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The revised Environmental Protection Act Part 2A contaminated land Statutory Guidance (England and
Wales) makes reference to ‘normal’ levels of contaminants in soil. The British Geological Survey has been
commissioned by the United Kingdom Department for Environment, Food and Rural Affairs (Defra) to esti-
mate contaminant levels in soil and to define what is meant by ‘normal’ for English soil. The Guidance states
that ‘normal’ levels of contaminants are typical and widespread and arise from a combination of both natural
and diffuse pollution contributions. Available systematically collected soil data sets for England are explored
for inorganic contaminants (As, Cd, Cu, Hg, Ni and Pb) and benzo[a]pyrene (BaP). Spatial variability of con-
taminants is studied in the context of the underlying parent material, metalliferous mineralisation and asso-
ciated mining activities, and the built (urban) environment, the latter being indicative of human activities
such as industry and transportation. The most significant areas of elevated contaminant concentrations are
identified as contaminant domains. Therefore, rather than estimating a single national contaminant range
of concentrations, we assign an upper threshold value to contaminant domains. Our representation of this
threshold is a Normal Background Concentration (NBC) defined as the upper 95% confidence limit of the
95th percentile for the soil results associated with a particular domain. Concentrations of a contaminant
are considered to be typical and widespread for the identified contaminant domain up to (and including)
the calculated NBC. A robust statistical methodology for determining NBCs is presented using inspection of
data distribution plots and skewness testing, followed by an appropriate data transformation in order to re-
duce the effects of point source contamination.

© 2013 Natural Environment Research Council. Published by Elsevier B.V. All rights reserved.
1. Introduction

The work described here is part of the process to simplify the con-
taminated land regime for England and Wales (Defra, 2011). Part 2A
of the Environmental Protection Act 1990, as amended in 2012,
defines contaminated land that poses a Significant Possibility of
Significant Harm (SPOSH). The United Kingdom Secretary of State
for the environment issues Statutory Guidance (SG) in accordance
ment Research Council. Published b
with section 78Y of the Environmental Protection Act 1990 to estab-
lish a legal framework for dealing with contaminated land (DETR,
2000). Revised SG was issued in April 2012 (Defra, 2012a). The intent
of the SG is to explain how the contaminated land regime should be
implemented. However, the original SG and a previous update to
the SG (DETR, 2000; Defra, 2006), which were supposed to explain
when land does (and does not) need to be remediated, did not re-
solve significant uncertainties. Contaminated land was still, in part,
defined on the basis of the toxicologically vague concept of ‘unaccept-
able intake’. Therefore, following a year of consultation, the SG was
revised to be more useable for those working with contaminated
y Elsevier B.V. All rights reserved.
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land and remediation. Land is placed into one of four new categories
to help decide when land is (and is not) contaminated (Fig. 1).
Category 1 describes land which is clearly posing SPOSH, for example,
because similar sites are known to have caused a significant problem
in the past. Category 4 describes land that is clearly not posing SPOSH
and should not be determined as statutory contaminated land. Cate-
gories 2 and 3 are land for which categorisation is less straightfor-
ward. Category 2 land poses SPOSH and is defined by a combination
of expert opinion and scientific evidence that analogous conditions
on other sites have or are highly likely to have caused significant
harm. Category 3 land is that where the conditions for Category 2
are not met and the land is not contaminated. There is a fifth category
not shown in Fig. 1, informally termed Category 0, which is land
where significant harm to human health has occurred as a direct re-
sult of contamination, a category for which there is no example in En-
gland, Scotland or Wales.

The revised SG (Defra, 2012a) introduced the concept of ‘normal’
levels of contaminants in soil. Section 3 of the Guidance notes that
‘normal’ presence/levels of contaminants:

• should not be considered to cause land to qualify as contaminated
land, unless there is a particular reason to consider otherwise
(Section 3.22);

• may result from the natural presence of contaminants at levels
that might be considered typical in a given area, and have not
been shown to pose an unacceptable risk to health or the envi-
ronment (Section 3.23(a)); and

• are caused by low level diffuse pollution, and common human
activity other than specific industrial processes (Section 3.23(b)).
Fig. 1. The new four category system to help test when l
As part of its research programme to support Local Authorities im-
plement the revised SG, a research project was instigated by Defra to
investigate normal concentrations of contaminants in the soil of
England. The question of “what is normal?” should be a prerequisite
in any investigation of potentially contaminated soil, and the results
of our research are just one of the several tools to be provided by
Defra to support the revised SG.

It is important to emphasise that this work to determine ‘normal’
levels of contaminants in soil supports the English contaminated land
regime rather than the planning regime. The contaminated land re-
gime requires developers to show that land is safe, suitable for use
and, after remediation, cannot be determined as statutory contami-
nated land. The regimes differ in the level of risk at which remedia-
tion is needed. In the case of planning, remediation is needed to
ensure a site is suitable for its future intended use. Under the contam-
inated land regime, remediation is needed if the site, given its current
use, is presenting such a high level of risk that if nothing is done, there
is a significant possibility of significant harm such as death, disease or
serious injury.

The research comprised four work packages with the aim of defining
‘normal’ level of contaminants in soil by determiningNormal Background
Concentrations (NBCs) for a selected number of contaminants:

a. Assessment of available soil contaminant data for English soil;
b. Exploration of relevant soil data sets;
c. Development of a robust statistical methodology for determining

NBCs; and
d. Technical Guidance Sheets for the use of NBCs for selected

contaminants.
and is, and is not contaminated (from Defra, 2011).
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This paper describes the first three of these work packages reported
in more detail in technical reports (Ander et al., 2011, 2012; Cave et al.,
2012; Johnson et al., 2012).

2. Contaminants

A detailed review of how a contaminant is defined is beyond the
scope of this work which focuses on contaminants as defined in Brit-
ish legislation. A contaminant can be defined in many ways, here we
use the term as defined in the Part 2A contaminated land Statutory
Guidance (SG) (Defra, 2012a, page 4). In this the terms ‘contaminant’,
‘pollutant’ and ‘substance’ are used with the same meaning, that is, “a
substance relevant to the Part 2A regime which is in, on or under the land
and which has the potential to cause significant harm to a relevant
receptor, or to cause significant pollution of controlled waters”. Detailed
clarification of what is meant as ‘significant harm’ and ‘relevant re-
ceptor’ is also given in the SG. Receptors to be protected from harm
fall into three categories: human, ecological systems and property
(e.g., buildings, crops and livestock).

