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Abstract: We present a new approach to long range coupling based on a
combination of adiabatic passage and lateral leakage in thin shallow ridge
waveguides on a silicon photonic platform. The approach enables transport
of light between two isolated waveguides through a mode of the silicon
slab that acts as an optical bus. Due to the nature of the adiabatic protocol,
the bus mode has minimal population and the transport is highly robust.
We prove the concept and examine the robustness of this approach using
rigorous modelling. We further demonstrate the utility of the approach by
coupling power between two waveguides whilst bypassing an intermediate
waveguide. This concept could form the basis of a new interconnect
technology for silicon integrated photonic chips.

© 2013 Optical Society of America

OCIS codes: (130.3120) Integrated optics devices; (130.2790) Guided waves; (230.7390)
Waveguides, planar.
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1. Introduction

Mass manufacture of monolithic systems of extraordinary complexity, compactness and pre-
cision using CMOS processing has underpinned the information revolution. However, inter-
connections between complex functional blocks remains a critical challenge, often requiring
numerous interconnect layers above the functional plane. The CMOS process has recently been
adapted to photonic integrated circuits [1] with applications emerging in high-speed commu-
nications [2], photonic signal processing [3] and quantum optics [4]. Silicon photonic systems
are gaining momentum but device complexity will again be limited by interconnect technology.
Out of plane optical interconnect techniques have been proposed [5], but these are not compati-
ble with emerging CMOS silicon photonics standards which permit only a single silicon optical
wave guiding layer [1]. In-plane crossing structures, which are CMOS compatible, have been
demonstrated [6], but these can introduce losses and may be sensitive to fabrication variations.

Long range communications between waveguides through unguided radiation in the silicon
slab have been proposed as an alternate interconnect solution [7]. This particular approach uses
thin, shallow ridge silicon on insulator waveguides which, when operated in the TM mode, can
radiate into the TE modes of the slab [8, 9]. This TE radiation is traditionally considered a loss
mechanism, however as it is a coherent process, with appropriate control over the radiation it
could be utilised as a resource [10]. We have previously shown that it is possible to control
the radiation direction [7] and also generate directed, collimated beams [11]. The nature of this
radiation is quite sensitive to the waveguide geometry and thus may not be robust to fabrication
variations. Further, if this radiation is to be used as an interconnect, then the unbound nature of
this radiation may lead to undesired interaction with intermediate functional blocks.

Adiabatic techniques are well known in photonics, principally being invoked when properties
of a single waveguide or two waveguide system are changed slowly, for example with adiabatic
tapers [12]. Slow changes can also be used to effect population transfer between waveguides
through a technique called Coherent Tunnelling Adiabatic Passage (CTAP) which is a spa-
tial analogue of the well-known STIRAP (STImulated Raman Adiabatic Passage) protocol in
quantum optics [13]. CTAP was originally proposed for massive particles in tight-binding sys-
tems [14,15] and then extended to waveguides [16,17]. Transfer via multiple intermediate states
has also been considered [18–21]. CTAP has the advantage that the transport is extremely ro-
bust against fluctuations in the coupling between sites. CTAP also has the surprising feature that
the population in the intervening site is greatly suppressed, and in the adiabatic, tight-binding
limit, is identically zero. This unusual behaviour raises the question of whether CTAP may be
exploited to achieve robust long range coupling between waveguides via unbound radiation, but
without exciting this radiation.

Here we propose and numerically demonstrate the combination of CTAP and lateral leakage
to achieve a new type of coupler. Light guided within one waveguide can be transferred over
a long distance to another waveguide through use of an unbound lateral leakage state which
is coupled to both waveguides. Due to the nature of CTAP, this coupling is extremely robust,
being relatively independent of coupling length and remarkably, the intermediate radiation is
not populated during the coupling. We also show that this technique can be used to bypass an
intermediate waveguide without cross-talk.

