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Summary

In malaria endemic regions, dispersal of mosquitoes from one location to an-

other searching for resources for their survival and reproduction is a funda-

mental biological process that operates at multiple temporal and spatial scales.

This dispersal behaviour is an important factor that causes uneven distribution

of malaria vectors causing heterogeneous transmission. Although mosquito

dependence in a heterogeneous environment has several implications for malaria

vector control and in public health in general, its inclusion in mathematical

models of malaria transmission and control has received limited attention.

Most models of malaria transmission and control explain relationships be-

tween the number of mosquitoes and malaria transmission in humans while

assuming enclosed systems of mosquitoes in which spatial dynamics and move-

ments are not taken into account. These models have limited ability to assess

and quantify the distribution of risks and interventions at local scales. There-

fore, in order to overcome this limitation, mathematical models that consider

the interaction between dispersal behaviour, population dynamics, environ-

mental heterogeneity, and age structures of the mosquito are needed for de-

signing, planning, and management of the control strategies at local scales.
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Advances in malaria modelling have recently begun to incorporate spatial het-

erogeneity and highlight the need for more spatial explicit models that include

all the vital components of ecological interactions.

In response to this need, this thesis develops a spatial mathematical model that

captures mosquito dispersal and includes all of the above characteristics to

achieve a broader and deeper understanding of mosquito foraging behaviour,

population dynamics, and its interactions with environmental heterogeneity,

distribution of malaria risk, and vector control interventions. The model is

applied to assess the impact of dispersal and heterogeneous distribution of

mosquito resources on the spatial distribution, dynamics, and persistence of

mosquito populations, to estimate the distance travelled by mosquitoes, and

to evaluate and assess the impact of spatial distribution of vector control inter-

ventions on effectiveness of interventions under mosquitoes’ natural dispersal

behaviour.

Chapter 2 develops a spatial mathematical model of mosquito dispersal in het-

erogeneous environments with a framework that is simple to allow investiga-

tion of aspects that affects malaria transmission. The model incorporates age

distribution in form of the aquatic and adult stages of the mosquito life cy-

cle and further divides the adult mosquito population into three stages of the

mosquitoes searching for hosts, those resting, and those searching for ovipo-

sition sites. These three adult stages provide an opportunity to study the life

style of the adult mosquito, and also offer a direct opportunity to assess the im-

pact of interventions targeting different adult states such as insecticide treated

bednets (ITNs), indoor residual spraying (IRS), and spatial repellents that re-

duce contacts between host seeking mosquitoes and human hosts. The spatial

characteristics of the model are based on discretization of space into discrete

patches. Host and oviposition site searching mosquitoes disperse to the near-

est neighbours across the spatial platform where hosts and breeding sites are

distributed.
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In the same Chapter, the model is applied to investigate the effect of hetero-

geneous distribution of resources used by mosquitoes, estimate the dispersal

distance, and to assess the impact of spatial repellents on the dispersal dis-

tance. Results revealed that due to dispersal, the distribution of mosquitoes

highly depend on the distribution of hosts and breeding sites and the random

distribution of spatial repellents reduces the distance travelled by mosquitoes;

offering a promising vector control strategy for malaria. In addition, analy-

sis indicated that when only a single patch is considered, and movement ig-

nored, the recruitment parameter and parameters related to the larval and host

seeking stages of the mosquito strongly determine mosquito population per-

sistence and extinction.

Chapter 3 extends the model developed in Chapter 2 to include vector con-

trol interventions. As vector control intervention deployment plans need to

consider the spatial distribution of intervention packages, the model extension

developed in this chapter is used to examine the effect of spatial arrangement

of vector control interventions on their effectiveness. Application of the model

to IRS, larvicide, and ITNs showed that randomly distributing these interven-

tions will in general be more effective than clustering them on side of an area.

Mosquito dispersal and the different patterns of heterogeneity have differ-

ent effects on population distribution and dynamics of mosquitoes, and thus,

that of malaria. Models that incorporate dispersal when integrated with envi-

ronmental heterogeneity allow predictions to capture ecological behaviour of

mosquitoes, the main source of variations in malaria risk at local spatial scales,

providing information needed for determining risk areas for malaria vector

control purposes.
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Zusammenfassung

Das Flugverhalten von Moskitos bei der Nahrungssuche und Fortpflanzung

und die damit verbundene Verbreitung dieser Malaria-Überträger ist ein

wichtiger biologischer Prozess in malariaendemischen Gebieten. Dieser

Prozess erstreckt sich über mehrere zeitliche und örtliche Grössenordnungen,

und erzeugt Heterogenität in der Verbreitung der Moskitovektoren und

damit in der Malariaübertragung. Obwohl ein besseres Verständnis dieser

Prozesse für die Planung von Malaria-Kontrollprogrammen bedeutsam ist,

gab es bisher nur wenige mathematische Modelle zur Studie der Malaria

Übertragung und Kontrolle, welche diesem Umstand Rechnung tragen.

Die meisten mathematische Modelle zum Studium der Malaria-Übertragung

und -Kontrolle basieren auf der vereinfachenden Annahme eines

geschlossenen Systems ohne räumliche Struktur. Solche Modelle können nur

beschränkt Aussagen über die kleinräumige Malaria-Verbreitung und den

Einfluss von Kontrollmassnahmen darauf machen. Für die bessere Planung

von Massnahmen auf kleinem Raum braucht es deshalb verfeinerte Modelle,

welche das Zusammenspiel zwischen dem Flugverhalten, der

Populationsdynamik, der Umweltheterogenität und der Altersstruktur der
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Moskitopopulation berücksichtigen. Neuere Malariamodelle, welche

räumliche Heterogenität berücksichtigen, zeigen die Notwendigkeit von

räumlich expliziten Modellen unter Berücksichtigung aller essentiellen

ökologische Interaktionen auf.

Im Rahmen dieser Dissertation werden neue mathematische Modelle

entwickelt, welche diesen Ansprüchen gerecht werden, und damit zu einem

besseren Verständnis des Zusammenhangs zwischen dem Moskito Verhalten,

der Populationsdynamik, der Umweltheterogeneität, der Verteilung des

Risikos der Malaria und Vektorkontroll-Massnahmen beitragen. Das Modell

wird angewendet, um den Einfluss einer heterogenen Verteilung der für

Moskitos relevanten Resourcen auf die räumliche Verteilung, die Dynamik,

und die Persistenz von Moskito-Populationen zu untersuchen. Ausserdem

werden mittels Modell Schätzungen der von Moskitos zurückgelegten Wege

erstellt und die daraus resultierenden Konsquenzen für die Effektivität von

Kontroll-Massnahmen vorhergesagt.

In Kapitel 2 wird ein räumliches Modell des Moskito-Flugverhaltens

entwickelt. Das Modell beinhaltet die Altersstruktur in Form der aquatischen

und adulten Stadien des Moskito-Lebenszyklus, und unterteilt das

Adultstadium weiter in nach Blutwirten suchende, ruhende und nach

Eiablageplätzen suchende Moskitos. Die Unterteilung in drei Adultstadien

ermöglicht das Studium des Lebenszyklus der Adulten, und gleichzeitig die

Voraussage der Auswirkungen verschiedener Kontrollstrategien wie

imprägnierte Moskitonetze, Insektizide, und räumliche Moskitoschutzmittel.

Die räumliche Struktur im Modell wird durch eine Aufteilung des Raumes in

diskrete Patches erreicht. Moskitos auf der Suche nach Blutwirten oder

Eiablageplätzen wandern dabei über benachbarte Patches durch den Raum.

Kapitel 2 beschreibt die Anwendung des Modells zur Untersuchung der

Auswirkungen einer heterogenen Verteilung von Resourcen und der

Anwendung von räumlichen Insektenschutzmittel auf die Flugdistanz der

Moskitos. Dabei zeigt sich, dass die Verteilung der Moskitos im Raum
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aufgrund des modellierten Suchverhaltens massgeblich von der Verteilung

der Blutwirte und der Eiablageplätze bestimmt wird. Eine zufällige

Verteilung der räumlichen Insektenschutzmittel verringert die

durchschnittliche Flugdistanz und stellt damit eine vielversprechende

Kontroll-Massnahme dar. Weitere Analysen der Vorraussagen zeigen

ausserdem, dass bei Bercksichtigung eines einzelnen Patches unter

Vernachlässigung der Moskito-Bewegungen die Persistenz der Population in

erster Linie vom Rekrutierungs-Parameter und von Parametern im

Zusammenhang mit den Larven- und Wirt-suchenden Stadien bestimmt

wird.

In Kapitel 3 wird das Modell aus Kapitel 2 erweitert, um die Simulation von

Vektorkontroll-Massnahmen zu ermöglichen. Da

Vektorkontroll-Massnahmen der räumlichen Struktur berücksichtigen sollten,

wird mittels der Modell-Erweiterung die Effektivität verschiedener Strategien

zur räumlichen Anordnung von Kontroll-Massnahmen eruiert. Die

Anwendung des Modells auf Insektizide, imprägnierte Moskitonetze und

Larvizide zeigt, dass die zufällige Verteilung der Massnahme im Allgemeinen

effizienter ist als eine geklumpte Verteilung.

Das Flugverhalten von Moskitos und unterschiedliche Heterogenitätsmuster

haben verschiedene Auswirkungen auf die Populations-Verteilung und die

Dynamik der Moskitos, und somit auf die Malaria. Mathematische Modelle,

welche die Umweltheterogenitt und das Flugverhalten der Moskitos beinhal-

ten, erlauben Voraussagen unter Berücksichtigung der Verhaltensökologie der

Moskitos, der Hauptursache der Variation des Malaria-Risikos auf engem Raum.

Damit können sie eine wichtige Rolle bei der Planung von Vektorkontroll-

Interventionen spielen.
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CHAPTER 1

Introduction

Malaria is a vector-borne disease transmitted by Anopheles mosquitoes. The

disease is transmitted between humans through bites of infectious mosquitoes.

It is estimated that more than 3 billion people live in malarious areas (Figures

1.1), most of whom live in sub-Saharan Africa (WHO, 2011). Most individu-

als in this region are infected by Plasmodium falciparum parasite which is the

most prevalent and prominent malaria parasite in sub-Sahara Africa (Gething

et al., 2011a). This parasite is not only associated with severe malaria but also is

life threatening, causing high morbidity and mortality rates in the region. The

World Health Organization (WHO) estimates that in 2010, more than 200 mil-

lion malaria cases occurred worldwide (WHO, 2012). Of the 660, 000 malaria

deaths that occurred in 2010 around the world, 91% were in Africa and 86%

were children under the age of five years (WHO, 2012). Malaria also causes se-

rious adverse effects in pregnant women such as miscarriage, low birth weight,

and anaemia and has been a source of poverty in many families as the costs

linked to the disease are high (White et al., 2011).
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Figure 1.1: Distribution of malaria risk (Source:(Bell et al., 2006)).

Despite the growing international pressure and efforts to provide treatment,

develop vaccines, and implement vector control, malaria continues to remain

a major problem in the world. Due to this trend, it is unlikely that the set

targets for reducing the global burden of malaria will be met. Therefore, coun-

tries where malaria is prevalent need to examine in depth the vectors that

are responsible for transmitting the disease, and what sort of behaviour, and

dynamics these vectors follow. There is also a need to understand in detail

the natural cause of the continuous transmission, and to design better control

strategies for vector management at local level.

1.1 Vectors and their distribution

The life of a mosquito is divided into four main stages (Figure 1.2). The first

stage is the egg stage, where eggs are laid on standing water by adult females.

The development process of eggs is temperature dependent and eggs are likely

to survive low temperatures. The second stage is the larval stage. In this stage,
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larvae progress through several stages of growth. Their survival depends on

climatic conditions and rely very much on standing water providing food in

form of organic matters. After the second stage, larvae develop into pupae,

the third aquatic stage. It is from this stage mosquitoes emerge as adults. In

the fourth stage, emerging adult mosquitoes fly in space, then mate; an action

which takes place roughly one day after becoming adults. Female mosquitoes

start seeking for a blood meal. After a feed, the mosquitoes rest, and later

oviposit their eggs, all of which account for different distribution patterns.

Figure 1.2: An illustration of the mosquito life cycle (individual parts of the di-
agram obtained from Centers for Disease Control and Prevention (CDC) (CDC,
2013)).

Mosquito distribution differs in time and space due to seasonal variations and

environmental heterogeneity. In areas with favourable environmental factors

such as temperature, rainfall and humidity, malaria transmission distribution

is highly related to the mosquitoes abundance. In parts where temperature

is not a limiting factor, malaria transmission is highly seasonal. Global maps

on the distribution of malaria vectors highlight the present spatial variability

of mosquito species across different regions (see for example Figure 1.3). In
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Africa, for example, An. gambiae, An. arabiensis and An. funestus are preva-

lent vectors that are responsible for malaria transmission. In Asia and other

regions, multiple species co-exists. These differences in species across regions

are mainly due to differences in climatic and environmental conditions (Sinka

et al., 2012). These conditions are critical for sustaining the production of re-

sources needed by mosquitoes for survival and reproduction.

Figure 1.3: Distribution of predominant malaria vectors in 2012 (Source:(Sinka
et al., 2012)).

Since mosquitoes need a variety of resources in to survive and reproduce, the

distribution of these resources in space affect their distribution (Sinka et al.,

2012) and rate of dispersal. This effect contributes to variation in local densities

(Cano et al., 2006; Li et al., 2008; Minakawa et al., 2002; Smith et al., 2004),

human exposure to vectors, and our ability to control disease transmission.
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1.2 Vector control

Vector control has been an important part of the global malaria control strategy

with several interventions targeting at reducing the contact between humans

and vectors. The reduction of human-vector contacts reduces the population

density of vectors and hence, malaria transmission. Several vector control in-

tervention programs have been implemented and have proved to be effective

in providing protection to humans. It is over a decade now since the World

Health Organization (WHO), the United Nations Children’s Fund (UNICEF),

the United Nations Development Programme (UNDP), and the World Bank

launched the Roll Back Malaria Global Partnership (RBM) programme for in-

creased efforts to fight against malaria. In 2000, the African summit set vector

control scaling up coverage in sub-Saharan Africa as a priority, and the politi-

cal will to combat malaria has been increasing (Sambo et al., 2011). Since then,

numerous control activities have been implemented.

Source reduction and management remain effective strategies for malaria vec-

tor control (Gu et al., 2006). Habitat identification for management has been

an ongoing activity in African urban settings as part of the vector control ac-

tivities. Larval habitats are mapped to understand the spatial distribution of

malaria vectors. It has been hard to clearly identify the ecological character-

ization of the mosquitoes (Sattler et al., 2005) as human activities and urban-

ization have been sources of the growing presence of stagnant water bodies

which are potential sources of malaria (Sattler et al., 2005). Apart from source

reduction, routine application of larvicide have been extensively used in some

African countries (Geissbuhler et al., 2009). Studies show that larviciding sup-

presses the number of malaria transmitting mosquitoes in malarious places

(Fillinger and Lindsay, 2006; Kroeger et al., 1995; Majambere et al., 2007, 2010;

Mwangangi et al., 2011). However, larval control can only be effective if larval

habitats are limited and well defined.

Interventions such as insecticide treated nets (ITNs) or long-lasting insecticide

treated nets (LLINs), and Insecticide residual spray (IRS) have been widely
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used as means for adult vector control (WHO, 2012). ITNs prevent access

of host seeking malaria vectors to people, thus providing personal protec-

tion against malaria to the individuals using ITNs (Lengeler, 2004; Takken,

2002; WHO, 2007). ITNs also give an extended effect to non-users (Hawley

et al., 2003) mainly due to their killing effects which reduce mosquito longevity.

Even if not killing directly, repellents (de Zulueta and Cullen, 1963) increase

the duration of host seeking, and hence associated mortality and providing

a community effect. In addition, IRS primarily kill resting adult mosquitoes,

providing protection against diseases (WHO, 2006) with minimal direct per-

sonal protection against mosquito bites.

Universal coverage of these vector control interventions among risk groups

has been recommended (RBM, 2008). Currently, LLINs are distributed through

different distribution programs, some of which are subsidized to reach the ma-

jority of people. Although there has been some increase in malaria control

funding since 2006 (Pigott et al., 2012), the World Malaria Report 2012 shows

the existence of variations of donor funds over time for scaling up of vector

control activities in malaria endemic countries (WHO, 2012). Sustainability of

universal coverage is unlikely because of the limited life time of the nets and

repeated mass distribution of the nets is necessary to sustain high coverage.

However, if funds are stopped, there is a risk of malaria resurgence as high

coverage of these interventions will no longer be sustained by poor countries

and a shifting pattern from universal coverage to low coverage levels is pos-

sible. This shifting pattern of coverage guarantees heterogeneous distribution

of interventions and of mosquitoes among places; calling for more behavioural

studies that consider different aspects of vectors affecting their spatial distri-

bution at local levels.
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1.3 Mosquito dispersal

Mosquito dispersal1 is a fundamental biological process that operates at mul-

tiple temporal and spatial scales, making it an important factor that causes

uneven distribution of malaria vectors in local settings. Dispersal may lead

to temporary extinction in local settings without driving the population of the

whole region to extinction and this is achieved if the population in one or more

locations goes to zero. Re-colonization is also possible and can be achieved

subsequently through dispersal from other locations.

Figure 1.4: Factors affecting dispersal

Studies indicate that the existence of olfactory, visual, and thermal cues play

an important role in modifying mosquito flying behaviour (Becker et al., 2010;

Takken and Knols, 1999). Several experiments have been performed to un-

derstand mosquito dispersal (Gillies, 1961; Gillies and Wilkes, 1978, 1981) and

factors such as those shown in Figure 1.4 affect mosquito dispersal at local

level. Experiments from capture-mark-recapture methods have shown that

1Mosquito dispersal is the movement of mosquitoes from one location to another.
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mosquito dispersal distance is short and variable if driven by search for food,

sheltering, and egg laying (Service, 1997). These short distances are for a few

hundred meters although longer flights of 1 km may be necessary if hosts and

oviposition sites are widely separated. The searching strategy may depend

on whether mosquitoes rely on information from neighbouring areas or from

places that are far apart from their present locations. The later can be incremen-

tally achieved by movements made to neighbouring locations. The dispersal

can be random or unidirectional if facilitated by environmental factors such as

wind (Service, 1997). Sometimes, long dispersal is likely to be facilitated by

human travel.