Literature covering aspects of contamination give less robust
definitions of a contaminant. For example, BS EN ISO 19258:2011
(BSI, 2011) defines a contaminant as “a substance or agent present in
the soil as a result of human activity”, and notes that there is no as-
sumption in this definition that harm results from the presence of
the contaminant. This definition does not include elements and sub-
stances derived purely from geological sources that are defined as
contaminants but occur naturally in widespread and high concentra-
tions (i.e. naturally occurring and contaminants). Cole and Jeffries
(2009) in their report on using soil guideline values (SGVs) say
“a contaminant is a substance that is in, on or under the land and has
the potential to cause harm”.

There are thousands of potential contaminants which might be
present on various sites around England (although a smaller sub-set
probably drives the risk on most sites) (Defra, 2008). The now with-
drawn report on “Potential Contaminants for the Assessment of Land”
(Defra and EA, 2002) identified the priority chemicals for the devel-
opment of SGVs. This was based on the chemicals likely to be present
in sufficient concentrations on affected sites that were considered to
pose a risk. An updated priority chemical list is presented by Martin
and Cowie (2008) (Table 1). This comprises fifty six chemicals, four-
teen of which are chemical elements plus cyanides (an inorganic
substance) and asbestos (mineralogically defined). The remaining
contaminants can be classified as organic substances, and these in
Table 1
List of priority contaminants (from Martin and Cowie, 2008).

Inorganic Organic

Arsenic (As) Acetone Fenitrothion
Beryllium (Be) Aldrin Hexachlorobuta-1,3-diene
Cadmium (Cd) Atrazine Hexachlorocyclohexanes
Chromium (Cr) Azinphos-methyl Malathion
Copper (Cu) Benzene Naphthalene
Lead (Pb) Benzo(a)pyrene (BaP) Organolead compounds
Mercury (Hg) Carbon disulphide Organotin compounds
Molybdenum (Mo) Carbon tetrachloride Pentachlorophenol
Nickel (Ni) Chloroform Phenol
Selenium (Se) Chlorobenzenes Polychlorinated biphenyls (PCB)
Sulphur (S) Chlorophenols Polycyclic aromatic hydrocarbons

(PAH)
Thallium (Tl) Chlorotoluenes Tetrachloroethane
Vanadium (V) 1,2-Dichloroethane Tetrachloroethene
Zinc (Zn) Dichlorvos Toluene
Cyanide DDT Total petroleum hydrocarbons
Asbestos Dieldrin 2,1,1,1-Trichloroethane

Dioxins and furans Trichloroethene
Endosulfan Trifluralin
Ethylbenzene Vinyl chloride
Explosives Xylenes
the soil environment will be overwhelmingly (though not exclusively)
associated with anthropogenic activity (radioactive elements are out-
side the remit of this investigation). Globally, there is generally good
agreement as to what are priority contaminants, though there are
national differences. In Finland, for example, the “Government Decree
on the Assessment of Soil Contamination and Remediation” (Finnish
Government, 2007) lists eleven inorganic elements: antimony (Sb),
arsenic (As), mercury (Hg), cadmium (Cd), cobalt (Co), chromium
(Cr), copper (Cu), lead (Pb), nickel (Ni), vanadium (V) and zinc (Zn).
Two of these elements, Sb and Co, are not present in Table 1.

In our data exploration and methodology development, eight con-
taminants – As, Cd, Cu, Hg, Ni, Pb, benzo(a)pyrene (BaP) and asbestos
– were selected to represent the range of data availability and con-
tributing sources, though the exploration shows that asbestos is a
contaminant for which a NBC cannot be determined. The remaining
substances are discussed in subsequent sections.

3. Background concentrations

A number of terms are used to convey the expected concentra-
tions of a contaminant in soil. These include: normal, typical, baseline,
ambient, characteristic, natural, background and widespread. There
are some subtle differences between these terms, they can mean dif-
ferent things in different disciplines, and they can be confused with
alternative uses. For example, a statistician would associate the
word ‘normal’, in the context of defining the spread of a set of results,
with the normal (or Gaussian) distribution. The terms normal, typical,
characteristic and widespread are more or less synonymous. In this
paper, we use ‘normal’ in the sense of the SG (Defra, 2012a) as set
out here in Section 1.

In our work, we represent what is normal by use of Normal Back-
ground Concentrations (NBCs), so the term normal background
excludes point contamination and encompasses typical variation
around a domain average (Fig. 2).

The term background has a more complex and varied usage than
the term normal and is discussed in detail by Matschullat et al.
(2000); Reimann and Garrett (2005); and Reimann et al. (2005). It
is used differently in different areas of science, for example:

• in exploration geochemistry the term background has been long-
established and defines an area of normal element concentrations dis-
tinguished from anomalously high concentrations (that may indicate
the presence of metalliferous mineralisation) by a threshold value;

• in environmental geochemistry background is a relative measure to
distinguish between natural element or compound concentrations
and anthropogenically-influenced concentrations in real sample
collectives (Matschullat et al., 2000); and

• in the BSI (2011) guidance on soil background the content of a sub-
stance in a soil results from both natural geological and pedological
processes and includes diffuse source inputs.

In the work described here, where the definition of normal is
given in statutory guidance, the use of the term normal background
is as defined by BS EN ISO 19258:2011 (BSI, 2011) and includes
both geogenic (i.e., of geological origin) and anthropogenic diffuse
pollution.

A further refinement in our use of NBCs is the realisation that, due to
significant chemical variability in the underlying parent material on
which soil is formed, different areas of the country will have different
ranges of normal background concentrations. This will be particularly
the case in areas overlying mineralisation or those regions subjected
to a long history of anthropogenic activity, namely built-up or urban
areas. Rather than having single national NBCs, we have used our data
exploration of the different contaminants to identify areas, referred to
as domains, which have characteristic NBCs.

The conceptualmodel thatwe follow for defining a contaminant con-
centration is summarised in Fig. 2. The concentration of a contaminant in



Fig. 2. Conceptual model of contaminant concentration.
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soil varies about the domain mean due to geogenic and diffuse sources
and, where present, point contamination. In the absence of point con-
tamination, observed concentrations in soil within a domain represent
the normal levels of concentration. Our aim is to identify contaminant
domains and, to characterise the statistical distribution of NBCs with a
statistical methodology that is robust to the effects of any point source
contamination.

Methodologies for determining background concentrations are as
numerous as there are definitions for background. There are impor-
tant strategic, economic and legislative drivers for understanding
and quantifying soil element/contaminant concentrations. From an
economic and strategic point of view, the exploration and develop-
ment of economic metalliferous mineral deposits by geochemical ex-
ploration have meant that much work has been done into developing
methods to determine background levels. For more than sixty years,
statistical methods have been used to distinguish between anomalous
and background concentrations of the chemical elements in soil in
order to locate buried mineralisation (e.g., Lovering et al., 1950;
Hawkes and Bloom, 1955; Tennant and White, 1959; Lepeltier,
1969; Tidball et al., 1974; Sinclair, 1976, 1983, 1986). Some of these
techniques are described in detail by Matschullat et al. (2000) with
application examples and include: the Lepeltier method; relative
cumulative frequency curves; normality of sample ranges; regression
techniques; mode analysis; 4-σ outlier test; interactive 2-σ tech-
nique; and calculated distribution function.