This paper is organised as follows: Section 2 presents a brief over view of the CTAP pro-
tocol in the context of optical modes and Section 3 reviews lateral leakage and shows how
coupling between bound waveguides modes and lateral leakage radiation can be controlled.
Section 4 numerically simulates the CTAP coupling between waveguides and tests the robust-
ness of this technique with varying device length. Section 5 then shows the bypass of an inter-
mediate waveguide. Finally, Section 6 discusses the limitations of this specific demonstration
and outlines the opportunities for future research on this approach.
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Fig. 1. The CTAP protocol taking population from |R〉 to |L〉: (a) A 3 state scheme with two
isolated states coupled to a central bus, (b) counter-intuitive evolution of coupling strengths
ΩL and ΩR, (c) population evolution in states |L〉, |R〉 and |B〉.

2. Coherent tunnelling adiabatic passage

Coherent Tunnelling Adiabatic Passage (CTAP) is a protocol for transferring population be-
tween defined states. In particular, the transport should be spatial. It is usual that the modes be
in some sense equivalent or discrete, however such restrictions are not always necessary.

To illustrate CTAP, consider a three-state system as shown in Fig. 1(a). The states |L〉 and
|R〉 are mutually isolated and can only couple to the common state |B〉, which acts as a bus. The
strength of the couplings between each state and the bus are ΩL and ΩR.

The Hamiltonian describing this problem is

H(z) = ∑
i={L,B,R}

βi|i〉〈i|+ΩL|B〉〈L|+ΩR|B〉〈R|+h.c., (1)

where βi = k0ni is the propagation constant for mode i with effective index ni, and k0 is the
propagation constant of the free space.

The CTAP protocol is achieved when the couplings are varied in the so called counter-
intuitive sequence. This requires ΩL(0)� ΩR(0), and gradual variation in each with increasing
z until ΩR(zmax) � ΩL(zmax). There is considerable flexibility in the actual sequence imple-
mented, and popular choices include Gaussian [22] and sinusoidal [23] variations, although
discontinuities in the controls can also be tolerated under certain conditions [24, 25]. Here we
choose squared sinusoid as per Fig. 1(b). The counter-intuitive sequence works by maintaining
the system in the null state, which is the supermode (in the limit that all of the βi are equal):

|D0〉= ΩR|L〉−ΩL|R〉√
Ω2

L +Ω2
R

. (2)

Note that this has the desired properties for adiabatic passage, namely that when ΩL � ΩR,
|D0〉= |R〉, and when ΩR � ΩL, |D0〉= |L〉. Provided adiabaticity is preserved, the population
in |B〉 will be identically zero, although the population in |B〉 only approaches zero when finite
mode size is taken into account [26]. Here, adiabaticity is defined with respect to the separation
(in terms of energy) between |D0〉 and the nearest supermode. Hence the scheme is largely
immune to small errors in realisation. It is also important to recognise that the system is highly
insensitive to loss or decoherence mechanisms that act on the bus state, due to the suppressed
population there [27–29].

3. Thin shallow ridge waveguides and control of lateral leakage

Having introduced CTAP in Section 2, this section introduces thin shallow ridge waveguides
and lateral leakage behaviour and shows how this leakage can be controlled for the purpose of
implementing a CTAP coupler with this system.
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Fig. 2. (a) |Ex|2 cross-section of two thin shallow ridges on a silicon slab; simulated modes
of the uncoupled structure (WR = 0.7 μm): (b) and (c) the TM modes |L〉 and |R〉 respec-
tively, and (d) the TE slab ‘bus’ mode |B〉; simulated supermodes of the coupled structure
(WR = 1.22 μm): (e) fundamental (|B〉 populated), (f) first order (|B〉 unpopulated), and (g)
second order (|B〉 populated).

3.1. Lateral leakage from thin shallow ridge waveguides

Thin shallow ridge waveguide can be realised using standard CMOS processing and offer highly
evanescent modes with low propagation losses. The TM mode can exhibit leakage of power into
the laterally radiating TE slab mode. However, this leakage occurs only at the waveguide side
walls and at so-called ‘magic’ waveguide widths, the radiation from each side wall cancels [8].

