
An Analysis of the Requirements Traceability Problem

Orlena C. Z. Gotel & Anthony C. W. Finkelstein

Imperial College of Science, Technology & Medicine
Department of Computing, 180 Queen's Gate
London SW7 2BZ (oczg; acwf@doc.ic.ac.uk)

Abstract facing pre-RS traceability improvements, Section 7 identifies
how some of these can be tackled, and Section 8 discusses that
aspect of the composite problem which is the subject of our on-
going research agenda at Imperial College.

In this paper1, we investigate and discuss the underlying nature
of the requirements traceability problem. Our work is based on
empirical studies, involving over 100 practitioners, and an
evaluation of current support. We introduce the distinction
between pre-requirements specification (pre-RS) traceability
and post-requirements specification (post-RS) traceability, to
demonstrate why an all-encompassing solution to the problem is
unlikely, and to provide a framework through which to
understand its multifaceted nature. We report how the majority
of the problems attributed to poor requirements traceability are
due to inadequate pre-RS traceability and show the fundamental
need for improvements here. In the remainder of the paper, we
present an analysis of the main barriers confronting such
improvements in practice, identify relevant areas in which
advances have been (or can be) made, and make
recommendations for research.

2:Research method
Numerous data gathering techniques were used to define and

analyse the RT problem. The empirical exercises took place
over 1 year and involved more than 100 practitioners. Their
work areas covered all aspects of development, maintenance and
management; their experience ranged from 9 months to 30
years; and the projects they were involved with varied in
number, type, and size. A detailed specification for RT support
was produced in parallel. Here, introspection helped to identify
requirements to support both this activity and its traceability.

2.1:Literature & tool reviews
The literature was surveyed, and over 100 commercial tools

and research products were reviewed, to gather viewpoints
regarding: what RT is; why it is needed; what problems it
involves; and to locate relevant research and development.

[Keywords: requirements traceability, pre-requirements
specification traceability, post-requirements specification
traceability, requirements engineering practice, requirements
traceability tools.] 2.2:Focus groups

5 semi-structured sessions were conducted. These involved
37 practitioners spread across 5 sites of a U.K. company. Each
session lasted 1 hour, was audio taped, and transcribed. The
data were used to: consolidate the above; discover how RT
problems are overcome (if at all); get suggestions for
improvements; and to inform questionnaire design.

1:Introduction
Requirements traceability (RT) is recognised as a concern in

an increasing number of standards and guidelines for
requirements engineering (RE) [12]. This concern is reflected by
the various systems that have been developed and a growing
research interest in the area [25]. Despite many advances, RT
remains a widely reported problem area by industry. We
attribute this to inadequate problem analysis.

2.3:Questionnaires & follow up interviews
A 2-stage questionnaire was used. Stage 1 was designed to

rapidly gather data from a wide population of practitioners and
to target those from whom more detail could be gathered. 80
were distributed and 69% returned. Stage 2 was tailored to the
primary working areas and experiences of individual
practitioners, using a reusable pool of questions. 39 were
distributed and 85% returned. These provided a deeper
understanding of the problems and preliminary requirements to
address them. 2 informal interview sessions were subsequently
conducted with the respondents. Each lasted 1.5 hours and were
used to corroborate their answers, appraise their validity, extract
additional information, and to check preliminary analysis.

Definitions of "requirements traceability" are discussed in
detail later, though we provide the following for orientation:
•• Requirements traceability refers to the ability to describe

and follow the life of a requirement, in both a forwards and
backwards direction.

•• Pre-RS traceability refers to those aspects of a
requirement's life prior to inclusion in the RS.

• Post-RS traceability refers to those aspects of a
requirement's life that result from inclusion in the RS.
In this paper, we analyse the RT problem in detail. We

describe our empirical investigations in Section 2, review the
current support in Section 3, examine the underlying causes of
the problem in Section 4, and present a framework for
addressing these in Section 5. Section 6 lists the main problems

2.4:Observation & participation
Data were also gathered following the observation of, and

some participation in, a variety of RE exercises. For instance,
Rapid Application Development workshops were observed,

1[23] is a longer version of this paper. The empirical work and surveys we
refer to are fully documented as a BT/Oxford University research report.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where comprehensive notes were taken, and any informal
documents produced were collected. Our analysis compared
such artifacts with the workshop's end products.

Automated Requirements Traceability System [21] and the
Requirements Traceability and Management System [41]), are
what we refer to as RT workbenches. They are typically centred
around a database management system, and have tools to
document, parse, organise, edit, interlink, change, and manage
requirements. Other upper-CASE workbenches which assist RE
activities frequently provide some support. This is either from
explicit RT components (e.g., a Coupling Module in AGE [34]),
or from having carried out other activities using its tools (e.g.,
the Requirements Apprentice [51]). Those workbenches which
accept requirements documents, from which to drive the design
and implementation, commonly provide coarse-grained RT
between requirements and their realisation.

3:Current support for requirements traceability
It has been noted that most tools do not cover RT [46], and

that few support the RT requirements enforced by DOD STD-
2167A [58]. Our survey further indicates that those which do,
employ basically identical techniques. They differ mainly in
cosmetics, and in the time, effort, and manual intervention they
require to achieve RT. Both the type and extent of support
provided depends on the underlying assumptions they embed
about RT and the particular problems they focus on. However,
they often suffer problems due to poor integration and
inflexibility. These shortcomings are reflected by the preferred
use of general-purpose tools in practice [38].

Environments, which integrate tools for all aspects of
development, can enable RT throughout a project's life. The
basis for integration defines how RT is established: a common
language (e.g., Input/Output Requirements Language in
Technology for the Automated Generation of Systems [54]); a
common structure (e.g., relations of an Entity-Relation-Attribute
Model in Genesis [48]); a common method (e.g., Information
Engineering Method in the Information Engineering Facility
[57]); or (where the tools are combined to support multiplicity)
a specialised RT tool or repository structure (e.g.,
Teamwork/RqT [5]). Those which incorporate third-party tools
use powerful repositories and database management systems to
relate their products (e.g., the Digital CASE Environment [54]).

