenario presents

many challenges and problems. Some of these issues are socially based, requiring sufficient

penetration of the public to allow enough opportunities for data sharing. The technological

challenges must be overcome, or at least mitigated, before large-scale adoption could begin.

The main technological issues are now presented:

Discovering neighbours – Finding nearby hosts that are participating in the content distribu-

tion and are able to share media files. Though this feature is inherent in all Bluetooth

devices, it is not a truly reliable process [Kha06]. In fact, the more frequently that hosts

try to detect one another, the harder it becomes to be discovered by others. A host can
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only be discovered if it is not trying to perform a discovery itself.

Choosing a peer – Selecting someone as a source whose taste indicates they will be able to

offer some non-malicious tracks of interest. Furthermore, that they will be able to suc-

cessfully complete the transfer of one of these files. The discovery and source selection

is addressed in Chapter 3.

Exclude malicious hosts – Once a file has been transferred, it should be checked to ensure

that it is a valid media file and, more importantly, the one that was requested. If a host

provides too many tracks that are found to be wrong in any way, it should be excluded

from consideration as a data source. Mechanisms used to decide whether to exclude a

host are given in Section 3.5.

Choosing a track – Maximising utility for a user (the suitability of the music) and system as

whole (ensuring appropriate replication) from the procurement of a track; discussed in

Chapter 4.

Assessing viability – Deciding whether to proceed with the transfer of a particular track. If

a file will take longer to download than the predicted colocation time, then it should

probably not be initiated, as this will just lead to wasted effort.

2.5 Summary
This chapter presented our motivation for undertaking this work. The capabilities of modern

mobile devices were described, particularly widely deployed wireless network interfaces. The

commercial and academic offerings for systems that provide features that would be required by

our proposed system were also investigated. Importantly, a likely scenario where a system such

as ours would be used was described, including the operating environment and resulting system

behaviour. Lastly, the challenges presented by this scenario, that will need to be overcome,

were listed.
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Peer Selection

In this chapter we discuss the challenges presented by opportunistic networks, and some tech-

niques that can be used to mitigate them. For highly dynamic wireless networks, the constantly

changing structure can cause many problems when attempting to achieve reliable communica-

tion. The undetermined duration of colocations means communication is unreliable and achiev-

ing successful data transfers can be problematic. Time required to transfer data is not known a

priori, due to variable transfer rates from the unstable wireless environment. In order to max-

imise the chances of completing a download, as much time as possible should be available for

performing the transfer. Therefore, choosing a neighbouring host that will be present for a suf-

ficient time for a download to complete is mandatory. Being able to determine the duration

of the neighbours’ colocation becomes an important consideration for performing successful

data transfers. We will present some techniques for estimating this colocation duration using

historical information of the local network state. If downloads are to be initiated automatically,

without users intentionally staying proximate to the file source, then many downloads may not

be completed before the transient connection breaks. Devices should identify stable neighbours

who will be colocated with them for sufficient periods for a download to complete.

The process of selecting a download source host from a set of peers is a problem that has
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received much attention on Internet deployed systems. Possibly the most popular file sharing

system currently in operation is BitTorrent. It is designed to overcome the distribution load/costs

for content providers by allowing downloaders to combine their efforts when attempting to

procure a file. The capacity of paths between Internet hosts is often less than the total capacity

of a host’s immediate upstream link, meaning downloading from many hosts is likely to use

more of their connection capacity. In wireless networks, this subdivision of file transfers allows

files to be gathered across multiple time periods rather than from multiple sources. In fact,

concurrently downloading from multiple sources in wireless networks can be detrimental due

to contention in the shared communication medium.

Rather than enabling partial transfers over short lived links [JLC+07], we aim to ensure

that selected links exist for long enough to perform a whole transfer. A swarming-like approach

is orthogonal to ours, and could be combined to gain the benefits of both. Stable links are of

advantage to many other uses in short range wireless networks, and so still represent an objec-

tive benefit. Possible applications that would benefit from identifying stable neighbours, or at

least avoiding unstable ones, include multiplayer games, Internet connection sharing and music

streaming. The rest of this chapter contains a discussion about how device movement affects

wireless networks and a section presenting some aspects of the relationships that form in urban

places. Methods of opportunistically selecting a peer to communicate with are also presented,

together with the formalisation of the algorithm. The second part of this chapter will discuss

some of the problems presented by poorly performing devices and some of the techniques that

can be used to limit their effects on system as a whole. The nature of computational trust is

discussed, followed by how to store and access this information. Finally, the mechanism for

dynamically updating this information in response to (un)successful interactions between peers

is presented.

3.1 Dynamic Wireless Networks

Neighbouring devices that can be wirelessly communicated with are a product of a person’s

physical location. Over time, the detected devices are a product of the person’s movement

patterns. The resulting networks created from these devices can be very dynamic, with the

available neighbours possibly changing many times a minute in dense urban environments.

Bluetooth networks only function over short distances (typically 10 metres), they are subject to

intermittent and unreliable connections, caused by electronic interference and physical mobility.

The changing topology of a Bluetooth network will significantly affect its operation, dictating

which hosts can communicate with each other. A device’s underlying physical movement cre-
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ates the resulting pattern of colocations (when combined with all other device’s movements):

two hosts moving away from each other will quickly lose contact. Understanding these move-

ment patterns is important for designing a system that can still operate under such stresses.

In everyday life people often follow seasonal movement patterns, regularly travelling very

similar routes and visiting the same places (e.g., the same journey to work, visiting a coffee

shop, going to their local pub, etc.). People possessing similar destinations and journey patterns

will be more likely to be regularly colocated with each other. A device’s connection history

could thus be used to infer future connection patterns. This knowledge can be used to only

initiate communications that will complete before a connection breaks and so improve data

communication. Even if nodes did move randomly, which could be the case for some specific

environments [TG05], there would still be some expected link duration information to be lever-

aged, so that the future of colocation durations could be roughly predicted and exploited. A

colocation-aware peer selection framework could use this knowledge to select those providers

that will most likely remain connected to the host for the duration of the required service. Also,

though an aspect not investigated in this work, the peers in the immediate area during many

points in a user’s day, will be people the user has some connection with and likely shares inter-

ests. This link of social and interest distance is investigated further in [CGD+09].

Creating a functioning and reliable system on top of volatile connections is a huge chal-

lenge. Perfect prediction of colocation duration is obviously also quite hard, as humans can

have very variable movement behaviour. A person’s future absolute position can, to some de-

gree, be predicted, and much work has been performed to achieve this, such as with the Reality

Mining project at MIT [Pen07]. They were able to predict the next physical place of interest

a user would travel to with a possible 95% accuracy using Hidden Markov Models. However,

the locations were extremely coarse-grained, such as work or home and would not necessarily

be useful to predict colocation with other devices. Place of interest prediction is not the same

as predicting the physical distance between devices, also environment effects can occur that

interfere with or block wireless signals, i.e., there is not necessarily a correlation between posi-

tion and connectivity. Other approaches [GBNQ06, MS02] also reinforce the observation that

people do not usually move between location randomly, and their movements follow relatively

regular patterns that can be programmatically learnt.

Location information can come from sources as varied as GPS locations to a user’s journey

plan (possibly gathered from their calendar). The sharing of such personal information repre-

sents a risk for user’s privacy, it would be unwise for a vulnerable person’s device to broadcast

details of their journey. Also, although this information may be available on a laptop, PDA or
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phone it would not be stored on a less personalised device such as a PMP. Therefore, we assume

that no extra information is shared between users to aid in the source selection procedure, only

locally available information gathered by the network interface.

Obtaining information about the absolute movement of a device requires either access to

a positioning system, such as GPS (as in [SLG00]), or a technique of inference from other

sources. Previous work has used the available WiFi access points as beacons to guess at the

current location of a device, through both the hardcoding of pre-known WiFi access point po-

sitions/Received Signal Strength Indications (RSSI) [HFL+04] and dynamic calibration based

on sporadic GPS signals [LHSC05, VPKL08]. These blended approaches can reliably achieve

an accuracy of around 30-100 metres. For a device to have GPS information it must not only

contain (or be able to communicate with) GPS hardware, but must also have a line of sight to at

least three GPS satellites. This can be a problem in urban environments where the urban canyon

problem, caused by the surrounding buildings, blocks many of the satellite signals [Zha02]. De-

spite the success of these approaches, they all require additional hardware and are based on the

assumption that absolute position is the most important measure of mobility. However, con-

sidering our scenario, the most important measurement is relative distance, and the ability to

communicate. Furthermore, the geographical positioning solutions do not provide a granularity

of less than 20 metres, limiting their ability in predicting the existence of smaller scale proxim-

ity. Also, our scenario considers mobile devices that want to communicate with other devices

likely moving in unison, implying relative position is a more important factor. Therefore, we

decided to only focus on network detected colocation as a measure of two devices’ likelihood

of being able to communicate effectively.

Colocation aware routing algorithms, such as PRoPHET [LDDG09] and CAR [MHM05]

already exist; however, less has been done to exploit this knowledge in service provi-

sion [TJK04, Har04]. These approaches mostly attempt to overcome unstable connections

caused by mobility to hide the nature of the network. CAR uses assumptions about social

properties of connectivity to predict (using Kalman filters) whether hosts will meet again in

future, in order to forward messages. Our aim is not to transport data to specific hosts (routing),

but rather to collect data with appropriate attributes. We agree with the assumption that being

in proximity of someone suggests a relationship, and implies properties about any future prox-

imity. This is a useful method, as it does not require any extra information, such as geographic

position. Breadcrumbs [NN08] uses information about the changing connectivity to make pre-

dictions about future service from wireless infrastructure, to enable devices to choose when it is

best to initiate network events. Again showing that using knowledge outside of the immediate
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network state can give applications on mobile devices much better behaviour for users.

3.2 Urban Social Networks

Social network theory can be used to analyse the relationships between people, where they are

represented as nodes and the links between them as some sort of relationship. Most people

spend a majority of their time at either home or work/school, where there are usually well

defined network access and administration procedures. We are interested in how people can

electronically communicate when they are elsewhere or in the third space [Old89]. These other

places, such as buses, trains, bars or coffee houses, may not have permanent members but

will have some people that regularly frequent them. The interaction between people that are

frequently in close proximity represent, in some weak sense, a social relationship. This aspect

of urban living was initially investigated by Milgram’s important 1977 sociological paper on

familiar strangers.

During the rush hour in a major city, thousands of people will be commuting across it; each

weekday morning (8–10AM) London has over 1 million people travel into its centre [UK 06].

Commutes are usually along familiar routes (e.g., home to office) performed at similar times

(e.g. rush hour, or perhaps late at night for shift workers). In London, each weekday there

are over 3 million trips on ‘the tube’, 1.8 million trips on main line rail services and about 5.9

million trips on buses (representing 40% of all UK bus journeys). This shows a vast number of

people using public transport; in fact around 27% of all journeys in the UK are made on public

transport. The average number of passengers per bus is 14.7 (higher during rush hour), offering

a significant number of people to interact with. The average commute time recorded is 43 min-

utes, though 10% took over 90 minutes, a significant amount of time and long enough to transfer

over 475MB (with Bluetooth version 1.1 at effective bit rate). Table 3.2 shows a breakdown of

methods of transport used by the public for their commute into London each morning during

2006 (source [UK 06]). These figures represent a huge number of people moving through a

small area, with a lot of physical proximity and networking opportunities.

In relation to urban transport systems, people perform many short journeys throughout

the week. These journeys may be to different places depending upon the time that they occur.

For instance, a journey beginning at 8AM may be the long commute to work, whereas one at

midday will be a quick journey to a restaurant for lunch. The colocation durations that arise

from different journeys would therefore be time dependent. If a colocation duration prediction

is to be made for another user, then not only is that user’s identity of relevance, but the time

this prediction occurs is of importance as well. For any hosts that are frequently seen by A
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Transport Method People (thousands/morning)

All 1064

Bus 115

Rail 473

London Underground + DLR 342

Car 84

Motorbike 16

Bike 17

Coach 9

Taxi 8

Table 3.1: London Commuter Volume.

at the time of prediction, there will be a historical record of the colocation duration with that

host during this period of the day, allowing an informed prediction to be made. A majority of

the other peers seen in the system by A will be strangers who are very rarely met, precluding

any information being gathered about them. In this case, A’s only knowledge comes from the

aggregate experience of how all other peers generally behave at this time. If another host B has

been seen previously by A, then the history of colocations with B will give a more user specific

perspective. If B was seen at many different times previously (e.g., for a short time in the

morning, long at night) then the prediction can be further specified by using user specific and

temporally relevant history. Therefore, we propose attempting to use the temporally specific

history of colocations with the particular user at that time as the best prediction choice. If

temporally specific information about that user is absent (e.g., it is the first time A has met

B in the evening), just the user specific information is used. If it is an unknown user being

considered, then user agnostic information from the present time can be used.

3.3 Peer Connection Process

When a device wants to initiate a transfer it must choose the best source for a download from

the currently available neighbours. Moreover, it must decide whether the predicted colocation

length of that host will last long enough to perform the transfer. This selection can be aided

by historical information to make a more educated guess. The ‘best quality’ neighbour to

initiate a download from is arguably not simply the one that will be colocated for the longest

period, the library of files on each other host has a bearing. Potentially a host could connect

to every neighbour and download a complete list of all files available, and the selection made
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Figure 3.1: Downloader’s Finite State Machine.

from that superset. However, this requires a lot of non-local knowledge to reason about all

neighbour’s libraries and which could be termed ‘best’. Bluetooth and its Service Discovery

Protocol (SDP), requires a separate connection to each neighbour to communicate data; there

is no true broadcast capability. Spending time connecting to every neighbour and exchanging

library/interest negotiation information is time consuming. Having a host dedicate potential

transfer time communicating with every neighbour, especially if the neighbour set is changing,

would create significant overhead. Therefore, we first choose the host that we are most likely

to receive the most data from, then only negotiate the file choice with that host. This gives

the benefit of less connection creation and file advertisement overhead. Once the source has

been chosen, the negotiation for which file will be sent is initiated, followed by any desired

transfer. The transfer process as a whole is a receiver initiated interaction. If this process

was inverted, and all neighbours were searched for files before the source was chosen, then it

would possible to search more effectively. Though this would be at the expense of actually

successfully transferring these, potentially, more appropriate files. We will now explain the

process and reasoning a host performs when initiating this interaction cycle.

Figure 3.1 shows a Finite State Machine (FSM) of the process that hosts perform when

downloading. Upon starting a host will enter the default Select Neighbour state, ready to begin

a cycle of attempting downloads with neighbours. The host progresses through a series of ne-
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gotiation states with a selected neighbouring peer, each state having a timeout that will trigger

if the neighbour moves out of range. This timeout will move the host into the Timed Out state,

causing the process to move back to the initial selection phase, after clearing any temporary

data. The negotiation consists of sending a requested Genre List followed by receiving a re-

sponse. An appropriate file is selected from this File List and a file request made, a process

described further in Chapter 4. If there is no file that the downloader desires, then the process is

initiated again. Though this could lead to loops where the downloader is continually selecting

hosts and not finding suitable content, it will not cause infinite loops. When a source indicates it

has sent all matching files (through an empty File List), the downloader will not select it again

for the remainder of their colocation. Two important points to make are that the file is only

saved once the download is complete, any partial files are discarded. Any failure during the

negotiation places the host in the Timed Out state, this means peer selection is reassessed after a

timeout, as the neighbourhood may have changed significantly in that time. The selection state

does not however cause any radio transmissions, it is a decision made with local information.

3.3.1 Peer Selection Technique

We will now investigate how the Select Neighbour step is performed. Device discoveries are

performed regularly each time period t, which gives a set of surrounding neighbours Nt. These

neighbour snapshots can be combined to form a neighbourhood history. This historical record

may then be used to provide indication of the future state of the network. An important aspect

to note, is that as Bluetooth device discovery is a probabilistic process [Kha06], a physically

proximate device may not be found during a given discovery phase. Therefore, when consider-

ing colocations the system should only treat another device as having left when it has not been

detected for two consecutive discovery phases. The set of devices that are deemed to still be

colocated at period t shall be represented as N̂t = Nt∪Nt−1. This means if a host was detected

in the current (Nt) or previous (Nt−1) discovery, it will be present in the practical neighbour set

N̂t. A neighbour is also deemed to be unavailable if it is already sourcing a file to another host.

It will then not be considered for selection (though its presence is still recorded); this avoids

having popular sources uploading many files at once and having none actually complete.

For a given set of colocated devices N̂t, there are many possible techniques for choosing

which should be selected, which are investigated in Chapter 6:

• Random – A random available host is selected as the source.

• First Colocation – The available neighbour whose colocation started earliest is chosen.
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• Last Colocation – The available neighbour that most recently entered the surround area

is selected.

• Mean Colocation – The available neighbour with the previous longest average colocation

duration is favoured.

• Temporal Mean – A temporally varying colocation estimation approach is used, ex-

plained below.

It should be noted that the Random approach is not truly random behaviour. A host would

still only select an available neighbour that also shares some genres of interest. The only random

behaviour is in the selection of which feasible neighbour to use.

3.3.2 Slotted Temporal Mean

One technique to predict colocation length is to keep a running mean: for example, each user

could log their previous encounters, recording the mean colocation duration with every other

peer, and use these values as a prediction of the length of the current encounter. However, this

is an overly simplistic metric which ignores the possible temporal variability of movements;

for instance, a colocation beginning in the morning (e.g., on a daily commute to work) may

last much longer than one starting in the evening (e.g., on a trip to a local supermarket). We

argue that keeping a single running mean of colocation duration for every pair of users is not

sufficient, as important information about their movement patterns and seasonality is lost.

A more advanced scheme, which we have adopted in our approach, is to keep a tempo-

rally varying mean, that changes according to the time at which the colocation began. More

specifically, our solution keeps a separate mean for each time slot across a given period. This

detailed profile of another peer’s colocation pattern is kept in the form of a personalised pro-

file for each peer that we have deemed as a familiar stranger, that is, someone who has been

met often in previous journeys. A host that has been encountered a sufficient number of times,

will gain a profile entry in the depicted Table 3.2. If the number of previous samples during

a given time slice is not sufficient to confidently determine a temporally-specific mean, then

the average colocation mean, computed across all of this peer’s personal profile’s time slices,

is used. For all other unfamiliar peers, a single anonymous profile is used instead (i.e., one

profile for the full set of encountered peers), containing, in each time slice, the mean length

of all encounters occurred thus far with every host in that slice. The selection of values for

Period and Slice are domain specific aspects and universal values do not exist that will hold

in all situations. For the purposes of this explanation Period and Slice are 24 hours and 4
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Time Slice (hours)

User Overall 0-4 4-8 8-12 12-16 16-20 20-24

Anonymous 15.9 25.7 10 3.5 5 2.8 18

Bob 12.4 - 20 7 13.8 - -

Table 3.2: Temporal Mean Table (values in minutes).

hours, respectively. Rather than hardcoding them, these values can be dynamically learnt from

a domain’s colocation structure, using techniques similar to the ones discussed in [DM07].

The time slice index S to be used when making a prediction at time t is calculated by the

simple formula:

S = floor(
t mod Period

Slice
) (3.1)

For example, with the profile structure given in Table 3.2, a colocation with Bob occurring at

time 09:00 hours: S will be 2. Thus, the colocation with Bob will have its duration computed

into the 8-12 slice. Also, Bob’s Overall mean will include the value in its calculation as well.

The Anonymous profile will also have all colocations included in its calculation (for both the

Overall and slice 2). So if Bob loses his familiar stranger status at some point in the future,

there will still be some impact from him in the profile table.

The manner that the prediction matrix is constructed will now be presented. The initial

matrix has a single row dedicated to the Anonymous user, i.e. the amalgamation of all users.

This row, in a similar format to all subsequent rows, has a field for each time period and an

extra Overall one that is not time specific. This Anonymous entry will be modified after all

colocations with another user. Each field contains the mean of all colocations that previously

occurred in that time period. Hence, after a colocation in time period Z, the mean in slot Z

will be updated accordingly. The Overall slot will also be updated to include the colocation

in its population. Each sighting of a neighbour n is also counted, when this count exceeds a

predefined limit1, the neighbour is promoted to familiar stranger status. This causes a new row

to be created in the colocation history matrix, dedicated to the newly tracked user n. Up to this

point the only impact n had on the matrix was through the Anonymous profile, subsequently it

will affect both the Anonymous and its personal row. The field modification process is exactly

the same as for the Anonymous profile, the Overall and time specific field will be updated to

reflect a new population mean after any colocations. This whole process will be repeated for

1A default of 3 is used in this work, though this value could also be dynamically learnt [DM07]
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Figure 3.2: Peer Selection Example.

any and all hosts that are met. If hosts were concerned with storage requirements, old host data

could be purged with a scheme such as least recently used (LRU).

With reference to the scenario described in Section 2.1, let us assume that Alice has to

make a choice between three neighbours at time t (around 09:00 hours), depicted in Figure 3.2.

Bob’s mean colocation duration with Alice in the time period 08:00-12:00 is 20 minutes, and

they have already been colocated for 8 minutes. Bob’s predicted departure time will be 12

minutes away. Let us also assume that the mean of all other host’s colocations with Alice,

during this time slice, is 10 minutes. As Carol is unknown to Alice, her colocation duration

will be predicted using the anonymous statistics, that is, 10 minutes. If Carol has already

been colocated with Alice for 5 minutes, her predicted remaining time will be 5 more minutes,

causing Bob to be selected as the connection partner, as he offers the best chances of transferring

most media content. If there were another (never before seen) host to choose from,Daniel, who

became colocated before Carol, then he would represent an even worse choice. As both Carol

and Daniel will receive the same predicted colocation length and Daniel has already spent more

of his colocation time with Alice, his predicted remaining colocation duration will be shorter.

3.4 Algorithm
Let us now describe the steps of our source selection algorithm. At a given time slot S (uniquely

determined by the current time), userA is looking for a content source from where to download

content files with a genre in the interest set GA. The following steps are performed:

1. For each of the hosts in A’s list N̂t, a prediction is made of the length of the colocation

with A, by performing a lookup into the colocation profile table.