Dispersal is also affected by vector control interventions. Interventions such

as source reduction or environmental management create distances between

breeding sites, affecting their spatial distribution. Several studies have shown

that there is an association between distance to potential mosquito breeding

sites and the variability in the Anopheline density (Cano et al., 2006) and that

availability of hosts and the distribution of larval habitats has an influence on

malaria vector abundance (Li et al., 2008; Minakawa et al., 2002; Smith et al.,

2004). Some interventions divert mosquitoes without killing them (e.g. cream,

lotion, soap, and gel, insect proofing of houses, sprays, coils, and local herbs)

(Moore et al., 2007; Pates and Curtis, 2005; Rowland et al., 2004) resulting into

local dispersal; others change mosquito densities (e.g. insecticide treated bed-

nets) by reducing mosquito population and hence change patterns of mosquito

variations among different places. This relationship has a potential effect on

the spatial distribution of mosquitoes, and thus of malaria morbidity and mor-

tality.

Mosquito dispersal is directly linked to the population density of mosquitoes,

and is the driving force of heterogeneous transmission in local settings (Figure

1.5). Dispersal and its interaction with other factors such as population den-

sity, interventions, and transmission is complex and has several implications
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Figure 1.5: Interaction of dispersal with population, interventions, and malaria
transmission

in public health. The effect of dispersal on interventions is two fold. Interven-

tions may appear less effective when evaluated because of mosquito move-

ment between areas under interventions and those not under interventions

(Killeen et al., 2003) or may appear beneficial due to the community effects

catalysed by dispersal. The interaction between a heterogeneous environment

and movement behaviour of malaria vectors is challenging, requiring different

techniques to combat the disease.

1.4 Models of malaria and vector control

Several studies have demonstrated that remote sensing and geographical in-

formation systems (GIS) are powerful tools for understanding mosquito dis-

tribution (Hay et al., 2004, 2009; Sinka et al., 2012) and are suitable for un-

derstanding the link between seasonal variations and environmental factors

to malaria transmission indicators at large spatial scales. However, these tools
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remain reliable only at global spatial scales. At local scales, mathematical mod-

els provide an alternative way of assessing and quantifying the distribution of

risks or assessing interventions. They can also explain the complex dynamics

of local populations and dispersal patterns exhibited by mosquitoes. They are

also useful tools for capturing spatial characteristics for assisting decisions on

mosquito surveillance and malaria prevention (Li et al., 2008). In these models,

groups or spatially distributed populations can be linked together across a set

of spatial locations.

The concept of modelling mosquito dispersal was highlighted a century ago

by Ronald Ross (Ross, 1905). In his model, Ross described distribution of the

mosquitoes by distance moved and concluded that mosquitoes movement fol-

lows a ”centripetal law of random wandering” in which the number of dis-

persing mosquitoes is high in the vicinity and low far away from their original

location. This law is conserved even in situations where the distribution of

resources such as hosts and breeding sites is heterogeneous.

Although Ross’s idea of modelling mosquito dispersal is an important aspect

for improving scientific experiments (Ross, 1905), modelling studies has rarely

considered it. Other mathematical models of Ronald Ross (Ross, 1915), have

long been used to explain relationships between the number of mosquitoes

and malaria transmission in humans. The extension of Ross model to in-

clude different factors has been carried out by several authors (Mandal et al.,

2011) and has continued to contribute to the theoretical basis of malaria con-

trol. However, these model extensions have always assumed closed systems

of mosquitoes in which spatial dynamics and movements are not taken into

account. This assumption has enabled many intuitive analyses but has consid-

erable consequences for implementing better strategies for control and evalu-

ation of control interventions in field settings.

A deterministic model studied by Smith et al. (Smith et al., 2004) incorporated

the spatial heterogeneity context of the dynamic process of mosquitoes. The

findings show a link between human distribution and larval habitats, with
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mosquito distribution following a similar pattern to that of humans. Spa-

tial models have also been used to evaluate the impact of source reduction

programmes on vectors and malaria transmission and highlighted the impor-

tance of considering the relationship between resource-seeking behaviours of

mosquitoes and malaria transmission (Gu and Novak, 2009a). Although oth-

ers have focused on the distribution of malaria based on mosquito oviposi-

tion behaviour without including mosquito dispersal explicitly (Menach et al.,

2005), spatial aspect of mosquitoes have been modelled in terms of migration

between patches in a hypothetical landscape. Findings of (Menach et al., 2005)

indicate the likelihood of mosquitoes aggregating around places with water,

and thus, determining the distribution of malaria. Likewise, models of spatial

dynamics have shown that the use of insecticides on adult stage as opposed to

aquatic stages as a control strategy significantly reduce mosquitoes (Takahashi

et al., 2005). These modelling studies indicate the need for more explicit mod-

els that include vital components of ecological interactions. In order to over-

come this need, mathematical models that consider the interaction between

dispersal behaviour, population dynamics, environmental heterogeneity, and

age distribution of the mosquito are needed for designing, planning, and man-

agement of the control strategies at local scales.

1.5 Objectives

The primary objective of this thesis is to develop a spatial mathematical model

that captures mosquito dispersal to achieve a broader understanding of mosquito

foraging behaviour and its interactions with environmental heterogeneity and

vector control interventions. The specific objectives are as follows:

• To develop a simple model without dispersal that include aquatic and

adults stages of the mosquito to determine stages that are important for

targeted malaria vector control.
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• To develop a comprehensive mathematical model and a spatial frame-

work that captures mosquito dispersal behaviour in a heterogeneous en-

vironment as factors that affect the distribution of mosquitoes in a spatial

environment.

• To incorporate and determine the effect of spatial heterogeneity on mosquito

populations.

• To evaluate and determine the effect of spatial distribution of malaria

vector control interventions on effectiveness of interventions under mosquitoes’

natural dispersal behaviour.

1.6 Outline

Chapter 2 develops a mathematical model and a framework for modelling

environmental heterogeneity and mosquito movement. A simple model of

mosquito population dynamics is developed for a single patch and used to

determine stages of the mosquito life cycle that significantly affect mosquito

population. Embedding the model into a spatial context, the landscape is di-

vided into discrete locations called patches. These patches are assumed to be

connected by migration of mosquitoes which move between patches as they

search for oviposition sites and blood meals. Local dispersal is modelled by

assuming that dispersing adults move from their current locations enter near-

est neighbouring locations and long-range dispersal is achieved through re-

peated movements. The model is based on ordinary differential equations and

is replicated across a landscape, a multi-patch system that represents a two-

dimensional space. The model is applied to investigate the impact of dispersal

and heterogeneous distribution of resources on the distribution and dynamics

of mosquito populations, estimate mosquito dispersal distances, and to evalu-

ate the effect of spatial repellents as a vector control strategy.

Chapter 3 extends the model developed in chapter 2 by modelling vector con-

trol. As vector control intervention deployment plans need to consider the
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spatial distribution of intervention packages, the model extension developed

in this chapter is used to examine how spatial arrangements of vector control

interventions are likely to affect their effectiveness. As part of model applica-

tion, insecticide residual spraying (IRS), larvicide, and insecticide treated bed-

nets (ITNs) are evaluated.

Chapter 4 summarizes, discusses, and concludes the modelling work presented

in the thesis and suggests directions for future work.
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Mathematical modelling of mosquito

dispersal in a heterogeneous environment

Published in Mathematical Biosciences, 2013

Authors: Angelina M. Lutambi, Melissa A. Penny, Thomas Smith, and Nakul

Chitnis

2.1 Abstract

Mosquito dispersal is a key behavioural factor that affects the persistence and

resurgence of several vector-borne diseases. Spatial heterogeneity of mosquito

resources, such as hosts and breeding sites, affects mosquito dispersal behaviour

and consequently affects mosquito population structures, human exposure to

vectors, and the ability to control disease transmission. In this paper, we de-

velop and simulate a discrete-space continuous-time mathematical model to

investigate the impact of dispersal and heterogeneous distribution of resources
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on the distribution and dynamics of mosquito populations. We build an or-

dinary differential equation model of the mosquito life cycle and replicate it

across a hexagonal grid (multi-patch system) that represents two-dimensional

space. We use the model to estimate mosquito dispersal distances and to eval-

uate the effect of spatial repellents as a vector control strategy. We find evi-

dence of association between heterogeneity, dispersal, spatial distribution of

resources, and mosquito population dynamics. Random distribution of repel-

lents reduces the distance moved by mosquitoes, offering a promising strategy

for disease control.

2.2 Introduction

Mosquitoes transmit malaria, dengue, yellow fever, filariasis, and several other

important diseases. Malaria, in particular, shows considerable spatial variation

predominantly determined by climatic variation (Hay et al., 2009), interven-

tion coverage, and human movement (Martens and Hall, 2000; Service, 1997;

Stoddard et al., 2009; Tatem et al., 2006). At local scales (i.e. from 100 m to

1 km), mosquito behaviour and ecology play an important role in determin-

ing the distribution of transmission (Menach et al., 2005). Like other animals,

mosquitoes can move in any direction, motivated by resource availability and

other drivers of dispersal, but can only travel over limited distances. Con-

trol interventions should consider locality and mosquitoes’ ability to move, to

achieve a high level of effectiveness in reducing the mosquito population.

The impact of vector dispersal in the spread and control of diseases was first

highlighted a century ago by Ronald Ross (Ross, 1905), but has received lim-

ited attention within the public health community. Ross stipulated that mosquito

density within any area is always a function of four variables, which include

the reproduction rate, mortality rate, immigration, and emigration rates. A

study by Manga et al. (Manga et al., 1993) also showed that the spatial vari-

ation in the distribution of resources used by mosquitoes affects their repro-

duction and their rate of dispersal. This in turn contributes to variation in
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densities (Cano et al., 2006; Gu and Novak, 2009a; Li et al., 2008; Smith et al.,

2004), human exposure to vectors, and the ability to control disease transmis-

sion (Service, 1997). The effects of resource availability on transmission can be

surprising. For instance, even the presence of non-productive larval habitats

may affect biting densities (Menach et al., 2005). However, conducting exper-

imental studies of mosquito dispersal (Gillies, 1961; Gillies and Wilkes, 1978,

1981; Midega et al., 2007) are challenging.

Mathematical models play an important role in understanding and providing

solutions to phenomena which are difficult to measure in the field, but few

models have incorporated dispersal or heterogeneity when modelling resource

availability (Depinay et al., 2004; Menach et al., 2005; Nourridine et al., 2011;

Otero et al., 2008; Smith et al., 2004; Yakob and Yan, 2010) or varied the usual

assumption of a closed vector population (Ngwa, 2006; Otero et al., 2006; White

et al., 2011). Others have sub-divided the adult stage of the mosquitoes into

different stages (Ngwa, 2006; Otero et al., 2006; Saul, 2003). To investigate the

effects of dispersal and heterogeneity, a model should incorporate features of

the mosquito life cycle, the feeding cycle, spatial heterogeneity in mosquito

resources, and dispersal.

Spatial models have commonly used the diffusion approach, which consid-

ers space as a continuous variable. Despite the existence of diffusion models,

which account for heterogeneity (Raffy and Tran, 2005; Tran and Raffy, 2006),

it is difficult to explicitly incorporate the various factors that affect movement.

For example, in areas where resources are located in patches or discrete loca-

tions, mosquito dispersal is more conveniently modelled using a metapopu-

lation approach, in which the population is divided into discrete patches. In

each patch, the population is sub-divided into subgroups, corresponding to

different states, leading to a multi-patch, multi-compartment system.

Several models using diffusion approaches (Dumont, Y; Dumont,Y and Du-

fourd, C) have incorporated heterogeneity and have shown that the environ-

ment has a strong influence on the distribution of disease vectors. However,
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none of them have included the aquatic stages of the mosquitoes or have pro-

vided a general and simple framework for modelling arbitrary spatial pat-

terns of mosquito control interventions. A model framework that includes the

aquatic stages and that partitions space into discrete locations allows us to cap-

ture the various forms of spatial heterogeneity that exist in our environment.

In this paper, a mathematical model, that includes all of the above features is

developed and simulated to investigate the impact of dispersal and heteroge-

neous distribution of mosquito resources, such as hosts and breeding sites, on

the spatial distribution, dynamics, and persistence of mosquito populations.

The distance a mosquito can travel from its place of emergence or food source

is a critical factor for vector control interventions, thus the model is used to

project likely dispersal distances and considers how these might be changed

by vector control interventions.

In the following sections, we develop and analyze a model for mosquito popu-

lation dynamics that does not consider movement of mosquitoes. We then de-

velop a meta-population model for mosquito movements with discrete space

in hexagonal patches and compare it to a continuous space model. We then

combine the two models and run simulations of a spatially explicit model of

the full mosquito life cycle to determine the effect of repellents.

2.3 Description of the basic model: mosquito dy-

namics without dispersal

Mosquito life begins with eggs, which hatch into larvae under suitable con-

ditions. The larvae develop into pupae that mature and emerge into adults

(see Figure 2.1). Female mosquitoes then feed on human or animal blood to

provide protein for their eggs. After biting, female mosquitoes rest while their

eggs develop. Once eggs are fully developed, the females oviposit and then

proceed to find another blood meal thus completing the mosquito feeding cy-

cle (Chitnis et al., 2008a).
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Figure 2.1: Schematic representation of Anopheles mosquito life cycle and feeding
cycle. Model states are Eggs(E), Larvae(L), Pupae(P ), host seeking adults(Ah), resting
adults(Ar), and oviposition site searching adults(Ao).

Ignoring the effects of hibernation and breaks in the reproductive cycle, and

assuming that eggs deposited at breeding sites proceed through development

immediately (Service, 2004), we consider six compartments of the mosquito

life cycle: eggs (E), larval (L), pupal (P ), host seeking adults (Ah), resting

adults (Ar), and oviposition site seeking adults (Ao) (Figure 2.1). In contrast to

other models (Li, 2011), we distinguish all of these stages because interventions

may be applied to any one (or more) of them. Since only female mosquitoes

are involved in the transmission of vector-borne diseases, this model ignores

males. The six subgroups have different mortality and progression rates. Each

subgroup is affected by three processes: increase due to recruitment, decrease

due to mortality, and development or progression of survivors into the next

state. The parameter b is the average number of female eggs laid during an

oviposition and ρAo (day−1) is the rate at which new eggs are oviposited (i.e. re-

production rate). Exit from the egg stage is either due to mortality, µE (day−1),

or hatching into larvae, ρE (day−1). In the larval stage, individuals exit by
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death or progress to pupal stage at a rate, ρL (day−1). Assuming a stable envi-

ronment, inter-competition for food and other resources for larvae may occur,

leading to density-dependent mortality, µL2L
2 (day−1 mosquitoes−1) or natural

death at an intrinsic rate, µL1 (day−1). Pupae die at a rate, µP (day−1) and sur-

vivors progress and emerge as adults at rate ρP (day−1). In the adult stage, host

seeking mosquitoes die at a rate µAh
(day−1). Those surviving this stage, and

if they are successful in feeding, enter the resting stage at a rate ρAh
(day−1).

In the resting stage, mosquitoes die at a rate, µAr (day−1). Survivors progress

to the oviposition site searching stage at a rate ρAr (day−1). Oviposition site

searchers die at rate µAo (day−1) and after laying eggs return to the host seek-

ing stage. These processes account for the dynamics of each subgroup over

time. Although mosquitoes might require more than one blood meal to pro-

duce eggs (Beier, 1996), this model assumes the simple case where only one

blood meal is enough for eggs to mature. Throughout this work, we use the

words oviposition sites and breeding sites interchangeably.

From the description above, we develop the following system of differential

equations to describe mosquito dynamics without movement:

dE

dt
= bρAoAo − (µE + ρE)E,

dL

dt
= ρEE − (µL1 + µL2L+ ρL)L,

dP

dt
= ρLL− (µP + ρP )P (2.1)

dAh

dt
= ρPP + ρAoAo − (µAh

+ ρAh
)Ah,

dAr

dt
= ρAh

Ah − (µAr + ρAr)Ar,

dAo

dt
= ρArAr − (µAo + ρAo)Ao,

with initial conditions E(0), L(0), P (0), Ah(0), Ar(0), and Ao(0). Mosquito sur-

vival in each stage and the progression period from one stage to the next are

assumed to be exponentially distributed. The definitions of state variables and

the associated parameters are given in Tables 2.1 and 2.2 respectively.

Since the system in Eq. (2.1) monitors populations in each stage of mosquito
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Table 2.1: State variable definitions

Variable Description

E density of eggs
L density of larvae
P density of pupae
Ah density of mosquitoes searching for hosts
Ar density of resting mosquitoes
Ao density of mosquitoes searching for oviposition sites

development and because all model parameters (Table 2.2) are positive, there

exists a region D such that

D =





E

L

P

Ah

Ar

Ao


∈ R6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E ≥ 0,

L ≥ 0,

P ≥ 0,

Ah ≥ 0,

Ar ≥ 0,

Ao ≥ 0


, (2.2)

where the model is mathematically and biologically meaningful and all so-

lutions of the system (2.1) with non-negative initial data will remain non-

negative in the feasible region D for all time t ≥ 0. We use the notation X
′

to represent dX
dt

here and denote the boundary of D by ∂D.
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Theorem 2.3.1. If the initial conditions of system (2.1) lie in region D, then there ex-

ists a unique solution for (2.1), E(t), L(t), P (t), Ah(t), Ar(t), and Ao(t) that remains

in D for all time t ≥ 0.

Proof. The right hand side of the system (2.1) is continuous with continuous

partial derivatives in D, therefore (2.1) has a unique solution that exists for all

time. It remains to be shown that D is forward-invariant. We see from system

(2.1) that if E = 0, then E
′
= bρAoAo ≥ 0; if L = 0, then L

′ ≥ 0; if P = 0,

then P
′ ≥ 0; if Ah = 0, then A

′

h ≥ 0; if Ar = 0, then A
′
r ≥ 0; and if Ao = 0,

then A
′
o ≥ 0. Therefore all solutions of the system of equations (Eq. (2.1)) are

contained in the region D. �

2.4 Analytical results of the basic model without

mosquito dispersal

2.4.1 Existence of Equilibrium points

This section presents existence and stability results of the model (Eq. (2.1)) of

the steady states. An equilibrium point of a given a system of equations (Ẋ(t))

(where X is a vector composed by state variables) is a steady state solution,

where X(t) = X∗ for all t.

Proposition 2.4.1. The model in (2.1) has exactly one equilibrium point on ∂D given

by P0 = (0, 0, 0, 0, 0, 0). We label P0 the mosquito-free equilibrium point.

