Numerical modeling of cohesive sediment transport along a mud
dominated coast
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Introduction

Mud banks are a coastal morphological feature along the 1600 km long Amazon-Orinoco coastline.
They migrate by (dominantly wave-induced) erosion of their trailing edge (i.e. the eastern side) and
deposition on their leading edge (i.e. the western side) at an average rate of the order of 1 km/yr.
These mud banks mostly consist of cohesive sediment, that is relatively easy entrained by currents
and waves. As a result the suspended cohesive sediment concentration increases above mud banks.
Moreover, suspended cohesive sediment concentrations are also determined by residual transport
from the sediment discharge from the Amazon river, where all the cohesive material originates
from. It is estimated that about 20% of the sediment discharge by the Amazon river is transported
along this coastline by the North Brazilian Current and the Guiana Current. Modeling these
processes on the scale of the continental shelf requires boundary conditions that differ from the
conditions set on a coastal scale. In this research a free surface gradient has been applied in two
directions: 1) a gradient in the downstream direction to mimic the Guiana current, and 2) a gradient
from the shelf boundary to the coastline. These free surface gradients combined with the tidal
database of Le Provost et al. (1995) were implemented to model currents for the coast of Suriname
in the TELEMAC-2D hydrodynamic modeling software. Waves were also simulated by using
TOMAWAC modelling software. The wave simulations were done with the following wave
characteristics: peak period of 8 seconds, and a significant wave height of 1.5 meters. The sediment
transport modeling software SISYPHE was used together with the TELEMAC-2D and TOMAWAC
software to model suspended cohesive sediment transport. The results generated with these free
surface gradients produced results that reflect the qualitative descriptions of suspended cohesive
sediment transport in literature.

Shore parallel littoral currents and suspended sediment transport

The free surface gradients in both downstream and cross-shore directions were imposed on the
model boundary. In particular, the insight of the cross-shore surface gradient was adapted from the
study of the North Brazilian rings by Fratantoni et al. (2006) and wind driven currents in large
oceans (Segar, 2012). Instead of implementing equations to model the North Brazilian rings and
wind driven currents, a log-distributed water level gradient, perpendicular to the coast, of on
average 1:5.10° was imposed on the cross-shore boundaries. In this way the model calculated a
shoreward directed current in agreement with computed patterns within the domain and with
observations. In addition, the imposed eastward surface gradient was about 1:4.107. Implementing
both free surface gradients together with the new friction law proposed by Bi and Toorman (2015)
in the TELEMAC-2D hydrodynamic modeling software, resulted in a dominant westward flowing
littoral current (Figure 1).

The sediment transport modeling software SISYPHE was internally coupled to both the TELEMAC 2D
and TOMAWAC modelling software to simulate cohesive sediment transport. An influx of cohesive
suspended sediment was imposed on the upstream cross-shore boundary; this influx was set to a
concentration of 0.02 g/l for only ten boundary nodes on the upstream cross-shore boundary.
Furthermore, mud banks were implemented as erodible layers which could be eroded by bed shear
stresses larger than 0.1 N/m?. The model result of these implementations is illustrated in Figure 2.
The simulated littoral and tidal currents, and waves kept the suspended sediment transport parallel
to the coastline.

Implementing these water level gradients on the boundary illustrate one successful way of
simulating large scale littoral currents and suspended cohesive sediment transport.
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Figure 1: Modeled velocity vectors for large scale coastal model (after 92 simulated days).
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Figure 2: Simulated suspended cohesive sediment concentration (after 92 simulated days).
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