2. The predicted remainder of the current colocation time, for each host in N̂t, is computed

(this simply requires logging the colocation start point of each host ).
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3. Hosts are ranked in decreasing order of remaining predicted colocation time, top being

the longest predicted.

4. Finally, A connects to the top ranked host h, to obtain a summary of relevant files avail-

able for download, which is a list of files with length Shortlist. If the summary contains

at least one desirable file (e.g., a rock music file thatA does not already have), and the ex-

pected remaining colocation time is longer than the estimated download time duration,

the transfer begins.

A more formal expression of this scheme is shown in Algorithm 3.1. In order to de-

cide whether to start the download (Step 4), A must estimate the time it will take for the

download to complete, based on the content size and current connection speed. Both these

pieces of information can be obtained/estimated during the transfer negotiation phase, giving

the approximate download duration: duration = size(file)/speed(N̂t[top]). Downloads

will not be initiated if the expectation of success is too low. More precisely, duration =

(size(file)/speed(N̂t[top])) ∗ Threshold needs to be smaller than the expected remaining

colocation. This value allows a device to account for the unpredictable nature of the time taken

by a transfer, and the duration of actual colocation: with values higher than 1, the device takes

less risks, starting content transfers only when remaining colocation is estimated to be substan-

tially longer than duration. Conversely, values lower than 1 will start downloads even if the

prediction technique suggests they will not succeed. A value of 1 would directly measure the

efficacy of colocation predictions.

3.4.1 Peer Prediction Overhead

Regular device discoveries will need to be performed concurrently with downloads, in order to

populate the neighbour set N . For example, such a component would simply make each device

regularly enter the Bluetooth inquiry substate to discover neighbours; discoverable Bluetooth

devices periodically enter the inquiry scan substate and respond to device discovery requests

with a Frequency Hop Synchronisation packet (FHS), containing their relevant device ID.

Recording and processing personalised colocation statistics incurs a small amount of stor-

age and processor usage; this amount scales linearly with each additional familiar stranger host

that is tracked. With Bluetooth device addresses (BD ADDRs) being 48bits and a double preci-

sion floating point number being 64bits, each entry can be stored using a small amount of data.

From the formula: 112bit + (slices × 64bit), if six time slices are used, then each entry is less

than 0.5KB. More basic sighting history must also be kept, to enable the device to recognise

when a peer has been seen enough to become a familiar stranger, or not seen for so long that
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Parameters: List N̂t of neighbours in reach and their colocation start time start[h];

Current time slot s;

Matrix M of colocation profiles (i.e., M [h, s] = mean colocation duration with host h for time slice s,

M [h, ∅] = overall mean of all h’s colocations;

M [Anon] is the profile of the anonymous profile);

List GX of genres of interest to X;

Returns: host h from where to negotiate a download.

{Steps (1,2) - Computation of colocation predictions}

for all h ∈ N̂t do

if host h is familiar stranger then

if M [h, s] is populated then

score[h]= M [h, s] - (tnow - start[h])

else

score[h]= M [h, ∅] - (tnow - start[h])

else

score[h]=M [Anon, s] - (tnow - start[h])

{Steps (3,4) - Rank peers and return chosen source}

sortDecreasing(N̂t, score)

file = getFileSummary(N̂t[top],GA)

if score[top] >( (size(file)/speed(N̂t[top])) * Threshold ) then

h = N̂t[top] {Select host with longest predicted remaining colocation}

else

h = null {Do not transfer, likely to fail}

return h

Algorithm 3.1: Content Source Selection.

its familiar stranger status should be revoked. An entry for this table would be much smaller,

around 100bits. Though these numbers are many orders of magnitude smaller than high quality

data items, a large number of them will add up, and space should not be wasted without con-

sideration. If a device is particularly limited in storage, a resource conservative policy can be

used to limit the size of these sets (e.g., by forgetting hosts when they have not been seen in

a long time). Note that this colocation pattern logging is service-agnostic, and can be imple-

mented as a standalone component, with the information it gathers being leveraged by multiple

services running on a device. This colocation prediction information can then be shared by any

reasonable type of Inter-Process Communication (IPC), such as a local socket or pipe.
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3.5 Trust

Open networks, such as public wireless spaces, are inherently open to abuse by selfish and

malicious users. Selfish users try to maximise their own utility and unfairly gain more resources

than is deserved, such as downloading files while never offering any to others. Malicious users

behave in a manner that purely aims to disrupt the utility of others, even at the expense of their

own, such as pretending to initiate transfer of files they do not possess. Some users may not

fall into either of these categories, but due to misconfiguration or data corruption still have a

detrimental effect on the system. As these networks are open for anyone to join, the detrimental

effect of these ‘bad’ users is often performed by introducing the concept of trust or incentives

into the system.

Incentive based systems work by rewarding hosts with benefits for providing favourable

services/interactions to other hosts. In wireless routing, for example, this could be a host re-

ciprocally granting forwarding privileges to another host that forwards its own packets. Micro-

payment systems are an incentive based approach where interactions are purchased/sold for

small quantities of real money. Non-malicious devices can then spend a small amount to gain

services, while being paid for any services they can offer. If a host is as much a benefit to the

system as it is a burden, it will expend a negligible net amount, encouraging non-malicious

cooperation. Malicious users will have to spend a lot of money to consistently avoid providing

services to others. Systems such as these function well if the accounting system can not be

gamed; they are however often complex. Mobile Bazaar [CABP05] is a reasonably advanced

micro-payment system for wireless collaborative data services. Competition between service

providers is created through an economy of very small monetary payments, ensuring peers

are reimbursed for any work they do for others (such as forwarding data). The free market

construction creates a self organising system of charging for services and collaboration. The

requirement of a secure accessible entity to record and charge/recompense all interactions in a

disconnected small-scale wireless network is unrealistic. The inclusion of a monetary punish-

ment would not promote the system to users as a method of accumulating music in a low risk

manner. Therefore, rather than attempt to employ a monetary based incentive system to avoid

poorly performing peers, we shall investigate trust based systems.

A frequently used definition of ‘trust’ by Gambetta: “[Trust] (or, symmetrically, distrust)

is a particular level of the subjective probability with which an agent will perform a particu-

lar action, both before [we] can monitor such action (or independently of his capacity of ever

be able to monitor it) and in a context in which it affects [our] own action” [Gam88]. This

view emphasises the subjective and context-dependent nature of trust, two factors that are also
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especially pertinent to music appreciation. In our conceptualisation of the system, the terms

untrustworthy and malicious are both used to indicate any data source that is not perceived as

‘beneficial’ to the receiving host. We thus classify as untrusted, the hosts that provide garbage

data (poisoners), push advertisements (spammers) or incorrectly encode/label music tracks (pol-

luters). We do not distinguish between these cases any further, with the rationale that if content

supplied by a host is of no use, then the receiver does not care about the reasons behind it, and

just wants to avoid similar problems in the future and ensure that the host is not selected as a

source any more. Mislabelling of tracks can even be considered a subjective problem: one user

may consider The Beatles being classified as R&B2 to be an error, while another may not. We

do not treat failures due to broken connections as malicious, as they are inherent in the scenario

we are considering. Also a selfish host cutting off the connection half-way through a download

would save more energy by initially refusing to serve the file.

Trust is used in many real systems to enhance their utility to their users, particularly Inter-

net systems. Similar to user-based recommender systems, trust is often used to aid navigation

of large amounts of information. The website Epinions is an online opinion source, it uses

explicit trust ratings to qualify how much faith should be placed on another user’s opinion; its

behaviour has been analysed [Guh03]. Advogato is a website for rating the ability of open-

source programmers, which was created with the intention of studying how trust behaves in

large online communities3. A trust-aware client for the Internet based peer-to-peer network

Gnutella has also been developed [CDV+02]. This work demonstrates the interest in ensuring

that content acquired from peer-to-peer systems is what it claims to be, and that peers behave

appropriately.

Wireless networks have greater accessibility compared to wired networks, due to physi-

cal proximity giving the ability to connect, rather than needing physical access to someone’s

network hardware. The ease that devices can join them is one of their major strengths, how-

ever it is also the main security weakness. For example, any device within range may unfairly

monopolise the medium or even jam the spectrum to prevent usage by anyone else. Due to

continuous changes in the network topology as hosts move around, similar abuses could be reg-

ularly perpetrated fairly easily without ever being caught and stopped. Thankfully, malicious

devices present a much smaller overall risk in short range wireless networks compared to wired

networks due to the lack of global addressing and connectivity: a single bad host is not able to

2Rhythm and Blues as a term, has evolved over time from denoting gospel, blues and disco to the modern

meaning of soul/funk influenced pop music.
3Deployed trust websites: http://epinions.com and http://advogato.com
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directly attack everyone in the network. Therefore, compromised devices only have a locally

limited effect, preventing developments similar to botnets on the Internet. Though there may

be the problem of transitive bad behaviour, e.g., viruses or mislabelled content getting passed

through the network by non-malicious hosts without their knowledge.

There are many types of node behaviour that it would be advantageous (though not neces-

sarily possible) for a content dissemination system to automatically restrict. The most important

one is when a peer distributes data other than what was requested, such as sending an audio ad-

vert when a rock track was requested. This would be immediately obvious to a human user

when this has happened, yet very hard to automatically determine, especially if the advert was

embedded in a normal music track. Alternatively, a non-matching file may be offered due to

a user’s library being poorly managed and labelled: this might not strictly speaking be con-

sidered malicious behaviour, but is definitely problematic for other users. A selfish node may

never offer a file list when asked, in order to avoid using its battery power and capacity to aid

other users. This type of behaviour is hard to detect because a user with little or no files would

behave in the same manner.

3.5.1 Computational Trust

When selecting a peer to download from, we would like to quantify the belief that the host will

not behave in any of the previously mentioned ‘negative’ ways. This belief can be represented

as a trust value in the range [−1,+1]; with −1 representing total distrust, +1 being absolute

trust, and 0 indicating a neutral opinion. A default bootstrapping value of 0 could be used to

represent the trust level in an unknown host. Trust management systems have been proposed

that enable reasoning about the trust value of other peers by means of their historical behaviour.

If past behaviour functions as an indicator of a node’s future performance, which is a reason-

able assumption, previously malicious peers can be avoided and the good hosts preferred by

recording a host’s actions. A host that has behaved inappropriately in the past may be ignored

by others, segregating it from the system. This exclusion not only serves to limit the damage a

bad user can have on the system, but is also an incentive to behave for all peers.

It has been proposed that trust should not be transferred across different contexts, for ex-

ample, a host having a bad trust value in providing service X, should not have that reflected in

its service Z valuation [SS05]. Hence a trust value is service dependent, one global value can

not be used for other services, unlike the colocation prediction mechanism, which is service

independent. Attempting to apply transitive trust between services facilitates the use of more

available information, however it would introduce a lot more complexity and possible errors

into the system [CH97]. To investigate this issue in detail, a multi-service scenario would have
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to be considered and evaluated. The issue of how much (dis)trust should be transferred to other

services offered by a host, depends on how much the quality of a host’s service X implies about

its service Z. Host B could provide extremely beneficial and relevant music from host A’s per-

spective, but due to differing political views of the owner of device B, have very poor news

quality. The use of our wide definition of trust make the transference of trust from one domain

to another an especially unwise choice. Previous research has considered how to use history

from other contexts to bootstrap trust valuations [QHC07].

Ubiquitous systems on personal devices can be characterised by seasonal movement pat-

terns of groups of devices. We thus argue that a trust-aware content source selection protocol

could be effective in estimating a peer’s future behaviour, isolating malicious peers and thus

further reducing the chances of service provision failures. The most important hosts to have

trust data about, are the ones that are met frequently, these are also the hosts that we can build

up the best estimation of their merit. Obviously infrequently met hosts are the majority, but

in many environments there are a small number of frequently met hosts: familiar strangers,

friends, colleagues, neighbours, etc. These hosts are the same class of peers that can have their

colocation durations predicted (Chapter 3). If a malicious host is seen frequently, it becomes

even more important to recognise its bad behaviour and take steps to avoid its impact.

The remainder of this chapter gives an introduction to the field of trust in peer-to-peer and

mobile systems. The importance of node identity in trust systems is discussed, as well as the

methods to store and modify the trust valuations of peers. The way our system utilises the trust

valuations when performing a source selection is subsequently detailed. It should be stressed

that we are not attempting to develop new mechanisms for storing, updating or managing trust.

We simply aim to employ some previous work on trust to the problem of item distribution on

urban transport to maximise users’ utilities. With the scenario’s particular features of high churn

and users’ lack of interest in the total population of data items.

3.5.2 Trust Systems

Fundamentally, a trust system gives a mapping from a host’s identity to a trust valuation. Estab-

lishing a device’s owner in our scenario is not particularly important as the people are unknown

anyway, unlike when sending a sensitive message to a particular person. However, it is impor-

tant to know when we are interacting with a device that we have dealt with before; i.e., a host

that claims to be host B is indeed host B. Large-scale distributed systems (especially discon-

nected ones) have problems achieving 100% verifiable node identification. Malicious nodes

can possibly maintain multiple identities, to avoid negative associations with an identity caused

by their actions, called a Sybil attack [Dou02]. This can be avoided by enforcing a single,
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unique identity, which is an extremely hard task, usually requiring centralised assignment to

avoid clashes and possibly secure computing hardware to avoid device tampering. For the pur-

poses of distributing content for entertainment purposes, specialist hardware, such as a Trusted

Platform Module [Tru05] is a relatively onerous requirement.

Cryptographic proofs of identity are a very useful technique, though they present a bar-

rier to entry for resource poor devices. Using public key cryptography, hosts can create pub-

lic/private key combinations allowing them to sign messages, proving they are from the user

who holds that key. Without a trusted third party, such as a hierarchical certificate authority

or web of trust system, the public key can not easily be linked to a person; though as we have

stated that is not an aim in our system. The greatest flaw in an approach such as this, is that

many public/private keys can be generated, but this requires certain amount of processing to be

expended. Hence, this approach would give the system the property of non-repudiation, it will

not enable the prevention of Sybil attacks.

Preset, immutable identities, such as Media Access Control (MAC) addresses or Bluetooth

Device Addresses (BD ADDR) are defined for many network interfaces. These require a cen-

trally administered system of address distribution to avoid clashes, an aspect often handled by

the hardware manufacturers. Using the BD ADDRs as the identity does not require any addi-

tional identity infrastructure or overhead for peers in the system. Though it would be possible

to spoof the BD ADDRs with custom hardware or highly functional devices, our main aim is

not to harden the system against all dedicated malicious attacks, but to mitigate attackers’ ef-

fects and to segregate poorly performing devices with corrupted libraries. Therefore, we use a

device’s BD ADDR as the means of identification in our system.

3.5.3 Trust Management

The architecture of a trust system defines many facets of its operation, such as where trust values

are stored and how they are accessed by hosts. Having access to the trust values is crucial for

hosts to make an informed decision. It would be advantageous to have all interaction histories

and trust information stored centrally, allowing all previous interactions to influence a host’s

trust valuation. Interaction histories would be processed, to allow identities to map to a rating,

which would all happen at a single third party that all other hosts have regular access to, so

they can receive all trust information. This approach can easily be used with Internet based

systems such as the online auction website eBay4, where every system interaction is performed

through the central trusted entity. This would not be possible in our scenario as there is no

4eBay’s Website: http://www.ebay.com
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frequently accessible third party for all peers. The centralisation would also give a single point

for failure/monitoring. Alternatively, a distributed system can be used, where hosts do not rely

on a single trust repository. Considering the arguments from Section 2.3.2, it can again be seen

that a structured distributed system of arranging trust information would not be appropriate for

our scenario. Furthermore, the challenges presented by possibly malicious hosts would make

this an even worse choice, as subverting the trust system itself would be a very powerful attack.

Unstructured distributed approaches for storing trust valuations can gather their informa-

tion in two ways:

• Direct experience: Each host maintains its own view of the trust ratings for other hosts.

All information used to create a trust valuation is only gathered from interactions that the

host participates in. Therefore, all information used to create the valuation is inherently

trusted. This approach lends itself to creating personalised subjective measures based

upon behaviour observed by the local device. This avoids any control overhead from the

trust system, as each host only uses local information.

• Direct experience and recommendations: As well as using interactions that the host

has directly participated in, trust values are also influenced by gossipping recommenda-

tions between peers. These recommendations allow peers to share their trust valuations

with other peers in the network, thereby gaining non-local information. This approach

is particularly suited to closed networks of a limited size, so that trust values can more

easily converge to globally accepted values.

To avoid dependencies on other nodes for providing trust information, direct experience

trust systems have gained momentum, such as in [DDB04], where each host maintains its own

opinion of other hosts using local information, thus adhering to the human intuition of trust as

a highly subjective metric. A potential disadvantage of this local trust management is boot-

strapping: whenever a node moves into a new environment where it is unknown, it will take

some time to build up a good standing with neighbours, and to form accurate judgements about

others. Based on our observation that hosts in pervasive computing settings often meet a subset

of the total peers, we can argue that, after a relatively small initial bootstrapping time, the trust

values about that subset will develop into accurate estimators of the providers’ true utility.

Recommendations

Rather than only relying upon personal experience, it is possible for local repositories to gain

information from indirect interactions by the use of sharing recommendations, first proposed
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by Abdul-Rahman and Hailes [ARH00]. When meeting another host, instead of just sharing

data, peers can also share information about the outcomes of their past interactions, spreading

information about who else has performed well/badly. This process allows hosts that may

not have directly received a file from a peer, to still collect some information about its past

performance. In a sparse network such as ours, where files are only collected from a small

subset of the total population, it will be rare to have direct historical information about a random

neighbour R. The ability to ask other neighbours if they have interacted with R previously

allows more informed decisions to be made. Distributed trust management systems such as this

are useful in networks without access to a centralised repository. EigenTrust [KSGM03] is an

example of a global view trust methodology for peer-to-peer systems. Through the sharing of its

recommendations, all peers in the system approach the same global view about other peers in the

system. In order to work effectively, simultaneous connectivity to a sufficient number of non-

malicious peers is required, which may not be guaranteed in pervasive computing situations.

The opinion another host has about the quality of a service could be considered a subjective

measurement. If we are accepting opinions from others, we may not be sure they are forming

their opinions in a consistent manner to ourselves. The main problem with allowing recommen-

dations it that as well as allowing malicious hosts to be gossipped about, it also allows malicious

users to spread their own gossip, thereby allowing malicious gossip to be used as another tool to

subvert the system. If a group of malicious users want to destroy the reputation of host R, then

they could all spread false reports of bad behaviour, causing R to be treated as a malicious peer.

It has been argued that using untrusted information to influence our views on trust is inherently

flawed, and information should only be gained from explicit evidence [Obr04].

Some approaches separate the trust they have in another host into trust in delivering a

service and trust in giving recommendations [LI04a]. It also makes sense to track how much

of a trust valuation comes from direct experience and how much from recommendations, pos-

sibly even which host’s recommendations were used. This will then allow a host’s effect on

the trust repository to be revoked if it becomes apparent that it is a malicious entity. Although

recommendations can aid the gathering of information in new environments, when all neigh-

bours are unknown; our scenario posits that not only are familiar strangers often present, but

the high-churn strangers are rarely seen again, minimising the benefit of gossipping about their

behaviour. The frequently seen peers can then simply be learnt about through direct experience,

saving the overhead of recommendations and not providing another mechanism to subvert the

system (through false recommendations).

Though they can aid the gathering of information in new environments, the proposed reg-

41



Peer Selection 3.5 Trust

ularity of user movement should allow devices to directly collect information about common

neighbours.

Detecting Failures

A precondition of knowing which hosts are malicious/selfish is the ability to recognise what

actions are bad. For our automated system, it would be desirable to have automated judgements

made about other host’s actions. If a shared file is corrupt or incorrectly encoded, a user’s device

can detect this and mark the transfer as bad. Deciding The decision of whether or not a correctly

encoded audio file matches the requested type of content can not be programmatically made,

as it requires human feedback. This feedback can only be provided after the user listens to the

track, via a feature of the user interface. This means that after a file has been downloaded, it

should only be made available for sharing to others once it has been listened to. This is to avoid

a good user passing on bad files before they have had a chance to classify the file.

3.5.4 Updating Trust Values

The importance of trust in a wide variety of computer systems has been identified by previous

research, particularly in the realms of the Internet and the web [GS00, Mas06, AG07]. The

dynamic update of an identity’s trust value is the most distinctive aspect of a trust system. Many

approaches have been used, including Bayes’ theorem [QHC06]. Once a host has been deemed

to have behaved badly, its trust level should be modified to reflect this behaviour. A common

approach in trust systems, due to its easy computability, is the beta distribution [LI07]. It is a

probability distribution, whose probability (p) is parameterised by two positive parameters: α

and β. These variables can represent the count of times a given host has performed well (α) and

badly (β). Therefore, a trust value can be computerised for a given host, which has α successes

and β failures, using the following formula (note both α and β are initially 1):

E(p) =
α

α+ β
(3.2)

The beta distribution is a continuous probability in range [0,1], which can easily be scaled to

the standard trust range of [−1,+1]:

BetaTrust = (2× E(p))− 1 (3.3)

The computation of this trust metric is not complex and only requires the storage of two integers.

A visual representation of three different beta distributions is shown in Figure 3.3. The left-

most curve demonstrates a particularly untrustworthy host (having performed 20 failures and 4

successes) with −0.6 . . . for the trust value. The central curve has less trustworthy value of 0,
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Figure 3.3: Beta Distributions

and the right-most curve a comparatively unsure, yet high, trust value of 0.43. The probability

density function of the beta distribution can be calculated using the formula:

f(x;α, β) =
xα−1(1− x)β−1∫ 1

0 u
α−1(1− u)β−1 du

(3.4)

This equation gives a measure of the confidence in E(p), i.e., the y value of the peak of curves

shown in Figure 3.3. Therefore, a host can gain an estimate of how reliable its trust valuation

of another is. Though not analysed in this work, the estimation confidence would potentially

be useful in a deployed system. If a user was manually browsing hosts to find more files, the

user interface of the content distribution program could also present not just the trust value of a

neighbouring host, but the confidence in the valuation as well, thereby informing the user about

the amount of information used to come to a trust rating. It could also be used to differentiate

between two hosts that have the same colocation prediction and absolute trust ratings.