3.1:Basic techniques
Numerous techniques have been used for providing RT,

including: cross referencing schemes [16]; keyphrase
dependencies [28]; templates [27]; RT matrices [9]; matrix
sequences [4]; hypertext [32]; integration documents [36];
assumption-based truth maintenance networks [53]; and
constraint networks [2]. These differ in the quantity and
diversity of information they can trace between, in the number
of interconnections they can control between information, and in
the extent to which they can maintain RT when faced with on-
going changes to requirements.

4:Why there is still a traceability problemAdditionally, some form of RT can result from using certain
languages, models, and methods for development. This is
particularly exemplified by: the Requirements Statement
Language [10]; process entity-relationship models [24]; the
Planning and Design Methodology [42]; formal methods [8]; and
Quality Function Deployment [59]. The quality of the resulting
RT, however, depends on the rigid adherence to pre-specified
procedures and notations for development.

To date, techniques have been thrown at the RT problem
without any thorough investigation of what this problem is.
Despite a growth in specialised tools, and inflated claims of RT
functionality from tool vendors, their use is not as widespread in
practice as the importance of RT would suggest. RT problems
even remain cited where they are used. Following investigations
with practitioners, we have found that the RT problem is not
perceived to be uniform, and attribute its persistence to diverse
definitions and a number of fundamental conflicts.3.2:Automated support

Many commercial tools and research products support RT,
primarily because they embody manual or automated forms of
the above techniques. We highlight some representative
examples below and provide further details in Table 1.

4.1:Lack of common definition
Definitions of "requirements traceability", either by

practitioners or in the literature, were found to be either:
• Purpose-driven (defined in terms of what it should do):

General-purpose tools include: hypertext editors; word
processors; spreadsheets; database systems; etc. They can be
hand-configured to allow previously manual and paper-based
RT tasks to be carried out on-line. This generally involves
defining cross references and specifying their update criteria.

"...the ability to adhere to the business position, project
scope and key requirements that have been signed off"
[Focus group practitioner].

• Solution-driven (defined in terms of how it should do it):
"...the ability of tracing from one entity to another based on
given semantic relations" [47].

Special-purpose tools support dedicated activities related to RE
and some achieve restricted RT. For example: the KJ-editor
provides traceability between ideas and requirements [56]; and
the T tool provides traceability between requirements and test
cases [54]. Support is implicit in tool use, by automation of any
mundane tasks needed to provide RT, and guidance is limited.

• Information-driven (emphasising traceable information):
"...the ability to link between functions, data, requirements
and any text in the statement of requirements that refers to
them" [Focus group practitioner].

• Direction-driven (emphasising traceability direction):
"...the ability to follow a specific item at input of a phase of
the software lifecycle to a specific item at the output of that
phase" [15].

Workbenches contain a collection of the above to support
coherent sets of activities. Less restricted RT can be achieved,
but the quality depends on the focal workbench activity. Those
in which RT and RT management are focal (such as the

Each definition differs in emphasis and delimits scope. No
single one covers all concerns. This has implications for the

RT (A) General-purpose tools (B) Special-purpose tools (C) Workbenches (D) Environments and beyond
(1)
Priority given to
RT

Any general-purpose tool can
potentially be configured for RT
purposes, though RT is not a
concern of the basic tool.

Those that support RE activities
(e.g., analysis techniques), often
provide some form of RT as a by-
product of use, but RT is not focal.

Priority depends on the focal set of activities. Where
these are RT and management (in RT workbenches),
RT is the main concern. Where other RE activities
are focal, RT is a side concern.

Typically a side concern, though the extent
of this depends on whether or not there are
dedicated tools for RT contained in the
composite environment.

(2)
Support
provided for RT

No explicit support is provided.
RT must be hand-crafted and the
resulting support provided
depends on the initial effort
expended in doing this. The
focus can easily become
configuring the tool to enable
RT rather than ensuring RT
itself.

Support is implicit in the
framework provided for carrying
out the main activity of the tool.
Mundane and repetitive tasks,
which are usually necessary to
provide basic RT, are typically
automated as a consequence of
proper use of the tool.

In RT workbenches, support is explicit (else as B).
No real analytical ability is provided, but they offer:
(i) Guidance - through adherence to RE approach
(typically top-down decomposition), types of
information to collect, and link types to establish.
(ii) Assistance - by parsing textual documents to tag
requirements, establishing (syntactic) links between
them, and through a repository which manages any
bookkeeping and rudimentary checking.

Provided as a by-product of coordinated
tool use and adherence to RE philosophy.
Extent of support depends on the internal
integration strategy and/or repository
structure. More guidance and assistance if
it has dedicated RT tools, or if it is a main
concern. RT maintenance is supported if
the repository can manage quantities of
information and reconfigure after change.

(3)
Requirements-
related
information that
can be made
traceable

Ability to trace any information
which can be input to the tool
(be this textual, graphical, etc.),
so potentially able to trace all
requirements-related information
if sufficient effort and foresight
are exercised.

Predefines the amount and type of
information that can be input and
made traceable. This is typically
restricted to that information
necessary to carry out the activity
the tool supports. Only a limited
scope of requirements-related
information can be traced.

Potential to trace a diversity of requirements-related
information. RT workbenches often impose arbitrary
limits on the amount and type of information. They
trace how an RS was produced, but usually only its
derivation from a textual baseline, not its exploratory
development, refinement, and context of production.
Additional information (e.g., informal notes) can
often be recorded, but is of limited use for RT.

Potential to trace information related to
requirements in all project phases.
Tendency to focus on information derived
from requirements in the RS in later
phases, so less emphasis on production-
related information about individual
requirements. Often support the RT of
versions, variants, and user-defined items.

