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Foreword

The development of the instrumental methods of spectrophotometry and gas-liquid
chromatography in the last two decades allowed a complete and rapid determination
of the fatty acid composition of fats and oils and gave a tremendous impulse to fat
chemistry and fat analysis. In the beginning of this new period, however, expectations
for the use of infrared spectrophotometry in this field were not very high. Except for
trans-unsaturated compounds, natural fats of different origin are similar in structure,
so that their infrared spectra would not differ significantly. At that time, therefore,
spectrophotometric and chromatographic methods were hardly used in fat research
because of the expense and complexity of apparatus.

Developments in the field of solid state spectra, in the sixties, in particular the work
of Chapman, gave a new dimension to the infrared analysis of fatty products. His
work has helped considerably to sort out confusions about crystalline forms of tri-
glycerides. He was able to determine the structure of natural fat components by
infrared-spectrophotometry where other methods had failed.

The author of this book persued this subject and completed it in such a way that
we now have at our disposal a list of infrared spectra of all monoacid triglycerides
from triacetin up to tribehenin in their various phases, either liquid or crystalline,
Special attention has been paid to the assignment of the absorption bands in infrared
spectra of solid state triglycerides to definite molecular vibrations. This had already
been done for long chain molecules as hydrocarbons, but not for triglycerides. Recently
little has been published about vibrational analysis of more complex compounds.
This might be caused by a ‘brain drain’ to other fields of interest, especially nuclear
magnetic resonance and mass spectrometry, or because much basic information was
already available and new knowledge could only be achieved by laborious and minute
investigations.

At the Netherlands Government Dairy Station (Rijkszuivelstation) at Leiden the
problem of the detection of foreign fat in milk fat and of the adulteration of natural
fats in general has been studied for about sixty years. The main reason for this interest
is the guarantee given by the Netherlands Government for the genuineness of exported
dairy products. During the first half of this century there was no comprehensive system
for the analysis of natural fats. Often the composition of an unknown mixture of fats
could not be determined completely and with certainty, as a consequence of which
adulterations could not always be proved. For the detection of adulteration the
analysis of the minor constituents of fats in the unsaponifiable fraction: the sterols,
was chosen in this institute around 1910. These compounds often show more distinc-
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tive characteristics than the fatty acid composition of the glycerides themselves.
Investigations in this institute on sterol technique were described by Den Herder,
Roos, Riemersma and Copius Peereboom, showing several specific ways for detection
on estimation of adufteration.

From the data gathered in the study, it should become possible to test fats, such
as milk fat and lard, for adulteration with beef tallow, which cannot be detected by
the sterol method. Specially made mixtures of these fats have been analysed satis-
factorily; good prospects, however, still have to be confirmed by further investigations
taking into account the influences of origin and seasonal variability.

I trust that De Ruig’s book ‘Infrared spectra of triglycerides; with sorae applications
to fat analysis® will provide food control authorities, trade and industry with some
new possibilities for testing fats. The author’s contribution to the understanding of
infrared spectra of triglycerides, both by experiments and theoretical consideration,
is worthy of the attention of scientists in this fields.

J. G. van Ginkel
Director of the Government
Dairy Station

Leiden (the Netherlands)
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1 Introduction

1.1 Natural fats

Natural edible fats and oils are substances of animal or vegetable origin. As early
as 1823 Chevreul established that they were composed of glycerol esters of fatty acids.
Nowadays fats are known to consist of about 959 triglyceride, with the general
formula

o)
|
o C—0—C—R
f l
R,—C—0—C o

C—0—C—Ry

where R;, Ry and Ry are hydrocarbon chains, which can be either saturated or
unsaturated, straight or branched. Free acids, monoglycerides, and, more rarely,
diglycerides, may also be present. In the ‘unsaponifiable matter’ there are smaller
or larger proportions of sterols, fatty alcohols, hydrocarbons, phosphatides, colouring
matters, and other minor components,

In general the term ‘fats’ refers to materials which are solid, and the term ‘oils’
for those which are liquid at room temperatures. As this is not a rigid distinction,
I will use the term ‘fats’ and ‘fatty products’, to include both. Differences in the
market value of natural fats can tempt people to mix relatively expensive fats with
lower-priced fats. Reliable and sensitive analytical detection methods can be helpful
to withstand these temptations. From the controller’s viewpoint these methods are
even required.

The problem whether or not fats are mixed with fats of other origin is not equally
important for all fats, For those used as raw materials in manufacturing complex
nutritive fats, such as margarine and shortenings, nature and purity are less important
than their properties. On the contrary, much value is attached to the purity of milk
fat, which should not be mixed with other fats in milk products, such as butter, butter
oil, cheese, condensed milk and dried milk. Olive oil, cocoa butter and lard should
also be free from foreign fats.




1.2 Classical characteristic values

The analysis of fats and the detection of foreign fats are strengthened on the one
hand by the great natural variability in the composition of the same kind of fat and on
the other hand by the similarity of different fats. In the early stages of fat analysis
knowledge of chemical composition and structure of fats was limited and the analyt-
ical equipment was restricted. Yet indications about the character of the fats were
needed. Over the years a number of so called ‘characteristic values’ were found to
distinguish fats and to detect the admixture of foreign fats. Among these the following
are mostly used.

The Reichert-Meissl-Wollny value (RM.W.) indicates water-soluble volatile fatty
acids in saponified matter (in milk fat mainly butyric acid, further caproic and caprylic
acid).

Similarly the Polenske value indicates water-insoluble volatile fatty acids (caproic
and higher).

The saponification value (S.V.} measures the chain length of fatiy acids, whereas
the jodine value (1.V.} indicates the degree of unsaturation.

The refractive index depends both on chain length and unsaturation.

The genuineness of lard can be demonstrated by the Bémervalue, defined by

BV. =8, 4+ 2(S;— 57)
where '

S; = melting point of the saturated fraction insoluble in diethyl ether of the
glyceride and

Sy = the melting point of the fatty acids thereof.

A number of characteristic values for some well known fats are collected in Table 1.

Table 1, Characteristic values of several natural fats (AOCS, 1946).

£

3 = 2 — B
E 3 ,g . g g Ex
B % @ g » g ® S 5
= % = =) % g T g g3
™ s & B S & 5 =
Milk fat 26 -34 1.5- 3.7 210-232 26 - 40 1.453-1,457 3342
Beef tallow <1 - 150-200 33 - 47 1.450-1.458 40-51
Lard <1 - 190-203 53 - 68 1.448-1.460 59-68
Cocoa butter 0.2- 1.5 0.5 192-200 32 - 40 1.456-1.458 4148
Coconut oil 6 -8 14 -18 248-264 7.5- 10.5 1.448-1.450 6-10
Palmkernel oil 4 -7 9 -12 243-255 14 - 23 1.449-1.452 13-19
Palm oil < 0.5 < 0.5 196-202 45 - 56 1.453-1.459 48-38
Olive oil <1 < 0.5 150-196 79 -90 1.460-1.464 83-91
Soyabean oil <1 <1 189-195 127 -138 1.465-1.470 82-90
Rapeseed oil <1 < 0.5 168-180 97 -108 1.464-1.468 90-98




To detect’foreign fats, it has turned out to be successful to investigate the unsaponi-
fiable matter instead of the glycerides itself. Animal fats are accompanied by choles-
terol, whereas there are phytosterols (e.g. f-sitosterol, campesterol, stigmasterol) in
vegetable oils.

By analysis of the sterols animal fats can be distingunished from vegetable fats and
the presence of vegetable fat in animal fat can easily be shown. As some vegetable
fats also contain cholesterol, the reverse is not the case. And of course the problem
of the detection of animal fat in other animal fat is not at all solved by this method.
This problem is still of interest for fat chemists,

1.3 Modern analysis of fats

Modern analytical methods have resolved the composition and structure of fatty
products. The fatty-acid composition could be determined by gas-liquid chromato-
graphy, for which the triglycerides are first converted into methyl esters. Nowadays
also the triglyceride composition can be determined by this technique.

The crystal structure of solid glycerides has been analysed succesfully by X-ray
diffraction, and very recently also by electron-diffraction methods (cf. Chapter 2),
Also other modern, mostly instrumental, methods of analysis have been applied to
fat analysis. Among these are differential-thermal analysis, thin-layer chromatography,
ultraviolet and infrared spectroscopy, nuclear-magnetic resonance and mass spectro-
scopy. One of the main tasks of the present-day investigators is to ‘tramnslate’ the
classical characteristic values into data obtained by these modern techniques.

As this publication is concerned with infrared-spectroscopic investigations, how
this technique is applied to fat chemistry will be discussed in Section 1.5.

1.4 Standard methods

Very careful instructions for analysis are needed as. the result, particularly the
determination of the classical characteristic values, is often affected by procedure.
Conventions and legislation also promote international standard methods.

A number of international bodies are working on standardization of methods.
Among these are IUPAC!, Codex Alimentarius Committee?, Committee of Govern-
ment Experts on the Code of Principles3, the ISO%, and the IDF3. Standard methods
are also published by several national bodies as e.g. AOCSS and DGF?,

Methods of analysis are also described in a number of standard books on fat
chemistry (E.g. Boekenoogen, 1964, 1968; Bailey, 1950, 1951; Brink & Kritchevsky,
1968; Hilditch & Williams, 1964; Kaufmann, 1958; Mehlenbacher, 1960; Williams,
1966; Wolff, 1968).

Monographs are published in the series Progress in the chemistry of fats and other
lipids (Holman, 1952f).

Methods for the detection of foreign fats in milk fat have been reviewed by Roos
(1963),




1.5 Infrared spectroscopy of fats

When infrared spectroscopy became available as an easy and simple analytical
technique, it was applied to the investigation of fatty products. As the infrared spec-
trum is highly specific for a distinct compound, it is a usefool tool for identification.
The main bands due to vibrations of functional groups have been assigned and are
applied to detection of e.g. monoglycerides, epoxy compounds, branched chains, etc.
by a number of authors. Also problems as the autoxidation of unsaturated oils have
been studied.

Results are reviewed amongst others by Wheeler (1954), O’Connor (1955, 1956,
1961), O’Connor et al, (1955), Chouteau (1961), Chapman (1965b) and Freeman
(1968). The AOCS Instrumental Techniques Committee deals with advances in analyt-
ical applications (O’Connor, chairman, 1970).

An important application is the determination of trans-unsaturated products. This
started with the observation of Rasmussen, Brattain and Zucco (1947) that a strong
band at 967 cm~1 appears to be due to a frans C=C group. A tentative standard
method has been published by the AOCS (1961). Recently a rapid alternative method
is reported {(Allen, 1969). It is possible to distinguish between isolated cis- and zrans-
unsaturation, and even between various forms of conjugated cis-trans-unsaturation,
Adulterations of butterfat can be detected by using these differences (Bartlet, pers.
comm., Bartlet & Chapman, 1961; De Ruig, 1968).

Much information can be obtained from solid-state spectra about the nature and
composition of triglycerides, including the crystalline structure, chain length, and
whether an even or odd triglyceride is present (cf. chapters 2, 5 and 7). Chapman et al.
(1957) showed with solid-state spectra that the major component of cocoa butter
consists of 2-oleo-palmitostearin, and not 2-palmito-oleostearin as was previously
assumed, whereas the latter is the major disaturated glyceride in lard.

At the Netherlands ‘Government Dairy Station’ an examination of natural fats
with infrared spectroscopy indicated that a further fundamental study of infrared

1. International Union of Pure and Applied Chemistry.

2. Joint FAO/WHO Food Standards Programme; Codex Alimentarius Commission:
Codex Committec on Fats and Qils (CX/FO),

Codex Committee on Methods of Analysis and Sampling (CX/MAS),

3, Joint FAO/WHO Committee of Government Experts on the Code of Principles concerning Milk
and Milk Products and associated Standards.

4. International Organization for Standardization:

Technical Committee Agricultural Food Products (ISO/TC 34),

Sub Committee Oleaginous Seeds and Fruits (ISO/TC 34/SC 2),

Sub Committee Milk and Milk Products (ISO/TC 34/SC 5),

Working Group Animal Fats (WG 3) of

Sub Committee Meat and Meat Products (ISQ/TC 34/5SC 6).