Proof. Substituting Po into the right hand side of (2.1) shows that all derivatives

are zero so Po is an equilibrium point of (2.1). Setting any of E,L, P,Ah, Ar, or

Ao equal to zero, we see that all other remaining state variables must also be

equal to zero for the system to be at equilibrium. Therefore, Po is the only

equilibrium point on ∂D. �

Similar to White et al. (White et al., 2011), we define the population reproduc-

tion number, R0, as the expected number of female mosquitoes produced by a

single female mosquito in her life time in the absence of density-dependence.
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In (van den Driessche and Watmough, 2002), a method for computing the

reproduction number for epidemic models was developed. However, it can

equivalently be used in ecological models where new births are treated as new

infections. We determine the mosquito population reproduction number for

model (2.1) using the next-generation technique (van den Driessche and Wat-

mough, 2002).

Defining x as a set of all state variables (E,L, P,Ah, Ar, Ao) in the model, then

x = (x1, x2, ..., xi)
T for i = 1, 2, ..., 6. The system in (2.1) can be written in the

form of dxi

dt
= Fi(x) − Vi(x), where Fi is the rate of new recruitment (birth of

eggs) in a compartment, Vi = V −
i − V +

i , with V +
i being the rate of transfer of

mosquitoes into a compartment and V −
i is the rate of transfer of mosquitoes

out of the compartment. For this model, F , and V are given by:

F =



bρAoAo

0

0

0

0

0


, and V =



(µE + ρE)E

(µL1 + ρL)L+ µL2L
2 − ρEE

(µP + ρP )P − ρLL

(µAh
+ ρAh

)Ah − ρPP − ρAoAo

(µAr + ρAr)Ar − ρAh
Ah

(µAo + ρAo)Ao − ρArAr


. To obtain the

next generation operator, FV−1, we calculate Fij =
∂Fi

∂xj

∣∣∣
P0

and Vij =
∂Vi

∂xj

∣∣∣
P0

to

obtain

F =



0 0 0 0 0 bρAo

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (2.3)
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and

V =



(µE + ρE) 0 0 0 0 0

−ρE (µL1 + ρL) 0 0 0 0

0 −ρL (µP + ρP ) 0 0 0

0 0 −ρP (µAh
+ ρAh

) 0 −ρAo

0 0 0 −ρAh
(µAr + ρAr) 0

0 0 0 0 −ρAr (µAr + ρAr)


.(2.4)

The population reproduction number, R0, is the spectral radius of the next

generation operator, ρ(FV−1). This value is given by

Ro =

b
∏
j

(
ρj

µj + ρj

)
1−

∏
Ai

(
ρAi

µAi
+ ρAi

) . (2.5)

where j = E, L, P , Ah, Ar, Ao and i = h, r, and o. ρj
µj+ρj

is the proba-

bility that a mosquito in stage j will survive to the next stage. The value∏
Ai

(
ρAi

µAi
+ ρAi

)
∈ (0, 1) for all i is the probability that an adult mosquito

survives the feeding cycle. Although density-dependent mortality of larvae

affects mosquito population, R0 does not depend on density-dependent mor-

tality of larvae.

Theorem 2.4.2. The system of equations (2.1) has a persistent positive equilibrium
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solution Pe = (E∗, L∗, P ∗, A∗
h, A

∗
r, A

∗
o), with its components given by

E∗ =
bρAoA

∗
o

µE + ρE
,

L∗ =
(µL1 + ρL) (Ro − 1)

µL2

,

P ∗ =
ρLL

∗

µP + ρP
,

A∗
h =

ρPP
∗R0

(µAh
+ ρAh

)B1

, (2.6)

A∗
r =

ρAh
A∗

h

µAr + ρAr

,

A∗
o =

ρArA
∗
r

µAo + ρAo

,

with R0 given in Eq.(2.5) and B1 = b
∏
j

(
ρj

µj + ρj

)
for j = E, L, P , Ah, Ar, Ao,

which exist in the interior of D if R0 > 1.

Proof. Substituting Pe = (E∗, L∗, P ∗, A∗
h, A

∗
r, A

∗
o) into (2.1) shows that Pe is an

equilibrium point of (2.1). IfRo > 1, we see that all components Pe are positive.

Thus, Pe exist in the interior of D if Ro > 1. �

2.4.2 Stability of the equilibrium points

Theorem 2.4.3. The mosquito-free equilibrium is locally asymptotically stable when

Ro < 1 and unstable otherwise.

Proof. Let the new births in the ecological model (2.1) be equivalent to new in-

fections in the epidemic models studied in van den Driessche and Watmough

(van den Driessche and Watmough, 2002). The matrices F (x), V (x)+, and

V (x)− satisfy the assumptions A(1)−A(5) (van den Driessche and Watmough,

2002). Thus, this theorem is a straightforward application of Theorem 2 given

in (van den Driessche and Watmough, 2002). �
Theorem 2.4.4. The persistent equilibrium is locally asymptotically stable whenever

Ro > 1 and unstable when Ro < 1. When Ro = 1, Pe = Po

Proof. Let JPe be the Jacobian matrix of system (2.1) at the mosquito persistent
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equilibrium given by

JPe =



−(µE + ρE) 0 0 0 0 bρAo

ρE −A1 0 0 0 0

0 ρL −(µP + ρP ) 0 0 0

0 0 ρP −(µAh
+ ρAh

) 0 ρAo

0 0 0 ρAh
−(µAr + ρAr) 0

0 0 0 0 ρAr −A2)


,(2.7)

where A1 = (µL1 + ρL)− Φ, A2 = (µAr + ρAr , and Φ = 2(µL1 + ρL) (Ro − 1). To

obtain the eigenvalues of JPe , we solve det(JPe − λI) = 0. We use the concept

of block matrices to compute this determinant. Let J = JPe − λI be a block

matrix given by

J =

 A B

C D

 (2.8)

with the following components:

A =


−(µE + ρE)− λ 0 0

ρE −(µL1 + ρL)− Φ− λ 0

0 ρL −(µP + ρP )− λ

 ,

B =


0 0 bρAo

0 0 0

0 0 0

 , C =


0 0 ρP

0 0 0

0 0 0

 , and

D =


−(µAh

+ ρAh
)− λ 0 ρA0

ρAh
−(µAr + ρAr)− λ 0

0 ρAr −(µA0 + ρA0)− λ

 . It follows

from the concepts of block matrices that det(J) = det(AD − BC). But in this

case, BC is a zero matrix leading to det(JPe − λI) = det(J) = det(AD) = 0.

By solving the equation, we obtain three of the eigenvalues given by λ1 =
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−(µE + ρE), λ2 = −(µL1 + ρL) − Φ, and λ3 = −(µP + ρP ). When Ro > 1,

λ2 < 0, which forms the necessary condition for a stable equilibrium point.

When Ro < 1, λ2 > 0, Pe is unstable. The remaining three eigenvalues are

given by the roots of the following equation:

a0λ
3 + a1λ

2 + a2λ+ a3 = 0, (2.9)

where

a0 = 1,

a1 = (µAh
+ ρAh

) + (µAr + ρAr) + (µAo + ρAo),

a2 = (µAh
+ ρAh

)(µAr + ρAr) + (µAh
+ ρAh

)(µAo + ρAo) + (µAr + ρAr)(µAo + ρAo),

a3 = (µAh
+ ρAh

)(µAr + ρAr)(µAo + ρAo)− ρAh
ρArρAo

= (µAh
+ ρAh

)(µAr + ρAr)(µAo + ρAo)

(
B1

Ro

)
,

(2.10)

where B1 = b
∏
j

(
ρj

µj + ρj

)
for j = E, L, P , Ah, Ar, Ao. It remains to be shown

that when Ro > 1, the eigenvalues have negative real parts. The roots of the

polynomial in Eq.(2.9) are difficult to calculate explicitly, but it is clear from

(2.9) that a0 > 0, a1 > 0, a2 > 0, and a3 > 0 always. By the Routh-Hurwitz

criteria (Meinsma, 1995) we need to show that a1a2 − a3 > 0 for all roots of

Eq.(2.9) to have negative real parts.
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a1a2 − a3 = [(µAh
+ ρAh

) + (µAr + ρAr) + (µAo + ρAo)] [(µAh
+ ρAh

)(µAr + ρAr)

+ (µAh
+ ρAh

)(µAo + ρAo) + (µAr + ρAr)(µAo + ρAo)]

− (µAh
+ ρAh

)(µAr + ρAr)(µAo + ρAo)− ρAh
ρArρAo

= (µAh
+ ρAh

)2[(µAr + ρAr) + (µAo + ρAo)]

+ (µAr + ρAr)
2[(µAh

+ ρAh
) + (µAo + ρAo)]

+ (µAo + ρAo)
2[(µAh

+ ρAh
) + (µAr + ρAr)]

+ 2(µAh
+ ρAh

)(µAr + ρAr)(µAo + ρAo)− ρAh
ρArρAo

= (µAh
+ ρAh

)2[(µAr + ρAr) + (µAo + ρAo)] (2.11)

+ (µAr + ρAr)
2[(µAh

+ ρAh
) + (µAo + ρAo)]

+ (µAo + ρAo)
2[(µAh

+ ρAh
) + (µAr + ρAr)]

+ (µAh
+ ρAh

)(µAr + ρAr)(µAo + ρAo)

[
1 +

B1

Ro

]
.

From (2.11) we see that a1a2 − a3 > 0 for all values of Ro. Thus, the roots of

(2.9) have negative real parts. Therefore, when Ro > 1, the six eigenvalues

have negative real parts and the persistent equilibrium point is locally asymp-

totically stable. Where, as when Ro < 1, λ2 > 0. The persistent equilibrium

point is unstable. Substituting Ro = 1 in (2.6) shows that at Ro = 1, Pe = Po. �

2.4.3 Sensitivity Analysis of R0

Sensitivity analysis determines the effects of parameters on model outcomes

(Cariboni et al., 2007). To carry out local sensitivity analysis, we use a sim-

ple approach to compute the sensitivity index, which is a partial derivative of

the output variable with respect to the input parameters (Cariboni et al., 2007;

Chitnis et al., 2008a).

For the base reproduction number, R0, and pi, an input parameter, the sensitiv-

ity index can be computed as ∂R0/∂pi. The normalized sensitivity index, ΩR0
pi

,

of Ro, with respect to parameter pi at a fixed value, p0 (Cariboni et al., 2007;
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Chitnis et al., 2008a) is

ΩR0
pi

=
∂R0

∂pi
× pi
R0

∣∣∣∣
pi=p0

. (2.12)

Using the parameter values presented in Table 2.2, we compute the sensitivity

indices using Eq. (2.12). In figure 2.2A we show the impact of each parameter

on the reproduction number. The number of female eggs laid per oviposition,

b, is the most important parameter in the model (ΩRo
b = 1.00), indicating a

maximum impact on model outcomes. Increasing or decreasing b by 10%, for

example, can increase or decrease Ro by 10%. The parameters with the next

highest sensitivity indices are ρL and µL1 . If the development rate from larval

to pupae stage (ρL) is increased, we observe a decreased risk of dying of larvae

(µL1) and vice versa. A 10% increase (or decrease) in ρL, for example, increases

(or decreases) Ro by 7.6%, while a similar increase (or decrease) of µL1 in Ro

decreases (or increases) Ro by 7.6%. Other important parameters with higher

indices are ρAh
and µAh

. Similar to ρL and µL1 , these parameters indicate an

equal but opposite impact on Ro. Increasing ρAh
can lead to an increase in Ro.

Increasing µAh
, however would decrease Ro.

Local sensitivity analysis shows the effect of one parameter while all others are

kept constant. Global sensitivity analysis estimates the effect of one parameter

on the output, while allowing all other parameters to vary, enabling the iden-

tification of interactions (Cariboni et al., 2007). Here, we used SaSAT software

(Hoare et al., 2008) to carry out the global sensitivity analysis of the mosquito

population reproduction number. The Latin Hypercube Sampling Method

(LHS), a type of stratified Monte Carlo sampling (Blower and Dowlatabadi,

1994), was used to sample the input parameters using the parameter value

ranges provided in Table 2.2. Due to the absence of data on the distribution

function of the parameters used in our model, a uniform distribution for all

input parameters was chosen. The sets of input parameter values sampled

using the LHS method were used to run 5000 simulations. To identify input

parameters with the greatest influence on Ro, we computed the Partial Rank
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Figure 2.2: Sensitivity Analysis of Ro. A: Local sensitivity analysis. Normal-
ized sensitivity indices ofR0 to parameters evaluated at the baseline parameter
values given in Table 2.2. B: Global sensitivity analysis. Partial Rank correla-
tion coefficients showing the ranking of parameter influence on R0.

Correlation Coefficients between the input parameters and our output variable

using the SaSAT software.

In figure 2.2B, we present the results of the partial rank correlation coefficients

for each of the parameters. Again, results show that birth parameter, b, has the

highest influence on the mosquito population reproduction number. Next to b

are the parameters associated with the larvae stage, followed by the egg devel-

opment rate and the parameters related to the host seeking stage. Parameters

related to the resting stage of the mosquitoes show the lowest influence on Ro.

In general, we find that mortality rates are negatively correlated to the popula-

tion reproduction number, while development rates are positively correlated.

Because the population reproduction number gives information on the stabil-

ity of the equilibrium point and the persistence of the mosquito population,
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increasing parameters that are positively correlated to the reproduction num-

ber would result in the persistence of the mosquito population.

2.5 Modelling movement

2.5.1 Continuous space model

Traditional methods of modelling diffusion have involved the use of the heat

equation in which the domain is assumed to be continuous. If we assume that

the movement of individual mosquitoes is similar to that of Brownian motion,

then we can define the rate of change of mosquito density at time t at location

(x, y), M(x, y, t) as

∂M(x, y, t)

∂t
= D∗∇2M(x, y, t) (2.13)

where (x, y) ∈ R2, ∇ represents the partial derivative in 2-dimensional space

and ∇2M = ∂2M/∂x2 + ∂2M/∂y2, and D∗ is the diffusion coefficient (metres2

time−1). We assume that the initial conditions are given byM(x, y, 0) = Kδ(x, y),

where δ(x, y) is the 2-dimension Dirac delta function, δ(x, y) = 0 for x2+y2 ̸= 0

and
∫∞
−∞

∫∞
−∞ δ(x, y)dxdy = 1. Therefore,

∫∞
−∞

∫∞
−∞M(x, y, 0)dxdy = K repre-

sents an initial condition of K mosquitoes released at the origin. The standard

solution to the heat equation (2.13) is given by:

M(x, y, t) =
K

4πD∗t
exp

[
−(x2 + y2)

4D∗t

]
(2.14)

for t > 0 and (x, y) ∈ R2. We convert our solution to polar coordinates with

x = r cos θ and y = r sin θ, implying that r =
√
x2 + y2 and dxdy = rdrdθ.(2.15)
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Using (2.14) and (2.15) we obtain

M(r, θ, t) =
K

4πD∗t
exp

[
− r2

4D∗t

]
(2.16)

for r ≥ 0 is the radial distance measured from centre. The mosquito density at

a given distance, r from the centre is obtained from M̄(r, t) =
∫ 2π

0
M(r, θ, t)rdθ,

which gives

M̄(r, t) =
Kr

2D∗t
exp

[
− r2

4D∗t

]
. (2.17)

Although partial differential equations (PDEs) are a good way of modelling

dispersal (Dumont, Y; Dumont,Y and Dufourd, C), their analysis is usually

limited to numerical simulations when modelling environmental heterogene-

ity. Discrete approaches offer a better and simpler way of modelling hetero-

geneity (Arino et al., 2005, 2007; Jin and Wang, 2005), specifically when re-

sources such as hosts and breeding sites are variable across regions. In the

next section, we develop a mosquito dispersal model which considers discrete

space and describes how we model heterogeneity in resources and its influence

on mosquito dispersal.

2.5.2 Discrete space model spatial structure

We let Ξ be the set of all patches and ξ be any patch in Ξ. We construct the

model by dividing 2-dimensional space into a set of discrete hexagonal patches

(Figure 2.3). We label the hexagonal grid with a coordinate system, (i, j), where

1 ≤ i ≤ n and 1 ≤ j ≤ m represent the locations of the centre of the patches

and i, j ∈ N.

We define the neighbourhood, N(i, j), (figure 2.3) of an index patch as an or-

dered set of six patches given by

N(i, j) = {(i, j + 1), (i, j − 1), (i+ 1, j), (i− 1, j), (i− 1, j + 1), (i− 1, j − 1)}(2.18)
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Figure 2.3: A Schematic representation of a landscape division into hexagonal
patches. Model equations (Eq. (2.36) apply in each patch.

when j is even or

N(i, j) = {(i, j + 1), (i, j − 1), (i+ 1, j − 1), (i− 1, j), (i+ 1, j + 1), (i+ 1, j)}(2.19)

when j is odd. We assume periodic boundary conditions so that patch (i, 0) =

(i,m) and (0, j) = (n, j).

2.5.3 Dispersal in a homogeneous landscape

Mosquitoes disperse while searching for hosts or oviposition sites, causing a

link between patches. A given fraction of adults searching for hosts and a

fraction of adults searching for oviposition sites leave their original or current

patches of residence, while others stay behind. We assume that dispersing
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adults move from their current patch to enter any of the other six nearest neigh-

bouring patches (Figure 2.3) and that long-range dispersal is achieved through

a repeated single patch movement. That is, patch jumping is precluded.

Mosquitoes can detect host odour (Knols and Meijerink, 1997; Mwandawiro

et al., 2000), but it is unclear whether they have the learning capacity they

would need to enable them to return to particular hosts or breeding sites (Alonso

and Schuck-Paim, 2006). We make the simplifying assumption that mosquitoes

do not preferentially return to their previous locations, so that movement is a

Markov process. In the case where all patches have similar characteristics (i.e.

a homogeneous landscape), the mosquitoes disperse equally to each of the six

neighbouring patches surrounding the current position (Figure 2.3) and the

dispersal parameter is the same for all patches. If we let D > 0 (per time) be

the rate at which mosquitoes move from one patch to a neighbouring patch,

we can compute its value from:

D =
D∗

A
(2.20)

where D∗ is the diffusion coefficient in the absence of all other factors affecting

flight. The area A (in metres2) of a hexagon is given by:

A =

√
3L2

2
, (2.21)

with L (in metres) being the patch size defined as the measurement from the

centre of one patch to the centre of the neighbouring patch.