3.5.5 Selecting with Trust

Once a host is deemed to have performed sufficiently badly, it should no longer be communi-

cated with to avoid its negative effects. For our algorithm (Section 3.1), this is performed by

removing the set of malicious hosts M from the parameter list: N̂t = N̂t \M . This will ex-

clude the host from the system, providing an incentive to behave well and limiting the damage

bad hosts can have on the system. If a host achieves a malicious classification, then it will be

avoided in all future interactions. Similar to the colocation records, this information could be

purged after a long timeout to avoid the excess accumulation of state. Hosts employ a device

defined threshold value TrustThresh to the trust value of neighbours, when it falls below the

threshold they will be ignored in future source selections. A node that has been deemed mali-
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Peer Genres Predicted Colocation (min) Successes Failures Malicious

Bob rock, metal 12 32 2 No

Carol dance, electronica 5 0 0 No

Mallory rock, pop 15 1 4 Yes

Table 3.3: Alice’s Trusted Peer Selection.

cious will never be given a chance to redeem itself, leaving it permanently sanctioned. In our

scenario, this will not significantly limit the amount of possible sources, as there are so many

other nodes. Optionally, the negative value could slowly increase back to the threshold value,

allowing it to participate again; this feature is not being pursed for investigation in our work.

Setting the default trust value of a unknown identity to have a low value, means it would

rarely be of benefit for a malicious host to change from the current identity to a new unknown

one. This has the problem of unknown (yet possibly good) hosts not being selected, making it

hard for an unknown host to be given the opportunity to improve its trust valuation. In a large,

sparse and dynamic network, many encountered hosts will be unknown, so only particularly

cautious users would want to use an especially low default trust value.

With reference to our target scenario (Section 2.1), suppose Alice has a highly positive

trust value for Bob, as a consequence of a successful history of interactions; while she has a

neutral trust valuation for Carol, as there have been no previous interactions between them.

Alice has a particularly low trust value for Mallory, as a consequence of a history of poor

interactions, although he is often colocated for long periods. The information Alice has to

make a judgement on whom to select as a download source is shown in Table 3.3. It can be seen

that if selection was purely based upon longest remaining prediction colocation, Mallory would

be chosen as a source (15 being the largest prediction). However, as he is deemed ‘malicious’,

she will exclude Mallory from the shortlist of hosts with matching interests, and only be left

with Bob and Carol. Bob, being the highest rated non-malicious neighbour, is thus selected as

the download source. This trust valuation will neither improve nor decrease the score resulting

from colocation analysis, it simply acts to allow segregation of poorly behaved/malicious nodes.

Hence it serves to act a filter for untrusted nodes, rather than giving preference to trusted nodes.

Described formally, the additional step of trust reasoning serves to add a simple pre-

processing step to the peer selection algorithm (Section 3.4), to remove all malicious nodes

from the neighbour set N̂t.
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for all h ∈ N̂t do

Rating = ((2α)/(α+ β))− 1

if Rating < TrustThresh then

N̂t = N̂t \ {h}

Algorithm 3.2: Malicious Neighbour Pruning.

3.5.6 Summary

This chapter presented some background research on the topic of predicting network properties

in opportunistic networks, then proposed an approach for the selection of a stable neighbouring

peer. The actions a device will have to perform and the data it will have to store to achieve this

process was described. In short, to predict the length of colocation a neighbour will have, it

should attempt to use the mean of previous colocations with that neighbour that occurred at a

similar time. If that host has never been seen at a similar time, then that user’s overall mean

colocation duration should be used. If a neighbour has not been encountered frequently or a

similar time before, the mean of colocations with all other devices that occurred at a similar

time should be used. This requires keeping a small amount of state about each host that is to be

remembered and used for more specific predictions.

The chapter also introduced the concept of trust in a content dissemination network, defin-

ing what we mean by trust, where it is stored and how it is updated. The manner that trust

is used in the download source selection process is also defined. Principally, if an automatic

and anonymous data sharing system is desired then strong trust can not feasibly be achieved.

However, considering the challenging nature of the scenario, the cooperative and successful

behaviour of others should not just be assumed. Therefore, employing a trust system that can

at least prevent egregious long-term misbehaving neighbours, is of value, particularly if it does

not incur significant extra overhead on the system.
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The previous chapter explored how important the careful selection of a download’s source is to

achieve complete transfers. The initial peer selection is based on colocation prediction of the

source devices; if the assumption that all others hosts have an item of interest to download is

dropped, the downloading process requires further negotiation. This chapter discusses the selec-

tion of which file to download from the selected source, including the negotiation process and

overhead. File choice is important for the receiving user and, due to future interactions, all other

hosts in the system. A host’s choice of file to download impacts the behaviour and utility of the

system as a whole, because it can affect all the future interactions for the downloader. More

specifically, when a file is shared with someone else it affects the file’s availability/permanence

in the network, and thus how easily that file can be found by users, or indeed lost from the

system (upon deletion or data loss). On a personal level, if the system is not gathering files of

interest to users, they will not be inclined to run the software, due to resource usage on their

device.

This chapter gives background to the problem of deciding which item of content a user de-

sires, how and when file negotiation should be performed by our system, and most importantly,

which policies can be used by this process.

46



Content Selection 4.1 Automatic Selection

4.1 Automatic Selection

Conceptually, every person has a taste in a subset of all music; an ideal automatic music distri-

bution system would not only collect music that they already like, but would attempt to collect

some that they would like if they heard it and some that they could develop an interest in. It

would anticipate gradual changes in their tastes, and shifts occurring in the music world. Even

in powerful centralised systems with millions of users, this can be challenging and is a very

active area of research, often framed as Recommender Systems. These mechanisms [SKR99]

are made practical use of in many modern e-commerce websites, such as Amazon, eBay and

Netflix1.

Recommender systems perform a type of filtering; they are conceived as a mechanism for

avoiding the information overload that is present in modern digital systems, such as the Internet.

They aim to take a large set of items of interest and present a relevant and manageable subset

to users, allowing easier finding and consumption. Often, collaborative filtering is used, where

items are suggested to users based upon which items are favoured by similar users, known

as homophily [MLC01]. This makes the assumption that if another person has similar tastes,

then it would be wise to assume items that they enjoy represent good suggestions. A common

criticism of recommender systems, is that they result the homogenisation of users, assuming

that people want to become even more similar to related users. The ability to perform such user

comparisons encourages the use of a powerful centralised architecture, to allow the aggregation

of as many user’s information as possible.

Decentralised systems suffer from the absence of easily available global knowledge and

thus the inability to capitalise upon the potentially vast amounts of information in the system

as a whole. This reduces the ability of processes such as collaborative filtering to function ef-

fectively. More specifically, short range wireless systems will only be able to make use of data

from the local host and its neighbours (possibly including some historical behaviour) and they

do not have large amounts of processing power to utilise. Previous work, such as mobHin-

ter [SPGR08] suggests that it is possible to approach the efficacy of centralised system, though

it takes time for information to fully propagate through the system. Also, mobHinter assumes a

closed system of less than a thousand users, which facilitates complete propagation more easily

than a system of millions. A real large scale system would likely have constant churn, possibly

making the eventual complete collection of global knowledge about other users impossible.

An alternative approach to selecting subsets of items is to focus on aspects of the content

of the items rather than the similarity between users, commonly termed content filtering. In

1Website URLs: http://amazon.com, http://ebay.com and http://netflix.com
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fact some have suggested that focusing on items is not only inherently more scalable, but can

be more accurate [SKKR01]. Technology exists to perform similarity analysis of music tracks,

considering the volume, tempo, syncopation and frequency analysis, etc [SLC07, Swa02]. This

can successfully identify similar tracks, but takes a lot of processing and only focuses on low

level constituent parts of the track. Hence, though this could be performed independently by

pairs of users, to see which tracks seem the most suitable to send to each other, it would not be

computationally feasible.

Defining a user’s potential interests is a very nebulous and subtle challenge, which we do

not attempt to completely solve. To use a high level and yet flexible manner to discern which

tracks are appropriate for a user, our approach uses the natural categorisation of genres. In fact,

we use music genre as the most important feature of a track, more important even than the artist

or album. The justification for this is that we are only trying to procure more music that a user

may be interested in, so as to create a cache of interesting music for them to explore. The aim

is not to complete a list of artists or albums that a user wants, they can collect specific files

themselves. The only behaviour we aim to achieve is to collect more files of the categories a

user already has in their library. That way, the library will be filled with files that are similar

to ones they have previously obtained, and hence ones they have previously shown interest in.

Meaning, if a user has rock and pop in their library, all the system should attempt to do, is get

more rock and pop.

Collecting more of the same genre also allows for more file matches with neighbours than

just artist or album alone. Another problem lies in collecting more of the same artist, where a

user may have their favourite album on their music player and yet not have loaded others that

they possess. If only files by matching artists are collected, there may be a lot of repetition in

the procured files.

This genre of a track is directly available in the meta-tags of digital media (such as ID3

for MP3) and is a concept that users already use to define what their tastes are. To configure

the device for their tastes, a user must therefore place a selection of files that they enjoy in the

device’s library. These files could be obtained from online music stores or digitally encoded

from their existing music collection.

In a fully deployed system we would expect the user interface to have the ability to black-

list particular bands/albums. Conversely, it would be feasible to employ a whitelist system,

whereby particular desired artists/albums are preferred over others of the same genre. The ac-

tual selection of the file to download is performed by the receiver, leaving the final decision in

their hands. These additional behaviours are not investigated in this work due the challenges of
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Figure 4.1: Advertisement Protocol Diagram.

statistically modelling a user’s particular (dis)like of specific artists.

4.2 Advertisement Process

When a host decides to download a file from the source peer, the negotiation of the file selec-

tion (depicted in Figure 4.1) will take up useful downloading time; we should therefore spend

as little time as possible performing it. However, an attempt should be made to choose an ap-

propriate file for the user’s taste, a short but incremental learning (across each download phase)

of the source library would be preferable.

After a downloader, A, connects to the source, B, it sends a string list of genres it is

interested in receiving, allowing B to search its library for files of matching genres. Rather

than have B send its complete library listing (which could run to thousands) and allow the

downloader to choose its file, a limit should be placed upon the size of this list ShortlistSize.

The source then sends a shortlist of genre matching files; A must then select a file from this

list. Firstly, it purges any files that it already possesses from this list, to gain a shortlist of

acceptable files. However this pre-purged list still provides some information, it gives A a list

of files that need not be advertised back to B in future, as B already owns them. Therefore,

each host should maintain a list for every other host, of which files need not be advertised,

containing files that eitherA orB has advertised in previous negotiation processes. This process

is shown in Figure 4.1; it should be noted that if no suitable files are found by A, the source
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selection process is begun anew. Maintaining a list of all non-advertisable files for every other

host will lead to very large storage requirements. Therefore, these lists are only maintained

for current neighbours, i.e., when two hosts disconnect from each other their non-advertise

lists are deleted. This will greatly reduce the amount of state being kept at the cost of some

needless advertisements when/if the hosts meet again. For devices with plentiful storage, all

this information could be kept between sessions, and non-advertise lists only purged when a

host has not been seen for an extremely long time.

for file ∈ library do

if file.genre ∈ h.interest then

if file /∈ advertised then

shortlist = shortlist ∪ file

if shortlist = {∅} then

sort shortlist by policy

advert = shortlist[0 : Shortlist]

reply with advert to start transfer

Algorithm 4.1: File advertisement algorithm.

The files in a single advertisement may not be the only ones A is aware that B pos-

sesses, track names from previous negotiation phases (that were not downloaded or were al-

ready owned) are also known to A. From this, possibly large, track list, any one can be selected

and unless extra meta-information is included (increasing the shortlist data size) it could be hard

for the downloader to decide which is best. The source however does have a lot more of the

meta-information about the file, such as how many times it has been downloaded from B, how

many other people have advertised this file to B. Therefore we allow the source to explicitly

sort the shortlist and have the downloader select files in order that they are advertised. This al-

lows B to indicate which files it believes should be downloaded first, based upon its knowledge

of the meta-data (though the downloader still has the freedom to select whichever file it would

actually prefer).

4.3 Advertisement Policy
During each file selection phase, the source will send a list of potential files to the downloader,

of length ShortlistSize. Subsequent file selection phases will contain additional advertisement

lists; however the same file should not be re-advertised by one host to another. The downloader

will cache previous advertisements in a list N , thus not requiring any re-advertisements. These

caches will gradually grow in size over time, possibly taking up significant storage space. To

limit the overhead of keeping these caches, they are purged when two hosts disconnect from
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each other. Though this represents a loss of gathered information, it is preferable to keeping

filelist caches for all hosts that have ever been seen.

The order that a host B will advertise its library to A is decided by the advertisement

policy. The set of possible files P for inclusion in the advertisements is a subset of the host’s

library L, where each file matches one of the downloader’s (A) genres of interest (GA) and has

not been previously advertised (list N ):

P ⊆ L,∀p ∈ P [genre(p) ∈ GA ∧ p /∈ N ] (4.1)

This set P is then sorted according to the advertising policy employed by the source. Possible

advertising policies B could use include:

• Random – The set P is arranged in a random order.

• Common – The set P is arranged in descending order of the amount of times B has seen

the file advertised by others.

• Uncommon – The reverse order of Common.

• Popular – The set P is arranged in descending order of the amount of times a file has

been downloaded from B.

• Unpopular – The reverse order of Popular.

The advertising policy that the source uses can have significant effect on the behaviour of

the system as a whole. Uncommon attempts to ensure that rare files are replicated, ensuring

sufficient availability in the system for obscure content. Popular will focus on making sure that

files that are desired by many hosts in the system exist in many places, so the majority of people

will always have new files to procure.

4.3.1 Overhead

If either the Uncommon or Common approach are to be used, then the host must record how

many times it has seen each file in its library appear in an advertisement. This will require an

additional integer number be stored in the meta-data of each library file. To use a popularity

metric, there must be a meta-data field stored in library file recording how many times the host

has transferred that file to another peer, again another integer per file. Both these pieces of meta-

data will result in a minor increase in storage size for each piece of content and a small amount

of additional processing upon each advertisement/download, respectively. Rather than parsing

and sorting large libraries for each file negotiation, the files can be pre-sorted and indexed for

any relevant attribute to avoid any significant processing overhead per negotiation.
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4.4 Summary
This chapter covered the methods used to advertise and select a file from a given source. Adver-

tising policies for prioritising library shortlists were defined together with the required overhead

of providing this behaviour. The process of negotiating a file to download was defined together

with the information that should be stored to avoid repetition of advertisements and facilitate

the learning of a given neighbour’s library.
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This chapter describes the datasets that were used as input to the simulation experiments we

used in the evaluation of this work (Chapter 6). First we describe the processing and analysis of

wireless user traces, including some gathered specially for this research (Section 5.1). The sec-

ond covers how a popular social music website was crawled and its data recorded (Section 5.2).

This information, about the site’s users, their friends, and musical listening habits was then

used to form a model of peoples’ music tastes. This data was gathered to better understand the

sphere where our proposed system would be deployed and the data it would be used to share.

The music library model and its use in the simulations is also described.

5.1 Colocation Traces

Due to the difficulty, cost and workload of deploying large scale mobile computing systems,

simulations are often used to gather preliminary requirements and perform analysis of a pro-

posed system before, possibly wasted, energy is spent. If wireless mobile hosts are to be sim-

ulated, their inter-connections that form the dynamic network topology need to be modelled.

This data can either be gathered from real devices [NDGG07] or be created using synthetic

mobility models. ‘Real’ data can be gathered when a testbed is experimentally mapped, the
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monitored network state can then be virtually ‘replayed’ later and comparisons of device be-

haviour investigated.

Mobility models use a formalised definition of device movement, which can be particu-

larly useful for analysis, allowing controlled variation of device movement and analysis of the

resultant behaviour. They can be very simplistic representations of how people move, such as

Random Waypoint, where each node chooses a random destination point in a virtual environ-

ment and a random movement speed. The host then moves to its destination in a straight line

at the chosen speed; this process is repeated in sequential legs for the duration of an experi-

ment. Alternatively, rather than assuming completely random movement, extra constraints can

be placed on the nodes, such as only being able to move along certain routes. This approach

is exemplified in the Manhattan mobility model, where nodes traverse a grid topology of par-

allel and orthogonal interlinking roads, reflecting American cities. At each intersection a node

carries straight on or turns with certain probabilities, as an analogy to vehicles moving through

an urban environment. Each of these approaches treat people as independent agents follow-

ing a simple set of static rules. Further detail can be added by including group movement of

hosts [HGPC99]. This behaviour decreases the amount of changes in connectivity compared to

random movement, however it can also increase the amount of contention if hosts are moving

in dense groups. When considering humans, added realism can be achieved by considering

their social ties and how this affects people’s movement. An early example of this approach

is demonstrated in the Community mobility model [MM06]. It is a model founded on social

network theory, allowing connections of hosts to be grouped together in a way that is based on

social relationships between the individuals. This grouping is then mapped to a topographical

space, with movements influenced by the strength of social ties, that may also change with time.

The properties of the synthetically generated traces have been validated against real traces from

the Haggle project. Our observation here is that people with strong social links are likely to be

geographically colocated often or from time to time.

The generated nature of mobility models allows the prescription of particular features of

the resultant dataset, e.g., number of hosts, connectivity or movement speed. Unfortunately,

they are based on an idealised concept, and even if certain parameters are the same as real

traces (e.g., mean inter-contact time or clustering coefficients) they are arguably not necessarily

a reflection of how real devices behave.

In general, a real wireless network’s state can be defined by either considering the connec-

tions that are detected, or the geographic position of nodes combined with a signal propagation

model; from the position and range/connectivity of connections the network state can be de-
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rived. Colocation has the advantage that it implicitly takes in to account signal propagation

and environmental factors, though it restricts analysis to a particular radio/network type. This

section now documents some collected network traces that are used in our investigations and

network simulations.

Some basic analysis of the traces provides some insight into the differing properties of the

environments they were collected in. Importantly for Bluetooth traces, a discovery inquiry will

not always detect every other physically proximate device due to the FHSS, as a device may

search a disjoint set of the frequencies that another device is broadcasting on. This will cause

some colocations to not be detected in scans where there is physical proximity, adding some

false negatives into the colocation traces. This does not affect established data transfers, as it

is only the discovery process where this happens. Other devices are probabilistically detected

depending on the Bluetooth version used [Kha06]:

• Version 1.1 – 98.95% of devices discovered in 5.12s;

• Version 1.2 – 99.99% of devices discovered in 3.83s;

• Version 1.2 with Interlaced Inquiry – 99.99% of device discovered in 1.28s.

5.1.1 Trace Details

The Trace sets that are used for evaluation of this work and are described in this section:

• London Underground – Journey traces collected over one month containing two sep-

arate lines at the end of 2007. Millions of journeys are made by hundreds of unique

passengers.

• Unitrans – Bluetooth traces collected on 33 buses of the Unitrans public bus system at

the University of California, Davis, USA in early 2006 [Jas06].

• Reality Mining – Bluetooth traces collected from devices deployed to 100 users at the

Massachusetts Institute for Technology (MIT) over the course of the 2004–2005 aca-

demic year. Constituting 350,000 hours of continuous data of human movement [EP05].

• Haggle – Bluetooth traces collected during January 2005 at the Computer Laboratory,

University of Cambridge, UK [SGC+06].
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London Underground

Despite the availability of some wireless traces of people using public transport, mainly from

the Crawdad repository at Dartmouth [Dar06], we wanted to perform large scale simulation of

a city and its inhabitants. The movement traces in this set were collected anonymously from

the London Underground rail system over the course of one month. The ‘tube’ is an under-

ground metropolitan mass transit system serving most of Greater London. It carries 1.07 mil-

lion passengers per weekday morning rush-hour (8AM-10AM) on average, totalling 3 million

per weekday [UK 05]. Over 22% of all Tube journeys are paid using Oyster cards. The use of

Oyster Radio Frequency Identification (RFID) cards for electronic payment has been introduced

over the last few years as in many cities’ transport networks, including Hong Kong’s Octopus,

Japan’s Suica and Washington DC’s SmarTrip. RFIDs are small electronic devices that can

communicate wirelessly over short distances and store data. This technology allows easy pay-

ment and faster movement through ticket checkpoints; crucially for our work, it enables the

monitoring of passenger’s movement in the system. We obtained the data from Transport for

London (TfL), the local government body in charge of the London Underground. The rail lines

run through the centre of the London metropolitan area and are used by commuters, shoppers

and tourists.

The data used in our analysis is from two different underground railway lines:

• Victoria line – which connects the south-west of London to the north-east. It is 13.25km

long, carrying around 511,714 passengers per weekday [UK 05]. We have data from 10

stations, over 1.05 million journeys.

• Bakerloo line – which runs from south-east to north-west London. It is 23.2 km long,

with around 302,869 journeys per weekday. We have the data from 20 stations, covering

over 950,000 journeys.

All data was anonymised by TfL, and contained the following fields for each journey:

<uid> <day> <in time> <in station> <exit time> <exit station>

The uid gives a unique user identification number and the day field is simply a numerical

determination of the day of the journey. The time a user passes the station entrances gates

(in time) and leaves (exit time) are provided, both are accurate to one minute. The stations

(in station and exit station) are also given as numbers, which correspond to a lookup ta-

ble that was provided with the data. Only journeys that begin and end on the same lines are
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included. Journeys that are not complete (i.e., those missing an entry or an exit detection)

are also not included. The method of transformation to a colocation based format is given in

Section 5.1.2.