Grunsky (2010), in a more recent review of interpreting geochem-
ical survey data, discusses graphical methods for differentiating geo-
chemical background from anomalies.

Legislation concerned with healthy and sustainable environments
is also now a significant driver for information on background con-
taminant concentrations. For this purpose, documents such as British
Standards Institution guidance on the determination of background
values have been published. BS EN ISO 19258:2011 (BSI, 2011) covers
the prerequisites of sampling, analysis and data handling and outlines
some essentials of statistical evaluation of data.

Matschullat et al. (2000), Grunsky (2010) and BS EN ISO 19258:2011
illustrate the fact that the determination of background requires good
quality concentration data and a statistical methodology to deliver esti-
mates for background concentrations. The availability and robustness of
available data sets for contaminant concentrations in English soil were
the starting point for our work and are described in detail in Ander et
al. (2011) and summarised here in Sections 4 and 5.

The majority of research to date has focused on methods for pro-
viding typical background concentrations of Potentially Harmful Ele-
ments (PHEs) in soil (e.g., Appleton, 1995; Appleton et al., 2008).
Geochemists express the geochemical baseline (a spatially fluctuating
chemical environment at a given point in time) in terms of the natural
baseline. This is stable over a long period of time, provided that there
are no sudden catastrophic events (such as flooding and marine
transgression), and will be associated with an overprint of the anthro-
pogenic baseline (with many contributing sources) that changes over
a relatively short period of time (Johnson and Ander, 2008). An un-
derstanding of what constitutes the natural baseline enables the con-
tribution of the anthropogenic component to be estimated. These
approaches to determining ‘backgrounds’ are largely based on soil
sampling and analyses over different parent material groups, which
have been shown to exert a dominant control on topsoil chemistry
in England (Rawlins et al., 2003).
Alternative approaches have been investigated, based on associa-
tions with particle size fractions across England and Wales (Zhao et
al., 2007) or globally based on statistical relationships with total soil
iron or manganese (Hamon et al., 2004). The approach proposed by
Appleton et al. (2008) is to estimate typical background concentra-
tions from a statistical measure (e.g., the geometric mean) based on
existing soil analyses within soil parent material polygons. The back-
ground concentrations for a particular PHE are mapped using delinea-
tions of the parent material polygons. Oliver et al. (2002) present a
very thorough statistical analysis of the National Soil Inventory
(NSI) results for England and Wales, and such work gives an appreci-
ation of the concentration ranges for complete data sets.

In the United Kingdom, there are examples of previous work to de-
fine ‘average’ trace element concentrations in soil. Archer and Hodgson
(1987) report normal ranges — values between twice the log-derived
standard deviation above and below the mean (i.e., approximately
95% of the data) for soil in England andWales. Paterson et al. (2003) de-
scribe background levels of contaminants in Scottish soil, citing mini-
mum and maximum trace element ranges with the median and lower
and upper quartiles. The fundamental weakness of all these previous
studies is that the results cover mainly agricultural or rural soil, and
have no results for soil from urban areas. These use a simple statistical
approach, essentially to define data ranges.

A review of worldwide national approaches to determining back-
ground concentrations was outside the scope of this work, but it is
worth noting some examples here from Italy and Finland. In Italy,
APAT-ISS (2006) gives government guidance for the determination
of background values of metals and metalloids in Italian soil. This na-
tional guidance uses the BSI (2011) definition of natural background
concentration. The stepwise approach for deriving background values
involves the collection of data, the statistical analysis of the data and
the determination of the background value. The selection of the sam-
pling sites follows the typological approach (based on parent materi-
al, soil type and land use), choosing sites within homogeneous areas.
The statistical analysis is carried out on data sets, each representative
of homogenous typologies. The descriptive statistics for data distribu-
tion include the minimum, maximum, median, percentile, standard
deviation, skewness, kurtosis and graphic representations, such as
boxplots, histograms and percentage cumulative frequency plots.
The guideline describes in detail a series of statistical tests to identify
outliers and to define the distribution type of the data (normal,
lognormal, gamma, non-parametric distribution). The background
value is defined as the 95th percentile of the population. In Finland,
a Government Decree on the Assessment of Soil Contamination and
Remediation Needs (214/2007) (Finnish Government Decree, 2007)
became legislation on 1 June 2007 (Tarvainen and Jarva, 2011). The
decree defines a geochemical baseline as being the natural geochem-
ical background concentration and superimposed diffuse anthropo-
genic input of elements in the topsoil. Backgrounds are assessed on
a local investigation of the geochemical baseline rather than on na-
tional values, and the upper limit of geochemical baseline variation
for element X (BLX) is estimated as follows:

BLX ¼ P75 þ 1:5 P75−P25ð Þ

where P75 is the 75th percentile of element X concentrations and P25
is the 25th percentile of element X concentrations.

image of Fig.�2


Fig. 3. Map showing the distribution of samples used in the NBC data exploration for
As, Cd, Cu, Ni and Pb. NSI (XRFS) covers the whole of England at a sample density of
1:25 km2. G-BASE sampling densities for rural and urban are 1:2 km2 and 4:1 km2,
respectively.
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An important point made by many of the accounts looking at
methodologies for background determinations (e.g., Matschullat et
al., 2000; Reimann and Garrett, 2005; Tarvainen and Jarva, 2011) is
that estimations are very dependent on location and scale. The do-
main approach and spatial exploration of the contaminant data, as
described in Section 5, are important parts in understanding normal
levels of contaminant concentrations in soil. The approach used is de-
pendent on the data sets being able to capture contaminant variabil-
ity at the regional scale at which domains are defined, both in rural
(Johnson et al., 2005) and urban (Fordyce et al., 2005) areas. This is
discussed in the following section.

4. Available data sets

The distribution of chemical elements within soil is of interest to
many scientific disciplines. Soil science is concerned with soil as a
natural resource and in its management. Its chemical, physical and bi-
ological properties need to be mapped and understood. Geochemists
are also interested in mapping the behaviour and distribution of
chemical elements at the Earth's surface for a variety of sample
types, and soil is the most ubiquitous material for this purpose. In-
deed, as with many scientific challenges in the management and ex-
ploitation of resources, and concerns regarding the environmental
and health impacts of changes to the chemical surface environment,
many of the traditional sciences now work together under the um-
brella of environmental science. As a result, reviewing the existing
soil chemical data for England has involved a broad cross-section of
scientific disciplines. Furthermore, the investigation of available data
has not just been restricted to England. In instances where contami-
nant information is very limited, for example the organic contami-
nants, data sets covering areas outside England have been used to
supplement sparse information.