We let M(i,j) be the number of free flying mosquitoes in patch (i, j). We let

mosquitoes move from patch (i, j) (a source or index patch) to a neighbour-

ing patch ξ ∈ N(i, j). We define the movement rate from patch (i, j) to a

neighbouring patch ξ to be D(i,j)/ξ and the movement rate from the neighbour-

ing patch to the index patch to be Dξ/(i,j). For a homogeneous environment,
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D(i,j)/ξ = Dξ/(i,j) = D. Assuming that mosquitoes do not reproduce or die dur-

ing dispersal, the dynamics of free-flying mosquitoes in any patch (i, j) can be

represented as

dM(i,j)

dt
=

∑
ξ∈N(i,j)

DMξ −
∑

ξ∈N(i,j)

DM(i,j) (2.22)

with initial conditions M(i,j)(0). The first term represents mosquitoes mov-

ing into the patch and the second term represents mosquitoes moving out of

a patch. The movement model in (2.22) is biologically and mathematically

meaningful in the domain Ω =M(i,j) ∈ Rnm, such that M(i,j) ≥ 0.

Theorem 2.5.1. If initial conditions lie in region Ω, the movement equation (2.22)

has a unique solution that exists and remains in Ω for all time t ≥ 0.

Proof. The right hand side of Eq. (2.22) is continuous with a continuous partial

derivative in region Ω and therefore (2.22) has a unique solution. We then show

that Ω is forward-invariant. If M(i,j) = 0, then M
′

(i,j) =
∑

ξ∈N(i,j)

DMξ ≥ 0 for all

(i, j). Thus, the solution to Eq. (2.22) is enclosed in Ω and a unique solution

exists for all t. �

2.5.4 Dispersal in a heterogeneous landscape

Differences in the distribution of resources creates heterogeneity on the grid,

since patches may have different degrees of attractiveness to mosquitoes. In

this section, we describe how heterogeneity and differences in patch attrac-

tiveness to mosquitoes during movement is incorporated.

Dispersal with heterogeneity in host availability

The number of hosts is allowed to differ between patches across the grid, intro-

ducing heterogeneity. Because of the neighbour to neighbour dispersal nature

of this model, movement of mosquitoes from one patch to other patches is only
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affected by the patches bordering each neighbourhood. We therefore calculate

and use the proportion of hosts in each set of seven patches relative to each

other, using the number of hosts on the particular patch and on its six neigh-

bours. However, we assume that host distribution across patches is constant

over time.

We recall that Ξ is a set of patches on the grid, ξ is any patch in Ξ, and N(i, j)

is a set of neighbours given by (2.18) and (2.19) of an index patch (i, j). We

also let ci,j be a set of seven patches sharing boundaries, that is, patch (i, j) and

its 6 neighbours. ci′ ,j′ is a set of seven patches sharing boundaries made up of

patch ξ′ and its six neighbours, of which one is patch (i, j). For easy reference,

we use the following notations:

• Hξ is the population of hosts in patch ξ

• H ij
T is the total population of hosts in ci,j

• Hξ
′

is the population of hosts in patch ξ′

• H i
′
j
′

T is the total population of hosts in ci′ ,j′

• H̄ ij
ξ is the proportion of hosts in patch ξ ∈ ci,j out of all hosts in ci,j

• H̄ ij

ξ
′ is the proportion of hosts in patch ξ′ ∈ ci,j out of all hosts in ci,j

• H̄ i
′
j
′

ξ is the proportion of hosts in patch ξ ∈ ci′ ,j′ out of all hosts in ci′ ,j′

• H̄ i
′
j
′

ξ′
is the proportion of hosts in patch ξ′ ∈ ci′ ,j′ out of all hosts in ci′ ,j′

We calculate the total number of hosts over these seven patches sharing bound-

aries from

H ij
T =

∑
ξ∈ci,j

Hξ, (2.23)

and the proportion of hosts in each ξ ∈ ci,j from

H̄ ij
ξ =

Hξ

H ij
T

(2.24)
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with

∑
ξ∈ci,j

H̄ ij
ξ = 1 (2.25)

Figure 2.4: Diagrammatic representation of mosquito movement between an
index patch (source patch (i, j)) and a neighbouring patch ((i′ , j ′) = ξ

′ ∈
N(i, j)) where N(i, j) is defined by Eqs. (2.18) and (2.19).

Mosquitoes are attracted to odours released by hosts (Costantini et al., 1998;

Knols and Meijerink, 1997; Mwandawiro et al., 2000; Takken and Knols, 1999).

This leads to mosquitoes being less likely to leave the patch if their current

patch is a home to many hosts and likely to move out of the patch if there are

few hosts. To mimic this phenomenon, we use a decreasing exponential func-

tion to model the movement rate. If (i, j) is a source patch and its neighbours

(Figure 2.4), and if we take into account the availability of hosts in each of the

patches contained in ci,j , we can define the movement out of a patch i, j to a

neighbour patch ξ′ as

βH
(i,j)/ξ′

= De
−λ

(
H̄ij

ξ −H̄ij

ξ
′

)
. (2.26)

Here, λ is a constant parameter for the decay function and H̄ ij

ξ′
is the proportion

of hosts in patch ξ′ contained in ci,j , which is obtained from

H̄ ij

ξ
′ =

Hξ
′

H ij
T

. (2.27)

The function in Eq. (2.26) (its behaviour is shown in Figure 2.5) represents
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different possible characteristics of two patches sharing boundaries as follows:

• If H̄ ij
ξ > H̄ ij

ξ′
, then 0 < βH

(i,j)/ξ′
< D. This condition establishes that the

source patch (i, j) contains more hosts compared to patch ξ
′ . The patch

is therefore more attractive to mosquitoes compared to its neighbour and

will tend to retain mosquitoes; few mosquitoes will tend to move away

from it.

• If H̄ ij
ξ = H̄ ij

ξ′
, then βH

(i,j)/ξ′
= D. This implies that the two patches have

equal attractiveness to mosquitoes.

• If H̄ ij
ξ < H̄ ij

ξ′
, then βH

(i,j)/ξ′
> D. Here, patch (i, j) is less attractive to

mosquitoes because it has fewer hosts compared to patch ξ′ . The disper-

sal rate out of the patch is high as more mosquitoes will migrate out to

patches that are more attractive.
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Figure 2.5: Behaviour of the dispersal function in Eq. (2.26) at D = 0.2, λ = 0.5,
and H̄ ∈ [0, 1].

Similarly, the movement of mosquitoes from patch ξ′ to patch (i, j) (Figure 2.4),

where both ξ′ and (i, j) are contained in ci,j , is modelled. In this respect,H i
′
j
′

T is
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calculated using a different set of neighbouring patches, ci′ ,j′ . In other words,

it is the total number of hosts in ξ′ and its six neighbours, of which one of them

is patch (i, j). We calculate it using

H i
′
j
′

T =
∑

ξ∈ci′,j′

Hξ. (2.28)

Therefore, we model the movement rate from any neighbouring patch ξ
′ into

patch (i, j) (as shown in Figure 2.4) using

βH
ξ′/(i,j)

= De
−λ

(
H̄i

′
j
′

ξ
′ −H̄i

′
j
′

ξ

)
(2.29)

where

H̄ i
′
j
′

ξ =
Hξ

H i′j′

T

, (2.30)

and

H̄ i
′
j
′

ξ′
=

Hξ
′

H i′j′

T

. (2.31)

In general, the movement rate from patches with relatively low attraction is

higher compared to patches with higher attraction and vice versa. To sum-

marise, we re-write the general movement model presented in Eq. (2.22) as

dAh(i,j)

dt
=

 ∑
ξ′∈N(i,j)

βH
ξ′/(i,j)

Ahξ
′

−

 ∑
ξ′∈N(i,j)

βH
(i,j)/ξ′

Ah(i,j), (2.32)

to describe the dynamics of host seeking mosquitoes in the absence of new

recruitment and deaths in any of the patches. Here, the dispersal rate takes

into account the dependence of dispersal on hosts availability.
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Dispersal with heterogeneity in oviposition site availability

Another form of heterogeneity is imposed by the availability of oviposition

sites in an area. Mosquitoes searching for breeding sites for egg laying are

attracted by the availability of breeding sites (Minakawa et al., 2002). We in-

corporate this in a manner similar to that for hosts.

If Bci,j is the number of oviposition sites in a patch and B̄ci,j is the proportion

of oviposition sites in a patch relative to its neighbours, the movement rate out

of the index patch (i, j) is expressed as

βB
(i,j)/ξ

′ = De
−λ

(
B̄ij

ξ −B̄ij

ξ
′

)
(2.33)

and the movement rate into the patch from neighbouring patches:

βB
ξ
′
/(i,j)

= De
−λ

(
B̄i

′
j
′

ξ
′ −B̄i

′
j
′

ξ

)
(2.34)

Similarly, the movement rate of mosquitoes from a patch is higher if there are

few breeding sites (B) in the patch. We represent the movement of mosquitoes

searching for oviposition sites in the following equation

dAo(i,j)

dt
=

 ∑
ξ′∈N(i,j)

βB
ξ′/(i,j)

Aoξ
′

−

 ∑
ξ′∈N(i,j)

βB
(i,j)/ξ′

Ao(i,j). (2.35)

Since the density of breeding sites is affected by seasonal variations, as tem-

poral sites are created due to rainfall for example, their distribution changes

over time. However, in this model, for simplicity, we consider only permanent

breeding sites. So the initial distribution of breeding sites does not change over

time.
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2.5.5 Full dispersal model equations

In section 2.3, we studied the dynamics of mosquito populations in each stage

of the mosquito life cycle within a single patch. We extend this model to in-

corporate dispersal processes. If we allow host seeking and oviposition site

searching mosquitoes to move between patches, then we can combine the

system of equations in Eq. (2.1) for patch (i, j) and the movement terms in

Eq.(2.32) and (2.35) to form the following system of equations:

dE(i,j)

dt
= b(i,j)ψ

B
(i,j)ρAo(i,j)Ao(i,j) −

(
µE(i,j) + ρE(i,j)

)
E(i,j)

dL(i,j)

dt
= ρE(i,j)E(i,j) −

(
µL1(i,j) + µL2(i,j)L(i,j) + ρL(i,j)

)
L(i,j)

dP(i,j)

dt
= ρL(i,j)L(i,j) −

(
µP (i,j) + ρP (i,j)

)
P(i,j)

dAh(i,j)

dt
= ρP (i,j)P(i,j) + ψB

(i,j)ρAo(i,j)Ao(i,j) −
(
µAh(i,j)

+ ψH
(i,j)ρAh(i,j)

)
Ah(i,j)

−

 ∑
ξ
′∈N(i,j)

βH
(i,j)/ξ

′

Ah(i,j) +

 ∑
ξ
′∈N(i,j)

βH
ξ
′
/(i,j)

Ahξ′

 (2.36)

dAr(i,j)

dt
= ψH

(i,j)ρAh(i,j)
Ah(i,j) −

(
µAr(i,j)

+ ρAr(i,j)

)
Ar(i,j)

dAo(i,j)

dt
= ρAr(i,j)

Ar(i,j) −
(
µAo(i,j)

+ ψB
(i,j)ρAo(i,j)

)
Ao(i,j)

−

 ∑
ξ
′∈N(i,j)

βB
(i,j)/ξ

′

Ao(i,j) +

 ∑
ξ
′∈N(i,j)

βB
ξ
′
/(i,j)

Aoξ′


with initial conditions E(i,j), L(i,j), P(i,j), Ah(i,j), Ar(i,j), Ao(i,j) ≥ 0 at time t = 0.

Here, H and B represents hosts and breeding sites respectively. The state vari-

ables and some of the parameters carry the same meaning as in system (2.1)

(see Tables 2.1 and 2.2). The individual equations in system (2.36) describe

the evolution of eggs, larvae, pupae, host seeking, resting, and oviposition site

searching mosquitoes in patch (i, j).

The progression from the oviposition site searching state, Ao, to the host seek-

ing state, Ah. is possible if and only if oviposition site searching mosquitoes

have laid eggs. We introduce a parameter ψB
(i,j) defined by:
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ψB
(i,j) =

 1 if B(i,j) > 0

0 if B(i,j) = 0,
(2.37)

to control this process, since laying eggs in a patch is possible only if the par-

ticular patch contains at least one breeding site. In patches where B(i,j) = 0,

the initial conditions for E(i,j), L(i,j), and P(i,j) are 0. Similarly, the progression

from host seeking to the resting stage is possible if there are hosts in the patch

(Killeen et al., 2001). As such, we define

ψH
(i,j) =

 1 if H(i,j) > 0

0 if H(i,j) = 0.
(2.38)

Patches without hosts have initial conditions Ar(i,j) = 0. All other parameters

are patch dependent and their definitions are summarized in Tables 2.2 and

2.3.

The total number of mosquitoes in each stage at time t over all patches on the

grid is given by the sum over all locations Ξ. That is

S(t) =

(∑
ξ∈Ξ

Sξ(t)

)
(2.39)

with S(t) representing the stage specific total number of mosquitoes (E(t),

L(t), P (t), Ah(t), Ar(t), and Ao(t)). The solutions of Eq. (2.36) remain non-

negative in the region

Γ =





E(i,j)

L(i,j)

P(i,j)

Ah(i,j)

Ar(i,j)

Ao(i,j)


∈ R6nm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E(i,j) ≥ 0,

L(i,j) ≥ 0,

P(i,j) ≥ 0,

Ah(i,j) ≥ 0,

Ar(i,j) ≥ 0,

Ao(i,j) ≥ 0


, (2.40)

because movement always stops when there are no mosquitoes in a patch. The

model is therefore mathematically and biologically well posed.
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Table 2.3: Description of parameters and variables specific to the dispersal
model

Parameter Description Units

H number of hosts hosts
B number of breeding sites breeding sites
βH dispersal rate of host seeking

mosquitoes
per time

βB dispersal rate of mosquitoes search-
ing for breeding sites

per time

βH∗ dispersal rate of mosquitoes in the
presence of repellents

per time

L patch size metres
D rate of movement per time
λ a constant parameter for the decay

function
dimensionless

D∗ diffusion coefficient metres2time−1

p repellents blocked ability of
mosquitoes to enter a patch

dimensionless

ϕH a fraction measuring the strength of a
repellent in in patch i, j

unitless

Theorem 2.5.2. Assuming that initial conditions lie in Γ, the system of equations

for the mosquito population dynamics for all patches (2.36) has a unique solution that

exists and remains in Γ for all time t ≥ 0.

Proof. The right hand side of system (2.36) is continuous with continuous par-

tial derivatives in region Γ. Thus, there exists a unique solution for (2.36). We

show that region Γ is forward-invariant. From system (2.36) we see that if

E(i,j) = 0, then E
′

(i,j) = b(i,j)ψ
B
(i,j)ρAo(i,j)Ao(i,j) ≥ 0; if L(i,j) = 0, then L

′

(i,j) =

ρE(i,j)E(i,j) ≥ 0; if P(i,j) = 0, then P
′

(i,j) = ρL(i,j)L(i,j) ≥ 0; if Ah(i,j) = 0,

then A
′

h(i,j) = ρP (i,j)P(i,j) + ψB
(i,j)ρAo(i,j)Ao(i,j) +

 ∑
ξ
′∈N(i,j)

βH
ξ
′
/(i,j)

Ahξ′

 ≥ 0; if

Ar(i,j) = 0, then A
′

r(i,j) = ψH
(i,j)ρAh(i,j)

Ah(i,j) ≥ 0; and if Ao(i,j) = 0, then A
′

o(i,j) =

ρAr(i,j)
Ar(i,j) +

 ∑
ξ
′∈N(i,j)

βB
ξ
′
/(i,j)

Aoξ′

 ≥ 0. Therefore, all solutions of the system

of equations in (2.36) are contained in the region Ξ and a unique solution exists

for all t. �

System (2.36) is at an equilibrium if the right hand side is zero at all time t.
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Patch (i, j) is at a mosquito-free equilibrium if E(i,j) = L(i,j) = P(i,j) = Ah(i,j) =

Ar(i,j) = Ao(i,j) = 0. However, given the complexity of the model, we do not

show its stability or show the existence of other invariant subsets and only run

numerical simulations of this model.

2.6 Numerical simulations

The model without dispersal (Eq. (2.1)) and the model with dispersal (Eq.

(2.36)) are both simulated using Matlab 7.10.0(R2010a) student version (MAT-

LAB, 2010) and the ode45 solver for solving differential equations is used. The

25 by 21 grid (see sketch in Figure 2.3) is used as a platform to simulate move-

ment of mosquitoes between hexagonal patches. To ensure that boundary con-

ditions do not influence results, periodic boundary conditions are used. This

implies a torus topology for the landscape, where edge patches are such that

their nearest neighbours on the outside are patches on the opposing edges.

For model simulation and investigation, we use data on stage specific mortal-

ity and development rates from the literature (see appendix 2.9), summarised

in Table 2.2. For mosquito dispersal, some studies show that mosquitoes can

move up to 800 m a day (Gillies, 1961). Field studies on mark release recapture

experiments of Anopheles gambiae also show that daily flight range from 200

to 400 m (Midega et al., 2007). These results indicate that mosquito dispersal

distance is variable. Due to these variations, in section 2.7.1 we use our model

platform (section 2.5) and the movement rate D (Eq. (2.20)) to produce distri-

butions of dispersed mosquitoes by distance travelled in a day. However, for

numerical illustration of the model with dispersal, we set the distance from the

centre of one patch to the centre of the neighbouring patch, L, to 50 m.

We run simulations with total numbers of 2700 eggs, 1900 larvae, 2000 pupae,

2400 host seeking adults, 1800 resting adults, and 1200 oviposition site seek-

ing adults, initially distributed across the grid (Figure 2.7). The distribution is

based on the whether a patch contains breeding sites or hosts. Five scenarios

are set up to simulate the effect of different kinds of heterogeneity (Figure 2.6).
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Figure 2.6: Spatial arrangements of hosts and breeding sites on the grid show-
ing the set up of scenarios. Scenario 1 (first row): all patches contain hosts
and breeding sites. Scenario 2 (second row): random distribution of hosts and
breeding sites. Scenario 3(third row): all patches contain breeding sites but
hosts on one side of the grid. Scenario 4 (fourth row): all patches contain hosts
but breeding sites are on one side of the grid. Scenario 5 (fifth row): clusters of
hosts and breeding sites are far apart from each other.
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In the first scenario, all patches contain hosts and breeding sites; the second

scenario simulates the case when hosts and breeding sites are randomly dis-

tributed on the grid. In the third scenario, all patches contain breeding sites

and hosts are only on one side of the grid; while in the fourth scenario, hosts

are present in all patches, with breeding sites being on one side of the grid. In

scenario five, hosts and breeding sites are placed in clusters that are far apart

from each other. Simulations are continued for each scenario until the total

mosquito population over the entire grid for each of the stages and their spa-

tial distribution reaches an equilibrium. The final time of analysis for the sim-

ulations for all results presented in this work is 250 days, except where stated

otherwise.