Unitrans

The traceset was downloaded from the Crawdad repository together with the subsequent two

traces. The Unitrans trace subset Run3 was collected on the Unitrans bus system at University

of California, Davis, USA in early 2006. Unitrans is student managed and operated transit

system for the university, performing over three million passenger trips per year. Davis is a

small city with a large university population, Unitrans is controlled by the student population

and as such the passengers are biased towards the student population. Scanning devices (Intel

iMotes) were fixed into 33 buses giving a trace of all the bus routes of the town throughout a five

day period. The static nature of the placement of the devices is however not exactly comparable

to our scenario as it captures user/vehicle colocation rather than user/user. Due to the small

size of the buses (some are ex-London Transport double-decker buses), we assumed that two

hosts in range of the bus are also in range of each other. The Bluetooth inquiry scan phases

lasted for 5.12s, they were repeated every 2 minutes, giving quite a fine granularity of device de-

tection. The traceset is separated into a file of detections from each iMote scanner, in the format:

<vendor> <uid> <start> <end> <since this> <since any>

The fields are defined as follows: vendor is the manufacturer portion of the BD ADDR

for the Bluetooth device seen in this contact; uid is the anonymised device portion for the

detected device; start defines the start time for the contact (in seconds); end is the end time for

the contact (also seconds). The field since this represents the amount of time passed since this

iMote last saw the device in this contact, and since any is the amount of time passed since this

iMote saw any other device before this contact. The last two fields are not of any interest to this

work. Some lines contain all zeros, indicating that a reset occurred between the previous line

and the following line. The ramification of this is that for data collected after this time, we can

no longer be sure about synchronisation between this iMote and the other iMotes. The format

can easily be converted to a useful format for us by simply adding a field to show the iMote

device that the detection came from. Erroneous lines were omitted if they did not contain all

values or if the MAC address was corrupt.
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Reality Mining

This dataset was collected at the MIT Media Laboratory during the 2004-2005 academic year

and contains over 350,000 hours of data. The experiment was performed by giving Nokia

6600 smartphones equipped with monitoring software to one hundred people (students and

faculty at MIT). Though many statistics were recorded, we only use the Bluetooth colocation

information. The inquiry scans were repeated every 5 minutes giving reasonable fidelity to

the detected colocation patterns, while limiting battery usage. The extremely long deployment

of this study provides the invaluable ability to analyse long term relationships between nodes.

All participants spend their days in a similar geographic area, and do not provide particularly

varied subjects. As the study lasts for such an extended period, the devices were subject to

power failures, approximately 2.5 times on average per month according to the subjects. This,

combined with intentional phone deactivation and data corruption lead to 85.3% coverage of

the deployed time. Devices achieved an average of 36 hours of standby time. Colocation data

was recorded in the following format:

<uid1> <end> <start> <uid2> <device id>

One fifth of the subjects manually turn the phone off on a regular basis during specific contexts

such as classes, movies, and (most frequently) when sleeping. From surveys, they found that

30% of our subjects claim to never forget their phones, while 40% reported forgetting it about

once each month, and the remaining 30% state that they forgot the phone approximately once

each week.

Haggle

This data was collected as part of the Haggle project at the University of Cambridge during

2005. Bluetooth sightings were recorded by 36 users, carrying small Class 2 Bluetooth enabled

devices (iMotes), for just under 12 days, in office and conference environments. The inquiry

scan length was also 5.12s with 10 minutes between scans, arguably a slightly coarse granularity

that will not catch very many short colocation periods. Using iMotes, had the advantage of the

devices being dedicated to the task of recording the mobility, avoiding the problems of users

turning off the device for reasons not connected with the study.

The Cambridge Haggle project traceset is different from the others due to it not including

singular sightings, and thus colocations of length 0. Though this focuses the data on actual

colocations and removes the effect of the very transient host churn, it skews the data, increasing
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both the mean and standard deviation of colocation duration. The format was as follows:

<uid1> <uid2> <start> <end> <since this> <since any>

The first column uid1 gives the identification of the device who recorded the sighting, and

the second uid2 giving the identification of the device that was seen (it may be another iMote,

or an external device). The third and fourth column describe, respectively, the first and last time

when the address of uid2 was detected by uid1 in this current colocation. The fifth and sixth

column are not of interest to this work. Note that the contacts may not be completely mutual

between a pair of iMotes, because scanning period of different devices are not synchronised,

and because the sightings might not be symmetric.

All of these trace files were then converted in to a common format suitable for our event

based simulator, with each line representing a connection event or disconnection event:

<uid1> <uid2> <(dis)connection> <time>

For all the traces except TfL, this is simply a textual translation, creating two events from

one colocation line with the appropriate columns. For the TfL traces, deeper analysis and

transformation must be performed. This process is described in the following section.

5.1.2 Passenger Colocation Generation

The TfL dataset only records when/where people entered and exited the subway system, and not

who they were colocated with in terms of wireless device ranges. Therefore we had to process

the traces to extract meaningful colocation information to perform the content sharing experi-

ments. The colocation time between a pair of users was estimated by making some simplifying

assumptions about the nature of people’s journeys. To process the journeys into colocations,

each pair of journeys is analysed to see if their trains overlap in time and space.

We assumed that each passenger spends a constant amount of time entering and leaving

any station. Also only colocations that occur on the platform or on trains moving in the same

direction and on the same line are valid. To discern if two passengers are colocated we must

find which passengers are on the same train. Therefore, we need to know where each passenger

is and at what time.

A user’s position is determined by working backwards from when they leave the transport

system. They leave at time texit, then assuming a constant station negotiation time StnExit,
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it means they alighted their train at talight = texit − StnExit. We did not use the alighting

time to assume which specific timetabled train was used, as there is significant variability in

specific train movements compared to the official timetables. With the alighting time known,

using official TfL train timetables we can still accurately discern travel times between stations.

In fact due to diurnal patterns inter-station travel times vary through the day, hence we used

an hour specific inter-station travel-time matrix created from the official timetables. With the

knowledge of alighting time and inter-station travel time, we are able to work backward through

a user’s journey to determine when they were at each station on their journey path. Thus, a user

exiting Brixton station at time texit will be estimated to have been at Stockwell station at the

time tstockwell = texit − StnExit − travelT ime(Brixton, Stockwell). Any additional time

that a user has from when they entered the system (tentry) to when this methods predicts they

left that station on a train is assumed to be time spent waiting on the platform.

Once user position and time is known, it becomes possible to intersect all journeys in time

and space to determine which users are occupying the same spatio-temporal position and hence

are colocated. If any pair of users were traversing the same station within TrainThresh of

each other, they are deemed to have been on the same train. This threshold allows for a small

amount of inaccuracy in the position timing algorithm and accounts for the fact if two users

traversed a station 1 minute apart and at that time trains were coming every 10 minutes, then

they were probably on the same train.

If two hosts are deemed to be on the same train, then they may still not be in wireless

range of each other. The hosts physical position on the train is determined, uniformly randomly

across the physical space. The rolling stock (tube trains) in use on both the considered lines is

roughly 128 meters in length. To give a comparable amount of host density, considering that

the data only covers roughly a quarter of passengers, we have shortened the train by the same

amount. Hence, each host is positioned on its train and any other passengers on the same train

and within 10 meters will be colocated. Different runs of the experiment will have users placed

in different positions on the train to avoid artefacts in the generated traces. Algorithm 5.1.2

gives a formalised version of the processing used.

Note that we are assuming almost total penetration of devices running the proposed ser-

vice. Though an optimistic proposal, it is in some ways the pathological scenario for achieving

successful file transfers as there will be the maximum network contention. It will however also

also enable the learning of other host’s movement patterns slightly easier (as they will be seen

more frequently).

Our testing (Section 6.1.3) found connectivity to sometimes be possible between adjoin-
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for each journey i do

for each other journey j do

path=overlappedStations(i,j)

T1=timeAtStation(pathstart,i)

T2=timeAtStation(pathstart,j)

if abs(T1 − T2)≤TrainThresh then

if ientry station == jentry station then

Cstart=max(ibegin,jbegin)+STNENTRY

else

Cstart=max(T1,T2)

T3=timeAtStation(pathend,i)

T4=timeAtStation(pathend,j)

Cend = min(T3,T4)

recordColocation(i,j,C,path)

Algorithm 5.1: Same Train Algorithm.

ing carriages, and also over 10 metres if the carriages were not busy. However, we consider

Bluetooth connectivity range to be the specification rating of 10 metres for Class 2 devices. Its

relatively short range means that even passengers on-board the same subway train will not nec-

essarily be in range. We elected to distribute hosts uniformly randomly throughout the trains,

a simplification for purposes of analysis, and to take into account that people naturally spread

themselves through the train to avoid physical proximity. Some of the users in the traceset

displayed extremely divergent behaviour, entering and exiting a station many times per hour.

Further inspection showed that these users had staff oyster cards, and were thus performing

duties at work inconsistent with normal passengers; therefore, they were removed from the

dataset.

5.1.3 Trace Analysis

Previous work shows wireless traces often exhibit similar unifying features, such as Karagian-

nis et al [KBV07]. Some statistics of all utilised traces will now be presented and compared.

Also, as the generated TfL colocation dataset is derived from real movement traces, and not

collected from actual radio devices, we have validated that it possesses similar features. The

TfL distribution of colocation duration is shown in Figure 5.1. The contact duration distribution

follows an approximately exponential decay, with two key differing features. The pronounced

spike, at 15 minutes, in the contact durations, is caused by the underlying distribution of jour-

neys that people make, with the most popular journeys lasting around 12-15 minutes. Also, the

relatively low occurrence of short contacts is due to people walking or using the bus rather than

61



Datasets 5.1 Colocation Traces

taking the tube for short journeys.
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Figure 5.1: TfL Contact times.
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Figure 5.2: TfL Intercontact time CCDF.

The time between the contact of two nodes (inter-contact time) is of particular importance

for DTNs. Our system does not consider the time messages take to move from one host to

another. Though it is interesting to see that the intercontact time shows a clear fit with an

exponential decay e−λt, where λ is approximately 0.165 below periods of 20 days, the data set is

not long enough to give reliable data after this period. This matches with Karagiannis [KBV07]

observation of exponential decay in the tails of the intercontact complementary cumulative

colocation distribution (CCDF) (Figure 5.2).

The differences in colocation length distribution is plotted in Figure 5.3, showing the

complementary cumulative distribution function of colocation durations. All the traces show a
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Figure 5.3: All Trace’s Colocation Durations.

Statistic TfL Reality Unitrans Haggle

Duration (days) 30 365 5 11.7

Colocation Count (1000s) 29,577.8 192.6 11.7 17.9

Mean Colocation (seconds) 540.38 2012.23 466.16 1300.84

Min (seconds) 1 1 4 1

Max (seconds) 7,080 125,174 25,051 207,234

Standard Deviation (seconds) 15.83 108.02 88.63 136.87

Table 5.1: Movement Trace Statistics.

very rapid decrease in colocation length at shorter times (under 1000s), with a small number

persisting for long times (above 3000s). The pattern for all traces is roughly an exponential

decay. The Reality Mining data shows much longer colocations than the other traces, but still

has a similar near exponential decay curve. This is due to the traces being taken over such a

long time, and the nature of the environment they were gathered in.

All the traces contain many short transient colocations, especially Reality Mining. Identi-

fication of these short transient connections (so they are avoided) will increase expected colo-

cation duration, allowing transfer of larger amounts of data. It will also reduce situations where

colocation terminates before a transfer completes wasting the energy put into the transmission,

and time spent negotiating this transfer.

The average colocation length when split into hours of the day is shown for Reality Mining

and Unitrans in Figure 5.4. The Y axis is the average time of colocation for that hour relative

to the mean length of the colocation for all the traces. As expected there is considerable change
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over the course of a day, with colocations lasting longest when they begin at hour 15 (3 PM)

for both traces. This similarity is encouraging as it shows that both trace sets have the same

underlying properties despite being collected in very different environments. Interestingly, for

both traces most colocations start in the same hour (4 PM), with the smallest number beginning

the early hours of the morning when people were likely at home and not travelling through the

city.
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Figure 5.4: Colocation Length by Hour.

Journey Attributes

We begin our analysis of the TfL dataset by studying the changing nature of journeys through

the day (Figure 5.5). The ‘volume’ of passengers is shown as the percentage of people travelling

at that period, with respect to the number of people travelling during a whole day. For each time

of the day, we also show the mean length of journeys that begin at that time, and the standard

deviation of journey durations. All plots use the sameX axis of time of day, and the two Y axis

scales represent percentage on the left-hand side (for volume) and minutes on the right-hand

side (for duration and standard deviation). There is an obvious bimodal nature to the volume

of journeys due to the morning and evening rush hours, peaking at 500 minutes (8:20AM) and

1100 minutes (5:30PM) respectively. The evening rush hour lasts longer and finishes gradually,

probably due to people finishing work at a wider variety of times, and people travelling to go

out for the night. The journey durations also vary throughout the day, with longer journeys

in the morning, assumedly from more journeys being made between the suburbs and the city

centre; the night time drop is caused by the subway closing. Throughout the day there is a large

variance in the mean durations, highlighting the need of distinguishing long colocation duration
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passengers from short ones.
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Figure 5.5: Volume and Duration of Journeys.

User Attributes

We studied the frequency with which individuals travel in the trace. A very similar distribution

appears for both train lines: the vast majority of travellers use the tube only a few times during

the sample, with over 70% of users being unique (i.e., they are seen in the system only once).

Most importantly for us, a substantial subset of people frequently commute in and out of the

city, and are seen between 20-40 times over the duration of the sample.

To gain a more precise idea of how regular passenger travel times are, we have analysed

the occurrence of journeys over the time of day. The most regular user behaviour would involve

travelling at the same time every day, and the least regular would never travel at a similar time

on any day. We define a regularity metric for a particular user’s journey as the number of their

other journeys that occurred within 10 minutes of its entry time. A user’s overall regularity

measure is then defined as their average journey regularity. Figure 5.6 depicts the number of

users with a given regularity value; the three curves show the regularity results for all users,

users that travel more than five times and users that travel more than 10 times in the sample.

The number of users obtaining low regularity scores decreases significantly as the minimum

number of journey threshold is increased, while the number of high scoring users stays constant.

This confirms that the more frequently travelling hosts are also the ones having more regular

journey times.
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Figure 5.6: Passenger Journey Regularity.

5.2 Content Library Dataset

In order to simulate a music sharing system thoroughly, the tastes and libraries of users must be

assigned and populated, respectively. We make the assumption that users are interested in a set

of genres, and would like to receive more music of those types (provided they do not already

own that specific file). Moreover, we assume that within the considered timeframe, users do not

change their interests. Previous studies have recognised file availability in peer-to-peer systems

to follow a generalised-Zipf distribution [SW04]. In all content distribution systems there will

be a small number of popular items and many items that are much less popular. To verify these

observations, particularly in the scenario of digital music libraries, we have collected data from

Last.fm [las09]. Last.fm is a popular UK-based music community website, that claimed over

30 million registered users in March 2009. It creates profiles of musical tastes by tracking what

songs users listen to and suggests more music. Users are also encouraged to attach tags to artists

and tracks, thus creating a folksonomy of music classification [HJSS06].

We collected this information both to associate music tastes to users, and to create their

music libraries accordingly. Each user is assigned a set of interests, that is, a subset of all the

file categories; the precise number of interests per user is a parameter in our simulations, and it

has been varied according to the observed interest distribution within individuals’ libraries. We

assume content to be already categorised at the beginning of our simulation, and that reclas-

sification (i.e., changing a file’s genre from ‘rock’ to ‘indie’) does not occur (i.e., files are not

mislabelled or relabelled).
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5.2.1 Last.fm Crawler

We assume the user population of Last.fm will share a similar demographic to that of a wireless

music sharing system. This seems an acceptable assumption given that Last.fm’s users are

technology literate music fans, and thus represent a useful case study. Unfortunately, there

is a certain bias of detail and accuracy towards artists that are more popular, as they will be

tagged more frequently and thoroughly. The quantity and appropriateness of this data still gives

it immense value for our purposes. Using their Audioscrobbler Web Services1 to access the

website’s user/artist data, we performed a large breadth-first crawl of 500,000 user’s profiles,

together with their top 50 most played artists. The links for navigation between users were

chosen to be their friends rather than neighbours of the profile. The friends represent people

that a user has decided to add manually, rather than the neighbours, which is a list of 50 people

that are deemed by Last.fm to share similar tastes. This was done to mitigate only collecting

users of similar tastes, leading to a relatively homogeneous user set. The webcrawler was

also initiated from many randomly chosen starting points, to further ensure an unbiased set was

obtained. For each user, several items of information were gathered, friends, neighbours and top

played artists lists. The top played lists is defined over five different time frames, Last 7 Days,

Last 3 Months, Last 6 Months, Last 12 Months and Forever. For each artist, we also crawled its

50 most frequently associated tags. The same artist may appear under different genres, as they

can be tagged in many different ways. Note also that some tags used do not refer to standard

musical classifications (e.g., seen live, awesome, etc.). Users will inevitably tag files with non-

standard terminology, these tags will simply be leveraged by our approach. All this information

was then stored in flat files for utilisation in library modelling by the simulations.

5.2.2 Last.fm Data

Each facet of the music libraries is explored in this section, specifically the genres, artists and

individual tracks that occur in user’s libraries. Out of all the users that were crawled, 68% have

the full 50 items in their list, the rest have not listened to enough tracks to fully populate the

list.

Genre

The differing categories of music is one of the most important facets of the data collected from

this source. For all forms of generalised content, the categories that individual items can fit in

to are of great importance to any mechanism used to distribute them, similar to how music is

usually arranged by genre in physical music stores. The distribution of how popular different

1Last.fm Audioscrobbler Website: http://www.audioscrobbler.net
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Figure 5.7: Genre Popularity.

Rank Genre Popularity (%)

1 Rock 14.7

2 Electronic 11.4

3 Alternative 11.2

4 Metal 10.4

5 Indie 10.0

6 Punk 9.7

7 Pop 9.2

8 Hardcore 8.3

9 Electronica 8.1

10 Hiphop 7.0

Table 5.2: Artist’s Genre Popularity.

categories are will now be discussed. Figure 5.7 depicts the amount different categorisation tags

are used in the Last.fm data we gathered. Genres are arranged by decreasing rank on the X axis,

with their corresponding frequency of appearance on the Y axis. It is immediately apparent that

the most popular genres occur vastly more often than the more niche classifications.

By ranking tags in order of their frequency across the whole crawl, we were able to rank

music categories in terms of popularity (e.g., rock being more popular than electronica); more-

over, when focusing on a particular category, we were able to rank artist popularity (e.g., Red

Hot Chili Peppers being more popular, within rock, than Metallica).

Despite the majority of files belonging to a few popular genres, a significant proportion are
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Rank Artist Popularity (%)

1 Radiohead 0.49

2 The Beatles 0.38

3 Muse 0.35

4 Red Hot Chilli Peppers 0.34

5 System of a Down 0.32

6 Linkin Park 0.32

7 Metallica 0.30

8 Placebo 0.30

9 Nirvana 0.30

10 Coldplay 0.28

Table 5.3: Overall Artist Popularity.

not; more importantly, many users are not interested in any of these mainstream categories. A

truly useful and fair distribution mechanism should not solely focus on these mainstream genres,

niche tastes must be catered for as well. One interesting aspect of user taste distribution, is that

people with mainstream tastes are more likely to also have homogeneous interests; e.g., a person

that likes pop and rock music is more likely to only enjoy these two genres. Whereas, a user

liking nerdcore, darkwave or industrial will often enjoy many other genres besides. This shows

that people with niche tastes are also likely to have a more eclectic taste. This is advantageous,

as if a user with obscure taste has a specific niche interest that can not be satisfied by the system,

it is likely that the user can be satisfied by collecting one of their other many interests.

Artists

In almost all areas of media, the creator of a piece is of great importance; whether it be a song’s

artist, a film’s director or a podcast’s maker. Usually if a person likes one item of content by a

creator they will like more by the same person(s). Though it would seem advantageous to record

the artists that a user enjoys, and attempt to procure more of those artists, we decided against

this behaviour. Due to a user possibly owning an artist’s full discography, yet only storing one

album on their device. Thereby leading to already owned, though not currently stored, albums

being downloaded, when they were intentionally not placed on the device. If a system was to

then explicitly try and get more files by that artist, when the user has all other albums stored

elsewhere, useless work would be performed. Therefore, we believe it is preferable to only

attempt to collect more files of particular genres of interest to a user to mitigate this risk. This
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Rank Rock Artist Popularity (%) Metal Artist Popularity (%)

1 Radiohead 0.980 My Chemical Romance 1.136

2 The Beatles 0.781 KoRn 1.043

3 Muse 0.711 Nine Inch Nails 1.035

4 Red Hot Chilli Peppers 0.688 Nightwish 1.001

5 System of a Down 0.656 Rammstein 0.940

Table 5.4: Genre Artist Popularity.

approach will also promote a greater understanding of the wider musical genres that the user

identifies with, broadening their taste but in an accessible way. The most popular artists and

their respective popularities are shown in Table 5.3.

Within different genres, different artists are deemed popular, as would be assumed; this

can be seen in Figure 5.2.2. The two musically similar genres Rock and Metal are shown with

their most popular artists, with the percentage popularity, from each. The percentage popularity

is defined as the percentage of tracks that fall into the relevant genre that are performed by the

respective artist. It can be seen that despite the loose similarity between the two categories of

music, not only are none of the artists the same, but there is a difference in how the popularity

is distributed. This can be seen more clearly on the graph in Figure 5.8. Each genre had a

count made of matching artists from the Last.fm dataset, the artists are arranged by order of

rank on the X axis for each genre, with frequency on the Y axis. It can be seen that there are

a few very popular artists in each genre, with the popularity trailing off to a large tail. The less

popular genre of Punk, has a few relative ‘superstars’, whereas the ubiquitous Rock is much

more evenly distributed. In fact, the more popular a genre, the greater the relative popularity of

the often played artists. This is demonstrated by the steeper curve for Punk.