(4)
Tasks and job
roles that RT
can assist

Offer complete tailorability. RT
can be provided to support any
task and job role, though it is
problematic to meet different
needs simultaneously without
any RT infrastructure in place.

RT is provided to assist the activity
the tool supports, so the role of the
tool user is predefined. Their task-
specific frameworks constrain the
domain of working, making them
difficult to use for other purposes.

Support for a breadth of activities within the concern
of the tool's domain (e.g., able to assist requirements
checking, etc.). Supports specific jobs, but often
configurable to support tasks for other project
phases. RT workbenches tend to support managerial
activities rather than the activities of RS producers.

RT can assist lifecycle-wide tasks and roles
(e.g., those related to maintenance and
management, such as impact analysis and
progress reporting, etc.). More support for
activities related to the use of requirements
rather than production and refinement.

(5)
Longevity of RT
support

Configured for immediate needs.
RT can degrade with quantities
of information and time, as not
usually integrated with lifecycle-
wide tools, and poor at handling
changes and evolution.

Provide RT at a snapshot in time to
support a specific activity, so
neglect requirements for on-going
management. Longevity of support
depends on both horizontal and
vertical integration with other tools.

RT is provided for the duration of the activities
supported. Predominantly forwards-engineering
tools, so RT can deteriorate with progression to later
phases, as it can be difficult to reflect any work here
and account for iteration. Longevity of support
depends on vertical integration with other tools.

Can provide RT for a project's life, though
tends to start from a static baseline. RT
tightness and granularity depends on the
underlying repository and degree of
internal integration. RT can deteriorate due
to iteration problems and poor feedback.

(6)
Support for the
traceability of
group activities

Promote individualistic working,
as provide no common or
consistent framework for RT, so
encourage immediate and ad hoc
solutions. Typically used, by a
single user, to record activities
after they have happened.

Most support individualistic
working. Those which directly
support group activities (like the
brainstorming of requirements
amongst stakeholders), increasingly
tend to make both the process and
its end results traceable.

RT workbenches tend to be used as after-the-event
documentation tools by single users, as they can be
difficult to adapt to working practices. Concurrent
work is often difficult to coordinate, so the richness
of information can be lost. Participative work is
actively supported in some (generally not RT
workbenches), but traceability of this work varies.

Multiple users are supported through
shareable repositories and techniques to
assist activity coordination and integration
(e.g., workspaces). Often depends on an
agreed RS and strict project partitioning,
so RT can deteriorate when requirements
are unstable and overall control is lacking.

(7)
Main strengths

(i) Flexibility to provide
customised RT to suit individual
project and organisational needs.
(ii) Often sufficient for the RT of
small and short term projects.

(i) Can provide tight RT for the
immediate needs of particular
requirements-related activities.
(ii) Those supporting group activity,
often provide traceability of it.

(i) RT workbenches provide good RT from and back
to information which is initially input to the tool, and
through a breadth of related activities (i.e., fine-
grained horizontal RT within requirements phases).
(ii) Added value (e.g., RT checks, visibility, etc.).

(i) Ability to provide on-going RT (i.e.,
depth of coverage or vertical RT).
(ii) Open environments (and meta-CASE),
provide more flexibility in the choice of
RE approach and in the RT of this.

(8)
Main weaknesses

(i) Requires much work to
initially configure, can involve
mundane and repetitive activities
for use, and often provides little
more than an electronic version
of paper-based RT.
(ii) Poor control and integration,
so no guarantee as to the
usefulness, usability, and
longevity of the RT provided.

(i) Only provides restricted forms of
RT between limited types and
amounts of requirements-related
information, so has limited life and
use.
(ii) Typically suffer from a limited
potential for integration and poor
information management, as
mainly stand-alone, preventing
fuller and longer RT support.

(i) RT workbenches attempt to be holistic, but none
support all activities. Typically enforce: a top-down
approach; classification schemes; and pre-empt a
relatively static baseline (without support for its
development). As RT depends on correct use, the
main concern can be RT rather than RS production.
(ii) RT workbenches integrate poorly, so difficult to
support the RT of early problem definition work, or
to provide on-going RT with later changes (much
manual intervention can be required to do so).

(i) RT is typically coarse-grained and
dependent on step-wise development. As
the tightness of RT varies, iteration and
later requirements changes can prevent on-
going RT (due to poor backwards RT,
which rarely accounts for the occurrence
of manual intervention or work-arounds).
(ii) Increasing flexibility (with those tools
open to external integration), is typically
counterbalanced by poorer RT.

Table 1: Tool support for requirements traceability

development and use of tools to support RT: how can RT be
coherently and consistently provided if each individual has his
or her own understanding as to what RT is?

further (and even ambitious or conflicting) problems.
Complicating this was the observation that, underlying every
situation in which RT is required in practice, different user,
project, task, and informational requirements come into play.
These cumulatively influence the problems experienced, which
has further implications for any potential support: how can RT
account for all these problems simultaneously?

4.2:Conflicting underlying problems
Each practitioner also had his or her own understanding as to

the main cause of the RT problem. This finding is reflected in
the literature, where it has been attributed to: coarse granularity
of traceable entities [47]; immature integration technology [3];
hidden information [52]; and project longevity [42]. The
problems that improved RT were expected to address were just
as diverse, a finding also reflected in the literature: to support
RS evolvability [30]; to enable safety analysis, audits, and
change control [24]; to understand systems from multiple
viewpoints [14]; and to permit flexible process modelling [20].

5:A framework for addressing the problem
To provide a framework in which to locate and address the

fundamental cause of RT problems, we first need to establish
some shared and working definitions.

