
Strathprints Institutional Repository

Beveridge, Andrew James and Wheel, Marcus and Nash, David (2013) A higher order control
volume based finite element method to prodict the deformation of heterogeneous materials.
Computers and Structures, 129. pp. 54-62. ISSN 0045-7949

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/16676928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


A higher order control volume based finite element method to
predict the deformation of heterogeneous materials.

A. J. Beveridge, M. A. Wheel and D. H. Nash

Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, UK, G4 0LT

Abstract

Materials with obvious internal structure can exhibit behaviour, under loading, that cannot be
described by classical elasticity. It is therefore important to develop computational tools in-
corporating appropriate constitutive theories that can capture their unconventional behaviour.
One such theory is micropolar elasticity. This paper presents a linear strain control volume
finite element formulation incorporating micropolar elasticity. Verification results from a mi-
cropolar element patch test as well as convergence results for a stress concentration problem are
included. The element will be shown to pass the patch test andalso exhibit accuracy that is at
least equivalent to its finite element counterpart.

Keywords: control volume finite element method, heterogeneous materials, micropolar
elasticity

1. Introduction

The understanding of the response of heterogeneous materials under loading, particularly
the numerical modelling of this, has become an engineering challenge due to the increased use
of heterogeneous materials in structural applications [1]. For example, polymeric and metallic
foams, particularly as part of sandwich panels, are now being used more extensively in both au-
tomotive and aerospace applications because of the weight saving they afford [1]. It is an active
research area to find constitutive models that can describe the elastic response of heterogeneous
materials as they are often endowed with enhanced mechanical behaviour. This may include so
called size effects [2], which recognize the dependence of the enhanced mechanical behaviour
upon the size of the material domain.

Micropolar elasticity is endowed with additional independent micro rotations which are as-
sociated with additional stress measures termed couple stresses. These enable the complimen-
tary shear stress requirement of classical elasticity to berelaxed; the couple stresses balance the
differential element. The couple stresses also have intrinsic length scales associated with them.
With this additional degree of freedom micropolar elasticity predicts elastic behaviour that is
not predicted by classical elasticity. For example the dispersion of stress waves, a dependence
of stress concentration factor upon discontinuity size anda size stiffening of smaller samples in
bending and torsion are all predicted. These size effects have been identified experimentally.

The finite element method (FEM) is the leading analysis technique in the field of compu-
tational structural mechanics. This is due, in part, to its versatility in accurately representing
complex geometries. It was first combined with micropolar elasticity by Baluch, Goldberg and
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Koh[3]. They formulated a bi-linear triangular element with linear displacement and linear mi-
cro rotation fields. Although no numerical results are presented they note that their purpose is
to bring micropolar elasticity and its associated micro continuum models from “ one of abstrac-
tion to that of reality”. The nature of micro continuum theories is complex and therefore very
few analytical solutions exist. Goldberg, Baluch, Korman and Koh [4], in a later work, states
that the finite element method is used “in order to alleviate the inherent complexity” involved
in solving the system of governing equations. This later work presents an FEM for the bending
of micropolar plates using a 3 noded triangular element with15 degrees of freedom; transverse
displacement, rotation and micro rotation.

Nakamura, Benedict and Lakes [5] present another bi-linear triangular element for or-
thotropic micropolar elasticity. Results are shown for the estimation of stress concentration
factors of a circular hole in an infinite plate, for which an analytical solution exists. The model
is capable of identifying the size effect, although there isan error in the computed value that
appears to be dependent upon the coupling number; the largerthe value of the coupling number,
which is a constitutive property governing the antisymmetry of the shear stresses in micropolar
elasticity, the greater the error. This issue is identified in other works [6, 7]. In a later work
Nakamura and Lakes [8] present a finite element analysis package called MIRACS (Micro ro-
tation and couple stress) which is used to investigate Saint-Venant end effects in micropolar
elastic materials. A 3 node constant strain triangular element, a 4 node isoparametric element
and an 8 node isoparametric element make up the package. Further plane elements have been
published [9, 10, 6, 11]. The quadratic element of Providas and Kattis [6] is the most accurate
plane finite element to date. In [6], a patch test is presentedto robustly assess the published
element.

