
D U B L IN CITY U N IV E R SIT Y

SCHOOL OF ELECTRONIC ENG INEER ING

Fractal m eth od s in Im age

A n alysis and C oding

David Neary B .Sc.

This thesis is subm itted as fulfillment of the requirements for the award of

the degree of M.Eng. by research to Dublin C ity University.

Supervisor: D r. Sean Marlow

School of Electronic Engineering

Dublin City University, Dublin 9

Ireland

January 22, 2001

D eclaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award on M.Eng. is entirely my own work

and has not been taken from the work of others, save arid to the extent that

such work has been cited and acknowledged within the text of my work.

Signed: _ Candidate.

ID No.:

Date: ¿ 3 / P f / 2 - OP f

A cknow ledgem ents

I would like to express my sincere gratitude to Dr. Sean Marlow and Dr.

Noel Murphy, who were both extremely supportive, even when things were

going badly. Their guidance, comments and assistance were invaluable.

I would also like to thank Prof. Charles McCorkell and the School of Elec­

tronic Engineering for financial assistance during the course of my research.

Among the many people who helped, encouraged and distracted me dur­

ing the course of this project, all of which I am grateful for, were Emmet

Caulfield, Miguel Monclus and Anne Fraysse.

A b stract

In this thesis we present an overview of image processing techniques which

use fractal methods in some way. We show how these fields relate to each

other, and examine various aspects of fractal methods in each area.

The three principal fields of image processing and analysis th a t we examine

are texture classification, image segmentation and image coding.

In the area of texture classification, we examine fractal dimension estima­

tors, comparing these m ethods to other methods in use, and to each other.

We a ttem p t to explain why differences arise between various estim ators of

the same quantity. We also examine texture generation m ethods which use

fractal dimension to generate textures of varying complexity.

We examine how fractal dimension can contribute to image segmentation

methods. We also present an in-depth analysis of a novel segmentation

scheme based on fractal coding.

Finally, we present an overview of fractal and wavelet image coding, and the

links between the two. We examine a possible scheme involving both fractal

and wavelet methods.

