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(1–6). These studies have used this new technology with various
methodologies to capture the individual trips.

In analysis of an individual’s travel behavior by using ADC, gen-
erally, the main objective is to find the sequence of the passenger’s
trip from the origin stop to the destination stop (or origin to destina-
tion). But the information from AFC systems is still limited in its
ability to infer the passenger’s full sequence of trips. This limitation
derives from the type of fare collection system, either closed or open
(2). For example, a rail transit system may have a closed system that
requires the use of a fare card at the origin and the destination but
that may not require its use for internal transfers. In contrast, an open
bus fare collection system may require the passenger to use a fare
card only at boarding, not at alighting. Typically, open systems have
been the main research interest in the development of a traveler’s trip
chain because the closed system provides both origin and destination
(O-D) information of a trip.

To complete an individual’s sequence of trips, the given ADC
information requires the use of appropriate inferences. The main
research using AVL and AFC data has been in estimating a passen-
ger’s reasonable alighting stop. In an open system, the principal
inference comes in generating the connections for a sequence of
trips by each card holder. If one assumes an inconvenience to walk-
ing, a frequent approach is to estimate the nearest alighting stop
from the next AFC (boarding) transaction point on a trip (1, 4, 6–10).
This estimate requires some inferences in the passengers’ trip chain-
ing, although ADC does not usually provide information on the
cardholder’s travel purposes, preferences, or attitudes (11). In addi-
tion, to generate the alighting stop alternatives, various thresholds
for walking distances or travel times are used. In particular, Trépanier
et al. introduced a methodology to approximate the nearest alighting
point within the threshold of a 2-km (1.24-mi) Euclidean distance
(10). Others (7–9) estimate the nearest alighting stop by considering
the proximity of the arrival time of the transit vehicle (or run) to
the next boarding time as well as the Euclidean distance to the
nearest stop.

Another possible method is to conjecture whether an activity
happens between two successive fare transactions. Several works
(7–9) examine the relationship between the passenger’s trip and
activity occurrence by using AFC and AVL data. Because many fare
collection systems allow different restrictions on the time available
for a transfer, it is possible to have some simple, but relatively long,
activity occur within the allowed transfer time. The easy way to
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As fare and data collection technology has developed, the resolution of
collected data has reached the level of the individual traveler in investi-
gations of transit passenger behavior. This paper investigates the use of
these data to estimate passenger origins and destinations at the level of
individual stops. Because of a lack of information from the fare collec-
tion system, researchers still need some estimate of passengers’ alight-
ing stops to complete each passenger trip chain on a specific day.
Automated fare collection (AFC) and automated vehicle location (AVL)
systems are the inputs to the estimation. Instead of typical AVL data,
the paper proposes two models to estimate the alighting stop; both con-
sider passenger trip chaining by using AFC data, transit schedule data
(Google’s General Transit Feed Specification), and automated passen-
ger counter (APC) data. The paper validates the model by comparing
the output to APC data with vehicle location data (APC-VL) and per-
forms sensitivity analyses on several parameters in the models. To detect
transfer trips, the new models propose a submodel that takes into
account the effect of service headway in addition to some typical trans-
fer time thresholds. Another contribution of this study is the relative
relaxation of the search in finding the boarding stops, which enables the
alternative algorithm to detect and fix possible errors in identification
of the boarding stop for a transaction. As a result, the paper provides
algorithms for the proposed models and sensitivity analysis for several
predefined scenarios. The results are based on data and observed bus
passenger behavior in the Minneapolis–Saint Paul, Minnesota, area.

Transit automated data collection (ADC) systems have allowed esti-
mation of valuable behavioral patterns, especially for multimodal
transit and with consideration of the sequence of passenger trips.
Mainly, the interplay with data from the ADC systems—automatic
fare collection (AFC), automated vehicle location (AVL), and other
geographic information systems—provides more access to individual
passenger’s trip chain beyond that imagined at a more-aggregate level.
Studies to identify passengers’ trip sequences have been expanded to
include multimodal transit networks as well as much larger networks
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determine such an activity is to set up a transfer time boundary.
Seaborn et al. examine the threshold of transfer time compared with
an activity time for multimodal travel (rail and bus) in London (3).
This decision of whether a time gap is a transfer or a simple activ-
ity is important because it directly affects the inferred O-D of the
passenger trip.

