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Marine ecosystems are increasingly threatened by the cumulative effects of multiple human pressures. Cumula-
tive effect assessments (CEAs) are needed to inform environmental policy and guide ecosystem-based manage-
ment. Yet, CEAs are inherently complex and seldom linked to real-world management processes. Therefore we
propose entrenching CEAs in a risk management process, comprising the steps of risk identification, risk analysis
and risk evaluation. We provide guidance to operationalize a risk-based approach to CEAs by describing for each
step guiding principles and desired outcomes, scientific challenges and practical solutions. We reviewed the

treatment of uncertainty in CEAs and the contribution of different tools and data sources to the implementation

Keywords:

Risk management process
Science-policy interface
Standardized framework

of a risk based approach to CEAs. We show that a risk-based approach to CEAs decreases complexity, allows for
the transparent treatment of uncertainty and streamlines the uptake of scientific outcomes into the science-
policy interface. Hence, its adoption can help bridging the gap between science and decision-making in
ecosystem-based management.

ﬁ;rlrsﬂnology © 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

Uncertainty (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction an essential part of the impact assessment toolbox, debate remains with

Environmental change driven by growing human pressures on ma-
rine ecosystems and their cumulative effects raises worldwide con-
cerns. Integrated and spatially-explicit assessments of these effects are
urgently needed to inform strategic planning and marine conservation
(Giakoumi et al., 2015b; Halpern et al., 2008a; Katsanevakis et al.,
2017; Korpinen and Andersen, 2017; Micheli et al., 2013). Cumulative
effect assessments (CEAs) are defined as holistic evaluations of the com-
bined effects of human activities and natural processes on the environ-
ment, and constitute a specific form of environmental impact
assessments (EIAs) (Jones, 2016).

In marine realms, multiple policy drivers for CEAs exist from global
and regional to national levels (Judd et al,, 2015). For instance, the Unit-
ed Nations Convention on the Law of the Sea (UNCLOS; Articles 204-
206) outlines a clear responsibility for Member States to assess potential
threats to the marine environment and communicate the results of such
assessments to other parties. While UNCLOS does not explicitly refer to
CEAs, it is clear that cooperation and communication among States is es-
sential to avoid the over-exploitation of resources. To best manage these
resources, the most up-to-date, appropriate, and widely accepted
methods of assessment and analysis should be used.

Despite their utility and critical need, the operationalization of CEAs in
marine ecosystems remains one of the key challenges for scientists and
policy makers worldwide. Although CEAs have long been recognized as

regard to the processes and frameworks to be used. The nature of the ma-
rine environment, in particular its vast openness with high connectivity of
marine ecosystems, and the large heterogeneity and uncertainty in bio-
physical processes add additional complexities and challenges for CEAs
(Carr et al., 2003; Stock and Micheli, 2016). A wide range of frameworks
have been developed to assess cumulative effects on marine ecosystems,
often also referred to as cumulative impact assessments (Halpern et al.,
2008a; Stock and Micheli, 2016). This plethora of approaches has led to
large variation of research agendas of CEAs (Foley et al., 2017) and
makes comparisons among methods and the results they deliver difficult
(Stock and Micheli, 2016).

Cause-effect pathways of multiple human activities on sensitive eco-
system components are often complex, involving a combination of addi-
tive, synergistic and antagonistic impacts on ecosystems (Crain et al.,
2008). Thus dynamic research languages, methods and models span-
ning across disciplines are required. Although a unified and broadly ap-
plicable CEA methodology is most probably not feasible, the
improvement of guidelines and best practices to facilitate CEA applica-
tions are urgently needed (Foley et al., 2017; Jones, 2016; Judd et al.,
2015; Portman, 2011; Stelzenmiiller et al., 2010).

The application of an environmental risk assessment framework to
CEAs is a promising approach to align the assessment of the risk of cu-
mulative effects with the required management actions (Judd et al.,
2015). Here, we advance this thinking by entrenching CEAs in an
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overarching risk management process, comprising the core steps of risk
identification, risk analysis and risk evaluation (Fig. 1) (Cormier et al.,
2013). To support a practical implementation of this risk-based ap-
proach to CEAs, we provide a description of the required tasks and de-
sired outputs for these steps, identify scientific challenges and
synthesize practical solutions. In addition, we also provide a broad re-
view of the types of tools useful to implement the respective CEA
steps, recognizing the range of available types of data.

