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A higher order control volume based finite element method to
predict the deformation of heterogeneous materials.

A. J. Beveridge, M. A. Wheel and D. H. Nash
Department of Mechanical and Aerospace Engineering, University of Srathclyde, Glasgow, UK, G4 OLT

Abstract

Materials with obvious internal structure can exhibit bebar, under loading, that cannot be
described by classical elasticity. It is therefore impottep develop computational tools in-
corporating appropriate constitutive theories that castuwa their unconventional behaviour.
One such theory is micropolar elasticity. This paper presaninear strain control volume
finite element formulation incorporating micropolar eleisy. Verification results from a mi-
cropolar element patch test as well as convergence resubisstress concentration problem are
included. The element will be shown to pass the patch tesaladexhibit accuracy that is at
least equivalent to its finite element counterpart.

Keywords. control volume finite element method, heterogeneous nadgericropolar
elasticity

1. Introduction

The understanding of the response of heterogeneous nistender loading, particularly
the numerical modelling of this, has become an engineetiajenge due to the increased use
of heterogeneous materials in structural applicationsfb} example, polymeric and metallic
foams, particularly as part of sandwich panels, are nowgoesed more extensively in both au-
tomotive and aerospace applications because of the weiginigsthey afford [1]. It is an active
research area to find constitutive models that can destrébelastic response of heterogeneous
materials as they are often endowed with enhanced mechasitaviour. This may include so
called size effects [2], which recognize the dependencheoEhhanced mechanical behaviour
upon the size of the material domain.

Micropolar elasticity is endowed with additional indepentimicro rotations which are as-
sociated with additional stress measures termed coupessts. These enable the complimen-
tary shear stress requirement of classical elasticity t@elased; the couple stresses balance the
differential element. The couple stresses also have sitriength scales associated with them.
With this additional degree of freedom micropolar elasfigredicts elastic behaviour that is
not predicted by classical elasticity. For example the elision of stress waves, a dependence
of stress concentration factor upon discontinuity sizeanize stiffening of smaller samples in
bending and torsion are all predicted. These size effests been identified experimentally.

The finite element method (FEM) is the leading analysis teglein the field of compu-
tational structural mechanics. This is due, in part, to @ssatility in accurately representing
complex geometries. It was first combined with micropolasgtity by Baluch, Goldberg and
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Koh[3]. They formulated a bi-linear triangular elementwlinear displacement and linear mi-
cro rotation fields. Although no numerical results are pnése they note that their purpose is
to bring micropolar elasticity and its associated microtsarum models from “ one of abstrac-
tion to that of reality”. The nature of micro continuum thesris complex and therefore very
few analytical solutions exist. Goldberg, Baluch, Korman &oh [4], in a later work, states
that the finite element method is used “in order to alleviateibherent complexity” involved
in solving the system of governing equations. This laterkyoesents an FEM for the bending
of micropolar plates using a 3 noded triangular element Witldegrees of freedom; transverse
displacement, rotation and micro rotation.

Nakamura, Benedict and Lakes [5] present another bi-lineangular element for or-
thotropic micropolar elasticity. Results are shown for tlséneation of stress concentration
factors of a circular hole in an infinite plate, for which arabtical solution exists. The model
is capable of identifying the size effect, although theranserror in the computed value that
appears to be dependent upon the coupling number; the theyealue of the coupling number,
which is a constitutive property governing the antisymmefrthe shear stresses in micropolar
elasticity, the greater the error. This issue is identifiredther works [6, 7]. In a later work
Nakamura and Lakes [8] present a finite element analysisgggckalled MIRACS (Micro ro-
tation and couple stress) which is used to investigate S@nant end effects in micropolar
elastic materials. A 3 node constant strain triangular elgira 4 node isoparametric element
and an 8 node isoparametric element make up the packagéeFplane elements have been
published [9, 10, 6, 11]. The quadratic element of Providaskattis [6] is the most accurate
plane finite element to date. In [6], a patch test is presettedbustly assess the published
element.

