
634.0.524.63:519.241.2 

M E D E D E L I N G E N L A N D B O U W H O G E S C H O O L 
WAGENINGEN • NEDERLAND • 73-19 (1973) 

LINE INTERSECT SAMPLING 
OVER POPULATIONS OF 

ARBITRARILY SHAPED ELEMENTS 
with special reference to forestry 

P. G. DE VRIES 
Department of Forest Mensuration 

A. C. VAN E I JNSBERGEN 
Department of Mathematics 

Agricultural University 
Wageningen, The Netherlands 

(Received 3-X-1973) 

CONTENTS 

1. INTRODUCTION 2 

2. ESTIMATION OVER POPULATIONS OF ARBITRARY CURVE 
SEGMENTS 2 

3. ESTIMATION OVER POPULATIONS OF CIRCULAR ARCS . . 7 

4. DISCUSSION 14 
4.1. Review of estimators 14 
4.2. Evaluation 15 

4.2.1. Line intersect sampling under rule lb 15 
4.2.2. Line intersect sampling under rule la 16 
4.2.3. Line intersect sampling under rule 2 17 
4.2.4. Line intersect estimators used in forestry. 

Sampling with more than one line 18 

SUMMARY 19 

SAMENVATTING 20 

REFERENCES 21 

Meded. Landbouwhogeschool Wageningen 73-19 (1973) 1 

3«} 81S 



1. I N T R O D U C T I O N 

A relatively new (WARREN and OLSEN, 1963; VAN WAGNER, 1968) sampling 
technique in forest inventory, named 'line intersect sampling' appeared to be 
an application of a theme known as 'BUFFON'S needle problem' in probability 
theory, as was shown by DE VRIES (1973). 

In 1777 G. BUFFON in his 'Essai d'arithmétique morale' published the solu­
tion to the following problem : 'On a plane on which parallel straight lines at 
equal mutual distances of W units have been drawn, a straight thin needle of 
length 1 < W is randomly thrown. How large is the probability/» that the needle 
will intersect with a line?' The well-known answer is: 

p = 2-XjnW (1) 

KENDALL and MORAN (1963) treat these types of problems in a general 
fundamental way, listing some 200 references, but they give few solutions to 
special cases though the latter may be derived from the above authors' general 
approach. 

Line intersect sampling is based on observations made only on those elements 
of a population, that intersect with a random line through the population; it 
provides estimates of the total of an observed characteristic (till now generally 
volume of pieces of cut timber) per unit area, and its variance. However, among 
the elements that occur in real life situations (for instance the axes of timber 
logs or branches), many cannot be identified with a straight needle as in the 
classical BUFFON case. This circumstance induces an element of doubt in the 
application of line intersect sampling, as questions arise such as: 'How to deal 
with elements that intersect more than once with the sampling line?', 'Which 
length measure should be taken from an intersecting arbitrarily curved element 
in order that the method validly applies?', etc. 

The authors herewith present a theoretical basis on which decisions can be 
made in the above and similar practical situations. 

2. EST IMATION OVER POPULATIONS OF 
A R B I T R A R Y CURVE SEGMENTS 

We assume a population of N elements, numbered i = 1,..., N of lengths A, 
on an area of size A. The element i possesses a characteristic x with value xh 

and we require an estimator e(X) for the mean quantity of x per unit area, i.e. 
for: 

X = (1M)£W xt (2) 
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The position of an element i on A can be described by the position m t of a 
fixed point located on, and a direction 9t associated with that element. It is 
further assumed that the probability of m, falling in any subarea of size B is 
B/A, and that 0t is uniformly distributed over the range [0, 2%\. 

The estimator will be based on data obtained by the following sampling 
design : All N elements of the population will be considered in succession, and 
by means of N stochastically independent variables tu..., tN it is decided how 
many times tt a particular element i will be included in the sample. For con­
venience, the latter procedure will be referred to as 'the (stochastic) rule ti'. 
Then an unbiased estimator of (2) is : 

e(X) = (l/Afc" xttjtt, = 0IA)Yr xjtjlttj (3) 

where Stt is the expectation of tt, and n is the number of elements, numbered 
j = 1,..., n that constitute the sample. 

