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Abstract. Given polar spaces (V, β) and (V, Q) where V is a vector space over
a field K, β a reflexive sesquilinear form and Q a quadratic form, we have
associated classical isometry groups. Given a subfield F of K and an F -linear
function L : K → F we can define new spaces (V, Lβ) and (V, LQ) which are
polar spaces over F .
The construction so described gives an embedding of the isometry groups of
(V, β) and (V, Q) into the isometry groups of (V, Lβ) and (V, LQ). In the finite
field case under certain added restrictions these subgroups are maximal and
form the so called field extension subgroups of Aschbacher’s class C3 [1].
We give precise descriptions of the polar spaces so defined and their associated
isometry group embeddings. In the finite field case our results give extra detail
to the account of maximal field extension subgroups given by Kleidman and
Liebeck [3, p112].

1. Introduction

Let (V, β) and (V, Q) be polar spaces over a field K with β : V × V → K a
reflexive σ-sesquilinear form where σ is a K-automorphism and Q : V → K a
quadratic form with polar form fQ : V × V → K. Let F be a subfield of K and
L : K → F an F -linear function. We now compose functions to get Lβ : V ×V → F
and LQ : V → F regarding V as a vector space over F . In order for these forms
to be well-defined it is necessary to impose the condition σ(F ) = F after which
it is easily verified that LQ is a quadratic form with polar form LfQ and Lβ is a
sesquilinear form. In fact if F ⊆ Fix(σ) then β is bilinear.

We present three results on this situation: In Section 2, Theorem A gives condi-
tions on the degeneracy of our composed forms, Lβ and LQ. In Section 3, Theorem
B gives conditions on the type (alternating, symmetric or hermitian) of our com-
posed forms. In sections 4 and 5 we consider the situation where our fields are
finite. Theorem C summarises these results and gives the isometry group embed-
dings which are induced by these composed forms.

2. Results on Degeneracy

We begin be presenting results on degeneracy. Our definition of degeneracy
is consistent with that of Taylor [5] and so is slightly more general than that of
Kleidman and Liebeck [3]:

Definition 2.1. A σ-sesquilinear form β is non-degenerate if

β(u, v) = 0, ∀v ∈ V =⇒ u = 0.
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A quadratic form Q is non-degenerate if its polar form fQ has the property that

fQ(u, v) = Q(u) = 0, ∀v ∈ V =⇒ u = 0.

The forms are called degenerate otherwise.

Our first result concerns sesquilinear forms and uses an adaptation of a proof
given by Lam [4]:

Lemma 2.2. Lβ is non-degenerate exactly when L 6= 0 and β is non-degenerate.

Proof. If either L = 0 or β is degenerate then it is clear that Lβ will be degenerate.
Now suppose that L 6= 0, β is non-degenerate and Lβ is degenerate. Then there
exists nonzero v ∈ V such that Lβ(v, w) = 0 for all w ∈ V . Note that there exists
w ∈ V such that β(v, w) 6= 0. Now consider, for any c ∈ K,

β(v,
σ(c)

σ(β(v, w))
w) = σ(

σ(c)
σ(β(v, w))

)β(v, w)

= c

Then Lβ(v, σ(c)
σ(β(v,w))w) = Lc = o for all c ∈ K. This implies that L = 0 which is a

contradiction. ¤

We turn our attention to quadratic forms. To begin with we can apply the
previous lemma directly to get the following:

Lemma 2.3. If L = 0 or Q is degenerate then LQ is degenerate. If fQ is non-
degenerate then LQ is non-degenerate.

Thus we are left with the question of what happens when Q is non-degenerate
and fQ is degenerate. This can only occur in characteristic 2. We are able to
present results only for the case where V is finite-dimensional and K is finite, in
which case we have the following well-known result (see, for example [5, p. 143]):

Theorem 2.4. A non-degenerate quadratic form Q on a vector space V over
GF (2h) has a degenerate associated polar form if and only if dim V is odd, in
which case the radical of fQ, rad(V, fQ), is of dimension 1.

Corollary 2.5. Let K be a finite field of characteristic 2. Suppose dimKV is odd,
fQ is degenerate and Q is non-degenerate. Then LQ is degenerate.