C ontents

D eclaration ii

A cknow ledgem ents iii

A b s trac t iv

Table of C onten ts v

L ist of F igures ix

1 In tro d u c tio n 1

1.1 Goals and a i m s ... 1

1.2 Overview.. 2

2 F racta l m ethods in te x tu re analysis 4

2.1 In tro d u c tio n .. 4

v

2.2 Texture classification m eth o d s .. 7

2.2.1 Frequency based classification ... 7

2.2.2 Co-occurrence m atrices... 8

2.2.3 Fractal d im ension ... 9

2.3 Fractal dimension estim ators... 12

2.3.1 Box-counting d im e n sio n .. 12

2.3.2 Fourier e s t im a to r ... 14

2.4 Texture synthesis m eth o d s... 15

2.4.1 Midpoint displacement m e t h o d .. 15

2.4.2 Inverse Fourier power spectrum method 19

2.5 Results and d isc u ss io n ..21

2.5.1 Box-counting dimension r e s u l t s ...22

2.5.2 Fourier power spectrum estimator resu lts25

2.5.3 S u m m a r y ... 26

3 Segm entation 30

3.1 Overview..30

3.2 Image segmentation methods ... 31

3.2.1 Histogram a n a ly s is ...31

vi

3.2.2 Edge detection .. 34

3.2.3 Region g ro w in g .. 40

3.3 Segmentation by texture using fractal dim ension........................... 42

3.4 Segmentation using fractal codes .. 45

3.5 Results and d isc u ss io n ..48

3.5.1 Fractal dimension segmentation r e su lts 48

3.5.2 Fractal codes segmentation results...57

4 Fractal m eth o d s in im age cod in g 64

4.1 Introduction... 64

4.2 Image coding m e th o d s ...66

4.2.1 Lossless com p ression .. 66

4.2.2 Transform m eth o d s ..68

4.3 Wavelet transform ..71

4.3.1 D efinitions...72

4.3.2 Frames and orthonormal b a ses ..73

4.3.3 Multiresolution a n a ly s is ..75

4.3.4 Wavelet transform in image p rocessin g78

4.4 Fractal transform ..81

vii

4.4.1 Contraction m a p p in g s ... 81

4.4.2 Iterated function sy s te m s « 83

4.4.3 Collage th eo rem ... 84

4.4.4 Partitioned iterated function s y s te m s 87

4.5 W avelet-fractal hybrid t r a n s fo rm s ... 92

4.5.1 Fractal coding in the wavelet d o m a in 92

4.5.2 Wavelet post-processing of fractal coding93

4.5.3 Results and d is c u s s io n .. 95

5 Conclusion and discussion 108

5.1 S u m m a r y ..108

5.2 Future p o s s ib il i t ie s « ... I l l

5.2.1 Image segm entation .. I l l

5.2.2 Image c o d i n g .. 112

5.2.3 Video te lep h o n y ... 113

Bibliography 114

v iii

List o f F igures

2.1 Assorted t e x tu r e s .. 6

2.2 A doubling in resolution with m idpoint d is p la c e m e n t.............16

2.3 Various clouds generated with random additions (a)-(c) and

m idpoint displacement (d) - (f) .. 16

2.4 Surface of dimension 2.2 generated by m idpoint displacement . 17

2.5 Surface of dimension 2.5 generated by m idpoint displacement . 18

2.6 Surface of dimension 2.2 generated by random additions . . . 19

2.7 Surface of dimension 2.8 generated by random additions . . . 20

2.8 Surface of dimension 2.5 generated by Fourier filtering m ethod 21

2.9 Surface of dimension 2.8 generated by Fourier filtering m ethod 22

2.10 Dotplot of dimension measured by box-counting m ethod ver­

sus dimension generated with Fourier syn thesis23

2.11 Dotplot of dimension measured by Fourier power spectrum

m ethod versus dimension generated w ith Fourier synthesis . . 24

ix

2.12 Dotplot of dimension measured by box-counting m ethod ver­

sus dimension generated with m idpoint d is p la c e m e n t..................25

2.13 D otplot of dimension measured by Fourier power spectrum

m ethod versus dimension generated w ith m idpoint displacement 26

2.14 Dotplot of dimension measured by box-counting m ethod ver­

sus dimension generated with successive random additions . . 27

2.15 D otplot of dimension measured by Fourier power spectrum

m ethod versus dimension generated w ith successive random

ad d itio n s ...28

2.16 D F and D B of the textures in Figure 2 . 1 ...29

3.1 A simple image to be segm en ted ..33

3.2 Edge detection by Prew itt o p e r a to r ... 35

3.3 Edge detection on picture of sh e lv es ... 37

3.4 Examples of how we assume blocks m ap onto each other . . . 46

3.5 Test image containing five textures for segm enta tion48

3.6 “Lenna” test image used for s e g m e n ta t io n 49

3.7 Segmentation of montage with 13x13 feature smoothing and

17x17 feature estim ation window ... 50

3.8 Segmentation of montage with 7x7 feature smoothing and

17x17 feature estim ation window ... 51

3.9 Segmentation of montage with 7x7 feature smoothing and

19x19 feature estim ation w in d o w ..51

3.10 Feature image generated by box-counting d im en sio n52

3.11 Feature image generated by the m ultifractal dimension 53

3.12 Feature image generated by Fourier e s t i m a t o r 53

3.13 Feature image generated by sm oothing f i l t e r 54

3.14 Histogram for feature 1 (Figure 3 .1 0) .. 54

3.15 Histogram for feature 2 (Figure 3 .1 1) .. 55

3.16 Histogram for feature 3 (Figure 3 .1 2) .. 55

3.17 Histogram for feature 4 (Figure 3 .1 3) .. 56

3.18 Segmentation of “Lenna” with 13x13 feature smoothing and

17x17 feature estim ation window ... 56

3.19 Segmentation of texture montage by fractal signature m ethod

using 17 x 17 estim ation boxes.. 57

3.20 Segmentation of texture montage by fractal signature method

using 25 x 25 estim ation box es .. 57

3.21 Segmentation of “Lenna” by fractal codes w ith a and offset

c o n s t r a in e d ..60

3.22 Segmentation of “Lenna” with constrained a and unconstrained