To estimate a consistent alighting stop in a passenger’s sequence
of boarding transactions, two models are proposed. These models
and previous ones are different in three major ways. First, for their
inputs, the new models use Google’s General Transit Feed Specifi-
cation (GTFS), AFC, and automated passenger counter with vehicle
location (APC-VL) data for the metro transit bus system in the
Minneapolis–Saint Paul, Minnesota, area. This method uses GTFS
and APC-VL data instead of AVL data. Today, it is relatively easy
to obtain transit schedules because many transit agencies provide
publicly available schedule information through GTFS. Second, this
method enhances the ability of the decision process to understand
AFC transactions, which consist of two types (called use types
here): initial (beginning the first leg of the trip) and transfer. For
understanding of the use type, a transfer time threshold has been
applied in previous studies, such as a 40-min transfer time. However,
the threshold could also be affected by the frequency of service (or
headway) on the connecting route. By modeling the relationship
between the transfer time threshold and headway, it is possible to
provide a better inference for deciding whether an activity occurs.
Third, another possible inference is applied as an alternative model
in this study. In this model, a reliable alighting stop is estimated by
relaxing the spatial search for boarding stops, to include the stops in
the opposite direction, and then by trying to match the alighting stop
from this alternative boarding stop.

The remaining sections of this paper are organized as follows.
First comes a description of the data and preparation for analysis, by
using AFC, APC-VL, and GTFS data. Then, the methodology by
which the boarding and alighting stops are inferred is presented, and
the use type for each transaction is estimated. In addition, an alter-
native algorithm is presented that considers the direction of service
in matching boarding and alighting stops. Subsequently, detailed
results of sensitivity analyses on model parameters are provided.
Finally, concluding remarks and suggestions for future research are
provided.

DATA: MINNEAPOLIS–SAINT PAUL
METROPOLITAN TRANSIT

Data Description

The data in this research were obtained from Metro Transit oper-
ating in the Minneapolis–Saint Paul (Twin Cities) area and were
excerpted from one month of data (November 2008). At the time,
Metro Transit operated a fleet of 1,010 buses over 186 routes. The
majority of bus headways ranged from 15 to 60 min. Less than 10%
(18) of the routes had the minimum headways, ranging between 5
and 10 min, only during peak hours. The proportion of fare card
users among all transit passengers is roughly 50%; this proportion
was determine by comparing AFC records with boarding counts
from the APC-VL data. Figure 1 shows the hourly distribution of
total transactions on the basis of transaction date and time from AFC
data. This graph manifests a conventional peaking pattern, with a
huge percentage of the total transactions made during the morning
(6:00 to 9:00 a.m.) and afternoon peak (4:00 to 7:00 p.m.) periods.

Table 1 presents the data recorded in the AFC, APC, and GTFS
data sets. A more detailed description of the data follows.

AFC Data: Go-To Card

In the AFC system, a record is generated every time a user boards
a bus. Each record has basic operational information, like the trans-
action date and time, route number, use type, fare type, bus identi-
fication (ID), run ID, and current location. In November 2008, the
AFC transactions (2.17 million records) were made by 79,775 fare
cards [identified by special serial number (SSN)]. Each SSN is con-
sidered an individual traveler because it is uniquely assigned to
each Go-To card.

APC-VL Data

Stop-level boarding and alighting counts were collected from about
30% of operated buses, which were equipped with passenger counters.
APC data (3.4 million records) also provided vehicle location infor-
mation with the stop ID when boarding–alighting activities were
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FIGURE 1 Hourly transaction distribution, week of November 10, 2008.
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observed. In addition, the scheduled time and actual arrival–departure
times at an individual stop were recorded in the APC data.

GTFS Data

GTFS is an open-source transit service package (12, 13) produced by
hundreds of transit agencies in the United States. GTFS is typically
presented as a series of text files (stops, stop times, routes, calendar,
trips, etc.) with comma-separated values. The main advantage of
using GTFS is to access the detailed schedule (stop time.txt) of each
trip ID. This information can be matched with the AFC and APC-VL
data in relation to the time of specific transactions.