5. International Dairy Federation.

6. American Qil Chemists’ Society.

7. Deutsche Gesellschaft fiir Fettwissenschaft.
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spectra would be desirable. Therefore a series of pure monoacid triglycerides were
extensively studied and vibrational analyses were carried out. The following chapters
deal with the results of my studies and some apphcatxons to the detection of animal

fats in other animal fats,




2 The polymorphism of triglycerides

2.1 Earlier investigations

One of the most interesting characteristics of triglycerides is their polymorphism.
Heintz (1849) already reported two melting points for stearin. A solid sample melted
at 51-52° C. After further heating it resolidified and melted again at 62-621° C.

For some triglycerides, Duffy (1853) even found three melting points, e.g. for
mutton stearine at 52.0°, 64.2° and 69.7° C, for beef stearine at 51.0°, 63.0° and 67.0° C.
He noticed that the purer the fat, the more difficult it became to detect the intermediate
point. He assumed that this melting behaviour was due to some form of isomerism.
Dufiy’s excellent work has been either overlooked by later scientists, or else the inter-
mediate form was thought to be due to impurities. So, for many years, only two
melting points were reported for triglycerides, the phenomenon being called ‘double
melting’.

In [915, however, Othmer reported three melting points for tristearin and trimyristin.
In 1928 this was confirmid by Loskit, who added tripalmitin. In 1932, Weygand &
Griintzig claimed that even seven forms existed. However a careful study by Joglekar
& Watson (1930) produced only two melting points for a number of very pure tri-
glycerides.

At the end of the 1920’s, Duffy’s conclusions of eighty years before still gave the
best explanation: there are three forms of monoacid triglycerides with different
melting points, but with the intermediate melting point often difficult to detect,

2.2 X-ray analysis on powder diagrams

About 1930, X-ray analysis became available as new tool of analytical investigation
{Malkin, 1931). Malkin and co-workers studied extensively the multiple melting of
triglycerides, using thermal and X-ray analysis, and showed that polymorphism
accounted for this phenomenon, i.e. different crystalline forms occur for a given
compound. Polymorphism in general means the occurence in either the solid or liquid
phase of two or more physical distinguishable forms for the same substance.

Briefly, Malkin’s method was to establish number and stability ranges of the various
polymorphs by means of cooling and heating curves and, on the basis of this, to
determine differences in structure by X-ray examination (Clarkson & Malkin, 1934;
Malkin & Meara, 1939a, b; Carter & Malkin, 1939a, b). Malkin (review 1954) distin-
guished four solid forms. In order of increasing melting point and likewise increasing
stability these are

6



— a ‘vitreous” form, being not truly crystalline but possessing characteristics of a glass;
- an « form in which the chains are vertical and rotating;

— afi’ form, possessing non-rotating tilted chains (Griintzig, 1939; Clarkson & Malkin,
1948);

- a fi form which is stable and in which the long chains are at an inclination to the
glycerol groups.

Later on, Bailey et al. (1945), Filer et al. (1946) and particularly Lutton (1945) cams
to the conclusion that Malkin was partially wrong in his association of melting points
with X-ray diffraction patterns.

With long-chain compounds, as triglycerides are, the observed spacings may be
‘ classified as “long spacings’ and ‘short spacings’. The first refer to the length of the
) molecules, i.¢. the distance between the planes formed by the methyl groups; the
‘ short spacings relate in some way to the cross-gectional arrangement or the width

of the molecules. The long spacings are usually a linear function of the number of
carbon atoms. In many cases tilting of long chain axes with respect to end group
planes shortens the observed long crystal spacing. The short spacings, being linked
up with the glycerol-head of the glyceride molecules, are practically independent of
the chain length. The geometry of triglycerides and its possible variation from com-
pound to compound cause major variations in crystal structure in the long-chain
direction.

Contrary to Malkin, Lutton (1945, 1950;Lutton & Fehl, 1970} used the X-ray data
of the short spacings as the primary basis for his nomenclature, as follows:

alpha single strong line at about 4.1 A
beta prime usually two (occasionally more) strong lines at about 4.2 and 3.8 A
beta strong (usually strongest) line at about 4.6 A.

It may be noted that initially Lutton (1950) consequently used the full name, e.g.
beta prime rather than §', but confusion nevertheless has occurred. Chapman (1957a)
therefore has suggested the use of a suffix M for Malkin and L for Lutton, Hence a
form of tristearin melting at 64-65° C could be referred to as ay or 7. His proposal
has not been followed by most other authors, however.

The controversy between Malkin and Lutton has led to considerable confusion in
the literature. They based their nomenclature on different principles (Malkin: melting
points, Lutton: X-ray data) and as is apparent from Table 2 they do not match,
except for the form with the highest melting point.

Actually, both systems have their limitations (Larsson, 1965b; Chapman, 1965b).

The deadlock was broken by the introduction of infrared spectroscopy for studying
polymorphism in glycerides.

In 1970, Lutton & Fehl have re-investigated the polymorphism of all saturated
monoacid triglycerides from Cy to Cpp. The earlier results were in the main confirmed;
minor variations in the short spacings were observed (Fig. 1). They reported, how-
ever, an exceptional phase for the stable form of Cy and C;, trigiycerides replacing
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Table 2. Nomenclature for triglvcerides according to Malkin
and Lutton. X-ray and melting data for tristearin.

]

Author Melting X-ray short Name
point species
CCy A
Malkin 54.4 diffuse 4.15 vitreous
65.0 4.15 o
70,0 3.8 and 4.2 B
72.0 4.6 B
Lutton 59.9 4.15 alpha
64 3.8 and 4.2 beta prime
73.1 4.6 beta
1
B EVEN
i
1
B oop: Canst ey
¥
1 [
BODDJC4n-‘I I II
B EVEN I l l '
B opp (notCq,Cyy) | [
Ig,n (Co? I | I
19,11 (Cyy) I | [ l
3 4 5 &

Figure 1. Short spacings of polymorphic forms of monoacid triglyceri-
des Cg-Czo (Lutton & Fehl, 1970).



Table 3. Melting points of monoacid triglycerides (Lutton &
Fehl, 1970; Larsson, 1965b).

Triglyceride a form # form B form
Cy Tricaprylin, —51.0 —180 10.0
Co Tripelargoin —26.0 4.0 10.5°
Cyp Tricaprin —10.5 17.0 320
Ci11 Triundecylin 2.5 27.0 31.00
31.0* 28,5
C; Trilaurin 15.0 .5 46.5
Cy3 Tritridecylin 24.5 41.5 4.5
Ci4 Trimyristin 33.0 46.0 58.0
Cis Tripentadecylin 39.0 51.0 55.0
Cis Tripalmitin 45.0 56.5 66.0
Cy7 Trimargarin 50.0 60.5 64.0
C;5 Tristearin 54.7 64.0 73.3
Cyo Trinonadecylin 59.0 65.5 71.0
Czp Triarachidin 62.0 69.0 78.0
Cz1 Triheneicosanoin 65.0 71.0 76.0
C;; Tribehenin 63.0 74.0 82.5

a, Ig,11 forms, according to Lutton & Fehl.
b. Values reported by Larsson.

the § form, which they call (though inadequately) Iy,;;. The short spacings of this
form are said to be not of the £ type but reminiscent of the #’ form as is obvious from
the figure (see further discussion in Section 3.2).

The melting points of the various forms were also re-examined (Table 3).

Knoop & Samhammer (1961) and Knoop et al. (1966) distinguished five § modifi-
cations, differing only in the long spacings, i.e. in the angle of tilting of the hydrocarbon
chain. The following inclinations were found for tristearin

Bi A Am brv Bv

90° 72°% 59°12’ : 50°23.5 42°50.5
The usual # form is conceived as a mixture of these forms, as is apparant from the
X-ray diagram (Fig. 2), the fig form being dominant. Xnoop & Samhammer’s
supposition that the 8 forms should be monoclinic or rhombic was not confirmed by
other authors.

Gunstone (1964) tried to correlate the polymorphs of glycerides on their long
spacings. He distinguished five groups with different angles of tilting, the five angles
being different from those reported by Knoop et al.; they corresponded with the
am, f'm and Py as follows;

Gunstone’s group v U T S R
angle of inclination 90° 68° 64° 57° 52°
Malkin’s form oM f'm Bm
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Figure 2. X-ray diagram of stearin, indicating the occurrence of five 8 forms (Knoop & Samhammer,
1961).

2.3 Single-crystal investigations

Within a crystal the smallest group of molecules whose repetition at regular inter-
vals in three dimensions produces the lattice is called the ‘unit cell’.

Certain crystals contain structural repetitions within the unit cell, which can be
described by a much smaller ‘subcell’ (Vand, 1951). In triglycerides a subcell can be
constructed describing the periodicity in the hydrocarbon chains. Some types of sub-
cells for various packings of parallel hydrocarbon chains are illustrated in Fig. 3. The
symbols used indicate the symmetry of the subcell and whether all zigzag planes are
parallel (//) or every second plane is perpendicular () to the planes of the others.
In the hexagonal packing the hydrocarbon chains are assumed to be rotating or in
random orientation (Miiller, 1932; Malkin, 1933; Chapman, 1965b).

Powder diagrams are inadequate for determining the dimensions of a unit cell or
a subcell, and single crystals have to be examined.

For triglycerides their preparation is difficult, yet successful single-crystal investi-
gations have been carried out on the 8 form of trilaurin (Vand & Bell, 1951; Larsson,
1563, 1965a) and of tricaprin (Jensen & Mabis, 1963, 1966).

The unit cell of this form was triclinic and contained two molecules. The subcell
was also triclinic and centained two CH, groups. Their packing corresponds with
Figure 3d. The angle between the chains and the a-b plane of the unit cell agreed with
that predicted from the long spacings of powder diagrams.
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From these examinations of single crystals it could be concluded that the tri-
glyceride molecules pack in an asymmetrical tuning-fork configuration, Figure 4. The
molecular arrangements along the b-axis and along the a-axis of the unit cell is shown

in figures 5 and 6.

By the X-ray analysis of single triglyceride crystals only the stable 8 form has been
studied succesfully. In 1970, Buchheim calculated subcell- and unit-cell dimensions
of other forms from electron-diffraction patterns. When using an electron beam in
stead of X-rays, much smaller single crystals are required, but the experimental
difficulties are very much higher.

Buchheim observed an a form, two §’ forms and two £ forms of trilaurin (Table 4).
One of the §’ forms was identical with the former §° form having tilted chains, the
other was a new form with vertical chains. The 8 forms corresponded with the S
and Sm forms reported by Knoop et al. (1961, 1966).

Table 4, Polymorphs of trilaurin (Buchheim, 1970).

Form

Angle
between

hydrocarbon

chain and
base level

a %°

Vertical &'  90°

Tilted ' 62-63°
B 73°
fox 61°

Unit cell

hexagonal

?

orthorhombic

8 molecules per unit cell
a=2293A
b=567A

c=65A

triclinic

2 molecules per unit cell
a=11.60A a=389%°
b= 530A p=85
c= M7A y=9

<olini
2 molecules per unit cell
a=1228A =953
b= 548A p=958°
¢c=318 A y=100°

Orientation of
hydrocarbon
chains with
respect to
adjacent chains

random

perpendicular )

paralfel

parallel

Subeell

hexagonal
a,=b, =484
G =255

¥s = 120°

orthorhombic
| 8, =4.98A
b, = 746 A
c =2.55A

triclinic

a3, =443 g,= 76
" b,=530A B, =107°
G =256A y,=120°
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Figure 5. Molecular arrangement of trilaurin projected along the b-axis (Larsson,
1965a).
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Figure 6. Molecular arrangement of trilaurin projected along the g-axis

(Larsson, 19635a).
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2.4 Infrared spectroscopy

The polymorphism of triglycerides and related compounds revealed by infrared
spectroscopy has been extensively studied by Chapman (see his publications in the
vears 1956-65). In his study on triglycerides such as tristearin he obtained three kinds
of spectra which may be compared with the three X-ray diffraction-patterns (Fig. 7).

The form obtained by quenching the melt from a high temperature to room
temperature gave a spectrum not typical for a vitreous form. In the 1250 cm! region
a regular series of bands occurred, giving definite evidence of crystallinity. As with
spectra of a forms of other long-chain compounds, the CH; main rocking mode was
a single band at 720 cm!. After melting and recrystallization the form transformed
into the stable 8 form. The observations clearly showed that the lowest-melting form
was not vitreous as suggested by Malkin, that its spectrum had much in common
with that of the a forms of other long-chain compounds, that it was crystalline, and
that Lutton had correctly considered it to be an a form. Moreover, this form exhibits
strong birefrigence (Quimby, 1950), which is also inconsistent with a vitreous form,
The single band at 720 cm™! is correlated with hexagonally-packed chains (Chapman,
1957b). Only one band was observed mainly because there was only one chain per
primitive subce!l and a large interchain-distance in this form.