Wheel [7] departs from the standard finite element procedure to publish a constant strain
planar control volume method. The constant strain control volume element shows enhanced
performance in the patch test proposed by Providas and Kattis. It returns exact predictions of
displacements, rotations and stresses for all three proposed tests where as the finite element
formulations of Providas and Kattis return exact solutionsin the first two tests. In the third
test, however, predictions, although accurate, were acknowledged to be approximate rather than
exact. Control volume (CV) methods, allowing the same versatility with complex geometries,
have been developed initially for both computational fluid mechanics and more recently struc-
tural analysis applications [12, 13, 14, 15]. This recent development has been motivated by the
desire to analyse fluid structure interactions and more general multiphysics problems within a
unified computational framework [7]. One particular control volume method, the control vol-
ume finite element method (CVFEM), is constructed upon the same mesh as the finite element
discretisation resulting in a so called vertex centred method [7]. Recently a vertex centred
CVFEM for classical elasticity has been shown to provide better convergence, than the equiva-
lent FEM, for a plane triangular element with both rotation and translation degrees of freedom
[16]. The CV method has also been applied to plate bending problems where both the cell
centred [17] and vertex centred methods [18] have shown to belocking free for thick and thin
Mindlin plates. In recent developments control volumes have been used in the structural analy-
sis of radio frequency MEMS devices [19] and in the analysis of the micromechanics of periodic
materials [20].

Building upon the work of Wheel [7] a linear strain planar control volume method has been
developed; an equivalent to the quadratic element of Providas and Kattis [6]. The prime moti-
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vation for this was to develop an inverse method to identify micropolar constitutive properties.
Micropolar constitutive properties are difficult to identify experimentally and few properties
have been published. The higher order element, set out here,has been used in an iterative
inverse procedure to identify the micropolar constitutiveproperties of model two phase metal
composite beam [21] and polymer ring [22] samples. This inverse procedure has produced
a simple method to determine constitutive properties. Combining this with the available mi-
cropolar elements it is hoped that this will encourage micropolar elasticity as a method for the
computational prediction of deformations in heterogeneous materials.

Presented in this paper will be the formulation of this element. In addition its performance
will be compared to published elements and shown to be at least equivalent. Before the for-
mulation of the element is presented the mathematical theory of micropolar elasticity will be
briefly described.

2. Micropolar Elasticity

Micropolar elasticity is one of the higher order non-local theories of Eringen [23]. It is
endowed with an additional micro rotation vector that removes the restriction presented within
classical elasticity that the shear stresses are symmetric. It is a general model and will converge
to both classical elasticity and couple stress theory [24];the conditions under which this occurs
are discussed later. The three dimensional stress tensors of linear micropolar elasticity are
introduced here and the significance of the associated constitutive properties are discussed.
Following this the two dimensional formulations of plane stress and plane strain, used in the
element formulations, will be presented.

2.1. Generalised Linear Micropolar Elasticity

Linear micropolar elasticity takes into account the deformation of the microstructure by
introducing a length scale dependent couple stress,m, and an additional degree of freedom, the
micro rotationφ. For a linear elastic isotropic micropolar material the force stress tensor,τij,
and couple stress tensor,mij, respectively are [25],

τij = λεkkδij + (2µ∗ + κ) εij + κeijk (θk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i (2)

The repeated indices denote summation over the range(i, j, k = 1, 2, 3), δij is the Kronecker
delta andeijk is the permutation tensor. These are defined in the followingway:

δij =

{

1, if i = j

0, if i 6= j
(3)

eijk =











+1, if ijk is an even permutation of(1, 2, 3)

−1, if ijk is an odd permutation of(1, 2, 3)

0, otherwise

(4)

An index followed by a comma represents a partial differentiation with respect to the coordinate
system,θ is the conventional macro rotation,φ is the micro rotation andλ, µ∗, κ, α, β, γ are six
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elastic constants. The micropolar shear modulus,µ∗, is related to the classical shear modulusµ
by,

µ = µ∗ +
κ

2
(5)

The macro rotation and strain tensor are,

θi =
1

2
eijkuk,j (6)

εij =
1

2
(ui,j + uj,i) (7)

respectively, whereu is the displacement vector. The six elastic constants can beexpressed in
terms of seven engineering constants [24]:

Em =
(2µ∗ + κ) (3λ + 2µ∗ + κ)

(2λ + 2µ∗ + κ)
(8)

Gm = µ∗ +
κ

2
(9)

νm =
λ

(2λ + 2µ∗ + κ)
(10)

l2t =
(β + γ)

(2µ∗ + κ)
(11)

l2b =
γ

2 (2µ∗ + κ)
(12)

N2 =
κ

2 (µ∗ + κ)
(13)

Ψ =
(β + γ)

(α + β + γ)
(14)

whereEm is the micropolar Young’s modulus,Gm the observed micropolar shear modulus,νm

the micropolar Poisson’s ratio,lt the characteristic length of torsion,lb the characteristic length
of bending,N the coupling number andΨ the polar ratio. The micropolar elastic constants,
Em, Gm andνm govern uniform dilitational and distortional deformationin the same way as in
classical elasticity theory. The characteristic lengths of torsion and bending dictate the length
scale of the size effects. The coupling number controls the antisymmetry of the shear stresses.
The polar ratio is similar to Poisson’s ratio but relates orthogonal microrotations rather than
dilatational strains. The micropolar theory contains two limits. If α, β, γ andκ are set to zero,
the solid will behave in a classical manner. Alternatively,if the coupling numberN is set to
1 then the material will behave as in couple stress theory [24], where the micro rotation is no
longer kinematically distinct from the macro rotation.