Wheel [7] departs from the standard finite element procedupiblish a constant strain
planar control volume method. The constant strain contotime element shows enhanced
performance in the patch test proposed by Providas andsKdttieturns exact predictions of
displacements, rotations and stresses for all three pedptests where as the finite element
formulations of Providas and Kattis return exact solutionghe first two tests. In the third
test, however, predictions, although accurate, were acletiged to be approximate rather than
exact. Control volume (CV) methods, allowing the same vdityaivith complex geometries,
have been developed initially for both computational fluidamanics and more recently struc-
tural analysis applications [12, 13, 14, 15]. This recenettgopment has been motivated by the
desire to analyse fluid structure interactions and morergénaultiphysics problems within a
unified computational framework [7]. One particular cohtrolume method, the control vol-
ume finite element method (CVFEM), is constructed upon theesamesh as the finite element
discretisation resulting in a so called vertex centred wetfY]. Recently a vertex centred
CVFEM for classical elasticity has been shown to providedsetbnvergence, than the equiva-
lent FEM, for a plane triangular element with both rotatiowl aranslation degrees of freedom
[16]. The CV method has also been applied to plate bendinglgrabwhere both the cell
centred [17] and vertex centred methods [18] have shown todkéng free for thick and thin
Mindlin plates. In recent developments control volumesehia@en used in the structural analy-
sis of radio frequency MEMS devices [19] and in the analyste® micromechanics of periodic
materials [20].

Building upon the work of Wheel [7] a linear strain planar cohtrolume method has been
developed; an equivalent to the quadratic element of Pasvishd Kattis [6]. The prime moti-



vation for this was to develop an inverse method to identifgropolar constitutive properties.
Micropolar constitutive properties are difficult to idegitexperimentally and few properties
have been published. The higher order element, set out hasebeen used in an iterative
inverse procedure to identify the micropolar constitufweperties of model two phase metal
composite beam [21] and polymer ring [22] samples. Thisrswerocedure has produced
a simple method to determine constitutive properties. Cambithis with the available mi-
cropolar elements it is hoped that this will encourage nmotar elasticity as a method for the
computational prediction of deformations in heterogesaoaterials.

Presented in this paper will be the formulation of this eletnén addition its performance
will be compared to published elements and shown to be at éempsvalent. Before the for-
mulation of the element is presented the mathematical yhefomicropolar elasticity will be
briefly described.

2. Micropolar Elasticity

Micropolar elasticity is one of the higher order non-loda¢dries of Eringen [23]. It is
endowed with an additional micro rotation vector that regsthe restriction presented within
classical elasticity that the shear stresses are symmittis@a general model and will converge
to both classical elasticity and couple stress theory [#,conditions under which this occurs
are discussed later. The three dimensional stress tenkdireear micropolar elasticity are
introduced here and the significance of the associated itdive properties are discussed.
Following this the two dimensional formulations of planeess and plane strain, used in the
element formulations, will be presented.

2.1. Generalised Linear Micropolar Elasticity

Linear micropolar elasticity takes into account the defation of the microstructure by
introducing a length scale dependent couple stresand an additional degree of freedom, the
micro rotation¢. For a linear elastic isotropic micropolar material thec®stress tensof;;,
and couple stress tensaot;;, respectively are [25],

Tij = )\ekk@-j + (2;1,* + H) €ij + Re€ijk (9k — ¢k) (1)

Mij = Q@ 0i + Boij + Vb (2)

The repeated indices denote summation over the rénget = 1,2, 3), ¢,; is the Kronecker
delta anck;;;, is the permutation tensor. These are defined in the followiag:

5, =4t Ti= @)
0, ifiy

+1, if ijk is an even permutation dft, 2, 3)
eijk = § —1, if ijk is an odd permutation of1, 2, 3) 4)
0, otherwise

An index followed by a comma represents a partial diffeidn with respect to the coordinate
systemy is the conventional macro rotatiofjs the micro rotation and, u*, x, «, 3, v are Six
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elastic constants. The micropolar shear moduyltisis related to the classical shear modylus
by,
% K
p=ptg (5)
The macro rotation and strain tensor are,

1
0; = §€ijkuk,j (6)
1
€ij = 5 (wij +uj;) (7)
respectively, where is the displacement vector. The six elastic constants caxjpeessed in

terms of seven engineering constants [24]:

(2u* + k) (BN +2u* + K)

B = o T o £ ) ©)
G = 1" +5 )
mex Q)\/L* + ) (10)

If = (éﬁ%ﬁ) (11)

- m (12)

N2 = 2(#—”%) (13)

v = % (14)

whereFE,, is the micropolar Young's modulus;,, the observed micropolar shear modulys,
the micropolar Poisson’s ratig,the characteristic length of torsiofy,the characteristic length
of bending, NV the coupling number and the polar ratio. The micropolar elastic constants,
E,., G,, andv,, govern uniform dilitational and distortional deformationthe same way as in
classical elasticity theory. The characteristic length®osion and bending dictate the length
scale of the size effects. The coupling number controls ttisyanmetry of the shear stresses.
The polar ratio is similar to Poisson’s ratio but relateshogonal microrotations rather than
dilatational strains. The micropolar theory contains twaits. If «, 5,y andx are set to zero,
the solid will behave in a classical manner. Alternativéiyhe coupling numberV is set to

1 then the material will behave as in couple stress theorj; {2dere the micro rotation is no
longer kinematically distinct from the macro rotation.