From (3) we derive the expression for the variance of e(X) : 

Var e(X) = ( l / ^ X ^ / ^ V a r /, = (1M)2£W xf [CFfe)]2 (4) 

with 

Var /,. = Sfi - (£t,)2 

so that : 

Var e(X) = (l/A)2 £N xf \_(gtil{«td2) - 1] (5) 

The rule tt is based on the intersection of an element i, randomly located as 
described above, with a straight sampling line of length L, the latter being 
chosen arbitrarily within the area of size A. If we now consider a rectangular 
area of size WL, symmetrically around L and within A, the probability that 
the element i will intersect with L is given by: 

pt = (WL/A) xt 

where zt is the probability of intersection of element i with L, given that /' 
(i.e. Wj) is in WL. 

The following case was considered by DE VRIES (1973). If the elements are 
straight line segments of length Xu the rule tt is specified as follows : tt = 1 in 
case of intersection, and tj = 0 otherwise (Fig. 1A). Then: 

«U = £t2 = (0)p(ti = 0) + (\)p(ti = 1) = pit, = 1) = Pi = (WL/AX 

or by (1) : 

Pi = (WLjA) (Ut/nW) = 2XtL/nA 
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O I 

Fig. 1. Stochastic rules for segment of arbitrary curve and line. 

îi= I 

It follows that: 

Var /,. = Pi (1 -Pi) ~ Pi (for pt< < 1) 

Consequently we have by (3) : 

e(X) = (7t/2L)£s xjfij 

and by (5) : 

Var e(X) = (I/A)2 £N xf [M/2A,L) - 1] 

(6a) 

(6b) 
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which by (4) f o r p t « l reduces to: 

Var e(X) * (n/2L) (I/A) £ " xfßt (6c) 

estimated (in a similar way as (2) is estimated by (6a)) by : 

var e(X) = (n/2L)2 £-" (xj/Xj)2 (6d) 

We note that the expressions (6) are based on the classical BUFFON problem, 
and that (6a, d) are independent of W and A. By proper expansion the latter 
formulas of course yield estimates for population total. For p t « l , Stt = 
Pi =* Var th a property reminescent of the POISSON distribution. 

We will now consider populations in which the elements are segments of 
length At of arbitrary plane curves. Then there are various options to define the 
stochastic rule tt, viz.: 

Rule la: tt = 0 in case of non-intersection, and tj = 1,2,..., k in case the i th 
element intersects 1, 2,..., k times (fig. 1 B). 

One would expect that without knowledge of the curve's parameters, the 
expected values Stt and S tj- could not be calculated. This is true indeed as far 
as St2 is concerned, but remarkably we have (KENDALL and MORAN, 1963) an 
expression for the expected number of intersections : 

SU = (WL/A) (UJnW) = lliLjnA) (7) 

which obviously only depends on the curve's length, not on its shape. So by (3) 
we have here the unbiased estimator: 

ela (X) = 0r/2L)£w0cA)/< = (*/2L)£s (x,/A,)/y (8) 

For lack of knowledge of S t_2 we have no expression for the variance of (8) 
unless the type of curve defining the elements is known. This will be shown in 
the next section for the simple case of the mother curve being a circle. It is 
noted that actually (6) is already an illustration. 

Rule lb: t* = 1 in case of intersection, irrespective whether the latter is 
single or multiple, and tt* = 0 otherwise (fig. 1C). 

We use an asterisk to denote that here the probability that the i th element 
intersects, is equal to the sum of the probabilities of the i th element intersec­
ting 1, 2,..., k times in the preceding case, i.e. : 

p(u = i) = I* vdi= V 
h=l 

As (7) is not applicable, we have no expression for it* or St*2 here, and 
consequently we cannot derive the estimator for total per unit area or its 
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variance. However, if the shape of the curve segments is specified, the latter 
expressions which will be denoted by 

elb(X) and Var eib(X) 

respectively, can be found as will be shown for the simple case of circular arcs 
in the next section. Actually (6) is already an illustration again. 

We note that if Sh* were known, we would find: 

Var elb(X) < Var ela(X) 

If here we used an estimator of type (8), i.e. : 

elb(X) = (nlVJZKxjßXj (9) 

with of course tj* = 1, this estimator will be biased, as (8) is not. This negative 
bias will be investigated for circular arcs in the next section. 

Rule 2 : A line segment (straight needle) of length /; is uniquely defined with 
each element. Then t, = 1 in case /; intersects, and tt = 0 otherwise (fig. ID). 