Proof. Take x ∈ rad(V, fQ). Then x ∈ rad(V, LfQ). Hence rad(V,LfQ) ⊇
rad(V, fQ). But dimF (rad(V, LfQ)) ≥ dimF (rad(V, fQ)) > 1. Hence LQ is de-
generate. ¤

We can summarise our main results in the following:

Theorem A. Let β : V ×V → K be a reflexive σ-sesqulinear form. Let Q : V → K
be a quadratic form. let F be a subfield of K and L : K → F be a F -linear function.
Then:
• Lβ is non-degenerate if and only if β is non-degenerate and L 6= 0;
• If char K 6= 2, or K = GF (2h) for some integer h and dimKV is even, then

LQ is non-degenerate if and only if Q is non-degenerate and L 6= 0;
• If K = GF (2h) for some integer h and dimKV is odd then LQ is degenerate;
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Unsolved. We have failed to ascertain the conditions under which LQ is degen-
erate in the case where char K = 2, |K|+ dimKV is infinite, Q is non-degenerate
and fQ is degenerate.

3. A Classification of β Into Form

Taking reflexive sesquilinear form β : V × V → K to be alternating, symmetric
or hermition, L : K → F , F -linear and not identically zero, we seek to classify Lβ
into these three categories or else as being ‘atypical’, i.e. not of of this form.

The conditions under which β is hermitian, char K = 2 and Lβ is alternating
will prove to be the most difficult and we discuss this case first. Observe that we
must have F ⊆ Fix(σ).

Let σ be the field automorphism of order 2 associated with β. It is easily shown
that K/Fix(σ) is a Galois extension and we may therefore define a trace function:

TrK/Fix(σ) : K → Fix(σ), x 7→ x + σ(x).

Now any Fix(σ)-function L : K → Fix(σ) can be written in the form, for some
α ∈ K,

L : K → Fix(σ), x 7→ TrK/Fix(σ)(αx).

Lemma 3.1. When char K = 2 and β is hermitian, Lβ is alternating if and only
if F ⊆ Fix(σ) and Lσ = L.

Proof. Write L : K → F, x 7→ L1 ◦ TrK/Fix(σ)(αx) for some α ∈ K and some L1 :
Fix(σ) → F , F -linear and not identically zero. We suppose that TrK/Fix(σ)(ασ) =
TrK/Fix(σ)(α) and it is enough to prove that TrK/Fix(σ)(αβ) is alternating. Now
for x ∈ K,

TrK/Fix(σ)(ασ(x)) = TrK/Fix(σ)(αx) =⇒ ασ(x) + σ(ασ(x)) = αx + σ(αx)
=⇒ ασ(x) + σ(α)x = αx + σ(α)σ(x)
=⇒ (σ(α) + α)(σ(x) + x) = 0.

Since σ(x) + x 6= 0 for all x 6∈ Fix(σ), we must have σ(α) = α. Then

TrK/Fix(σ)(αβ)(x, x) = αβ(x, x) + σ(αβ(x, x))
= αβ(x, x) + σ(α)σβ(x, x)
= (α + σ(α))β(x, x) = 0.

¤
We are now able to state our main result:

Theorem B. Let β : V × V → K be a reflexive sesquilinear form. Let K/F be a
field extension with L : K → F a F -linear function which is not identically zero.
Then we classify β into type as follows:
• If β is alternating then Lβ is alternating;
• If β is symmetric then Lβ is symmetric;
• If char K = 2, K is finite and β is symmetric not alternating then Lβ is

symmetric not alternating;
• If β is hermitian and F 6⊆ Fix(σ) then

(1) Lβ is hermitian if and only if Lσ = σL;
(2) Lβ is atypical if and only if Lσ 6= σL;
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• If β is hermitian and F ⊆ Fix(σ) then
(1) Lβ is symmetric if and only if Lσ = L;
(2) Lβ is alternating if and only if char K 6= 2 and Lσ = −L OR char K =

2 and Lσ = L;
(3) Lβ is atypical if and only if Lσ 6= ±L.

Proof. The first two statements are self-evident.
We turn to the third statement. Given β symmetric not alternating, Lβ will be

alternating if and only if {β(x, x)|x ∈ V } ⊆ null(L). Since L 6= 0 it is enough to
show that f : V → K,x → β(x, x) is onto. Take any x ∈ V such that β(x, x) = a ∈
K∗. Take any c ∈ K. Then β(

√
c
ax,

√
c
ax) = c as required.