Consider the thin shallow ridge structure of Fig. 2(a). To examine the isolated modes of this
structure, the waveguide widths were set to the magic width of 0.7 μm at a wavelength of 1550
nm. The guided modes of the system were simulated using a mode matching method [30].
Three simulated guided modes of the system are presented in Fig. 2(b)-(d). Each had the same
effective index and were thus degenerate. Figure 2(b) and (c) present the isolated TM modes
of the waveguides |L〉 and |R〉 respectively. Figure. 2(d) presents the TE slab ‘bus’ mode |B〉.
For simplicity, the slab has been terminated, as illustrated in Fig. 2(a), and thus the TE slab
radiation is in fact a discrete mode with an oscillating standing wave pattern.

To illustrate the impact of coupling, the widths (WR) of waveguides |L〉 and |R〉 were set to
1.22 μm, such that they were strongly and equally coupled to the TE slab |B〉. The modes of
the system were again simulated using mode matching and the resulting supermodes, corre-
sponding to the eigenstates of Eq. (1), are presented in Figs. 2(e)-(g). Fig. 2(f) is a supermode
with equal population in each of the TM modes |L〉 and |R〉 and no population in |B〉, i.e. the
null state, |L〉−|R〉. Whilst Figs. 2(e) and (g) are the supermodes |L〉±√

2|B〉+ |R〉 with strong
population in the TE slab |B〉. The three modes of Fig. 2(e)-(g) are no longer degenerate as the
coupling has caused significant splitting of the effective indices of the three modes.

As discussed in Section 2, CTAP requires adiabatic transformation of the coupling to transfer
population from |R〉 of Fig. 2(c) at the start, into the coupled supermode of Fig. 2(f) in the
middle, and then into |L〉 of Fig. 2(b) at the end. One might consider simply tapering the width
of the waveguides to control the coupling, as demonstrated in [11], however, the modal effective
index is sensitive to the waveguide width. For optimal CTAP, it is important that the effective
indexes of |L〉 and |R〉 remain equal. Hence an alternative coupling approach is required.
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supermode effective index as a function of waveguide offset for the phase matched TE and
TM modes (slab width = 30.4 μm).

3.2. Control of lateral leakage using waveguide location

An approach to controlling the coupling between the TM waveguides and TE slab that will
maintain equal effective indexes for the modes |L〉 and |R〉 is suggested by the standing wave
pattern of the TE mode as illustrated in Fig. 2(d). It might be expected that the coupling between
the guided TM mode and the TE slab should depend strongly on the lateral location of the thin
shallow ridge waveguide. To establish the effect of waveguide location on coupling between
the TM mode and TE slab, the structure of Fig. 3(a) was modelled. A single thin shallow ridge
waveguide was located on a broad slab. The width of the thin shallow rib was set to 1.22 μm
such that the TM guided mode should, in principle be strongly coupled to the TE radiation.

For the particular CTAP protocol we aim to implement it is necessary that |L〉, |R〉 and |B〉 all
have the same effective index and are hence degenerate when uncoupled. Referring to Fig. 3(a),
the waveguide was placed in the centre of the slab, and the slab width was adjusted to find
a configuration where the the TM mode and TE slab are degenerate and uncoupled. Mode
matching was used to simulate the effective index of the TE and TM modes of this structure
as a function of slab width. The results are presented in Fig. 3(b). The TE slab mode effective
indexes vary with slab width while the index of the TM guided mode remains almost constant.
When the TM and TE modes are degenerate, if the symmetry is not matched, the indexes simply
cross; however, if the symmetry matches, mode splitting occurs leading to an anti-crossing.
Figure. 3(b) shows that it is possible to select a slab width where there is a TM guided mode
and TE slab mode that are degenerate, but uncoupled at a slab width of 30.4 μm.

Next the impact of waveguide location on coupling between the TE and TM modes was in-
vestigated. The location of the thin shallow ridge of Fig. 3(a) was translated laterally across the
slab and mode matching was used to simulate the effective indexes of the two supermodes of
the system as a function of waveguide offset. The results are presented in Fig. 3(c). At 0 nm
displacement, the modes are degenerate and uncoupled. As the waveguide was translated, the
indexes split, indicating coupling, reaching a maximum at a displacement of 370 nm. Further
displacement decreased the mode splitting until degeneracy was again reached at 740 nm cor-
responding to a half cycle of the standing wave pattern allowing us to define a coupling period
ζ = 740 nm. These results show that it is indeed possible to control the coupling between the
TM and TE modes using waveguide location and this technique could be utilised to implement
CTAP with these waveguides.