Though the needle must be uniquely defined with each element, there is no 
restriction as to its location relative to an element. For instance the needle may 
be the line segment corresponding to the largest distance between two points 
on a curve segment. Her the problem is reduced to the classical BUFFON case 
(1) with Xt substituted by /,, so we have by (6): 

e2{X) = (TT/2L)X xjfij ( l 0 a ) 

Var e2(X) = (l/A)2 £ " x? [(7t^/2/;L) - 1 ] ( 1 Ob) 

which foi fi < < 1 reduces to : 

Var e2{X) * (nj2L) (l/A) £ " x,2/7; (10c) 

with its estimate: 

var e2(X) = (nßL)2 Y." ( V / (10d) 

We note that formulas (10) change into (6) for the elements being line segments. 
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3. EST IMATION OVER P O P U L A T I O N S OF C I R C U L A R ARCS 

The precision of line intersect estimators based on the different definitions 
of the stochastic rule tt, cannot be evaluated for the general case of a random 
population consisting of segments of arbitrary curves, as in two cases (rules 
la, b) we have no expression for the variance, and in one case (rule 1 b) even 
an estimator for total per unit area is lacking. However if the shape of the 
curve segments is known, it is at least theoretically possible to construct estima­
tors and variance expressions for line sampling designs based on all stochastic 
rules mentioned in section 2. 

In order to avoid calculations that may tend to great complexity if assuming 
other shapes, we will consider the relatively simple case of a population of N 
circular arcs, the arcs being defined by their radii of curvature rt and the angles 
OL-, (in radians) they subtend at their centres of curvature. 

Starting with rule 2, we define as the straight needle associated with the 
i th arc, its chord of length : 

/j = 2r, sin <xf/2 = Xt (sin <x,/2)/(a(/2) = Xtqt 

where Xt = a^; and qt = IJXi = (sin a,/2)/(aj/2) 
Then by (10a) through (lOd) we have, adding a subscript 'o' to refer to a popula­
tion of circular arcs : 

e2o(X) = (K/2L) X s xjßjqj ( l ia) 

Var e2o(X) = ( IM) 2 %"x? [ ( ^ / 2 U , « , ) - 1 ] ( l ib) 

which fo r /? ;<<l reduces to: 

Var e2o(X) * (n/2L) (\/A) £ " xf/Al9( ( l ie) 

with its estimate : 

var e2o(X) = ( J I /2L)2 £ {Xj/^q/ (1 Id) 

The construction of the estimator elb(X) and the expressions for Var elb(X) 
and Var ela(X) for circular arcs is slightly more elaborate. Intersection of the 
sampling line with a randomly thrown arc occurs if the projection P of that arc 
onto a line of length W perpendicular to the sampling line, intersects with the 
latter. For a given orientation cp of the arc, the conditional probability that 
the arc intersects with the sampling line is : 

(p\q>) = iWLjA) ( T | ? ) = (WL/A) (P\<p)IW = (L/A) (P\q>) 

and for all possible orientations the expected probability of intersection is : 

P = «M& = (LA)£v(P\cp) = (L\Ä)SP (12) 
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So we have to find S P for a circular arc with parameters r and a. To this end 
we will indicate the orientation of the arc relative to the sampling line by the 
angle <p between the arc's chord / = Xq, and the line segment W\L. For 
reasons of symmetry it is sufficient to find S P for angles in the interval 0 < cp <jt, 
over which range <p is uniformly distributed with probability density 1/jr. 
Further, for reasons that will be clear presently, the interval for cp is divided 
into 4 subranges, viz. : 

a. 0<(p<7t/2-a/2 where the arc is projected 'singly' 
b. n/2-a/Kq> <n/2 where part of the arc is projected 'doubly' (Fig. 2) 
c. n/2 <<p<7r/2+cc/2 where the arc or part of it is projected 'doubly' 
d. 7t/2+a/2<(p<7r where the arc is projected 'singly' 

(13a) 

The projection P of an arc can always be divided in two parts P^ and P2, 
where Pt corresponds to 'single' projection, and P2 to 'double' projection. The 
values ofP1 and P2 within the different ranges (13a) are: 

a. P1 = Xq cos q> 
b. /*! = Xq cos (p 
c. P1 = -Xq cos <p 
d. Pl = -Xq cos (p 

P2 = 0 
P2 = (A/a) (1-sin (fp+a/2)) 
P2 = (X/a) (1-sin (cp-a/2)) 
i \ = 0 

(13b) 

Fig. 2. Projection of circular arc for range nß-a.ß< y<nß or nß-aß<,<p< nß. P = AC 
CB = Pi+P2 (in 13b) 
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Then: 

S P = {Ijn) 
« 

(Px +P 2 ) d <p 
0 

It follows that : 

SP = A(1+g)/7T = 2/„/TE 

where 

/„ = (A+ 0/2 = A(l + «)/2 

(14) 