2.2. Two Dimensional Formulations

Reducing the dimensionality of the general form of linearnojolar elasticity produces two
dimensional formulations for both plane stress and plaragnsstates [8]. The static equilibrium
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equations for the balance of stress and couple stress, see figare respectively;

Tiji +p; =0 (15)
and

Mg, + €ij3Tij +q3 =0 (16)

where the repeated indices denote summation over the (ange- 1, 2), p; are body forces
per unit volume ands; represents a body couple per unit volume. Expanding thdiledguim
equations for Cartesian coordinatés,j = x,y) and setting the free indexto z gives;

Tex,x + Tyz,y + P = 0 (17)
Tyyy T Tayy TPy = 0 (18)
Mz + Myzy + Tey — Tyz +q. = 0 (19)

The linear constitutive equations can be expressed as,

Tij = Aakkéw + (,U,* + Ii) €ij + M*éji (20)
Mij = Q@ 0i + B + Vb (21)

where the repeated indices denote summation over the fangé = 1,2, 3). Introducing a
modified strain displacement relationship,

€ij = Wji + €ik®k (22)

which when expanded for Cartesian coordindiesg k = x, y, z) gives,

Exx U o

Cyy | _ Uy 23
Eyx Uy + &, 23)
E:cy Vg — ¢z

whereu andv are the displacement components of thendy directions respectively. The dis-
placement gradients,, v, are associated with the symmetric component of the shessssts,
75, While the micro rotationp, is due to the antisymmetric component of the shear stregses,
see figure 2. The constitutive equations are now modified ¢owatt for the specific assump-
tions associated with the plane stress and plane strais.case

2.2.1. Plane Srain

In plane strain it is assumed that theomponent of strain is zero as in the classical case. In
addition for micropolar elasticity the micro rotation issasned to be zero about thendy axis.
Therefores,, = ¢,, = ¢, = €.. = €., = 0 and¢, = ¢, = 0. This gives rise to the modified
constitutive equations, expressed in expanded matrix fiothe Cartesian coordinates for force



stress,

T A20" + K A 0 0 Exx
Tyy | _ A A+20" + K 0 0 Eyy (24)
Tyz 0 0 W+ K w Eyz
Tzy 0 0 N* ,u* TR Exy

and couple stress,

My Y 0] bra ]
= ’ 25
KRR @)
These can be reformulated in term of the engineering matenestants®,,,, v,,, [, andN from
equations (8),(10),(12) and (13) respectively as,

[ (—vm) Vm
T (1-2vm)  (1—2vm) 0 0 c
iy E v ((11:21;7R)) 0 0 o
Tyy | _ _ Em m ™ 1 (1-2v2) Y (26)
Tyz (14 vm) 0 0 2(1—N2§ 2(1—N?) Cya
Ty (172N2 1 Exy

|0 0 s s |

2B 12
|- [ o g ] o] (27)
Myz 0 o) Pz

An alternative relationship between the shear stresseshanshear strains can be formulated
by introducing a new constitutive parameter, the couplawdr,a, where,

a

N? = 28
1+a (28)
Then expressing the shear modulils as
E
allows the shear stresses to be related to the shear stahes simpler form,
Tyz | l1+a 1—a Eyx
[sz}_Gm{l_a 1+a}[5ry} (30)

2.2.2. Plane Stress

In plane stress theory it is assumed that the stress in theection is zero and again that
the micro rotations about theandy axes are zero. Therefore, = 7,, = 7,, = 7., = 7., =0
and¢, = ¢, = 0. As the assumptions with respect to the couple stress afemnged between
plane stress and plane strain the constitutive relatipssiie unchanged from equations (25)
and (27). However the modified force stress constitutivatiahships are,