Information on the soil data sets for English soil with chemical re-
sults (origin, methods, date of sampling, quality control, etc.) has
been stored in a relational MS Access database and summarised in
the appendix of Ander et al. (2011). Different data sets are more ap-
propriate than others for particular contaminants, and others, whilst
not spatially extensive, may provide valuable data that the larger
data sets do not contain. The most useful data sets are those that:

• Include results for priority contaminants by analytical methods with
suitable lower limits of quantification;

• Are associated with a systematic rather than a targeted sampling
strategy so as to represent a broad range of land use types;

• Are spatially extensive across England with a good sample density;
• Are soil samples that have been collected and analysed to internation-
ally recognised standards and have associated quality assurance;

• Unambiguously define total concentrations of contaminants;
• Are compatible with other available data sets; and
• Provide good resolution of the sample site coordinates.

Such data sets are generally those that have been generated by na-
tional/international baseline surveys, conducted by publicly funded
organisations producing unbiased data.

4.1. Primary soil chemical data for England

Three primary data sets satisfy the majority of criteria listed
above, and are the best data available for exploring most of the inor-
ganic contaminants. These are the G-BASE rural, G-BASE urban and
NSI (XRFS) topsoil data sets (Fig. 3). The Geochemical Baseline Survey
of the Environment (G-BASE) is the British Geological Survey's (BGS)
systematic geochemical baseline programme (Johnson et al., 2005;
Fordyce et al., 2005; Flight and Scheib, 2011). The National Soil Inven-
tory (NSI) was part of the National Soil Map Project (1978–1983)
(Oliver et al., 2002), and samples have been analysed by several
analytical methods yielding two geochemical atlases (McGrath and
Loveland, 1992; Rawlins et al., 2012). The NSI samples currently
come under the custodianship of the National Soil Resources Institute,
Cranfield University, UK.

These soil data sets use topsoil (c. 0–15 cm) so as to be represen-
tative of both the anthropogenic and parent material contribution of
the contaminant. Surface soil (0–2 cm), whilst being the most useful
for health risk assessments and representative of airborne contribu-
tions to the soil (e.g. Ottesen et al., 2008) is likely to contain a greater
proportion of organic litter. The surface soils may be better for
targeted surveys of specific land uses (e.g. playground or forestry
soils) but they suffer from problems of representativity (sampling
depths tend to be indicative) and are not widely used for systematic
surveys (Johnson et al., 2011). Deeper soil (>30 cm), whilst captur-
ing some historical anthropogenic contamination, is likely to
over-represent the parent material contribution. G-BASE and NSI
samples are composite samples, made up from sub-samples (5 and
25 sub-samples, respectively) collected from a 20-m square using a
soil auger.

The G-BASE rural and urban data are sampled in a consistent man-
ner, and have been determined for some fifty chemical elements by
laboratory-based X-ray fluorescence spectrometry (XRFS), including
contaminants As, Cd, Cr, Cu, Pb, Mo, Ni, Se, S, Tl, V and Zn. The high
density of sampling (one site every two kilometre squares for rural
and four sites every kilometre square in urban areas), enables inter-
pretations to be made down to a local area scale. The combined
G-BASE rural and urban data (c. 47,000 topsoil samples) gives a
data set of ten orders of magnitude bigger than the next largest data
set (NSI). G-BASE is the only programme to have systematically
mapped the chemical baseline of urban areas, and the ‘London
Earth’ sub-project of G-BASE has provided chemical information for
the capital city, representing the largest urban geochemical mapping
project in theworld. The G-BASE soil baseline for all of England currently
covers mainly central and eastern England (see Fig. 3). However, the

image of Fig.�3
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areas not yet sampled by G-BASE can be supplemented by the NSI
(XRFS) data set for which topsoil samples, collected and prepared in a
similar way to the G-BASE project, have been reanalysed at the BGS
XRFS laboratories to give total element concentrations. The earlier NSI
data only contained a limited number of element results, following de-
termination by ICP-AES using an aqua regia extraction. The NSI data
has a sampling density that approximates to 1 sample per 25 km2.

4.2. Supplementary soil chemical data for England

There are other important data sets that usefully augment the
G-BASE and NSI data, although collected at much lower sampling
densities. The EuroGeoSurveys' Geochemical Mapping of Agricultural
Soil (GEMAS — Reimann et al., 2012) and European geochemical atlas
(FOREGS (Forum of European Geological Surveys) — Salminen et al.,
2005; De Vos and Tarvainen, 2006), the Environment Agency's UK Soil
and Herbage Survey (UKSHS — Barraclough, 2007), and the Centre for
Ecology & Hydrology (CEH) Countryside Survey (CS — Emmett et al.,
2010) provide additional contaminant data for Hg and organic sub-
stances. However, there are issues regarding the use of these data sets.
For example, some only determine elements following an aqua regia
extraction and so do not unambiguously represent total contaminant
concentrations. Additionally, they also tend to have a much reduced
sampling density and thus will fail to capture local, and some regional,
variability. The use of the UKSHS and Countryside Survey 2000 data
for this purpose is also impeded by the fact that site coordinates are de-
graded to the nearest 10 km in order to satisfy land access agreements.

Some other significant data sets are inappropriate to use as they
target a specific land use or land group and would, therefore, bias
any NBCs towards that particular land use. The largest of these is
the BGS Mineral Reconnaissance Programme (MRP) soil analyses.
As these samples were collected in predominantly metalliferous
mineralised areas, often associated with a long legacy of mining, sam-
pling strategies were geared towards finding high results for metals.
The MRP is also an example of a programme for which there was
great variability in the sampling and analytical methodology used,
so the data set cannot be interpreted as a single entity. Site investiga-
tions targeting contaminated land will similarly produce data that
cannot be used to establish normal backgrounds. Results will pre-
dominantly be for contaminated soil, which is what is required
when investigating such a site, but is not good for establishing local
or regional backgrounds. Projects, specific to a particular land use,
and targeting the humus layer rather than mineral soil, are also of
limited value to the project. A big Europe-wide project – LUCAS
(Land Use Coverage and Area frame Survey) (Joint Research Centre
(JRC) laboratory of the European Commission) – is currently in prog-
ress (Montanarella et al., 2011) with some 1373 sample sites in the
UK. Heavy metal analysis of top soil is proposed, but not yet complet-
ed. Land access agreements may also prevent site coordinates being
readily available when this project delivers some data.