2.2. Two Dimensional Formulations

Reducing the dimensionality of the general form of linear micropolar elasticity produces two
dimensional formulations for both plane stress and plane strain states [8]. The static equilibrium
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equations for the balance of stress and couple stress, see figure 1, are respectively;

τij,i + pj = 0 (15)

and

mi3,i + eij3τij + q3 = 0 (16)

where the repeated indices denote summation over the range(i, j = 1, 2), pj are body forces
per unit volume andq3 represents a body couple per unit volume. Expanding the equilibrium
equations for Cartesian coordinates,(i, j = x, y) and setting the free index3 to z gives;

τxx,x + τyx,y + px = 0 (17)

τyy,y + τxy,y + py = 0 (18)

mxz,x + myz,y + τxy − τyx + qz = 0 (19)

The linear constitutive equations can be expressed as,

τij = λεkkδij + (µ∗ + κ) εij + µ∗εji (20)

mij = αφk,kδij + βφi,j + γφj,i (21)

where the repeated indices denote summation over the range(i, j, k = 1, 2, 3). Introducing a
modified strain displacement relationship,

εij = uj,i + ejikφk (22)

which when expanded for Cartesian coordinates(i, j, k = x, y, z) gives,








εxx

εyy

εyx

εxy









=









u,x

v,y

u,y + φz

v,x − φz









(23)

whereu andv are the displacement components of thex andy directions respectively. The dis-
placement gradientsu,y, v,x are associated with the symmetric component of the shear stresses,
τs, while the micro rotationφz is due to the antisymmetric component of the shear stresses,τa,
see figure 2. The constitutive equations are now modified to account for the specific assump-
tions associated with the plane stress and plane strain cases.

2.2.1. Plane Strain
In plane strain it is assumed that thez component of strain is zero as in the classical case. In

addition for micropolar elasticity the micro rotation is assumed to be zero about thex andy axis.
Thereforeεzz = εxz = εyz = εzx = εzy = 0 andφx = φy = 0. This gives rise to the modified
constitutive equations, expressed in expanded matrix formin the Cartesian coordinates for force
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stress,








τxx

τyy

τyx

τxy









=









λ + 2µ∗ + κ λ 0 0
λ λ + 2µ∗ + κ 0 0
0 0 µ∗ + κ µ∗

0 0 µ∗ µ∗ + κ

















εxx

εyy

εyx

εxy









(24)

and couple stress,
[

mxz

myz

]

=

[

γ 0
0 γ

] [

φz,x

φz,y

]

(25)

These can be reformulated in term of the engineering material constantsEm, vm, lb andN from
equations (8),(10),(12) and (13) respectively as,









τxx

τyy

τyx

τxy









=
Em

(1 + νm)















(1−νm)
(1−2νm)

νm

(1−2νm)
0 0

νm

(1−2νm)
(1−νm)
(1−2νm)

0 0

0 0 1
2(1−N2)

(1−2N2)
2(1−N2)

0 0
(1−2N2)
2(1−N2)

1
2(1−N2)























εxx

εyy

εyx

εxy









(26)

[

mxz

myz

]

=

[

2Eml2
b

(1+νm)
0

0
2Eml2

b

(1+νm)

]

[

φz,x

φz,y

]

(27)

An alternative relationship between the shear stresses andthe shear strains can be formulated
by introducing a new constitutive parameter, the coupling factor,a, where,

N2 =
a

1 + a
(28)

Then expressing the shear modulusGm as

Gm =
Em

2 (1 + νm)
(29)

allows the shear stresses to be related to the shear strains in the simpler form,
[

τyx

τxy

]

= Gm

[

1 + a 1 − a
1 − a 1 + a

] [

εyx

εxy

]

(30)

2.2.2. Plane Stress
In plane stress theory it is assumed that the stress in thez direction is zero and again that

the micro rotations about thex andy axes are zero. Thereforeτzz = τxz = τyz = τzx = τzy = 0
andφx = φy = 0. As the assumptions with respect to the couple stress are unchanged between
plane stress and plane strain the constitutive relationships are unchanged from equations (25)
and (27). However the modified force stress constitutive relationships are,









τxx

τyy

τyx

τxy









=











(2µ∗+κ)(2λ+2µ∗+κ)
λ+2µ∗+κ

λ(2µ∗+κ)
λ+2µ∗+κ

0 0
λ(2µ∗+κ)
λ+2µ∗+κ

(2µ∗+κ)(2λ+2µ∗+κ)
λ+2µ∗+κ

0 0

0 0 µ∗ + κ µ∗

0 0 µ∗ µ∗ + κ



















εxx

εyy

εyx

εxy









(31)
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which can once more be expressed in terms of the engineering constants,