(2p*+r)(2A\+2p* +kK) A2p*+kK) 0 0

Tzz A2u* 4K A2pu*+K Caz
T A(2p*+k) 2p*+r)(2A+2p*+k) 0 0 c
L — M2p*+r A2p*+k vy (32)
Tya 0 0 w+k opt Eya
Ty 0 0 [T VS S Eay



which can once more be expressed in terms of the enginearirgjants,

- 1 v, 0 0 .
Yy m _ _oNZ Yy
=" (1=vim) (1-vm)(1-2N?) 32
Tyx (1—-2v2) 0 0 2(1EN2) ) 2(1-N?) Eyaz (32)
T (1—vm) (1-2N?2 (1—vm) Ex
Y 0 0 2(1-N2) 2(1-N2) Y

3. Micropolar Linear Strain Triangular Element

The formulation of the quadratic displacement, linearisfraiangular micropolar plane
stress/strain control volume finite element (CV-MPLST) begwith a 6 noded, 18 degrees of
freedom element consisting of a straight edged trianglé ®ivertex and 3 midside nodes,
figure 3. The displacements in thedirection, u, y direction,», and micro rotationy, are
interpolated over the element with a complete quadratigrmohial from the nodal degrees of
freedomyu;, v; and¢.; where the index = 1 : 6 refer to the element nodes.

U = 21‘6:1 N'u; v = Z?=1 N'v; ¢, = Z?:1 N'g.; (33)

The superscript indicates position within the array. The shape functidiisare functions of
the natural area coordinates £, ) [26]. The natural area coordinates are related to the elemen
vertex coordinates;z,, x, x3) and(yi, 2, y3), and global coordinatér, y) by

x = 0x1 + {xo + N

34
Yy = 0y1 + Eya + 1y3 (34)
Vector [N] of shape functions is
IN]=[0(20—1) €(26—1) n(2n—1) 45§ 4&n 4nd ] (35)
The displacement vectdil} is

The unknown element displacements and micro rotationsedagéed to the nodal degrees of
freedom by

u
v | =[N]{d} (37)
-
The strain vectofc} is related to the element displacements by
e ] [ uwe ] [& O 0]
€ v 0 aﬁ 0
vy Y ¢ P (;J 1 U
pu— glym pu— u7y + z pr— 8_y
{8} 5xy U,x - ¢z 0 (r% _1 ;) (38)
Pz o 0 0 % :
| Pz Pz 00 5|




and the stress vectér} is related to the strain vector by

{7} =

= [D]{e}

(39)

whereD refers to the constitutive matrix defined in section 2.2 \lid inclusion of the consti-
tutive properties for the micro rotation. For example in fitene stress case;

(N 20+ k A 0 0 0 0]
A A2 +K 0 0 00
B 0 0 w+rk opt 0 0
Pl = 0 0 prooopt+R 000 (40)
0 0 0 0 ~ 0
I 0 0 0 0 0 7|
Differentiating the shape functions with respect to thdigpaoordinates,
Ng | _ 1| ysNg+ynNe +y2Ny (41)
N, 2A | —x23Ns — w51 N¢ — 212N,

wherey;; = y; — y;, @ = 1,2, 3 represents the vertex node numbers @rdy;) are the vertex
node coordinatesd is the area of the triangular element. The derivatives o§tiagpe functions
with respect to the area coordinates are

Ns=[46—-1 0 0 4¢ 0 4n] (42)
Ne=[0 4£-1 0 46 4n 0] (43)
N,=[0 0 4p—1 0 4¢ 46 ] (44)

These are used in the formulation of the strain displacemmatix [B] which relates the un-
known nodal degrees of freedom to the element strain veetothus :

N, 00
0 N Zy 0
o Ni 0 N
{e} = B] | v for i=1:6 where [B] = v . (45)
b 0 N, —-N'
B 0 0 AN
0 0 N, |

the element stress resultants can then be related to thewnkrodal displacements by

{r} = [D][B]{d} (46)

Now that the element stress displacement relationships ibeen defined the formulation of the
CVFEM departs from that of the standard finite element promedilhe latter is summarized



briefly.

3.1. Finite Element Procedure
In the case of the standard finite element procedure thaesdgfmatrix is calculated from,

1 1-n
krem = 24 / / BTD,Bdédn (47)
0 0

in the usual way. To enable a comparison between the FEM andE@MBrmulations based
upon the triangular element, this equation (47) is evatlatesymbolic integration using the
Maple kernel of MATLAB.