The development of a standard glossary of CEAs key terms is a pre-
requisite for the transfer of knowledge, assessment approaches and ex-
pertise across management boundaries, stakeholders, and organiza-
tions. In particular, an inconsistent use of terms can pose barriers to
the communication of outputs (Foley et al., 2017; Judd et al., 2015).
An example for linguistic ambiguity is the use of the terms “pressure”,
“activity” or “threat” in EU marine policies (EU 2011/92). Here we
offer a glossary of 37 terms which are both often used in CEAs e.g.
(Korpinen and Andersen, 2017) and pertinent in a risk management
process (ISO 31000 standard; International Organization for Standardi-
zation (ISO), www.iso.org) (Appendix A).

Another important aspect still insufficiently treated in CEAs is uncer-
tainty, which can jeopardize the quality of CEA outputs and consequent-
ly their contribution to overarching management processes.
Uncertainty can be rooted in inadequate knowledge, low predictive
ability of ecosystem behavior, natural variability, measurement error,
or changing policies (Halpern and Fujita, 2013; Opdam et al., 2009;
Stelzenmiiller et al., 2015). We address this gap and provide a synopsis
of uncertainty treatment in CEAs.

In this study we present a comprehensive and standardized guid-
ance for CEAs that allows the bridging of scientific approaches and de-
fining of required outputs more precisely. Standardization facilitates
informed decision-making in the management of the risk of cumulative
effects in marine realms (Ban et al, 2010; Foley et al., 2010;
Katsanevakis et al., 2011).

2. Recognizing and handling uncertainty in cumulative effect
assessments

Building on a review of marine CEAs (Korpinen and Andersen,
2017), we assessed the current gaps and challenges for treating uncer-
tainty in CEAs from a total of 41 peer reviewed studies and five project
reports. Nine out of these 46 studies did not refer to uncertainty and
thus were not further considered. We defined ten criteria related to
methodological assumptions and data quality (based on Stock and
Micheli, 2016) and evaluated (yes/no) the remaining studies (a) if un-
certainty was acknowledged in the CEA, and (b) if its impact on overall
CEA results was assessed (Table 1). While uncertainty was acknowl-
edged in the vast majority of studies (36 out of 37), only 26 studies
attempted (at least partly) to assess it (Fig. 2). Only six studies (out of
26) assessed more than two sources of uncertainty and overall not
more than four sources. Different methodologies were applied to ad-
dress uncertainty in CEA results, such as Bayesian models (e.g.
McManus et al., 2014), expert judgment (Knights et al., 2015), Monte
Carlo simulations and sensitivity analyses (Stelzenmiiller et al., 2010).
Also, the aggregation of uncertainty and its impact on CEA results
were considered (Andersen et al., 2013; Halpern et al., 2015; Kelly
et al,, 2014; Knights et al., 2015). From our analysis three key messages
can be distilled. First, there is a wide recognition of uncertainty
sources, showing the awareness of the inherent complexity of the
studied systems and the potential biases introduced by the chosen
methods and data. Second, only a limited number of studies actually
assess uncertainty related to generated outputs. Third, we revealed a
clear gap between the sources of uncertainty recognized and the
types of uncertainty assessed, and the need for further developing
methodological frameworks and tools for adequate uncertainty as-
sessments in CEAs.

(—)| Ecosystem based management context
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Fig. 1. Conceptual embedding of a cumulative effects assessment (CEA) into an ISO
standard risk management process. The CEA forms an integral part of the
framework, comprising the three basic steps of risk identification, risk analysis, and
risk evaluation.