τxx

τyy

τyx

τxy









=
Em

(1 − ν2
m)













1 νm 0 0
νm 1 0 0

0 0 (1−νm)
2(1−N2)

(1−νm)(1−2N2)
2(1−N2)

0 0
(1−νm)(1−2N2)

2(1−N2)
(1−νm)
2(1−N2)





















εxx

εyy

εyx

εxy









(32)

3. Micropolar Linear Strain Triangular Element

The formulation of the quadratic displacement, linear strain, triangular micropolar plane
stress/strain control volume finite element (CV-MPLST) begins with a 6 noded, 18 degrees of
freedom element consisting of a straight edged triangle with 3 vertex and 3 midside nodes,
figure 3. The displacements in thex direction,u, y direction, v, and micro rotationφz are
interpolated over the element with a complete quadratic polynomial from the nodal degrees of
freedom,ui, vi andφzi where the indexi = 1 : 6 refer to the element nodes.

u =
∑6

i=1 N iui v =
∑6

i=1 N ivi φz =
∑6

i=1 N iφzi (33)

The superscripti indicates position within the array. The shape functionsN i are functions of
the natural area coordinates(δ, ξ, η) [26]. The natural area coordinates are related to the element
vertex coordinates,(x1, x2, x3) and(y1, y2, y3), and global coordinate(x, y) by

x = δx1 + ξx2 + ηx3

y = δy1 + ξy2 + ηy3
(34)

Vector[N] of shape functions is

[N] =
[

δ (2δ − 1) ξ (2ξ − 1) η (2η − 1) 4δξ 4ξη 4ηδ
]

(35)

The displacement vector{d} is

{d} =
[

ui vi φzi

]T
for i = 1 : 6 (36)

The unknown element displacements and micro rotations are related to the nodal degrees of
freedom by





u
v
φz



 = [N] {d} (37)

The strain vector{ε} is related to the element displacements by

{ε} =

















εxx

εyy

εyx

εxy

φz,x

φz,y

















=

















u,x

v,y

u,y + φz

v,x − φz

φz,x

φz,y

















=



















∂
∂x

0 0
0 ∂

∂y
0

∂
∂y

0 1

0 ∂
∂x

−1
0 0 ∂

∂x

0 0 ∂
∂y























u
v
φz



 (38)
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and the stress vector{τ} is related to the strain vector by

{τ} =

















τxx

τyy

τyx

τxy

mxz

myz

















= [D] {ε} (39)

whereD refers to the constitutive matrix defined in section 2.2 withthe inclusion of the consti-
tutive properties for the micro rotation. For example in theplane stress case;

[D] =

















λ + 2µ∗ + κ λ 0 0 0 0
λ λ + 2µ∗ + κ 0 0 0 0
0 0 µ∗ + κ µ∗ 0 0
0 0 µ∗ µ∗ + κ 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ

















(40)

Differentiating the shape functions with respect to the spatial coordinates,
[

N,x

N,y

]

=
1

2A

[

y23N,δ + y31N,ξ + y12N,η

−x23N,δ − x31N,ξ − x12N,η

]

(41)

whereyij = yi − yj, i = 1, 2, 3 represents the vertex node numbers and(xi, yi) are the vertex
node coordinates.A is the area of the triangular element. The derivatives of theshape functions
with respect to the area coordinates are

N,δ =
[

4δ − 1 0 0 4ξ 0 4η
]

(42)

N,ξ =
[

0 4ξ − 1 0 4δ 4η 0
]

(43)

N,η =
[

0 0 4η − 1 0 4ξ 4δ
]

(44)

These are used in the formulation of the strain displacementmatrix [B] which relates the un-
known nodal degrees of freedom to the element strain vector{ε} thus :

{ε} = [B]





ui

vi

φzi



 for i = 1 : 6 where [B] =

















N i
,x 0 0
0 N i

,y 0
N i

,y 0 N i

0 N i
,x −N i

0 0 N i
,x

0 0 N i
,y

















(45)

the element stress resultants can then be related to the unknown nodal displacements by

{τ} = [D] [B] {d} (46)

Now that the element stress displacement relationships have been defined the formulation of the
CVFEM departs from that of the standard finite element procedure. The latter is summarized
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briefly.

3.1. Finite Element Procedure
In the case of the standard finite element procedure the stiffness matrix is calculated from,

kFEM = 2A

∫ 1

0

∫ 1−η

0

B
T
DbBdξdη (47)

in the usual way. To enable a comparison between the FEM and CVFEM formulations based
upon the triangular element, this equation (47) is evaluated by symbolic integration using the
Maple kernel of MATLAB.