Data Preparation

Monday, November 10, 2008, was used as a typical day in the
analysis. In detail, the 24-h time span from 3 a.m. on Monday to

3 a.m. on Tuesday was considered because many buses end their
trips after midnight, and few trips are overnight. All AFC, APC-VL,
and GTFS data were loaded into Microsoft SQL Server 2008. Several
conditions were considered in preparing the data. The fare cards
(SSNs) had to have at least two transactions on the given day in
the AFC data for them to be applied to the trip-chaining model. An
inner join was then computed to retrieve all transactions (90,154 for
November 10) of each unique SSN because multiple records may
have been detected and each SSN may have had a different number
of transactions. To clean and validate the retrieved data, several
additional filters were applied (discussed in the following section on
methodology).

The AFC data itself do not provide either any passenger alighting
information or directional information for the route. As a result, the
boarding location of the next transaction must be considered to infer
the alighting stop of each passenger trip. Although APC-VL data
support more accurate identification of boarding stops, these data
are only a sample (about 30%), so all the passenger O-D estimates
cannot be validated.

Figure 2 shows the kind of data used for this study as well as how
they are connected. Each data set can be integrated with one another
by using various data relationships to overcome the limitations of
each separate data set. The data attribute route number can be used
to link the data sets.

AFC data are used to identify the boarding stop. In addition, the
nearest stop is found from the APC-VL data for verification pur-
poses. To identify the boarding stop by using APC-VL, the vehicle
ID and route number are matched between the AFC and APC-VL
data, and the trip number (trip ID) whose scheduled time interval
covers the transaction time recorded in the AFC data is found.
Finally, distances for all stops having the same trip number are cal-
culated, and the stop with the minimum distance is assigned as the
nearest stop.

METHODOLOGY

Assumptions

The approach in this study is mainly based on a trip-chaining
model. Therefore, the pertinent assumptions for the trip-chaining
model are the most important ones. These, along with some other
assumptions made, are discussed below.

Trip-Chaining Model Assumptions

Typical assumptions of trip chaining are made in this study as well
as several other studies (3, 4, 9). For instance, it is assumed that trav-
elers who use the transit system do not use any other modes within
the given sequence of daily transit trips. The major assumption of
the trip-chaining model is that the destination of each trip can be
inferred from the origin of the next trip. In addition, the destination
of the last transaction of a person in a given day is assumed to be the
boarding point of that person’s first transaction that day.

Once the alighting stop for each transaction is inferred, some
proximity checks should also be applied. These checks exclude
many of the transactions for which the trip-chaining assumptions are
not true. For the geographical check in this paper’s algorithm, that
the inferred alighting stop was located within walking distance of the
next boarding point had to be ensured. For temporal checking, that
the inferred alighting time was not later than the next transaction
time had to be ensured.

TABLE 1 Description of Each Data Set

Information Description

AFC data
Special serial number Unique number of each go-to card
Transaction date Boarding date
Transaction time Boarding time
Route number Given number of every bus route
Use type Status of boarding (entry, refund, transfer)
Bus ID Given number of every operated bus
LAT LONG data Latitude–longitude of boarding location

APC data with vehicle
location
Vehicle ID Given number of every operated bus (bus ID)
Time bracket start Scheduled departure time at the first stop 

of trip
Time bracket end Scheduled arrival time at the last stop of trip
Trip number Given number of any given trip
Line ID Given number of every bus route 

(route number)
Line direction Directional information of any given trip
Stop sequence number Given number of stop sequence for any 

given trip
Site ID Given number of bus stop (stop ID)
Site latitude Latitude of bus stop from vehicle location
Site longitude Longitude of bus stop from vehicle location

Stops
Stop ID Given number of bus stop (site ID)
Stop name Name of bus stop
Stop description Direction and location of bus stop
Stop latitude Latitude of bus stop
Stop longitude Longitude of bus stop

Trips
Route number Given number of every bus route
Trip ID Given number of every trip

Routes
Route ID Given number of every bus route

Calendar
Service ID Days of week when service is available

Stop times (schedule)
Trip ID Given number of every trip
Arrival time Scheduled arrival time
Departure time Scheduled departure time
Stop ID Given number of bus stop (site ID)
Stop sequence number Given stop sequence of bus trip



Assumptions of Estimation of Stop-Level O-D

For each person, the origin of the trip is assumed to be the boarding
bus stop and the destination is assumed to be the alighting bus stop.
It is also assumed that, for the trips that contain transfers, the origin
is the boarding stop of the first leg of the trip and the destination is
the alighting stop of the last leg of the trip.