For the remainder we assume that β is hermitian. First of all suppose that F 6⊆
Fix(σ) so Lβ is σ-sesquilinear. Then Lβ(v1, v2) = Lσβ(v2, v1) for any v1, v2 ∈ V
and so Lβ is hermitian if and only if Lσ|=(β) = σL|=(β). Since β is surjective we
are done.

Next suppose that F ⊆ Fix(σ) in which case Lβ(v1, v2) = Lσβ(v2, v1). This is
symmetric if and only if Lσ|=(β) = L|=(β) and so Lβ is symmetric exactly when
Lσ = L.

Now we examine when Lβ is alternating. When char K is odd this is equivalent
to Lβ being skew-symmetric which, by an analagous argument to the symmetric
case, occurs exactly when Lσ = −L. When char K = 2 the previous lemma gives
us the required result. The only other possibility is for Lβ to be atypical hence we
have our final equivalence. ¤

Unsolved. We have failed to ascertain the conditions under which Lβ is alternat-
ing in the case where char K = 2, K is infinite and β is symmetric not alternating.

4. The Isometry Classes of (V, LQ) Over Finite Fields

Define Q : V → GF (qw) a non-degenerate quadratic form, L : GF (qw) → GF (q)
a GF (q)-linear function which is not the zero function and TrGF (qw)/GF (q) the trace
function. We restrict V to be a finite A-dimensional vector space over GF (qw). In
order to classify (V,Q) into isometry classes we need to examine the situation when
Aw is even and distinguish between the O+ and O− cases.

Our first lemma will be useful in distinguishing the isometry class of LQ as well
as giving an application of the classification:

Lemma 4.1. The isometry group for Q, Isom(Q, V ), is a subgroup of the isometry
group for LQ, Isom(LQ, V ).

Proof. Simply observe that if T : V → V satisfies Q(Tu) = Q(u) for all u ∈ V
then LQ(Tu) = LQ(u) for all u in V . ¤

Consider first the situation when A is even:

Lemma 4.2. Let (V, q) have isometry class O+(A, qw). Then (V,LQ) has isometry
class O+(Aw, q). Thus O+(A, qw) ≤ O+(Aw, q).

Proof. Let W be a maximal totally singular subspace of (V, q). Then dimKW =
1
2dimKV . But W is also a totally singular subspace of (V,LQ) and dimF W =
1
2dimF V . Thus (V, LQ) is of type O+(Aw, q). ¤
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Lemma 4.3. Let (V, q) have isometry class O−(A, qw). Then (V,LQ) has isometry
class O−(Aw, q). Thus O−(A, qw) ≤ O−(Aw, q).

Proof. Suppose first of all that A = 2. Suppose in addition that (V, LQ) has
isometry class O+(2w, q). Then O+(2, qw) ≤ O−(Aw, q) and so, by the theorem of
Lagrange,

(qw + 1)
∣∣qw(w−1)

w−1∏

i=1

(q2i − 1).

If a primitive prime divisor of q2w − 1 exists then this is impossible hence we must
deal with the exceptions given by Zsigmondy. The first possibility is that w = 1,
in which case L : GF (qw) → GF (qw) has form x 7→ ax for some a ∈ GF (qw)∗.
Clearly an element of V is singular under Q exactly when it is singular under LQ.
Then (V, q) and (V, LQ) have the same Witt index and hence share type which is
a contradiction.

The second possibility is that (q, w) = (2, 3) in which case we must consider
whether or not O−(2, 8) ≤ O+(6, 2). Examining the atlas [2] we see that O−(2, 8)
contains elements of order 9 while O+(6, 2) does not, hence this possibility can be
excluded.

Now suppose that A = 2m + 2 for some m ≥ 1. Then V = U ⊥ W under Q
where U is a direct sum of m hyperbolic lines and W is an anisotropic subspace of
dimension 2. Then Q|U is of type O+ and hence LQ|U is of type O+. Similarly Q|W
is of type O− and, since dimGF (qw)W = 2, LQ|W is of type O−. Then V = U ⊥ W
under LQ, U is a direct sum of mw hyperbolic lines under LQ and W is a direct
sum of w−1 hyperbolic lines with a 2-dimensional anisotropic subspace under LQ.
Hence (V, LQ) is of type O−. ¤

We now consider the situation when A is odd. If the characteristic equals 2 then
Theorem A implies that LQ is degenerate so we exclude this situation. We will be
interested in the situation where w is even and the characteristic is odd. We will
write L : GF (qw) → GF (q) in the form, for some α ∈ GF (qw)∗,

L = TrGF (qw)/GF (q)(α) : GF (qw) → GF (q), x 7→
w−1∑

i=0

(αx)qi

.