3. Arisk-based approach to cumulative effect assessments

We emphasize embedding CEAs in an overarching ISO standard risk
management process which comprises the three steps of risk identifica-
tion, risk analysis and risk evaluation (see Fig. 1). The risk management
process as a whole aims to reduce the risk of failing the management
objective i.e. to manage cumulative pressures in such a way that cumu-
lative effects do not exceed accepted thresholds (Fig. 3). A prerequisite
for a risk-based CEA is an established risk management context that
identifies clearly the relevant policy objectives. Without concrete policy
objectives risk criteria and thresholds cannot be derived for the subse-
quent CEA. Hence CEA results should reveal the probability of occur-
rence and intensity of cumulative effects of multiple human activities
and natural disturbances on defined ecosystem components. Moreover,
the CEA step of risk evaluation should evaluate management proce-
dures regarding potential failure to meet such management objectives
(e.g. conservation targets for certain species or habitats). In other
words, when following the standardized CEA, results should describe
the risk of failing on the management objective to manage cumulative
pressures in such a way that cumulative effects do not exceed accepted
thresholds (see Fig. 3). Thus the proposed consistent procedure allows
the linking of CEA outputs directly with the evaluation and implemen-
tation of management measures, regardless of the CEA context. The
CEA context is defined by the management area, specific ecosystem
components (ecological, social and economic) of concern and the likely
causes of cumulative effects (human activities, but also natural distur-
bances). Throughout the overarching risk management process,
communication is essential for the open exchange of explanatory in-
formation and opinions leading to better understanding and
decision-making. Monitoring and evaluation is another key element
allowing for adaptations of the entire process (see also Cormier et al.,
2013).

We propose a framed CEA that builds upon defined standards, tasks
and outcomes and which can explicitly address the severity of likely
ecological, social, cultural, and economic impacts together with their
legislative and policy implications. However, its practical implementa-
tion has challenges one of which is the identification and assessment
of uncertainty in relation to data, methods, assumptions or outcomes.
Although there is no “one fits all” solution regarding specific methods
or data, we provide general guidance for the implementation of the pro-
posed CEA process by indicating for each step: i) the required tasks and
outcomes for the process, ii) scientific challenges, and iii) practical
solutions.
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Table 1

The treatment of uncertainty was evaluated for a total of 37 CEA studies using ten criteria (based on Stock and Micheli, 2016) related to model assumptions and data quality. The ten criteria
refer to the following sources of uncertainty: (1) Pressure data: The effect of missing pressures data on CEAs; (2) Sensitivity weights: CEA models use sensitivity weights to estimate the
effect of each pressure on each ecosystem component, often derived by expert judgment or models, and thus are often highly uncertain; (3) Spreading of effects from point sources: Un-
certainty on how the effect from a point source decays with the distance from the source; (4) Non-linear responses to pressure: CEA models commonly assume linear responses to pressure
intensity but often responses of ecosystems to pressures are non-linear, this assumption adds uncertainty to the CEA results; (5) Reduced analysis resolution: The effect of the spatial res-
olution of the CEA analysis on the result; (6) Reduced pressure resolution: The effect of low spatial resolution of some pressures (and thus the need of downscaling) on CEA results;
(7) Mean or sum of effects: CEA calculate the human effect scores either as the sum of effects over all ecosystem components that are present in a given cell or as the mean effect across
all ecosystem components, this decision affects the CEA outcomes; (8) Transformation type: Various transformations to make stressors comparable have been applied (e.g. log-transfor-
mation, P-transformation) - the selection of transformation type affects the final result; (9) Modelling multiple pressure effects: Commonly it is assumed that the effects of multiple pres-
sures add up, yet, non-additive effects and interactions are common in nature and models that do not account for them affect CEA outcomes; (10) Spatial distribution of ecological features:
Data gaps in the available maps of ecological features (habitats or species) often results in high uncertainty. For each criterion we explored whether the authors: (R) recognized relevant

sources of uncertainty and (A) assessed the potential impact upon the results; yes = y; no = n.

Pressure  Sensitivity ~ Spreading Nonlinear  Reduced Reduced Mean Transformation ~ Modelling  Spatial
data weights of effects responses  analysis pressure orsum type multiple distribution
from point  to resolution  resolution  of pressure of ecological
sources pressures effects effects features
A A A R A A R A R A R A A

Andersen et al., 2013
Andersen et al., 2017
Aubry and Elliott, 2006
Ban et al., 2010

Batista et al., 2014

Clark et al., 2016
Murray et al., 2015

Coll et al., 2012

Coll et al., 2016

De Vries et al., 2011
Foden et al., 2011
Giakoumi et al., 2015a, b
Goodsir et al., 2015
Griffith et al., 2012
Halpern et al., 2008a, b
Halpern et al., 2009
Halpern et al., 2015
Hayes and Landis, 2004
Holon et al., 2015
Kappel et al., 2012
Katsanevakis et al., 2016
Kelly et al., 2014
Knights et al., 2015
Korpinen et al., 2012
Korpinen et al., 2013
Marcotte et al., 2015
Maxwell et al.,, 2013
McManus et al., 2014
Micheli et al., 2013
Moreno et al., 2012
Murray et al., 2016
Parravicini et al., 2012
Rodriguez-Rodriguez et al., 2015
Selkoe et al., 2009
Stelzenmiiller et al., 2010
Van der Wal and Tamis, 2014
Wuet al,, 2016
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4. Synopsis of cumulative effect assessment tools