2.7 Model application, comparisons, and results

2.7.1 Dispersal distances

In this section, we use the dispersal model to estimate the distance travelled

by an average mosquito. The evolution of equation (2.22) is simulated on a

homogeneous grid with uniform attractiveness to mosquitoes. The system is

initialized with all mosquitoes placed at a single source patch. We then cal-

culate the total number of mosquitoes per patch and per neighbourhood, the

average density of mosquitoes per patch, and the average of the dispersal dis-

tance after time 1.

We let Mn(t) be the average density of mosquitoes in a patch at time t, where

n measures the distance from the source patch. Here, n is 0, 1, 2, ...,m, with

n = 0 being the source patch, n = 1 being the nearest neighbouring patches

(first ring of patches), n = 2 being the second ring of patches, n = 3 being the

third ring of patches, and so on (see Figure 2.8). The total number of patches

in each of the rings is given by

Nn =

 6n for n ≥ 1

1 for n = 0.
(2.41)



48 Chapter 2. Mathematical modelling of mosquito dispersal

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Eggs

 

 

0

73

147

220

294

367

440

514

587

661

734

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Larvae

 

 

0

49

98

148

197

246

295

344

393

443

492

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Pupae

 

 

0

66

133

199

266

332

398

465

531

598

664

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Host seeking

 

 

0

24

49

73

97

122

146

171

195

219

244

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Resting

 

 

0

30

60

89

119

149

179

209

238

268

298

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Oviposition site searching

 

 

0

36

73

109

146

182

218

255

291

328

364

Figure 2.7: Spatial population distribution of initial conditions by stage. The
distribution of initial conditions is common to all scenarios (figure 2.6) for com-
parative purposes.

The total number of mosquitoes that reached ring n after time t, Pn(t) is

Pn(t) =
Nn∑
k=1

Ck(t), (2.42)
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where Ck is the number of mosquitoes in patch k contained in n. From equa-

tion (2.42), we obtain the mosquito frequency by distance travelled from the

source patch for a particular time t. We present the results in figure 2.9A for

t = 1 day and different values of D.
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Figure 2.8: Sketch diagram showing how the distance from the source patch
was obtained. Each ring of neighbours to source patch, n = 0, 1, 2, ...,m can be
multiplied by patch size to obtain the distance.

The average density of mosquitoes per patch, after time t has elapsed, is ob-

tained from:

Mn(t) =
Pn(t)

Nn

, (2.43)

which gives the average density distribution presented in figure 2.9B when

t = 1 day.

We let S1 be the initial number of mosquitoes released from the source patch

and the weighted average distance travelled by one mosquito at time t, Wd(t),

is
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Wd(t) =

(∑m
n=0 nPn(t)

S1

)
× L (2.44)

where L is the patch size. We calculate the weighted average of the dispersal

distance travelled by a mosquito in one day, Wd(1).

In Figure 2.9A we present the results of the frequency distribution of mosquitoes

dispersed in a day by distance from source at different values of the diffusion

parameter. As expected, increasing values of D results in mosquitoes moving

faster and reaching larger distances. Figure 2.9B shows the average density

of mosquitoes per patch by distance moved in a day. After one day, most

mosquitoes have moved, but the source still contains the highest density.

From simulations, the weighted mean distance travelled by each mosquito per

day (as calculated from Eq. (2.44)) is estimated to be 43, 79, and 103 m when

L = 50 m and mosquitoes are allowed to move at a rate, D, of 0.2, 0.5, and 0.8,

respectively.

2.7.2 Comparison between discrete and continuous space form

of the models

The nearest neighbours movement approach has been shown to relate closely

to diffusion models (Arino et al., 2007; Keeling and Rohani, 2008). To evaluate

the effects of using discrete space, we compare the behaviour of the discrete

space movement model (Eq. (2.22)) under homogeneous conditions to that

of the model that uses the diffusion approach (Eq. (2.13)). By comparing the

behaviour of the two approaches, we calculate how far a mosquito can travel

in a day (and time is set to 1 day in the simulations for both models).

Figure 2.10 presents the results of the discrete (Eq. (2.22)) and continuous

forms (Eq. (2.17)) of the model. The scenario we compare to the diffusion

model is such that all patches contain mosquito resources, creating unifor-

mity in attractiveness to mosquitoes between patches. The probability of a
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Figure 2.9: Distribution of mosquitoes as a function of the distance from cen-
ter. A: Frequency distributions of mosquitoes by the distance moved from
mosquito source (source patch with n = 0) in a day (Eq. (2.42) in Section 2.7.1).
B: Average density of mosquitoes per patch (Eq. (2.43)). A total number of 600
(i.e. S1 = 600) mosquitoes were initially placed in one patch and simulated at
different values of D and different distributions of repellents for one day with
λ = 0.5.

mosquito moving in any direction is therefore the same. The two models pro-

duce slightly different results. However, the distributions show similar prop-

erties in terms of the modelled mosquito trajectories between the discrete space

and the continuous space models. Both models show peaks in mosquito den-

sity near the point of release. The continuous model shows a higher peak and

a higher rate of decrease compared to the discrete model.

2.7.3 Spatial repellents

Spatial repellents can have different effects on mosquito dispersal, and hence

population dynamics, in different areas. These repellents can be non-physical
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Figure 2.10: Comparison between the discrete space (Eq. (2.32)) and continu-
ous space ( Eq. (2.17)) (obtained from Eq. (2.13)) models. A total number of
600 mosquitoes initially placed at the source patch during the simulation of
the discrete space model (with λ = 0.5) were also used in the continuous space
version of the model (i.e K = 600 ). Mosquitoes were allowed to move at the
same rate (i.e. D = 0.2) for both forms of the model and time was set to 1 day.

barriers, such as the treatment perimeters with insecticides to protect popula-

tions from mosquito bites (Britch et al., 2009) by reducing the number of biting

mosquitoes moving into the area (Britch et al., 2010).

We use the dispersal model developed in this paper to evaluate the effect of in-

cluding patches with spatial repellents on the distance travelled by mosquitoes.

We include a multiplicative factor ϕ(i,j) = 1 − p(i,j), where p(i,j) ∈ [0, 1] to ac-

count for the effect of spatial repellents on flying mosquitoes in some patches.

The parameter p can be interpreted as the blocked ability of mosquitoes to en-

ter into a patch. When p(i,j) = 1, the barrier in the patch acts as an obstacle

which completely blocks movement and when p(i,j) = 0, movement is not im-

peded. For host seeking mosquitoes, the dispersal rates from the source patch
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become:

βH∗
(i,j)/ξ

′ = ϕξ′β
H
(i,j)/ξ

′ (2.45)

and the dispersal rate into the patch changes to

βH∗
ξ
′
/(i,j)

= ϕ(i,j)β
H
ξ
′
/(i,j)

. (2.46)

We note that in this way of modelling spatial repellents, emerging adults are

not chased away by the repellents unless they have entered the host seeking

stage.

We set up two scenarios to simulate the effect of repellents, with p(i,j) = 0.8. In

the first scenario, we place repellents in the second ring to source (i.e n = 2)

to form a regular ring distribution. In the second scenario, we randomly dis-

tribute repellents over the patches across the landscape. Results from these

two scenarios were compared with results produced under homogeneous con-

ditions (without repellents in any of the patches).

The presence of repellents in patches placed at n = 2 creates a barrier to

mosquitoes (Figure 2.9A). Most mosquitoes move away from the source and

cluster in the first neighbourhood (n = 1). Few mosquitoes are observed in the

second neighbourhood. The density of mosquitoes for n > 2 are lower, com-

pared to the scenario when there are no repellents. At larger distances from

the source patch, the presence of repellents in patches near the source did not

show any impact on mosquito dispersal.

The density of mosquitoes in the source patch is found to be higher when D

is 0.8, with repellents placed in a ring of patches, than at D = 0.2 with no re-

pellents. From n = 1 to n = 2, there is no major difference between the two

scenarios. For n > 2, mosquito density is smaller when D is set to 0.2, com-

pared to when repellents are placed in a ring distribution. In this case, the

repellent does not have a strong impact on the movement of mosquitoes and
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therefore the value of the movement rate has a substantial role in controlling

movement to other patches. When there are patches with repellents, the av-

erage number of mosquitoes dispersed per patch (Figure 2.9B) does not differ

much from a scenario where the are no repellents. On the other hand, a small

difference is observed for n < 2.

A random distribution of repellents results in mosquitoes clustering in the

source patch and in the nearest neighbourhoods. Fewer mosquitoes are ob-

served clustering in the patches far from the source patch compared to a situ-

ation when there are no repellents.

In the presence of spatial repellents, with D = 0.8, the weighted mean distance

moved is estimated to be 78 m when repellents are placed at n = 2 and 55 m

when repellents are randomly distributed across the landscape.

2.7.4 Impact of heterogeneity on spatial distribution

Figure 2.11 shows the effect of heterogeneity on the spatial distribution of lar-

vae, host seeking, and oviposition site searching mosquitoes when the system

is at equilibrium. The population distribution is highly dependent on the dis-

tribution of both hosts and breeding sites. As expected, when all patches on

the grid have both hosts and breeding sites, the entire grid become densely

populated. Host seeking mosquitoes show a pronounced spread across the

grid when hosts and breeding sites are randomly distributed, compared to

mosquitoes searching for oviposition sites. When breeding sites are placed

in all patches and hosts are clustered on one part of the grid, host seeking

mosquitoes spread over a larger area, compared to a scenario where hosts are

present in all patches and breeding sites are clustered on one side of the grid.
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Figure 2.11: Spatial population distribution of mosquitoes by scenario (Figure
2.6) and stage. Scenario 1 (first row): all patches contain hosts and breeding
sites. Scenario 2 (second row): random distribution of hosts and breeding sites.
Scenario 3(third row): all patches contain breeding sites but hosts are on one
side of the grid. Scenario 4 (fourth row): all patches contain hosts but breeding
sites are on one side of the grid. Scenario 5 (fifth row): clusters of hosts and
breeding sites are far apart from each other. These results are a snapshot taken
at day 250 when the whole system is at an equilibrium.
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2.7.5 Impact of dispersal on population distribution

Mosquito dispersal becomes more important when the distribution of hosts

and breeding sites on the grid is heterogeneous (Figure 2.11). Clustering of

host seeking mosquitoes towards patches containing both hosts and breeding

sites is observed. However, when hosts and breeding sites are located in sep-

arate parts of the grid, the population dies out within a few days (given the

assumed initial densities of mosquitoes for these simulations).

2.7.6 Impact of heterogeneity on the dynamics of the total pop-

ulation

Figure 2.12 presents the dynamics of the total population (Eg. (2.39)) over all

patches on the grid. Heterogeneous distributions of breeding sites and hosts,

to a large extent, reduces the population at equilibrium. When clusters of

breeding sites and hosts are placed far from each other, mosquitoes become

unable to reproduce as distances required to travel is increased. Hence, popu-

lation extinction is possible.

2.7.7 Impact of dispersal and heterogeneity on population dy-

namics

To evaluate the impact of dispersal and heterogeneity on population dynam-

ics, we carried out numerical simulations using models both without (system

(2.1)) and with dispersal (system (2.36)). While maintaining the same set up

of multiple sources of mosquitoes (Figure 2.7) for comparison purposes, we

computed the average number of mosquitoes at equilibrium across all patches

on the grid for the dispersal model. The two models show slightly different

equilibrium values (Figure 2.13) (i.e (7339, 577, 93, 194, 206, 26) for the model

without dispersal and (7197, 564, 91, 190, 202, 25) for the dispersal model when

all patches have hosts and breeding sites). For randomly distributed mosquito

resources, the average equilibrium value across all patches on the grid was
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Figure 2.12: Population dynamics of mosquitoes across the grid by scenario
and stage. Scenario 1: Both hosts and breeding sites were present in all patches.
Scenario 2: Both hosts and breeding sites were randomly distributed across
the grid. Scenario 3: Breeding sites were placed in all patches, hosts were
clustered on one part of the grid. Scenario 4: Hosts were placed in all patches,
but breeding sites were placed on one part of the grid. Scenario 5: Both hosts
and breeding sites were placed on one part of the grid, far from each other.
Figure 2.6 shows the set up of the scenarios.

(118, 31, 5, 7, 6, 1). This corresponds to an equilibrium population, measured

as number of mosquitoes per km2, as (33.2, 2.6, 0.4, 0.9, 0.9, 0.1) × 105 when

hosts and breeding sites were present in all patches and approximately (54.374,

14.380, 2.314, 3.257, 2.630, 0.333)×103 when resources are randomly distributed

across the grid.

2.8 Discussion

Mathematical models for evaluating the impact of the transmission of vector

borne diseases do not consider effects on vector mobility, despite evidence
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Figure 2.13: A comparison of time series plots between the model without
(system (2.1)) and with dispersal((2.36)) was simulated under parameter val-
ues given in Table 2.2. For the model with dispersal, the average number of
mosquitoes across all patches on the grid are plotted. Two scenarios were sim-
ulated for the dispersal model: hosts and breeding breeding sites randomly
distributed across the landscape (H and B random), and hosts and breeding
breeding sites present in all patches (H and B in each patch).

that the relative locations of mosquito breeding sites and of human hosts pro-

foundly affect transmission of both malaria (Clarke et al., 2002; Smith et al.,

2002) and the dengue virus (Jeefoo et al., 2011; Vazquez-Prokopec et al., 2010).

One reason for this is that, whereas spatial variation in biting rates is relatively

easy to study, rates of movement of mosquitoes can only be studied using chal-

lenging mark-recapture techniques, which provide sparse data. Consequently,

there is little evidence of the impact of heterogeneity in the distribution of

resources used by mosquitoes on the mosquito population size and its spa-

tial distribution. The likely impact of interventions that may affect mosquito

movement is thus even less well understood.
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Our compartment model of the life cycle and feeding cycle of mosquitoes in-

corporates spatial heterogeneity both in densities of breeding sites and of hu-

man hosts. It also incorporates mosquito movement and can be used to pre-

dict the effects of interventions targeting different stages of the mosquito life

cycle. We consider effects on population size, on the spatial distribution of

mosquitoes, and on how far individual mosquitoes move. We use the exam-

ple of spatial repellents to illustrate how these parameters can be affected by a

relatively simple intervention.

In a homogeneous environment, the model without dispersal indicates that

there is a linear relationship between population reproduction numbers and

both age-stage specific survival and developmental rates of mosquitoes. This

leads to straightforward relationships between the size of the mosquito pop-

ulation, developmental rates from larvae to pupae, and mortality rates of lar-

vae. However, when there are heterogeneities in resource availability, these

linear relationships are disturbed, and have far-reaching the effects on spa-

tial distribution and population dynamics of mosquitoes (Vinatier et al., 2011).

If breeding sites are eliminated from the neighbourhoods of hosts or are not

available in most patches, mosquitoes searching for breeding sites are forced

to move longer distances in search of oviposition sites, prolonging the feed-

ing cycle (Chitnis et al., 2008b; Menach et al., 2007) and increasing mortality

during searching (Saul, 2003). In general, environmental heterogeneity forces

mosquitoes to move longer distances and increases their mortality (Saul, 2003).

In our models, we could eliminate mosquito populations by separating breed-

ing sites and hosts.

From the host’s perspective, living in proximity to mosquito breeding sites in-

creases exposure to mosquito bites and potentially also to disease. Because

the vector-host ratio is higher around breeding sites (Menach et al., 2005), se-

lectively eliminating breeding sites in areas of human habitation can prevent

mosquitoes from using human hosts for blood meals (Gu and Novak, 2009a).

Similarly, a possible intervention strategy is to deploy interventions such as

spatial repellents or bed nets around breeding sites. However, our simulations
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suggest that such a ring strategy for repellent deployment is advantageous

only if mosquito sources are few, clearly defined, and known. In situations

where mosquito sources and households are scattered throughout the area,

this strategy will not be feasible. However, even random deployment of repel-

lents reduces the distance moved by mosquitoes, making it more difficult for

them to complete their life cycle, and hence has beneficial effects.

Spatial heterogeneity in resource availability can thus, on its own, have com-

plex effects on mosquito populations. Even relatively simple interventions,

such as spatial repellents, can be deployed in a variety of ways in such environ-

ments. We have only just begun to use our model to explore the implications

of the resulting multiplicity of combinations of environments with interven-

tion strategies. Analysing of the spatial effects of more complex interventions,

such as insecticide treated mosquito nets, which have simultaneous killing and

repellent effects, will bring further challenges.

Like any model, ours has limitations. Effects of wind, which can either fa-

cilitate or prevent movement (Bowen, 1991; Cummins et al., 2012; Knols and

Meijerink, 1997; Raffy and Tran, 2005; Smallegange et al., 2005), were not in-

corporated. We chose to use a discrete hexagonal patches as a representation

of space, rather than using a continuous space model (Raffy and Tran, 2005),

(Tran and Raffy, 2006) because this makes it easier to model arbitrary spatial

distributions of resources. At the same time, this constrained the modelled

mosquito movements to follow a limited set of trajectories. We do not know

what trajectories mosquitoes adopt in reality and strategies such as Levy flight

(Reynolds and Frye, 2007) may well be used to optimize foraging efficiency.

An alternative approach to our discrete space model is to use a PDE model for

mosquito dispersal, for example that of Raffy and Tran (Raffy and Tran, 2005;

Tran and Raffy, 2006). Here attractiveness is represented via chemotaxis or

an advection term, taking into account blood meals, breeding sites, wind, etc.