Other Assumptions

It is assumed that the required time for an individual to participate
in an activity is at least 30 min. It is also assumed that the maximum
waiting time for a person to transfer cannot exceed 90 min. Later,
this paper explains that the transaction status (transfer or initial trip
or use type) of a user is understood by having these criteria consid-
ered along with the schedule of the bus route that the user has boarded.
For calculation of the walking distance between two successive rides,
the Euclidean distance (ED) between the two points was used. To
account for nonstraight paths between the two points, ED was multiplied

by , which gave the diagonal of a right-angle metric between the
two points. The average walking speed of 3 mph (4.8 km/h) was
assumed for estimating the walking time between two points.

Model

Primary Data Refining

The chosen day (Monday, November 10, 2008) began with 90,154
transactions, including both initial and transfer transactions. How-

2

ever, evidence showed that in some cases the AFC transaction data
set might have had some wrong or missing entries or might have
even been missing one whole transaction in the set of a person’s
trips. Many of these missing transactions were detected on the
basis of transaction status (original use type). For example, if, in
the first transaction of a person, the use type was recorded as a
transfer, it was inferred that at least one transaction of that person
was missing. Eliminated were all transactions of the individual for
which it was detected that some transactions might be missing. Of
the total 90,154 transactions, 1,970 had such problems, and after
all transactions from these fare cards were eliminated, the total
number of transactions decreased from 90,154 to 84,413 on the
chosen day.

Main Algorithm

The main algorithm proposed for determining passenger O-D stops
is shown in Figure 3. Each step in this algorithm is discussed below.

Search Lists

An issue in the algorithm was that a search needed to be done
through all the GTFS schedule data (488,105 records) multiple times.
Considering the number of transactions (84,413), and to expedite the
search process, a search list for each route based on GTFS schedule
list was created. After the required GTFS files were combined, the
schedule data of the routes were kept in separate lists. Then, for each
transaction, it was necessary just to search through the schedule of
the specific route to find the boarding and alighting stops.
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Read the schedule data Read the AFC data 

Select the next fare card ID 
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No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Is the distance less than D1 (0.1 mi)? 

Is the distance less than D2 (0.5 mi)? 

Label the transaction as “excluded” 

Label the transaction as “transfer” 
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the transaction < boarding time of the 

next transaction? 

Is there any trip for the stop
within (TrT – α, TrT – β)

Find the trip with closest time to (TrT – C)
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Create schedule list 
for each route 

FIGURE 3 Main algorithm for estimating transit O-D from AFC data and schedule.



Finding Boarding Stop and Alighting Stop

The first part of the main algorithm (upper dotted box of the Figure 3)
is related to finding the boarding stop, trip ID, and alighting stop for
each transaction. In this part, for each transaction in the AFC data,
the GTFS schedule was searched to find the best-fitting trip ID and
boarding and alighting stops.

After the data structure was created, the algorithm found the
nearest stop on the specific route to the transaction point and con-
sidered this the boarding stop. If the distance between the transac-
tion point and the stop was more than a predefined threshold [due to
the nature of Global Positioning System (GPS) accuracy or any
other errors], the transaction was labeled excluded. The spatial (or
geographical) threshold for checking the boarding stops (D1) was
considered to be 0.1 mi in this study. (In the following section, a sen-
sitivity analysis is performed for D1 and other parameters.) The next
step for the inferred boarding stop was to find the best-fit trip ID. To
find it, a statistical analysis was performed to define an appropriate
criterion (with Parameter C ) by which the most probable trip ID in
the schedule could be inferred from the actual time of transaction at
the boarding stop.