5.1:Defining requirements traceability
The definition most commonly cited in the literature is:

These findings demonstrate that: (a) the phrase "RT
problem" is commonly used to umbrella many problems; and
that (b) RT improvements are expected to yield the solution to

• "A software requirements specification is traceable if (i) the
origin of each of its requirements is clear and if (ii) it
facilitates the referencing of each requirement in future

development or enhancement documentation" (ANSI/IEEE
Standard 830-1984) [26].

eventually integrated into a single requirement in the RS.
Changes in the process need to be re-worked into the RS.
Changes to the RS need to be carried out with reference to this
process, so they can be instigated and propagated from their
source. This requires visibility of the subtle interrelationships
that exist between requirements early on.

This definition specifically recommends backward traceability
to all previous documents and forward traceability to all
spawned documents. An alternative definition, derived from the
word "trace" in the Oxford English Dictionary, is:
• The ability to "delineate" and "mark out" "perceptible signs

of what has existed or happened" in the lifetime of a
requirement to enable one to "pursue one's way along" this
record.

5.3:Support for pre-RS & post-RS traceability
Existing support mainly provides post-RS traceability. Any

problems here are an artifact of informal development methods.
These can be eliminated by formal development settings, which
automatically transform an RS into an executable, and replay
transformations following change [18]. In contrast, the issues
that pre-RS traceability are to deal with are neither well
understood nor fully supported. Post-RS traceability support is
not suitable. This generally treats an RS as a black-box, with
little to show that the requirements are in fact the end product of
a complex and on-going process. Rigid commitment to
categories for recording information also make it difficult to
represent this process and to account for the dynamic nature of
the sources and environment from which requirements are
drawn. It has been argued that pre-RS traceability problems will
remain, irrespective of formal treatment, as this aspect of a
requirement's life is inherently paradigm-independent [18].

Together, these suggest the following definition for RT:
• "Requirements traceability refers to the ability to describe

and follow the life of a requirement, in both a forwards and
backwards direction (i.e., from its origins, through its
development and specification, to its subsequent deployment
and use, and through all periods of on-going refinement and
iteration in any of these phases)."

5.2:Pre-RS & post-RS traceability
Our investigations further suggest that RT is of 2 basic types:

• "Pre-RS traceability, which is concerned with those aspects
of a requirement's life prior to its inclusion in the RS
(requirement production)."

• "Post-RS traceability, which is concerned with those aspects
of a requirement's life that result from its inclusion in the RS
(requirement deployment)."

5.4:The need for improved pre-RS traceability
Only recently have these issues been acknowledged [17]. Our

empirical findings intensify this concern: most of the problems
attributed to poor RT were found to be due to the lack of (or
inadequate) pre-RS traceability. Practitioners require techniques
to record and trace information related to RS production and
revision. Pre-RS traceability was also required to:

Figure 1 shows the typical setting of RT to illustrate these
definitions. Note how requirements knowledge is distributed
and merged in successive representations; note also the added
complication of iteration and change propagation.

(S0) (S1) (Sn)

Requirements

Specification

Pre-RS traceability Post-RS traceability

• Yield improvements in quality, as previously closed issues
(even decisions about how to conduct the RE exercise itself),
could be made explicit, possible to re-open, and possible to
re-work (so assisting auditing [6], repeatability [29], etc.).

• Provide more economic leverage, as to use and maintain an
RS in practice, it is often necessary to reconstruct an
understanding of how it was produced (to compensate for
invisibility [11]), which is currently error-prone and costly.

6:Problems confronting pre-RS traceability
Having identified insufficient pre-RS traceability as the main

contributor to continuing RT problems, and shown how it is
likely to be the only contributor in formal development settings,
our investigations were re-focused to determine: what
improvements in pre-RS traceability would involve; and how
these could be realised. These indicated that the main barrier is
due to an establish and end-use conflict. By this, we mean that
the 2 main parties involved (i.e., those in a position to make it
possible and those who require it to assist their work), have
conflicting problems and needs (as shown in Figures 2 and 3).

Figure 1: Two basic types of requirements traceability

Forwards and backwards RT are clearly essential. However,
we emphasise the pre-RS and post-RS separation, because RT
problems in practice were found to centre around a current lack
of distinction here. Although both these types of RT are needed,
it is crucial to understand their subtle differences, as each type
imposes its own distinct requirements on potential support.

The main differences involve the information they deal with
and the problems they can assist. Post-RS traceability depends
on the ability to trace requirements from, and back to, a baseline
(the RS), through a succession of artifacts in which they are
distributed. Changes to the baseline need to be re-propagated
through this chain. Pre-RS traceability depends on the ability to
trace requirements from, and back to, their originating
statement(s), through the process of requirements production
and refinement, in which statements from diverse sources are

6.1:Problems faced by the providers
• Perceived as an optional extra (and of low priority), so the

allocation of time, staff, and resources is often insufficient.
• No allocation and management of the different roles that

practitioners need to assume to: obtain and document the
required information; organise it; and maintain it.

• Imbalance between the work involved and benefits gained. providers must identify and document relevant information, in a
(re)usable form (either as a by-product of other work or through
more explicit support), but they cannot forsee and address all
possible needs. Problems intensify when the same individuals
assume both positions. The social nature of the activities
involved suggests that technology alone will not provide a
complete solution for pre-RS traceability.

• Individual efforts are ad hoc and localised, whereas a
combined and full-time responsibility by all is really needed.

• No agreement on the end-user requirements, resulting in a
tendency to focus only on their immediate and visible needs.

• Concern for pre-RS traceability lessens, and concern for
post-RS traceability increases, after the RS has been formally
signed off. Concern must continue, but this is problematic as
the activities are unpredictable, change cultures are
immature, and it depends upon RT being present to do so.

7:Solutions to pre-RS traceability problems
An RS was produced to specify what is required to provide

and make use of pre-RS traceability. The complexity of these
requirements indicate that it would be premature to offer a
comprehensive solution. It is a compound problem in need of
improvements in many diverse areas. Here, we focus on those
basic requirements for which some solutions already exist, and
make recommendations for additional research.