Each step of the CEA process calls for different scientific analyses and
expertise, hence requiring a selection of appropriate tools. In turn, the
selection of tools is determined by the ecosystem component/(s) and
available input data (expert knowledge, qualitative or quantitative)
being assessed in the CEA. We provide a synopsis of methods and
tools applied in CEAs resulting from an extensive review of 154 studies
and their subsequent quantitative classification regarding the input
data, methods and tools applied in the respective risk management pro-
cess (methods and results are described in Appendix C and classified
references are provided in Appendix D). Our results (Table 2) demon-
strated that: 1) expert knowledge and qualitative data are sporadically
or moderately used across the CEA process; 2) the use of Geographic In-
formation Systems (GIS) is almost a prerequisite for CEAs; 3) large gaps
exist in addressing uncertainty in the risk analysis stage and when
assessing the impacts of different management options in risk

evaluation; and 4) novel integrative methods (e.g. a combination of
qualitative data and qualitative modelling to assess ecosystem state
and pressures) have been developed over the past decade to assess
the status of marine ecosystems and some have been applied to fulfil
the different components of CEAs.

5. Risk identification
5.1. Description

Risk identification is the process of finding, recognizing and describ-
ing risks (ISO guide 73). This involves the identification of risk sources,
events (change of particular set of circumstances), and the determina-
tion of causes and consequences. Risk identification comprises also the
identification of the main criteria to be used for the risk evaluation.
Given the risk management and CEA context, risk criteria need to be
specified in relation to specific management goals or policy objectives
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Fig. 2. Proportion of CEA studies recognizing and assessing uncertainty in respect to ten
sources of uncertainty comprising spatial distribution, multiple pressure effect,
transformation type, mean/sum of effects, pressure resolution, analysis resolution,
responses to pressures, spreading of effects, sensitivity weights, and pressure data
(based on Stock and Micheli, 2016; see Table 2).

for ecosystem components and services (see Cormier et al., 2013). In
Fig. 4 and Appendix B an example of the adoption of risk criteria to as-
sess the vulnerability of nursery areas of plaice (Pleuronectess platessa)
in the Southern North Sea is shown. A key task to risk identification is
the establishment of the cause-effect relationships or pathways of
risks to describe the vulnerability of ecosystem components to
pressures.

5.2. Scientific challenges

Pathways of risks are uncertain since spatio-temporal dynamics of
ecological processes (e.g. sensitivity to a contaminant can be high in
summer and low in winter) and the associated distribution and relation
between effects (additive, synergistic or antagonistic) can alter the
cause-effect relationships and therefore the pathways of risks (Jodo,
2007; Tzanopoulos et al., 2013) (see Fig. 3). The lack of full coverage

Uncertainty of
additional
management
measures

Existing
management,
measures

Risk of cumulative effects

Total pressure load
A

IActivitv 1| |Activityn| ‘ Activity n+1 l

Natural disturbance

Fig. 3. Implemented management measures maintain the risk of cumulative effects
resulting from human pressures and natural disturbance at accepted levels. Changes to
the total pressure load e.g. due to a newly implemented activity (activity n + 1), can
trigger deviations to cause-effect relationships (indicated by light grey, grey and black
lines). Consequently the risk of cumulative effects can exceed accepted levels calling for
new management measures. The uncertainty of cause-effect relationships can be
transparently handled with a risk based approach to CEAs that entails structured risk
evaluation.

of spatial and temporal data for most CEAs adds to the challenge of
deciphering cause-effect pathways. Most systematic monitoring rarely
spans the past few decades failing to encompass the life spans of
many species or important environmental disturbances such as e.g. El
Nifio-Southern Oscillation (Jackson and Hobbs, 2009). As a result, the
definition of meaningful benchmarks or tipping points is often difficult,
compromising the quantification of pressure-state relationships
(Dayton et al., 1998; De Young et al., 2008). Hence, a deeper consider-
ation of the non-linearity between pressures and their effects at differ-
ent scales is critical for improving risk identification. Table 2 shows
that the predictive ability of various models and CEA tools largely de-
pends on the type and quality of the input variables. A key scientific
challenge is outlining a transparent approach for the implementation
of a standardized CEA assessment, acknowledging that assumptions
might be insufficiently grounded (Halpern and Fujita, 2013).