All transactions were distributed between the actual arrival and
departure times of their associated bus run. Then, to find the most
probable trip ID in the schedule, the scheduled arrival time from the
transaction time at the specific boarding stop was inferred. So an
estimate of the average time shift between the transaction time and
the scheduled bus arrival time. This average shift (C) is bounded by
(a) the average delay between the actual arrival time and the scheduled
time and (b) the average delay of the departure from the sched-
uled time. From the available sample with 18,398 records from APC-
VL data, the actual arrival and departure times of buses were found to
have an average delay of 26 and 83 s, respectively (Figure 4). Then, a
reasonable estimate for C (the time between the scheduled arrival and
the transaction time) would be the average of 26 and 83 s, or C = 54 s.
In the next section, further sensitivity analysis is also performed for
Parameter C. With C = 54 s, to find the most probable trip ID for the
transactions, a search is conducted for the scheduled departure time
closest to (TrT − C), where TrT is the transaction time (Figure 5).

In the process of searching for the most probable trip ID, to
increase the algorithm speed, a search time interval is considered
instead of searching through the whole daily schedule. Under the
assumption of a normal distribution for the actual arrival and depar-
ture times, the time interval that covers the correct trip ID with a
probability of .99 was chosen. This time interval is (TrT − α, TrT − β)
where

α = µDep + 2σDep,
β = µArr − 2σArr,

µDep = average delay of bus departures,
µArr = average delay of bus arrivals,

σDep = standard deviation of delay of bus departures, and
σArr = standard deviation of delay of bus arrivals.

The calculated values for α and β from the data set are 383 and 
−302 s, respectively. Application of these temporal boundaries
narrows the search area to the bus runs at the inferred stop and helps
improve the accuracy of the inference as well as increasing the
search speed. Nonetheless, when GPS accuracy is considered, in
some cases it is possible that the wrong stop is selected for the
boarding stop, although this possibility cannot be verified with the
given data.

Once the best-fit trip ID is found for a boarding stop, the next
step is finding the alighting stop for each transaction. To do so, the
schedule of the found trip ID is geographically tracked and the stop
nearest the next transaction point is located. That stop can be inferred
as the alighting stop if the distance between it and the next transac-
tion point is less than a predefined boundary (D2, which is 0.5 mi in
this study). An “excluded” label is placed on the transactions if the
suggested alighting stop lies outside this geographical boundary.

Detecting Transfer Trips

Once the boarding stop, alighting stop, and the trip ID are inferred for
the transactions in the first part of the main algorithm, the transfer trips
among all the transactions have to be detected. The procedure is shown
in the dotted rectangle at the bottom of the flowchart in Figure 3.

The original use type attribute for each transaction in the AFC
data set specifies whether each transaction is an initial transaction or
a transfer, but this specification is not consistent with what is needed
to estimate O-Ds. In O-D estimation, the transactions must be grouped
in a way that all the transactions in each group form a unique O-D trip
(i.e., a so-called linked trip). Under this condition, a unique O-D can
be linked to all the transactions in each group. In that case, the first
transaction of each group is an Initial one and all the remaining trans-
actions are transfers. But the logic behind the transactions in the
Metro Transit data set is not consistent with this purpose. Rather, in
the AFC data set, the transactions are grouped into 2.5-h intervals.
It can be assumed that this grouping is related to Metro Transit fare
policy: because each fare is valid for 2.5 h, once a passenger pays for
an initial transaction, he or she can use the system (i.e., make transfers)
free of charge for the next 2.5 h. So, in that grouping method, the first
transaction of a person is specified as initial and all other transactions
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FIGURE 4 Schematic distribution of bus arrival and departure
delays and transactions.
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that take place within 2.5 h are specified as transfers, regardless of the
actual passenger trip purpose.

In this section, to modify the use type in a way to serve the purpose
of this study, an attempt is made to scan the spatial and temporal
attributes of the travelers in their successive transactions. With con-
sideration of these attributes, an attempt is made to infer the use type
for each transaction. Figure 6 shows how the use type for a transac-
tion is modified on the basis of spatial and temporal characteristics
of the current transaction and the previous one.