So by (12, 14) we have for the probability of intersection (regardless whether 
single or multiple) of the i th arc (rule lb, section 2): 

pt = {LjA) (2 IJn) = k (1 +qd {L/nA) (15) 

and consequently : 

rf/î = */î2 = p,(in(15)) 

Var /! = p,(l-A) - P; (for p,< <1) 

Hence by (3) : 

e16o(X) = 0r/2L)Xax,.//mj. (16a) 

and by (5) : 

Var elb0{X) = {l/A)2 £ N xf i{nAj2LU- 1] (16b) 

which f o r p t « l reduces to: 

Var elbo{X) = (*/2L) (l/A) Z " *?/'„« = 

= (7T/2L) (IM) Ew 2x?M, (1 + «;) (16c) 

with its estimate : 

var elb0{X) = {n\2hf £= {XJILJ)2 (16d) 

On comparison of formulas (16) with (6) and (10) it is noted that in (16) 
the mean lmi of arc and chord lengths plays the same rôle as the length Xt 

in case of line segments (6), or as the length /; of a uniquely defined needle 
associated with an arbitrary curve (10). 
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The second terms (P2) of the projections in (13b) correspond with 'doubly' 
projected parts of the arc; e.g. segment BC in Fig. 2 corresponds with P2 in 
range b. If the sampling line would intersect e.g. BC in Fig. 2, this would imply 
a double intersection of arc and sampling line. If we then apply the stochastic 
rule la,: section 2, we decide that tt = 2. The probability of double intersection 
of the sampling line with a randomly located arc, given its orientation q>, is : 

(p"\q>) = (WLjA) (P2\cp)iW = (LIA) (P2\9) 

and the expected probability of double intersection over all orientations is : 

p" = * „ (P 'W = WA) S, (P2\<P) = (L)A)SP2 

or 

p" = (LIA) (l/7t) P2 dip = X (I -q) (L/nA) 

Analogously the probability of single intersection for the arc is found as : 

p' = «9 (p'lf) = (LIA) SP, = (LIA) (lin) \"P, dp = 2 X q(L/7tA) 

The expected number of intersections for the i th arc then is : 

«U = (0)Pi° + 0 )A + (2)j»t" = 2 X, (L/nA) (17) 

So the general property, already mentioned in (7), has been proved here for 
circular arcs. We now also can find Stj2 : 

$Û = (OM + (1)W + ( 4 W = 2X( (2-qt) (L/nA) (18) 

By (3, 5, 17, 18) we then have for rule la: 

f i „ W = (*/2L) P tjXjjXj (19a) 

Var glJX) = (IjA)2 £ " xf [_(nA(2-qi)i2LXi)- 1] (19b) 

Assuming both/»/ andp" small relative to one, we may write: 

Var /, ~ p\ + Ap- = St] = (18) 

which by (4) reduces (19b) to: 

Var elao(X) =* (nßL) (\)A) £ " (xfjX,) (2- q,) (19c) 
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which quantity can be estimated by: 

var e lao(Z) = {njlLf p tj (xy/x ƒ ( 2 - 9j) (19d) 

where, as before, n is the number of intersecting arcs in the sample,,and tj is 
the number of times (tj = 1 or 2) that they' th arc in the sample intersects with 
the sampling line. 

It is noted that all formulas derived for the estimator of total per unit area 
and its variance reduce to those in (6) if the curve segments reduce to line seg­
ments. Further, for full circles, we have that at = 2n; qt = 0; tt = 0 or 2, and 
l i = ndt where dt is diameter. Hence we obtain from both (16) and (19) for 
full circles : 

eUb(X) = (llL)IrXjldj (20a) 

and for pt = p't = dtLjA < < 1 : 

Var e_UX) =* (1/L) (1M) £ " xf/d, (20b) 

with its estimate : 

var f l a b(X) = (l/L)2 ^ (xj/dj)2 (20c) 

Summarizing, we have derived the following approximate variance expressions 
for line intersect sampling in populations of circular arcs : 

rule l b : Vare,bo(Z) (16c) 

rule la: Var ela0(X) (19c) 

rule 2: Var e2o(X) ( l ie) 

As a measure of 'relative precision' (RP) of the estimators obtained under 
the different rules tt, we will only consider the ratio (for convenience multiplied 
by 100) of corresponding terms under the summation signs of their variances. 
As can be seen from (4) this ratio is equal to the squared ratio of the coefficients 
of variation of the different rules. We then have : 