While the finite element formulation developed here is bagEnhuhe standard approach it
differs slightly in that the Maple kernel provides exact lgtiaal expressions for each term in
(47) rather than approximations based on numerical integraThis provides a fair basis for
comparison since the CVFEM procedure employs exact integrat

3.2. Control Volume Formulation

A dual mesh of interconnecting control volumes is set up efitiite element mesh. Each
control volume is centred upon a node of the element, seeefiguiThe control volumes are
constructed on an element by element basis as shown in figufale 1 shows the coordi-
nates of the control volume vertices expressed in termsechtba coordinates of the triangular
element, although other coordinates could of course be used

The equilibrium equations, section 2.2 and equations (18),and (19), are setup for each
control volume where the stress resultants acting upondbedaries of the control volume are
equilibrated against any body loadings imposed upon the@orolume thus:

> FF4paA =0 (48)
k=1
> Ff+p,A, =0 (49)
k=1
> ME4q.A,=0 (50)
k=1

where F* and Fj are components of the force resultants acting upon contioime facerk,
MP is the couple resultant}, is the area of the control volume ands the number of control
volume faces around the finite element vertex or midside tiwatdhe control volume is centred
on. The force and couple resultants are computed by analyiegrating the functions of the
stress variations within the finite element along each cbnslume edge, figure 6. As each
control volume face lies entirely within a given elementstis performed without storing any
information relating to CV connectivity and is done on an edairby element basis, giving a
stiffness matrix for each triangular element. This allolhes global stiffness matrix to be assem-
bled in an identical manner to the finite element method. T&erete equilibrium equations for
one control volume face are,

EM = /TM; cos Oy dr + /Tyx sin O dr (51)
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B = / Tyy SIN Oy dr + / Tay COS O dr (52)

M = /m‘“ €08 Oy + / MMy Sin Orndr + / I/Tacy 0S8 O dr — /ley:p sin 0, dr (53)
where

cos 0,,,, = — 12 Tpn = Ty — T

lmn
1
andm andn denote the vertices of the control volume edge, figure 6. Mdraem functions

+ andy’ are the distances from the element vertex or midside natiat the control volume is
centred upon, and the edge itself so

T =1, — 1
Y =Ye — Y
(x;,y;) being the coordinates of the centre node of the control veland(z., y.) are functions
of the area coordinates relating any point within the elartethe associated vertex nodes thus:

(59)

Te =021 + Ex0 + N3

56
Ye = 0Y1 + &y + Y3 (56)

This is exploited when the integration of the stress and leosipess resultants, equations (51),
(52) and (53), are transformed from the local line coordimatof the edge into the area coordi-
nates of the triangular element. Integration in terms ofa@irtbe area coordinates is dependent
upon the CV face in question and thus each face has a diffezent sules governing the inte-
gration of the stress resultants. As an example, considdatie lying between the CV vertices
g anda with lengthl,, in figure 5. Along this particular edge

£=15

§=2(1—-mn)

(57)

which are substituted both into the strain displacementiméB|, equation (45), and the el-
ement coordinates, y., equation (56). This constrains the integration so tha pidérformed
along the control volume face. A full list of these substans and the limits of the integration
for each edge is given in table 2. For this particular facestipglibrium equations become,

F9% = 51y, cos Oy, ’ Toadn) 4 Slgq sin Oyq ’ Ty dn) (58)
0 0
3 3
F% = 5lyq sin O, / Tyydn + Sl gq cos Oyq / Taydn) (59)
0 0

MY} = 514, cos 0y /5 Mg dn + dlgq sin Oyq /5 —
’ ’ (60)

[
[

+5lgq cOs Oyq /

0

0
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These integrations are repeated for each individual CV eftge performing the necessary
substitutions. This gives three row vectoks,, F, andM., for each CV edge that relate the
internal actions to the unknown nodal degrees of freedonesélare calculated for each CV
edge in an element and assembled to form the 18 x 18 elemiénéss matrix, k]|, thus

[ Fy/ — e 17w
Ry o
My — M7 ¢
Pl - "

hb he
FZfJLb i Fyhc 2
Mz?l - Mz2 ¢z2
Fil — Fie us
Fid _ e vy
Mé% - M,Zze?; ¢23
kj{d} = F9¢ + Fi9 — Fih — Fhb wg | {P} (61)
a ‘ ih hb

M} + M3 — M, — M || ¢
Fle + Fih — FJi — Fid Us
FZC + Fih — FJyz — FZd Us
Ml + M2 — M2 — M4 | | a5
Fic + Fil — FJ9 — F9/ U
Fy 4By —Fy —Fy ||

| MG+ M — M - M| L @

where{P} is the vector of applied forces and moments. Now that the efestiffness matrix
has been formulated the procedure returns to that of thelatdriinite element method. The
global stiffness matrix is assembled, boundary conditegied and the solution found in the
usual way. The stress recovery routine is also the same ks fintte element method.