As Figure 6 shows, the geographical and temporal coordination
of each transaction in relation to the previous transaction is studied.
With the alighting stop for the previous transaction and the board-
ing stop for the current transaction inferred in the first part of the
algorithm, the time–space relationship between the alighting and
boarding is now determined. Bus run times are also extracted from
the GTFS schedule data, and the departures on each route are consid-
ered as time–space points in Figure 6. Then, on the basis of spacing
between the previous alighting stop and the next boarding stop, a
walking time (W) for the traveler to reach the boarding location is
calculated. Also considered is a possible delay (D) due to any setback
in alighting or walking or from minor activities like buying a news-
paper, coffee, or the like. From a start at the alighting time, and with
addition of the walking time and the estimated delay, a time point,
tacc (the time from which the boarding stop becomes accessible for
the passenger), is inferred. The criteria for understanding use type for
the transactions are based on (a) the number of bus runs in the time
interval from tacc to the actual boarding (transaction) time and (b) the
time between the estimated arrival time at the boarding stop and
the actual boarding time (L).

Similar to the way transfer time criteria were applied by Hofman
and O’Mahony (14), an upper bound (Lup) of 90 min on L for the
transfer transaction have been chosen. In addition, under the assump-
tion of a minimum duration of 30 min for an activity, a lower bound
(L low) of 30 min on L for the initial transactions has been considered.
These criteria mean that one transaction will be interpreted as initial
when the calculated L is greater than 90 min and as transfer when
the calculated L is less than the minimum expected time for an
activity (30 min). When the calculated L for a transaction is between
30 and 90 min, the number of opportunities NOPP available to the pas-

senger for boarding between the estimated arrival time (tacc) and the
actual boarding time determines the use type. If NOPP ≤ 1, the use
type is inferred to be transfer; otherwise, it is inferred to be initial.
In other words, an NOPP > 1 means that the passenger did not board the
first accessible bus and implies that an activity has likely occurred
before boarding. Through application of these criteria, in the model
output with 33,514 transactions, a total of 2,415 transactions previ-
ously (in AFC) recorded as transfers were inferred to be initial, and
118 transactions previously recorded as initial were inferred to be
transfer.

The combination of the criteria on L with the criterion on NOPP is a
major contribution of this study that helps in the consideration of the
bus schedule along with the transfer time thresholds in understanding
the use type.

Final Refining and Outputs

Once the use type for all the transactions is determined, the transac-
tions of an individual can be divided into different groups. Each group
will represent a unique (linked) trip and will have a unique O-D. Each
group consists of an initial trip and the dependent transfers (if any).
In the output of the algorithm, some transactions exist for which no
trip ID, boarding stop, or alighting stop is found. These transactions
are labeled excluded in the algorithm. In the final refining step, these
transactions are excluded, as are all transactions in the same group
with them.

A typical assumption about the AFC system is that the fare is col-
lected from passengers when they board. But for some routes (mostly
in express routes originating from the central business district or
park-and-ride centers), the fare is collected when passengers alight.
Because no information about the bus routes with this characteristic
was accessible, suspicious records were eliminated from the output
of the model on the basis of the following criteria. These transactions
show up in the output with extremely short in-vehicle travel times
and with the inferred destinations in the same geographical location
as the origins. In the final refining, the transactions using express routes
for which the inferred alighting was just one stop from the boarding
stop were eliminated.

Scheduled Bus Departures
SPACE

TIME
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tacc

Alighting from
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1s OPP 2nd OPP Kth OPP

Boarding 

FIGURE 6 Understanding use type.



The total number of the transactions for which the boarding and
the alighting stops were found was 51,273, and the total remaining
after the final refining was 33,514, which represent 28,260 groups
(linked trips). In the output for each of these 28,260 linked trips was
an estimated O-D stop pair, which was inferred from the boarding
stop on the first leg of the trip and the alighting stop on the last leg
of the trip.