Finally, an important source of soil results, particularly for Hg
and organic contaminants is contained in peer-reviewed publications,
e.g., Tipping et al. (2011), Cousins et al. (1997), and Jones et al.
(1989). Jones et al. is an example of a paper containing original
data, with site coordinates, but for Wales rather than England, data
which can be extrapolated to supplement sparse BaP information
for English soil. However, many publications contain just summary
tables without site locations, and care has to be taken to note how
much of the data is original or compiled from other publications.

Although the estimation of NBCs is concerned with soil, other
sample media are used to define the surface chemical environment
and so can be used, particularly wherever there is no soil data, to
define areas where contaminant concentrations are particularly high.
The use of fine stream sediment, collected from small (low order)
streams, is the media of preference for defining the regional geochemi-
cal baseline by geochemists (Johnson et al., 2008). Appleton et al.
(2008) have used the soil-stream sediment relationship to estimate
national-scale potentially harmful element ambient background con-
centrations. For England, there is good high density stream sediment
data available from the BGS G-BASE project and theWolfson Geochem-
ical Atlas (Appleton et al., 2008).

5. Data exploration and definition of domains

Prior to developing a methodology for determining NBCs, the spa-
tial distribution of the selected contaminants was explored in order to
understand the spatial variability and the most important domains
(Ander et al., 2011, 2012). Of the initial eight contaminants selected
for study, the absence of any systematic information on the back-
ground distribution of asbestos in soil meant that no data exploration
was possible for this contaminant, and this is an example of a contam-
inant for which a NBC could not be determined. This is a reflection of
the difficulty in applying a commonmethodology to the abundance of
minerals in soils and the concentration of chemical substances. The
data exploration contained two components, firstly exploration of
the spatial distribution of contaminants in topsoil across England
and, secondly, exploring various landscape data sets with which to
define contaminant domains.

5.1. Spatial distribution

Where there is sufficient contaminant data, national maps can be
plotted by interpolating between sample sites to give geochemical
images, such as that shown in Fig. 4. These maps (for As, Cd, Cu, Ni
and Pb) are published in the contaminant NBC Technical Guidance
Sheets, supplementary information (e.g., Defra, 2012b). Further map-
ping, using other statistical techniques, such as k-means cluster anal-
ysis (see Ander et al., 2011), in addition to these maps, gives an
excellent visualisation of a contaminant's variability in soils across
England. The variability can be attributed to three main factors:

1. The single most important controlling factor is the underlying
parent material (geology), which provides the geogenic component
of natural background. England has a very varied geology, both in
the age of rocks and the rock types, and this contributes to a signifi-
cant variability in elements that are defined as contaminants and
occur naturally.

2. A further geogenic component is when a contaminant is enriched
in soil, because of mineralisation in the underlying rocks. This
may also be associated with an anthropogenic component caused
by mining related activities.

3. England has a long history of urbanisation and industrialisation
and, whilst there are now many environmental safeguards in
place, there is a legacy of pollution in our cities and towns. This
is represented by both point source and diffuse anthropogenic in-
puts to the natural background.

These form the basis for the landscape data used to define contam-
inant domains. In a GIS environment (Arc GIS v9.2), this is integrated
with the spatial distribution maps so as to recognise domains associ-
ated with elevated contaminant concentrations in soil. Domains are
defined as polygons and the contaminant data captured within the
domain polygons. For all the contaminants studied, there has been
at least one domain identified as having typically higher background
concentrations. The area of England outside any defined domain is
termed the Principal Domain. Therefore, there are always at least
two domains to which NBCs have been attributed. Domains identified
for the contaminants investigated are shown in Figs. 5 and 6. These
domains along with summary contaminant information are listed in
Table 2. Our objective has been to identify the most significant do-
mains on a national and regional scale. At a local scale, where higher
density sampling provides more detailed information, further do-
mains could undoubtedly be identified, say for example, within an



Fig. 4. Example of an interpolated geochemical image used to demonstrate contami-
nant variability in topsoil across England. (Inverse distance squared weighting option,
cell size 1000 m and search radius 5000 m. %iles = percentiles.)
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urban domain residential and industrial areas could be attributed
with NBCs if the land use is significantly affected by widespread dif-
fuse pollution.

Mercury and BaP have fewer data points to use in the data explo-
ration, thus sites are widely spaced and so interpolated maps cannot
be validly made for these elements. Instead of interpolated images,
classified point maps are plotted to illustrate the spatial variability
in these contaminants (Defra, 2012c,d). Furthermore, for Hg and
BaP, because far fewer data are available, data sets used lack the
methodology consistency, and so there is greater uncertainty associ-
ated with the data exploration (Ander et al., 2011, 2012). In order
to have sufficient data points for BaP it was necessary to include all
British data, which maintained all other data selection criteria
shown above (Section 4) and are still taken from within the UK
(Ander et al., 2011). Sampling and analytical methods used for Hg
and BaP are summarised in the supplementary technical guidance
sheets written for these contaminants (Defra, 2012c,d).

5.2. Landscape data

5.2.1. Soil parent material
The Soil-Parent Material Model (SPMM) for England, Wales and

Scotland (Lawley, 2011) has been developed by BGS, based on the
mapped boundaries of the national 1:50,000 superficial and bedrock
geological data. The results of this project were used to identify the
most influential contributors to high contaminant concentrations.
Soil parent material is the first recognisably geological material
found beneath a soil profile, and is the lithology on which that soil
has developed. Soil thus inherits many properties, including chemical
composition, from this material. In the BGS SPMM the geological data
have been combined into one layer of information, which indicates
the rock/sediment formation mapped as directly underlying soil.
Where this is a superficial deposit (such as alluvium, glacial deposits,
peat) the data set also maintains the record of the solid geological
formation first encountered beneath this surface sediment; such in-
formation is useful where the underlying solid geology imparts chem-
ical (or other) characteristics into the overlying superficial deposits,
and thus into the soil. In the SPMM there is additional information
on texture, mineralogy and lithology not present in the geological
mapping data, which is attributed in a hierarchical classification
system.

In the absence of a soil parent material map, a digital geology map
(solid and drift editions) can be used to identify where elevated con-
taminant concentrations in soil are related to the underlying geology.
Soil maps are also a landscape resource that can be used in this
context, though these are often based on the underlying geology. Fur-
thermore, for this work in England, geological and parent material
maps are available at appropriate scales (i.e., 1:50,000) to do the re-
quired interpretation.