While the finite element formulation developed here is based upon the standard approach it
differs slightly in that the Maple kernel provides exact analytical expressions for each term in
(47) rather than approximations based on numerical integration. This provides a fair basis for
comparison since the CVFEM procedure employs exact integration.

3.2. Control Volume Formulation
A dual mesh of interconnecting control volumes is set up on the finite element mesh. Each

control volume is centred upon a node of the element, see figure 4. The control volumes are
constructed on an element by element basis as shown in figure 5. Table 1 shows the coordi-
nates of the control volume vertices expressed in terms of the area coordinates of the triangular
element, although other coordinates could of course be used.

The equilibrium equations, section 2.2 and equations (17),(18) and (19), are setup for each
control volume where the stress resultants acting upon the boundaries of the control volume are
equilibrated against any body loadings imposed upon the control volume thus:

n
∑

k=1

F k
x + pxAv = 0 (48)

n
∑

k=1

F k
y + pyAv = 0 (49)

n
∑

k=1

Mk
z + qzAv = 0 (50)

whereF k
x andF k

y are components of the force resultants acting upon control volume facek,
Mk

z is the couple resultant,Av is the area of the control volume andn is the number of control
volume faces around the finite element vertex or midside nodethat the control volume is centred
on. The force and couple resultants are computed by analytical integrating the functions of the
stress variations within the finite element along each control volume edge, figure 6. As each
control volume face lies entirely within a given element, this is performed without storing any
information relating to CV connectivity and is done on an element by element basis, giving a
stiffness matrix for each triangular element. This allows the global stiffness matrix to be assem-
bled in an identical manner to the finite element method. The discrete equilibrium equations for
one control volume face are,

Fmn
x =

∫

τxx cos θmndr +

∫

τyx sin θmndr (51)
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Fmn
y =

∫

τyy sin θmndr +

∫

τxy cos θmndr (52)

Mmn
zi =

∫

mxz cos θmndr +

∫

myz sin θmndr +

∫

x
′

τxy cos θmndr−

∫

y
′

τyx sin θmndr (53)

where

cos θmn = −ymn

lmn
xmn = xm − xn

sin θmn = xmn

lmn
ymn = ym − yn

lmn = (x2
mn + y2

mn)
1

2

(54)

andm andn denote the vertices of the control volume edge, figure 6. Moment arm functions
x

′

andy
′

are the distances from the element vertex or midside nodei, that the control volume is
centred upon, and the edge itself so

x
′

= xe − xi

y
′

= ye − yi

(55)

(xi, yi) being the coordinates of the centre node of the control volume and(xe, ye) are functions
of the area coordinates relating any point within the element to the associated vertex nodes thus:

xe = δx1 + ξx2 + ηx3

ye = δy1 + ξy2 + ηy3
(56)

This is exploited when the integration of the stress and couple stress resultants, equations (51),
(52) and (53), are transformed from the local line coordinatedr of the edge into the area coordi-
nates of the triangular element. Integration in terms of oneof the area coordinates is dependent
upon the CV face in question and thus each face has a different set of rules governing the inte-
gration of the stress resultants. As an example, consider the face lying between the CV vertices
g anda with lengthlga in figure 5. Along this particular edge

ξ = 1
3
δ

δ = 3
4
(1 − η)

(57)

which are substituted both into the strain displacement matrix [B], equation (45), and the el-
ement coordinatesxe ye, equation (56). This constrains the integration so that it is performed
along the control volume face. A full list of these substitutions and the limits of the integration
for each edge is given in table 2. For this particular face theequilibrium equations become,

F
ga
x = 5lga cos θga

∫ 1

5

0

τxxdη + 5lga sin θga

∫ 1

5

0

τyxdη (58)

F
ga
y = 5lga sin θga

∫ 1

5

0

τyydη + 5lga cos θga

∫ 1

5

0

τxydη (59)

M
ga
z1 = 5lga cos θga

∫ 1

5

0

mxzdη + 5lga sin θga

∫ 1

5

0

myzdη

+5lga cos θga

∫ 1

5

0

(xe − x1) τxydη − 5lga sin θga

∫ 1

5

0

(ye − y1) τyxdη

(60)
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These integrations are repeated for each individual CV edge after performing the necessary
substitutions. This gives three row vectors,Fx, Fy andMz, for each CV edge that relate the
internal actions to the unknown nodal degrees of freedom. These are calculated for each CV
edge in an element and assembled to form the 18 x 18 element stiffness matrix,[k], thus