4. Demonstration of long range coupling using CTAP and lateral leakage

Section 3.2 established that it is possible to control the coupling between localised waveguide
modes and distributed slab modes by adjusting their locations. We now show how this coupling
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Fig. 4. (a) Cross-section of two waveguides on a silicon slab; (b) Separating both the waveg-
uides shows periodic 3-mode splitting, both waveguides strongly radiate when separated
by 6.6 μm, (c) Monitoring the mode field of the null state for complete isolation of |R〉
by keeping |L〉 fixed in a strongly radiating position (x=-3.30 μm) while |R〉 is translated
further.

control technique can be used to implement a CTAP protocol with thin shallow ridge waveg-
uides. Specifically, it is shown that power can be adiabatically transferred between two isolated
waveguides using TE slab mode radiation as an intermediate bus, but without ever populating
this bus. This section will also test the robustness of this approach by exploring the impact of
adjusting device length on the propagation.

4.1. CTAP using Lateral Leakage

Optical propagation in the longitudinally varying structures of this section were simulated
using eigenmode expansion (EME) [7]. EME was chosen as the most appropriate model as
Beam Propagation Method (BPM) cannot handle large TE radiation angles and Finite Differ-
ence methods have expensive computational requirements for long devices. The EME model
rigorously treats the waveguide translation and its impact on the underlying supermodes of
the system accounting for radiation. It would be beneficial to validate these findings using a
software tool that does not assume modes, such as Finite Difference Time Domain (FDTD).
However such solutions are difficult in the case of thin-ridge devices due to the necessity to
keep track of features at many different length scales, including the nanometer scale of the
thin-ridge of the waveguide, the micron scale of the light, waveguide width and separation, and
the millimeter scale of the total device.

Figure 4(a) presents the cross-section of the geometry under consideration. Two thin shallow
ridge waveguides supporting TM modes |L〉 and |R〉 were placed on a silicon slab supporting
a distributed TE slab mode |B〉. The waveguide widths (WR) were 1.22 μm such that the TM
and TE modes should be coupled as shown in Section 3.2. The slab width was adjusted from
30.4 μm to 30.78μm to account for an additional waveguide while ensuring |L〉, |R〉 and |B〉
are degenerate when isolated. The location of the two waveguides were adjusted to control
the coupling between the modes. Light was coupled into and out of the system through short
sections of non-radiating magic width waveguide of width 0.70 μm.

The approach for determining the strategy for translating the pair of waveguides is as follows.
Although the system has been altered by the presence of an additional waveguide, since the
modes of the system have been tuned to match that of Section 3.2, it would be expected that the
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Fig. 5. (a) plan view of longitudinally invariant waveguides (pink indicates strong coupling,
green indicates weak coupling), excitation on |R〉; (b) optical propagation for uncoupled
configuration; (c) plan view of translated waveguides in intuitive CTAP configuration, exci-
tation on |L〉; (d) optical propagation for intuitive configuration; (e) plan view of translated
waveguides in counter-intuitive CTAP configuration; (f) optical propagation for counter-
intuitive configuration. (g) supermode effective index throughout CTAP evolution; In each
case zmax = 10mm.

coupling behaviour of the modes would oscillate in a similar fashion with waveguide translation
as observed in Fig. 3(c). Both waveguides were translated symmetrically away from the centre
of the slab and the effective index of the three modes close to the TM guided mode of an
isolated waveguide were found using the same mode-matching eigensolver as used in Section
3.2. Figure 4(b) presents the effective index of each mode as a function of waveguide separation
and oscillatory behaviour is clearly evident with a period of ζ = 740 nm in separation, similar
to Fig. 3(c).

The maximum splitting, corresponding to strongest coupling between the two waveguides
|L〉 and |R〉 and the slab mode |B〉, is found to be at a central core separation of 6.6 μm.
Unlike Fig. 3(c), there are now 3 modes in this system and it would appear that one mode
remains unperturbed throughout the transition. It is expected that this mode corresponds to
strong coupling between the two TM modes of |L〉 and |R〉 waveguides but complete isolation
from the slab mode |B〉. This is the mode that we would want to populate during the CTAP
transition. We now wish to find the required relative offsets for the start and end of the transition.
These would be characterised by complete independent isolation of |L〉 and |R〉.