o f f se t ... 61

xi

3.23 Segmentation of texture montage with constrained a and un­

constrained o f f s e t ..62

4.1 Two stages of wavelet decomposition of L e n a 79

4.2 Wavelet transform encoded Lena (1 2 8 :1) ...80

4.3 IFS a ttracto r generated by 4 co n trac tio n s...84

4.4 Moss-like a ttrac to r generated by 3 contractions 85

4.5 Sierpinski triangle, generated by 3 co n trac tio n s 85

4.6 Sample m apping in L e n a ... 93

4.7 Mapping from figure 4.6 in wavelet d o m a in 94

4.8 Analysis over various compression ratios of hybrid coder . . . 96

4.9 Image coding w ith hybrid fractal-wavelet codec 97

4.10 Image decoding with hybrid fractal-wavelet c o d e c97

4.11 Lena encoded a t 40:1 with hybrid c o d e r ... 98

4.12 Lena encoded a t 40:1 with fractal c o d e r ... 99

4.13 Comparison of fractal, hybrid and wavelet codecs using PSNR

for L e n a ...99

4.14 Barbara test im a g e ..100

4.15 Barbara encoded a t 30:1 with hybrid c o d e r 101

4.16 B arbara encoded a t 30:1 with fractal c o d e r 102

4.17 Barbara encoded a t 30:1 with wavelet c o d e r 103

4.18 Comparison of three codecs for B a rb a ra ..103

4.19 Goldhill test i m a g e ... 104

4.20 Goldhill encoded a t 35:1 w ith hybrid coder .105

4.21 Goldhill encoded a t 35:1 with fractal c o d e r 100

4.22 Goldhill encoded a t 35:1 with wavelet c o d e r107

4.23 Comparison of three codecs for G o ld h ill 107

x iii

C hapter 1

In trod u ction

1.1 Goals and aims

In the relatively short period th a t they have been studied, methods based on

the analysis of nowhere differentiable functions which exhibit exact or statis­

tical self-similarity have been used in a wide range of image processing and

analysis applications. Fractals, from the Latin fractus (meaning fragmented

or irregular), have been used to synthesize images, to classify textures, to seg­

ment and compress images and to generate amazingly complex and beautiful

images.

Its sister field of chaos theory has been used to examine the nature of tu r­

bulence in fluid flow, to analyse weather systems and stock markets, and to

offer theoretical insights into problems in particle physics.

One cannot hope to give a complete account of all the applications of fractal

geometry which exist. We present here an overview of the principal uses

1

of fractal methods in image analysis and compression, as well as proposing

several extensions to existing methods.

We hope to present a unified overview of the m ethods used, from the study

of fractal dimension to image compression using partitioned iterated function

systems.

1.2 O verview

In this thesis we present a sum m ary of some of the fractal methods used in

image analysis and coding. We examine fields as disparate as texture classi­

fication, image segm entation and image compression. W ithin these fields, we

examine various m ethods which are of a fractal nature, and present qualita­

tive analysis of these m ethods compared to other m ethods which are popular

in the fields. We hope to emphasise the common threads which run through

much of fractal geometry as it applies to digital image processing.

In chapter 2 we introduce m ethods of texture classification, including fractal

dimension estimation, and show how various estim ators of fractal dimension

perform differently. We try to explain why these types of behaviors occur.

We also introduce some of the methods which have been used for texture

generation using fractal methods, and fractional Brownian methods.

In chapter 3 we present several common segmentation tools, including region

growing and histogram analysis. We present the basic theory of segmenta­

tion, and we use various estim ators of fractal dimension to segment images

into distinct regions.

2

We also perform a detailed analysis of a novel segmentation method which

is based on fractal image compression methods.

In chapter 4, we present an overview of the m athem atical basis for fractal

image coding, along with other coding methods. We also present a detailed

introduction to wavelet analysis. We then examine the possible links between

the fractal transform and the wavelet transform.

Chapter 5 is the conclusion and discussion. We discuss the common threads

which run throughout the thesis, and propose possible extensions of this work

for the future.

3

C hapter 2

Fractal m eth od s in tex tu re

analysis

2.1 In trod u ction

We analyse textures, in general, in the hope of discovering characteristics

about them which will help us to completely describe th a t texture or fam­

ily of textures. This is useful for several types of applications, particularly

texture generation, in term s of artificial images, and machine recognition of

objects. Much of the work done in texture classification is relevant in image

segmentation as well, since texture is one of the characteristics one m ight use

to segment.

The great difficulty in dealing with the concept of texture is arriving a t an

objective, stochastic definition of what we are dealing with. Ask someone

w hat texture is, and the chances are they’ll reply with an equally vague

4

answer (“I t ’s roughness and smoothness”), or by touching or rubbing some­

thing. This lack of rigour makes it difficult to define exactly why one texture

differs from another.