• Information (e.g., tacit knowledge), cannot always be
obtained, and the quality of that which is varies. Deliverable-
driven cultures can discourage gathering certain information.

• The documentation of required information is no guarantee
of its traceability. That which is structured, so it is traceable
in many ways, provides no guarantee it will be up to date.

• Poor feedback regarding best practice, and little dedicated
support (be this clerical, procedural, or computer support),
perpetuates the same problems and restricts advances.

7.1:Increasing awareness of information
Studies have revealed what project information is required

by those involved in the different phases of development [35].
However, our investigations show that it is not possible to
generalise, as both the amount and type required will remain
subject to dispute. This issue is generally tackled by pre-
specifying the types and structure of information required to
assist focused activities, like the gIBIS argumentation scheme
for design deliberation [7], but such schemes do not consider the
wider informational requirements of all potential RE activities.
RT models (as described in [50]), specifically aim to increase
awareness of the various stakeholders' needs (primarily to
inform the link types to maintain between different
information), but use of such models will always be subjective.
Problems like these could be assisted through the introduction
of dedicated job roles (e.g., independent project documentalist,
to augment and unify contributions, encourage objectivity, etc.).

Traceability

depends on

Working practice Awareness of
information
required to be
traceable

Ability to
obtain and
document
required
information

Ability to organise
and maintain required
information for flexible
traceability requirements
of end-users (supporting
change, restructuring, etc.)

Sufficient
resources,
time and
support

Ongoing

and
cooperation

coordination

Figure 2: Deconstructing the RT problem for provision

6.2:Problems imposed by the end-users
• A stereotypical end-user cannot be predefined. Their

requirements will differ and often be inconsistent.
• The quantity, heterogeneity, and depth of detail of the

potential information required, precludes predefinition.
• Inability to predefine how any access to information, and its

subsequent presentation, will be required.
7.2:Obtaining & recording information

Much progress has been made in the ability to obtain and
record diverse types of RE information. For example: the history
of requirements evolution (REMAP [49]); requirements trade-
offs (KAPTUR [1]); explanations and justifications (XPLAIN
[44]); a record of collaborative activities (Conversation Builder
[33]); and multimedia information [45]. For comprehensive
coverage, such tools could be amalgamated in an exploratory
workbench (or requirements pre-processor), using suitable
integration standards. With additional computer metaphors, so
that more RE activities can be carried out on-line, more of this
information could be produced as a by-product of main
activities. Advances here can be informed through the use of
ethnography, or ethnomethodology, to study and describe the
details of requirements production, use, and manipulation.

• Reliance on personal contact, as there is always something
that is out of date, undocumented, inaccessible, or unusable.

• Each end-use context exhibits unique requirements, so
problems will exist if end-users do not have the ability to
filter and access the information pertaining to RS production
that they require under different circumstances.

In what way

Who wants it

&

depends on

Traceability

Of what

(information)

Project characteristicsWhy/when they want it
(user) (task)

(access to and presentation of information)

7.3:Organising & maintaining information
To support iterative development, information requires

flexibility of content and structure. Relevant work includes the
use of: viewpoints as a structuring principle [19]; logical
frameworks for modelling and analysing an RS to support
gradual elaboration [13]; hypertext to provide explicit visibility
of structure and maintain relations [22]; and change models
[40]. More research is needed to deal with informal and

Figure 3: Deconstructing the RT problem for end-use

6.3:Addressing both parties
The challenge lies in satisfying both parties. For end-users,

pre-RS traceability must be sensitive to contextual needs, but
they cannot predefine their anticipated requirements for it. The

unstable information. Much could also be gained from:
guidelines to reconceptualise requirements as modular viable
systems; the object-oriented representation of self-monitoring
multimedia objects; various rollback strategies for persistent
repositories; and the creation of explicit job roles to cover the
responsibilities of: (a) project librarian (to collect, clean-up, and
distribute information); (b) repository manager (to coordinate,
control, and maintain information integrity); and (c) RT
facilitator (to provide and ensure continual RT).

suited to additional needs, and difficult to interrogate.
Information generated on need (i.e., lazily and by those
originally responsible), can be provided with hindsight, and
targeted to specific needs. Both are essential. Without reference
to information recorded at the time, to regain context, it would
become increasingly difficult to reproduce the required details.

8.2:Location & accessibility: the crux of the problem
Surprisingly, the inability to locate and access the sources of

requirements and pre-RS work was the most commonly cited
problem across all the practitioners in our investigations. This
problem was also reported to be a major contributor to others:

7.4:Access & presentation of information
RT is predominantly hardwired, predefining what can be

traced, and its presentation [21]. Developments in areas such as
information retrieval, artificial intelligence, and human
computer interaction, are often pertinent. Focused research, like
that separating the representation of requirements from flexible
presentation, offers potential [31]. Programmable multimedia
workstations for end-users would also enable: graphical and
textual traces; sophisticated visualisation, to assist activities like
impact analysis (i.e., presenting requirements dynamically,
using animation, links which light up, etc.); concurrent (global
and local) traces; and engaging methods of interrogation. To
account for the context of end-use, research is needed to provide
flexible RT, where traces can dynamically mature to queries.

• An out of date RS, as an RS evolves poorly when those
originally responsible are not involved in its evolution, or
where it is impossible to regain the original context.

• Slow realisation (and deterioration as a result) of change, as
the most time-consuming and erroneous part is often the
identification of those to involve and inform.

• Unproductive conflict resolution, decision making, and
negotiation, as most tools supporting these activities do not
help to identify or locate the essential participants.

• Poor collaboration, as the invisibility of changing work
structures and responsibilities makes it difficult to: transfer
information amongst parties; integrate work; and assign work
to those with relevant knowledge and experience.