5.2.2. Urban areas
Land use is an important factor in controlling anthropogenic con-

taminant contributions to the soil. Certain activities, for example,
metallurgical industries, areas of high traffic volume and coal burning,
have been, and in some instances continue to be, responsible for rais-
ing contaminant levels in the environment. At the scale of this work,
we have not considered any one specific land use, but included indus-
trial activities and the built environment under the general classifica-
tion of urban. In order to delineate this, an index of urbanisation has
been defined (see Ander et al., 2011) using the Generalised Land
Use Database 2005 statistics for England (Communities and Local
Government, 2007). Based on the index, a map of urban, semi-
urban and rural areas has been generated (Fig. 7), and the delineated
urban areas were used to define an urban domain for many of the
contaminants. Those contaminants, where only the urban area is
identified as the important controlling factor on high contaminant
concentrations, will have just two domains associated with them —

the Urban Domain and the Principal Domain (i.e., non-urban areas).
Other data sets are available in the UK for defining urban domains.

At a regional to national scale light pollution maps (e.g., CPRE, 2003)
are a good way of defining the built environment. At a more local
scale, detailed land use information is available from the Ordnance
Survey Strategi® maps (Ordnance Survey, 2011).

5.2.3. Metalliferous mineralisation and mining
A significant contributor to high levels of many inorganic contam-

inants in soil is non-ferrous mineralisation and associated mining
activities, referred to in this project as the mineralisation domain.
Note that this domain does not include ferrous mineralisation or
coal mining, which are also noted to have significant controls on con-
taminant levels in soil. Such mining is generally related to specific
rock strata, rather than mineral veins that can cut across a variety of
rock types, and so are investigated in the context of underlying parent
material/geology. In the GIS environment, we have used the British
non-ferrous Metalliferous Mineralisation and Mining database, origi-
nally produced in hard-copy by Ove Arup (1990) for DoE (Department
of Environment), but which has been ‘cleaned’ and turned into a poly-
gon layer by BGS.

5.3. Data distributions

The data distribution of concentrations of contaminants in soil,
used for characterising domains, have been explored, as this is a fun-
damental part of the methodology to determine NBCs (see next sec-
tion). Cumulative distribution plots and boxplots are useful tools to
explore such distributions (Figs. 8 and 9). These plots are included
in the technical guidance sheets for each contaminant (e.g., Defra,
2012b).
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Fig. 5. Maps showing the contaminant domains for As, BaP, Cd and Cu.
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An important property of the distribution of data on a variable is its
degree of symmetry, and this was also investigated in the data explora-
tion. The Gaussian distribution is symmetrical, and is the distribution
thatwewould expect for a variable that arises from the additive combi-
nation of random effects (Allègre and Lewin, 1995). In geochemistry, it
is common to find that concentrations have an asymmetric distribution,
typicallywith a long upper tail of larger values (Reimann and Filzmoser,
2000). This can arise from non-linear combination of random effects,
and such data can be transformed to a symmetrical distribution, for
example by calculating the logarithm of their values. The symmetry
of the distribution of a variable can be measured by the skewness
coefficient, SC:

SC ¼ ∑n
i¼1 xi−mð Þ3�

ns3
;

image of Fig.�5


Fig. 6. Maps showing the contaminant domains for Hg, Ni and Pb.
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where xi is the ith of n observations, m is the sample average and s is
the sample standard deviation. Data from a Gaussian distribution
have a skewness coefficient of zero, because it is symmetrical. It is
a rule of thumb that we transform data if SC lies outside the interval
[-1, 1] (Webster and Oliver, 2007).

If data from a domain can be regarded as variables with a Gaussian
distribution, perhaps after a transformation, then this distribution
allows us to characterise the NBCs of the domain, reflecting the mul-
tiple processes that generate variation within a domain. However, the
distribution may be affected unduly by a relatively small number of
extreme observations resulting from point contamination. Plots may
help to identify when such processes are occurring. Such outlying
data will also affect the value of SC. This means that a large positive
SC may be due to an underlying asymmetry in the distribution of
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Table 2
List of contaminant domains with summary statistical information for associated English topsoil (all concentrations in mg/kg).

Domain % area of England Samples Mean Minimum 25th percentile Median 75th percentile Maximum Skewness coefficient

As Principal 97 41,509 16 b0.5 10.6 14.1 18.6 1008 18
Ironstone 1 437 73 4.1 27.8 45 83.4 555 3
Mineralisation 2 187 181 6.9 27.8 45.6 105.5 15,110 13

BaP Principal 96 165 0.14 bDL 0.02 0.06 0.15 1.44 4
Urban 4 13 0.67 0.07 0.30 0.52 1.00 1.56 1

Cd Principal 89 4418 0.5 0.3 0.3 0.3 0.5 20 17
Urban 4 9308 0.9 b0.5 b0.5 b0.5 0.8 165 33
Chalk South 5 265 1 0.3 0.5 0.9 1.4 5.6 2
Min_Gp1 1 224 4.5 b0.5 2 3 5 48 4
Min_Gp2 b1 95 0.9 0.3 0.3 0.5 0.9 13 6

Cu Principal 95 34,504 27 b1 14.3 19.8 27.7 5326 41
Urban 4 7475 74 1.2 30.3 47.5 79.7 4577 14
Mineralisation 1 153 92 3 30.4 47.4 77.6 2766 10

Hg Principal 96 1134 0.34 b0.07 0.07 0.12 0.23 31 15
Urban 4 512 0.55 b0.07 0.18 0.33 0.65 9.6 5

Ni Principal 99 41,768 25.3 1 16.6 23.4 31.7 506 5
Basic b1 23 60.9 20.5 33.4 62.5 80.9 107 0
Ultrabasic b1 4 213 25.4 48.2 199 393 430 0
Ironstone (Ni) b1 117 78.9 4.1 42.3 69.4 112 182 1
Peak district b1 221 44.5 5.9 22.4 34.2 51.2 384 4

Pb Principal 94 34,257 72 3 31 41 66 10,000 22
Urban 4 7529 276 2 89 166 322 10,000 8
Mineralised 2 347 665 35 151 290 638 10,196 5

Using G-BASE and NSI topsoil results determined by laboratory based XRFS except BaP and Hg (see text). Cadmium data has variable detection limits between the Urban and
Min_Gp1 domains (0.5 mg/kg) and other domains (0.25 mg/kg) as fully described in Ander et al. (2012).
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NBCs in the domain, the superimposed effects of point contamination,
or both. A useful tool to discriminate between these circumstances is
the octile skewness coefficient, OC:

OC ¼ P87:5–P50ð Þ– P50–P12:5ð Þð Þ= P87:5–P12:5ð Þ;

where Py is the yth percentile of the data, here we consider the first and
seventh octile and the median. The OC is zero for a symmetrical vari-
able, but because it is based on order statistics it is not very sensitive
Fig. 7. A map showing urban, semi-urban and rural areas of England, defined using the
Generalised Land Use Database (GLUD — Communities and Local Government, 2007).
The method for defining an urbanisation index is described in Ander et al. (2011).
to a few extreme observations. A comparable rule of thumb for the in-
terpretation of OC is that the data require transformation if OC is outside
the range [-0.2, 0.2] (Rawlins et al., 2005).