4. Validation

Previously published micropolar elements have used asst@scentration problem to as-
sess validity. Recent work has also considered validity abeerfundamental level via a set of
appropriate patch tests. The control volume method detaige is validated using the patch
tests [6] to test the accuracy for simple stress states andttbss concentration problem [7],
for which an analytical solution exists, to ascertain hoe glement accuracy performs with
changing length scale and coupling factors. In the valfeti comparisons are made to the
constant strain control volume element, CV-MPCST, from [7].fdRence is also be made to
the finite element formulations that are based upon the stnaie sisplacement relationships
as the linear and constant strain control volume methodsthedinite element procedures the
assembly of the element stiffness matrix is the same as jin@8}ever, symbolic integration of
equation 47 is employed so as to eliminate quadrature.

4.1. Patch Test

The element mesh shown in figure 7 is loaded under three elifféoading conditions. For
each loading there is a known displacement and stress fetldhiould be acquired, a summary
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of which can be seen in table 3. The internal vertex nodaldinates and constitutive properties
can be found in figure 7. The plane strain formulation was u$ad first patch is for a uniform
direct stress with symmetric shear. In the second test tieetditress remains uniform whereas
the shear stress is now asymmetric and a body couple is dppliee final test has constant
direct stresses and body forces, linearly varying body lesugnd linearly varying asymmetric
shear. The control volume method CV-MPLST detailed heregzat®e first two tests, table
4, while results for the final test are shown in table 5 wheremparison is made with the
earlier constant strain control volume, CV-MPCST, which hesrbshown to out perform the
equivalent, constant and linear strain, finite element tdations [7]. As can be seen, the
CV-MPLST does not appear to reproduce the analytical solwiactly, unlike CV-MPCST
formulation, but the differences are so small they are idikdlyhood attributed to rounding
error.

4.2. Sress Concentration Problem

A common approach [6] to check the accuracy of a micropolanigation procedure is to
check it against one of the few analytical solutions avdéathat of the stress concentration
factor of maximum circumferential stress around a circhlae in a uniaxially loaded infinite
plate [23]. For the purposes of the analysis, the plate densd will be finite but the hole
radius will be small in comparison to the width of the plate.cédmparison is made between
the previous constant strain control volume, the curremdr strain control volume, as well as
the constant strain finite element and linear strain fingengint counter parts all using the same
mesh. A quarter of the plate is modelled with symmetry bomndanditions applied to the
ligaments extending from the hole to the plate edges, seef§yurhe results presented here are
different from those given in the published literature. STisibecause it is difficult to determine
the exact element distributions used previously. This igdrtant as the stress concentration
values are mesh sensitive. Therefore to gain a better uaddisg of the accuracy of the
competing methods the same element distribution shouédlydiee used.

The first test compares how the accuracy of the solution ect#tl by changing the level
of coupling between the shear strains, governed by the cwufactor,a. This is carried out
for two ratios of hole radius;, and characteristic length, As the radius is fixed for both the
7 = 1.063, (A), and; = 10.63, (B), cases, see table 6, then only the characteristic leagth
changed. It can be seen in (A), when the characteristichesgtimost equal to the radius, that
CV-MPLST has a more consistent error compared to CV-MPCST. C\G8IPis more accurate
for intermediate values of coupling factar, whereas CV-MPLST exhibits better accuracy for
the classical case£0) and approaching the couple stress case (o). This pattern is repeated
for the finite element formulations which are marginallysiescurate than the corresponding
control volume formulations. On reducing the characterisngth, case (B), the error for large
coupling factors is greater for all formulations; this igtpaularly prominent for the constant
strain formulations.