RP{\b, la) = 100 (2-q) (1 +q)/2 (21a) 

RP(lb, 2) = 100 (1 +q)/2q (21b) 

RP(la, 2) = 100/« (2-q) (21c) 

We now can investigate also which bias is induced if (9) is used for circular 
arcs instead of (16). Using (9) of course comes to the same as using (6), so we 
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TABLE 1. Relative precisions of the e(X) in populations of circular arcs for various a. 

a° 

0 
10 
20 
30 
45 
60 
90 

135 
180 
225 
270 
315 
360 

a 

1.000 
.999 

.995 

.989 

.974 

.995 

.900 

.784 

.637 

.470 

.300 

.140 

.000 

RP(lb, la) 

100 
100 
100 
100 
101 
102 
104 
108 
111 
112 
110 
106 
100 

RP(lb, 2) 

100 
100 
100 
101 
101 
102 
105 
114 
128 
156 
217 
407 
oo 

ÄP(la, 2) 

100 
100 
100 
100 
100 
100 
101 
105 
115 
139 
196 
384 
(X) 

will calculate the bias caused by considering a circular arc as a straight needle 
of length X = ar = l/q. Apart from the constant, each term under the summa­
tion sign in (6a) then has a negative bias of the type : 

B = xH-x/lm = (xlk)(q-l)Kq + \) 

or expressed as a percentage of a term in (16a): 

B % = 100(9-l)/2 (22) 

and the 'relative precision' (here: bias in variance), expressed as 100 times the 
quotient of corresponding terms in (6c) and (16c) is: 

RP(16, 6) = 100(l+«)/2 (23) 

TABLE 2. B% (22) and RP (23), using (6a, c) instead of (16a, c) for circular arcs. 

a° 

10 
20 
30 
45 
60 
90 

B% 

-0.1 
-0.2 

-0.6 
-1.3 
-2.2 

-5.0 

RP(16,6) 

99.9 
99.8 
99.4 
98.7 

97.8 
95.0 

a0 

135 
180 
225 
270 
315 
360 

B% 

-10.8 
-18.2 

-26.5 
-35.0 
-43.0 
-50.0 

RP(16,6) 

89.2 
81.8 
73.5 
65.0 

57.0 
50.0 

As both (22) and (23) only depend on a, specification of the allowable bias 
percent implies specification of the maximum curvature (table 3) circular arcs 
of given r may possess, to allow (6) to be applied. 
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TABLE 3. Maximum lengths of arc (A), chord (/) and rise (a = r (1-cos a/2)) if maximum 
absolute bias (22) of B = 5 % (a = 90 °) is tolerated in using (6) for circular arcs instead of (16). 

r X = n r/2 I = 2r sin 7t/4 a = r (1-cos rc/4) 

1.41 0.29 
2.83 0.59 
4.42 0.88 
5.67 1.17 
7.07 1.46 
8.48 1.76 
9.90 2.05 

11.31 2.34 
12.73 2.64 

From table 3 it is evident that circular arcs with considerable rise may still 
be identified with straight needles if underestimations of total per unit area and 
its variance to the order of 5 %, say, are tolerated. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1.57 
3.14 
4.71 
6.28 
7.85 
9.42 

11.00 
12.57 
14.14 
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4. D ISCUSSION 

4.1. REVIEW OF ESTIMATORS IN LINE INTERSECT SAMPLING 

In the scheme below the estimators derived in the preceding sections are 
summarized. 

Estimators e{X) (unbiased) and var e(X) (app. unbiased) in line intersect samp­
ling under different stochastic rules, in populations of elements with known or 
unspecified shapes 

Intersection of sampling line with 

curve of length X, 

points of intersection 

considered 

/ \ 
individually collectively 

I, = 0, 1 k r , * = 0 , l 

Rule la Rule lb 

1 I 
type of curve type of curve 

straight needle of length /, 

uniquely denned with curve 

of length X,. Rule 2 

V 

'j = o.' 

type of curve 

unknown known /x 
line 4 circular 

section a r c 

unknown known 

«..(*) (8) 

1 ! 