Verification of Outputs by Joining AFC 
with APC-VL Data

After the algorithm was applied and the boarding and alighting stops
for each transaction were found, the results were compared with a
sample data set consisting of joined AFC–APC-VL data. By using the
sample data, it was possible to find the trip that each person had taken,
that person’s boarding stop, and the correct route direction. In this
case, the inferred boarding stop from the algorithm was compared
with the boarding stop (if any) found in the merged AFC–APC-VL
data, and any possible mismatch could be detected. For the data
from Metro Transit, the algorithm resulted in 51,273 transactions,
and the rest of them were labeled excluded. The number of records
in the matching APC-VL sample was 10,886, which was 21.2% of the
available AFC transactions. For 1.6% of the sample data, the direction
was inferred incorrectly. These cases were considered the wrong
output because the alighting stop would also be inferred incorrectly.
The most likely reason for the mismatch was that another mode
might have been used between two successive transactions, and the
transaction point of the second transaction led to selection of the
wrong direction and a wrong alighting point for the first transaction.
In 2.9% of sample transactions, although the inferred direction was
correct, the inferred boarding stop was not correct (there was no
boarding record in the APC-VL data for that stop). The point here
is that, for these transactions, the correct direction was selected and
it led to the correct alighting stop. For most of these cases (298 of
325 transactions), it was observed that the algorithm’s selected stop
was the neighboring stop to the correct one, as noted in the APC-VL
data. The results of the verification analysis are represented in Table 2.
In conclusion, though, the algorithm gave reliable output (correct
boarding stop and correct direction) for more than 98% of transactions.

Output Summary

To provide a brief summary of the algorithm’s output, the estimated
O-D were aggregated for the geographical analysis. Figure 7 presents
the O-Ds for the morning (6 to 9 a.m.), midday (9 a.m. to 4 p.m.), and
afternoon (4 to 7 p.m.) periods. The origins (morning) and destina-
tions (afternoon) seem to be symmetric, which suggests that fare card

holders’ trips begin and end at the same locations. During midday,
many internal trips within downtown were observed.

Alternative Submodel for Finding Stops 
and Trip ID

In the proposed model, once the nearest stop to the location of the
transaction is chosen as the boarding stop, the most probable trip ID
is taken and the alighting stop is inferred afterwards. But some cases
may exist in which, because of the level of GPS accuracy in the AFC
data, the nearest stop is not where the transaction has actually hap-
pened. Especially when the stop in the opposite direction of the bus
route is right across the street from the presumed boarding stop, the
GPS may lead to a wrong inference of the stop for boarding in the
opposite direction. Such cases in the base algorithm, in the process of
distance check, automatically get excluded from the output regardless
of whether the boarding stop might be incorrectly inferred.

To manage these cases better and increase the number of trips
identified, an alternative algorithm is proposed. If the first algorithm
does not output the boarding and alighting stops for a transaction
(i.e, the proximity checks do not hold for the inferred stops), before
the transaction gets excluded, the alternative algorithm relaxes the
search among the stops in the other direction and finds the stop
nearest the transaction location. Then, the trip ID for this transaction
is chosen and the alighting stop inferred. If the inferred alighting
stop is in an acceptable vicinity of the passenger’s next transaction,
the inferred boarding and alighting stops are confirmed.

After this alternative algorithm was applied to the data set, the
total number of inferred transactions increased from 51,273 to 55,714.
The difference between the output of the alternative algorithm and
the base algorithm is due to consideration of the opposite direction
in the procedure for inferring the boarding and alighting stops. This
consideration is another contribution in this study.

The main advantages of this alternative algorithm are that it 
(a) increases the size of output, (b) detects the cases in which the use
of GPS would otherwise lead to an incorrect boarding stop, and 
(c) eliminates any possible bias resulting from the exclusion of these
cases from the output.

This model was also applied to the AFC data, and the outputs
were generated. However, verification of the outputs, based on their
being compared with APC-VL data, was not encouraging versus the
base algorithm. The total not-correctly-inferred transactions, for which
the direction of the inferred trip ID does not match the direction in
the matching sample, increased from 1.6% in the base algorithm to
about 4.3% in the alternative algorithm.

SENSITIVITY ANALYSES

Some assumptions were made for the parameters of the model in the
previous section. In this section, a sensitivity analysis is done on the
parameters for the proposed model. This analysis consists of two
parts. First, a change is made in the parameters in the first part of the
algorithm including the boundaries for the maximum boarding dis-
tance and alighting distance, D1 and D2, respectively, and the average
time shift, C, between the transactions times and the scheduled arrival
times. For these parameters, the results can be compared with the
merged AFC–APC-VL sample data to decide which values give
better results. Second, the second part of the algorithm that deals
with the use type inference is analyzed. For parameters of this part,

TABLE 2 Verification of Model Output in Comparison 
with APC-VL Sample

Number of
Transactions Percent Description

10,886 100.0 Matching sample available
10,388 95.4 Verified
325 2.9 Direction is verified, boarding stop is not
298 2.7 Neighboring stop
7 0.2 Not neighboring stop
173 1.6 Direction is not correct
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FIGURE 7 Geographical analysis of (a) morning origins, (b) morning destinations, (c) midday origins, (d ) midday
destinations, (e) afternoon origins, and ( f ) afternoon destinations.



including the lower bound of the initial trip waiting time, Llow, the
upper bound of transfer waiting time, Lup, and the possible access
delay, D, there is no source for verification. So the objective of the
analysis for these parameters is to see whether the proposed model
is sensitive to these parameters.