The other case investigated is that of a larger hole withersdime finite plate as was consid-
ered in previous work [6]. The coupling factar,is kept constant and the characteristic length
reduced, see table 7. It appears that for this hole radius €37 is slightly less accurate
at predicting the stress concentration factor than CV-MPC®Mparisons, however, with the
exact infinite plate solution are less certain in this casmbse of the finite nature of the plate
and significantly larger hole size. Nevertheless, when apeawison is made between the two
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linear strain formulations, CV-MPLST and FE-MPLST, the s$imo accuracy is broadly similar
with the FE-MPLST, at most 0.2% more accurate.

5. Conclusions

A linear strain control volume finite element has been preskto predict the size effects
of micropolar elasticity. It passes a micropolar patch.t¥ghile the method generally shows
equivalent predictive performance for the stress conagatr problem when compared to the
equivalent finite element based procedure, this performaades slightly less as one of the
additional constitutive parameters, the coupling fagtoaltered. This supports the preferential
use of the method in quantifying this parameter from expenital data via an inverse iterative
approach [21, 22]. Using the CV-MPLST in an inverse methodctieracteristic length and
coupling number have been successfully quantified for a haaephase aluminium compos-
ite. Previously the lack of published constitutive data andvailability of a relatively simple
experimental characterisation procedure has so far khthe widespread use of micropolar
FEA. It is hoped with the new characterisation procedure eacthents, micropolar elasticity
will become a more accepted method for analysing the betawbheterogeneous materials
when loaded.
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Table 1: Vertex coordinates, in triangular area coordmdiar the interconnecting control volume (CV) of a six
node triangular element shown in figure 5

CVvertex| 6 & p

3/4 1/4 0
1/4 3/4 0
0 3/4 1/4
0 1/4 3/4
1/4 0 3/4
3/4 0 1/4
3/5 1/5 1/5
1/5 3/5 1/5
1/5 1/5 3/5
1/3 1/3 1/3

_— 0 Q +~D0D QO TD

Table 2: Substitutions for the equilibrium equation intgrand stress displacement relationships
Direction of Integration\ Integral Substitution$ Area Coordinate Substitutions

fromatog [ dr =5l foé dn letting & = 6 andd = 2 (1 — 1)
frombtoh [ dr =5l |7 dn lettingd = 3¢ and¢ = 2 (1 —n)
3
fromjtoi [dr =21 f; dn lettingd = ¢ and¢ = 5 (1 — 1)
frometoi [ dr =5l foé dé¢ lettingd = snandn = 2 (1 — &)
fromfto g [ dr =51y [ dE lettingn = 50 andd = 2 (1 — &)
fromjtoh [dr =121 f; d¢ | lettingd =nandy =1 (1-¢)
from cto h [ dr = 5l foé dd lettingn = € and¢ = 2 (1 —4)
fromdtoi [ dr =5l [ do letting & = snandn = 2 (1 —§)
fromjtog [dr =11, f; do | lettingé =nandn =1 (1-9)

Table 3: Body and boundary loadings and displacement fidldisns for micropolar element patch test
Patch 1
Loadp, =p, =q¢=0,Tps = Tyy =4, Tay = Tye = 1.5, My =my, =0
Solutionu = 1072 [z + 2y|, v = 107% [z + y], ¢ = 11073
Patch 2
Loadp, =p, =0,¢=1,Tpe =Tyy =4, Toy = 1, Tyo = 2, my = my =0
Solutionu = 1073 [z + 2y], v =102 [z + y], ¢ = 103 [ + L], a = 0.5

Patch 3
Loadp, =p, =1, =2[x — Y], Tye = Tyy =4, Tuy = 1.5 — [ — ],
Tyx:1.5+[x—y],mx:—my:¥,a:O.5

Solutionu = 107 [z + 1y],v =102 [z + y|, ¢ = 1072 [1 + L (z — y)]

2a
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Table 4: Results for displacement and micro rotation at ribd&tress and couple stress at point P in the patch test
mesh under loading cases 1 and 2

Test «(10%) v (10%) ¢ (10%) Toz Tyy my

1 0.19500 0.21000 0.25000 4.00000 1.49999 —3.0e — 15
Exact 0.19500 0.21000 0.25000 4.00000 1.50000 0

2 0.20999 0.11999 0.24999 3.99999 0.99999 —3.7e —9
Exact 0.21000 0.12000 0.25000 4.00000 1.00000 0

Table 5: Results for displacement and micro rotation at id&ress and couple stress at point P in the patch test
mesh under loading case 3. Results shown against exadosdiort linear strain control volume CV-MPLST and
constant strain control volume CV-MPCST