Researchers have managed, however, by focusing on three or four key char­

acteristics of a surface [1]

1. C o n tr a s t This is, broadly, the range of grey-scales in the image.

2. C o a rse n e ss W hether the image is fine or grainy.

3. R e g u la r i ty This is concerned with the uniformity within the texture.

4. D ire c tio n a l i ty This defines the degree of difference along different

axes of the image. The grain of wood, for example, would be more

directional than a pebble-dash wall.

A number of textures are presented in Figure 2.1. These show all of the tra its

mentioned here, including high contrast, coarseness and directionality.

Here, we give an overview of the various texture analysis methods which exist,

and we give an in-depth analysis of fractal dimension as one such method.

It has been established [2] tha t, a t least on a heuristic and intuitive level,

surfaces of a given fractal dimension correspond well to our ideas of rough­

ness and smoothness. Given this, we a ttem pt to use fractal dimension as a

measure of texture.

W hen we refer to the fractal dimension, we mean specifically the Hausdorff-

Besicovitch dimension [3]. We wish to examine the accuracy of the various

estim ators of the Hausdorff dimension.

5

(a) Bark (b) Burlap (c) Sand dunes

(g) W alnut shell

F ig u re 2.1: A sso r te d te x tu r e s

To this end, we generate surfaces of a given fractal dimension by two different

m ethods, the inverse Fourier power spectrum m ethod [2] and the midpoint

displacement m ethod [4]. For each of these generated textures, we calculate

the fractal dimension by the m ethods of Fourier power spectrum estimation

and the box-counting dimension.

By this means we evaluate the accuracy of each of these estimators with

respect to the fractal dimension.

6

2.2 T exture classification m eth od s

The m ajority of texture classification methods are based on some kind of

statistical m ethod [5]. The goal in statistical texture classification is to define

a feature vector based on some characteristics of the texture, which represents

a point in multi-dimensional space. We then hope th a t this feature vector

can be used to assign the texture to a specific class of textures.

W ithin this class, we find many classification methods which can broadly

be split into three groups: those based on spatial frequencies, co-occurrence

matrices and fractal methods.

2.2.1 Frequency based classification

Several estim ators exist which utilise frequency transforms. The most pop­

ular of these in recent times has been the Gabor fi l ter[6, 7], which uses the

wavelet transform to generate the Gabor convolution energy measure of the

texture.

This m ethod is not ro tation invariant, which is both a benefit and flaw in

the method. It means th a t the directionality of the texture is figured into

the measure, if we calculate the feature over many directions, but as a non-

global measure, small phase changes in the texture could cause it to classify

the same texture in different classes. Methods have been proposed [7] to get

around this.

There also exist a num ber of classification methods based on the Fourier

transform, which can characterise both directionality and coarseness by anal­

7

ysis of the frequency domain. If, for example, the power spectrum of the

texture shows a peak in a ring around the origin, we can deduce the coarse­

ness of the image from both the distance from the origin of the ring (higher

frequencies, indicating finer texture) and the breadth of the ring (broader

range of frequencies, indicating greater randomness). We can also deduce

the directionality of the image by analysis of wedges around the origin.

In general, frequency based methods have a number of problems. They tend

not to be invariant under simple greyscale mappings, and it has been shown

th a t frequency based m ethods are less efficient than others.

2.2.2 Co-occurrence matrices

This represents a large range of methods, which are based on analysing re­

peating structures in a texture. Normally, a number of co-occurrence m atri­

ces are calculated for the texture, and from these a number of features are

calculated.

The co-occurrence m atrix is defined by a distance and an angle, and its

m athem atical definition is

Cg,d(x, y) = |{(m , n) G {M x N) x (Af x N) : d(m , n) = d,

ta n -1 (m — n) = 9 or n — 0 and / (m) = x, / (n) = y}|

where d(a, b) is an appropriate metric, usually d((a, b), (c ,d)) = m ax(|a —

c|, |b — d\), f ((M x N) i-> N (0,255))) is the image to be analysed. This

definition of the co-occurrence m atrix ensures a diagonal m atrix Cg^-

Given this m atrix, there are a large number of features which we can deduce.

Some of these are [5, 8, 9] energy, or angular second moment, entropy, cor­

relation, inverse difference moment, inertia, maximum probability, contrast

and variance.

Given the large number of features, and the large number of possible co­

occurrence measures, this family of m ethods tend to provide accurate clas­

sification of textures. It is also invariant under simple greyscale transforms.

