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Abstract 

The effects of temperature and salt concentration on the growth of relevant strains of L. monocytogenes and Listeria 
innocua, were quantified based on growth in a liquid broth medium, monitored by measuring turbidity. Absorbance 
curves were used to estimate maximum growth rate and lag time. The growth rates increase with increasing 
temperatures. The levels were quite similar for both species, although L. monocytogenes showed higher growth rate 
than L. innocua at 4ºC. Lag time was more affected both by temperature and salt concentration, and these effects 
were most prominent for L. innocua.  
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1. Introduction 

Listeria monocytogenes remains a challenging pathogenic organism for the seafood industry. Due to its 
ubiquitous presence, potential to contaminate products after processing, and ability to multiply at 
temperatures as low as 0ºC [1], it is a target for control in many ready-to-eat (RTE) foods, including 
seafood products [2]. Smoked salmon is produced by salting, smoking, trimming and slicing of fillets. 
Salting is normally carried out by dry salting or injection salting [3]. 

Producers of RTE foods are advised to document that the maximum content of L. monocytogenes 
should not exceed 100 CFU/g at the end of the given shelf life period [4-6]. This implies that both the 
inactivation of potential Listeria present on the product as well as the growth limitations of potential 
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survivors are critical factors to ensure food safety. The effect of salt on the growth dynamics of potential 
pathogens like L. monocytogenes is of importance to exposure assessment. The growth probability of L. 
monocytogenes has been found to be comparable in cooked salmon and in liquid media (TSB) with 
relevant levels of salt and phenol added, but only at temperatures higher than 12ºC [7]. The same study 
also showed that the growth of L. monocytogenes was more profoundly affected by salt content and 
storage temperature, than by phenol content.  

In recent guidelines for shelf life determination of RTE-products, documentation of growth potential of 
L. monocytogenes is recommended to be obtained either through actual challenge studies, or through 
modelling [4]. In this context the applicability and precision of growth models for L. monocytogenes is of 
vital importance for food safety. Generating data for model building based on culturing Listeria in the 
relevant food products is one approach. Less labour intensive is to grow bacteria in growth media and 
monitor their growth responses through measurements of optical density [8]. Validated growth models 
have been published for L. monocytogenes in seafood products [9-11]. Given the slow growth response of 
Listeria at refrigerated storage temperatures, good models for estimation of growth parameters from 
optical measurements is still of interest for screening, e.g., strains and new preservation conditions. 

The objective of this work is to study the effect of temperature and salt concentration on the growth of 
Listeria. The strains investigated originate from or are relevant for salmon processing. The current study 
focuses on Listeria growth in a liquid medium model system. 

2. Material and Methods 

2.1. Strains 

L. monocytogenes strains (5, 11, 14, 15, 21, 26, 44, 51-2) isolated from salmon and salmon processing 
environment were obtained from the National Institute of Nutrition and Seafood Research (Norway). 
Their origin and description are shown in table 1. 

Table 1. Origin and description of Listeria monocytogenes strains used in this study. 

Origin Factory Code 

Fish, ungutted A 1BR5 

Fish, to be "gravad" A 1BR26 

Fish, swab of fish at filleting line A 2BR14 

Fish, gutted fish on gutting line B 3BS44 

Environment, table for deheading A 1BR11 

Environment, slicing machine in slicing room A 1BR56 

Environment, forceps for picking bones A 2BR21 

Environment, conveyor belt manual gutting line C 2HF15 

Environment, surface sorting box after grader B 3BS51-2 

 
Sequencing of 16S identified the strains as foodborne L. monocytogenes, serotype 1/2a, and Multiple 

Loci VNTR analysis divided the strains further into 8 different subtypes. In addition and due to their 
relevance as model organisms [12;13], two L. innocua strains, ATCC 33090 and CCUG 35613 (= ATCC 
51742) were included in the experiments and investigated with respect to their growth kinetic properties.  