/ \ 
line 

section 
circular 

arc 

e,„(A0 (19a) ? 

var e lao(J0 (I 'd) ? 

e(X) (6a) 

var e(X) (6d) 

unknown known 

/ \ 
line 

section 

circular 
arc 

e,„Xr)(16a) ?,(*•) (10a) 

vare l b„W(16d) var e:(X) (lOd) 

I 
—» full circle 

1 
eUX) (20a) 

var «„„(JT) (20c) 

e2o(*)(l la) 

varc2o(A-)(lld) 
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4.2. EVALUATION 

4.2.1. Line intersect sampling under rule 1 b (Fig. 3A) 
For populations of circular arcs we have the unbiased elb0{X) (16a) as the 

best of the three estimators for total per unit area, as appears from (21a, b). 
For straight needles (line segments) and full circles this estimator and that of 
its variance (16d) automatically change into the corresponding expressions in 
(6) and (20) respectively. 

For populations of arcs from other mother curves than circles, we have not 
tried to derive estimators, though such derivations should be theoretically 
possible. Consequently, application of the estimators in (16) to populations of 
other types of arcs leads to unpredictable bias, but no doubt bias will be negli­
gible if only moderate curvature exists. In the latter case, by tables 2 and 3, 
we even may expect reasonable results from the estimators in (6), where all 
elements are identified with straight needles. 

Under rule lb all intersecting elements are considered, and any type of 
intersection is just given t*= 1. Length measurements always include X, but 
(16) also implies measurement of chord length / in order to compute lm. Chord 
length of course need not be measured if (6) is used as an approximation. 

In branched elements it may sometimes be possible to define an arc-like 
shape of length X, as indicated in Fig. 3A, so that the above estimators still 
can be applied, albeit with some reserve. As rule lb is based on intersection with 
this X, special attention then should be paid to the exclusion from the sample of 
branched elements that intersect invalidly. This may constitute a psychological 
drawback of this design. 

For populations of arbitrarily shaped, non-arc like elements we have no 
estimators under rule lb, and we cannot use (16) as an approximation either, 
as the measure / that should be taken to compute lm, is not known. Maybe, if 
the shape of the elements is relatively simple and shows little curvature, bias 
will be small if, as in circular arcs here / also is taken as the length of the line 
connecting the curve's ends. The use of (6) in this case will lead to larger, but 
likewise unpredictable bias. 
Summarizing: For populations of elements shaped like line segments, circular 
arcs and circles, or for populations in which the elements for practical purposes 
may be identified with these pure shapes, line intersect sampling under rule 
lb provides (16a) as the best unbiased estimator for total per unit area, with 
estimated variance (16d). Identification of moderately curved circular arcs with 
line segments, i.e. the use of (6) reduces the number of measurements and will 
lead to only slightly biased results. For populations of arbitrarily shaped 
elements, no unbiased estimators exist in sampling under rule lb. 

The treatment of data obtained from more than one sampling line will be 
considered in section 4.2.4. 
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Fig. 3. Values of tt for intersecting elements of various shapes under the rules la, lb and 2. 

4.2.2. Line intersect sampling under rule 1 a (Fig. 3 B) 
Under rule la we always have an unbiased estimator ela(X) (8) for total per 

unit area from a line sample, i.e. even if the shape of the elements is unspecified. 
A variance expression however can be derived only if the type of curve is 
known, as we have shown for circular arcs. As may be expected, in the latter 
case the variance under rule la is equal to or slightly larger than the variance 
under rule lb, but may be considerably smaller than that under rule 2 (table 1). 

For arbitrarily shaped elements we cannot use (19d) as an approximation 
of the variance, as a measure / in q = l/A cannot be specified. Maybe under 
conditions as in the preceding section, bias will be small if (19d) is used with / 
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as the length of the line connecting the curve's ends. 
For populations of arbitrarily shaped elements, an unbiased estimate 

var ^xaPO can only be obtained from more than one sampling line (see section 
4.2.4). 

Sampling under rule la is in general more representative than sampling under 
rule lb or rule 2, as more intersecting elements are considered. As, moreover, 
all intersections per element are counted, this method may be psychologically 
more acceptable. Measurement of total length X (i.e. inclusive of branches, 
if any) involves more work however. 

Summarizing: For populations of arbitrarily shaped elements and sampling 
under rule la, we have an unbiased estimator (8) for total per unit area, but no 
variance estimator. The variance can only be estimated if more than one samp­
ling line is used. 

4.2.3. Line intersect sampling under rule 2 (Fig. 3 C, D) 
Contrary to the preceding cases, in line intersect sampling under rule 2 both 

an unbiased estimator e2{X) (10a) for total per unit area, and an approximately 
unbiased one for its variance (lOd) always are available. From the results 
obtained for circular arcs (21b, c) we may expect that in general precision will 
be smaller than in sampling under rules la or lb (but the latter rules generally 
do not provide an unbiased variance estimate based on one line!). 