Also, given the large number of features, it is rarely necessary to use more

than six or seven features [8] to get an accurate characterisation. Grey-levels

can be scaled to the range (0, 32) or (0, 64) with little loss of accuracy, but

vastly improved calculation times [5].

However, because the dimensions of the co-occurrence m atrix are the number

of grey-levels squared, these m ethods tend to be com putationally expensive.

On textures with large texture elements (texels), however, it is less effective

than spatial methods, since it does not consider the spatial relationship of

texture primitives.

In fact, it has been shown [10] th a t co-occurrence features perform better

than others, including fractal methods, in texture classification. It should

be said, however, th a t on different types of textures th a t some m ethods are

better suited to characterisation than others.

2.2.3 Fractal dim ension

It has been shown [11] th a t there is a relationship between texture coarseness

and the fractal dimension of a surface. It has therefore been suggested [11, 12,

13] th a t fractal dimension might be used as a feature for texture classification.

The fractal dimension, or Hausdorff-Besicovich dimension is defined in terms

9

of several quite abstract m athem atical ideas, and it is worth giving quick

definitions of the term s we will use in explaining its definition.

• d ia m e te r The diam eter of a subset A of R" is defined, with a relevant

metric : R'1 x f f l >4 3R, as

\A\ = sup {|x - y\ : x , y e A }

• ¿-cover A countable collection of sets {Ui) where \Ut \ < <5 for all i, is

a 5-covei' of the set A if A C

Given these definitions, we define a function 7^(*4) as

U \ [A) = inf

Thus, as 5 decreases, the num ber of possible ¿-covers increases, and the

infimum eventually approaches a limit. This is

W { A) = (2-2)

It is obvious tha t is non-decreasing, and by equation (2.2) V.s is also

non-decreasing.

Also, if t > s and {Ux } is a (5-cover of A , we have

oo oo

E m * = E (wi* wi“"s))
i— 1 ¿= 1

O O

< e ^ ’ w
¿=1

and taking infima, , we have (^4) < (.4). Letting <5 —> 0, it follows

th a t if %s (,4.) < oo for any value of s, W (.4) = 0 for all t > s.

i > r : w > is
a ¿-cover of A > (2.1)

i= 1

10

The fractal dimension, dim # (A), is defined as

dim # (.A) = inf {s : % s (.A) = 0}

= sup {s : % s (A) = 00}

Among the properties of the fractal dimension we use, some are th a t it is

always greater than or equal to the topological dimension of any point-set,

and th a t the fractal dimension of a self-similar set is directly related to the

scaling ratios of the self-similar subsets, dim # is also invariant under trans­

lation, ro tation and simple grey-scale transform ations. We also rely on the

premise th a t the fractal dimension of a point-set increases w ith its com­

plexity. More rigorously, d im # (E \J F) = max (dim # (E) , dim # (E)) and if

E C F, dim # (E) < d im # (F) [3].

In fact, the definition of a fractal is any point-set whose fractal dimension

is strictly greater than its topological dimension. This definition implies a

number of things, one of which is th a t a fractal will have detail on every

scale.

The fractal dimension of geometric shapes does not differ from their topo­

logical dimension, since, for example, a line is the same on all scales, and

no magnification will tu rn up new detail. Also, a sm ooth curve approxi­

m ates to a line segment under adequate magnification, giving them the same

complexity one would intuitively expect.

Since most real-life textures exhibit detail on many scales, and since a degree

of statistical self-similarity exists in most textures, we suggest th a t for classes

of textures which exhibit these characteristics, the fractal dimension can serve

as a good texture classifier.

11

In reality, calculating the fractal dimension from first principles is difficult

computationally. We will instead use alternatives which are related to the

fractal dimension, the box-counting dimension [12, 3] and the Fourier Esti­

m ator [4],

2.3 Fractal d im ension estim ators

2.3.1 Box-counting dim ension

The box-counting dimension is defined as [3]

dimB (F)
log N S(F)

= ^ - lo g *
(2.3)

dim# (F)
— logW j(F)

= - lo g d
(2.4)

dim# (F) = l i m W >
<5->0 — log 0

(2.5)

if this lim it exists, where Ns is the number of boxes of diam eter 5 needed to

cover the set F . In fact, if it exists dim# (A) = dim# (A) — dim# (A). This

simply calculates the complexity of an image as you decrease in scale, and in

most cases we can assume convergence of dim#.