6. Methodology for determining normal background
concentrations (NBCs)

The methodology is based on the assumption that the contami-
nant data conform to a random variable:

Z ¼ fixed effectsþ continuous random variation
þ point contamination:

The fixed effects are sources of variation in the observed concentra-
tions that are attributable to geogenic sources or diffuse anthropogenic
activities that are represented by the domain mean. The continuous
random variation (typically Gaussian (normal) or log-Gaussian) repre-
sents the typical variation arising from geogenic or diffuse anthropo-
genic sources within the defined domains. The point contamination is
assumed to introduce outlying values into the data. The equation
above can be re-written informally as shown in Fig. 2. For any contam-
inant, the first two terms (domain average + typical variations) give
rise to the normal range of values or normal variation of the contami-
nant. The objective of the procedure is to characterise this normal vari-
ation in terms of a statistical distribution.

A robust statistical methodology was used for determining NBCs
that is based on exploration of data distributions (by testing the dis-
tribution skewness) and applying data transformations (see Cave et
al., 2012). The statistical analysis has been done using open source R
code (R Development Core Team, 2011) employing ‘fBasics’, ‘Hmisc’,
‘boot’ and ‘car’ packages.

Previous sections have described the gathering and division of soil
contaminant data into domains. The steps in this initial process are
summarised in Fig. 10. Having selected the contaminant for investiga-
tion the first question to be asked is “can the contaminant be considered
for a NBC?” Asbestos and manufactured organic contaminants with no
natural origin, for example, fail this question as there is a lack of data
on their natural distribution and concentration in soil. The contaminant
data set is then divided into domain data sets. A minimum of 30 results
are considered necessary to determine a NBC (BSI, 2011). Once the data
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has been allocated into domains, then exploratory statistics indicating
the skewness coefficient and inspection of frequency distribution
plots can be done to select the appropriate data transform and method
of calculating percentiles. The steps applied are:

i) If the data are symmetrically distributed, SC is b1 and the OS is
b0.2, then the data are consistent with the assumption of a
Gaussian distribution, and the parametric percentiles are fitted,
based on the mean and standard deviation of the data.

ii) If the data show a mostly symmetrical distribution with poten-
tial outliers in the distribution tail, SC >1 but OS b0.2, then the
data are consistent with the assumption of a Gaussian distribu-
tion, and the parametric percentiles are fitted using median
and the median absolute deviation (MAD), in place of the
mean and standard deviation, as these measures are robust to
outliers (Reimann and Filzmoser, 2000).

iii) If the data distribution is skewed, SC is >1 and the OS is >0.2,
then the data are not suitable for fitting to a Gaussian model,
and the data need to be transformed to using either a logarithmic
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Fig. 9. Example of a boxplot used to display the range of domain concentrations for As.
The box represents the interquartile range (Q1, Q3), with the median (Q2) as a line
within the box. The point symbol shows the mean value. The upper whisker =
Q3 + 1.5(Q3–Q1); lower whisker = Q1–1.5(Q3–Q1).
(loge) or the more general family of transformations known as
the Box–Cox transform (Box and Cox, 1964):

U∧λ−1
� �

=λ:

Where U is vector of soil concentrations for a given contaminant
and λ is the power coefficient which is optimised to give the
transformed data best fit to the normal distribution. This has
been shown to work well for geochemical applications (Reimann
et al., 2008). After transform the distribution is re-examined and
steps i to iii are repeated. After calculation of the percentiles the
data are back transformed to their original units;

iv) Finally, if the data cannot bemade to be consistentwith aGaussian
distribution (even after transform) the empirical percentiles for
the data set are calculated.

In practice the empirical, parametric and robust percentiles have
been reported for each domain to check for consistency between
methods (Ander et al., 2012; Cave et al., 2012). The methodology
assumes that data for a given domain come predominantly from a
single population, and that the data are either normally distributed
or have a positive SC. For the contaminants and domains considered
these assumptions hold true. Examples of distribution plots on
untransformed and transformed data, along with the skewness calcu-
lations are displayed in Fig. 11. An example table (for As) of percen-
tiles for different contaminant domains is shown in Table 3.

Having arrived at some robustly defined percentile values that
have been derived taking into account any skewness or outlying
data in the data set, a decision has to be made as to what result to
use to represent the upper limit of normal background concentra-
tions. We define arbitrarily the upper limit of normal background
concentrations as the 95th percentile. The percentile values are sub-
ject to uncertainty based on the number of data points and the
shape of the distribution. Where sample sizes are smaller, this results
in wider confidence intervals for the domain percentiles (Ander et al.,
2012; Cave et al., 2012). An assessment of the uncertainty on the 95th
percentile was estimated by empirical, parametric and robust para-
metric methods, and has been included in the statistical estimations,
using a bootstrap resampling routine implemented by employing the
‘boot’ package within the R programming language. The bootstrap
routine used 1000 resamples of the original or transformed data
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providing a 95% percentile confidence interval on the estimated
percentile.

Estimation of the uncertainty using bootstrapping gives the upper
95% confidence limit to the estimated 95th percentile. Comparison of
the uncertainty on the estimations confirms that the parametric
Fig. 11. Example density distributions for the raw data and the loge transfo
uncertainties from the Gaussian fit are much less erratic than the em-
pirical values, and thus the parametric limits have been chosen as
being a better representation of the uncertainty on the percentiles.

This definition of a NBC considers what is typical and widespread
(words used in the SG to describe ‘normal’ levels). The median (50th
rmed data for As in the Ironstone Domain (n = number of samples).



Table 3
Empirical (Emp), Parametric Gaussian (P) and Robust Gaussian (R) percentile values for As in the ironstone domain (concentrations in mg/kg). L and H values represent low and
high confidence intervals around the median. Shaded values indicate percentile method used to estimate NBC — this is determined by exploration of the data distribution.