The advantage of the discrete space model proposed in this paper is that one

can easily assess vector control strategies, as the discrete space enables easy

representation of interventions that cover sets of households or villages.
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The differences in the peaks and rates of decrease in mosquito distributions by

distances travelled indicate that the choice of the exponential movement rate in

the discrete model does not force the results to be the same as those produced

by the continuous space approach. However, we could show that although

there are differences, mosquito distributions by distances moved have similar

properties (both models show peaks in mosquito density in the regions close

to the origin and are zero far away from the release point) to those predicted

by a continuous space diffusion model (O’Sullivan and Perry, 2009), and sug-

gest that our results are broadly applicable no matter what foraging strategies

mosquitoes may adopt.

We could also show that the various factors taken into account by the model

play an important role in the spatial distribution of mosquitoes. The model

could show realistic behaviours in simple theoretical situations on an artificial

landscape. Our model, together with field data, could be used to determine

areas of high transmission within local settings, evaluate the community effect

of interventions, and aid in developing possible and efficient vector control

strategies, which can optimize the allocation of scarce resources.

2.9 Appendix: Data for model parameters

Data for parameterizing the model was obtained from literature. There is vari-

ability in the available data as study designs and conditions under which stud-

ies were carried out vary from one place to another. A single value was chosen

from a range of values as baseline and used for the numerical simulation of the

model.

The development of mosquitoes in their early stages is a nonlinear process that

depends on water temperature (Holsetein, 1954; Otero et al., 2006; Depinay

et al., 2004). However, for simplicity, we assume that the mean development

time for each stage is constant over time.

For Anopheles gambiae, the duration of egg development (from oviposition to
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hatching into a larva) (1/ρE) is about 2 days in field environments (Service,

2004). Under laboratory conditions and tropical areas this period extends to 3

days (Holsetein, 1954; Yaro et al., 2006), and (Service, 2004). In a study by (Ser-

vice, 2004), the larval period for mosquitoes of the Anopheles genus is found

to be 7 days. Other studies have shown that the larval stage may last (1/ρL)

between 6 to 10 days in field environments or 11 to 13 days in laboratory con-

ditions (Holsetein, 1954) or last between 7 to 15 days in temperate and tropical

areas (Bayoh and Lindsay, 2003; Kirby and Lindsay, 2009; Gething et al., 2011b).

It has also been found that the pupal period (1/ρP ) lasts for 1− 2 days in field

environments but under laboratory conditions the pupal period lasts for about

2 days (Holsetein, 1954). In tropical regions the pupal stage for Anopheles genus

last between 2 to 3 days (Service, 2004).

We used mean mortality rates of 0.56 ± 0.28 for eggs, 0.51 ± 0.14 for larvae

instars I and II, 0.37±0.14 for larvae instars III and IV, and 0.37±0.15 for pupae

(Okogun, 2005). The average of the two categories of larvae for the density

independent mortality of larvae, µL1 = 0.44 ± 0.14. Larval mortality can be

resolved into natural mortality rates, µL1 and density dependent mortality of

larvae, µL2 . For our simulations, we allow µL2 to take any value between 0 and

1.

Since the model details the adult mosquito life cycle via the mosquito feed-

ing cycle, we derive the estimates of most of the parameters from studies on

the mosquito feeding cycle. The time spent while searching for hosts (1/ρAh
)

can be estimated. From (Chitnis et al., 2008b), we can calculate ρAh
= 0.46.

Once mosquitoes survive the host seeking stage and have successfully fed,

mosquitoes rest for food digestion and egg maturation. Using 1/ρAr = 2.33

days (Chitnis et al., 2008b), which is ρAr = 0.43 per day, we can calculate the

value of µAr as 0.0043 given that the probability of surviving while resting is

1−µAr/(µAr−ρAr) = ρAr/(µAr+ρAr) = 0.99 (Chitnis et al., 2008b). If mosquitoes

spend 1/ρAo = 0.33 days ovipositing, then ρAo = 3 per day. The correspond-

ing probability of surviving the oviposition site searching stage 1−µAo/(µAo +

ρAo) = ρAo/(µAo + ρAo) is 0.88 (Chitnis et al., 2008b). From this probability, we
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obtain µAo = 0.41 per day. From (Chitnis et al., 2008b) we see that the probabil-

ity of surviving the feeding cycle is pf = 0.623. From our model, this probabil-

ity can be calculated from (ρAh
/(µAh

+ ρAh
)) (ρAr/(µAr + ρAr)) (ρAo/(µAo + ρAo)).

Substituting the values for the survival probabilities of the oviposition site

search and resting given above in this section, we obtain ρAh
/(µAh

+ρAh
) = 0.72

as the probability of surviving during the host searching. Thus, we obtain

µAh
= 0.18 (Table 2.2).





CHAPTER 3
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has important consequences for their

effectiveness
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3.1 Abstract

Vector control interventions have resulted in considerable reductions in malaria

morbidity and mortality. When universal coverage cannot be achieved for fi-

nancial or logistical reasons, the spatial arrangement of vector control is poten-

tially important for optimizing benefits. Here we show, via the use of math-

ematical models, that spatial clustering of vector control influences mosquito

density and dispersal patterns and thus has consequences for the effectiveness

of an intervention package. When hosts and breeding sites are distributed
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homogeneously over a landscape, we find that at medium to high coverage

levels of both larvicidal and adultcidal interventions, it is more effective to

spatially spread these interventions than to cluster them. In the case of limited

resources, high spatial clustering of larviciding is more effective compared to

random distribution. It is often stated that locally high coverage is needed to

achieve a community effect of insecticide treated nets (ITNs) or indoor resid-

ual spraying (IRS). However we find that, if the coverage of ITNs or IRS are

insufficient to achieve universal coverage and there is no targeting of high risk

areas, the overall effects on mosquito densities are much greater if they are

distributed in an unclustered way, rather than clustered in specific localities.

Interventions are often delivered preferentially to accessible areas, and such

clustered, possibly inequitable distributions are likely to be the cheapest, but

our model results show this may well be inefficient.

3.2 Background

Efforts to reduce malaria transmission have lead to the development of effi-

cient vector control interventions, particularly deployment of insecticide treated

nets1 (ITNs), indoor residual spraying (IRS), and larviciding (Bayoh et al., 2010;

Kroeger et al., 1995; Lengeler, 2004; Muturi et al., 2008; WHO, 2004). These in-

terventions are currently widely used in malaria endemic countries especially

those in sub-Saharan Africa (WHO, 2011) and have lead to substantial reduc-

tion in malaria morbidity and mortality. Nevertheless, malaria continues to

claim hundreds of thousands of lives every year (WHO, 2011), thus necessi-

tating a continued control effort to fight the disease. While over $2 billion are

invested each year in procuring and distributing vector control interventions

(RBM, 2013) for malaria control , this funding is insufficient to achieve uni-

versal coverage (RBM, 2013) and it is not clear if this will be sustained given

1includes two categories (WHO, 2007): The first category consist of conventional nets
treated with a WHO recommended insecticide. Net re-treatment is repeated after every three
washes. The second category consists of long-lasting insecticidal nets (LLINs). These are
factory-treated nets made of fibres that incorporate insecticides or have a wash resistant coat-
ing containing insecticide.
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current economic constraints.

Mosquito flight from one place to another (Gillies, 1961; Gillies and Wilkes,

1978, 1981; Service, 1997) is motivated by several factors including wind, odour,

blood and nectar sources, availability of breeding sites, mating, etc (Edman

et al., 1998; Cummins et al., 2012). These factors and mosquito movements in-

fluence the spatial distribution of mosquitoes, and thus, that of malaria. The

probability that a mosquito will encounter areas that are under a particular

vector control intervention is dependent on the spatial arrangement of an in-

tervention. Consequently, the spatial arrangement of the intervention will af-

fect the effectiveness of an intervention in controlling malaria. When financial

resources are insufficient, or due to geographic limitations, it may be difficult

to achieve universal coverage where a whole community is covered by an in-

tervention. Thus, an understanding of how the degree of spatial clustering of

these interventions affects effectiveness is needed for planning optimal bene-

fits of interventions.

While the World Health Organization (WHO) strategy on vector management

provides information on improving the efficacy, cost-effectiveness, ecological

soundness and sustainability of vector control (WHO, 2004), there is limited

relevant information on the influence of spatial distribution of these interven-

tions on effectiveness. Approaches coupling both theory and empirical ev-

idence are needed to evaluate and measure effectiveness of interventions at

different degrees of spatial distribution for each level of intervention coverage.

Despite the importance of these approaches, their development and integra-

tion in vector control programmes has been receiving inadequate attention.

Mathematical models play an important role in assessing interventions (McKen-

zie and Samba, 2004). Many studies evaluate intervention effectiveness (Chit-

nis et al., 2010; Eckhoff, 2011; Griffin et al., 2010; Gu and Novak, 2009a; Gu

et al., 2006; Menach et al., 2007; White et al., 2011; Worrall et al., 2007; Yakob

and Yan, 2009, 2010), depending on intervention coverage (Chitnis et al., 2010;
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White et al., 2011; Worrall et al., 2007; Yakob and Yan, 2009) and the signifi-

cance of distribution of mosquito resources for malaria transmission (Gu et al.,

2006; Yakob and Yan, 2010). Some studies consider spatial and network mod-

els (Gu and Novak, 2009a; Gu et al., 2006; Gu and Novak, 2009b; Yakob and

Yan, 2010) while others consider spatial distributions of mosquito populations

(Nourridine et al., 2011; Otero et al., 2008). These models allow the evaluation

of interventions by coverage or by any combination of intervention packages

(Gu and Novak, 2009a).

In contrast to these studies, this paper focuses on the spatial distribution of in-

terventions rather than on heterogeneity in distribution of resources for mosquitoes.

Using insights from a recent study on mosquito movements (Lutambi et al.,

2013), a spatial model of vector population dynamics and interventions is used

to assess the impact of spatial distribution of vector control interventions on

reducing the population of biting mosquitoes. The effects are explored at dif-

ferent coverage levels to provide theoretical evidence on the existence of vari-

ability in intervention effectiveness, depending on their spatial distribution.

3.3 Methods

A discrete-space continuous-time mathematical model of mosquito popula-

tion dynamics and dispersal (Lutambi et al., 2013) was extended to incorpo-

rate IRS, larviciding, and ITN interventions. The model includes six stages of

the mosquito life and feeding cycle: three juvenile stages (egg (E), larval (L),

pupal (P )) and three adult stages (host seeking (Ah), resting (Ar), and oviposi-

tion site searching (Ao)). The population dynamics of mosquitoes in each stage

are described by ordinary differential equations. The discrete space used in the

model is a grid made up of hexagons called patches that allows any representa-

tion of spatial distribution of hosts and breeding sites and mosquito movement

(dispersal) between patches. Dispersal of adult mosquitoes searching for hosts

or breeding sites is restricted to the nearest six neighbours.
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3.3.1 Model equations with interventions

As described in more details in (Lutambi et al., 2013), the population dynamics

of mosquitoes are governed by the recruitment of new mosquitoes through the

average number of eggs laid per oviposition, b, the development/progression

rate from one stage to the next, ρ, the stage specific mortality, µ, the movement

rates of host seeking, βH , and oviposition site searching mosquitoes, βB. The

dynamics of each stage of the life cycle in patch (i, j) with interventions and

movement are described using ordinary differential equations:

dE(i,j)

dt
= b(i,j)ρAo(i,j)Ao(i,j) −

(
µE(i,j) + ρE(i,j)

)
E(i,j),

dL(i,j)

dt
= ρE(i,j)E(i,j) −

(
µL1(i,j) + ρL(i,j)

)
L(i,j) − µL2(i,j)L

2
(i,j),

dP(i,j)

dt
= (1− εLV)ρL(i,j)L(i,j) −

(
µP (i,j) + ρP (i,j)

)
P(i,j),

dAh(i,j)

dt
= ρP (i,j)P(i,j) + ρAo(i,j)Ao(i,j) −

(
µAh(i,j)

+ ρAh(i,j)

)
Ah(i,j)

− γITN(i,j)µAh(i,j)
Ah(i,j) −ΨH

outAh(i,j) +ΨH
inAhξ′ ,

dAr(i,j)

dt
= ρAh(i,j)

Ah(i,j) −
(
µAr(i,j)

+ ρAr(i,j)

)
Ar(i,j) − γIRS(i,j)µAr(i,j)

Ar(i,j),

dAo(i,j)

dt
= ρAr(i,j)

Ar(i,j) −
(
µAo(i,j)

+ ρAo(i,j)

)
Ao(i,j) −ΨB

outAo(i,j) +ΨB
inAoξ′ .

The terms γIRS(i,j)µAr(i,j)
Ar(i,j) and γITN(i,j)µAh(i,j)

Ah(i,j) are additional mortality

terms due to IRS and ITNs respectively and described in section 3.3.2. The

term (1 − εLV)ρL(i,j)L(i,j) represents the reduced number of larvae developing

to pupae from untreated breeding sites, where εLV represents the proportion

of breeding sites in a given patch covered by larvaciding (see section 3.3.3).

Parameters ΨH
out =

∑
ξ′∈N(i,j)

βH
(i,j)/ξ

′ and ΨH
in =

∑
ξ′∈N(i,j)

βH
ξ
′
/(i,j)

represent dispersal

out and into patch i, j for host seeking adults respectively, and N(i, j) is a set

of six nearest neighbours to patch (i, j) and ξ
′ ∈ N(i, j) (Lutambi et al., 2013).

Similarly, ΨB
out =

∑
ξ′∈N(i,j)

βB
(i,j)/ξ′

and ΨB
in =

∑
ξ′∈N(i,j)

βB
ξ′/(i,j)

represent dispersal
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out and into patch i, j for oviposition site searching adults. Details of calcu-

lation of β are provided in (Lutambi et al., 2013). H and B represent hosts

and breeding sites respectively. The remaining parameter definitions and their

corresponding values are summarized in Table 3.2.

3.3.2 Modelling of the killing effects of ITNs and IRS

ITNs kill and prevent access to people for host seeking malaria vectors, thus

providing personal protection against malaria to the individuals using them

(Takken, 2002; WHO, 2007). ITNs also provide community protection to non-

users (Hawley et al., 2003) due to their killing effects which reduce mosquito

longevity. Even if not killing directly, repellent or deterrent effects (de Zulueta

and Cullen, 1963) increase the duration of host seeking and mosquito mortal-

ity during host seeking. Here, ITNs deployed in a patch are assumed to kill

mosquitoes directly and repel mosquitoes seeking blood meals, hence affect-

ing the density of host seeking adults in that patch. The killing effect of ITNs in

the host seeking stage is modelled as additional mortality to normal mortality

associated with host seeking process in the absence of ITNs.

IRS is the application of insecticides on the indoor walls and roofs of houses

primarily to kill resting adult mosquitoes. IRS reduces malaria transmission

by reducing the vector’s life span and population density of vectors (WHO,

2006), but provides little direct personal protection against bites. Although

some ingredients used in IRS may repel mosquitoes, this study considers only

those without repellency. Therefore, only the direct killing effect to resting

adult mosquitoes is considered.

For ITNs, we let γITN be the model parameter for additional mortality of host

seeking adults and for IRS, we let γIRS be the model parameter for additional

mortality of resting adults. To compare interventions, γITN and γIRS are ex-

pressed as functions of intervention efficacy where efficacy is defined as the

ability of an intervention to reduce mosquito survival proportionally. For ITNs

or IRS, efficacy, εI, (where I represents ITNs or IRS) is given by
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εI =
S0 − SI

S0

. (3.1)

Here S0 represents the survival probability of mosquitoes in the absence of an

intervention in a given mosquito stage given by

S0 =
ρs

µs + ρs
, (3.2)

and SI represents the survival probability of mosquitoes in the presence of

interventions in a given stage given by

SI =
ρs

µT + ρs
. (3.3)

In equations (3.2) and (3.3), ρs is the development rate of a mosquito from

stage s to the next stage, and µs (per unit time) is the natural mortality rate of a

mosquito in stage s in the absence of an intervention. µT (per unit time) is the

total mortality rates of mosquitoes in stage s in the presence of interventions

expressed by:

µT = µs + µsγI. (3.4)

Here, γI (unitless) is a multiplicative factor associated with the effect of inter-

vention I (ITN or IRS). The term µsγI represents additional mortality of in-

tervention, I. In order to obtain the expression for γI, we substitute equations

(3.2), (3.3), and (3.4) into (3.1) to obtain

γI =
εI (ρs + µs)

µs(1− εI)
. (3.5)

Using the stage specific parameter values for ρs, and µs (given in Table 3.2),

with εI ∈ [0, 1], the relationship between γI and εI is shown in Figure 3.1. As

would be expected model intervention parameters γI increase with increasing

efficacy of ITNs or IRS, with IRS showing higher values of γI compared to ITNs

given our model parameter values in Table 3.2.
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Figure 3.1: Relationship between ITN and IRS intervention parameters to effi-
cacy (Equation 3.5).

3.3.3 Modelling the effect of larviciding

Larviciding is the application of insecticides to mosquito breeding sites target-

ing the larval stages of the mosquitoes. Studies show that larviciding kills all

larvae in treated breeding sites (Fillinger and Lindsay, 2006; Majambere et al.,

2007; Mwangangi et al., 2011) and has proved to be important in suppressing

the number of malaria transmitting mosquitoes in certain areas (Fillinger and

Lindsay, 2006; Kroeger et al., 1995; Majambere et al., 2007, 2010; Mwangangi

et al., 2011). However, where breeding sites are scattered, field studies show

that it is difficult to find and treat the majority of productive breeding sites

(Killeen et al., 2006). The effect of larvaciding in the model is to reduce the

development of larvae into pupae and thus include a parameter representing

the proportion of breeding sites identified and treated within patch (i, j), as

ϵLV(i, j). The proportion (1− ϵLV(i, j)) represents the untreated breeding sites,

where larvae develop into pupae.
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3.3.4 ITN repellency

The repellent effect of ITNs reduces the availability of hosts within a partic-

ular patch. We assume that hosts covered by ITNs are protected and some

mosquitoes are repelled during the host seeking process. In the dispersal

model, the attractive effect of hosts affects the dispersal rate of mosquitoes

(Lutambi et al., 2013). Consequently, simulations of the repellent effect are per-

formed by considering that only unprotected hosts are attracting mosquitoes

in a particular patch (appendix 3.6).

3.3.5 Spatial clustering

Ecological models have been developed and used to study effects of landscape

spatial heterogeneity on population dynamics (Hiebeler, 1997, 2000; Okuyama,

2008) with increasing interest in the field of epidemiology (Hiebeler, 2005).