8:A research agenda • Difficulty in dealing with the consequences when individuals
leave a project and with the integration of new individuals.The current research and recommendations concentrate on

throwing increasing amounts and types of information at the
pre-RS traceability problem. When such information is
generated through adherence to methods, models, or guidelines,
it will vary in reliability, as these are rarely used as intended.
Any manually-provided information will suffer from subjectivity
and incompleteness, as it is difficult to be reflexive, notions of
relevance differ, classification schemes are rarely shared, and
equal commitment to detail is unlikely. Furthermore, there will
always be occasions when the information required will either:
not be there; be tailored to a different audience; or not be
entirely suited to the purposes at hand.

• Poor reuse of requirements, as reuse is mainly successful
when those initially responsible for their production are
either directly involved or readily accessible.

This problem was often reported to be due to politics, which
prohibited any knowledge of, or access to, the original sources
or requirements engineers. This can only be addressed by re-
examining the policies of affected projects. The other reason
behind this problem was reported to be the difficulty in keeping
track of the original sources and subsequent traces of
participation. The common approach, listing contributors to
information in document fields, was felt insufficient. This cause
of the problem can be tackled with suitable assistance.

8.1:Location & access of pre-RS sources Certain project characteristics were found to promote the
occurrence of this problem. In projects consisting of individuals
split into a number of teams, the location and access of sources
was found to be either impossible, time consuming, or
unreliable. This was due to: a lack of shared or project-wide
commitment; information loss; inability to assess the overall
state of work or knowledge; little cross-involvement; poor
communication; minimal distribution of information; and
changing notions of ownership, accountability, responsibility,
and working structure (characteristics amongst those identified
elsewhere as contributors to project failure). Characteristics that
reduced its occurrence were found in projects consisting of few
individuals, due to: a clear visibility of responsibilities and
knowledge areas; clarity of working structures; team
commitment and ownership; and individuals who acted as
common threads of involvement (also contributors to success).

In our investigations, we found that practitioners regularly
encountered the above situation. When they do, their fall-back
strategy involves identifying and talking to those who can assist.
A statistically significant finding was the agreement that the
most useful pieces of pre-RS information were: (a) the ultimate
source of a requirement; and (b) those involved in the activities
which led to its inclusion and refinement in the RS. RT
problems (to date), have been solely attacked with techniques
that aim to supplant human contact with information. However,
even when suitable information is available, the ability to
augment this with face-to-face communication was found to be
desirable, often essential, and even a fundamental working
practice. It is the inability to do just this which we found to
underlie many of the continued RT problems.

This finding implies that both eager and lazy generation of
project information is required. By eager, we mean whilst
engaged in aspects of RS production. Such information is well
suited to the immediate needs of those involved and useful as a
later reference point. With time, this static snapshot is less

8.3:Related work
Many project management tools provide facilities to model

organisational charts, role structures, work breakdown

structures, work-flow, etc. Although these are often incorporated
in CASE tools (e.g., the ProKit WORKBENCH [54]), they are
not well suited to the location and access problem. They tend to
be descriptive, prescriptive, or predictive, so used to model
formal, static structures and predefined work plans. The drift
between what is modelled, what took place, and what is the case
in later project life, can be substantial. RS production and
maintenance is a social accomplishment in which such
structures are continuously created and recreated. Notions like
ownership and responsibility are often only transient. The
ability to locate relevant individuals therefore deteriorates as the
volume and complexity of communication paths grow over time.
Models which can reflect these dynamics and manage this
complexity are critically needed.

Research Initiative. This author would also like to thank the
States of Jersey for continued financial support. Both authors
acknowledge the comments and assistance of colleagues,
students, and anonymous referees. In particular: David Michael;
Marina Jirotka; Matthew Bickerton; Joseph Goguen; Daniel
Berry; Jeff Kramer; and Manny Lehman.

References
[1] Bailin, S.C., Moore, J.M., Bentz, R. & Bewtra, M. (1990).

KAPTUR: Knowledge Acquisition for Preservation of Tradeoffs and
Underlying Rationales, Proceedings of the Fifth Conference on
Knowledge-Based Software Assistant, Liverpool NY, Sept.

[2] Bowen, J., O'Grady, P. & Smith, L. (1990). A Constraint
Programming Language for Life-Cycle Engineering, Artificial
Intelligence in Engineering, Vol. 5, No. 4, pp. 206-220.

Some recent models (e.g., DesignNet [37]), make initial
attempts here, typically through the ability to restructure plans,
and so forth. Models of the organisational environment in which
a system is intended to operate are also relevant. These each
tend to embed different views of an organisation. They focus on
specific structures, such as the intentional structure [60] or the
responsibility structure [55], so singularly lack an appreciation
of the wider organisational context. Collective and more
dynamic variants of these could help clarify the organisational
structure of development projects. Process modelling research is
of further interest here, as these models promise to provide a
fuller understanding of the complete environment in which a
system is developed (see [43]).

[3] Brown, A.W., Earl, A.N. & McDermid, J.A. (1992). Software
Engineering Environments: Automated Support for Software
Engineering, McGraw-Hill.

[4] Brown, P.G. (1991). QFD: Echoing the Voice of the Customer,
AT&T Technical Journal, March/April, pp. 21-31.

[5] CADRE. (1992). Teamwork/RqT, Marketing Brochure, CADRE
Technologies, Inc.

[6] Chikofsky, E.J. & Rubenstein, B.L. (1988). CASE: Reliability
Engineering for Information Systems, IEEE Software, March, pp. 11-
16.

[7] Conklin, J. & Begeman, M.L. (1988). gIBIS: A Hypertext Tool
for Exploratory Policy Discussion, ACM Transactions on Office
Information Systems, Vol. 6, No. 4, pp. 303-331.

[8] Cooke, J. & Stone, R. (1991). A Formal Development Framework
and its Use to Manage Software Production, in [25], pp. 10/1.Following a comprehensive analysis of software errors,

recommendations were made for modularising responsibility
and promoting communication [39]. Our studies independently
consolidate and particularise this: RT problems will persist
when accurate responsibility cannot be located and these
individuals cannot be accessed for the informal communication
often necessary to deal with them. The remedy is to provide a
continuously up to date picture which promotes and instigates
these activities. Our current research is directed at exactly this.