We will need to work with the discriminant of our form LQ for which we will need
two preliminary results:

Lemma 4.4. Let q be odd, k ∈ GF (q2)\GF (q) such that k2 ∈ GF (q). Then

TrGF (q2)/GF (q)(k) = 0.

Proof. Observe that GF (q2) = GF (q)(k) and k has minimum polynomial x2 −
k2. Now Gal(GF (q2)/GF (q)) acts on the set of roots of this minimum polyno-
mial. Since the trace map is the sum of the elements of Gal(GF (q2)/GF (q)),
TrGF (q2)/GF (q)(k) = k − k = 0. ¤

Theorem 4.5. A non-degenerate quadratic form, Q : V → GF (q) where V is a
2n-dimensional vector space over GF (q) and q is odd, gives rise to an O+(2n, q)
space if and only if disc(Q) ≡ (−1)n(mod GF (q)∗2). Here GF (q)∗2 is the subgroup
of GF (q)∗ consisting of all square terms.
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A proof of the previous theorem can be found, for instance, in [3, p.32]. We can
now proceed with our study of the type of LQ.

Lemma 4.6. Let (V,Q) be of type O and be one-dimensional over GF (q2), q odd.
Then Q has form Q(u) = γu2, for some γ ∈ GF (qw)∗. Then LQ has type,

O+ ⇐⇒ (αγ)−2 ∈ GF (q)\GF (q)∗2 or (αγ)q+1 6≡ −1(mod GF (q)∗2),
O− ⇐⇒ (αγ)−2 6∈ GF (q)\GF (q)∗2 and (αγ)q+1 ≡ −1(mod GF (q)∗2).

Proof. Observe that LQ : V → GF (q), u 7→ αγu2 + (αγu2)q has polar form
LfQ : V × V → GF (q), (u, v) 7→ uT Mv where, over a basis for V over GF (q),
{1, ω},

M =
(

2TrGF (q2)/GF (q)(αγ) 2TrGF (q2)/GF (q)(αγω)
2TrGF (q2)/GF (q)(αγω) 2TrGF (q2)/GF (q)(αγω2)

)
.

Now take f to be an element of GF (q) such that
√

f 6∈ GF (q). Then (αγ)−2 ∈
GF (q)\GF (q)∗2 if and only if (αγ)−1

√
f ∈ GF (q).

Suppose that (αγ)−1
√

f 6∈ GF (q). Let ω = (αγ)−1
√

f . Then

M =
(

2TrGF (q2)/GF (q)(αγ) 2TrGF (q2)/GF (q)(
√

f)
2TrGF (q2)/GF (q)(

√
f) 2TrGF (q2)/GF (q)(α−1γ−1f)

)
.

Then the discriminant of the form LQ is

4TrGF (q2)/GF (q)(αγ)TrGF (q2)/GF (q)(α−1γ−1f)− 4(TrGF (q2)/GF (q)(
√

f))2

= 4f(αγ + (αγ)q)((αγ)−1 + (αγ)−q) (since TrGF (q2)/GF (q)(
√

f) = 0)

=
f22(TrGF (q2)/GF (q)(αγ))2

(αγ)q+1
.

Referring to Theorem 4.5 we see that our result holds in this case.
Suppose that (αγ)−1

√
f ∈ GF (q). Let ω =

√
f . Then αγ = f2

√
f for some

f2 ∈ GF (q) and

M =
(

2TrGF (q2)/GF (q)(f2

√
f) 2TrGF (q2)/GF (q)(f2f)

2TrGF (q2)/GF (q)(f2f) 2TrGF (q2)/GF (q)(f2f
√

f)

)
.

The discriminant of the form LQ is

4TrGF (q2)/GF (q)(f2

√
f)TrGF (q2)/GF (q)(f2f

√
f)− 4(TrGF (q2)/GF (q)(f2f))2

= −4(TrGF (q2)/GF (q)(f2f))2 (since TrGF (q2)/GF (q)(
√

f) = 0).

Appealing to Theorem 4.5 we conclude that LQ is of isometry class O+ in all cases
here.