Some models have been used to investigate spatial clustering effects in ecol-

ogy (Hiebeler, 2005; Lee et al., 2007; Su et al., 2009; Thomson and Ellner, 2003;

Tsonis et al., 2008; Westerberg et al., 2005). To our knowledge, such meth-

ods have not been used by the malaria community to investigate clustering of

vector control interventions. The degree of clustering, as used in this study,

is a measure of the extent to which areas under interventions on a landscape

are aggregated together. This degree varies from 0 (if the spatial distribution

of interventions is random) to 1 (if the spatial distribution of interventions is

highly concentrated on a certain portion of the landscape, or highly grouped

together).

To evaluate the effect of spatial clustering of interventions using the model, we

distributed interventions on the spatial grid (Lutambi et al., 2013). The spatial

distribution of interventions was varied according to the degree of spatial clus-

tering chosen. These spatial clusters used for distributing interventions were

created using the pair approximation method (Hiebeler, 1997, 2000). Two pair

states were used: intervention and non-intervention states. These two states
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were assigned after defining a coverage area (that is proportion of patches as-

sumed to be under interventions). Following Hiebeler (Hiebeler, 2000), the

degree of clustering, q00 was defined as the probability that a randomly chosen

neighbour to a patch with intervention also contains the intervention. Spatial

clusters of varying degrees on the model grid were created in Matlab using the

steps detailed by Hiebeler (Hiebeler, 2000). Several configurations of spatial

clusters were created from different initial random distributions of the inter-

vention states to account for stochasticity of the method. Figure 3.2 illustrates

one such cluster configuration produced at different degrees of clustering, q00,

when intervention coverage is 50% over the entire grid.

For the vector control investigations, cluster configurations were created at

10%, 30%, 50%, and 70% coverage levels, with the degree of spatial clustering,

q00 ranging from 0 to 1 at an interval of 0.1. However, it is only possible to

create spatial clusters when q00 ≥ 2−(1/p0) (Hiebeler, 2000) (where p0 represent

intervention coverage). This was due to the fact that when an intervention

coverage is high, it is likely that neighbours of patches under intervention, are

also under intervention. This implies a lower bound on q00 for high coverage.

3.3.6 Model parameterizations and assumptions

Parameter values on stage specific mortality, and development rates used to

simulate the model are similar to those used in (Lutambi et al., 2013) (also

presented in Table 3.2). Various experimental studies show that ITN killing ef-

ficacy is variable (Chouaibou et al., 2006; Oxborough et al., 2008) as it depends

on local entomological and epidemiological conditions (Smith et al., 2009). For

the parameter values of interventions, we make the assumption that ITNs and

IRS are 80% efficacious so that εITN and εIRS were fixed at 0.8.

Since the aim is to show the general trend of effects of clustering on effective-

ness, and for comparing interventions on a fair basis, this study uses a the

average repellent effect of 80% (Z = 80%) for an ITN in all simulations. A

patch coverage level (percent of resources to mosquitoes (in this case hosts)
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Figure 3.2: An example of spatial clusters generated at different degrees of
clustering (q00) with a coverage of p0 = 0.5 for the desired states (white) for
interventions deployment and undesired states (black). Clustering increases
with increasing q00.

covered within a patch) of 80% (Pc = 80%) was also used.

When a larvicide is applied to a breeding site, all larvae experience an in-

creased mortality. Field studies show that larviciding is likely to kill all lar-

vae when applied to a breeding site (Fillinger and Lindsay, 2006; Majambere

et al., 2007; Mwangangi et al., 2011). However, not all breeding sites can be

identified for larvicidal treatment. Here, 80%(ϵLV = 0.8) of the breeding sites

inside a patch are assumed to be identified and treated with larvicide. Thus,

leaving 20% of breeding sites within a patch without larvicide, allowing larvae

develop into pupae. We also make the assumption that larvae are distributed

uniformly across breeding sites.
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A 25 by 21 grid was used as a hypothetical representation of a landscape. The

distance from the centres of neighbouring patches was assumed to be 50 m

(Lutambi et al., 2013). At the edges of the grid, periodic boundary conditions

were used. This assumes the area being modelled is comparable to its neigh-

bourhood. For simplicity, simulations were performed with all patches on the

grid containing breeding sites and hosts. The dispersal related parameters for

host seeking (βH) and oviposition site searching (βB) mosquitoes depend on

the availability of hosts and breeding sites respectively. Similar to (Lutambi

et al., 2013), the diffusion rate, D = 0.2 per day was used in all simulations.

3.3.7 Simulations

Simulations were carried out in Matlab 7.10.0 (R2010a). The adaptive step

size Runge-Kutta method of fourth and fifth order (ode45) was used to solve

the system of ordinary differential equations (Eqn. (3.1)). Simulations were

performed at intervention coverage levels of 0% coverage (no intervention),

10%, 30%, 50%, and 70%. The 0% level scenario was included to compute inter-

vention effectiveness (Equation 3.7).

For each scenario a representative total population of 2700 eggs, 1900 larvae,

2000 pupae, 2400 host seeking mosquitoes, 1800 resting, and 1200 oviposition

site searching mosquitoes were initially distributed across the grid. We numer-

ically tested that there exists only one equilibrium point given different initial

conditions for both the non-intervention and intervention scenarios. Simula-

tions were run until the system (3.1) was at equilibrium. The resulting equilib-

rium values were recorded and used to evaluate intervention effectiveness.

3.3.8 Measuring intervention effectiveness

We define intervention effectiveness as the reduction in the total equilibrium

population of host seeking mosquitoes, over all patches on the grid. In malaria

transmission control, the number of potentially infective mosquitoes should be
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reduced. Thus, only host seeking adults, which transmit malaria, are consid-

ered. From the model, the equilibrium total number of host seeking mosquitoes

is calculated over the entire grid as

A∗
h =

∑
ξ∈Ξ

A∗
hξ, (3.6)

whereAhξ is the equilibrium number of adult host seeking mosquitoes in patch

ξ and Ξ is the set of all patches on the entire grid. In this context, we calculate

intervention effectiveness, ϵint, as the proportionate reduction of an equilib-

rium population of host seeking mosquitoes, namely

ϵint = 1− A
∗(int)
h

A∗
h

, (3.7)

where A∗
h is the equilibrium population of host seeking mosquitoes in the ab-

sence of interventions, andA∗(int)
h is the equilibrium population of host seeking

mosquitoes in the presence of an intervention.

3.3.9 Statistical analysis of the relationship between interven-

tion spatial clustering and effectiveness

Simulation results for each coverage level (Figures 3.3 and 3.4) were further

analysed using statistical methods. The aim was to quantify the relationships

between effectiveness and the degree of spatial clustering of an intervention.

Since the effectiveness is measured as the proportionate reduction in host seek-

ing mosquitoes, its range lies within 0 and 1. Thus, robust generalized linear

models with a logit link (Papke and Wooldridge, 1996) were used.

3.4 Results

The effectiveness of IRS, larviciding, and ITNs is related to the degree of spatial

clustering of interventions and coverage levels (Figure 3.3). When the spatial
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coverage of larviciding and IRS is 10% (Figure 3.3A), simulation results indi-

cate that these interventions are more effective when highly clustered, com-

pared to low clustering (Table 3.1). However, at 30% coverage, high clustering

of IRS appears to be no longer more effective than low clustering. For larvi-

ciding, at 30% spatial coverage level, larviciding is more effective when highly

clustered compared to when lowly clustered. For ITNs distributed at low cov-

erages of 10% to 30% (Figure 3.3A-B), the intervention is more effective with

a low degree of spatial clustering compared to with a high degree of spatial

clustering (ITN effectiveness is negatively correlated to the degree of spatial

clustering).
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Figure 3.3: Intervention effectiveness by degree of spatial clustering of ITNs,
IRS, and larviciding at different coverage levels. The symbols represent simu-
lated intervention effectiveness data from different configurations of interven-
tion distribution to account for stochastic variations and the lines are the result
of a linear fit. Effectiveness is measured as the proportionate reduction of the
equilibrium population of host seeking mosquitoes. Mosquito resources were
homogeneously distributed across the grid. Coverage levels A: 10%, B: 30%,
C: 50%, and D: 70%. Axes are not the same and do not start at zero.
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At a moderate intervention coverage level of 50% (Figure 3.3C), there is no

added benefits of highly clustering compared to low clustering of IRS and lar-

viciding, while distributing ITNs widely was more beneficial than clustering.

At intervention coverage level of 70% (Figure 3.3D), distributing interventions

widely and randomly is more effective than clustering for any of the interven-

tions.

When interventions are combined (Figure 3.4), effectiveness decreases with in-

creasing degree of spatial clustering. However, the combination of IRS and

larviciding was not associated with the degree of spatial clustering when cov-

erage was less then 30%.
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Figure 3.4: Effect of spatial clustering of interventions by coverage levels for
combined interventions. The symbols represent simulated intervention effec-
tiveness from different realizations depicting initial distribution of interven-
tions before the process of clustering was undertaken to account for stochastic
variations and the lines are the result of a linear fit. Mosquito resources were
homogeneously distributed over the grid. Coverage levels A: 10%, B: 30%, C:
50%, and D: 70%. Axes are not the same and do not start at zero.
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Effectiveness of an intervention at zero clustering is highest for ITNs and low-

est for larviciding (given our parameter values) when interventions are singly

deployed (Table 3.1). Effectiveness at zero clustering is highest when all in-

terventions are combined together, but the additional effect over ITNs alone is

small. The combination of IRS and larviciding had the lowest effectiveness at

zero clustering, irrespective of the coverage level.

The predicted effectiveness varies strongly with coverage level, degree of spa-

tial clustering, and intervention or combination of interventions. At low cover-

age, effectiveness increases with clustering for the less effective interventions,

in particular larviciding (Table 3.1) and decreases with clustering for the more

effective interventions, in particular ITNs (Figure 3.3A and B and Table 3.1).

At moderate and high coverage levels, effectiveness decreases with clustering

with similar slopes for different intervention (Figure 3.3D and (Figure 3.4C).

At lower spatial coverage levels of single interventions, the difference in ef-

fectiveness between one intervention and another decreases with increasing

value of the degree of spatial clustering. This difference remains almost con-

stant at high coverage levels (Figure 3.3). For combined interventions and at

all coverage levels, there is almost no difference in effectiveness for all com-

binations of interventions that included ITNs (Figure 3.4). The effectiveness

of a combination of IRS and larviciding is consistently lower across all cover-

age levels. In addition, the difference in effectiveness between a combination

of IRS and larviciding and other combinations is always high. However, at

lower coverage levels, this difference decreased with increasing degree of spa-

tial clustering (Figure 3.4A and B).
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3.5 Discussion

In this study, an existing mathematical model of mosquito dispersal (Lutambi

et al., 2013) was extended to include vector control interventions. This model

was combined with an approach for modelling spatially heterogeneous land-

scapes (Hiebeler, 2000) to assess the effects of spatial clustering of vector con-

trol interventions on their effectiveness at various levels of spatial coverage

and intervention combinations. As in another study White et al. (2011), the

reduction in the overall vector population density was used as an indicator of

the population-wide effect of interventions. The results have important impli-

cations for deployment strategies in situations where universal coverage is not

achievable.

Our model indicates that, with a single intervention of either larviciding or

IRS in an environment where breeding sites and hosts are homogeneously dis-

tributed and spatial coverage of the intervention is low (i.e. few patches are

covered), there is a small increase in effectiveness when deployment is highly

spatially clustered compared to widely distributed in space. However, with

high spatial coverage, it is more effective to distribute these interventions ran-

domly in an unclustered manner. ITNs were less effective at a higher degree of

clustering than at a lower degree of clustering for any spatial coverage level.

At a spatial coverage of less than 50%, if larviciding is highly clustered, then

treated areas become almost mosquito free. However, if larviciding is not clus-

tered, mosquitoes that breed in neighbouring patches can still feed in areas that

have been larvicided. If coverage is moderate to high (50% or larger), larvicid-

ing is more effective when randomly distributed and unclustered, because a

greater proportion of the remaining adult mosquitoes is likely to encounter

the intervention when ovipositing. When larviciding is clustered, most of the

ovipositing occurs in non-larvicided areas because adult mosquitoes are rare

in larvicided areas. When larviciding is widespread and unclustered, a pro-

portion of adult mosquitoes emerging in non-larvicided patches will migrate

to, feed and oviposit in larvicided breeding sites.
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With adulticidal interventions, especially ITNs, the benefits of distributing the

intervention widely and unclustered are greater, because the mosquitoes need

to avoid intervention patches each gonotrophic cycle if they are to survive.

Where adulticidal interventions are clustered, mosquitoes emerging in loca-

tions remote from the intervention area are unlikely to be killed, whereas when

interventions are non-clustered, a mosquito will encounter them sooner or

later. Consequently, at any spatial coverage level, average biting densities are

reduced more by deploying ITNs in an unclustered manner than by clustering

them. It also follows that widespread distribution of adulticidal interventions

will reduce the number of old (potentially disease-transmitting) mosquitoes

even more than it will reduce average densities. This finding, that the overall

effect in the reduction of mosquito numbers is much greater if the intervention

is spatially non-clustered and widely distributed, especially when coverage is

moderate and insufficient to achieve universal coverage, contradicts the notion

that a locally high coverage is needed to achieve a community effect of ITNs

or IRS for reduction in disease.

While non-clustered deployment of most intervention packages is generally

most effective, this may be expensive to achieve since it requires delivery even

to remote locations. Interventions are more cheaply delivered to more acces-

sible areas, resulting often in clustered (and sometimes inequitable) distribu-

tions. To investigate how delivery costs affect cost-effectiveness, there is a need

for modelling of different distribution schemes (for example for ITNs or IRS)

of interventions given a fixed budget in various settings with different degrees

of clustering, coverage levels and accessibility.

In the cases of larviciding and IRS, these results lead to the practical question of

how to decide whether or not a program is likely to achieve a level of effective-

ness where clustering should be avoided. This is not simply a question of the

efficacy of the intervention, because the different vector control interventions

act in different ways. So the efficacy, defined as the effect on the target stage of
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the vector as a proportion of the theoretical maximum effect, translates differ-

ently into effectiveness defined on some common metric of levels of transmis-

sion, disease control, or, in this paper, densities of host seeking mosquitoes.

We have assumed 80% efficacious interventions throughout, and our results

are consistent with other modelling work suggesting that at constant efficacy,

ITNs have the highest impact on biting densities of mosquitoes (Chitnis et al.,

2010; White et al., 2011) and in our simulations any combination of interven-

tions which includes ITNs is also highly effective at all levels of coverage and

across all spatial clusters. However, the efficacy that can be achieved in prac-

tice is very different for the different interventions.

The total area modelled in this study was limited to one square kilometre. The

patch size, with patch centroids 50 m apart, determined in (Lutambi et al.,

2013), and used in this work, was based on flight distances of mosquitoes and

numerical ease. The diffusion coefficient of dispersal scales with patch size and

as a result the equilibrium results presented in this study also scale with in-

creasing patch size or increasing number of patches (and total area modelled).

The current results are indicative of the effect of applying interventions within

a small village, with a small number of dwellings or breeding sites per patch,

but should also be broadly applicable to smaller patches corresponding to sin-

gle individuals or breeding sites. We would not necessarily expect the same

results to hold with very large patches, e.g. corresponding to whole villages

where patch size might be comparable to the flight range of the mosquitoes

and where other factors such as spatial variation within patches might be rele-

vant.

Modelling and simulation provides a much easier approach to investigate these

issues than field studies do, but inevitably requires making simplifying as-

sumptions. This analysis focuses on general principles and intervention effec-

tiveness on downstream outcomes such as morbidity and mortality (Lengeler,

2004) (which would require more complicated models), was not assessed. The

simulations assumed homogeneous distributions of both human hosts and
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breeding sites, and the cues that these resources provide that influence move-

ment of mosquitoes cancel each other out, therefore movement was not in-

fluenced by the availability of these resources (Killeen et al., 2001). Further

investigations need to incorporate scenarios in which mosquito resources such

as breeding sites and hosts are heterogeneously distributed. In such scenar-

ios, knowledge about hotspots will allow targeted (and therefore likely spa-

tially clustered) deployment of interventions and this may well be more cost-

effective than non-clustered deployment. In other words, in scenarios with

spatially heterogeneous resources for mosquitoes, the cost of knowledge about

where these are may well compensate for potential gains in effectiveness. How-

ever, in the absence of knowledge about spatial location of resources for mosquitoes

(even for scenarios with heterogeneous resources) non-clustered distribution

may be most cost-effective.

Results from this study provide evidence that the effectiveness of an interven-

tion can be highly dependent on its spatial distribution. Given logistical and

financial constraints, vector control plans should consider the spatial arrange-

ment of any intervention package to ensure effectiveness is maximized, and in

the case of high achievable coverage, in the absence of information that allows

targeting, that the distribution is as equitable and as evenly spatially spread as

possible as this will maximise benefits.

3.6 Appendix: Modelling ITN repellency

In addition to the killing effect of ITNs that directly affects the density of

host seeking adults, the pyrethroid insecticide used to treat nets has a repel-

lent effect acting as a chemical barrier that irritates mosquitoes as they come

close to the nets. Repellency of nets reduces the availability of blood meals

to mosquitoes, increases host searching time, and subsequently prolongs the

mosquito gonotrophic cycle duration which in turn impacts mosquito popula-

tion size. Doing so, the repellent effect of ITNs acts on host seeking mosquitoes.

All hosts covered by ITNs are therefore protected to degree Z as mosquitoes
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are repelled during the host seeking process. We model the repellency effect of

ITNs as follows:

Let Pc be the proportion of hosts within a patch who are covered by ITNs

(patch coverage), and Z be the repellent effect of ITNs. If H(i,j) is the number

of hosts in patch (i, j), and I(i,j) = H(i,j)Pc(i,j)Z is the number of protected hosts

in patch (i, j), then the number of unprotected hosts (U(i,j)) in that particular

patch is given by

U(i,j) = H(i,j) − I(i,j) = H(i,j)

(
1− Pc(i,j)Z

)
. (3.8)

If the patch does not have ITNs (Pc(i,j) = 0), then U(i,j) = H(i,j).