Tracks

Each artist/creator has an oeuvre of content items, which could be divided into collections (e.g.,

albums) or simply individual pieces. Rather than restrict ourselves to types of content with

many explicit collections (such as music rather than podcasts) we treat each item of content as

independent. Similar to the problem mentioned above, if incomplete albums were prioritised to

be gathered in their entirety, a user with only their favourite tracks from an album would always

be destined to gather the rest, no matter their avoidance of the disliked album tracks.

If the system is to model down to the granularity of individual tracks, then there must be

a way to distinguish them, to know if a track is already owned. However, collecting name and
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Figure 5.8: Genre Artist Popularity.

popularity information about every track by every artist would not only involve the collection

and processing of a lot of data, but that information is not available from Audioscrobbler (only

an artist’s top 50 tracks are accessible). Therefore, we decided to generalise the track name

property: a track’s name will be represented by a number, unique to the artist. More important

than the particular name of a track, is its frequency of occurrence in user’s libraries, so that an

accurate model can be built of an artists discography.

An artist’s tracks differ in their relative popularity: nearly all artists have some tracks

that are more popular than others. This distribution is important because it affects how likely

it is that two hosts that share interests, will have matching files that are not already owned.

The distribution of relative popularity for each artist’s ranked track is simply calculated by

normalising according to the most popular track of that artist, thus ignoring the absolute track

popularity. A general distribution of track popularity can then be calculated for all artists by

taking the average proportion of each rank’s position:

artistCount∑
n=1

relativePopularity(artistn, rank)/artistCount (5.1)

For example, if on average the second ranked track is only played half as often as the most

popular track, it will have an overall relative popularity of 0.5. Figure 5.9 depicts this relative

popularity of tracks for all artists, and separate stratified plots for popular artists and small niche

artists. For the combination of all artists, a curve was fitted programmatically resulting in the

equation:

y = −0.2× log(x+ 1) + 0.85 (5.2)

71



Datasets 5.2 Content Library Dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

Small artists
All artists

Popular artists
-0.2 * log (x+1)+ 0.85

Figure 5.9: Track Popularity.

It can be seen that artists’ tracks appear to decrease asymptotically in popularity, a property

that holds for every artist individually inspected. The only difference between artists is the rate

of this popularity decrease; the artists were thus divided in to popular acts and niche ones.

Interestingly, it can be seen that tracks from a niche band decrease in relative popularity slower

and are therefore more uniform, indicating that the very popular artists have a small number

of extremely popular items. Conversely, smaller bands have fans that display a wide interest

in all of their music. Equation 5.2 is used in the simulations (Section 5.2.4) to generate which

tracks exist in a user’s library, as described in the next section. Again this is not meant to be

an observation of the nature of all music artist’s discographies, but just a trend observed in our

collected data, that we are using to make our evaluation have more of a grounding in digital

music consumption.

5.2.3 Content Library Modelling

If an accurate appraisal of a content sharing system is to be performed, the content libraries and

interests of users should be modelled. This allows users to have an interest formed of only a

subset of the population of all content items. If done realistically, it gives our formulation of the

problem a more accurate representation of the differing popularity distribution across different

data items. Despite this desire, the exact properties of music interest and libraries is not in

anyway inherent to our model, it is only used to evince the scenario more effectively. Rather

than simply assume that a suitable file can always be shared with another peer, we model a file’s

genre, artist and the specific track. This is an important level of detail if we are to be able to

realistically model a large urban peer-to-peer music network. People have their own interests in

72



Datasets 5.2 Content Library Dataset

for each emptyTrack t do

genre = choose(G)

t.artist = choose(genre)

t.trackname = rand(0, 10)

tracklist = tracklist
S
{t}

Algorithm 5.2: Proportional Track Selection Algorithm.

a subset of the files in the system as a whole, the size and distribution of these subsets should

have a bearing on our designs. A prerequisite for a successful transfer is that the source has a

file that the downloader is interested in and that it does not already have. The distribution of

interests and files will therefore have a large effect upon the success of transfers and quality

of those transfers in the network. Moreover, the system performance should be considered

with respect to individual user’s properties. We should consider whether users with unpopular

tastes still receive some benefit from the system, or are their concerns marginalised in favour of

mainstream users. The same consideration should be applied to individual tracks, and whether

only the ‘hits’ of an artist are shared, or does their whole discography get spread.

Our initial aim was to investigate general content dissemination, including music, video

and news; explicitly modelling music files loses the generality of this aim. However, music is

probably the most available and desired form of media for the consumer electronic devices that

we envision a system such as ours being used for. Phones, PDAs, laptops and PMPs all have the

capability for playing sounds, even if they do not have a visual display. Also people can more

easily solely listen to audio rather than watch some accompanying video. There is also more

available data about what music people listen to using their computers than all the short video

clips and news pieces that are accessed with current technology.

Initially, it was considered that it would be appropriate to generate a list of library files for

users by simply choosing a genre for the track according to the probability of its occurrence out

of all crawled tracks. An artist is then selected according to its probability of appearance in the

selected genre, as in Algorithm 5.2. Upon analysis of the libraries this approach created, it was

obvious that the libraries were not very convincing examples of real user’s tastes: extremely

eclectic sets would be generated, with no consideration of the likelihood of a particular user’s

underlying taste. For example, nearly all libraries would contain a track from the pop and rock

genres. Therefore it was decided to employ a more cohesive method of generating libraries.
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5.2.4 Library Generation

Each simulated user gains the tastes of a random user uj from the Last.fm dataset. The Last.fm

user’s top 50 artists A is used to define a simulated user’s genres of interest. Each artist ai from

this list has an associated user preference, P (Uj , ai), derived from their play count of that artist.

An approximation of the user’s music taste can be derived from the artists in this list. The most

popular category associated with each artist is added to the user’s interest list. This list defines

what categories of content a user is willing to accept.

Each user uj has a parameter setting its initial library size, libSize, which is uniformly

distributed in the range [libSizeMin,libSizeMax]. The library is instantiated with libSize

files, by performing the following process until the library is of sufficient size.

• Choose a category from the user’s interest list Cat.

• Probabilistically choose an artist from that category, in proportion to how popular an artist

is within Cat (stratified random sampling). This causes more popular artists to be chosen

more often, and allows an artist to feature in multiple genre lists.

• Once the file’s artist has been chosen, the particular track must also be selected. Rather

than attempt to represent all individual tracks within our system (and require names

and popularity to be gathered for all artist’s music), we simplify this stage for analy-

sis. Track ‘names’ are represented numerically, and are chosen from the distribution

Y = −0.2log(X + 1) + 0.85, where Y is uniformly randomly selected from Y ∈ [0, 1];

as demonstrated in Figure 5.9.

• The generated file is added to the user’s library, which will ignore it if the file is already

present.

The dataset’s libraries follow a clear distribution, as show in Figure 5.10. A large set of

users are ranked along the X axis according to the cardinality of their interest lists. It is easily

seen that most hosts are interested in between 30 and 60 categories, with a minority outside of

this range.

5.3 Summary

This chapter presented the datasets that will be used in the following evaluation section. The

movement trace’s places of origin was described to give an indication of the type of human

movement that they capture, particularly the information collecting mechanisms. To allow

objective comparison some basic statistics of the data was covered including number of hosts,
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Figure 5.10: Interest Size Distribution.

colocation durations and inter-contact times. Our main dataset of the subway journeys was

covered in detail and, crucially, how the raw journey information was converted to colocation

information. This colocation information was then compared to the available true Bluetooth

scan datasets to ensure that similar properties were observed. The music library dataset was

also presented, together with how we collected this information and how it is used to create

realistic user libraries of music.
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6
Simulation Evaluation

The evaluation of our system by use of a thorough deployment and testing on a city-wide scale

would be extremely challenging, requiring thousands of man-hours and a large budget for all the

devices. Therefore, a method must be employed that can analyse the behaviour of such a system

without physically deploying it. Often researchers achieve this using network simulators, which

can emulate the behaviour of many devices interacting with each other and record their actions.

This chapter describes an implementation and test deployment of a prototype system that was

developed (Section 6.1). The information learnt through the development process and mea-

surements collected was the used to inform large scale simulation of our scenario. Section 6.2

describes the choice of simulator, its configuration and how it performs the algorithms defined

in previous chapters. The results from various parameterisations are then discussed to give an

indication of how our proposed system behaves under varying network and user conditions.

6.1 Implementation

This section documents the creation of a software implementation of the system proposed in

this thesis. Design concerns and decisions are mentioned, together with the results of testbed

measurements from running this code on real devices.
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6.1.1 Mobile Phone Applications

Mobile phones can be a much more challenging platform to develop software for than fully

functional desktop/laptop computers. Not only are resources (e.g., CPU/RAM/storage) much

scarcer, but the operating systems are more limited in their functionality and flexibility. The

rigidity of the programming interface and process lifecycle is not purely because of hardware

limitations. Phones are similar to embedded systems, in that program failures should be avoided

and programs are often expected to run unattended for long periods of time. The device (and its

software) needs to be extremely robust; to the user it must seem like they just work. Therefore

access to hardware must be carefully handled, and often heavy security restrictions are placed

upon programs and devices.

6.1.2 B2B

We implemented our content distributed program for the popular Symbian S60 platform1. It

was named B2B, short for Bluetooth-to-Bluetooth, and was created in less than 2KLOC for

the PyS60 v1.4.3 Python interpreter. Our testbed comprised of Nokia N70s running S60 Plat-

form Second Edition – Feature Pack 2, equipped with Bluetooth radio interfaces. We also in-

stalled some 2GB MMC-Mobile flash cards, to supplement the relatively small on-board mem-

ory (32MB), allowing the storage of large media libraries.

Python was chosen to facilitate rapid development and allow easy porting to another plat-

form. It also avoids the restrictions of the Java security model, such as requiring application

signing or only allowing sensitive operations (such as a Bluetooth scan) with user confirma-

tion. Access to low level operating system functionalities can then be provided by Symbian

C++ modules that are able to interact with the higher level python system. We utilised code

from the Personal Distributed Information Store (PDIS) project2 at the Helsinki Institute for

Information Technology. Their custom-built discovery code allows Bluetooth device discovery

without requiring user intervention, contrary to the standard PyS60 discovery.

The application can be minimised to run in the background, to let the phone perform other

tasks, while files are shared. This allows a user to start the program and leave it collecting files

without managing the application, a crucial behaviour if a user is to be able to run and forget

about this application. Presently it does not have a Graphical User Interface (GUI), information

is presented textually, informing the user of neighbour detections and file download progres-

sion. Except for starting the program, the user does not input any information, all behaviour is

automated.

1Symbian website: http://www.symbian.com
2PDIS Project homepage: http://pdis.hiit.fi/pdis/
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Figure 6.1: Implementation Architecture.

An important aspect realised during the development of the implementation was the effect

of the memory card write speed. Writing data to the memory card one block at a time was an

order of magnitude slower than ideal network speeds, which due to the blocking nature of the

write calls, slowed the transfer speed significantly. The smaller on-board memory was much

quicker, providing a feasible buffer to store the file while being transferred. This approach

only works for files small enough to fit on to available on-board memory. Once a file has been

completely transferred to on-board memory, it may be written to the memory card with no

penalty for the sending node; due to DMA-like behaviour, writing the whole file in one go is

much quicker than block-by-block.

Upon startup the application searches the predetermined directory (E:/Music) for MP3

files, and reads each file’s ID3 tag to build an internal meta-library. The fields title, artist, genre

and file path are stored. Any files with unparsable meta-data is ignored. Each genre that exists

in the library is added to the device’s interest list. The ID3 meta-data of MP3 files is read using

the Python module ID3; only MP3 files are considered for this prototype, though extra file type

support could be included without any loss of generality, e.g., Ogg Vorbis (OGG), Windows

Media Video (WMV) or Advanced Audio Coding (AAC).

The architecture of the implementation program is depicted in Figure 6.1, showing three

threads that interact with two information stores. The operation of each of these threads will

now be briefly described.
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Device Discovery

A discovering thread is started to periodically discover all neighbouring devices. For each dis-

covery phase a non-user prompted device discovery is performed using the aosocket interface.

Every device that is discovered that is not currently deemed to be colocated has a service discov-

ery performed upon it, to check it is a B2B device, and thus interested in sharing music. It then

has an entry added into the list of currently colocated devices. Existing B2B neighbours simply

have their last seen time updated to the current time. Any devices that are in the colocated

list, yet have not been detected during the past two discovery phases are considered to have

departed. Their colocation profiles are updated correspondingly, as described in Section 3.3.2.

Server

A separate server thread is created at start-up to listen for connection from other nodes desiring

content. An RFCOMM port is bound to by the server thread, to listen for connecting sockets.

This server thread does not operate as a standard child-spawning server, multiple clients will

not be served at the same time, as with powerful Internet connected services. Upon connecting

to a server, the downloader sends a textual, comma separated, newline terminated list of genres

to initiate the download process. The server executes the following procedure:

1. Read genre list. Search meta-library for matching genres.

2. Prune already advertised files. Sort by policy and write shortlist.

3. Add shortlist to advertised file list.

4. Read file “Artist-Trackname” request.

5. Open the file at related file path.

6. Write filesize then blocks of data to the socket.

7. Update library with successful send.

Any socket errors, possibly caused by the pair moving out of communication range, are

trapped and the transfer attempt ended. The thread then resumes listening, waiting for the next

connection.

Client

The client thread performs the actual content pulls, regularly selecting the best neighbour and

attempting to initiate a download of content matching a category from its interest list. The

colocated list of B2B devices is consulted, and a colocation duration prediction is made for
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Action Duration (seconds)

Startup 2

Device discovery 10

File negotiation 1

5MB transfer (quiet) 117.9

5MB transfer (busy) 186.9

Copy 5MB to memory card 2

Table 6.1: Action Timings.

each device. Devices are contacted in descending order of their predicted future colocation,

waiting for a host to respond, i.e., its server thread is available for providing a service. The

best available neighbour has a connection made to the RFCOMM socket, and the negotiation is

initiated.

Upon receipt of the shortlist, the already advertised list is updated for this host, to avoid

advertising any of the files back to the server in a future file negotiation phase. Any file that

is already in the library is removed from the shortlist. The first remaining file is selected as

the desired download file. As a response to the request for this file, the filesize will be sent by

the source. It can then be checked that the storage space needed is available. Enough space is

needed on the internal drive and the memory card if a fast download is to be achieved. Files

are downloaded to the fast internal phone memory and upon completion, moved to the memory

card’s music folder (E:/music) for long term storage. The meta-library is also updated with

the new track.

6.1.3 Testbed Behaviour

To inform our choice of timings used in the simulation, we tested our prototype on an actual

mass transit train, at both busy and quiet times. Table 6.1 shows the time it takes to perform

some of the basic actions of our system; these values were used to inform the parameterisation

of the simulations. The difference between the time taken to transfer a 5MB file when compared

between busy trains and near empty trains was significant, increasing transfer time by nearly

50%. If many fellow passengers were engaged in data transfers, time taken would increase

even more. Detection of other hosts was also impaired by operating in a busy environment;

this was likely due to how many hosts responded to a discovery (only a limited number can be

discovered) and interference from other devices (such as from Bluetooth headphones).

When using small unbranded memory cards, data writing took non-negligible time, though

once the larger, higher quality, ones were installed, this became a relatively constant 2 second
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overhead. This shows the exact behaviour of real devices is dependent upon all hardware el-

ements present. However, these timings seem to be reasonable values for the modelling of

modern generation smartphones. The prototype demonstrates the feasibility of running a sys-

tem such as ours on a phone released in the last few years.

6.1.4 Range

The communication range of devices is integral to the system and the actual range of our testbed

phones was examined. The proposed environment of underground urban trains, possess non-

ideal features for wireless communication. Not only is it a confined area, it will have metal

walls and, during rush hour, many human bodies in the volume. All these factors limit the

electromagnetic propagation of radio waves. When operating in residential/office environments

devices could discover each other with relative ease and despite attaining transfer speed well

below nominal bitrates for Bluetooth 2.0 devices, is still consistent.

6.2 Simulator Details

There are many options for simulating a network, a generic class are denoted as discrete event

simulators (DES), and they can be applied to a wide range of problems, whereas others are

purely intended for analysis of computer networks. Some popular DES include ns-2, OPNET,

GloMoSim and JiST 3. We decided to use OMNeT++ [Var01], an open-source discrete event

simulator written in C++. This particular simulation environment was chosen due to its many

strengths:

• It is an established and mature framework that has been used in academic pursuits for

over fifteen years.

• The open source code base allowed viewing and modification of its inner workings, some-

thing that was useful on many occasions during this research. OMNET++ is also free for

academic purposes, allowing other researchers to easily confirm results using the same

tools.

• The framework is well structured and component based, promoting good design in the

problem specific code that was developed for this work.

• There is extensive and clear documentation of all components and accessible examples.

3Simulator reference websites; ns2: http://www.isi.edu/nsnam/ns, OPNET: http://www.

opnet.com, GloMoSim: http://pcl.cs.ucla.edu/projects/glomosim, JiST: http://jist.

ece.cornell.edu, OMNet++: http://www.omnetpp.org
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• Its Mobility Framework models wireless channels and signal propagation, which was

used during the early stages of this research (though the overhead was too great for the

desired scale of our simulations).

Our simulator is divided into the following logical parts (described here to aid future ex-

planations):

• Host – The most important module in the system, representing a single device in the

simulation. It stores much of the state and contains all other components.

• Library – The container for user’s music tracks, whose access and searching is very

important for the performance of the simulator.

• Chooser – This module selects which neighbour should be chosen as a potential source

of data (Chapter 3).

• Trust Repository – This module stores and maintains the trust valuations of peers that

have been interacted with (Section 3.5).

• Matcher – This component determines which tracks should be advertised (Chapter 4).

6.2.1 Host Behaviour

The steps that the simulator performs upon initialisation and during normal operation are de-

scribed below.

Start up

Before the simulation can begin, various sets of data must be read and processed to give hosts

their initial characteristics and prepare the connectivity changes. Due to the limitation of com-

puting resources, not all hosts can be simulated in the very large trace sets; thus priority of

representation needs to be associated with all hosts in the trace set. The list of interesting hosts

consists of all hosts from the relevant trace set, ordered in descending order of the frequency of

occurrence. Frequency of appearance was chosen as the sorting metric over the total duration of

existence in the system. This was to favour hosts that have many interactions rather than hosts

that may just have a few static long term presences. We believe this will give a fairer temporal

distribution of behaviour, and focus on the most dynamic hosts and relationships.

The manner that taste profiles are assigned to hosts from a movement trace is entirely

random. This assumption of complete independence between a user’s taste and their movement,

is not easily justifiable. Unfortunately, there is no data available that maps, in a reasoned and
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while wanting files do

if neighbours == ∅ then

sleep(Alone)

continue

prune malicious neighbours

score neighbours

rank neighbours

perform transfer neighbours[0]

update library with file

Algorithm 6.1: Download loop.

consistent manner, how people move and what musical content they enjoy. While not ideal, the

effect of this is limited by the large scale of the simulation and having multiple simulation runs

with differently seeded random number generators.

• Interesting hosts – A special (movement trace dependent) list of interesting hosts is read,

these hosts are instantiated into the list of users that exist in the simulation.

• User libraries – All users libraries are created according to the process described in

Section 5.2.4.

• Connectivity trace – As some trace sets are very large, possibly multiple gigabytes, the

complete file could not be parsed upon start up. The relevant colocation trace file is

opened, and five million lines of text are read. This text is then parsed into connection

events, which are placed in the OMNet++ event queue. While running, whenever this

event queue becomes empty, another five millions lines are read and parsed until the

trace has been completely executed.

File Download

An equivalent process as described in Section 6.1.2 is performed when the system is running

and hosts are active. Most important is the behaviour of individual hosts when they are trying

to find peers and collect content from them. Though in actuality it is structured as an event-

based system, the pseudo-code illustrated in Algorithm 6.1 gives a high-level approximation of

the process. When a host has no available neighbours, it will sleep for 100 seconds (Alone)

waiting on other co-interested peers joining it.

Wireless propagation effects are not modelled, though many Bluetooth transfers occur-

ring in an enclosed space will impact the achievable transfer speeds. Bluetooth uses Frequency
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Hopping Spread Spectrum (FHSS) to mitigate interference between physically proximate pi-

conets, changing the transmission frequency every 625µ seconds. The higher the number of

active transfers occurring in the immediate area, the greater the likelihood a slot from a neigh-

bouring piconet is transmitted in the same frequency, colliding and corrupting a transmission’s

slot. We are only considering the data communication, and ignore the effects of capture and

signal attenuation. To realistically model this throughput reduction due to collisions, we use the

analysis presented by Liu [Tin03], assuming all packets are DH5, thus dynamically reducing

the throughput of a transfer according to the number of neighbours currently sending data.

When two peers lose their colocation while performing a transfer, a failure of communi-

cation is registered and a short wait is forced (of uniformly random [50, 100] second duration)

before selecting a different download source. This is to represent the time it would take to reg-

ister the break in connection, and for a new discovery procedure to be performed. Note that

failures are most likely to occur when the train is at a station, and it would thus be wise to wait

for all departing people to leave and for any new passengers to board.

Hosts will have to perform regular discovery procedures to detect the colocated neigh-

bours. Data transfer rates are thus reduced to cater for the overhead of performing discovery of

length 5.12 seconds every 2 minutes. The estimated transfer speed that hosts use when selected,

E(speed), is taken as the average value of the range of the transfer rate parameter being used.

When a file transfer successfully completes, rather than performing a new search and se-

lection, another download will be almost immediately attempted between the same hosts (unless

the threshold mechanism indicates it will probably fail). This will reduce the possibility of find-

ing the best source available at some points in time, but it will cut the overhead involved in

re-running the discovery protocol, allowing for more file transfers to occur during each ‘ses-

sion’ with a selected source; moreover, if a source has one appropriate file, it is likely that they

will have more. A small delay is enforced before the next negotiation process (without peer

selection), to account for any storage activity, such as what was observed in Section 6.1.3.