ABSORPTION —=

3000 2000 1000 750
FREQUENCY {cm™}

Figure 7. The polymorphic forms of tristearin {Chapman, 1956c).
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An intermediate form crystallized when the melt was cooled to a temperature
about two degrees above the melting point of the ¢ form. The main CH; rocking
mode in its spectrum was a doublet at 726 and 719 cm~! indicating orthorhombic-
packed (O ) chains and atiributed to an interaction between neighbouring chains
as there are two chains per subcell. As compared with the spectrum of the a form,
the relative intensity of the bands in the 1250 cm™! region had changed and new
bands had appeared. This form of tristearin melted at 65° C and was then transformed
-into the § form. So it could not possibly be a hexagonally-packed or o form, and was
correctly designated a §' form.

The stable § form was obtained by solvent crystallization. Its spectrum differed
from that of the other forms in the relative intensities of the bands in the 1250 cm~1
region. There was also a strong band! at 890 cm~1 absent in the other spectra, and the
main CHj; rocking mode was single (at 717 cmt). This band was correlated with
triclinic-packed (T//) chains and was single due to only one chain per subcell. Its
shift was related to the change in the internal-potential-energy function of the mole-
cule.

As Chapman (1962, 1965b) pointed out, if Malkin’s interpretation of his X-ray data
is rejected there is:

&. consistency of pattern of infrared spectra of the triglycerides with those of other
long-chain compounds,

b. consistency of pattern of infrared spectra for various types of triglycerides,

c. consistency of X-ray and infrared data.

The correlation between the packing of the hydrocarbon chains and the appearance
of the infrared absorption in the 720 cm~! region is also present in other compounds
with long hydrocarbon chains, and has been confirmed by other authors too (Abra-
hamsson & Fischmeister 1959).

A sub-o_form was reported by Jackson & Lutton {1950) and by Chapman (1960,
1962, 1965b) as a further form of triglycerides. When the temperature was lowered,
the spectrum of the a form remained generally the same although the bands narrowed
and sharpened, but between —350° to —70° C for tristearin the main CHj rocking
mode in the 720 cm~! region gradually and reversibly changed from a single band
into a doublet. The doublet was reported to be similar to that observed in the
spectrum of the intermediate 8’ form and the chains in the sub-a form were probably
orthorhombically packed. Its short spacings were similar to those of the § form
(~ 3.7 and 4.2 A). This sub-a form behaves according to the idea that with lower
temperatures the chaing rotate less rapidly and pack together more tightly.

By combining the infrared data of Chapman with the X-ray short-spacing data
1. In the triglycerides I investigated, this band was mostly observed between 900 and 895 cm—1 (band

C in tables 10-25).
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reported by Lutton, Larsson {1965b) has drawn up the following criteria for the
nomenclature of glycerides in the solid state.

1. A form, crystallizing from the melt and giving only one strong short-spacing tne
at 4.15 A is termed a. A form related to the u form by an enantiotropic transition is
termed sub-a, irrespective of its short-spacing data.

2. A form showing two strong short-spacing lines at 3.8 and 4.2 A or three strong
lines near 4.27, 3.97 and 3.71 A, and also exhibiting a doublet in the 720 cm™! region
of the infrared spectrum, is called §8’.

3. A form not satisfying critera 1 and 2 is called §.

2.5 Summary of Chapter 2

The polymorphism of triglycerides has been studied for more than a century. At
present it is generally accepted that three crystallization forms exist (e, f° and §)
which are distinguishable by their melting points, X-ray data and infrared spectra,
as indicated in Table 5. The a form is the Ieast stable; the  and #’ forms are mono-
tropic forms of the stable # form. Malkin’s nomenclature is obsolete.

Some additional forms are reported.

A sub-a form, enantiotropic with the @ form, arising when the a form is sufficiently
chilled (Jackson & Lautton, 1950; Chapman, 1960, 1962, 1965b). Buchheim (1970)
reports a ‘vertical’ 8 form besides the usual tilted §’ form. Knoop & Samhammer
(1961) mention for the § modification five forms differing only in the angle of tilting
(f1 to By), of which the S corresponds with the normal # form. Five (other) forms
of different tilting are mentioned by Gunstone (1964).

Lutton & Fehl (1970) state that the stable form of Cg and C;; is not the 8 form but
another one, with a different X-ray pattern; it is termed Iy, ;.

Table 5. Survey of polymorphic forms of triglycerides (summary).

Melting X-ray Infrared Hydro- Subcell
point short CH; main carbon
spacings rocking chain
Main forms
a lowest 414 720 crn—1 vertical  hexagonal
g intermediate 4.2 and 726 and tilted orthorhombic (O _| )
384 719 cmy1
B highest 46A T17 cm1 tilted triciinic (T /)
strong band
at 890 cm™1
Additional forms
sub-a 4.2and 726 and orthorhombic?
374 719 1
Ig, ~43and . | Q| stable?
H ~39A orthorhombic { 0 istable?
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3 Experimental procedures

3.1 Equipment

A Perkin Elmer infrared spectrofotometer, model 457, with a wave-number range
of 4000 to 250 cm—! was used in scanning the spectra.

The temperatures of the samples were controlled in an RIIC temperature chamber
VLT-2 (Fig. 8) with a pressure vessel with magnetic valve and a home-made automatic
temperature-controller (De Ruig, 1971). The temperature range was from —180 to

~ 4250° C, with an accuracy of 4- 5° C.

Under standard conditions the scanning speed was 400 cm—!/min over the range
4000-2000 cm~! and 200 cm~!/min over the range 2000-250 cm-1. For the spectra of
the most interesting section (1500-400 cm—1) the scanning speed was 50 cm~1/min with
double scale expansion. The wave-number accuracy was below + 4 cm! from 4000-

TO VACUUM PUMP

]

Na INLET

/2" = Nj OUTLET THERMO COUPLE
—

—— JACKET
HEAT EXCHANGER

- HEATING ELEMENT

| OOC00C00000000000

,'l['-—§.|

CELL a5 SAMPLE
CELLWINDOW —
JACKET WINDOW~"

Figure 8, Variable temperature chamber with infrared cell.
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2000 cm~! and below 4 2 cm—! between 2000 and 250 cm—1. The resolution amounted
to 2 em™1 at 1000 cm~1. At 600 cm™! there is a grid change in the apparatus, around
this frequency deviations of about 5 cm~! do occur.

Marking pips indicate in the expanded spectra the wave numbers 1400, 1200, etc.,
with an accuracy of about 4 1 cm™L.

The spectra of the solid states were scanned at —180° C. Such a low temperature
sharpened absorption bands and gave a richer spectrum, as seen from Figure 9. At
this temperature the a form is represented in the higher members of the homologous
series by the enantiotropic sub-a form, apparent from the splitting-up of the 720 cm—1
band.

RIIC cells of the FH-01 type were used as demountable cells. To prevent fogging
of the windows by moist condensation at low temperatures silver-chloride windows
were chosen. Silver chloride cuts off frequencies below about 400 cm~1. In some cases
potassium-bromide pellets were used; they cut off the spectrum at about the same
frequency. The cells were placed in the RIIC chamber which was provided with heated
potassium-bromide windows and was evacuated before cooling.

3.2 Preparation of the samples

The various crystalline forms of the triglycerides can be obtained from the liquid
phase or from the solvent.

For crystallization from the liquid phase a few drops of molten triglyceride were
placed between two silver-chloride windows of an infrared cell; spacers of 0.025 or
0.05 mm thickness proved to be appropriate for obtaining good spectra. After moun-
ting, the sample was quenched in liquid nitrogen. Under such conditions all trighycer-
ides except the lowest terms crystallize into the e or sub-e form. The spectrum of
this form was scanned at —180° C.

The transition of the a form into the §’ form, and also of the f’ form into the f form
was achieved as follows. With the sample still in the infrared cell, its temperature was
carefully raised a few degrees below the transition temperature, and left at this tem-
perature for several hours or sometimes even days, Then, very slowly, the temperature
was raised to just above the transition point. In this way the 8’ form and the § form
were obtained successively from the same sample. Both spectra were ¢xamined again
at —180° C. As the various forms of triglycerides are monotropic, the a form being
the less stable and the § form the most stable, no reverse transition occurs when the
f’ and the 8 forms are cooled.

The melting points of the various forms are tabulated in Table 3 (Chapter 2).

The three forms were not obtained in all cases with this method. Some of the higher
even triglycerides recrystallized directly from the a form into the'ﬁ form, Still the £
form of C;¢ and C;3 could be obtained by using a not hjghly-purified sample (approx-
imately 95%;, the rest being lower and higher triglycerides) and slow solidification at
the melting point of the ¢ form, followed by quick chilling. This is in accordance with
Duffy {1853) who already found that from highly-purified tristearin the intermediate i
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form is hard to prepare. It has been proved for homologous § forms, that the pro-
cedure mentioned above does not alter the infrared spectrum. The § forms of Cyp
and C,y are not obtained so far.

By crystallization from a suitable solvent (acetone, diethyl ether, n-hexane) the most
stable form was obtained. In general, thus, the § form was obtained. Some odd tri-
glycerides, however, crystallized into the 8’ or a mixed §° + 8 form.

The crystals were collected on a Biichner funnel, washed and dried at temperatures
below the melting point. 10-15 mg of triglyceride was then ground with 700 mg
potassium bromide in a mortar, and pressed into a pellet. After cooling to —180° C
a spectrum was recorded.

The § form of Cy is not obtained.

Besides the a and the §’ form from C;; a third form was obtained with troubles by
crystallization from aceton. Its infrared spectrum was similar to the spectra of § forms.
In the X-ray diagram short spacings were found! at 3.03vs, 3.65s, 3.82s, 3.95vs, 4.18m,
4.37m, 4.57vs, 5.21m and 5.39m A, also indicating the presence of a § form, perhaps
mixed with ', The form started to melt at 28.0° C; at 28.8° C it recrystallized into the
f’ form, the latter melting between 29.6 and 30.4 °C.

From these data I conclude that the present form is a metastable 8 form, while
the §’ form is the stable one for Cyy. These results are in accordance with those of
Larsson (1965b), cf. Table 3. No indication is found for the existence of the I, form
as reported by Lutton & Fehl (1970).

3.3 Preparation and purification of the triglycerides

Most of the triglycerides studied were commercially available. The others were
prepared from the corresponding acids by a method described by Clarkson & Malkin
{1934) and Perron et al. (1969). According to this method 1.0 mole glycerol and 3.3
mole fatty acid are heated in 500 ml chloroform under a nitrogen atmosphere, with
p-toluenesulfonic acid (2% w/w fatty acid) as a catalyst, at 140 to 180 °C (depending
on chain length) for 2 hours. Then the mixture is heated for 6 hours at 160 to 200° C
under 25 mm pressure, dissolved in chioroform, filtered, and dried. Free fatty acids,
mono-, di- and triglycerides are then separated by silica-gel column-chromatography.

Whenever required, the triglycerides were purified by multiple recrystallization
from a diethyl-ether solution. The absence of mono- and diglycerides and free fatty
acids was verified by thin-layer chromatography. The composition of the fatty-acid
fraction was determined by gas-liquid-chromatographic analysis (GLC).

The monoacid triglycerides which were investigated are mentioned on the next page.

1. vs = very strong, 8 = strong, m = medium intensity,
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3.4 Preparation of deuterated triglycerides

Besides normal triglycerides three deuterated triglycerides were synthesized, i.e.:

glycerol-tri-{perdeutero-laurate), C3H;5[0-CO-(CD»)o~CD3];3 I

(perdeutero-glycerol)-trilaurate, C3Ds[C-CO-(CH2)19-CHj;l4 I

glycerol-tri-{a-dideutero-laurate), C3Hs[O-CO-CD,-(CH3)oCH;]3 IIT

A method described by Nguyén Dinh-Nguyén & Stenhagen (1967) was used for
the preparation of perdeutero-lauric acid (IV} and of perdeutero-glycerol (V). By this
method, hydrogen atoms are exchanged by deuterium with aid of a metal catalyst
(Pt), an alkaline catalyst (NaOD) and a promotor (D50;).