Since the repellent effect of ITNs affects host seeking mosquitoes, their dis-

persal rate into patches containing ITNs is affected. This effect is included

by assuming that ITN repellency reduces hosts availability to mosquitoes in

a given patch so that attractiveness of the patch to hosts seeking mosquitoes

is reduced. The dispersal rate, βH
ξ′/(i,j)

, detailed in (Lutambi et al., 2013) was

modified by replacing the number of hosts present in a patch by those who are

not protected by ITNs in the particular patch as:

βH
ξ
′
/(i,j)

= De
−λ

(
Ū ij

ξ
′−Ū ij

ξ

)
(3.9)

where Ū ij

ξ
′ is the proportion of unprotected hosts available in patch ξ′ contained

in ci,j given by Ū ij

ξ′
= U ξ

′
/H ij

u , and Hu is the total number of unprotected hosts

in ci,j . Here, ci,j is a set of seven neighboring patches.
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CHAPTER 4

Discussion

The interaction between a heterogeneous environment and ecological behaviour

of malaria vectors requires novel modelling approaches that can investigate

these complex relationships. This thesis contributes o this investigation by

developing a mathematical model for local mosquito dispersal to understand

vector ecological behaviours, distribution of mosquitoes, and their interactions

with malaria vector control interventions. This model sets up a framework

for use in understanding, assessing, and evaluating the malaria intervention

programs. The model was simulated and applied to explain some properties

of heterogeneity, and to answer specific questions concerning current malaria

vector control interventions.

This chapter gives an overview of the model developed and its extensions,

summarizes the results obtained from applying the model, discusses contribu-

tions and implications, provides directions for future work, and highlights the

conclusions.
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4.1 Model overview

The model developed in this thesis categorizes the life of a mosquito into six

stages; namely, egg, larva, pupa, host seeking, resting, and oviposition site

searching adults. It consists of three main components (Chapter 2) . The first

component is the continuous time model based on ordinary differential equa-

tions that describe the population dynamics of mosquitoes in each stage. The

dynamics are driven by the birth, mortality, and development rates from one

stage to another. The second component of the model involves the inclusion

of the spatial characteristics. The space is discretised into discrete locations to

form a spatial grid made by hexagonal patches. The third component of the

model involves modelling dispersal of adult mosquitoes which move from one

patch to another across the spatial grid in search of hosts and breeding sites.

The model incorporates two key features: spatial heterogeneity and mosquito

dispersal. Spatial heterogeneity was included by allowing hosts and breed-

ing sites (resources) to differ between patches across the spatial grid (Chapter

2). Mosquito dispersal was modelled using the nearest neighbour approach

where dispersal of adult mosquitoes searching for hosts or breeding sites is

restricted to the nearest six neighbouring patches. Because of the neighbour to

neighbour dispersal nature, dispersal of mosquitoes from one patch to other

patches is only affected by the patches bordering each neighbourhood. In

this case, the number of resources used by mosquitoes available in the neigh-

bour locations influence movement of mosquitoes present in a certain location.

Therefore, all nearest neighbours of each patch on the spatial grid were iden-

tified and the number of resources counted. The proportion of available re-

sources in each patch relative to each neighbourhood was computed and used

as input values in the dispersal rate of mosquitoes.

In order to incorporate the effects of spatial repellents, two approaches have

been developed as extensions to the model. Chapter 2 presents the first ap-

proach to modelling the effects of spatial repellents. This approach includes

those repellents which act on the whole area where they are applied to protect
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all individuals living in the area by creating a mosquito free space (Achee et al.,

2012; Grieco et al., 2007) or those which act as non physical treatment barriers

(Britch et al., 2009). The second modelling approach of repellents is presented

in Chapter 3. This approach includes those repellents which protect only indi-

viduals using them, for example ITNs. They reduce the number of potential

hosts available to mosquitoes in the area or location of application, leaving

non-users under risk of contacting the disease (Achee et al., 2012). These ap-

proaches can have similar functions if the repellents provide full protection to

all individuals in a given location by either driving all mosquitoes away or

blocking them from entering. However, in situations where mosquitoes have

insecticide resistance, these approaches function differently, providing an al-

ternative to situations of reduced effects.

Another extension to the model was made in order to incorporate parameters

for vector control interventions (Chapter 3). Interventions such as larvicide,

ITNs, and IRS were included in equations describing the dynamics of larvae,

host seeking, and resting stages respectively as additional mortality due to in-

terventions. These interventions were spatially distributed on the spatial grid

depending on coverage level based on spatial cluster configurations generated

using available numerical algorithms (Hiebeler, 1997, 2000).

4.2 Summary of results

Investigations of the effects of heterogeneity showed that mosquito dispersal

is highly unstable as it is dependent on the availability of resources used by

mosquitoes. If hosts and breeding sites are separated and the distance be-

tween them is large, then mosquitoes can be eliminated without requiring an

intervention. Because mosquitoes are forced to move longer distances search-

ing for hosts and breeding sites, the feeding cycle is prolonged (Chitnis et al.,

2008b; Menach et al., 2007) and mortality is increased (Saul, 2003). From the

host point of view, living near by mosquito breeding sites increases exposure
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to mosquito bites and potentially to the disease. Because the vector-host ra-

tio is higher around breeding sites, removing breeding sites in areas of human

habitation can prevent mosquitoes from using human hosts for blood meals,

hence preventing disease transmission.

Results of spatial distribution of interventions show that when randomly dis-

tributed, interventions would maximize the community effect of an interven-

tion. This is because distributing interventions widely reduces the distance

from locations under interventions and those without interventions. In so

doing, the effects of an intervention are maximized. A study by (Gimnig

et al., 2003) shows that interventions such as ITNs confer community effects

to neighbouring villages which are not under interventions. These villages

benefit from interventions deployed in neighbouring villages. Although these

benefits may vary, places that are close to intervention areas get more protec-

tion compare to those that are far away. Mosquito dispersal is another factor

that causes community effect. Dispersal of mosquitoes leading to exchange of

vectors between neighbouring places can have a negative effect when an in-

tervention is evaluated (Killeen et al., 2003). This is because the effect of an

intervention is shared between places. In so doing some areas receive an indi-

rect benefit of an intervention delivered within their proximity (Gimnig et al.,

2003). Although community effect of an intervention might be seen as due to

the overall reduction of mosquito density (Gimnig et al., 2003), this thesis have

indicated that mosquito dispersal is another factor that causes community ef-

fect. Even interventions like larviciding which targets the aquatic stage of the

mosquitoes could still show that randomly distributing them is beneficial. This

is because in the presence of dispersal, the likelihood that gravid mosquitoes

lay eggs in breeding sites under larvicide is high.

Current vector control programs target at host seeking, resting, and larva stages

(WHO, 2012). When these intervention programs are compared, several stud-

ies show that interventions targeting the host seeking stage of the mosquito

such as ITNs/LLINs are the most effective interventions (White et al., 2011).

Furthermore, current evidence indicates that IRS targeting resting mosquitoes
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is more effective than larvicide which targets at larvae (White et al., 2011). The

concept is that adult stages are involved directly in the transmission process

than larvae and the impact of adultciding is highly non-linear because of the

relationship of vectorial capacity with adult survival (Macdonald, 1956).

Treatment barriers such as spatial repellents are of great importance in malaria

vector control (de Zulueta and Cullen, 1963). Using the model, the effects of

spatial repellents on the distance travelled by mosquitoes under the natural

phenomenon of dispersal were investigated. It was found that distributing

repellents encircling a cluster of households in the region is an advantageous

strategy only if mosquito sources are few, clearly defined, and known. If not,

then, distributing repellents randomly has an advantage as it reduces the dis-

tance moved by mosquitoes by make it difficult for mosquitoes to complete

their life cycle.

4.3 Contributions

The model has several contributions to science and to public health. The cou-

pling of the compartments of each mosquito stage and the spatial grid of the

model makes it comprehensive but simple model that explicitly captures mosquito

behavioural and ecological features that are often neglected.

The model incorporates both the aquatic and adult stages of the mosquito

life cycle and further divides the adult mosquito population into three classes

of the mosquitoes searching for hosts, those resting, and those searching for

oviposition sites. These three classes provide an opportunity to study the life

style of the adult mosquito, and also offer direct opportunity to assess the im-

pact of interventions specifically targeting a certain state to reduces contacts

between mosquitoes and human hosts. For example, larvicide, ITNs, and IRS

were directly incorporated in the larval, host seeking, and resting stage re-

spectively. The inclusion of the oviposition site searching stage can be used to

assess the impact of the transfer of insecticides by oviposition site searching

mosquitoes from treated rested walls to breeding sites (Devine et al., 2009).
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The advantage of the discrete space model developed in this work is that one

can easily assess vector control strategies, because the discrete space enables

easy representation of interventions that cover sets of households or villages.

The model, together with field data, can be used to determine areas of high

transmission within local settings, evaluate the community effect of interven-

tions, and assist to develop possible and efficient vector control strategies,

which can optimize the allocation of scarce resources.

In situations where countries approach malaria elimination, transmission hotspots

normally appear to maintain transmission, especially during high transmis-

sion seasons (Bousema et al., 2012). These hotspots are a collection or a cluster

of households. When full coverage of these clusters is not possible, the model

presented in this thesis suggests better ways of distributing interventions, even

at very low coverage levels. Because of mobility behaviour of mosquitoes, the

transmission hotspot buffers can extend to areas that are no longer involved

in transmission. In a situation like this one, the model can be used to define

buffer zones of possible transmission, for targeted interventions.

This work provide means for measuring numbers moving from one hut to

another based on treatment schemes. For example, by considering only host

seeking mosquitoes, parameter values for the dispersal of host seeking mosquitoes

can be determined in the presence and absence of interventions. With the

growing need to understand the interaction between repellent effect and the

contact insecticide properties, the model may be able to make use of the esti-

mates of diversion/killing rates, and can be linked to data from experimental

hut trials, including mark-recapture studies on mosquito movement.

In practice, optimal deployment strategies need to identify the type of settings

suitable for a particular intervention, to identify the kind of delivery modes

to be considered, how to best integrate specific interventions with the health

system. In addition, the model can help understand whether or not high cover-

age is important especially when countries are economically constrained. The

model can be used in the field to determine locations in villages where the
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mosquito population is likely to be older and hence contains more infectious

vectors, or peripheral areas where the population of mosquitoes is likely to be

more newly emerged mosquitoes.

4.4 Implications

Based on the results, the model will stimulate dialogue and future modelling

directions in response to the results generated by this study and field research

for valuable resource management and rational decisions about strategies for

local malaria control. The translation of the knowledge gained from models

to the field will improve our understanding of ecological processes such as

dispersal and interactions among populations.

Methodologically, malaria elimination plans are confronted by the difficulty

of how best interventions should be distributed in cases where full coverage

is not possible. The WHO provides guidelines of vector management (WHO,

2004), however, until now, effective ways of distributing vector control inter-

ventions are not known. This study, through simulations, provides a solution

to how interventions should be distributed when coverage is not 100%. This

work is a first attempt to assess the effect of spatial distribution of interven-

tions when the mosquitoes’ natural behaviour of dispersal is included. Thus,

this study has served a useful purpose as a guide for understanding the inter-

play between spatial distribution of interventions and effectiveness. It could

also serve as a prototype for future modelling work, planning, implementa-

tion, and management of vector control for reducing malaria transmission in

endemic places.

Mathematical analysis is an essential tool for assessing the true impact of each

parameter and to provide evidence for interventions that aim at reducing mosquito

abundance. Results from analysis that host seeking mosquitoes are important

for control agree with the current focus of vector control interventions where

interventions like ITNs targeting host seeking mosquitoes have reduced the

malaria burden in most endemic countries (WHO, 2012). In addition, results
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of intervention effectiveness from this study highlights the significance of tar-

geting host seeking mosquitoes. This evidence has important implications for

the vector management and for understanding the role of each stage in sus-

taining the mosquito population.

The findings concerning different impacts of heterogeneity have important im-

plications for the development of control strategies. In addition, the model can

be used to explore the implications of the resulting multiplicity of combina-

tions of different environments with intervention strategies in understanding

malaria epidemiology and control. The knowledge gained from the model al-

low informed decisions on designing the most effective intervention strategies

in the area. At local level, transmission appears to be shaped by the availability

of resources (Smith et al., 2004) because mosquito movement between places

is often related to the distribution of resources. Thus, routine movement play

a key role in spread diseases at local spatial scales. This finding has impor-

tant implications for malaria prevention, challenging the appropriateness of

current approaches to vector control. The argument is that assessment of cur-

rent approaches and sampling methods used in vector control should consider

vector dispersal. This will lead to improvements in preventing transmission.

4.5 Limitations and Future work

The model developed in this thesis has some limitations but also is capable

of accommodating further extensions which could improve its performance

qualities to enable further investigations.

From the mathematical point of view, the dispersal model could be analysed

further to gain mathematical insight. Since all patches become connected dur-

ing dispersal, computing the mosquito reproduction number for the whole

domain would help understand the effects of dispersal on the overall total

population of mosquitoes and its implication on the maintaining disease risk.

The development times of each stage of the mosquito, particularly the aquatic
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stages highly dependent on the environmental conditions. Since the model

structured the mosquito into its life stages, incorporating environmental and

seasonal effects such as rainfall, temperature is possible (Depinay et al., 2004;

Lunde et al., 2013; Otero et al., 2006; Stoddard et al., 2012). These environment-

dependent parameters include the mosquito recruitment or birth rate, the mosquito

mortality rates, and the development rates. The seasonal effects could be mod-

elled by making some of these parameters periodic functions of time. How-

ever, these environmental effects have implications on the analytical results of

the model. Analysing periodical models with changes in the mosquito pop-

ulation reproductive number and steady states is complex but could provide

more information on the spatial distribution of mosquitoes over time and its

implications on the distribution of vector control interventions.

The assumption of constant number of hosts in each patch allowed a straight-

forward assessment of the effects of host availability on mosquito distribu-

tion. However, in real situations, human hosts move from one place to another.

Studies idicate that human movement is an important factor in resurgence of

vector-borne diseases such as malaria and dengue (Adams and Kapan, 2009;

Cosner et al., 2009; Stoddard et al., 2009; Tatem et al., 2009). Local human

movement between houses affect the local distribution of disease (Stoddard

et al., 2012) as human movement changes the distribution of human hosts,

hence affecting the dispersal rate of host seeking mosquitoes. This has impli-

cations on the malaria transmission and could affect the performance of vec-

tor control interventions and the effectiveness of the distribution strategies of

these interventions. A further extension to the model would be to combine

both local movement of hosts and vector dispersal. This would help to under-

stand the distribution of risks and to determine which among the two factors

have the most significant effect in sustaining malaria transmission in local set-

tings.

The presence of wind facilitates dispersal if the movement of the mosquito is

in the same direction as that of the wind. In some cases, especially when wind

speed is high, the mosquito can be blown away from its original direction. This
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could affect the distribution of mosquitoes and has implications on the distri-

bution of malaria risk. An extension to the model to incorporate wind effects

on mosquito dispersal could help to understand non-behavioural influences.

Studies suggest that host odour attracts host-seeking mosquitoes (Knols and

Meijerink, 1997; Mukabana et al., 2002) which are due to the differences in

the make-up of body emanations, and olfactory signals in particular (Okumu

et al., 2010). This is another factor to include in the model. However, the chal-

lenge would be to link host odour influence on dispersal with the effect of

wind. Including the influence of host odour raises another important factor,

the differential attractiveness (Costantini et al., 1998; Knols et al., 1995; Muka-

bana et al., 2002) and the emission of different levels of carbon-dioxide (CO2)

by different hosts. It is known from the model that there is a direct relationship

between the host density within a patch and the number of mosquitoes in that

particular patch. An additional extension to include variability in attractive-

ness to mosquitoes (Takken and Verhulst, 2013) could help identify the factors

that influence dispersal more strongly. Thus, providing an understanding of

the main factors that influence the spatial distribution of vectors and hence

malaria risk.

In the field, the model could be validated by applying it to an area which is

endemic to malaria. Using data from mark-recapture studies, parameter val-

ues specific to particular locations could be used as input values in the model,

and simulations of the effects of host and breeding sites distribution on the

distribution of mosquitoes could be made with and without interventions.

4.6 Conclusions

This thesis has presented a mathematical model with the life cycle and feeding

cycle model where the adult host-seeking and oviposition site-seeking mosquitoes

move between patches. The model developed in this work can be used to as-

sign different levels of attractiveness to the patches depending on their prop-

erties. This work has shown the applicability of the model developed and
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the results have refined our knowledge of how distribution of interventions

can affect their effectiveness. This model can serve as a groundwork for fu-

ture studies aiming at exploring the relationship between heterogeneity and

malaria risks and the effectiveness of interventions.

Mosquito dispersal and the different patterns of heterogeneity have various ef-

fects on mosquito population distributions, and thus, that of malaria. Counter-

intuitive findings include the observation that random distribution of spatial

repellents reduces the distance moved by mosquitoes. It might also be ex-

pected that models that incorporate dispersal when integrated with environ-

mental heterogeneity could be used to predict the high-risk areas for targeting

malaria vector control, however we find that random distribution of malaria

vector control interventions such as ITNs, IRS, and larviciding will in general

be more effective than clustering them.

Crucial to assessing disease transmission spatial variations, this work shows

that alongside patterns of heterogeneity, mosquito dispersal should be con-

sidered when designing intervention strategies. The spatial grid is a realis-

tic representation of spatial variations and thus, offering a promising way of

quantifying variability of mosquito densities in different local settings of en-

vironmental heterogeneity. The predictions made by model presented in this

thesis can be intuitively understood and the relative risk between various ar-

eas can easily be conveyed to policy and decision makers. This thesis provides

another considerable step towards the techniques and knowledge required for

more effective strategies in the management of vector borne diseases. More-

over it has a potential for continued research into dispersal models across het-

erogeneous environments by providing a simple framework that researchers

can use for further investigations.

Taken together, spatially-explicit dispersal models integrated with environ-

mental heterogeneity allow predictions to capture ecological behaviour of mosquitoes,
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the main source of variations in malaria risk at local spatial scales. These pre-

dictions vary in space but provide more information than predictions of mod-

els that assume enclosed systems without taking into account the underlying

heterogeneity of the landscape. Such predictions can assist not only in deter-

mining risk areas for targeted control, but also in determining optimal strate-

gies for deploying interventions to assist achieving malaria elimination goals.

Throughout this thesis, the importance of models that incorporate dispersal

and environmental heterogeneity, and the variations in intervention distribu-

tion was shown. This model and the results emerging from its application

are essential for implementation of better malaria vector control programs. To-

gether with field data, this model could help determine better ways of spatially

distributing interventions in local settings to optimize the allocation of scarce

resources available especially when country economies do not allow high cov-

erage levels.
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