Code w(10%) v (10%)
CV-MPCST 0.19500 0.21000

CV-MPLST  0.19499 0.20999
Exact 0.19500 0.21000

CV-MPLST
(inc. directr)

¢ (10%)
0.40000

0.39999
0.40000

TCL‘I

4.00000
3.99999
4.00000

My

0.04000
0.03999
0.04000

Tyy
1.46666

1.46669
1.46666

0.19499 0.20999 0.39999 3.99999 1.46669 0.03999

Table 6: Stress concentration factors for maximum circuenféal stress at circular hole by the constant strain
control volume, CV-MPCST, linear strain control volume,-®NWPLST, constant strain finite element, FE-MPCST,
and linear strain finite element, FE-MPLST. Hole radius 6rfn, G,,, =1.0e9N/m, v,, = 0.3 and AT =
1.063 (B):7 = 10.63. Mesh is 8x22x4 elements. Percentage errors given in jeses.

(A)
a | Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST
0.0 |3.000 2.871(4.3) 3.040(1.3) 2.871(4.3) 3.047(1.6)
0.0667| 2.849 2.758(3.2) 2.888(1.4) 2.757(3.2) 2.893(1.5)
0.3333| 2.555 2.520(1.4) 2.589(1.3) 2.518(1.4) 2.591 (1.4)
1.2857| 2.287 2.276(0.5) 2.315(1.2) 2.272(0.7) 2.316(1.3)
4.2632] 2.158 2.111(2.2) 2.184(1.2) 2.103(2.5) 2.185(1.3)

(B)
a | Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST
0.0 |3.000 2.871(4.3) 3.040(1.3) 2.871(4.3) 3.047(1.6)
0.0667| 2.956 2.849(3.6) 2.995(1.3) 2.837(4.0) 3.002 (1.6)
0.3333| 2.935 2.830(3.6) 2.978(1.5) 2.808(4.3) 2.985(1.7)
1.2857| 2.927 2.789(4.7) 2.986(2.0) 2.745(6.2) 2.993 (2.3)
4.2632| 2.923 2.684(8.2) 3.020(3.3) 2.594(11.3) 3.027 (3.6)
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Table 7: Stress concentration factors for maximum circuenféal stress at circular hole by the constant strain
control volume, CV-MPCST, linear strain control volume,-®NPLST, constant strain finite element, FE-MPCST,
and linear strain finite element, FE-MPLST. Hole radius @@, G,, =1.0e9N/m, v,,, = 0.3 anda = 0.3333.
Mesh is 8x15x4 elements. Percentage errors given in pasesh

* | Exact CV-MPCST CV-MPLST FE-MPCST FE-MPLST
1.0 | 25649 2518(1.2) 2.589(1.6) 2.516(1.3) 2.588(1.5)
2.0 | 2641 2.603(1.5) 2.685(1.7) 2.595(1.7) 2.684 (1.6)
3.0 [ 2719 2.674(1.6) 2.766(1.7) 2.662(2.1) 2.765(1.7)
4.0 | 2.779 2.730(1.7) 2.829(1.8) 2.712(2.4) 2.827(1.7)
6.0 | 2.857 2.806(1.8) 2.912(1.9) 2.778(2.8) 2.909 (1.8)
8.0 | 2.902 2.851(1.8) 2.961(2.0) 2.815(3.0) 2.956 (1.9)
10.0| 2.929 2.879(1.7) 2.991(2.1) 2.837(3.2) 2.985(1.9)
Tyy
y Tyx
A
T
X My,
dy Tyx
dx
© > X
Z

Figure 1: Micropolar differential stress element
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Control volume
mesh

Finite element
mesh

Figure 4: Dual control volume mesh constructed around tiiéces of a six node triangular finite element mesh

Figure 5: Sign convension for dual mesh on a single finite eldgnrmesh
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Figure 6: Element stress resultants acting on the edge aftfiteol volume
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node z(mm) y(mm)
1 0.04 0.02

2 0.18 0.03
3 0.16 0.08
4 0.08 0.08
P 0.0933 0.06

G,, =1.0e9N/m

Uy, = 0.25

[ =0.1mm

a=20.5

Figure 7: Mesh, lengths in (mm), vertex coordinates andtitotigse properties for micropolar element patch test.
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Figure 8: Stress concentration mesh 8x15bx4 0.864mm. Quarter plate edge lengths afe2mm x 16.2mm.
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