It is stressed that the straight needle associated with an element, should be 
uniquely defined beforehand. In comparison with eu(X) the estimator under 
rule 2 will be less representative, as only elements with intersecting associated 
needle are included in the sample. If e.g. the needle is defined as the largest 
straight distance between two points on an element, intersecting branched 
elements of which the associated needle does not intersect as well (Fig. 3C) 
are disregarded. Of course the same holds for unbranched elements. This may 
constitute a psychological drawback in practical application (e.g. in forestry), 
especially to unskilled labour, so that due instruction should be given. 

Apart from the measurement of other lengths that may be necessary to 
quantify the characteristic x, only one length measurement is involved, viz. that 
of the needle/. 

For the academic case that there are two or more symmetric branches, the 
needle cannot be specified uniquely (Fig. 3D). However, for instance in case 
of 3 symmetric branches, we may imagine that we have defined one of the equal 
11, l2, h

 a t random as 'the' needle, e.g. lx- As a case of intersection always 
implies two intersecting needles, the probability is 2/3 that one of these two is 
lt. So we may consider two out of three intersecting elements as intersecting 
validly, which comes to the same as counting each intersecting element with 
tt = 2/3 instead of 1. 

Summarizing: For populations of arbitrarily shaped elements and sampling 
under rule 2, we have an unbiased estimator (10a) for total per unit area, and an 
approximately unbiased estimate (lOd) for its variance. To improve precision, 
more than one sampling line can be used (section 4.2.4). 
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4.2.4. Line intersect estimators used in forestry. Sampling with more 
than one line 

If all elements are considered as straight needles, so that X = /, q = 1 are 
assumed (but k is measured), and if, regardless of the number of intersections 
per element, tt is put equal to one in case of intersection, all e(X) considered 
reduce to e{X) in (6), which then will be biased, unless the assumption is not 
far from reality. This e{X) is indirectly employed by BAILEY (Canada, 1970) in 
sampling for volume of logging residue in forestry. MATERN (Sweden, 1964), 
quoted by LOETSCH, ZÖHRER and HALLER (1973) employs an unbiased estimator 
for total length of roads and waterways per unit area, that can be derived 
directly from ela(X) (8). VAN WAGNER (Canada (1968) and personal communica­
tion (1973)) puts tt = 0, 1,..., k dependent on the number of intersections per 
element of logging residue, and employs an unbiased estimator for volume per 
unit area of a type that comes close to (8). In a concise publication on the 
estimation of total length of hedges from aerial photographs CHEVROU (France, 
1973) uses estimators that can be derived from (8) if some extra assumptions 
are made; derivations or references to literature are not supplied however. As 
far as we know, the estimator e2(X) (10) has not yet been employed. 

Till now the variance of e(X) is derived from estimations made by using more 
than one sampling line. It was shown by DE VRIES (1973) that under the assump­
tion of all elements being straight needles, a variance can be estimated from a 
one-line sample; this variance of course may be severely biased if the assump­
tion considerably violates reality. 

In this paper we introduced sampling under rule 2 which, for elements of 
arbitrary shapes provides (10) as an approximately unbiased estimate of the 
variance in one-line sampling. Further we derived this type of variance estimate 
(16, 19) for populations of circular arcs, including line segments and full circles 
as special cases. 

In order to improve the precision of e(X) in the latter situations on the one 
hand, and on the other to find a variance estimate at all in sampling over 
populations of arbitrarily shaped elements under rule la, more than one 
random sampling line can be used. If k such lines of equal lengths are employed 
we have k estimates e(X), from which a mean and an estimate of Var e(X) can 
be computed directly; the variance of the mean then is estimated as l/k times 
the latter quantity. As all variances in one-line sampling so far derived, are 
inversely proportional to sampling line length L, it seems justified, at least 
in homogeneously distributed populations, to weight each individual e(X) with 
its corresponding sampling line length if the latter is not the same in all samp­
les. If an unbiased variance estimator exists in one-line sampling, as under rule 
2, one might also weight each of the k estimates e(X) with the inverse of its 
estimated variance. In homogeneously distributed populations this will come 
to about the same as weighting with sampling line length. 

Finally, it may also be possible to reduce the variance in a one-line sample 
from a heterogeneous population by post-stratifying the latter (from field 
data) in two strata, viz. one containing line segments, arcs and moderately 
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curved other shapes, and the other containing the rest. Then for the first stratum 
(16a, d) could be used, and for the second (10a, d). Estimates over the entire 
population then can be obtained from: 

e(X) = elho(X) + e2(X) 

var e(X) = var elbo(X) + var e2{X) 

S U M M A R Y 

This paper is a contribution to the theory of line intersect sampling, a rela­
tively new sampling method which finds increasing application in forest inven­
tory. 