The cultures were stored frozen at -80ºC in cryovials (Microbank, Pro-Lab Diagnostics, Canada). 
Before each experiment a frozen bead was recovered in Tryptic Soy Broth (Oxoid, Basingstoke, UK) with 
0.6% yeast extract (Merck, Darmstadt, Germany) (TSBYE, 10 ml) at 37ºC over night. 
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2.2. Bioscreen-experiments 

Each overnight recovered suspension was inoculated in a 100 mL erlenmeyer flask containing 25 ml 
TSBYE and grown to stationary phase (growth conditions: 20h/30ºC/150 rpm). 10-fold serial dilutions of 
the inoculum were prepared in TSBYE with 0, 2.5 and 5 % (w/v) NaCl. 5 dilutions (10-1 to 10-5) of each 
strain were transferred to 100 well microtiter plates (300 L in each well). The microtiter plates were 
mounted in a Bioscreen C (Oy Growth Curves Ab Ltd., Helsinki, Finland) programmed to measure 
absorbance at 600 nm (abs600nm) at regular time intervals. Prior to each measurement, the plates were 
shaken for 10 seconds (default setting). The temperatures investigated were 4, 12 and 30ºC. When 
experiments were conducted at sub ambient temperatures, the Bioscreen C was placed in an incubator 
(ICP 600, Memmert GmbH + Co. KG, Schwabach, Germany) with temperature setting close to the set-
point temperature of the Bioscreen.  

For each strain a calibration curve was set up to relate turbidity measurements (abs600nm) to total viable 
cell counts (TVC) on Tryptic Soy Agar (Oxoid, Basingstoke, UK) with 0.6% yeast extract (Merck, 
Darmstadt, Germany) (TSAYE). This calibration curve was used to determine the initial cell 
concentration (Ni), and the cell concentration at abs600nm = 0.2 (Nturb). The growth parameters, i.e., the 
maximum specific growth rate, max, and the lag time, , were estimated from turbidity measurement data 
(abs600 nm) by determination of the time to detection (TTD) as shown in Figure 1, and by using the serial 
dilution method [14;15] (1): 
 

  (1) 
 

TTDi is the time to detection, i.e., the time it takes for the abs600 nm to reach 0.2.  is the lag time, max is 
the maximum growth rate, Nturb equals the TVC at abs600 nm = 0.2, and Ni is the initial TVC in the well. 
Four dilutions were used to determine each value. In most cases results were obtained using the average 
of 2 parallel wells in 3 independent replicate runs. 

3. Results and Discussion 

Some of the parameters required for the estimations are shown in an actual Bioscreen growth curve 
graph (L. innocua ATCC 33090 in TSBYE + 5% NaCl at 30 C) in Fig. 1. 
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Fig. 1. Turbidity growth curves L. innocua ATCC 33090 in TSBYE + 5% NaCl at 30 C, obtained at Abs = 600 nm.The Time to 
Detection (TTD) is indicated for each of 5 decimal dilutions 
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From equation (1),  and max could be determined by plotting ln(Nturb/Ni) vs. TTD, as illustrated in 
Figure 2 for L. innocua ATCC 33090 in TSBYE + 5% NaCl at 30 C (as above). Based on the regression 
line equation (y = 1.6323x + 2.6177),  and max, were estimated to be 2.6 and (1/1.6323) = 0.61, 
respectively.  
 

0

3

6

9

12

15

18

0 3 6 9

T
T

D
 (

h
)

 

Fig. 2. Example plot of the serial dilution method (equation (1)) for Listeria innocua ATCC 33090 in TSBYE + 5% NaCl at 30 C. 
TTD is the time to detection, Ni is the initial cell concentration and Nturb the cell concentration at abs600nm = 0.2  

For the different salt and temperature combinations under study, no significant differences in max and 
 were observed for the different strains within one species. Therefore, no individual strain results are 

presented, but the results are grouped per species, i.e., L. monocytogenes and L. innocua. This also 
implies that the reported standard deviation values reflect both strain and replicate variation.  

3.1. Growth rate estimations 

The estimated maximum growth rates obtained by using the serial dilution method are presented in 
Table 2. 
 

Table 2: Effect of temperature and salt concentration on the maximum growth rate (mean maximum growth rate, max (h-1) ± SD) of 
Listeria monocytogenes and Listeria innocua strains in TSBYE. 