[k] {d} =








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
















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














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




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

F
gf
x − F

ga
x

F
gf
y − F

ga
y

M
gf
z1 − M

ga
z1

F
hb
x − F

hc
x

F
hb
y − F

hc
y

M
hb
z2 − M

hc
z2

F
id
x − F

ie
x

F
id
y − F

ie
y

M
id
z3 − M

ie
z3

F
ga
x + F

jg
x − F

jh
x − F

hb
x

F
ga
y + F

jg
y − F

jh
y − F

hb
y

M
ga
z4 + M

jg
z4 − M

jh
z4 − M

hb
z4

F
hc
x + F

jh
x − F

ji
x − F

id
x

F
hc
y + F

jh
y − F

ji
y − F

id
y

M
hc
z5 + M

jh
z5 − M

ji
z5 − M

id
z5

F
ie
x + F

ji
x − F

jg
x − F

gf
x

F
ie
y + F

ji
y − F

jg
y − F

gf
y

M
ie
z6 + M

ji
z6 − M

jg
z6 − M

gf
z6
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u1

v1

φz1
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v2
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u3
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φz3
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φz4

u5

v5

φz5
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φz6
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













= {P} (61)

where{P} is the vector of applied forces and moments. Now that the element stiffness matrix
has been formulated the procedure returns to that of the standard finite element method. The
global stiffness matrix is assembled, boundary conditionsapplied and the solution found in the
usual way. The stress recovery routine is also the same as in the finite element method.

4. Validation

Previously published micropolar elements have used a stress concentration problem to as-
sess validity. Recent work has also considered validity at a more fundamental level via a set of
appropriate patch tests. The control volume method detailed here is validated using the patch
tests [6] to test the accuracy for simple stress states and the stress concentration problem [7],
for which an analytical solution exists, to ascertain how the element accuracy performs with
changing length scale and coupling factors. In the validations, comparisons are made to the
constant strain control volume element, CV-MPCST, from [7]. Reference is also be made to
the finite element formulations that are based upon the same strain displacement relationships
as the linear and constant strain control volume methods. For the finite element procedures the
assembly of the element stiffness matrix is the same as in [3], however, symbolic integration of
equation 47 is employed so as to eliminate quadrature.

4.1. Patch Test

The element mesh shown in figure 7 is loaded under three different loading conditions. For
each loading there is a known displacement and stress field that should be acquired, a summary
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of which can be seen in table 3. The internal vertex nodal coordinates and constitutive properties
can be found in figure 7. The plane strain formulation was used. The first patch is for a uniform
direct stress with symmetric shear. In the second test the direct stress remains uniform whereas
the shear stress is now asymmetric and a body couple is applied. The final test has constant
direct stresses and body forces, linearly varying body couples and linearly varying asymmetric
shear. The control volume method CV-MPLST detailed here passes the first two tests, table
4, while results for the final test are shown in table 5 where a comparison is made with the
earlier constant strain control volume, CV-MPCST, which has been shown to out perform the
equivalent, constant and linear strain, finite element formulations [7]. As can be seen, the
CV-MPLST does not appear to reproduce the analytical solution exactly, unlike CV-MPCST
formulation, but the differences are so small they are in alllikelyhood attributed to rounding
error.

4.2. Stress Concentration Problem

A common approach [6] to check the accuracy of a micropolar formulation procedure is to
check it against one of the few analytical solutions available; that of the stress concentration
factor of maximum circumferential stress around a circularhole in a uniaxially loaded infinite
plate [23]. For the purposes of the analysis, the plate considered will be finite but the hole
radius will be small in comparison to the width of the plate. Acomparison is made between
the previous constant strain control volume, the current linear strain control volume, as well as
the constant strain finite element and linear strain finite element counter parts all using the same
mesh. A quarter of the plate is modelled with symmetry boundary conditions applied to the
ligaments extending from the hole to the plate edges, see figure 8. The results presented here are
different from those given in the published literature. This is because it is difficult to determine
the exact element distributions used previously. This is important as the stress concentration
values are mesh sensitive. Therefore to gain a better understanding of the accuracy of the
competing methods the same element distribution should ideally be used.

The first test compares how the accuracy of the solution is affected by changing the level
of coupling between the shear strains, governed by the coupling factor,a. This is carried out
for two ratios of hole radius,r, and characteristic length,l. As the radius is fixed for both the
r
l

= 1.063, (A), and r
l

= 10.63, (B), cases, see table 6, then only the characteristic lengthis
changed. It can be seen in (A), when the characteristic length is almost equal to the radius, that
CV-MPLST has a more consistent error compared to CV-MPCST. CV-MPCST is more accurate
for intermediate values of coupling factor,a, whereas CV-MPLST exhibits better accuracy for
the classical case (a=0) and approaching the couple stress case (a→ ∞). This pattern is repeated
for the finite element formulations which are marginally less accurate than the corresponding
control volume formulations. On reducing the characteristic length, case (B), the error for large
coupling factors is greater for all formulations; this is particularly prominent for the constant
strain formulations.