[9] Davis, A.M. (1990). Software Requirements: Analysis and
Specification, Prentice-Hall, Inc.

[10] Davis, C.G. & Vick, C.R. (1977). The Software Development
System, IEEE Transactions on Software Engineering, Vol. 3, No. 1,
pp. 69-84.

[11] Devanbu, P., Brachman, R.J., Selfridge, P.G. & Ballard,
B.W. (1991). LaSSIE: A Knowledge-Based Software Information
System, Communications of the ACM, Vol. 34, No. 5, pp. 34-49.

[12] Dorfman, M. & Thayer, R.H. (1990). Standards, Guidelines,
and Examples on System and Software Requirements Engineering,
IEEE Computer Society Press Tutorial.9:Conclusions

We have illustrated the multifaceted nature of the so-called
"requirements traceability problem" that many practitioners
claim to experience. We have shown why little real progress has
been made here, and how this can only be achieved if based on
a thorough understanding of the actual problem. We have
distinguished between pre-RS and post-RS traceability,
demonstrated how advances in the former are needed and offer
most opportunity, and made suggestions for progress here.

[13] Dubois, E. (1990). Logical Support for Reasoning About the
Specification and the Elaboration of Requirements, Artificial
Intelligence in Databases and Information Systems, Meersman,
R.A., Shi, Z. & Kung, C.H. (Eds.), Elsevier Science Publishers B.V.,
pp. 79-98.

[14] Easterbrook, S. (1991). Elicitation of Requirements from Multiple
Perspectives, Ph.D Thesis, Department of Computing, Imperial
College of Science, Technology & Medicine, London University,
June.

In conclusion, to achieve any order of magnitude
improvement with the RT problem, there is a need to re-focus
research efforts on pre-RS traceability. Of particular concern is
the intrinsic need for the on-going ability to rapidly locate and
access those involved in specifying and refining requirements,
to facilitate their informal communication. Continuous and
explicit modelling of the social infrastructure in which
requirements are produced, specified, maintained, and used
(reflecting all changes), is fundamental to this re-orientation.

[15] European Space Agency. (1987). ESA Software Engineering
Standards, ESA PSS-05-0, Issue 1, Jan., ESA Publications Division.

[16] Evans, M.W. (1989). The Software Factory, John Wiley and Sons.
[17] Finkelstein, A. (1991). A (Neat) Alphabet of Requirements

Engineering Issues, in Van Lamsweerde, A. & Fugetta, A. (Eds.),
ESEC '91: 3rd European Software Engineering Conference, Milan,
Italy, Oct. 21-24, Springer-Verlag, pp. 489-491.

[18] Finkelstein, A. (1991). Tracing Back from Requirements, in [25],
pp. 7/1-7/2.

[19] Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L. &
Goedicke, M. (1992). ViewPoints: A Framework for Integrating
Multiple Perspectives in System Development, International Journal
of Software Engineering and Knowledge Engineering, Vol. 2, No. 1,
pp. 31-57.

Acknowledgements
Much of this work was carried out by the principle author,

whilst at Oxford University, supported by a BT University

[20] Fischer, W.E. (1991). CASE Seen From Both Sides of the Fence, in
Van Lamsweerde, A. & Fugetta, A. (Eds.), ESEC '91, Milan, Italy,
Oct. 21-24, Springer-Verlag, pp. 509-511.

[40] Madhavji, N.H. (1992). Environment Evolution: The Prism Model
of Changes, IEEE Transactions on Software Engineering, Vol. 18,
No. 5, pp. 380-392.

[21] Flynn, R.F. & Dorfman, M. (1990). The Automated
Requirements Traceability System (ARTS): An Experience of Eight
Years, in System and Software Requirements Engineering, Thayer,
R.H. & Dorfman, M. (Eds.), IEEE Computer Society Press Tutorial,
pp. 423-438.

[41] Marconi Systems Technology. (1992). Requirements
Traceability and Management Manual V1.2.4, GEC Marconi Ltd.

[42] Mays, R.G., Orzech, L.S., Ciarfella, W.A. & Phillips, R.W.
(1985). PDM: A Requirements Methodology for Software System
Enhancements, IBM Systems Journal, Vol. 24, No. 2, pp. 134-149.

[22] Garg, P.K. & Scacchi, W. (1989). ISHYS: Designing and
Intelligent Software Hypertext System, IEEE Expert, Fall '89, pp. 52-
63.

[43] Mi, P. & Scacchi, W. (1990). A Knowledge-Based Environment
for Modeling and Simulating Software Engineering Processes, IEEE
Transactions on Knowledge and Data Engineering, Vol. 2, No. 3,
pp. 283-294.[23] Gotel, O.C.Z. & Finkelstein, A.C.W. (1993). An Analysis of

the Requirements Traceability Problem, Technical Report TR-93-
41, Department of Computing, Imperial College.

[44] Neches, R., Swartout, W.R. & Moore, J.D. (1985). Enhanced
Maintenance and Explanation of Expert Systems Through Explicit
Models of Their Development, IEEE Transactions on Software
Engineering, Vol. 11, No. 11, pp. 1337-1351.

[24] Hamilton, V.L. & Beeby, M.L. (1991). Issues of Traceability in
Integrating Tools, in [25], pp. 4/1-4/3.

[25] IEE. (1991). Tools and Techniques for Maintaining Traceability
During Design, IEE Colloquium, Computing and Control Division,
Professional Group C1, Digest No.: 1991/180.

[45] Palmer, J.D. & Fields, N.A. (1992). An Integrated Environment
for Requirements Engineering, IEEE Software, May, pp. 80-85.