Perdeutero-lauric acid The metal catalyst was prepared by stirring 2 g PtO, and
15 ml D0 (99.75%,) with D, gas for 30 h at 40° C, to complete reduction of PtO,.

For preparating the alkaline catalyst and promotor 1.4 g Na,O, was slowly added
to 90 g D,O with cooling, to give a solution containing theoretically 1.5 g NaOD
and 0.6 4 DgOz.

For preparation of perdeutero-lauric acid (IV), the metal and alkaline catalysts and
promotor were flushed with D,0 (total amount 30 ml) into an autoclave and 3.52 g
lauric acid (99.9%;) was added. The reaction mixture was heated at 240° C for 28 hin
1.5 atm D,, and continuously stirred. After cooling of the mixture, H;O and D,0O
were evaporated in vacuo at 60-80° C. The residue was flushed back into the autoclave
with a total of 130 ml D,0O and the same treatment was repeated.

The deuterated water was evaporated and diluted hydrochloric acid was added to
convert the perdeutero-laurate into the acid. The acid was extracted with diethyl ether,
washed with distilled water and dried. The yield was 2.63 g (IV) or 75%,.

The degree of exchange was checked by nuclear magnetic resonance (nmr) and
mass spectrometry measurements,

By nmr proved 899 D to be exchanged (with respect to H of COOH), viz. 100%;
a CD», 879 (CDy)g, 90%, CD;.

The mass spectrum gave 90%, D (429 D33, 319 Das, 13% Dyy, 4% Dog, lower each
<< 1%0).

Perdeutero-glycerpl This compound was prepared in a similar way using 1 g PtQ,,
0.69 g Na,O; and 1.62 g glycerol. The glycerol was treated two times in the autoclave
with 60 ml D0 at 180° C for 28 h in a deuterium atmosphere.

The mixture was flushed out of the autoclave with 10 ml HyO, neutralized by ion
exchange with 7.5 g Dowex 30Wx8, 200-400 mesh, dried on a steam bath under
vacuum (20-50 mm). It vielded 0.292 g or 18%.

All hydrogens were exchanged by deuterium (nmr: 100%).

Dideutero-lauric acid 5 g lauric acid (99.9%, C,») was treated in an autoclave with
deuterium gas (70 atm) for 24 h at 240° C, with the presence of Raney nickel.
The mass spectrum showed >> 90% dideutero-lauric acid; according to the nmr

24




spectrum, the a protons were exchanged by denterium,

Preparation of the triglycerides From the deuterated compounds, the tﬁgllycerides,
I, II and III were prepared in the usual way, as described in Section 3.3,




4 The interpretation of infrared spectra

4,1 Yibration modes and characteristic bands

As, for lack of exact definitions, in infrared spectroscopy the terminology and the
symbols for the normal vibrations of the atoms in 2 molecule is not uniform, Table 6
gives a summary of the terms used in this publication.

Almost independent of the total composition of the molecule, certain groups of
atoms cause characteristic absorption bands in the spectrum. Such bands are found
e.g. for vC-H in the 2900 cm~i region, for 6C-H at about 1400 ¢cm~!, for »C-O
between 1250 and 1060 cm!, and for ¥C=0 at 1750-1700 cm~1. They vary slightly,
dependent on other groups in the molecule, for ethers compared with esters, for
methyl compared with methylene, etc., as well as for various compounds of the same
series of compounds. This means that infrared spectra can be very useful in deducing
the composition of an unknown compound.

For a large number of absorbtion bands in the infrared specira the origin is as
yet unknown, especially between 13350 and 900 cm~1. The band collection as a whole
in this region is specific for a certain compound. Therefore this region is generally
referred to as the ‘fingerprint region’.

Some vibrations modes give rise to a single band, e.g. the carbonyl stretching mode.
Other vibration modes cause a number of related bands. I define:

Band series: the single bands of one type of vibration in a series of compounds (e.g.
the carbonyl-stretching band series in fatty-acid esters from C; to Cyg).

Band progression: the absorption bands which belong to one type of vibrations in
one compound (the methylene-wagging band-progression in methyl laurate).

Band disrribution: the absorption bands of one type of vibrations in a series of
compounds (the methylenc-wagging distribution in fatty-acid esters),

4.2 The infrared spectra of triglycerides

The infrared spectra from 4000-400 cim—1 of tristearin in the e from and in the £ form
are shown as examples of triglyceride spectra (Figure 10).

In the region 4000-1500 cm-1 only small variations are observed throughout the
homologous serigs of triglycerides. Remarkable variations do occur in the region
1500-400 cm~!; for different compounds of the series, as well as for different phases
of the same compound. Therefore in this study only the latter region will be considered.

Until now no concerted effort has been made to assign the multitude of absorption

26




Table 6. Nomenclature of normal vibrations.

a. Normal vibrations of the methylene group

YY Y Y Y

»,CH; 7,CH; TCH; QCHZ
symmetrical  antisymmetrical smssormgl wasgmg twisting rocking
stretching stretching

deformation vibrations

stretching vibrations bending vibrations

b, Normal vibrations of the methyl group

VY

%CH %CH 4,CH, 8,CH; oCH;
symmetrical asymmetrical symmetrical asymmetrical rocking

stretching stretching deformation deformation (or CH;-C bending)
stretching vibrations bending vibrations

¢. Normal skeletal vibrations

+ +
»C-C
C-C stretching C-C-C bending C-C torsion

d. Normal vibrations of other groups of atoms

Similar symbols; e.g. *C=0 : carbonyl stretching vibration
»C—O0 : C—O stretching vibration

1. In other publications also termed bending.
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bands in the fingerprint region. I will attempt to interprete these bands in Chapter 5,
Vibrational analyses by other authors on other long chain compounds, particularly
n-paraffins will be reviewed in Sections 4.44.6, Molecular vibrations in general will
be considered in Section 4.3, and Section 4.7 will apply this information to a theoretical
treatment of band collections in triglycerides.

4.3 The vibrations within a molecule

An n-atomic molecule has 3n degrees of freedom, including three translations and
three ortwo (for linear molecules) rotations of the molecule as a whole. To character-
ize the remaining 3» - 6 or 3n — 5 internal vibrations it is convenient to introduce an
equal number of independant internal normal vibrations. The number of energy bands
actually observed may be considerably lower, some reasons being:

— bands are beyond the range of the measured spectrum,

— bands are too weak,

- bands are forbidden, because only vibrations accompanied by a change in dipole
moment are active in the infrared, so that symmetric vibrations are not observed.
(These bands can be active in the Raman spectra.)

The vibrations of two adjacent atoms in a molecule can to a first approximation
be described by Hooke’s law for the simple harmonic oscillator, so that the vibration
frequency is given by

y=—|/% (1)

with
v = the frequency of the vibration
F = the force constant of the bond for this vibration
p = the reduced mass of the vibrating system,
m . M
p=——
my + my
where mt; and m» are the masses of the vibrating atoms.

Unbranched, long-chain molecules with periodic structures can be considered as
series of point masses, connected by chemical bonds with certain stretching- and
bending-force constants. For the mathematical calculation of the molecular vibrations
in such chains the coupled-oscillator model can be used (Born & Von Kdrmadn, 1912;
Bartholomé & Teller, 1932; Kirkwood, 1939; Pitzer, 1940; Zbinden, 1964).

Suppose we have a row of n point masses m connected by springs with a stretching-
force constant f and with interaction only between two neighbouring masses. For
each vibration mode, #» normal vibrations are found, with frequencies »:
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d
ve = 2, sin — @)
Ak

where
k=12 ...,n
d = distance between two adjacent point masses

. : 11/f
¥, = eigenfrequency of one point mass = —{/ —
2nl m

A = wave length
Ay 1s given by (Zbinden, 1964)

2n + 1)
k

2
M= = d (free ends) or Az = d (fixed ends) (3a, b)

k—1
(see Fig. 11 for the fixed boundary case).
The phase shift ¢4 between two adjacent point masses is given by the Born-Von
Kdrman (1912) periodicity condition
2 d

=) “4)

Substituting (3a, b) in (4) gives

i_ﬁt T 7N SIRN N ﬁ

911.\‘-/,/ \\\_}/, \\i// \LH//" ) =4
ENAANI A NIVARPS S
6 &n \J//t'“\\hy/t’"‘\ b T 184
5 §n.\\ﬁl/,/f’/ -.T\\\} vj/,”f“\}\\ L,/ 1_58,d
4 gr: \-.,L__,’+’//r_—h{\\\i___ L/,f” N By
3 gﬁ“'“s__l____},f’///"f- ‘T\\\\-,_l‘____l_—’ _138_d
2 2n \‘LHLJ’/L/—r"'TJUTHT‘~- By

Figure 11, Vibrations of a linear chain of eight point masses with fixed
ends (Zbinden, 1964),
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O FREE BOUNDARY
O FIXED BOUNDCARY
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B @ " e e o
° PHASE DIFFERENCE BETWEEN ADJACENT OSCILLATORS (¢ )

Figure 12, Frequency branches for the vibrations in a chain of eight point masses with
fixed and free boundaries (Zbinden, 1964).

FREQUENCY (V)

k—1 k
Pr = ok —1) (free ends) or ¢ = = (fixed ends) (5a, b)
n n+1
where k = 1,2, ..., n
Substituting (4) in (2) gives
vy = 2, sin %k- {6)

which indicates that the frequency is a function of the variable ¢ only.

Figure 12 gives the frequency-phase curve for eight point masses for the fixed and
the free boundary model. These models represent extreme cases: actually the vibration
modes in a molecule will be intermediate.

4.4 Vibrational analyses of n-paraffins

X-ray and infrared analyses have shown that hydrocarbons in the crystalline state
assume the planar zigzag form (Miiller, 1928; Krimm et al., 1967), so that the coupled-
oscillator model can be applied for calculations of their molecular vibrations.

Vibrational analyses of n#-paraffins and related compounds have been carried out
by a large number of authors, a.0. Kellner, 1945; Axford & Rank, 1949, 1950; Brown
& Sheppard, 1950, 1954a, b, 1955; Brown et al. 1950, 1954a, b; Barrow, 1951; Primas
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Figure 13. Frequency ranges for methylene and skeletal vibrations of normal hydrocarbon chains,

& Giinthard, 1953a, b; Tschamler, 1954; Liang et al., 1956; Krimm et al., 1956;
Sheppard, 1959; Nielson & Holland, 1960, 1961; Niclson & Hathaway, 1963; Tasumi
& Shimanouchi, 1962; Tasumi et al., 1962; Snyder, 1960, 1961; Snyder & Schacht-
schneider, 1962, 1963; Schachtschneider & Snyder, 1963; Zbinden, 1964,

These experimental and theoretical studies agree in that the distributions of fre-
quencies for the same type of vibrations are confined to relatively well-defined regions.
Estimates of the location of these regions by various reported authors are given in
Figure 13. There are some disagreements, while there are interactions of unknown
magnitude, and also while perturbations from the methyl or other end groups are
not taken into account.

As the calculations of Snyder and Schachtschaeider are the most extensive and
detailed, in the next sections I will use data especially from these authors.

4.5 Band distributions in n-paraffins

In polymethylene chains the distributions are due to methylene and skeletal
vibrations,

There are six fundamental methylene vibrations: antisymmetrical streiching, sym-
metrical stretching, scissoring, wagging, twisting and rocking (Table 6). The carbon
chain itself has three fundamental modes: C-C stretching, C-C-C angle bending and
torsional vibrations about internal C-C bonds. This gives rise to nine separate
distributions of frequencies. Figure 14 shows the frequency-phase diagrams for these
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— skeletal stretching (fig. 14c),

- methylene rocking-twisting (fig. 14d) and

-~ skeletal bending (fig. 14e} modes.
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distributions, as theoreticatly calculated and experimentally verified as far as possible
by Tasumi et al, (1962).

There are two limiting modes to each progression, viz. the in-phase mode ¢ = 0
and the out-of-phase mode ¢ = =; which is which depends on how the symmetry
coordinates are defined. The nomenclature adopted by Schachtschneider and Snyder
sometimes is the reverse of that used by Tasumi.