From a general unbiased estimator for quantity per unit area of a character­
istic observed on elements in a sample from a population of arbitrarily shaped 
elements, distributed randomly over an area, a general expression for the 
variance of this estimator is derived. The latter two general expressions may, 
dependent on the interpretation of the event of intersection, yield three differ­
ent types of estimators in line intersect sampling. The three types of estimators 
come to the same if the elements reduce to line segments, in which case the 
sampling method is based directly on BUFFON'S needle problem. 

As, in line intersect sampling over populations of arbitrarily shaped elements, 
under one interpretation of intersection an expression for the variance is 
lacking, and under another interpretation both the expressions for variance 
and total-estimator do not exist, the precision of the three types of estimators 
generally cannot be compared. Only if the elements are segments of specified 
plane curves, this comparison is theoretically possible, though in many cases 
the derivation of the expressions for estimator for total per unit area, and its 
variance, will be complicated and tedious. The authors construct the latter 
expressions for the relatively simple case of the elements being circular arcs 
(including full circles and line segments as special cases), then compare pre­
cisions, and consider biases in case circular arcs are identified with line seg­
ments. 

A scheme of possible estimators in line intersect sampling is added, showing 
mutual relationships. The line sampling designs corresponding to the different 
interpretations of intersection are discussed, and attention is paid to the hand­
ling of data obtained in sampling with more than one line. Finally, line intersect 
estimators used in forestry at present, are linked to the theory developed. 
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S A M E N V A T T I N G 

Dit artikel is een bijdrage tot de theorie van 'line intersect sampling', een 
betrekkelijk nieuwe steekproeftechniek die toenemende belangstelling bij de 
bosinventarisatie geniet. 

Uitgaande van een algemene zuivere schatter voor populatie totaal (per 
oppervlakte eenheid) van een karakteristiek waargenomen aan elementen in 
een steekproef uit een populatie van willekeurig gevormde elementen, die aselect 
over een oppervlak verdeeld zijn, wordt een algemene uitdrukking voor de 
variantie van deze schatter afgeleid. Uit deze beide algemene uitdrukkingen 
kunnen, afhankelijk van hoe een snijdingsgeval wordt geïnterpreteerd, drie 
verschillende stellen schatters (voor totaal per oppervlakte eenheid en zijn 
variantie) voor 'line intersect sampling' volgen. Deze drie stellen worden iden­
tiek, indien de elementen ontaarden in lijnsegmenten; in dat geval is de steek­
proeftechniek direct gebaseerd op BUFFON'S naaldprobleem. 

Indien uit een populatie van willekeurig gevormde elementen een steekproef 
met een lijn wordt getrokken, ontbreekt onder een der interpretaties van snij­
ding een uitdrukking voor de variantie, terwijl onder een tweede interpretatie 
uitdrukkingen voor zowel totaal-schatter als variantie ontbreken. Bijgevolg 
kan men de nauwkeurigheid der drie typen van schatters in het algemeen niet 
vergelijken. Een dergelijke vergelijking is theoretisch slechts dän mogelijk, 
indien de elementen delen zijn van gespecificeerde vlakke krommen, doch veelal 
zullen de afleidingen van expressies voor totaal-schatter en zijn variantie ge­
compliceerd zijn. Laatstgenoemde uitdrukkingen worden afgeleid voor het 
betrekkelijk eenvoudige geval dat de elementen cirkelbogen zijn; de schatters 
voor cirkels en lijnsegmenten volgen daaruit dan als speciale gevallen. Voor het 
geval van cirkelbogen wordt de nauwkeurigheid der schatters vergeleken; 
tevens wordt de systematische fout nagegaan ingeval cirkelbogen beschouwd 
worden als lijnsegmenten. 

Een schema van mogelijke schatters is opgenomen; daarin is ook hun onder­
linge verwantschap aangegeven. De met de diverse interpretaties van snijding 
corresponderende steekproeftypen worden voorzover mogelijk op hun theore­
tische en practische merites beschouwd. Ook aan de verwerking van de met 
verscheidene lijnen verkregen resultaten wordt aandacht besteed. Tenslotte 
wordt de plaats van de thans in de bosbouw gebruikte schatters in het ont­
wikkelde systeem aangegeven. 
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