At the beginning of the simulation each host is classified as ‘malicious’ with probability

MalRate. For each transfer that a malicious host provides, upon completion with probability

MalChance the file is identified as malicious. The threshold for deciding whether a peer is

malicious (TrustThresh) is set to 0 (neutral trust). All statistics are gathered over the course of

the whole experiment, there is no ‘warm-up’ or ‘learning’ phase. This means that all results are

a worse-case scenario, with all hosts starting with no historical information. This was done to

enable to longest possible operational phase and avoid the assumption of some hosts possessing

a lot of historical information. Real performance is likely to improve upon the results presented

84



Simulation Evaluation 6.2 Simulator Details

here, once patterns and behaviours have been learnt.

6.2.2 Parameters

To examine the operation of our system under varying conditions we changed a number of its

parameters in a controlled fashion. Two of the most important aspects are the mechanisms used

for source selection (Chooser) and item advertisement (Matcher). The Matchers were defined

in Section 4.2. The implemented Choosers are:

• Random - An available neighbours with at least one matching interest is uniformly ran-

domly chosen as the download source.

• Slotted - The available neighbour with the largest predicted outstanding colocation dura-

tion is selected as the download source. This prediction is made using the slotted temporal

matrix, described in Section 3.3.2.

• Oracle - The available neighbour with the actual longest future colocation duration is

selected as the source. This method is not achievable in reality as it involves knowledge

of the future.

When labelling graphs the following format will be used to denote the varying peer selec-

tion and matching approaches being used: Chooser-[Matcher-]Threshold. Therefore, Oracle-

Random-0 represents the Oracle chooser being used conjunction with the Random matcher

whilst employing no download threshold. When individual files are not being modelled (Sec-

tion 6.3) the Matcher name will be omitted.

To ensure the simulations modelled reality as closely as possible, the timing and behaviour

of our prototype was used to inform the selection of the simulation parameters. All experiments

will use parameter values as defined in Table 6.2, unless specified otherwise. The full list of

parameters used, together with an explanation of how we set them, is provided below.

• Node number – We have studied the effect of increasing the maximum number of hosts

(from 100 to 3000) on our performance metrics, and we have observed no significant

changes once 2000 are being simulated. In all experiments, we have thus simulated 2000

nodes running our prediction protocol, as this number does approximate a real system.

We chose to individually model the most frequently travelling passengers, as they stand

to benefit the most from our system. This constraint was partially imposed by memory

and processing limits.

• File size – We are assuming compressed music/video files are being shared, with a three-

minute CD quality encoded MP3 file being around 5 MB in size. File sizes are chosen
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from a normal distribution with a mean of 5 MB and standard deviation of 1 MB. The

mean was also varied in the range [1, 20] MB, to represent content from small music files

up to larger video clips.

• Transfer rate – Indicative experiments we ran on underground trains showed achiev-

able Bluetooth data rates at rush hour of over 100Kb/s, although the Bluetooth version

v1.1 specification highest asymmetric transfer mode DH5, no Forward Error Correction

(FEC), is rated at 723.2 Kb/s. In our simulations, the value for this parameter has a range

of 100, varying from [50, 150] to [1500, 1600] Kb/s to cover a full range of Bluetooth

specifications, giving a full range of possible network conditions. Real life achievable

speed changes based on how busy the train is (human bodies interfere with Bluetooth’s

2.4 GHz microwave frequencies), and other environmental factors, such as the vehicle

dimensions. Also, other active Bluetooth devices in the area will interfere with the com-

munication signal, thus varying the achievable connection speed.

• Download threshold – A parameter for how cautious hosts are about initiating a transfer.

In general, the higher the value, the longer the predicted colocation must be, to actually

start a download. Note that when this parameter is set to 0, downloads are always at-

tempted if there is any available source.

• Time slice – This parameter only has an effect when using the Slotted Peer Selection tech-

nique, as described in Section 3.3.2. Given that we are dealing with human movement,

the time period has been fixed to one day. The duration of slots, used to group coloca-

tions into means, has been chosen to be 2 hours (thus 12 slots in a given period). Using

fewer slots requires less state being maintained about each familiar stranger. Hence, the

times of groups could be dynamically learnt using a lightweight technique such as the

one described in [DM07].

• Initial library size – The size of the initial library directly impacts file diversity across

the system, with large libraries giving a greater selection of files that could match a user’s

interest, yet also increasing the likelihood of a user already having a given file. We are

aiming to cater for people wanting to find content to entertain themselves, and thus may

not already own a large media collection.

• Advert length – The length (in tracks) of advertisement list sent between hosts during

the negotiation phase. This parameter was to 20, as lists of any greater length did not give

significant benefit.
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Parameter Distribution Value

Node Number n/a 2000

File Size normal µ=5MB, σ=1MB

Transfer Speed uniform [400,500]

Download Threshold n/a 1

Time Slice Count n/a 12

Library Size uniform [50,150]

GenreCount uniform [5,20]

Trust Threshold n/a 0

MalRate, MalChance n/a 0

Table 6.2: Canonical Parameter Values.

• Malicious Rate and Chance – To control the malicious behaviour of nodes in the system,

two parameters are used: MalRate and MalChance. MalRate is the rate that normal

hosts are classified as malicious and MalChance is the probability that a malicious host

will provide a file that is deemed to be malicious.

6.2.3 Metrics

To measure the behaviour of individual aspects of a parameter configuration, some metrics used

to evaluate the system will now be defined:

• Success – The mean percentage of initiated downloads that completed successfully and

contained non-malicious file content, i.e., 1
n

∑n
i=0 Successn.

• Increase – The mean number of files that hosts added to their libraries across the course

of the whole simulation, i.e., 1
n

∑n
i=0 Increasen.

• Efficiency – After each simulation, each host will have spent X bits downloading non-

malicious files successfully, and Y bits downloading either incomplete files, or malicious

files. The Efficiency metric is thus defined as the mean of each host’s
X

X + Y
.

The metric of success is not the same as efficiency: success is based on a binary value

of whether a transfer succeeded, whereas efficiency measures how much useful work was per-

formed. If an initiated download is destined to fail, it would be preferable if it failed sooner

rather than later. This way less time will be spent on a fruitless attempt, freeing the hosts

involved to pursue possibly useful downloads.
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6.3 Colocation Prediction

The results from the ideas presented in Chapter 3 will now be depicted and discussed. Initially

we focus on simply achieving complete data transfers, without adding the additional complica-

tion of file matching. Consequently, no specific files are modelled, and it is assumed everyone

has a file that someone else wants. This facilitates testing how well the Chooser performs with-

out the complication of the Matcher. Hosts are also all non-malicious unless stated otherwise.

6.3.1 Transfer Success

To examine how accurate the peer selection mechanisms are, Figure 6.2 shows how the transfer

success rate changes in response to varying network speeds for the TfL traces. As would be

expected, all source peer selection approaches perform better as the network speed increases and

transfers complete quicker; so less transfers fail from early disconnections. The naive Random

method acts as a baseline for any other considered approach, it performs extremely poorly

at low speeds, yet can still lead to a complete transfer most of the time once speeds exceed

1Mbit/s. When only using the slotted mean (Slotted-0) to order possible neighbours, success

is not improved, even using the oracle (Oracle-0) to only order neighbours does not give a

significant improvement. There is a marked difference between the considered approaches that

utilise a download threshold and ones that do not. In fact, when employing a download threshold

(Threshold) of 1, a large majority of initiated downloads succeed, offering an obvious benefit

for hosts that do not want to spend their battery power and network bandwidth performing

useless work. The slotted mean approach (Slotted-1), while not performing as well as the

oracle (Oracle-1), still achieves within 10% of successes across all tested speeds. In terms of

transfer success, it can be seen that being discerning in which downloads are attempted can

yield a near total reduction in disconnections. Furthermore, our slotted prediction approach

when a threshold is also employed, is comparable to the Oracle-1 approach.

The effect on transfer success rate when varying the size of files being shared is demon-

strated in Figure 6.3. Note that the canonical simulation parameters are being used, apart from

file size. A separation can again be seen, where employing a download threshold gives a huge

benefit to the success rate. All approaches reduce in their success percentage as files become

larger and less likely to complete in a given colocation. There is obviously a close relationship

between the parameters file size and transfer speed, and the resulting transfer duration. How-

ever, the file size is constant throughout the transfer and is known at the beginning, whereas

the transfer speed will change during the transfer. Small files are nearly always transferred, no

matter the peer selection technique, as they take such a short time to complete. However, as
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Figure 6.2: TfL Transfer Success vs Speed.

they increase in size, there is a marked divergence between the thresholded approaches (Oracle-

1 and Slotted-1) and ones that employ no such judgement (Random, Oracle-0 and Slotted-0).

Thresholded approaches maintain a high success rate (always over 70%), with a very low neg-

ative gradient as file size increases. The non-thresholded behaviour suffers significantly, with

more than half attempts failing when files are larger than 3MB (a likely size for short/low qual-

ity music files). Thresholded approaches are able to achieve similar success rates at a wide

range of transfer speeds and file sizes, a useful property for a flexible system.
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Figure 6.3: TfL Transfer Success vs File size.
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6.3.2 Library Increase

The user-centric metric of successfully downloaded files is compared against network speed

and file size parameters in Figure 6.4 and Figure 6.5, respectively. All approaches gather more

files as the transfer speed increases and less as the file size increases. Both thresholded methods

collect more files than non-thresholded, with Oracle-1 maintaining the best performance, a

curious result if it is considered that the thresholded approaches are refusing to attempt some

potential downloads. This is due to the reduction in contention that is caused by additional

downloads, that are unlikely to complete, not being initiated. Also, the data that is transferred

is much more likely to be useful to the recipient, rather than as part of transfers that will not

complete. Hence, the self-limiting behaviour of thresholded peers actually causes an increase

in system (and peer) file throughput, similar, in principle, to congestion control. It also allows

hosts to wait for a promising source, rather than waste their potential downloading time on low

duration contacts. Despite Oracle-0 achieving a higher success rate than Random and Slotted-

0, it still procures loosely as many files as them. For the canonical configuration, thresholded

approaches gain 35 files with 80% success and non-thresholded gain 20 files with 30% success

rate.

When considering the impact of file size, it can be seen that for very small files the non-

threshold methods just outperform the thresholded. When files take such a short period to

complete, not attempting every possible download leads to missed opportunities for file collec-

tion. The effect of increasing file size has a large detrimental effect upon all methods’ collection

of files. For all approaches at particularly large file sizes (around 20MB), less than 20 files are

on average gained by hosts while in the system.
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Figure 6.5: TfL File Increase vs File size.

Other Traces

The transfer success percentage and library increase metrics will now be presented for trace-

sets other than TfL, to give an indication of how the system behaves in different environments.

Similar overall behaviour is observed for all traces (Figures 6.6, 6.8 and 6.10 for Reality, Uni-

trans and Haggle respectively), as speed increases/file size decreases the success rate and file

collection increases. Oracle-1 is able to perform near 100% download success for all of these

traces: unlike TfL the devices are not as densely packed as on a train, and so transfer duration

is predicted more accurately. Slotted-1 is able to achieve the next highest success rate for the

Reality traceset, yet under performs for the other two. Their best observed library increase is

still provided by Oracle-1 for all traces, however Slotted-1 does not improve over Random,

unlike with TfL. This indicates the long period of the Reality traceset facilitates the learning

of colocation patterns and consequently reduces the disconnection rate. In fact, Slotted-1 per-

forms worst for Unitrans and Haggle, with all the non-thresholded approaches being similar to

Random. Slotted-1 also scales worse than the other approaches when considering file increase

(Figures 6.7, 6.9 and 6.11), its gradient is less, diverging from the rest. While all others (af-

ter Oracle-0’s initial divergence) maintain a similar absolute increase in files received for each

increase in transfer speed.
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Figure 6.7: Reality Increase vs Speed.
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Figure 6.8: Unitrans Success vs Speed.
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Figure 6.9: Unitrans Increase vs Speed.
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Figure 6.10: Haggle Success vs Speed.
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Figure 6.11: Haggle Increase vs Speed.
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6.3.3 Efficiency

The network transfer efficiency for TfL is portrayed in Figure 6.12 and Figure 6.13 for speed

and file size, respectively. The effect upon efficiency from the underlying success rate leads

to similar behaviour seen in Section 6.3.1 between selection methods. Oracle-1 and Slotted-1

are both the most efficient approaches, with all mechanisms approaching perfect efficiency as

the system tends to infinite network speed or zero sized files and maintaining 90% efficiency

or more normally. Non-thresholded approaches waste around 40% of all their communica-

tion overhead when considering the canonical example, this becomes even worse if file sizes

increase or network speeds fall.
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Figure 6.12: TfL Efficiency vs Speed.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

E
ffi

ci
en

cy

Filesize (MB)

Oracle-1
Slotavg-1
Oracle-0

Slotavg-0
Random

Figure 6.13: TfL Efficiency vs File size.
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Figure 6.14: Unitrans Efficiency vs Speed.
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Figure 6.15: Reality Efficiency vs Speed.
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Figure 6.16: Haggle Efficiency vs Speed.

Other Traces

When considering the Reality Mining traces, all approaches (apart from Oracle-1) are very ef-

ficient (within 90%-100%) and perform very similarly. Both Unitrans and Haggle display a

benefit from using Oracle, even without a threshold, and significant penalty from Slotted-1.

Both these traces also span a greater range of potential efficiency, canonical Unitrans experi-

ments (except Oracle-1) are all below 75%.

The differing nature of the trace files is apparent in all these results. This obviously stems

from the variety of the colocation properties, e.g. mean duration, variance and regularity. The

reality mining trace shows the highest amount of transfer success across all speeds, likely due

to its very long durations, such as overnight ones, which do not occur in the other traces. The

relatively small set of users also enables easier learning of other user’s patterns. The TfL data

shows the largest benefit from employing a threshold on the initiation of transfers, indicating

that being careful when starting transfers was particularly important in this environment. This

was because of the high density of the TfL traces, hence multiple overlapping transfers had

a larger negative impact on system success rates. The comparatively poor behaviour of the

Unitrans traces could be partially explained by the manner of the trace collection. Bluetooth

scanners are fixed on buses and thus may not be making journeys at the same time, and thus fail

to capture user regularity well. These observations show that the source prediction technique’s

success will depend on the environment they are used in. It can be extrapolated that environ-

ments with short colocations and dense user placement will benefit the most from the prediction

step. The approach does at least outperform Random in all traces, which indicates that despite

variance of tested environments it is always beneficial to use colocation prediction.
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6.4 Content Selection

The advertising techniques that were described in Chapter 4, and their effect on the operation

of our proposed system, will now be presented. The modelling of individual files is included

in all following results, to allow the comparison of advertising strategies. The success rate and

efficiency are both almost entirely unaffected by the advertising policy and are therefore also

not presented in this section.

File advertising methods when used in conjunction with each peer chooser on the TfL

traces are shown in Figure 6.17, Figure 6.18 and Figure 6.19. It can clearly be seen that both

Popular and Unpopular matching techniques have a negative impact on the file increase metric,

performing much worse than all other matchers. The best matching approaches are Uncommon

and Random for all peer choosers, they have both perform equally well in terms of file increase.

Common follows a similar trend at low speeds, but diverges when the network speed increases.
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Figure 6.17: TfL Slotted Matcher Increase Speed.

Despite Uncommon and Random performing similarly when measuring file increase, they

do perform differently when considering which actual files are replicated in the system. The

impact of different advertising methods upon the replication frequency of individual tracks is

shown in Figure 6.20. The X axis is the ranked list of tracks arranged by the amount of

replication performed by the system, which is represented on the Y axis. The approach that

replicates the least number of different files (but replicates them many times) is Common, which

is intuitively understandable if only the files with many initial copies are replicated. This would

occur due to hosts initially sharing commonly seen files, causing positive feedback on the files

so they are replicated in the system as a whole. Random advertising of the tracks gives the

middling result of the approaches, replicating many files, but still giving particular focus to
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Figure 6.18: Oracle Matcher Increase Speed.
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Figure 6.19: Random Matcher Increase Speed.

some. This is due to the files that initially exist on many hosts being more likely to be selected

for replication by one of the owners, even though each owner is selecting randomly. This graph

is comparable to the model’s genre distribution graphs, presented in Section 7.4.
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Figure 6.20: Track Replication.

Figure 6.21 shows progression of the total amount of files in the system over time, with

normal configuration. Distinctive bursts of increase can clearly be seen, which correspond to the

peak travels times, identified in Section 5.1.3, equivalently flat areas correspond to weekends.

Other Traces

The effect of file advertisement is particularly different for Reality Mining (Figure 6.23) as

the trace lasts for so long. Uncommon matching outperforms all other approaches, even when

the threshold is disabled. Unpopular is shown to be of poor quality, still performing signifi-

cantly less library increases than Random. Uncommon and Random perform similarly on the
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Figure 6.21: TfL File Increase.

Haggle traces Figure 6.24, and again Unpopular is the worst choice. Random outperforms all

approaches on Unitrans, though Uncommon closely trails it (Figure 6.22).
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Figure 6.22: Unitrans Matching Increase.
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Figure 6.23: Reality Matching Increase.

File Receipt Behaviour

A graphical representation of how a single particular track (and each of its copies) spreads

through the TfL network can be seen in Figure 6.25. The file size was set particularly small for

this simulation run (0.1MB), to allow greater spreading and facilitate analysis of the connection

network. At the beginning of the simulation there were three versions of the file, belonging

to a popular genre (rock), which spread to 1837 other hosts. The three trees formed from

the three initial files (root nodes) are each very different. The small one being a three link

chain, the medium one being a relatively balanced tree and a third large tree that dominates the

replications. It can be seen that the file in the large tree spread to many hosts, often through

97



Simulation Evaluation 6.4 Content Selection

 0

 100

 200

 300

 400

 500

 600

 700

 0  200  400  600  800  1000  1200  1400  1600

In
cr

ea
se

 (
fil

es
)

Speed (kbit/s)

Slotavg-Common-1
Slotavg-Random-1

Slotavg-Uncommon-1
Slotavg-Popular-1

Slotavg-Unpopular-1

Figure 6.24: Haggle Matching Increase.

intermediaries that gain the file elsewhere. This shows how even with hosts only focusing

on single hop dissemination, large complex emergent flows can still be created; with tracks

spreading along paths of common interest.

The expected effect on user libraries from running our system is to increase the amount

of music they have to listen to. It is important to check that this improvement occurs for all

genres, not just the most popular ones. Figure 6.26 shows the effect on the genre occurrence

distribution in the network from using our system. The ‘Initial distribution’ and ‘Gained dis-

tribution’ are combined into the ‘Final distribution’. As desired, all media categories become

increasingly available across the network, with a relative greater increase observed for less pop-

ular categories, as the most popular ones become so widely available that they are not looked

for as much as at the beginning of the simulation. Note also how the final distribution still has

a heavy tail: we are thus not radically altering the natural distribution of files in the system, we

are simply making them more widely available, in a way that reflects the natural distribution of

user’s interest.
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Figure 6.25: Individual Track Dissemination.
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Figure 6.26: TfL Genre Distribution.
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6.4.1 Temporal Behaviour

The number of files a user has available to share will increase throughout the lifetime of the

system, as more and more is downloaded from others. The path that a file follows through the

system will be of varying length, with a length of 0 indicating that the owner started the sim-

ulation with the file in their library, and a length of 10 indicating that the file was previously

handled by 9 intermediaries before being downloaded. The graph shown in Figure 6.27 visu-

alises the distribution of a file’s path length at the end of the canonical simulation run, when

using Slotted-1 chooser, comparing the Uncommon and Random matchers. It should be noted

that files are counted multiple times, as a file shared twice will register a length of 0 for the

initial owner, a 1 for the second and a 2 for the third. The longest replication path that any

initial file achieved was 31, by only one file. The Uncommon matcher causes long path lengths

to occur more often, and short ones much less. This shows how Uncommon is having peers that

a gain a file to redistribute it, rather than allowing the initial owner to be the spreader of its data.
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Figure 6.27: Frequency of Path Length.

6.5 Trust

In all previous experiments, hosts were assumed to be non-malicious. However, to analyse the

impact of the presence of malicious/faulty nodes in the opportunistic network, nodes which

exhibit non-cooperative behaviour must be introduced. When receiving data from a malicious

host, the transfer completes as normal; it is only after receipt of the complete file that recipient

realises that the data is malicious. The interaction outcomes are recorded in a trust repository,

which is then consulted as part of the source selection algorithm. The canonical parameter

values forMalRate (proportion of malicious hosts) andMalChance (chance a malicious host
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Setup MalRate Good Files Bad Files Useful (MB) Wasted (MB)

Naive 0 31.3 0 155.3 15.3

Beta 0 30.8 0 147.6 14.9

Naive 0.3 20.7 9.2 102.8 60.3

Beta 0.3 21.2 7.8 105.1 53.3

Table 6.3: Malicious Effects.

misbehaves) are now set to 0.3 and 1, respectively. Having 30% of all nodes being malicious,

represents a large proportion for the scenario we are considering.

When reasoning about trust, a major restriction of the actual user traces is their limited

duration: a matter of days is not enough time to build a reliable trust repository. In the Unitrans

traces, hosts only meet a mean of 5.9 times, and with the Haggle traces just 3.7. Note that this

is not the average number of times a pair of hosts interacts, but purely the number of times

they have met, so the actual chances of building an accurate trust valuation from completed

downloads is very low. The TfL data lasts for a more reasonable length of time, but the large

size of the network and large number of complete strangers also makes it challenging. The

Reality Mining traces are ideal for testing the potential of a trust system as it is very long, and

a tight-knit community.

To simulate the behaviour of malicious hosts the parameter MalRate is used, to change

the proportion of hosts that act malicious. The impact on the quality of received files from

the proportion of constantly malicious hosts is explored. Though not presented here, to avoid

verbosity, if malicious hosts only misbehave probabilistically (MalChance < 1), then it will

be harder to learn which perform poorly in aggregate. This allows examination of both simplis-

tically malicious hosts (such as advertising shills) that misbehave every time and either prob-

abilistically malicious devices or normal users with mistagged libraries. The ability to avoid

bad sources that sometimes provide good interactions is important for a trust system, so they

are not fooled by hosts that occasionally masquerade as good, but are detrimental to the system

overall. When experimentally tested, as would be expected, if malicious hosts only provide ma-

licious files 50% of the time, then all hosts in the system receive less malicious files; however

the proportional improvement of using a trust system is reduced.