The apparent distributions in Figure 14 are in general not true fundamental modes,
but a combination of fundamental modes. The contributions of the fundamental
modes to the apparent modes as calculated by Tasumi et al. are illustrated in Figure
14 a-e for the methylene wagging, methylene twisting-rocking, skeletal stretching,
methylene rocking-twisting and skeletal bending modes respectively. The skeletal
stretching and bending modes contribute to the methylene-wagging distribution
(Figure 14a), etc,

Schachtschneider and Snyder (1963) also included coupling with methyl vibration
modes in their calculations. The methyl vibration frequencies reported by these
authors are indicated in Figure 14. Their conclusions (Table 7) agree in the main
those of Tasumi et al.

Methylene twisting and rocking vibrations appeared in two regions, one between
~1295 and ~1170 cm~! and the other between ~1060 and ~720 cm~1. Earlier
investigators had supposed that these regions contained twisting modes and rocking
modes, respectively (Figure 13). The terms ‘twisting-rocking” and ‘rocking-twisting’

Table 7. Classification of normal modes according to the character of their motion (Schachtschneider
& Snyder, 1963)

CH; asymmetric C-H stretching: almost pure v,CH,

CH; symmetric C-H stretching: almost pure »,CHj3

CH; antisymmetric C-H stretching: almost pure v,CH;

CH; symmetric C-H stretching: almost pure »,CH;

CHj; asymmetric deformation: 1.6 §, CH; + 0.4 oCH;

CHj; scissoring: oCHp, strongly coupled with §,CHa, coupling strongest near ¢ = x and least near
=0

CH; symmetric deformation: almost pure §,CH3, except when the wagging mode is near; then
strong coupling with «CH> occurs

CH; wagging: mostly wCH with some *CH; and &,CH;

CH,; twisting-rocking: pure twist at ¢ = 0, pure rock at ¢ = 7; from ¢ = 0 to ¢ = 7 ratio rock/
twist varies from 0 to oo

C-C stretching: mostly »C-C with strong coupling with pCHj; and C-C-C bending near ¢ = 0

CHj terminal rocking: for long chains (CH; > ~ 10): mainly oCHj, with +C-C, @CH; and C-C-C
bending

CH; rocking-twisting: pure rock at ¢ = 0, pure twist at g = z; from g = 0 to p = & ratio twist/
rock varies from 0 to oo

C-C-C bending: almost pure C-C-C bending except near ¢ = 0 where coupling with »C-C occurs

C-C torsion: CH;-CH torsion with contribution of CH3-CHj torsion, greatest at highest frequencies
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for these distributions were proposed by Snyder and Schachtschneider. Although the
720 cm~1 limit corresponding to ¢ = 0 is indeed an in-phase methylene-rocking mode,
the 1060 cm~! is an out-of-phase twisting mode. Similarly, although the 1295 cm—1
iimit is an in-phase twisting mode, the 1170 ¢m! limit is an out-of-phase rocking
mode. ‘

The C-C stretching distribution had a minimum in its frequency-phase curve. This
implied an overlap in the successive absorption bands due to this vibration mode,
which hindered the assignments. Pitzer (1940) already has deduced that a coupling
of the C-C stretching mode with the C-C-C bending mode gives a curve with a mini-
mum.

Snyder and Schachtschneider have pointed out that for shorter chains, particularly
for those modes to which end groups contributed, ¢ and consequently k loose their
physical significance.

4.6 Vibrational analysis of fatty-acid compounds

The infrared spectra of fatty acids and their salts and esters have been studied
by various authors (review: Chapman, 1965b). In this section special attention will
be paid to band progressions in these compounds.

Jones and Sinclair described a distribution of uniformly spaced bands in solid faity
acids and methyl esters from Cy; to Cy; between 1350 and 1180 cm™), increasing in
number with the chain length (Jones et al., 1952; Sinclair et al., 1952a, b). The band
progression was diminished in intensity or destroyed by introduction of unsaturated
linkages. In cis compounds an irregular pattern was obtained. The spectrum of the
‘trans-unsaturated elaidic acid closely resembled that of one of the saturated acids of
short chain length (Cy and not e.g. C)2 as the authors mention), Stggesting that the two
sections of the chain on each side of the double bond behave as more or less indepen~
dent units. These observations substantiated the view that a linear zigzag chain in the
crystal is required for a well defined progression.

Corish & Chapman (1957) found similar bands in the spectra of lower homologues
{C; to Cyy), although the regularity seemed to decrease with decreasing chain length,

Von Sydow (1955} pointed out that the positions of the band progression peaks-
were not merely related to the chain length but also dependent on crystal forms,

By empirically defining the band progression region as 1350-1180 cm—! the following
relationship is reported for straight chain fatty acids by Meiklejohn et al, (1957);
Number of carbon atoms in the chain: n
n
rneven Number of bands = 7
1
nodd Number of bands = "'2'“
This ‘rule of two’ relationship is valid for solid acids and St;aps. A compound
with an odd number of carbons may be distingnished from the next higher even
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numbered acid which has the same number of progression bands by a shift in wave
length of the entire progression.

More of the progression bands for a soap can be seen than for the corresponding
acid, due to the removal of the interfering C-O stretching band at 1307 cm—1.

Using the ‘rule of two®, observed by Mciklejohn et al., Susi (1959) determined the
position of the double bond in frans-6- through 11-octadecenoic acids. The number
of bands was related to the total length of the chain segment next to the carbonyl
group. Contrary to saturated acids, no distinct carboxyl band was found in the band-
progression region. Some weak bands occurring between the main progression bands,

WAVELENGTH, u

TRANSMITTANCE

1

T T
1490 1200

T ' T T T T ]
1000 800 8QQ 700

WAVENUMBER, cm-!

Figure 15. Infrared spectra of the silver salts of saturated Co, Cyio
and C;g fatty acids (Kirby et al., 1965).

Peaks assigned to methylene vibrations are numbered;

— black peaks = wagging

- peaks joined by dotted lines = twisting-rocking

— the remainder = rocking-twisting

Peaks joined by solid lines are assigned to end group vibrations.
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and partially overlapping with them, might be cansed by the terminal chain segments
(from the double bond tc the methyl group). These segments behave much like
unsubstituted n-paraffins, which show progression bands of considerably lower inten-
sity and less regular spacings than the corresponding fatty acids.

Kirby et al. (1965) studied the methylene wagging, twisting and rocking vibrations
in salts of saturated and unsaturated fatty acids. Some spectra are shown in Figure 15.

In the region 1070-710 cm™! the increase of the number of peaks with chain length
in saturated salts corresponded closely to hydrocarbon behaviour, as reported by
Snyder & Schachtschoeider {1963). Forbidden peaks in the hydrocarbons were the
weaker ones in the salt spectra. Salts with various cations gave practically identical
curves.

In cis-unsaturated salts there were relatively fewer peaks. The frans-unsaturated
elaidate salts spectra, however, were more similar to the corresponding saturated salts.
Therefore the methylenes in the carboxylate segment produce the peaks in the cis-
compounds, but the frans-compounds give the vibration of the entire length of chain,
Apparently the cis-double bond disrupts the vibration of the fatty radical as a unit,
but the slight distorsion of the chain by a trans-double bond does not prevent
coupling of the rocking-twisting modes of the segments at opposite sides of this
double bond.

The region 1380-1170 cm—! was more confusing due to overlapping of the methylene
wagging and methylene twisting-rocking vibration peaks. The total number of peaks
and the relative intensities depended on the cation. Certain peak positions shifted very
little with different cations. These were assigned to methylene wagging vibrations.
Other peaks were seen only with some cations, particularly in silver and barium saits;

Table 8. Number of methylene groups in the chain of unsaturated compounds (Kirby et al., 1963).

Compound Formula Chain length as concluded from
methylene methylene
. King-twisti
1380-1170 em™! 1070-710cm™1

Cis-configuration
petroselenate CH3(CH)10CH = CH(CHL,C00~ - 4 4
palmitoleate CH3(CH3)sCH = CH(CH),COO~ | 7 7
oleate CH3(CH»);CH = CH(CH);CQ0~ 7 7
11-eicosanoate CH;3(CH3);CH = CH(CH3);CO0O— 9 9
erucate CH;(CH,)7CH = CH(CH32);;CO0O~ 11 11
Conclusion: carboxylate carboxylate
segment only  segment only
Trans-configuration
elaidate CH;3(CH»);CH = CH(CH;)yCOO— 7 16
Conclusion: carboxylate total chain
segment only

37




these peaks were assigned to methylene twisting-rocking vibrations.

Unsaturated salts had fewer peaks in this region than saturated salts of the same
chain length. The number and position of the peaks was related to the length of the
carboxylate segment, This holds for cis as well as for frans-unsaturated salts in this
region. Here in all respects elaidate spectra agreed with those of oleate salts.

Apparent chain lengths in unsaturated compounds concluded from comparison
with saturated compound data are summarized in Table 8.

4.7 Theoretical considerations about distributions in triglycerides

In the preceding sections the coupled-oscillator model has been shown to work
fairly well for a linear methylene zigzag chain. Thus a chain of » methylene groups
will have n vibrations for each of the six fundamental methylene vibration modes
(Section 4.3 and 4.5). For the skeletal vibrations there will be n — 1 C-C stretching
vibrations, n — 2 C-C-C bending vibrations and n — 3 C-C torsion vibrations.

I applied the model to the triglycerides under investigation, with the aim of cal-
culating the number of bands for a given compound. This treatment appears to involve
some practical and theoretical difficuities.

In practice it appears that the actual number of bands found in the spectra does
not agree with that predicted for the following reasons (cf, Chapter 5; sec also
Figure 14).

The absorption regions of the methylene antisymmetric and symmetric stretching
distributions are too small for seperate bands to be identified.

The methylene wagging distribution is above 1385 cm~1 masked by the strong methyl
symmetric deformation band.

The methylene twisting-rocking bands are very weak compared to the methylene
wagging modes, which absorb in the same region.

At the high frequency end, the intensities of the rocking-rwisting bands are also
weak, and moreover there is an overlap with the C-C stretching modes. Identification
of the latter is further hampered by the minimum in its frequency-phase curve
(Figure 14).

The other skeletal bending and torsion vibrations fall totally or almost totally out-
side the examined region.

Besides these practical difficulties there are also some theoretical problems.

The model contains the simplifications of discounting the intramolecular and inter-
molecular effects which actually do occur.

For a polymethylene chain having » carbon atoms, mostly a phase difference

_wk—1)
o n

Pk (5a}

where bk = 1,2, ..., n

is accepted (Section 4.3), but there are several variations between authors as cited in
Section 4.4.
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The phase difference of the normal coordinates of a finite chain is difficult to find
when appreciable coupling between two symmetry coordinates occurs (Tasumi et al.,
1962; Pitzer, 1940). The phase differences of the resultant normal coordinates will
then not agree with that from formula (5a), and cannot be defined in this way. In
practice, however, workable results are obtained, even when coupling occurs.

Special problems are the border conditions and the choice of chain length which has
to be considered in a given compound. As to the border conditions, Zbinden (1964) has
pointed out, that the fixed-end model seems more realistic for the methylene rocking-
twisting distribution in hydrocarbons than the free-end model. This justifies the use
of formula (5a) in that case.

As far as the choise of chain length, the question is whether the end groups have
to be taken into account, especially when this concerns a methyl group.

For the skeletal vibrations generally it is agsumed that this is so (Brown, Sheppard &
Simpson, 1954a; Sheppard, 1959; Schachtschneider & Snyder, 1963); it is a plausible
assumption. An n-paraffin with » methylene groups will then have n 4+ 1 C-C stret-
ching vibrations, » C-C-C angle bending vibrations, » — 1 C-C torsion vibrations.

For the calculation of the number of vibrations in C-H distributions, however,
most authors discount the CH; groups {Brown, Sheppard & Simpson, 1954a; Shep-
pard, 1959; Tasumi et al., 1962; Schachtschneider & Snyder, 1963; Kirby et al., 1963).
Brown & Sheppard (1955) compare decamethylene halides with n-dodecane ‘which
has the same number of CH; groups’.

However, comparison of the methylene wagging distribution of n#-alkyl bromides
{Brown & Sheppard, 1954a) with those of n-paraffins (Snyder & Schachtschneider,
1963) suggests that the total number of carbons, including the CHy groups is the
significant figure.