¤

Lemma 4.7. Let (V,Q) be A-dimensional of type O over field GF (qw) of odd
characteristic. Let S be a non-dimensional anisotropic subspace (or germ) where
Q

∣∣
S

has form Q(s) = γs2 for some γ ∈ GF (qw)∗. Let w = 2n. Then LQ has type

O+ ⇐⇒ (αγ)−2 ∈ GF (qn)\GF (qn)∗2 or (αγ)q+1 6≡ −1(mod GF (qn)∗2),
O− ⇐⇒ (αγ)−2 6∈ GF (qn)\GF (qn)∗2 and (αγ)q+1 ≡ −1(mod GF (qn)∗2).
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Proof. First take A odd and w = 2. Then (V, Q) = (R, Q
∣∣
S
) ⊥ (S, Q

∣∣
R
) where R is

an orthogonal direct sum of orthogonal hyperbolic lines and S is a one-dimensional
anisotropic orthogonal space. Then LQ

∣∣
R

is of type O+ and LQ
∣∣
S

will be either of
type O+ or O− according to the conditions of the previous lemma. Since (V,LQ) =
(R, LQ

∣∣
R
) ⊥ (S,LQ

∣∣
S
) the type of LQ is determined according to the conditions

given.
Now take A odd, w any even number. Then L = TrGF (qn)/GF (q)◦TrGF (qw)/GF (qn)◦

K where K : GF (qw) → GF (qw), x 7→ αx. By the previous paragraph the condi-
tions of the theorem are the conditions under which TrGF (qw)/GF (qn) ◦K ◦Q will
be of type O+ or O−. By Lemmas 4.3 and 4.2 we know that further compositions
with TrGF (qn)/GF (q) will not change this type. The result follows.

¤

We will summarise the results of this section and the next in Theorem C at the
end of the paper.

5. The Isometry Classes of (V, Lβ) Over Finite Fields

Define β : V ×V → GF (qw) to be a non-degenerate reflexive sesquilinear form of
one of the three types, V A-dimensional over GF (qw). Define L : GF (qw) → GF (q),
GF (q)-linear and not the zero function.

If we consider β symmetric over a field of odd characteristic then β shares isom-
etry class with the quadratic form Q(v) = 1

2β(v, v) and the results of the previous
section give the type of Lβ.

Similarly if β is alternating or if the characteristic is 2 and β is symmetric not
alternating, then Theorem B gives the type of Lβ. Note that over finite fields,
symmetric not alternating forms result in polar spaces which are called pseudo-
symplectic.

In this section we need to consider the case where β is hermitian with automor-
phism σ. Once again we will take L = TrGF (qw)/GF (q)(α) for some α in GF (q)∗.
Consider first the case where GF (q) 6⊆ Fix(σ) which occurs exactly when w is odd:

Lemma 5.1. Let β be hermitian. When w is odd,
(1) Lβ is hermitian ⇐⇒ σ(α) = α;
(2) Lβ is atypical ⇐⇒ σ(α) 6= α.
When w is even,
(1) Lβ is symmetric ⇐⇒ σ(α) = α;
(2) Lβ is alternating ⇐⇒ σ(α) = −α;
(3) Lβ is atypical ⇐⇒ σ(α) 6= ±α.

Proof. Observe that Lβ is bilinear if and only if F (q) ⊆ Fix(σ) if and only if w is
even.

Suppose first that w is odd; then it is enough to prove the first equivalence. By
Theorem B we know that Lβ is hermitian if and only if Lσ = σL. Now

Lσ(x) = σL(x) ⇐⇒ σTrGF (qw)/GF (q)((σ(α)− α)x) = 0.

The surjectivity of the trace function gives us our result.
Now suppose that w is even. By Theorem B it is enough to prove that Lσ =

±L ⇐⇒ σ(α) = ±α. Let the Galois group of the field extension GF (qw)/GF (q) =
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{σ1, . . . , σw}. Then

Lσ = ±L ⇐⇒
w∑

i=1

σi(ασ(x)) = ±
w∑

i=1

σi(αx)

⇐⇒
w∑

i=1

σiσ(ασ(x)) = ±
w∑

i=1

σi(αx)

⇐⇒
w∑

i=1

σi((σ(α)∓ α)x) = 0.

Once again the surjectivity of the trace function gives us our result. ¤

To complete the classification we need to ascertain the isometry group of Lβ in
the case where it is symmetric.