To characterise the impact of relative waveguide offset and coupling of the waveguides to
each other, the two waveguides were placed symmetrically at the maximally coupled separation
of 6.6 μm, the left waveguide |L〉 was held stationary and the right waveguide |R〉 was further
translated and the proportion of TM field in both |L〉 and |R〉 waveguides was assessed for the
central, unperturbed mode. Figure 4(c) presents the square of the magnitude of the vertical
electric field component |Ey|2 for this mode in the regions of each waveguides |L〉 and |R〉 as a
function of the location of waveguide |R〉. The field |Ey|2 is taken as a measure of the presence
of the TM mode in each waveguide. It can be seen that at the maximally coupled state, with
both |L〉 and |R〉 at 3.3 μm, the TM field is evenly distributed between the two waveguides as
was predicted. As |R〉 is translated, the TM field in |L〉 gradually decreases reaching a null when
|R〉 is located at 3.47 μm. Further translation of |R〉 shows the sequence repeating with a period
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of ζ/2 = 370 nm as expected. Thus when |L〉 is at 3.3 μm and |R〉 and is at 3.47 μm |L〉 and
|B〉 will be strongly coupled and |R〉 will be isolated.

The configuration of Fig. 5(a) was considered first with |L〉 located at x=-3.30 μm to be
strongly coupled to |B〉; and |R〉 located at x=+3.47 μm such that it is isolated from |B〉 through-
out propagation. The separation between waveguides of 6.77 μm will be sufficient to ensure no
appreciable evanescent coupling directly between |L〉 and |R〉.

A simulation was performed with |R〉 excited as indicated by the red arrow on Fig. 5(a). The
simulation results are presented in Fig 5(b) showing excitation of the fundamental TM mode
of the isolated waveguide with minimal radiation loss from the input region to the propagation
region, and no evidence of coupling to either the TE slab |B〉 or the other TM mode |L〉.

The geometries of Fig. 5(c) and (e) are both identical and designed to provide an acceptable
CTAP coupling scheme, with the system response strongly dependent on the initial excita-
tion. At the input |L〉 was located at x=-3.30 μm (coupled to |B〉) and |R〉 was at x=+3.47 μm
(isolated from |B〉). However, during propagation, the locations of |L〉 and |R〉 were linearly
translated, such that at the output, |L〉 was offset by -3.47 μm, (isolated from |B〉), and |R〉 was
at +3.30 μm (coupled to |B〉). From Section 3.2, linear translation corresponds to sinusoidal
evolution of the coupling strength. A simulation was performed with |L〉 excited as indicated
by the red arrow on Fig. 5(c). The results are presented in Fig 5(d). At the input, light rapidly
couples back and forth between |L〉 and |B〉. Mid-way, there is equal and in-phase excitation
in both |L〉 and |R〉 and rapid coupling to |B〉 continues with the same coupling length. At the
output, the excitation has transferred to |R〉 with rapid coupling to |B〉 still evident. The output
power is split between |R〉 and |B〉. This split will be highly sensitive to device length and has
been seen in such systems before [15, 32].

The structure and excitation of Fig. 5(e) should achieve counter-intuitive CTAP coupling.
The device geometries are identical to Fig. 5(c), however excitation has been change to |R〉
as indicated by the red arrow in 5(e). The results are presented in 5(f) which shows smooth
transition of the optical power from |R〉 to |L〉 without appreciable excitation of |B〉. Some
slight oscillation is evident, however the rapid, oscillatory coupling to |B〉 seen in 5(e) are not
present. The absence of these oscillations is a major distinguishing feature between CTAP and
devices such as directional couplers.

Observing the effective indices of the system supermodes throughout CTAP evolution are
shown in Fig. 5(g). The counter-intuitive sequence only excites a single mode (the isolated
mode with effective index in green in Fig. 5(g)) whereas the intuitive case excites a superposi-
tion of two modes (the two coupled modes with effective indexes indicated in blue/red in Fig.
5(g)) which explains the modal beating observed.