Results obtained by Meiklejohn et al. (1957) on saturated long-chain fatty acids,
and by Susi (1959) on octadecanoic acids also indicate that the number of bands is
closely related to the total length of the chain or chain segment rather than the number
of methylene units. The same conclusion is suggested by data of Corish & Chapman
(1957).

Snyder & Schachtschneider (1963) point out that in cases where strong inter~
action does occur between the methylene chain and the methyl group vibrations, an
extra mode k = 0 or k = n + 1 seems to occur. They report the mode k = n + 1 for
some of the rocking-twisting and twisting-rocking distributions.

As in triglycerides two different end groups are present in the hydrocarbon chain
segments, namely one methyl and one carbonyl group, the border conditions will
differ from those of n-paraffins. Intra- and intermolecular effects can be expected.
Nevertheless I succeeded in assigning distributions in triglycerides with help of
n-paraffing data. I found a remarkable agreement between the progressions of the
methylene rocking-twisting and the methylene-wagging modes in triglycerides
[CH3«{CH3),-2-C0OO13C3H, and paraffins CH3y-(CH,), 3-CHj respectively; that means,
a C, triglyceride has to be compared with a C,.; n-paraffin.
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Table 9. Compounds showing corresponding band pro-
gressions for methylene vibrations.

Compound Formula

C _1 paraffin CH;-(CH;), ;-CH3

Ca-—1 alkyl bromide CH;3-(CH3),_2-Br

Ca fatty-acid salt CH;3~(CH3z),_,-COONa

C,, triglyceride [CH3-(CH3), 2~COO01CaHs

In the case of the C-C stretching mode the situation is less clear, but it seems that
the best agreement is obtained when the same rule is assumed to be valid.

For fatty-acid salts from acetates to behenates, Kirby et al. (1965) account for
the methylene groups only. I have evaluated the reported methylene distributions
with respect to those of the #-paraffins as given by Snyder & Schachtschneider and of
the triglycerides, and could conclude that a C,, fatty acid salt, a C, triglyceride and
a C,; paraffin correspond to each others.

If it is assumed that the methyl groups do not participate in the methylene vibration,
the same chain length can be constructed in the considered compounds (Table 9) when
the a-CH; having a particular position is also excluded in the substituted hydro-
carbons. The length of the vibrating hydrocarbon chain, and in consequence also
the number of bands then will be # — 3.

If, on the other hand, the a~CH; is counted with the other methylenes, also the
methyl groups have to be included to obtain the same chain lengths and the chain
length and the number of bands will be n— 1.

As the total number of bands cannot be determined from the spectra, these sup-
positions cannot be verified directly from the spectroscopic results. The latter pro-
position is indirectly confirmed, however, from the examination of an a-dideuterated
triglyceride, Section 5.5.3. This showed that in triglycerides all methylene groups take
part in the methylene vibrations, including the a-CH,. 8o I conclude that probably
methyl end groups take part to methylene vibrations of long-chain hydrocarbons and
related compounds.



S The infrared spectra of the triglycerides

5.1 Presentation of the spectra of triglycerides C»~-C,,

The infrared spectra from 1500 to 400 cm! of triglycerides from triacetin (Cy) to
tribehenin (Cj;) were recorded using the technique described in Chapter 3 (Figs.
16-36).

The minimum scanning temperature, about —180° C, was limited by the tem-
perature of the cooling medium;: liquid nitrogen. At this temperature spectra of the
polymorphic crystalline states were obtained from trienantoin (C;) up (Figs. 21a, b, c,-
36a, b, c). For the series triacetin (C;) to tricaproin {Cg) no solid state spectra could
be obtained. In these cases the spectra at —180° C are shown, although not of a
crystalline state (Figs. 16a-20a).

The spectra of the liquid form (Figs. 16d-36d) were examined either at room tem-
perature or, for the higher members, at elevated temperature, above the melting point,
On these spectra the scanning temperatures are indicated.

In all spectra the wave numbers 1400, 1300, etc. are indicated by a marker pip.
Sometimes two weak bands at about 660 cm~! are present due {o absorption of
water vapour.

The band positions in the polymorphic forms are collected in tables 10-25.

Most of the very weak and weak bands are considered to originate from so far
unknown higher-order interactions and are ignored. I could assign the majority of -
the observed medium and strong bands to definite vibration modes. These assign-
ments, which are based on the spectra in figures 21-36 and on other spectra, not shown
here, are listed in tables 10-25. Various series of bands will be considered in detail in
the following sections.

(Text continued on page 116.)
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5.2 Assignments of absorption bands in the triglyceride spectra

For the assignments of bands as reported in Tables 10-25 the spectra of the following
series of compounds were compared.
- The homologous series of the iriglycerides and the hydrocarbons, the latter mainly
as assigned by Snyder & Schachtschneider (1963).
- The a, f', and § form of each of the triglycerides.
- The homologous series of the o forms.
- The homologous series of the 8 forms.
- The homologous series of the § forms.
— Some normal and deuterated triglycerides of the same chain length.

Attention was paid both to the position of the bands and their shapes. Sometimes
intensity calculations were helpful in detecting corresponding bands.

The first conclusion is that in the triglyceride spectra the absorption pattern of
n-paraffins are recognizable, especially for the higher triglycerides (Section 5.3). This
agrees with the results mentioned in Chapter 4 for fatty acids and their salts and
methyl esters. But the triglyderide spectra are more complicated, due to the greater
number of possible vibrations. In fact, the kydrocarbor chain can be considered as
‘characteristic group’ in the triglyceride molecule, in the same way as, e.g. the carbonyl
group.

In triglyceride spectra two band collections can be considered: one originating
from the hydrocarbon chains and another consisting of bands due to the glycerol
‘head’, including the carboxyl groups. The hydrogen part of the spectra will vary
throughout the homologous series, but it may be expected that the vibrations arising
from the glycerol head will be constant in number and approximate position. Intra-
and intermolecular effects give rise to additional complications.

Secondly, the spectra of the «, 8" and 8 forms are different: each of the crystallization
phases has its own appearance throughout the homologous series.

In the ficld of infrared spectroscopy it is often just assumed, that a compound has
its characteristic spectrum. This is a dangerous proposition, and the triglyceride
spectra shown here are a convincing example that the infrared spectra are not only
dependent on the molecular composition, but also on the molecular structure and
on the relation between the molecules and their surroundings.

In the spectra of all crystallized triglycerides a number of strong to medium
absorption bands were observed, which show only minor variations for various
triglycerides, as well as for the various polymorphic forms of the same triglyceride.
The major part of these bands have already been interpreted (Table 26).

The remaining absorption pattern as a whole is dependent both on kind of tri-
glyceride and polymorphic form, in number and position of bands. Therefore in the
following sections the homologous series in the a, 8’ and 8 form will be discussed
separately.
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Table 26. Characteristic bands in the spectra of triglycerides.

Approximate Intensity Assignment

frequency

(em™)

2925 very strong methylene asymmetric stretching

2850 very strong methylene symmetric stretching

1740 very strong C=0 stretching

1475 strong methylene scissoring

1470 strong } combination methylene scissoting

1460-1440 . some shoulders + methy] asymmetric deformation

1415 medium a-methylene scissoring®

1385 strong methyl symimetric deformation

1180 very strong C—* O stretching of | —C—2-0—CH,—*

1115 strong C——O stretching of | || ’
890 medium methyl rocking (8]

a. Corish & Chapman (1957), Sinclair (1952a).
b. Thompson & Torkington (1945), Tschamler (1953).

5.3 Assignments of spectra of the a forms

In Chapter 4 molecular vibrations due to methylene chains in »#-paraffins, alkyl
halides, polymethylene halides, fatty acids and their salts and methyl esters are
discussed. These vibrations resulted in various series of band progressions.

I have found that corresponding band progressions also do occur in triglyceride
spectra. In spite of the more complicated structure, the vibrations of the hydrocarbon
chains evidently exist almost unaltered in triglyceride spectra. '

When it is taken into account that in n-paraffins some vibrations are forbidden by
symimetry considerations, the number of bands or band progressions and their position
in triglycerides agree well with those of n-paraffins. For this agreement it proved to
be necessary to compare a triglyceride with n methylene groups in the fatty acid chains
with an n-paraffin having n — 1 methylene groups (See further discussion in Section 4.7).

I succeeded in assigning band progressions due to methylene wagging, methylene
rocking-twisting and skeletal vibration modes.

The methylene wagging modes in the region between 1385 and 1185 cm! form a
series of regular medium to strong bands. These bands are much more intense than
the corresponding ones in z-paraffin spectra. They mask the progression of the
methylene twisting-rocking modes, which occurs in the same range (Section 4.5).

Some additional weak bands or shoulders are probably twisting-rocking bands,
but they couid not be combined into a regular progression.

As a consequence of the presence of the polar group at the head of the hydro-
carbon chain the methylene wagging modes become much stronger while the inten-
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sities of the methylene twisting-rocking modes do not alter. This means that the dipole
moment change in the wagging mode is strongly influenced by the polar end, signifying
prestumably that a considerable movement of the carbonyl group is involved in this
normal mode. The alternative explanation, that the strong intensity might be due to the
wagging of an induced dipole in the a-CHj is extremely unlikely since in that case the
twisting-rocking modes would have an increased intensity as well.

The methylene wagging region is bounded by the strong CH; symmetric deforma-
tion band at about 1385 cm—1 and the very strong C-O stretching band at 1180 cmL.
Snyder and Schachtschneider have calculated that, theoretically, the methylene wag-

22 |-
21 |-
20
19 |- 12 @)
181

"
17
16 b 10
15
b 9
13 b 8 o)
12 |
ne 7 o)
10}

3]
9

5
8—

4
3 .
2 k=1

T

7.-..

8CHg+ W CHy

I 1 ] ]
1400 1300 1200
FREQUENCY {cm-")

Figure 40. Methylene wagging mode array for triglycerides C;-Cas.
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ging mode frequencies should go up to 1420 cm™1, bat the high frequency modes are
masked by and coupled with the CH; symmetric deformation band. The most in-phase
methylene wagging mode (k = 1, Section 4.3 and 4.7) is situated adjacent to the C-O
band. Tt shifts from 1234 cm! in C; to 1190 cm—1 in Cas.

Throughout the homologous series, when the chain lengthens, even new bands
appear by shifts to lower wavelenghts, first as a shoulder on the §,CHj. The ‘rule of
two’ relationship of Meiklejohn et al. (1957) drawn up for solid fatty acids and soaps
(Section 4.6) obviously does not hold for triglycerides. E.g. for C;3 ten bands and a
small shoulder are found. The appearance of the shoulders are moreover dependent
on the recording temperature of the samples and on the resolution of the spectro-
meter.

The array of methylene wagging bands is shown in Figure 40. All k& values are
allowed for all triglycerides, contrary to n-paraffins, where for even numbered ones
the even & values are forbidden (Snyder & Schachtschneider, 1963),

As mentioned above no regular methylene twisting-rocking distribution is observed,
for these bands are masked by the much stronger methylene wagging modes. It may
be expected that in the Raman spectra the reverse will be the case, so that in a further
study using Raman spectroscopy this distribution canibe found. In the tables 10-25
some uncertain assignments of methylene twisting-rocking bands are indicated.

The region between 1150 and 950 em~! includes the C-C stretching vibrations.
Their pattern is rather irregular; Section 4.5 already indicates that their frequency-
phase diagram will have a minimum. Further complications are the overlap of the
high frequency methylene rocking-twisting vibrations below 1060 cm~! and the pres-
ence of a strong C-O stretching vibration at 1115 cm™! and of other vibrations of the
trigtyceride molecules with intensities similar to those of the C-C stretching vibrations.
Nevertheless a number of absorption bands could be assigned tentatively to the C-C
stretching vibrations with a satisfactory degree of certainty.

Figure 41 shows the array of skeletal stretching vibrations. Again all k£ values are
allowed in the triglycerides, whereas for even n-paraffins only X = even values are
allowed.

The methylene rocking-twisting modes in the region 1060-720 cm~! are mixtures of
fundamental rocking and twisting modes (Section 4.5). In the triglyceride spectra all
rocking-twisting modes are allowed, the £ = odd are the more intense, whereas in
paraffins the ¥ = even modes are forbidden. The number of bands and their positions
in C, paraffins agree well with the ¥ = odd bands in the C,.; triglycerides.