The other case investigated is that of a larger hole within the same finite plate as was consid-
ered in previous work [6]. The coupling factor,a, is kept constant and the characteristic length
reduced, see table 7. It appears that for this hole radius CV-MPLST is slightly less accurate
at predicting the stress concentration factor than CV-MPCST.Comparisons, however, with the
exact infinite plate solution are less certain in this case because of the finite nature of the plate
and significantly larger hole size. Nevertheless, when a comparison is made between the two

12



linear strain formulations, CV-MPLST and FE-MPLST, the solution accuracy is broadly similar
with the FE-MPLST, at most 0.2% more accurate.

5. Conclusions

A linear strain control volume finite element has been presented to predict the size effects
of micropolar elasticity. It passes a micropolar patch test. While the method generally shows
equivalent predictive performance for the stress concentration problem when compared to the
equivalent finite element based procedure, this performance varies slightly less as one of the
additional constitutive parameters, the coupling factor,is altered. This supports the preferential
use of the method in quantifying this parameter from experimental data via an inverse iterative
approach [21, 22]. Using the CV-MPLST in an inverse method thecharacteristic length and
coupling number have been successfully quantified for a model two phase aluminium compos-
ite. Previously the lack of published constitutive data andunavailability of a relatively simple
experimental characterisation procedure has so far limited the widespread use of micropolar
FEA. It is hoped with the new characterisation procedure andelements, micropolar elasticity
will become a more accepted method for analysing the behaviour of heterogeneous materials
when loaded.
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Table 1: Vertex coordinates, in triangular area coordinates, for the interconnecting control volume (CV) of a six
node triangular element shown in figure 5

CV vertex δ ξ η

a 3/4 1/4 0
b 1/4 3/4 0
c 0 3/4 1/4
d 0 1/4 3/4
e 1/4 0 3/4
f 3/4 0 1/4
g 3/5 1/5 1/5
h 1/5 3/5 1/5
i 1/5 1/5 3/5
j 1/3 1/3 1/3

Table 2: Substitutions for the equilibrium equation integrals and stress displacement relationships

Direction of Integration Integral Substitutions Area Coordinate Substitutions

from a to g
∫

dr = 5lga

∫ 1

5

0
dη letting ξ = 1

3
δ andδ = 3

4
(1 − η)

from b to h
∫

dr = 5lhb

∫ 1

5

0
dη letting δ = 1

3
ξ andξ = 3

4
(1 − η)

from j to i
∫

dr = 15
4
lji

∫
3

5

1

3

dη letting δ = ξ andξ = 1
2
(1 − η)

from e to i
∫

dr = 5lie
∫ 1

5

0
dξ letting δ = 1

3
η andη = 3

4
(1 − ξ)

from f to g
∫

dr = 5lgf

∫ 1

5

0
dξ lettingη = 1

3
δ andδ = 3

4
(1 − ξ)

from j to h
∫

dr = 15
4
ljh

∫
3

5

1

3

dξ letting δ = η andη = 1
2
(1 − ξ)

from c to h
∫

dr = 5lhc

∫ 1

5

0
dδ lettingη = 1

3
ξ andξ = 3

4
(1 − δ)

from d to i
∫

dr = 5lid
∫ 1

5

0
dδ letting ξ = 1

3
η andη = 3

4
(1 − δ)

from j to g
∫

dr = 15
4
ljg

∫
3

5

1

3

dδ letting ξ = η andη = 1
2
(1 − δ)

Table 3: Body and boundary loadings and displacement field solutions for micropolar element patch test

Patch 1

Load:px = py = q = 0, τxx = τyy = 4, τxy = τyx = 1.5, mx = my = 0

Solution:u = 10−3
[

x + 1
2
y
]

, v = 10−3 [x + y], φ = 1
4
10−3

Patch 2

Load:px = py = 0, q = 1, τxx = τyy = 4, τxy = 1, τyx = 2, mx = my = 0

Solution:u = 10−3
[

x + 1
2
y
]

, v = 10−3 [x + y], φ = 10−3
[

1
4

+ 1
4α

]

, α = 0.5

Patch 3
Load:px = py = 1, q = 2 [x − y], τxx = τyy = 4, τxy = 1.5 − [x − y],
τyx = 1.5 + [x − y], mx = −my = 2l2

α
, α = 0.5

Solution:u = 10−3
[

x + 1
2
y
]

, v = 10−3 [x + y], φ = 10−3
[

1
4

+ 1
2α

(x − y)
]
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Table 4: Results for displacement and micro rotation at node2. Stress and couple stress at point P in the patch test
mesh under loading cases 1 and 2

Test u (103) v (103) φ (103) τxx τyy mx

1 0.19500 0.21000 0.25000 4.00000 1.49999 −3.0e − 15
Exact 0.19500 0.21000 0.25000 4.00000 1.50000 0