5.3. Practical solutions

Disentangling cause-effect pathways is supported by a number of
conceptual frameworks (e.g. Driver Pressure State Impact Response
(DPSIR); Patricio et al., 2016) which provide guidance on how to link
‘driving forces’ to generic ‘pressures’ and to physical, chemical and bio-
logical attributes, and then translate the impacts into policy responses.
Fundamental for the proximate assessment is the common understand-
ing that the vulnerability of an ecosystem component is defined by the
degree of exposure to a pressure, its sensitivity and recovery potential
(De Lange et al., 2010) (see CEA glossary provided in Appendix A).
The sensitivity to a pressure depends on structural properties, functions
or trophic relations of the ecosystem components while recovery can be
the result of population rebound, resilience, positive feedback loops and
adaption (Tyler-Walters et al., 2001). As opposed to single ecosystem
components, defining the vulnerabilities of ecosystem functions or ser-
vices has received less attention in current CEAs. Some studies assessed
the effects of single or multiple pressures on ecosystem function, goods
and services with the help of functional trait approaches (Christensen
et al., 2015; Frojan et al., 2011; Hewitt et al., 2016). The adoption of
these methods is often constrained by a lack of fundamental ecological
information, even in very well studied ecosystems (Tyler et al., 2012).
Therefore, promising initiatives collecting trait information and building
data platforms (e.g. databases such as Biotic (www.marlin.ac.uk/biotic),
WOoRMS (www.marinespecies.org) or Arctic Trait Platform (www.sites.
google.com/site/arctictraits/home/the-project)) are crucial for the de-
velopment of trait-based approaches in CEAs and could offer a compre-
hensive alternative for risk identification.

Once the pathways of risk are identified, the risk criteria can be
assessed with the help of qualitative data using, for instance, expert
knowledge or published data (see Fig. 4 and Appendix B). Recent ad-
vances have been achieved in the development of models that directly
implement risk criteria and thresholds (e.g. mortality rate is equal, larg-
er or smaller as recoverability rate) using quantitative data to map the
vulnerability of ecosystem components to specific pressures (e.g. sea-
floor communities to benthic trawling; Fock, 2011; Pitcher et al., 2017;
Stelzenmiiller et al., 2014). The use of such quantitative models is facil-
itated by the growing access to regional spatio-temporal data on ecosys-
tem features and human activities via webportal warehousing and the
provision of freely available data sets (e.g. such as Emodnet www.
emodnet.eu at a European scale).

6. Risk analysis
6.1. Description

Risk analysis comprises the comprehension of the nature of risk and
the determination of the level of risk (ISO Guide 73, 2009). This consists

of determining the probabilities of identified risk events, taking into ac-
count the presence and effectiveness of control measures (IEC/ISO
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Table 2

Result of the classification of 154 studies regarding the input data, methods and tools applied in the respective risk management process (all classified references are provided in Appendix
D). Based on the number of references found in a literature review of these tools, we classified their use as: (1) Sporadic, when there were between 1 and 10 studies that used them;
(2) Moderate, when we found between 10-20 studies, and (3) Frequent, when we found more than 20 studies.

Input data Methods and tools
CEA step Tasks Expert Qualitative Quantitative SA- SM-linear SM-no FWM - FWM - Integrative ~ SP-Marxan
knowledge GIS  models linear  qualitative quantitative assessments
tools models
Risk Description of ecosystem 1 1 3 3 2 2 3 3 3 3
identification components
Description of pressures 1 1 3 3 2 1 3 3 3 3
Risk analysis Estimation of pressures 1 1 3 3 1 2 2 3 3 2
Estimation of likelihood of impact 1 2 2 2 1 2 2 3 1
Consideration of uncertainty 2 1 1 1 2 2 3
Risk evaluation Evaluation of impacts on 2 2 2 1 2 1 2 3 3 1
ecosystem components
Evaluation of different 1 1 2 1 1 1 2 2 3 3

management OptiOIlS

Note: SA: spatial analysis, SP: spatial planning; SM: statistical modelling; FWM: food web modelling.