The array of methylene rocking-twisting modes for triglycerides is shown in Figure
42,

A band about 890 cm~! in all spectra is assigned to the methyl rocking mode
(Chapman, 1965b).
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Figure 41. Skeletal stretching mode array for triglycerides C3-Cao,

Skeletal bending vibrations should be present in the region below 700 cm—1. How-
ever, the observed bands in this region, so far could not be assigned to definite
vibration modes.

5.4 Assignments of the spectra of the 8’ and £ forms
The transition of the a form into the 8’ and the S forms results in changes in the
infrared spectra, of which sharpening of the absorption bands is most obvious: the

peaks are higher and narrower, though the integrated area is approximately the same.
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Figure 42. Methylene rocking-twisting mode array for triglycerides C;-Cas.

Again, in the § form the bands are sharper than in the §' form. As sharp bands are
correlated with a well-defined structure, these phenomena show that the a-crystals

are the less well-formed, and the f-crystals are the most regularly shaped ones.

In Chapter 2 some marked differences of some triglycerides beiween the three
crystallization forms have already been mentioned. The main rocking band has proved
to be especially characteristic for the various polymorphic forms (a: 720 cm™1; §:
726 and 719 cm~!; 8: 717 cm™!). Further differences are reported in the 1250 cm—!

region. A strong band near 900 cm~! was present in the § form only.

These observations were confirmed by the examinations of the whole series of

121




Table 27. Intercomparison of the infrared spectra of the polymorphs of triglycerides.

Quantity of
absorption bands
Appearance of bands
oCHa

3,CH; + oCHy
a(a-CH_)

d,CHj

wCH3

¥ AC-O
vgC-0O
vC-C

QT.’CH;
Other bands

less bands
not sharp
1475
1470-1450
1418 m
13801 broad
1385-1185
regular band
progression
1178
1115
1495-950

1060-720
~ 950

broad bands

ﬁl
more bands

sharp

ditto

dittot

1436 extra band
1415 s

1395 sharp
13801 broad or doublet
ditto
splitting up,
irregularities

11751

1115

ditto
differently
shaped

ditto

~ 975 m

~ 950 m

~ 925 m

~ B35 m

several weak bands
sharper bands, a.o.:
~ 635
~~ 610 weakest
~ 575 strongest

8

still more bands

very sharp

ditto

dittol

1439 extra band

1425-1415 m
doublet or triplet

13951 sharp

ditto
more splitting up
or new bands,
more irregularities
1180
~ 1160 extra band
1115
ditto
differently shaped

ditto

~ 900 s
several weak bands
sharper bands, a.o.:
~ 635
~ 610 strongest
~ 600 weakest
500-400: several
medium bands

1. Shoulders or weak bands at the lower frequency side of the band.

investigated triglycerides. The more detailed results are included in Tables 10-25 and
summarized in Table 27,
The very regular methylene-wagging band progression in the 1385-1185 cm~1 region
in the a form (Section 5.3) T found to become less regular in the 8’ and 8 forms; some
bands seem to be split up and new ones have arisen.
The methyl symmeirical deformation band is split up into a doublet in the f’ form
only; in the 8 form this band is shifted to higher frequencies.
In the #’ form and still more in the § form a number of weak bands have arisen,
especially in the region 1100-700 cm—1. In this region I observed medium to strong
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bands at about 975, 950, 925 and 835 cm! in the §' form; the strong band at about
900 ¢m™! in the § form has been reported above (A, B and C in tables 10-25).,

In the region 700-400 cm~1 a number of medium peaks are found in the #’ and
especially in the # form, which are not observed in the « form. Remarkable are the
three sharp peaks at about 600 cm~! (listed as D, E and F in tables 10-25). These
bands have different positions and intensiti¢s in the §’ and in the § forms.

5.5 Denterated triglycerides

For further identification of bands and confirmation of assigned bands I have
investigated some deuterated triglycerides, prepared as described in Chapter 3,
As the mass of deuterium is twice that of normal light hydrogen, the frequency of

a C-D vibration will be —1;-2 times that of the corresponding C-H vibration, accor-
ding to Hooke’s law (Section 4.3). That means that all C-H vibrations of the deute-
rated part of the molecule will shift by a factor 0.7 to lower frequencies. This offers
the possibility of distinguishing between C-H vibrations and other vibrations. As the
other bands in the spectrum keep their position, overlapping and masking of bands
can be removed in this way.

The spectra of the following compounds were compared with each other.
Glycerol-tri-(perdeutero-laurate) C3;Hs{O-CO-(CD3)10-CD3]3
(Perdeutero-glycerol)-trilaurate  C3D5[0-CO-(CHouo-CHils
Glycerol-tri-(a-dideutero-laurate) C3Hs[O-CO-CD2-(CH3)o-CHsls
‘Normal’ trilaurin C3H5[0-CO-(CH ) -CH315

Deuterated in these compounds are thus successively: the side chains, the glycerol
head, and the methylene groups adjacent to the carbonyl group.

5.5.1 Glycerol-tri-(perdeutero-laurate)

From this compound four different infrared spectra were obtained (Fig. 37a, b, ¢, d),
attributed to the a, ' and § forms and the liquid, respectively.

In these spectra the CD; scissoring and CD; asymmetric deformation band com-
binations are found at about 1095 cm-1, the symmetric CD; deformation at 990 cm™L.
In trilaurin the corresponding bands are situated at about 1475 and 1380 cm-1. A
relatively weak CHj scissoring band is left at 1475 cm~! due to the glycerol methylene
groups.

The CD, main rocking mode is shifted from 720 to ~ 525 cm~L. The other methyl-
ene rocking-twisting modes are difficult to assign.

Probably the strong absorption bands at 1280 and 1190 cm™! are the two C-O
stretching vibrations, which are found at 1180 and 1115 cm~! in normal triglycerides.
These bands are shifted. to longer frequencies, due to an unexpected interaction of
the a CD; (cf. Section 5.5.3).
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Interesting is the beautiful band progression between 1100 and 1000 cm~! observed
in the spectrum of the # form (Figure 37c). Undoubtely these bands have to be
assigned to the C-C stretching vibration modes. This distribution lies in this region,
but its bands are in normal triglycerides masked by and coupled with C-H and C-O
vibration modes.

5.5.2 (Perdeutero-glycerol)-trilaurate

This compound is, as it were, the reverse of the first one. Only one polymorphic
form could be obtained, which resembles most to the a form (Figure 38).

A doublet at 1085-1075 cm™! is assigned to the CD; scissoring. The surprising
relatively strong intensity should be caused by induction from oxygen. Methyl and
methylene vibrations due to the side chains resemble very close those of trilaurin,
which confirms the assignments of these vibrations. More definite conclusions could
not be drawn, as the sample after purification still contained free lauric acid. This
restulted in a strong absorption band at 960 cm—!, and some other less intense bands
a.0.-at 1305, 690 and 555 cm-1.

No shift of the C-O stretching vibrations is observed for this compound.

5.5.3 Glycerol-tri-(a~-dideutero-laurate)

As the methylene group adjacent iot the carbonyl group {a-CHj) occupies a partic-
ular position, a triglyceride was synthesized in which these groups only have been
deuterated. Spectra of the a and the 8 forms and of the liquid have been obtained.
In conformity with the expectations, the spectra of this deuterated compound most
of the three resembiles trilaurin (compare Fig. 39a,c,d with Fig. 26a,c,d}.

The a-CH; scissoring band at 1415 cm~! in trilaurin is replaced by an a-CD,
scissoring band and shifted to [085 cm~1,

The C-O stretching vibrations are also shifted. They are probably observed at 1280
and 1180 cm™!, and thus are shifted in the same way as in the perdeutero-laurate
compound (Section 5.5.1).

A very interesting phenomenon is observed for the methylene band progression.
In the deuterated compound methylene rocking-twisting and methylene wagging band
progressions are found, both in the a and the § form, resembling those of trilaurin
(indicated as C;; in Figure 39a,c), They are, however, interlaced with a second band
progression which resembles that of glycerol triundecanoate, indicated as Cj; in
Figures 39a,c. (Although no definite conclusions can be drawn from the ill-defined
methylene wagging progressions in the § form, these tend to the same conclusion.)

The meaning of the phenomenon described is, that in the deuterated compound
the methylene rocking-twisting and wagging modes are partly concerned with the
methylene chain including the a-CD, but partly are ‘reflected’ from the a-CD5.

The phenomenon demonstrates that in non-deuterated compounds for the methy-
lene wagging and rocking-twisting modes the a-CH, behaves like the other methylenes.
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6 Introduction of the concept ‘diathesis’ of chemical compounds

In infrared spectroscopy one often thinks in terms of an unambiguous correlation
between chemical compound and infrared spectrum. A well definred chemical com-
pound shows a definite spectrum, and vice versa, an infrared spectrum is characteristic
for one definite compound. With this concept it is taken for granted, that the spectrum
is dependent on the state of the compound. A change in temperature, phase or
crystallization state and also sample preparation and scanning conditions can alter
the infrared spectrum. _

The absorption patterns of different compounds can also show a surprising
similarity. Some examples of this wili be mentioned here.

a. Mizushima (1954) showed that in Raman spectra of long-chained aliphatic hydro-
carbons, absorption bands cccurred that were also in the spectra of corresponding
hydrocarbons with shorter chains. The latter were matched until the length of the
long-chained molecules was reached, by combining Cy + Cy4, C3 + Cs, Cig + Cs
and Co + C;. He concluded that the combination had caused a bend in the otherwise
straight chain of the molecule, the two parts vibrating as independent units because
the coupling across a cis-single band is weaker than that of a trans-single band.

b. Broad bands are found in the infrared spectra of organic compounds with flexible
chains, such as aliphatic compounds in the liquid state. Compounds with rigid skele-
tons, on the other hand, show narrower sharper bands, as in aromatic and cyclic
compounds, steroids, and in general solids.

c. Kirby et al. (1965) determined the length of polymethylene chaing in salts of
saturated and unsaturated fatty acids from infrared spectra using the number and
frequencies of the methylene wagging modes in the region 1380-1170 cm~! and from
the methylene rocking modes between 1070 and 710 cm~! (see Section 4.6). In case of
the methylene wagging modes, only the carboxylate segment is found. No coupling
occurs over the double bond. For the methylene rocking modes the same rule is
observed for the cis-unsaturated compounds. The frans-form, on the contrary, behaves
as the corresponding saturated compound.

d. From my investigations the infrared spectra of the solid n-paraffins could be found
in the infrared spectra of solid monoacid triglycerides. The acid radical chains in
the triglyceride molecules behave almost as independent units. With the help of data
from n-paraffin spectra, the chain length of monoacid triglycerides can therefore be
determined. ]

e. The infrared spectrum of cyclohexadecane is remarkably similar to that of hexane,
Although the cyclohexadecane spectrum (Fig. 43} is more complex, the absorption
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bands of hexane (Fig. 44) can be found in it, very close to their positions; this
correspondence does not exist between the spectra of cyclohexadecane and, e.g.
pentane (Fig. 45) and heptane (Fig. 46). A confirmation is the absence in cyclo-
hexadecane of the 890 cm~1 band of hexane, assigned to the methyl rocking. Cyclo-
hexadecane has a zinc sulphide structure and is folded in four (CH,)4 groups. In this
case too, a bend in the molecule prevents coupling.

We can, with this in mind, restore the unambiguous relation between the infrared
spectrum and the physical entity by stating that each shape a molecule can assume is
a different physical entity as far as vibrations are concerned. For these entities the
qualifications of ‘configuration’ and ‘conformation’ may be used; these have so far
been restricted to more or less stable atomic arrangements but we may extend usage
of the word conformation to cases where the lifetime is only long enough to allow a
few vibrations.

Following this usage we conclude that a compound with flexible chains in the
liquid state exists in various conformations; the infrared spectrum of the liquid con-
sists of a superposition of the spectra of these conformations.

These spectra show considerable differences. Parés of molecules in each confor-
mation show absorption bands or band progressions characteristic for that specific
spatial arrangement of atoms. It therefore seems both sensible and convenient to
introduce a new term for such a spatial arrangement of atoms. I suggest the term
‘diathesis’ (edfieoeg = placing in order, arrangement, plan (of a building), bodily
state, condition.