Different values for parameters of the first part of the algorithm,
including D1, D2, and C, are chosen, and the model is run for each
combination. Then, a verification analysis (like that shown in the
section on methodology) is done, and the percentage of unaccept-
able results is calculated (see Table 3). Results show that the model
is not sensitive to Parameter C, and the output does not change sig-
nificantly with slight changes in this parameter. This insensitivity is
mostly due to the large headways in the transit system. But changing
Parameters D1 and D2 slightly affects the outputs. The best results
are gained by using 0.1 and 0.25 mi for D1 and D2, respectively, on
the basis of the number of transactions with an incorrectly inferred
direction. But these values decrease the total number of accepted
transactions by 5%. In conclusion, because the model is not extremely
sensitive to these parameters, the chosen values for D1 and D2 (0.1 and
0.5 mi, respectively) seem to be reasonable.

The second part of the sensitivity analysis is on the parameters
affecting the use type inference, including Llow, Lup, and D. Different
values were chosen for the parameters, and the percentage of trans-
actions inferred as initial over all remaining transactions, after the
final refinement was applied, was calculated. Investigated were val-
ues of (a) Llow from 20 to 40 min in 10-min increments, (b) Lup from
60 to 120 min in 30-min increments, and (c) D from 0 to 20 min in
5-min increments. Results showed that the model was not sensitive
to these parameters because, over all the combinations, the percentage
of transactions inferred as initial ranged from 84.5% to 86.2%.

CONCLUSIONS AND FUTURE WORK

By using AFC, GTFS, and APC-VL, a model was created to infer
boarding and alighting stops as the route direction was considered.
Application of the model to the data set found appropriate boarding
and alighting stops for 51,273 of 84,413 transactions (gleaned from
an initial 90,154). Then by application of some criteria to detect
transfers, the use type of each transaction was understood. In the
final refining process, the final output size decreased to 33,514 trans-
actions, which belong to 28,260 (linked) trips. By comparison with
an AFC–APC-VL matching sample of 10,886 transactions, the output
of the main model was verified in more than 98% of transactions.

An alternative model was also established during this study, and
it improved the algorithm by increasing the number of outputs; the
improvement resulted from consideration of both directions of each
route. But on the basis of the accuracy of the inference, the main
model was preferred. Although at issue is exclusion of the transac-

tions that have been guessed to be incorrectly inferred by the proposed
model, which decreases the output size, a trade-off exists between the
output size (quantity) and its accuracy (quality). The choice depends
on the researcher’s perspective of how to approach this issue because
(a) it is difficult to capture all travelers’ behaviors accurately and
(b) the data may have some inconsistencies with the trip-chaining
assumptions. Finally, a sensitivity analysis was performed for the
parameters used in both parts (finding the stops and understanding
the use type) of the model, and this analysis showed that the model
is not sensitive to any of the parameters.

The outcome from this research can lead to related work. First,
the O-D estimation can be extended to include accessibility by using
walking distance–time to the boarding and alighting stops. This
stop-level O-D estimation should be expanded to a zone- or parcel-
level O-D estimation because the activities do not originate from a
stop but from home or attraction points. Second, as the stop-level O-D
and its possible paths between O-D stops are secured, it is possible
to set up a utility model and empirically estimate a path choice model.
Third, threshold estimation, especially for transfers, is another
promising future research area that considers trip length–travel time
distribution. In the main model, 30- and 90-min thresholds were
applied for detecting transfer behavior. It should be possible to adjust
the static boundary in accordance with network configuration and
transit passenger behavior. Fourth, a comparison with other cities
that use the smart card system is another area for additional research.
As more ADC systems are put into service globally, comparisons of
different ones can provide interesting work.
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