31010, 2009). Thus, risk analysis identifies the actual consequences of
cumulative effects after accounting for the effectiveness of implement-
ed management measures. Existing management measures are consid-
ered to be effective if they succeed in maintaining the risk of cumulative
effects at levels which are compliant with the management objectives.
This is analogous to fisheries management for which management mea-
sures are assessed in relation to fishing mortality and against population
trends and defined allowable catches.

6.2. Scientific challenges

In the marine environment the sourcing and mapping of pertinent
management measures is challenging due to complex governance
structures (Buhl-Mortensen et al., 2017), often revealing mismatches
in scales and in resolutions relative to the assessment at hand. Data of
appropriate spatial and temporal resolution (monitoring data and/or
predictive model output) are, similar to risk identification, a condition
for a quantitative assessment of the effectiveness of implemented man-
agement measures. In the absence of empirical data, eliciting expert
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opinion is commonly used as a way to derive baseline information for
conceptualizing the probability and magnitude of cumulative environ-
mental effects or quantifying the effectiveness of management mea-
sures (Giakoumi et al., 2015a). In these cases a transparent assessment
of uncertainty accounting for both the experts' context and opinion
should be conducted (Stelzenmiiller et al., 2015). The challenge is there-
fore twofold: a) to generate, collate, standardize and share data sets;
and b) to develop and apply methods that combines various data
sources and account for uncertainty.

6.3. Practical solutions

The analysis of existing management measures requires a compre-
hensive review of legislation, policy, and management practices, guide-
lines and thresholds. A “bow-tie” is a graphical model which could offer
the ground for a wide-ranging analysis of the performance of a manage-
ment system. This conceptual model is widely applied in risk analyses,
but largely ignored so far in CEA; it allows mapping out cause-effect re-
lationships that lead to an undesired event with the consequences of

Vulnerability

B Pressure score B Sensitivity score

Fig. 4. Risk identification and risk analysis of the effects of human pressures on nursery grounds of plaice (Pleuronectes platessa) in the Southern North Sea (Gimpel et al., 2013) by
qualitative scoring of nine risk criteria describing their exposure and sensitivity (1 to 3, 3 = high) (Appendix B). All scores (1 to 27, 27 = high magnitude of impact) were combined
for the risk analysis. Alteration was identified to cause a medium level of risk (dashed lines) and the summation of all pressures per grid cell (cumulative pressures) showed an

increased risk for nursery grounds (framed in green).
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failure (Ferdous et al., 2013; Lu et al., 2015). Hence, a bow-tie analysis
can help to order the complexity of relevant legislation measures in re-
lation to the ecosystem components or ecosystem services of concern in
the CEA (Cormier et al., 2013; Gerkensmeier and Ratter, 2016, IEC/ISO
31010, 2009). Our assessment of CEA tools (Table 2, Appendix
C) highlighted that the use of Geographical Information System (GIS)
and overlay analysis is very useful to reveal scale mismatches between
existing management measures and areas with an increased risk for cu-
mulative effects. Besides spatially explicit data, time series and baselines
beyond the temporal limits of implemented monitoring programs are
required. Recent examples show that palaeoecological data could offer
information on ecosystem variability exceeding the length of most
time series, and thus supporting marine risk assessments (Kosnik and
Kowalewski, 2016).

7. Risk evaluation
7.1. Description

The prior risk identification identifies the risk of cumulative effects,
while the risk analysis describes the risk of cumulative effects after ac-
counting for the performance of existing management measures. In
contrast, risk evaluation compares the results of the risk analysis with
the established risk criteria and benchmarks to determine the signifi-
cance of the level and type of risk (IEC/ISO 31010, 2009). Inconsistencies
and gaps between the effectiveness of existing management measures,
the specified risk criteria and the level of risk accepted by society (see
Cormier et al., 2016) are identified. Risk evaluation assists in the deci-
sion about risk treatment and requires also a performance assessment
of new measures. The CEA risk evaluation step delivers a recommenda-
tion to the competent authority on whether new measures need to be
implemented or existing ones need to be enhanced to reduce the risk
of cumulative effects. In a risk management process at this stage a deci-
sion has to be taken by the competent authority on the basis of probabil-
ities and uncertainties (Cormier et al., 2016) and should build on a
participatory process with jurisdictional partners and stakeholders
(Cormier et al., 2013). The recommended measures are further assessed
through risk management (see Fig. 1) where cost-effectiveness analyses
can help to directly propose final management measures.