The use of the term may be illustrated by the following examples.
a. The cetane molecule can display various diatheses, i.e. the diathesis of Cy4, Cs, Cs,
C7, Cg, Cu and ng.
b. A flexible chain has a number of conformations. Each of these has one or more
diatheses, which are apparent in the spectra.
¢. In case of C;g unsaturated fatty acid salts (one double bond between Cy and Cyg)
the cis-configuration possesses the same diathesis as saturated Cy; the ¢rans-con-
figuration also does so for the methylene wagging, but for the methylene rocking its
diathesis corresponds to the diathesis of saturated Cys.
d. The diathesis of a solid monoacid C, triglyceride corresponds with that of solid
C,-1 n-paraffin for all normal vibrations.
e. The diathesis of solid cyclohexadecane appears to be identical with the diathesis
of solid hexane.

The definition of ‘diathesis’ is: A group of atoms joined together in a spatial
arrangement so that at least one vibrational mode exists in which all atoms are
involved.
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‘7 Applications to the analysis of natural fats

7.1 Xdentification of pure triglycerides and of the crystalline state of triglycerides

The infrared spectra with absorption band tables of all even and odd saturated
monoacid triglycerides from C; to Css, can be used for the identification of these
compounds (Figures 16-36, Tables 10-25). The spectra are recorded for the various
crystalline forms as well as for the liquid state.

From the infrared spectra the crystalline state, e, 8’ or # form can be deduced (cf.
Sections 2.4 and 5.4). Besides the doublet at about 720 cm—! a handy distinguishing
mark of the ' form of natural fats proved to be two medium absorption bands at
922 and 835 cm~! being absent in the § form, and a sirong band at 890 cm™! in the
f form being absent in the ' form. The a form is easy to recognize from the appearance
of the whole spectrum, having less and broader bands than the 8° and § forms (Table
27).

The chain length of the fatty-acid radical in the triglyceride can be deduced from
the number and the position of certain bands which are found in the solid state
spectra. The band progressions that have arisen from the methylene wagging and
the methylene rocking-twisting modes, between 1385 and 1185 cm™1, resp. 1060 and
720 cm—1, can be used. The ¢ forms which are obtained after melting followed by
solidification below the melting point of the a form (Table 3), were most useful. These
bands are compiled from Tables 10-25 in Table 28.

7.2 The detection of beef tallow in milkfat

‘When molten milkfat and beef tallow are solidified at low temperatures they
crystallize in the o form. When heated slowly they first become ' form and then they
melt. No § form is observed in this way. When solidified at room temperature the
p’ form is obtained directly. For the detection of beef tallow in milkfat I found it best
to use the absorption bands B and C of the ' forms at 922 and 835 cm-1.

In Figure 47 and 48 a-c the infrared spectra between 1000 and 900 cm~! of beef
tallow and of milkfat in the e and §’ form and the liquid state are shown. Thisis a
sloping part of the fingerprint region (cf. Figure 10). For the experiments I utilized a
flatter curve, which is obtained by compensating the slope of the spectrum of the
solid fat with the same fat in the liquid state in the reference beam (Figures 47d and
48d).

In the following experiments [ compared the compensated spectra between 1000
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Figure 49. Infrared spectra of pure milkfat and of the same milkfat with 10%; beef tallow at various
temperatures.

130



Table 28. List of absorption bands in the a forms ol pure triglycerides, useful for identification.

Triglyceride = Methylene wagging (cm~1) Methylene rocking-twisting {(cm~1)

Cy 1344 1296 1234 796

Cs 1359 1326 1275 1228 830 768

Co 1342 1307 1263 1219 . 934 860 785 751

Cuo 1355 1330 1292 1252 1213 953 887 822 722 739

Cu 1364 1342 1332 1282 1245 1210 908 847 797 758

Cia 1353 1332 1299 1271 1238 1207 869 818 776

Cni 1359 1339 1318 1288 1272 1234 910 836 792 761
1203

Cu 1365 1349 1331 1305 1280 1255 950 902 854 812 776 750

_ 1228 1200

Cis 1356 1339 1321 1294 1272 1248 961 930 872 830 793 764
1224 1199 744

Cis 1348 1331 1311 1286 1266 1243 920 844 808 776 737
1220 1196

Ci7 1353 1338 1323 1301 1280 1261 948 898 B6O 823 791 770
1240 1217 1195 :

Cis 1358 1346 1327 1314 1293 1273 948 904 873 862 806

o 1254 1233 1214 1193 778 756

Cio 1353 1340 1327 1307 1287 1270 950} 958 925 855 822 794
1251 1232 1212 1195 T2 7152

Cx 1343 1331 1316 1297 1279 1262 965 947 898 866 834 806
1245 1227 1209 1191 781 746

Cxn 1350 1338 1325 1308 1292 1273 942 878 847 819 793 772
1258 1241 1224 1207 1189 754 '

Czz 1354 1343 1332 1318 1301 1287 860 830 BO5 784 766

1269 1253 1238 1222 1206 1190

and 900 cm™! of pure milkfat with the same fats with 109 beef tallow added. The
technique and apparatus described in Chapter 3 was used. I did not cool, however,
to —180° C.

The spectra were studied at a gradually increasing temperature, and it was examined
at which temperature the absorption bands at 922 and 835 cm—! disappeared (Figure
49),

The results of three samples of milkfats without and with beef tallow are collected in
Table 29. A temperature interval existed for these samples, where the pure milkfats
showed no more these bands, and in the samples with 109 beef tallow absorption
still existed. For the 922 cm~1 this region is between 27.5 and 29.5° C, for the 835 cm™1
band from 29.5 to 30.5° C. The samples were arbitrarily chosen. For & general validity
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Table 29. Temperature range (°C) for the disappearance of absorption bands at 922 and 835 cm™!
in pure milkfat and in milkfat with 10% beef tallow.

Absorption band 922 (cm™1) 835 {cm™1)
Milkfat Milkfat Milkfat Milkfat
pure + 10%; pure + 10%;
beef beef
tallow taliow
Sample [ 27.0-27.5 29,5-30.5 25.0-27.0 30,5-31.0
Sample 11 27.0-27.5 29.5-30.0 2B8.0-29.5 32.0-33.5
Sample IIT (Fig. 54) 26.0-27.5 33.0-37.5 27.5-28.0 31.0-33.0

Table 30. Detection of beef tal-
low in milkfat, using the 922 and
835 cm™! absorption bands,

Beef tallow Beef tallow
added (30 observed (%)
0 -
1¢ ~5
5 5-10
4 <35
2 <35
0 -

of the method the seasonal variations and perhaps the origin of the samples should
be taken into account, as I did before (De Ruig, 1968). From Dutch milkfat produc-
tion-data and origin are always known.

In another laboratory experiment samples of milkfat were mixed with 0-10% beef
tallow. The absorption bands at 922 and 835 cm~! were recorded at room temperature
with the pure milkfat in the reference beam. Using the presence of these bands, it
proved that less as 2% of beef tallow was semiquantitatively detectable (Table 30).

1.3 The detection of beef tallow in lard

The infrared spectra of lard differs from that of beef tallow. There is, however, no
distinct difference between the spectra of pure lard and lard which contains a few
per cent of beef tallow. So, the spectra of the fats themselves are not suitable for the
detection of adulteration.

A more favourable situation occurred when instead of the fats the so-called Bémer-
glycerides thereof were studied. The Bémerglycerides consist of saturated triglycerides,
obtained by crystallizing the fat sample twice from diethyl ether according to a
standard procedure.
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Table 31. Composition of the saturated fractions of beef tallow and
of lard in % of total fat (Jurriens, 1966). '

Triglyceride Beef Lard Melting points

tallow

a i g i

PMS 1.0
PPP 1.7
PPS A6 20 47 57 62.5
SPS 1.8 20 51.8 [69.0] 68,52
PSP 1.6 47 69 [65.5])3
PSS 32 50,5 61.5 65.01
58S 1.6
Rest (each < 1%) 3.9 26
Total 18.4 6.6

Meclting points reported by (1) Chapman (1957a); (2) Hugenberg & Lut-
ton (1963); {3} Lutton & Hugenberg (1960).
[} = forms not obtained ynless special precantions.

Table 32. Crystallization behaviour of pure beef tallow, pure lard and lard with
6% beef tallow.

Pure beef tallow: : a a8 B L — liquid
Pure lard: a 4248 > =5 | liquid
Lard + 6% becf tallow: a— g B4 5 Y tiquid

The composition of these saturated fractions of beef tallow and lard differs from
each other (Table 31). In beef tallow, the main triglycerides! are PPS and PSS, and
in lard SPS and PPS. Chapman (1957a) already demonstrated that for some mixed
triglycerides normally only two crystallizing forms are found: for SPS the §’, and for
PSP the § form is omitted. PPS and PSS show all three. The melting points of the
various forms are indicated in Table 31. Under special conditions §° SPS and # PSP
were prepared by Lutton & Hugenberg (1960) and Hugenberg & Lutton (1963).

From these observations and the composition of the Bémerglycerides the reported
crystallization behaviour (beef tallow: £, lard: f} indeed is plausible. I have found
that beef tallow admixed to lard tends the fat to crystallize into the 8’ form, like beef
tallow, but unlike pure lard, and 1 believe that this phenomenon offers a tool for the
detection of beef tallow in lard.

1. In the following means M = myristate, P = palmitate, S = stearate, SPS = glycerol-1,3-distea-
rate-2-palmitate, etc.
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The following results were obtained when a sample of lard was admixed with 6%
beef tallow. The ¢ forms of the pure fats and of the mixture were obtained by chilling
the samples down to 0° C. When slowly warmed up, the pure sample of beef tallow
changed from a form into §’ form into liquid, the pure sample of lard from a into §
into liquid while for the mixture three transtitions were observed: a - f = § —
liquid (Table 32). Whether a £’ or a § form is present can be concluded from the
infrared spectra by the distinguishing criteria mentioned before (Sections 7.1, 2.4 and
5.4).

The method is still under investigation, but already it can be expected that under
proper conditions amounts as little as 5% of beef tailow in lard can be detected by
infrared spectroscopic determination of the crystallization state of the Bomerglyceri-
des.
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Sommary

Natural fats have been characterized by using ‘characteristic values’. One of the
modern techniques for analysing fats is infrared spectroscopy. Analytical chemists
must now relate modern technical data to classical results.

Classical and modern techniques have been used to detect adulterating of fats. But
as yet no satisfactory way has been found of detecting animal fats adulterating other
animal fats.

At the Netherlands Government Dairy Station at Leiden infrared spectroscopy of
natural fats indicated that infrared spectra needed further fundamental study.

Natural fat consists of 95% or more triglyceride. An interesting characteristic of
triglycerides is their polymorphism, i.e. they can crystallize into three forms: a, 8’
and § (Chapter 2). Chapman’s idea (1962, 1965b) that these forms can be deduced
from infrared spectra, is confirmed (Chapter 5, Section 7.1).

A number of absorption bands in the infrared spectra of triglycerides have already
been assigned to molecular vibrations. For a further interpretation, vibrational
analyses of other long chain compounds were considered and applied to triglycerides.
The number of bands in band progressions has been theoretically considered. It is
concluded from experimental results that the methyl end groups probably contribute
to these band progressions (Chapter 4).

The list of infrared spectra between 1500 and 400 cm—! of all saturated monoacid
triglycerides from C; to Cj,, includes the crystalline and liquid states (Figs. 21-36),
Infrared spectra of C; to Cg in the liquid form are also given (Figs. 16-20). The fre-
quencies of the absorption bands in the crystalline forms are given and the majority
of the strong and medium bands were assigned to molecular vibrations (Tables
10-25, Chapter 5).

From some deuterated compounds additional information about molecular vibra-
tions could be obtained (Sections 3.4 and 5.5).

To describe the iniramolecular behaviour as apparent from vibrational spectra,
the concept ‘diathesis’ of chemical compounds is introduced (Chapter 6).

The presented infrared spectra of triglycerides (Figs. 21-36, Tables 10-25) can be
used for the identification of these compounds.

The chain length of the fatty acid radicals of triglycerides can be read from the
number and position of certain bands in the solid-state spectra. The band progressions
due to methylene wagging and rocking-twisting modes (between 1385 and 1185 cm™1,
and between 1060 and 720 cm-1, respectively) can be used for this purpose (Table 28).

Some applications of solid-state infrared spectra for the detection of beef tallow
in milk fat and in lard are elaborated.
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