The performance when using the trust system (Beta) or not (Naive) in the presence of both

malicious users and non-malicious users is shown in Table 6.3. It should be noted that Wasted

bandwidth also includes data from incomplete transfers as well as malicious transfers. It can be
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seen that when no hosts are behaving maliciously (MalRate is 0) both Naive and Beta receive

no malicious files, while gaining a number of good files similar to each other. However, when

0.3 of all nodes are malicious, Beta only received 85% of the malicious files that Naive does,

a figure that is likely to grow as the system operates and hosts learn the good sources from the

malicious ones.

The graphs in this section present a slightly modified version of ‘successful transfer’; we

are only considering the ratio of non-malicious received files, thus only analysing the ability

to avoid malicious hosts, and not ensure complete transfers. The effect on the ratio of non-

malicious files collected when varying the proportion of malicious files is shown, with curves

employing the trust reasoning appended with ‘Beta’. Only the Oracle and Slotavg choosers are

presented, with both configurations using the Uncommon file matcher. When applied to the TfL

traces (Figure 6.28) the use of a trust system has a good improvement, which grows as the rate

of malicious hosts grows. When 30% of hosts behave maliciously, the trust reasoning reduces

malicious file collection by nearly 8%. The benefit for Reality Mining is marked (Figure 6.29),

the trust system enables the hosts to accurately identify malicious hosts extremely effectively.

Relatively, barely any malicious files are received, less than 5%, even with 30% malicious

nodes. This is due to the long duration of the experiment, all malicious entities can be identified

and subsequently avoided. Both Unitrans (Figure 6.30) and Haggle (Figure 6.31) also show a

large improvement from the utilisation of trust valuations.
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Figure 6.28: TfL Trust Comparison.
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Figure 6.29: Reality Trust Comparison.

Despite not lasting for long periods, as with the Reality Mining traces, both traces have

much smaller populations, again leading to the ability to learn who the malicious entities are.

Interestingly, the Oracle chooser out performs the Slotavg chooser, despite the fact we are only

considering completed transfers. This is caused by the Oracle approach making more stable
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Figure 6.30: Unitrans Trust Comparison.
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Figure 6.31: Haggle Trust Comparison.

choices, i.e., it selects the same source more often, allowing better learning of other host’s

behaviour.

The trust values for other hosts evolves over time, becoming more accurate with addi-

tional interactions. Therefore, our Beta trust repository should improve over time, reducing

the amount of malicious failures as the simulation progresses. This progress can be seen in

Figure 6.32, which depicts the percentage of completed transfers in the canonical simulation

configuration. A curve is shown for the stateless configuration where no trust values are used,

and the Beta trust approach. The lines are not completely smooth, likely due to weekly varia-

tion in the amount of new people met. It can be seen that the Beta trust is gradually improving

throughout the experiment, starting with just below 29% failure rate and ending the simulation

with a 25% failure rate.
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6.6 Summary
This chapter presented two methods of investigating our proposed system, a prototype imple-

mentation and simulation of the content distribution system. First we described the application

that was developed to examine the feasibility of operating a wireless content distribution sys-

tem. It was tested on relatively modern devices in the envisaged scenario environment of a

rapid transport system, both off-peak and on-peak. Despite the huge storage possibilities, the

limitations of the devices still required extra consideration; they could not be treated as simply

small desktops.

Next we presented the findings from the simulations of user movements that were used

to demonstrate how our system would perform in the selected environments. Results were il-

lustrated from our simulation experiments analysing the component features of our proposed

system. The impact on file transfer success and efficiency from the source selection procedure,

as described in Chapter 3, was discussed first, followed by the file advertising techniques (from

Chapter 4) and how that modifies which files are successfully replicated by the content distri-

bution system. We saw how disconnections can be avoided using informed source selection.

Careful selection of which files are downloaded could also have an important effect on the be-

haviour of the system, and how it replicates files of different popularities. Finally, the benefits of

using a trust system to avoid malicious hosts in untrusted environments was presented. It was

apparent that experiments that lasted for long periods of time or involved a small population

could gain very large reductions in the amount of malicious files received. Even small scale or

short simulations also showed some benefit, an improvement that seemed to increase over time,

as hosts learnt about others behaviour. Some analysis of how the network of spreading files

changes, the routes files take through the network and how the system performs over time was

also briefly discussed.
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The main evaluation aspect of this thesis focuses on using experimentally collected data (e.g.

human movement traces and music website crawls) to study the feasibility of our proposed

method of content sharing. In addition this chapter offers a concise conceptual representation

of the content spreading process, to facilitate simplified analysis of the effects of sharing data

items. This chapter discusses how the pairwise content selections that occur in a peer-to-peer

system can have large effects upon the system as a whole. Specifically, we evaluate and discuss

how the choice of which data items to share can drastically change the availability and distri-

bution of the files in an idealised system, particularly when no source selection process is used.

Policies that have an analogue to ones presented in Section 4.3 have their effects investigated in

idealised networks.

The rest of the chapter is arranged as follows: Section 7.1 presents some related research

in modelling data exchange networks, Section 7.2 lists some simplifying assumptions that were

made for our model, which is defined in Section 7.3. The results of this modelling is then

presented Section 7.4, followed by some conclusions that can be drawn, Section 7.4.3.
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7.1 Related Work

Modelling a network of states has been pursued for many years in fields as varied as ferromag-

netism to anthropology. Though it may seem natural in opportunistic network research, when

considering the spreading of data items, to employ epidemic modelling techniques, as much

previous work does [KMM34, ZAZ04]. This formulation of the data spreading problem is not

actually suitable for the scenario we are considering. Epidemic modelling is usually concerned

with the spread of one entity through a population, whereas we are considering the distribution

of many. If our system were viewed as many epidemic processes superimposed on top of each

other, it would miss the very important limitation of bandwidth. If a node has an opportunity

to interact with another, the choice of the type of interaction they perform has an impact on the

spreading of all others, i.e. if the pair share data item j during one period, it means they do not

share i during that same period. In fact, the usage of many superimposed epidemic networks

would imply infinite bandwidth, and so the lack of one type of interaction would not impact

whether another type was performed.

Delay Tolerant Network (DTNs) research often implicitly assume an infinite bandwidth

between peers. The DTN field focuses on the potential spreading and reachability of messages.

More precisely, which intermediate nodes should be handed a message in order for it to eventu-

ally reach its intended destination. This is useful when a host wishes to spread a data item to a

certain subset of the population, but is less useful when a host simply wants to pull certain cat-

egories of data from its neighbours. Sophisticated models have been used to model the average

age of content updates being collaboratively distributed across a network [ICM09]. They rarely

include finite bandwidth [ILY07] and multiple different items being shared in the network.

A slightly more suitable formulation of sharing state over a network has been considered

in the field of cultural studies. The application of complex network theory to social develop-

ments was performed by Axelrod [Axe97]. It can be very useful for analysing how culture

spreads through a social network along relationships between people. It can also help identify

structurally important people [BKA09] or their influence on a network of friends [ORT09]. Ax-

elrod’s work, rather than concerning itself with the particulars of a culture or how people of

a particular culture interact with another, models the way people exchange culture with their

neighbours. The focus being what processes cause convergence/polarisation of cultural values

between sets of people. Nodes in the system represent statically connected villages. Each vil-

lage has a vector of cultural features, which could represent language spoken, food eaten or

architectural styles. Each node’s language feature would be set to a particular value or ‘trait’,

such as English or Spanish. Over time nodes affect each other’s cultural features, and so in-
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fluencing a neighbour to adopt one’s own trait. It was discovered that even with relatively

simple rules local convergence can lead to global polarisation, a behaviour observed in real life.

The static connections on the network are not a requirement of this type of model. Additional

work [PH06] describes models where network connections and node qualities are dynamic. At-

tempting to explain how new connections can be influenced by a host’s attributes as well as how

the attributes can equally be modified by the connected hosts.

Axelrod’s work was further extended with the description of Networked Urn Pro-

cesses [CCH+08]. Urn processes have each node represented by an urn filled with multiple

coloured balls (e.g. multiple genre files). An urn can then select one of its neighbour’s balls to

duplicate into its own urn, and thus gain a ball of the selected colour. This models data shar-

ing better than Axelrod, as balls are never replaced or removed only duplicated. These cultural

models are created with a view to informing us about what processes may be occurring with real

people. The analysis in [CCH+08] shows how social influence and selection interact differ-

ently in different scenarios, specifically Wikipedia and LiveJournal1. The justification for our

model, is just to understand a similar system, rather than replicate the processes of an existing

one. We are not trying to make its behaviour match reality, we will input some real data, but the

model is purely used as a tool, not a realisation.

The scenario laid out in previous work differs from this body of work in a number of sig-

nificant ways. Nodes do not have their tastes changed by neighbours, they simply add transfers

to their library of items. Hence ‘culture’ can not be destroyed, however categories could be

neglected. The connectivity network is a much more dynamic arrangement, changing many

times over the course of one day. We require a model that uses many interconnected elements,

able to share data items between each other. Each element needs to be interested in multiple

categories from a population of data categories. They should be able to consecutively acquire

items of these categories from their neighbouring elements. This formulation is flexible and

generic, yet still captures enough features of our scenario to behave similarly and highlight

some considerations for our system.

7.2 Assumptions

Many assumptions have been made for purposes of analysis and to achieve a generalised ap-

proach.

• No network effects are considered, there is a perfect transmission environment, with no

signal attenuation or contention. Downloads take a constant time and are not affected by

1Website URLs – Wikipedia: http://wikpedia.org and http://livejournal.com
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V Set of nodes in the system: V = {u1, u2, ..., un}.

G Set of possible interests that a node may possess: G = {g1, g2, ..., ge}.

Pr(g) The probability of selecting the genre g out of the population.

Int(ui) The subset of interests that a user has: Int(ui) ⊆ I . hi = |Int(ui)|

Libsizeg(ui) Size of user’s library genre: libsizeg(ui) = |Q|, Q ⊆ D,∀q ∈ lib(ui).

Libsizeg Size of the system’s collection of a certain genre: Libsizeg =
∑n

i=0 Libsizeg(ui)

Table 7.1: Notation and Terms.

other transmissions happening in the surrounding environment.

• Users have an immutable set of interests Int(ui) that they desire over the course of the

whole experiment. The likelihood a user enjoying a genre is entirely independent of

the probability that they like another genre. Note, this loses covariance of occurrence

between genres.

• The likelihood of a user liking a single music genre is Zipf distributed, and the probability

of two genres of interest are not specifically covariant events, i.e., if a user likes classic

rock it is no more probable that they will enjoy stadium rock. However, if user has two

genres of interest they will not be the same.

• For the modelling of this chapter, we will assume that there is no source selection process,

involving colocation prediction (such as in Chapter 3), neighbours uniformly randomly

select the peer they will download from. This is a simplification to ease the reasoning

content spreading without being affected by the colocation prediction.

7.3 Model Definition
To aid in the description of our model and its behaviour, some notation is presented in Table 7.1.

Similar to the previously described research [Axe97], a simple regular lattice arrangement of

nodes will be employed to provide a starting point for further analysis. This allows the model to

be examined on a basic network, without any of the properties of real wireless networks, such

as movement, clustering and regularity. The effects of the data item selection phase can thus

be seen without complicating factors. As depicted in the Figure 7.1, there is a two dimensional

grid where each cell represents a node in the system. Each node has four neighbours, hence

the center node in the diagram is neighbouring with the four shaded nodes. Nodes on the edge

and corners have three and two neighbours, respectively. The model progresses in time along

sequential ticks, which can simply be thought of as seconds. Each tick of time, a node that is
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Figure 7.1: Simple lattice of nodes.

not currently downloading may randomly select one of its neighbours to act as a source for a

download. The order that hosts choose their neighbours is always sequentially from a corner

row by row, the different random seed for each run will remove the effect of any structural

deadlocks. Only neighbours that are available, and thus not already acting as sources may be

selected. When the trace files from Chapter 5 are employed, if a source loses connectivity with

the downloader during the course of the transfer, the download is stopped and a new source

selected next tick.

Content Distribution

If we are assuming that a genre gn of rank n has a Zipf distributed likelihood of occurrence,

then its frequency can be characterised as: Pr(gn) ∼ 1/na. The larger the exponent a, the

more skewed the distribution is to the top ranked genres. This leads to the probability mass

function having a linear plot on a log-log graph. This follows from the analysis presented in

Section 5.2.2, where genre and artist had their distribution of popularity discussed.

If each host in the system chooses a single genre of interest, then the resulting total pop-

ulation of genres in the system will also be Zipf distributed. If each host selects a subset of

the available genres, the resulting total population of genres will not be Zipf distributed. Con-

sider a given host ui, with hi non-repeating genres of interests (out of all possible G). The

probability the host is interested in a specific genre gx is not simply Pr(gx).hi. Due to the

lack of replacement in the selection process the probability of choosing gx increases each time

it is not chosen (as other possibilities are removed). For example, if a host ui has to select 2

genres from a population of 3 i.e., G = {g1, g2, g3} and hi = 2. We are interested in whether

they select g1 i.e., if g1 ∈ Int(ui). Each genre has an associated frequency of occurrence, or

equivalently associated probability of individual selection Pr(gx). The host has two genres of

interest and can either select g1 first with probability Pr(g1), or select g1 for its second genre.
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However the probability of selecting it the second time is not Pr(g1), as the previous selection

has reduced the possible options to only two. The first choice will influence the probabilities

for the second choice. If g2 was chosen first, then only g1 or g3 can be chosen, with proba-

bility Pr(g1)/(1− Pr(g2)) and Pr(g3)/(1− Pr(g2)), respectively. Hence, the likelihood of

choosing g1 in the second selection is Pr(g1)/(1−Pr(g?)), where g? is the previously chosen

genre. To generalise this reasoning to arbitrary sized interest populations and user interest sets,

the following equations can be used. Equation 7.1 gives the chance of choose g1 for a given in-

terest slot n. Equation 7.2 is just the definition of all the previously made choices (ProbPrev),

where Prev is the set of all already chosen genres. Equation 7.3 gives the chance of choosing

g1 when the host has h slots, .

Select(g1, n) =
Pr(g1)

1− ProbPrev
(7.1)

ProbPrev =
∑

x∈Prev
Pr(gx) (7.2)

PrSelect(g1, h) =
h∑
i=0

Select(g1, i) (7.3)

The equations can be represented more naturally as a procedural algorithm show in Algo-

rithm 7.1 and 7.2. In fact this process can not be described well with simple equations as no

closed form exists, evidenced by Wallenius’ noncentral hypergeometric distribution [Wal63].

Using this algorithm we calculate the expected initial distribution of genres across the network

when users each select a subset. Figure 7.2 shows lines from 400 runs of the experimental

system and the points from the analytical calculations. The number of possible genres is 100

and all genres have a Zipf likelihood. Three separate configurations are presented, with the

user’s genre subset size (h) being set to 1, 5 and 7. The experimental and analytical results

match almost perfectly in Figure 7.2. The curve labelled 1 Genre Experiment shows the relative

proportion of genres that are liked in the system, it is a simple Zipf distribution. The other two

curves (for 5 user genres and 7) also have a set of points overlaid on them. The curves show

the experimental results from using our model and the points show the analytical results using

our formula. It appears that as users enjoy more genres the distribution gains a heavier tail, and

the popular genres are less popular. Actually, as the size of total interests present in the system

increases, the popular genres simply represent a smaller proportion. This is because users with

many genres of interest will probably chose a popular genre, but will then be able to choose
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more, possibly less popular ones as well. This causes a flattening of the top end of the total

system genre distribution.
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Figure 7.2: Analytic vs Experimental.

result = 0;

hasGenre(gN ,g,Chosen):

if g = 0 then

return

current = random(Genres \ Chosen)

Chosen = Chosen ∪ current

if Chosen = gN then

result = addProb(Chosen)

else

hasGenre(gN ,g − 1,Chosen)

return result;

Algorithm 7.1: Likelihood of Genre Occurrence.

To populate the libraries, each host is dealt with independently. Choosing a host’s interest

genres Int(ui) is a simple act of selection without replacement. For each genre g selected, the

user’s library sizeLibSizeg(ui) is set as a uniform random variable [1 : 10]. The absolute range

of initial interest does not fundamentally change how the model performs, it merely impacts the

rate with which new transfers affect the global distribution of genre volume.

At each time tick, all non-downloading hosts will choose a random available neighbour,

that shares a genre of interest, in order to initiate a download. A download is initiated and the

source host is set as unavailable. If no neighbours are available, the downloader does nothing.

The choice of genre for the transfer is chosen according to the download selection policy that is
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addProb(Chosen):

acc = 0

rv = 1

for n ∈ Chosen do

rv∗ = Pr(n)/(1− acc)

acc+ = Pr(n)

return rv

Algorithm 7.2: Calculate Probability.

being used. If the neighbour loses connectivity (only applicable to the trace based experiments)

the download is cancelled, and the initiation search is performed again. Upon completion, the

host’s relevant genre magnitude is incremented.

The connection traces also modify the structure of the network. For the simple grid struc-

ture the inter-host connections do not change over the course of the experiment. The trace

based experiments all follow the same initialisation procedure, each modelled host is mapped

to a trace host. Each line of the trace file is then read and the relevant (dis)connection is applied

to the model. Each second in the trace file equates to a single tick in the model.

7.3.1 Advertising Policies

The policies that hosts use when negotiating which genre will be downloaded between peers,

will now be presented. Each advertising policy is based on local information during the file

negotiation phase, no state is maintained.

Random – The Genre is chosen uniformly randomly between matching genres.

Popular – The matching genre that the source has the most interest in is selected as the genre

to share.

Unpopular – The matching genre that the source has the least interest in is selected as the

genre to share.

Popular Proportional – The matching genre is chosen with a probability equal to the relative

interest the source shows in that genre (compared to all other matching genres).

Unpopular Proportional – The same as above, but with a probability inversely proportional

to the relative interest compared to all other matching genres.

These policies are analogues of the mechanisms presented in Section 4.3, except for the differ-

ence that they do not maintain state, and operate purely with local knowledge from the source.
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Parameter Symbol Default Value

Hosts d 2500*

Experiment Duration s 10,000*

Download Duration D 200

Global Genres G 100

Local Genres h 5

Zipf Exponent a 1

Table 7.2: Model Parameter Values.

Although each host has an i.i.d. value for each of its genres of interest, some order will still

arise out of the initial conditions. If a genre is more likely to be of interest to the population,

then independently of the individual values it will still be more likely to be a possible matching

interest between any pair. If there is a Popular based policy being used, then the most popular

and shareable files will be shared more, promoting their popularity even further in a positive

feedback loop. The Unpopular approaches are trying to always share the currently least popu-

lous, and so it approaches a system where all genres are shared by an equal amount. Though

this would not count hosts that are isolated from any others with similar tastes.

7.3.2 Parameters

The major parameters that control the behaviour of the model are defined in Table 7.2 together

with their default values. The time it takes to perform a download D is set to 200 seconds,

equivalent to 5MB files transferred at 200Kbit/s. The file popularity exponent a is set to 1,

this is 5% different from the majority of the Last.fm data (ignoring most popular few), but was

chosen to be generic, the effect of varying this parameter is investigated. The parameters with

a star are dictated by the network structure that is being used. The possible network styles used

are Grid, TfL, Reality and Haggle, relating to the idealised grid network and each of the traces

presented in Chapter 5. The canonical values are modified for each trace file, so that the number

of hosts and length of experiment match the trace file.

The results gathered from a particular trace set are relatively specific to that trace envi-

ronment and collection instance. To enable the testing of the model using a wider variety of

different yet still comparable traces, we have also generated some alternate versions of the

trace files previously used. A simple mechanism was used to preserve the aggregate colocation

density and durations of these alternate traces. Each colocation is iterated over, with the partici-

pating nodes being swapped with another randomly chosen colocation. The time of occurrence
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Trace Hosts Length (1000 seconds)

TfL 4,000 258

Reality 100 31,608

Haggle 3,500 1,018

Unitrans 25 436

Table 7.3: Trace specific parameters.

and duration are unchanged, leading to preservation of many trace properties.

7.3.3 Metrics

To judge the effect that each advertising policy has on the distribution of file types in the system

as a whole, we will use the Kullback–Leibler divergence (KL) [KL51]. It is a non-symmetric

measure of how two probability distributions P and Q differ (Equation 7.4). KL measures the

expectation of the number of extra bits required to code samples from P when using a code

based on Q. Hence, it is loosely a measure of how much more information is contained in the

distribution Q compared to P, or how different it is. It is not strictly a true ‘metric’ in the

statistical sense.

DKL(P ||Q) =
∑
i

P (i) log
P (i)
Q(i)

(7.4)

If P is defined as the starting distribution of the genre frequencies (i.e., the initial Libsizeg

across all G) and Q is the distribution of genres at the end of the simulation. Hence, for our

purposes, a KL value of 0 signifies that the resulting proportional distribution of files is exactly

the same as the initial one. Note that this says nothing about the number of files in the system,

only their relative proportions.

7.4 Results

The results from our model are presented in this section. First the grid structure is tested,

to allow details specific to the sharing process to be examined separately from the movement

effects. The trace files are then presented to confirm that a similar behaviour is exhibited even

when using a variety of movement scenarios. The model uses Mersenne twisters [MN98] to

generate random numbers required in each run of the model. To gather accurate results, the

model is run with a different random seed at least 100 times. In all experiments, relative stability

of results was achieved after 50 runs.
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7.4.1 Grid

The most basic result from our model, when each host only likes 1 genre (h = 1) out of

a possible 10, is portrayed in Figure 7.3. The genres are all distributed according to a Zipf

distribution with exponent 1. Hence the most popular genre g1 is nearly an extra 20% as

popular as the second most g2. There are three stacked bars, each representing the distribution

of genres, i.e., each sector of the bar is a single genre. The first bar is the absolute number of

each genre in the Initial model creation. The second bar is the absolute number of each genre at

the End of the experiment, there is then a third bar of the initial distribution scaled up to the End

magnitude so that a proportional visual comparison can be made. Note that a genre selection

policy would have no effect in this formulation of the model, as hosts only enjoy one genre

and so have no choice about what they download. Even if hosts were interested in multiple

genres, the total number of files shared would not significantly change. In fact, the expected

E number of transfers (throughput of the network) is invariant across all advertising policies.