Lemma 5.2. Suppose that β is hermitian, w is even, σ(α) = α and V is A-
dimensional over GF (qw). Then the isometry class of Lβ is,

O+(Aw, q) ⇐⇒ A is even, O−(Aw, q) ⇐⇒ A is odd.

Proof. If A is even then, with respect to the hermitian form β, V contains a
totally isotropic subspace of dimension A

2 . This subspace is also totally isotropic
with respect to Lβ and over GF (q) has dimension Aw

2 . Hence (V,Lβ) is of type
O+.

Now take A to be odd. First suppose that A = 1 and w = 2 so that GF (q) =
Fix(σ). Then, given a basis for V over GF (q), {1, ω}, we have β(x, y) = xσ(y),
L(x) = αx + σ(αx) and the matrix of Lβ is

(
2TrGF (qw)/GF (q)(α) 2TrGF (qw)/GF (q)(αω)
2TrGF (qw)/GF (q)(αω) 2TrGF (qw)/GF (q)(αωσ(ω))

)
.

Now put ω =
√

f where GF (q2) = GF (q)(
√

f) and the discriminant of Lβ is
−4fα2. Since this is minus a non-square, Lβ is of type O−.

Now let A be any odd integer, w = 2. Then (V, β) = (R, β
∣∣
S
) ⊥ (S, β

∣∣
R
)

where R is an orthogonal direct sum of orthogonal hyperbolic lines and S is a
one-dimensional unitary space. Then Lβ

∣∣
R

is of type O+ by the first part of this
lemma, Lβ

∣∣
S

is of type O− by the previous argument and hence (V, Lβ) is of type
O−.

Finally suppose that w > 2, in which case L = Tr
GF (q

w
2 )/GF (q)

◦Tr
GF (qw)/GF (q

w
2 )

(α).
We know that Tr

GF (qw)/GF (q
w
2 )

(αβ) is of type O−; then Lemma 4.3 implies that
(V, Lβ) is of type O−. ¤

We are now in a position to summarise the results of the last two sections.

Theorem C. Let V be an A-dimensional polar space over GF (qw). Take L :
GF (qw) → GF (q), x 7→ TrGF (qw)/GF (q)(αx) for some α ∈ GF (qw)∗.

Suppose first of all that V is defined via a quadratic form Q : V → GF (qw).
If the form has a germ U then Q

∣∣
U

(x) = γx2 for some γ ∈ GF (qw)∗. Then we
classify LQ into type, including the classical group embedding,as follows:
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Type of Q Type of LQ Conditions Embedding
O+ O+ always O+(A, qw) ≤ O+(Aw, q)
O− O− always O−(A, qw) ≤ O−(Aw, q)
O degenerate q even -
O O w odd, q odd O(A, qw) ≤ O(Aw, q)
O O+ w even, q odd; O(A, qw) ≤ O+(Aw, q)

(αγ)−2 ∈ GF (q
w
2 )\GF (q

w
2 )∗2 or

(αγ)q+1 6≡ −1(mod GF (q
w
2 )∗2)

O O− w even, q odd; O(A, qw) ≤ O−(Aw, q)
(αγ)−2 6∈ GF (q

w
2 )\GF (q

w
2 )∗2 and

(αγ)q+1 ≡ −1(mod GF (q
w
2 )∗2)

Suppose next that V is defined via a reflexive σ-sesquilinear form β : V × V →
GF (qw). If the characteristic is odd and β is symmetric then the type of Lβ and
its associated classical group embedding is given in the previous table taking Q to
be the quadratic form Q(v) = 1

2β(v, v).
In all other cases the type of Lβ, with associated classical group embedding, is

as follows:

Type of β Type of Lβ Conditions Embedding
hermitian hermitian w odd, σ(α) = α U(A, qw) ≤ U(Aw, q)
hermitian atypical w odd, σ(α) 6= α -
hermitian alternating w even, q even, σ(α) = α U(A, qw) ≤ Sp(Aw, q)
hermitian alternating w even, q odd, σ(α) = −α U(A, qw) ≤ Sp(Aw, q)
hermitian atypical w even, σ(α) 6= ±α -
hermitian O+ w even, q odd, A even, σ(α) = α U(A, qw) ≤ O+(Aw, q)
hermitian O− w even, q odd, A odd, σ(α) = α U(A, qw) ≤ O−(Aw, q)
alternating alternating always Sp(A, qw) ≤ Sp(Aw, q)

pseudo pseudo q even -
-symplectic -symplectic
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