[46] Polack, A.J. (1990). Practical Applications of CASE Tools on DoD
Projects, ACM SIGSOFT Software Engineering Notes, Vol. 15, No.
1, pp. 73-78.

[26] IEEE. (1984). IEEE Guide to Software Requirements
Specifications, ANSI/IEEE Standard 830-1984.

[27] Interactive Development Environments. (1991). Software
Through Pictures: Products and Services Overview, IDE, Inc.

[47] Ramamoorthy, C.V., Garg, V. & Prakash, A. (1986).
Programming in the Large, IEEE Transactions on Software
Engineering, Vol. 12, No. 7, pp. 769-783.[28] Jackson, J. (1991). A Keyphrase Based Traceability Scheme, in

[25], pp. 2/1-2/4. [48] Ramamoorthy, C.V., Garg, V. & Prakash, A. (1988). Support
for Reusability in Genesis, IEEE Transactions on Software
Engineering, Vol. 14, No. 7, pp. 1145-1153.

[29] Jarke, M. & Pohl, K. (1992). Information Systems Quality and
Quality Information Systems, in Kendall, K.E., Lyytinen, K. &
DeGross, J.I. (Eds.), The Impact of Computer Supported
Technologies on Information Systems Development, Elsevier
Science Publishers B.V., pp. 345-375.

[49] Ramesh, B. & Dhar, V. (1992). Supporting Systems
Development by Capturing Deliberations During Requirements
Engineering, IEEE Transactions on Software Engineering, Vol. 18,
No. 6, pp. 498-510.[30] Johnson, W.L., Feather, M.S. & Harris, D.R. (1991).

Integrating Domain Knowledge, Requirements, and Specifications,
Journal of Systems Integration, Vol. 1, pp. 283-320.

[50] Ramesh, B. & Edwards, M. (1993). Issues in the Development of
a Requirements Traceability Model, Proceedings of the IEEE
International Symposium on Requirements Engineering, San Diego,
California, Jan. 4-6, pp. 256-259.

[31] Johnson, W.L., Feather, M.S. & Harris, D.R. (1992).
Representation and Presentation of Requirements Knowledge, IEEE
Transactions on Software Engineering, Vol.18, No.10, pp. 853-869. [51] Reubenstein, H.B. & Waters, R.C. (1991). The Requirements

Apprentice: Automated Assistance for Requirements Acquisition,
IEEE Transactions on Software Engineering, Vol. 17, No. 3, pp.
226-240.

[32] Kaindl, H. (1993). The Missing Link in Requirements Engineering,
ACM SIGSOFT Software Engineering Notes, Vol. 18, No. 2, pp. 30-
39.

[52] Robinson, D. (1991). CASE Support for Large Systems, in Van
Lamsweerde, A. & Fugetta, A. (Eds.), ESEC '91, Milan, Italy, Oct.
21-24, Springer-Verlag, pp. 504-508.

[33] Kaplan, S.M. (1990). Conversation Builder: An Open Architecture
for Collaborative Work, in Diaper, D., Gilmore, D., Cockton, G. &
Shackel, B. (Eds.), HCI Interact '90, Proceedings of the IFIP TC 13
3rd International Conference on HCI, Cambridge, UK, Aug. 27-31,
Elsevier Science Publishers B.V., North-Holland, pp. 917-922.

[53] Smithers, T., Tang, M.X. & Tomes, N. (1991). The
Maintenance of Design History in AI-Based Design, in [25], pp. 8/1-
8/3.[34] Keys, E. (1991). A Workbench Providing Traceability in Real-Time

System Development, in [25], pp. 3/1-3/2. [54] Sodhi, J. (1991). Software Engineering: Methods, Management,
and CASE Tools, McGraw-Hill.[35] Kuwana, E. & Herbsleb, J.D. (1993). Representing Knowledge

in Requirements Engineering: An Empirical Study of What Software
Engineers Need to Know, Proceedings of the IEEE International
Symposium on Requirements Engineering, San Diego, California,
Jan. 4-6, pp. 273-276.

[55] Strens, R. & Dobson, J. (1992). On the Modelling of
Responsibilities, Computing Laboratory, University of Newcastle.

[56] Takeda, N., Shiomi, A., Kawai, K. & Ohiwa, H. (1993).
Requirements Analysis by the KJ Editor, Proceedings of the IEEE
International Symposium on Requirements Engineering, San Diego,
California, Jan. 4-6, pp. 98-101.

[36] Lefering, M. (1993). An Incremental Integration Tool Between
Requirements Engineering and Programming in the Large,
Proceedings of the IEEE International Symposium on Requirements
Engineering, San Diego, California, Jan. 4-6, pp. 82-89.

[57] Texas Instruments. (1988). A Guide to Information Engineering
Using the IEF: Computer-Aided Planning, Analysis, and Design.

[37] Liu, L.C. & Horowitz, E. (1989). A Formal Model for Software
Project Management, IEEE Transactions on Software Engineering,
Vol. 15, No. 10, pp. 1280-1293.

[58] U.S. Department of Defense. (1988). Military Standard:
Defense System Software Development. DOD-STD-2167A.
Washington, D. C., Feb. 29.

[38] Lubars, M., Potts, C. & Richter, C. (1993). A Review of the
State of the Practice in Requirements Modeling, Proceedings of the
IEEE International Symposium on Requirements Engineering, San
Diego, California, Jan. 4-6, pp. 2-14.

[59] West, M. (1991). The Use of Quality Function Deployment in
Software Development, in [25], pp. 5/1-5/7.

[60] Yu, E.S.K. (1993). Modelling Organizations for Information
Systems Requirements Engineering, Proceedings of the IEEE
International Symposium on Requirements Engineering, San Diego,
California, Jan. 4-6, pp. 34-41.

[39] Lutz, R.R. (1993). Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems, Proceedings of the IEEE
International Symposium on Requirements Engineering, San Diego,
California, Jan. 4-6, pp. 126-133.