This is because the policy does not affect the source node selection, it is purely selected by the

random number generator.
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Figure 7.3: Grid: Genre Count.
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Figure 7.4: Initial vs Increase Relationship.

As expected all genres increase in frequency due to performing the transfers (i.e. End

is larger than Initial), however the proportion of genres does not remain constant. The more

popular genres are increased disproportionately, genre g1 (the most popular) represents 39.4%

of all transfers but only 18.8% of hosts. This is due to an availability bias caused by the tastes

of a host’s neighbours. If a given host likes the most popular genre, it is more likely to be

able to find an available neighbour that shares an interest, and is thus able to share files more

often. Hosts with very niche tastes may not have any neighbours sharing an interest, and thus

be unable to gather more files. This pathological case is a problem mostly limited to the grid
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network as hosts maintain a short static set of neighbours.

This availability bias can be quantified if the increase is considered with reference to the

amount of other hosts that are interested in a given genre. The average proportional increase

for hosts of a given genre can be calculated through dividing the proportion of a genre that is

shared during the simulation by the proportion of hosts that like that genre. If a logarithm of the

average proportional increase is plotted (Figure 7.4) a linear relationship is revealed using least

squares fitting, with Pearson’s correlation coefficient R = 0.9956. This indicates that there is

an exponential relationship between the popularity of the genre and the average proportional

increase. This underlying process will be present in all subsequent experiments, even when

hosts like multiple genres and are using a selection policy. In fact, this underlying process is

something that should be actively combated if it is desired that the system not disproportionally

favour the popular genres.

Figure 7.5 allows a more precise display of the effect of the running experiment, with

a curve showing the initial genre distribution (as in Section 7.3) and the distribution at the

end of the experiment, with small confidence intervals. The genres are not strictly continuous

values, but they are shown as lines rather than bars to enable easy comparison. Note the log-log

nature of the axis, the gradient of the lines corresponds to the exponent of a Zipf distribution.

A gradient close to 0 reflects an even distribution of genres, the more negative the greater

availability is skewed to the popular genres. If a more even distribution of files is desired,

running the model should lead to an increase in the gradient of the distribution curve. When

running with a uniform distribution of genres there is no change in the distribution across the

system. All genres are increased by the same amount.
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Figure 7.5: Grid: Genre Increase.
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To investigate the policy effects, we now introduce hosts with multiple genre interests

(h = 5) and a larger population of possible genres (|G| = 100). The system will now exhibit

the effect from the lack of replacement in the genre selection and will not be exactly Zipf

distributed in the Initial construction. The effect of varying the selection policy can be seen in

Figure 7.6. All policies show a mostly similar behaviour for each genre, with popular tastes

being shared much more that niche ones. There is a familiar decrease in the gradient of all

resultant curves compared to the Initial distribution. Each policy has a different gradient, with

Unpopular > Random > Popular. This shows that the Unpopular policy shares more of the

less frequent genres and less of the popular than the other policies. They also all perform near

identically for the genre of rank two. The logarithmic scale should be noted, as the difference

between policies for the top ranked genre is significant. Out of the total number of exchanges,

the Popular policy has 49.5% being of type g1, compared to the Unpopular policy’s 40.0%.

This represents an almost 10% increase in total transfers for genres of rank lower than two,

when using the Unpopular policy.

If files have a more pronounced Zipf distribution, i.e., the exponent is larger, the more

the population is skewed to the more popular ones. Figure 7.7 shows only the distributions

from the outcome of the experiments, the impact on the resulting distribution when using the

Unpopular policy and varying a. Setting a to 0 obviously results in a uniform popularity across

all genres, and thus a uniform resulting distribution. When a = 2 the most popular genre is

vastly more popular than the rest. This leads to an even greater flattening for the most popular

genres at the expense of the less popular. Though the simple Popular and Unpopular policies

give clearer results, all of the following results in this chapter will now use Proportional Popular

and Proportional Unpopular.
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Figure 7.6: Grid Policy Effects (Five Genres).
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Figure 7.7: Grid Zipf Effects (Five Genres).
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7.4.2 Traces

With the behaviour of the grid investigated, we will now briefly demonstrate the effect of apply-

ing the model to the trace files. The hosts will now experience transfer disconnections, as they

are now dynamic and could change their connection state at any point. The effect of file discon-

nections is not considered, as all transfers last for the same duration, and the source selection

procedure is the same for all experiments in this chapter. First, the model is run on the TfL

trace set, as shown in Figure 7.8, using its default parameters. It exhibits the same behaviour as

the grid, even though hosts are constantly changing their connections and they possess different

levels of connectivity (i.e., some hosts are super-peers). The Initial global library content dis-

tribution is unchanged. Interestingly, all the distributions for the Increase in genre types have

an even lower gradient than the grid. The most important aspect from the graph is that the

gradients of the policies follow the same ordering of Unpopular > Random > Popular.
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Figure 7.8: TfL: Genre Increase.

Both Haggle and Unitrans trace sets (Figure 7.9 and Figure 7.10) behave similarly, with

Unpopular giving a more even distribution for the increase in genre availability. There is more

noise in these results compared to the previous results, likely due to regularity of the grid, and

high mixing of the TfL data. The gradient of the policy plots are also less than when using the

grid structure.

To distill the distribution change that occurs to the model into a scalar value, the KL dis-

tance is shown in Table 7.4. A visual representation is also given in Figure 7.11. The results

only have true comparability between ones operating on the same trace files, due to the variable

experiment size and duration. The table is organised with the policies in descending order of

KL distance from their initial distribution. To calculate these, the KL distance was taken from
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Figure 7.9: Haggle: Genre Increase.

 0.001

 0.01

 0.1

 1

 1  10  100

P
ro

po
rt

io
n

Genre (rank)

Initial
Proportional Popular

Proportional Unpopular
Random

Figure 7.10: Unitrans: Genre Increase

Policy Grid TfL Haggle Unitrans

Popular 0.2430 0.4881 0.18243 0.0231

Popular Proportional 0.2212 0.4286 0.16578 0.0197

Random 0.2014 0.3576 0.14299 0.0162

Unpopular Proportional 0.1882 0.3061 0.13562 0.0147

Unpopular 0.1846 0.2735 0.13271 0.0148

Table 7.4: Kullback–Leibler Distance.

each run of an experiment and the mean of all runs calculated.

7.4.3 Summary

This chapter has defined a constrained model for accumulated item transfer in a network. It

presented some possible file negotiation policies for hosts to follow and the effect they had on

which file categories were shared. We showed that the absence of specific intent in the file shar-

ing process will lead to a disproportionate amount of replication for genres of a popular nature.

Furthermore, we showed that using a local stateless mechanism for estimating a categories pop-

ularity and striving to share the less popular files could lead to a reduction in the reinforcement

of the most popular file types. However, even when explicitly only trying to share the least

popular genres, popular files were still shared more, due to an availability bias.

The conceptualisation of a basic model of file sharing, based on networked urn processes,

has shown some possible implications for a deployed system. Most importantly, we have shown

that localised decisions on which content to share can have a large effect on what types of con-

tent gets shared by the network as a whole. The regular grid provided a simplified version that

still exhibits features of the more complicated networks. Applying the structure of human car-
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ried device networks did add some noise to the results, but the same effect of the policies was

comparable to the grid. As has been mentioned in other literature [Axe97], there appears to be

an tendency for the homogenisation of taste, where popular categories are made even more pop-

ular. If random spreading of data was the sole process acting in a network, as would be possible

in our scenario, then it appears that mainstream tastes would naturally dominate. The traces

files also showed an even greater preference for popular files. This is due to the traces have

not segregating users as in the static minimally connected grid structure. Hence, small islands

where only niche tastes can ever be shared are never created. Even when a localised attempt is

made to reduce the popularity skew, the popular tracks are still shared more. Though there is an

improvement in fairness when attempting to share unpopular genres. This indicates that a more

sophisticated technique would have to be used to achieve equality in sharing frequency for all

genres.
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8
Conclusion

This chapter provides a summary and critical evaluation of the work presented in this thesis,

together with some possible future directions.

8.1 Summary of Thesis

This thesis proposed the idea that wireless device-to-device connectivity can provide data of

interest to users. Indeed, the volume of data content surrounding a typical urbanite during their

day is vast, and accessibility to it would provide significant utility for people. Furthermore, we

examined the state of technology that facilitates such interactions and saw that many compo-

nents have long been available. However there has only recently been widespread public and

corporate engagement with the use of this technology. The scenario on which we focused our

consideration, was in the sharing of music files between people using mass transit systems in

urban environments. Some background investigation was required into how the categorisation

of music data was performed by users, and more importantly how different categories and artists

vary in popularity. An equally important concern was the movement of users when on public

transport systems. Another consideration was how to limit the effect of peers with incorrectly

encoded/labelled files or even intentionally corrupt files.
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A solution was devised that employed automatic 1-hop peer-to-peer file transfers. This

allows the system to gradually accrue files of interest when a suitable neighbour was present.

Only files of a category that a user had already shown enough interest to acquire would be

collected. Not all potential transfers were initiated, in fact it was found to be useful to be con-

servative in the initiation of downloads. The decision of whether to initiate communication was

based on predictions of the neighbours future colocation duration. This prediction was informed

by the previous length of colocations. Neighbour and temporal specific historical information

took precedence over the aggregate history of all other neighbours. Any neighbours that were

deemed to have misbehaved were remembered and avoided in subsequent interactions. The

devices were assumed to be sharing their data over short range Bluetooth networks; however,

any short ranged wireless technology could operate the connection.

Automatic sharing of content between users’ personal devices on urban transport was

shown to be a plausible scenario. The selection of whom to use a download source was also

shown to be important to the efficiency of the system. Furthermore, prior knowledge of colo-

cation history could be used to gain confidence in the likelihood of a data transfer completing.

In dense, high churn networks, this knowledge can be approached using tractable, low state

techniques.

Even when people have extremely varied interests in the available content, they can still

have their niche tastes satisfied. Attention to the priority of which files are shared is essential to

ensure that replication of tracks is not focused upon a select few popular tracks from a subset

of users. This protection against the complete homogenisation of category distribution (even

between items within a particular category) is important for ensuring diverse user libraries.

People can independently choose which advertising strategy their device uses, and so can impact

which files replicated by the system as a whole. They could also choose to employ a trust

system, which, dependent on their feedback can enable the avoidance of hosts that have sourced

bad files in the past.

Following from Metcalfe’s Law [BOT06], if there are very few users of a network, it is

of negligible value. Our proposed system requires that other users running the software are

actually present in the environment and also share some interests for any utility to be gained.

As with most wireless systems, there is also an upper bound on how dense the network can

be, while still performing useful communication, due to contention. Our approach mitigates

the effect of excess network load by not indiscriminately initiating downloads. Specifically

avoiding them if the transfer seems unlikely to complete in the predicted available time. The

tube’s Oyster traces that comprised roughly a quarter of passengers (according to Transport for
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London). A penetration of 25% would be very high, even assuming every person possesses a

device. Our simulations also only considered the most frequently travelling users, generally

at peak times. Leading to an environment with users of the system frequently seeing other

users, sometimes in dense configurations. A scenario that presumes moderate yet large scale

adoption by the public at large. However, even at high densities, we can still maintain system

capacity, though the per user capacity will decrease. Thankfully, the node density can not

increase unrestricted, even on the tube, due to the minimum space required for the actual human

beings.

8.1.1 Contributions

The contributions of this thesis were as follows:

Colocation Prediction – Proposal and analysis of the efficacy and computability of a range

of mechanisms for estimating the length of a neighbours colocation. We used a variety

of wireless computer traces to study human movement in urban transport environments.

Particularly when using mass transit systems in a large metropolitan city. It was shown

that with minimal storage requirements, devices are able to decide whether to initiate

transfers that are more likely to complete.

Advertising Strategies – The order that users advertise subsets of their library significantly

effects which tracks are downloaded. The advertisement ordering process and its impact

on the movement of files through the network is examined, specifically how to satisfies

the different interests of users and ensure a variety of content is available throughout the

network.

Music Taste Modelling – A measurement study of users’ music tastes from a popular social

music website was performed. Leading to the construction of a realistic and configurable

model for users’ digital libraries and music tastes. This modelling allows the investigation

of various advertising policies and file selection procedures, providing results on how they

affect system performance.

Malicious Peer Avoidance – We utilised an existing trust system to prevent the accumulation

of files that a user does not want. We saw that even in networks with very high churn, the

effect of badly performing devices could be reduced through learning from previous bad

experiences.

Content Distribution Model – A simplified model of categorised item distribution was de-

fined and the effect of using different advertising policies was presented. It was demon-
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strated that the informed download selection of data items can be used to affect the sys-

temic distribution of files of different types.

System Evaluation – An application for mobile phones that implements the ideas and algo-

rithms presented in this thesis was created, together with results of its behaviour in an

actual urban transport environment. The application was tested in a real environment on

a city subway system, where its actions were timed. These timings were then used to

inform a city-scale simulation of the proposed system. This simulation was used for the

bulk of our analysis and was able to simulate a large portion of users from the London

Tube system for a month. The results show that the careful selection of a download source

and the downloaded file is a feasible and useful strategy for content source selection.

8.2 Critical Evaluation

Despite the use of real music listening habits, we have not considered how the proposed system

would be accessed by real users. People may desire a system of the type proposed to mostly

collect music they are unfamiliar with, that they would not be exposed to from their usual

sources of music information (e.g., friends, the music press and public radio).

The approach used a mechanism for device colocation pattern detection; such patterns are

exploited for the runtime selection of the best content source among available peers. Even in

large metropolitan cities, the regularity of peoples’ movement can still be leveraged to identify

familiar strangers, and exploit the learnt colocation patterns. Though our results have mostly

been validated in the domain of public transport movement, and some related movement pat-

terns, it was not applied to other human activities, such as places of work, coffee-shop or pub

visiting. Our dataset allowed the modelling of a large metropolitan city, and displayed expected

properties, with encouraging regularity of movement. The application of our selection scheme

allowed passengers to identify other promising candidates for consistent connection. Our find-

ings show that, when automatically sharing content files (e.g., music files and video clips) in

human contact networks, subject to churn, the source selection stage is important.

Aggressive policies on whether to initiate downloads (e.g., Random selection) may initiate

more transfers, but lead to more incomplete transfers, increasing the burden on the network

(reducing neighbours’ throughput), wasting time that could be spent on successful downloads

and needlessly draining device battery-life. This can still be the correct approach in environ-

ments with few neighbours and long term colocations, such as in the Reality Mining traces. Our

approach significantly reduces failed transmissions, saving energy and time to be used on suc-

cessfully receiving content, when hosts only initiate a download they predicted would succeed,
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it leads to significantly greater performance. The download threshold parameter can be tuned to

effect download initiation likelihood, and optionally reduce the amount of download failures (at

the expense of some successes from false negatives). Its value could be set on a per-user basis

and be linked to other factors such as, for example, battery level, causing a device to become

progressively more conservative with its download attempts as the available power drains. With

additional context-awareness about the environment it should be possible to dynamically adjust

the download threshold and achieve the best of both approaches.

Though the focus has been on sharing music files, apart from the Last.fm based interest

distribution in the evaluation, other aspects would hold true when applied to other types of bulk

data. The main possible difference with sharing other types of bulk data would be if it was of

significantly larger size, such as high quality videos. This would make the accurate prediction of

link duration even more important, as it would be more likely that transfers would not complete

in time. Non-music data would also likely have a different distribution of popularity between

categories and items. If the category popularity distribution was extremely heavily skewed

to the popular end, then it would be likely that an opportunistic wireless data sharing system

would almost totally marginalise the less popular content; as users with niche tastes would

almost never meet. In such circumstances, it would require a different approach to the problem

of file distribution, transfers would likely not be independently negotiated by pairs of devices.

If it was not bulk data being shared, but rather a type of data that was useful when only

partially complete (e.g., news) the source selection would not be as important. It would be

possible to transmit a majority of the utility of the data quickly (i.e. headline and story text)

less important information (e.g., associated pictures, audio or video) could then be transmitted,

with any termination of the transfer not significantly harming the quality of the received item.

Another possible modification to the system would be using a different wireless technol-

ogy. A high bandwidth technology would also reduce the importance of colocation prediction

for data transfers. If the increased data rates only acted to increase the size of files that peo-

ple wanted to share, then the problem of neighbour colocation prediction would persist. Also,

if the types of activity being performed was not dependent on data volume but time (such as

peer-to-peer games) then the need for selecting a long-term neighbour would still be of large

importance.

8.3 Current Research Directions

The work in this thesis provides a framework of analysis for the developing of wireless peer-to-

peer content sharing. The field could be further advanced in a number of ways, including:
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• The inclusion of partial file transfers, allowing peers to resume downloads that are dis-

connected during their transfer, similar to BitTorrent. This behaviour should complement

our colocation prediction, allowing transfers to complete more frequently and be resumed

if they are interrupted.

• Deployment of the implementation, to enable usage, interaction and opinions from real

human users and their mobile devices. This would allow testing of their satisfaction

with the system behaviour. Also, it would allow analysis of how the system performs

with other unmodelled user actions such as manual addition/deletions of tracks from the

library and some real feedback in to the trust system that was presented.

• Deeper analysis of the file advertising policies and their effect on data that has more meta-

data available. For instance, giving preference to newly released tracks, enabling people

to quickly receive copies of the popular tracks in the charts at that period of time.

• Consideration of the use of automatic file sharing between users that know each other,

and the possible effects this has on a users taste. Potentially even the use of friends music

tastes to decide which files should be selected, as a form of mobile recommender system.

• Development of a more realistic content spreading model, that includes file level mod-

elling. The addition of network level behaviour, such as contention and variable link

speeds, would also reduce its level of abstraction. This would then allow the inclusion of

source selection behaviour, an ability that has been shown to have a significant impact on

system performance.

As a final comment, it should be mentioned that device-to-device wireless technologies

are inexorably improving in throughput, range and power costs. These technologies, in tandem

with the ballooning of device and data ownership, will only lead to a flourishing in the desire for

flexible and easy to manage data sharing paradigms. The involvement of industry in this sphere

of technology would be stimulating, though not necessary. The reducing costs of owning a

capable device, and of running a system such as proposed is also becoming almost trivial. The

proposal that mobile devices will improve in their ability to store reams of data, consume con-

tent and transmit it on short-range wireless links should be taken for granted. The only question

is whether connectivity through infrastructure will come to dominate how people access data of

importance to them. While the promise of cloud computing is attractive, it will never be the sole

or best way to access data in all circumstances. Particularly for people wishing to avoid control

of the data they wish to communicate and acquire. If opportunistic distributed data dissemi-
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nation systems are to become widely deployed, their efficient, robust and useful functioning is

paramount. We have analysed one of the most challenging (and possibly rewarding) environ-

ments to operate such a system: on a large urban subway system. This thesis goes someway to

investigating the total problem space and delivers some important design considerations for the

creation of a functioning, deployable software system.
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Push!Music: Intelligent Music Sharing on Mobile Devices. In In Adjunct Pro-

ceedings of UbiComp 2005, the 7th International Conference on Ubiquitous

Computing, pages 11–14, September 2005.

[JX07] Hai Jin and Jie Xu. TRES-CORE: Content-Based Retrieval Based on the Bal-

anced Tree in Peer to Peer Systems. In Parallel Computing Technologies (PaCT),

pages 215–229. Springer, September 2007.

[KBV07] Thomas Karagiannis, Jean-Yves Le Boudec, and Milan Vojnović. Power Law and
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[SDPG06] Sarafijanovic-Djukic, Michal Piórkowski, and Matthias Grossglauser. Island

Hopping: Efficient Mobility Assisted Forwarding in Partitioned Networks. In

Proc. of the 3rd IEEE Communications Society Conference on Sensor, Mesh and

Ad hoc Communications and Networks (SECON), pages 226–235, September

2006.

[SGC+06] James Scott, Richard Gass, Jon Crowcroft, Pan Hui, Christophe

Diot, and Augustin Chaintreau. CRAWDAD trace cam-

bridge/haggle/imote/cambridge (v. 2006-01-31). Downloaded from

http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/cambridge, January

2006.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based

cCollaborative Filtering Recommendation Algorithms. In WWW ’01: Proceed-

137



Bibliography Bibliography

ings of the 10th international conference on World Wide Web, pages 285–295,

New York, NY, USA, May 2001. ACM.

[SKR99] J. Ben Schafer, Joseph Konstan, and John Riedi. Recommender Systems in E-

Commerce. In EC ’99: Proceedings of the 1st ACM Conference on Electronic

Commerce, pages 158–166, New York, NY, USA, 1999. ACM.

[SLC07] Mohamed Sordo, Cyril Laurier, and Oscar Celma. Annotating Music Collections

How Content-based Similarity Helps to Propagate Labels. In 8th International

Conference on Music Information Retrieval, pages 531–534, Vienna, Austria,

September 2007.

[SLG00] William Su, Sung-Ju Lee, and Mario Gerla. Mobility Prediction in Wireless Net-

works. In IEEE Military Communications Conference (MILCOM), pages 491–

495, October 2000.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A Scalable Peer-to-

Peer Lookup Protocol for Internet Applications. IEEE/ACM Transactions on

Networks, 11(1):17–32, 2003.

[SMM07] Giuseppe Sollazzo, Mirco Musolesi, and Cecilia Mascolo. Taco-dtn: A time-

aware content-based dissemination system for delay tolerant networks. In Mo-

biOpp: Proceedings of the 1st International MobiSys workshop on Mobile Op-

portunistic Networking, pages 83–90, New York, NY, USA, June 2007. ACM.
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