4.2. Suppression of bus mode excitation and adiabaticity of long range coupling

To more closely examine the excitation of |B〉 during the adiabatic transfer from |R〉 to |L〉, the
Ex component of the results of Fig. 5(f) were replotted corresponding to the TE polarisation.
These results are presented in Fig. 6(a). It is evident that there is, in fact, some slight excitation
of |B〉. There are several effects that can contribute to this residual excitation, including the
staircase approximation [25], finite spatial extent of the modes [26], residual non-adiabaticities
in the evolution [15], imperfect initialisation in the null state [21] and imperfect coupling of
power to the modes of the system at the input and output of the structure. Figure. 6(a) suggests
that imperfect coupling to |R〉 at the input is the dominant source of the population in the TE
mode |B〉, but this effect is deemed negligible for the current demonstration.

The robustness of CTAP protocol was explored by monitoring the coupled power while vary-
ing the total device length. Once in the adiabatic regime, the transport was expected to be largely
independent of the exact device length, asymptotically approaching perfect transport. This con-
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Fig. 6. (a) Lateral (Ex) optical propagation of device above adiabatic limit: (zmax > Alim);
(b) |L〉 output power as a function of device length (zmax); (c) Optical propagation of device
with zmax < Alim; (d) TE polarised field (Ex) close to the input termination (common to all
simulations).

trasts non-adiabatic couplers where the final power would depend critically and periodically on
the device length relative to the coupling length. The structure of Fig. 5(e) was simulated, but
with device length varied from zmax = 0.5 to 10 mm in steps of 50 μm. Figure 6(b) presents the
power coupled from |L〉 at the output as a function of device length. For lengths of 2 to 10 mm,
the output remains relatively constant indicating adiabatic behaviour while we are operating
above the adiabatic limit (zmax > Alim) where for this particular structure, Alim is around 1 mm
as indicated in Fig. 6(b). The transmission is slightly less than unity and there is a slight ripple
evident in the transmission as the length is varied which could be due to the imperfect coupling
mentioned above. When the length drops below Alim, the transmission begins to drop, falling
off dramatically for lengths below 1 mm. This drop off is due to the device being too short to
exhibit adiabatic passage.

Figure 6(c) presents the propagation for the structure of Fig. 5(e) with zmax = 500 μm. Light
input to |R〉 initially remains isolated from |B〉, but unlike the behaviour of 5(f), mid-way the
light remains in |R〉 and simply radiates into |B〉 with minimal coupling to |L〉. Figure 6(d)
presents a highly magnified view of Ex close to the input showing energy naturally radiating
from |R〉 into |B〉. This coupling occurs at the input where |R〉 should be isolated, providing
evidence that the excitation and isolation of |R〉 is not perfect.

5. CTAP using Lateral Leakage to bypass an intermediate waveguide

Whilst the demonstration of Section 4 is interesting, this does not provide the functionality for
long range interconnections across a complex planar system. We now show this functionality
by demonstrating that CTAP using lateral leakage can bypass an intermediate waveguide.

The structure of Fig. 7(a) is similar to that of Fig. 5(a), but has an additional intermedi-
ate waveguide, |I〉, inserted at the centre. The waveguide supporting |I〉 was maintained at the
magic width throughout propagation in order to isolate it from the slab mode, |B〉 irrespective
of its location. The width of the slab was altered to 30.385 μm to ensure that |B〉 was phase
matched to |L〉 and |R〉. The offset on |L〉 and |R〉 were ± 5.652 μm to achieve isolation and ±
5.484 μm to achieve coupling to |B〉. This increased offset from the centre aimed to ensure no
evanescent coupling between |L〉, |R〉 and |I〉. The structure was configured as in Fig. 7(b) such
that at the input, |R〉 was isolated and |L〉 was coupled to |B〉 and followed the same counter-
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Fig. 7. (a) Cross-section of three waveguides on a silicon slab; (b) plan illustration of bypass
CTAP coupler in uncoupled configuration with excitation on |I〉; (c) optical propagation for
uncoupled configuration; (d) plan illustration of bypass CTAP coupler in intuitive config-
uration with excitation on |L〉; (e) optical propagation for intuitive configuration; (f) plan
illustration of bypass CTAP coupler in counter-intuitive configuration with excitation on
|R〉; (g) optical propagation for counter-intuitive configuration. In each case zmax = 10mm.

intuitive translation as in Fig. 5(f). The intermediate state |I〉 was not translated, however it
would be expected that translation of the intermediate waveguide would not impact the perfor-
mance of the device. Each of the three waveguides was interfaced at the input and output to
non-radiating magic width waveguides. The structure was simulated as described in Section 4.