2 0.20999 0.11999 0.24999 3.99999 0.99999 −3.7e − 9
Exact 0.21000 0.12000 0.25000 4.00000 1.00000 0

Table 5: Results for displacement and micro rotation at node2. Stress and couple stress at point P in the patch test
mesh under loading case 3. Results shown against exact solution for linear strain control volume CV-MPLST and
constant strain control volume CV-MPCST

Code u (103) v (103) φ (103) τxx τyy mx

CV-MPCST 0.19500 0.21000 0.40000 4.00000 1.46666 0.04000
CV-MPLST 0.19499 0.20999 0.39999 3.99999 1.46669 0.03999

Exact 0.19500 0.21000 0.40000 4.00000 1.46666 0.04000

CV-MPLST
(inc. directτ ) 0.19499 0.20999 0.39999 3.99999 1.46669 0.03999

Table 6: Stress concentration factors for maximum circumferential stress at circular hole by the constant strain
control volume, CV-MPCST, linear strain control volume, CV-MPLST, constant strain finite element, FE-MPCST,
and linear strain finite element, FE-MPLST. Hole radius 0.216mm, Gm =1.0e9N/m2, νm = 0.3 and (A):r

l
=

1.063 (B): r

l
= 10.63. Mesh is 8x22x4 elements. Percentage errors given in parentheses.

(A)
a Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST

0.0 3.000 2.871 (4.3) 3.040 (1.3) 2.871 (4.3) 3.047 (1.6)
0.0667 2.849 2.758 (3.2) 2.888 (1.4) 2.757 (3.2) 2.893 (1.5)
0.3333 2.555 2.520 (1.4) 2.589 (1.3) 2.518 (1.4) 2.591 (1.4)
1.2857 2.287 2.276 (0.5) 2.315 (1.2) 2.272 (0.7) 2.316 (1.3)
4.2632 2.158 2.111 (2.2) 2.184 (1.2) 2.103 (2.5) 2.185 (1.3)

(B)
a Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST

0.0 3.000 2.871 (4.3) 3.040 (1.3) 2.871 (4.3) 3.047 (1.6)
0.0667 2.956 2.849 (3.6) 2.995 (1.3) 2.837 (4.0) 3.002 (1.6)
0.3333 2.935 2.830 (3.6) 2.978 (1.5) 2.808 (4.3) 2.985 (1.7)
1.2857 2.927 2.789 (4.7) 2.986 (2.0) 2.745 (6.2) 2.993 (2.3)
4.2632 2.923 2.684 (8.2) 3.020 (3.3) 2.594 (11.3) 3.027 (3.6)
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Table 7: Stress concentration factors for maximum circumferential stress at circular hole by the constant strain
control volume, CV-MPCST, linear strain control volume, CV-MPLST, constant strain finite element, FE-MPCST,
and linear strain finite element, FE-MPLST. Hole radius 0.864mm,Gm =1.0e9N/m2, νm = 0.3 anda = 0.3333.
Mesh is 8x15x4 elements. Percentage errors given in parentheses.

r
l

Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST

1.0 2.549 2.518 (1.2) 2.589 (1.6) 2.516 (1.3) 2.588 (1.5)
2.0 2.641 2.603 (1.5) 2.685 (1.7) 2.595 (1.7) 2.684 (1.6)
3.0 2.719 2.674 (1.6) 2.766 (1.7) 2.662 (2.1) 2.765 (1.7)
4.0 2.779 2.730 (1.7) 2.829 (1.8) 2.712 (2.4) 2.827 (1.7)
6.0 2.857 2.806 (1.8) 2.912 (1.9) 2.778 (2.8) 2.909 (1.8)
8.0 2.902 2.851 (1.8) 2.961 (2.0) 2.815 (3.0) 2.956 (1.9)
10.0 2.929 2.879 (1.7) 2.991 (2.1) 2.837 (3.2) 2.985 (1.9)
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Figure 1: Micropolar differential stress element
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Figure 3: Six node quadratic displacement triangular element
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Figure 4: Dual control volume mesh constructed around the vertices of a six node triangular finite element mesh
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Figure 5: Sign convension for dual mesh on a single finite element mesh
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Figure 6: Element stress resultants acting on the edge of thecontrol volume
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node x(mm) y(mm)

1 0.04 0.02
2 0.18 0.03
3 0.16 0.08
4 0.08 0.08
P 0.0933 0.06

Gm =1.0e9N/m2

νm = 0.25
l = 0.1mm
a = 0.5
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Figure 7: Mesh, lengths in (mm), vertex coordinates and constitutive properties for micropolar element patch test.
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Figure 8: Stress concentration mesh 8x15x4r = 0.864mm. Quarter plate edge lengths are16.2mm x16.2mm.
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