Temperature (ºC) 
Salt (%) Species 

30 12 4 

0 
Listeria monocytogenes ± 

Listeria innocua ± 

1.03 ± 0.01 

1.05 ± 0.02 

0.185 ± 0.004 

0.179 ± 0.003 

0.042 ± 0.002 

0.034 ± 0.001 

2.5 
Listeria monocytogenes ± 

Listeria innocua ±± 

0.85 ± 0.02 

0.89 ± 0.03 

0.158 ± 0.006 

0.157 ± 0.001 

0.032 ± 0.002 

0.024 ± 0.002 

5 
Listeria monocytogenes ± 

Listeria innocua ±± 

0.49 ± 0.05 

0.62 ± 0.02 

0.124 ± 0.007 

0.119 ± 0.007 

0.025 ± 0.05 

0.010 ± 0.02 

 

ln(Nturb/Ni)
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From Table 2 it can be seen that the maximum specific growth rate decreased with decreasing 
temperature. An approximate 80% decrease in maximum specific growth rate was observed between 30 
and 12ºC. A similar decrease was observed when the temperature was further reduced to 4ºC. Table 2 also 
shows the effect of increasing the salt concentration from 0% to 5%. At 30ºC, this increase in salt 
concentration reduced the growth rate by approximately 50%. A 30% reduction in growth rate was 
observed at 12oC. For L. monocytogenes a similar reduction (30%) was observed at 4°C. Overall L. 
innocua showed a higher growth rate than L. monocytogenes at 30ºC. At 12ºC the growth rates were 
similar for both species, while at 4ºC L. monocytogenes showed the higher growth rates. 

3.2. Lag time estimations 

The estimated lag times obtained by using the TTD method are presented in table 3. 

Table 3: Effect of temperature and salt concentration on lag time (mean lag time,  (h) ± SD) of Listeria monocytogenes and Listeria 
innocua strains in TSBYE. 

Temperature (ºC) 
Salt (%) Species 

30 12 4 

0 
Listeria monocytogenes ± 

Listeria innocua ± 

1.1 ± 0.1 

1.5 ± 0.5 

5.7 ± 0.7 

6.8 ± 1.7 

37 ± 7 

80 ± 8 

2.5 
Listeria monocytogenes ± 

Listeria innocua ±± 

1.3 ± 0.2 

1.7 ± 0.3 

6.5 ± 1.4 

10.0 ± 0.7 

23 ± 11 

35 ± 18 

5 
Listeria monocytogenes ± 

Listeria innocua ±± 

1.0. ± 0.5 

2.2 ± 0.5 

9.9 ± 1.6 

15.5 ± 2.4 

48 ± 26 

71 ± 24 

 
For L. monocytogenes the lag time increased with decreasing temperature. From Table 3 it can be seen 

that the increase is approximately 5-fold from 30ºC to 12ºC and 3-8 fold between 12 and 4ºC. Salt 
concentration also affected the lag time of L. monocytogenes. At 30°C, however, the estimated lag time 
values were in the same range for the different salt concentrations. The increase in lag time between 0 and 
5% salt was approximately 2-fold at 12ºC. While at 4ºC, an increase was observed between 0 and 5% salt, 
this was not reflected at 2.5%. However, for these data (2.5 and 5% salt at 4ºC) additional replicated 
experiments still have to be included. For L. innocua an increase in lag time can also be seen for 
decreasing temperature. The increase was approximately 5 fold from 30 to 12ºC. From 12 to 4ºC the 
increase was between 4 and 10-fold. At 30ºC the increase in salt concentration from 0 to 5% resulted in 
increase of the lag time from 1.5 to 2.2. The lag time estimate showed a 2-fold increase for the same 
increase in salt concentration at 12ºC. At 4ºC, collection of additional data will permit elucidation of 
effects of salt concentration. In general the lag time of L. innocua increased more than that of L. 
moncytogenes with increasing salt concentration and decreasing temperature.  

4. Conclusion 

The results show an increase in growth rate of Listeria with increasing temperatures. The levels were 
quite similar for both species, although L. monocytogenes showed the higher growth rate at 4ºC. Lag time 
was more affected than growth rate; both by temperature and salt concentration, and these effects were 
most prominent for L. innocua. 20 to 40 fold increase in lag time was observed when temperature was 
decreased from 30 to 4ºC. Increasing salt concentration from 0 to 5% approximately doubled the lag time. 
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The different growth responses shown by L. innocua and L. monocytogenes must lead to caution with 
respect to the potential use of L. innocua as a model organism for L. monocytogenes when studying the 
effects of storage temperature and salt concentration, and this mainly due to the likelihood of 
overestimating the lag time. As temperature and salt are the major factors for controlling growth of 
Listeria in salted fish products, their specific content is relevant to product development and food safety.  
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