The first simulation tested the isolation of |I〉 from |L〉, |R〉 and |B〉. Optical power was input
to the intermediate waveguide as indicated by the red arrow in Fig. 7(b). Figure. 7(c) presents
the simulated results showing that light remains confined to the intermediate waveguide without
any evidence of coupling. Next the intuitive coupling case of Fig. 7(d) was simulated and is
presented in Fig. 7(e). These results can be compared to Fig. 5(e) exhibiting similar population
oscillations. Importantly, there is no evident coupling into |I〉, as expected since it is at the
magic width and should be isolated from the TE slab.

Finally, the counter-intuitive coupling case of Fig. 7(f) was simulated and the results are
presented in Fig. 7(g). Comparing these results to Fig. 5(f), it can be seen that again adiabatic
passage without appreciable population in either the bus mode, |B〉, or intermediate waveguide,
|I〉, has been achieved. Slight pulsing of the light is again observed in Fig. 7(g) similar to that
of Fig. 5(f). These simulations confirm that this adiabatic coupling structure is indeed capable
of transferring an optical signal from one waveguide to another, bypassing an intermediate
waveguide using the TE slab mode as a type of bus, but without ever populating this bus.

6. Conclusions

We have described a new concept for adiabatic transfer of power between two thin shallow ridge
waveguides and proved this concept using rigorous numerical simulation. The power transfer
occurs by coupling each waveguide to a laterally distributed slab mode which acts as an op-
tical bus. The novelty of our demonstrated concept is that due to the nature of the Coherent
Tunnelling Adiabatic Passage (CTAP) protocol employed, power is robustly transferred from
one waveguide to the other without ever populating the intermediate optical bus. The distrib-
uted nature of the bus allows the coupling to be long-range, exceeding evanescent interaction
distances and indeed extending beyond nearest neighbour interactions. We have demonstrated
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this feature by showing that our CTAP coupler can act as a cross-connect bypassing an inter-
mediate waveguide which is immune to cross-talk. Since the bus state population is minimal,
and the CTAP protocol is highly robust we would expect the transfer to be insensitive to other
intervening structures or imperfections of the slab.

We propose that this new coupling technique could have a potential application as an inter-
connect mechanism across complex integrated optical systems. However, our initial device can
benefit from further optimization before this approach can be taken beyond the proof of concept
stage, there are limitations and possible extensions that should be explored.

A significant restriction of our demonstration is that in our demonstration the transport was
via a discrete mode of the slab. This has obvious limitations as it imposes a restriction on the
properties of the whole slab, rather than just the slab in the vicinity of the active waveguides.
However, there are STIRAP/CTAP protocols that operate using multiple intermediate states
[37, 38] and even via a continuum [39], again with minimal occupation of those intermediate
states. Since our CTAP protocol is a direct analogy of STIRAP we are confident that similar
approaches could be employed to eliminate the dependence on the properties of the discrete
modes of the slab. Fabrication tolerances can be improved by further waveguide engineering
[31,40] and can provide enhanced coupling to reduce overall device lengths. Before fabrication
it would be beneficial to validate these findings using a software tool that does not assume
modes, such as finite difference time domain, but this is extremely challenging and is thus
proposed as future work.

In our demonstration of adiabatic transfer bypassing an intermediate waveguide only two
waveguides were coupled to the slab at any one time with the third intermediate waveguide
maintained at the magic width and hence uncoupled from the slab at all times. It would be of
interest to explore cases where more than two waveguides are coupled to the bus simultane-
ously, for example topologies equivalent to the tripod and multi-pod schemes from STIRAP.
These schemes have been proposed for applications such as geometric gates [40] and multiple-
recipient adiabatic passage [41], which cannot be realised without some form of non-nearest
neighbour coupling, such as has been outlined here.
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