7.2. Scientific challenges

Risk analysis and risk evaluation involve comprehensive and inter-
disciplinary approaches to evaluate the performance of existing or
new management measures that might represent ecological, social
and economic targets (Katsanevakis et al.,, 2011; Stelzenmiiller et al.,
2013). These approaches often deliver very specific and technical re-
sults, and their communication to responsible authorities and stake-
holders is a key challenge in risk evaluation. The challenge is the
delivery of particular science products to the science-policy interface
and the following rendering of the outcomes of this participatory pro-
cess into technical advice. Different views on evaluating the quality of
the provided evidence often result in scientific and societal debate
(Gluckman, 2016); thus, scientific input is most needed by policy-
makers where science is complex, multidisciplinary, and incomplete.
Discrepancies can arise between scientific recommendations and polit-
ical solutions highlighted by cases where the implementation of man-
agement measures is based on concrete factors (Portman et al., 2012),
for instance when protected areas are designated in resource-poor loca-
tions because there are little or no claims by other sectors. In addition,
some pressures are much easier to regulate (or mitigate) than others
(Prugh et al,, 2010). The degree to which a pressure is manageable de-
pends on the scale of measured implementation and the jurisdiction
of the authority responsible for the uptake of the management action
(Judd et al., 2015; Tulloch et al., 2015). For example, a local government
that has supported and contributed to the CEA may not be in a position

to take the necessary steps to regulate a pressure (e.g. trawling activities
that take place outside of jurisdictional waters).

7.3. Practical solutions

There are a number of tools and methods that facilitate the perfor-
mance assessment of existing and new management measures (Appen-
dix C). For instance, a framework for structured decision making
proposed by Tulloch et al. (2015) can help to evaluate potential man-
agement measures and as such supports a more cost-effective decision
process. Mechanistic ecosystem models (Christensen and Walters,
2004; Fulton et al., 2015a) enable the incorporation of current or future
control or mitigation measures for the assessment of spatial explicit
cause-effect relationships between e.g. fishing and single ecosystem
components (e.g. commercial species) or ecosystem functions (such as
reproduction grounds). Also end-to-end models such as Atlantis can as-
sess management options as requested for a CEA analysis (Fulton et al.,
2011). Another modelling approach that has been successfully used for
environmental risk assessments (Marcot et al., 2006) and the assess-
ment of management scenarios (Pascual et al., 2016) is the use of Bayes-
ian belief networks. The latter enables the incorporation of prior
knowledge allowing for different data sources (e.g. expert judgment,
data from preliminary studies or other locations) and levels of uncer-
tainty, which may be particularly valuable when data are scarce. This
is a powerful approach for CEA analyses, especially from an adaptive
management perspective. Our analysis showed that the use of GIS and
specifically the use of planning tools, such as Marxan and Zonation, en-
able a spatially explicit evaluation of management options (Table 2 and
Appendix C). In any case, effective communication of candidate man-
agement measures and building consensus on clear recommendations
require participatory processes (Fulton et al., 2015b) so that the simple
use of a spatial explicit decision support tool may not be enough or may
be only the start of the evaluation of management options. Other exam-
ple tools for structured science-based stakeholder dialogues are rational
actor paradigm, Bayesian learning (Pascual et al.,, 2016), organizational
learning (see Welp et al, 2006), and qualitative modelling
(Dambacher et al., 2015) (see Appendix C).

8. Conclusions

Worldwide policy mandates at different jurisdictional levels and
scales call for CEAs in marine realms. As a result, there have been an in-
creasing number of CEA endeavors across regions and ecosystems. De-
spite methodological advancements, they often lack some key
features. For instance, our review revealed a clear divergence between
the sources of uncertainty evident in CEAs and the ones actually ad-
dressed. More importantly, we highlighted a lack of standardization of
processes when conducting CEAs. The risk-based approach to CEAs pro-
posed here helps to standardize procedures and allows treating uncer-
tainty in a more transparent manner since our framework comprises
key definitions of terms, criteria, standards, and required outputs. Our
approach specifically acknowledges uncertainty in cause-effect rela-
tionships and highlights the need to account for management measures
in such analyses. We show that entrenching CEAs in a risk management
process reduces complexity, allows for the transparent treatment of un-
certainty and streamlines the uptake of scientific outcomes for an im-
proved the science-policy interface. In conclusion, a risk-based
approach to CEAs can help bridge the gap between theory and practice
in ecosystem based management.
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