Percentile Empirical Emp L Emp H Parametric (P) P L P H Robust (R) R L R H

50 45.0 41.7 49.4 50.0 46.2 53.7 45.0 41.3 49.4
55 49.7 45.3 55.8 55.5 51.1 59.7 49.8 45.5 55.1
60 56.0 50.2 60.0 61.7 56.7 66.6 55.2 49.8 61.6
65 60.9 56.7 69.6 68.8 63.2 74.5 61.4 54.8 68.7
70 71.4 61.7 81.0 77.3 70.6 84.1 68.6 60.7 77.5
75 82.7 72.6 97.7 87.5 79.6 95.9 77.4 67.7 88.7
80 104.8 86.4 116.6 100.6 91.1 111.0 88.5 76.4 102.0
85 122.7 108.9 147.1 118.3 106.4 131.7 103.5 88.1 120.7
90 165.6 140.7 179.3 145.1 129.1 163.5 126.1 105.2 149.3
95 221.7 179.7 291.4 196.2 171.6 223.9 168.8 136.6 205.4

Table 4
Summary of domain normal background concentrations (NBCs) for the studied con-
taminants. All concentrations in mg/kg. Number of samples used in each domain NBC
estimation is shown in brackets. The Ni Basic and Ultrabasic Domains are shown
here, but as they are each defined by less than 30 samples, the NBCs are not estimated.
Note that the number of samples in the Hg Principal Domain is eight fewer than cited in
Table 2 because these eight samples had problems regarding the spatial resolution of
the site locations.

As
Mineralisation Ironstone

290 220
(187) (437)

BaP
DOMAIN (Great Britain)

Urban

3.6
(32)

Cd
Min. Grp. 1 Min. Grp. 2 Urban Chalk (south) 

17 2.9 2.1 2.5
(224) (95) (9,308) (265)

Cu
Mineralisation Urban

340 190
(153) (7,475)

Hg
Urban

1.9

(512)

Ni
Ironstone (Ni) Peak District Basic Ultrabasic

230 120 * *
(117) (221) (23) (4)

Pb
Mineralisation Urban

2,400 820

32

0.5

1.0

62

0.5

42

DOMAIN

Principal 

(41,509)

Principal 

(371)

DOMAIN

Principal 

(4,418)

DOMAIN

Principal 

(34,504)

DOMAIN

Principal 

(1,126)

DOMAIN

Principal 

(41,768)

DOMAIN

Principal 

180
(34,257) (347) (7,529)
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percentile) is a measure of the central tendency, so half the observa-
tions are expected to exceed it under normal background variation.
The NBC should be represented by a larger percentile. Selecting the
95th percentile is somewhat arbitrary, but will encompass a large
proportion of the normal background variation whilst excluding
extremes. It has also been used in other approaches to define back-
ground concentrations for environmental purposes (e.g., in Italy,
APAT-ISS, 2006). As it has been argued that the NBC should represent
the highest concentration of contaminant in this domain that is likely
to come from normal background, then the NBC should be the upper
end of the confidence interval. The NBC is defined, therefore, as the
upper 95% confidence limit of the 95th percentile (taking into account
data transformations).

Any uncertainty in the 95th percentile value is fully captured by
taking the upper limit of the 95th percentile confidence interval. In
the determination of geochemical background, of great economic
value in the search for ore bodies, the mean (x) plus 2σ (σ = standard
deviation) is commonly used (Matschullat et al., 2000), which repre-
sents c. 97% of the data for normalised distributions.

7. NBCs for As, BaP, Cd, Cu, Hg, Ni and Pb

A summary of domain NBCs for the investigated contaminants,
using the methodology described above, is given in Table 4. Those
for As, Cd, Cu, Ni and Pb are derived from a very large data set, though
when subdivided into domains, some domain NBCs are only based on
a small number of samples (e.g., Ni Basic and Ultrabasic Domains
which have a very small spatial extent). Table 5 is an example of
the summary information (in this case As) presented in the contam-
inant technical guidance sheet.

8. Discussion and concluding remarks

1. There are large amounts of high quality and systematically
collected soil data covering England containing inorganic ele-
ment contaminant results that have enabled us to estimate
NBCs for contaminant domains. Gaps in knowledge relate mainly
to organic contaminants, though the calculations of NBCs for
these can still be made for England by utilising results from
other parts of Great Britain, as has been done for BaP.

2. We use total element concentrations for inorganic contaminants
(except Hg), determined by XRFS. The total amount of an element
present in a sample is the most fundamental (and reproducible)
quantity in any sample, therefore, direct measurement techniques,
e.g., XRFS or neutron activation analysis (NAA), or total extraction
procedures are desirable (Darnley et al., 1995). During the data ex-
ploration, data sets for which determinands in soil had been deter-
mined by XRFS and other methods (e.g., GEMAS (Reimann et al.,
2012); TELLUS (Smyth, 2007); FOREGS (Salminen et al., 2005))
have been compared, and for all the contaminants there was no
significant differences over normal ranges of concentrations for the
methods concerned, which could be modelled by linear regression
(e.g., see Defra, 2012b).

3. Once the contaminant data sets have been subdivided into domains,
some areas are defined by a very small number of samples, particu-
larly where only the lower density NSI soil results are available.
Such domain NBCs could be improved by the collection of further
samples. However, the more pressing need for further information
is likely to be driven by contaminants forwhich the geogenic and dif-
fuse contributions are significant in terms of human health risks, and
these will primarily be in urban areas.
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Table 5
NBCs for the arsenic domains (cited to 2 significant figures, n is number of samples
used in the estimation). Arsenic is determined by laboratory-based X-ray fluorescence
spectrometry (XRFS), i.e., total As in soil sampled from a depth 0–15 cm. The NBC is the
upper confidence interval on the 95th percentile of the domain data.

Domain Area (km2) Area (%) NBC (mg/kg) n

Ironstone 1300 1 220 437
Mineralisation 2300 2 290 187
Principal 129,300 97 32 41,509
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4. Where soil data are sparse, sample media other than soil, such as
drainage sediments, can be used to help define the presence of
high, widespread and typical levels of some inorganic contami-
nants in the surface environment. The BGS and other high density
stream sediment sampling of Great Britain and Northern Ireland
(Webb et al., 1978; Johnson et al., 2005) can provide supplementa-
ry information to define contaminant domains for the areas not
covered by the high density G-BASE soil sampling.

5. Contaminant information for soil systematically collected across
urban areas has provided extremely useful data for this work.
Urban areas are those that have been most impacted by human
activity, leaving a potential legacy of contamination in areas where
most of the population live and work. Many of the cities and towns
of England still need to be systematically sampled.

6. The statistical methodology used in this work can be used by
others either to determine NBCs not investigated here or estimated
at a more local scale, where there is systematically collected soil
results of appropriate quality available. As more data becomes
available this needs to be added to the knowledge base and NBCs
re-estimated to greater levels of confidence, particularly in those
areas where there are knowledge gaps.

7. Normal background concentrations for the contaminant domains
are our best effort to define what is the upper limit of ‘normal’
levels of contaminants in soil, as described by the Part 2A contam-
inated land Statutory Guidance (Defra, 2012a). They are not a
planning or risk assessment tool and must be used in the context
of the Guidance.

8. We define the NBC as the upper confidence limit of the 95th percen-
tile. Other percentiles and their confidence limits have been estimated
and are available, should others wish to consider ‘normal’ levels in the
context of other statistical information.
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