For example, the box-counting dimension of the well-known Cantor set is

log 2 / log 3 since at every scale, 2n boxes of diam eter (|) n are needed to cover

the set. Note th a t a box B of diam eter 5 is a set where d(x, y) < S Vs, y E B,

in whatever metric we happen to be using.

In term s of the fractal surfaces we will be measuring, we take 5 = 2~n for n 6

N, normalise F such th a t m a x i1 < 1 and the domain of F is (0 ,1) x (0,1).

12

We define N$(F) as

Ns (F) = n, (Fitj)
2n

max Fi (x) m inim a;)
5 5

{F(x, y) if (z — l)2~ n < x < i2~n and (j — l)2~n < y < j2~n

0 otherwise

By the standard method, we evaluate Ng(F) for a number of values of S, and

take dim# F as the negative of the slope of the graph derived from plotting

log Ng(F) versus log 5.

It can be shown quite easily (by use of equation (2.1)) th a t the box-counting

dimension is related to the fractal dimension by the inequality dim h {F) <

dim# (F). Since the box-counting dimension uses coverings by sets of equal

size, as opposed to the fractal dimension, which merely limits the maximum

size of the cover, it is a much easier measure to calculate. This introduces a

num ber of flaws in the m ethod also, and in general the box-counting dimen­

sion may be considered a measure of the efficiency of equal sized small sets

in covering a set [3].

In general, there are a number of problems with the box-counting dimen­

sion as a texture classifying measure. Firstly, discontinuities in the image

artificially raise the dimension, making it unsuitable as an estim ator of di­

mension on noisy images. This property also introduces large artifacts at

texture boundaries. Secondly, on certain types of images, the box-counting

dimension fails because of its requirement th a t box-coverings are of fixed size.

T h a t said, the box-counting dimension is easily calculable, and as a measure

13

in its own right, is a useful guide to the complexity of a set, making it a tool

worth considering for texture classification.

2.3.2 Fourier estim ator

We call a function Vh (t) a Fractal Brownian line function, or fractional Brow­

nian function, if it has zero-mean Gaussian increments w ith variance

E ([VH(t + S) - V H(t)}2) k \6\2H

where H 6 (0,1). H is the H urst coefficient of a Brownian motion, and as has

been shown by Pentland [2, 11] it is directly related to the fractal dimension

D f of Vff(i) by Dp = E + 1 — H, where E is the topological dimension. It

can also be shown [2] th a t V#(i) has a Fourier spectrum w ith power Mi)
such th a t

M f) r “

and H is related to /3 by ¡3 = 2H + 1

Since any cross section of a two-dimensional Fractal Brownian surface Vh (x , y)

is a Fractal Brownian line function of identical H, we want

E ([VH(x + ôcos'y,y + 5 sin 7) - VH(x, y) f) oc \5\2H

independent of 7 [2]. We call a function which fulfills this condition two-

dimensional fractional Brownian motion. It has been shown by Voss [4] tha t

this requires the two-dimensional power spectrum of the surface to be

F f f t / . f l) « / - ' ’

where ¡3 = 2H + 2.

14

Therefore we can relate ¡3, the spectral fall-off of the image to estim ate D,

the fractal dimension, using the formula

D = 4 - -
2

where 2 < ¡3 < 4, as shown by Pentland [2], This m ethod of estim ation has

been shown [14] to be more accurate th an the box-counting dimension.

2.4 T exture syn th esis m eth od s

2.4.1 M idpoint displacem ent m ethod

To evaluate the fractal dimension estimators, it was necessary for us to syn­

thesise textures of known fractal dimension. Two m ethods were used to do

this, each w ith their merits. The first, described here, is by m idpoint dis­

placement. The second, which will be described in the next section, is the

inverse Fourier power spectrum method.

The m idpoint displacement m ethod started out life as a means of approx­

im ating fractional Brownian m otion w ith H = Since the link between

fractal dimension and fractional Brownian motion have become well estab­

lished, this m ethod has been expanded to synthesize landscapes and generate

textures of any given fractal dimension.

The m ethod of synthesis is actually quite simple. We s ta rt w ith a grid of size

(2n + 1) x (2n + 1). For each of the four corners we use a Gaussian random

variable N(fj , ,a2) to generate heights.

Each successive iteration adds the midpoints of all the squares in the previous

15

level, producing a grid ro tated by 45 degrees, of resolution \/2 times the

previous level. By repeating this iteration, we double the number of points

every two iterations (see Figure 2.2).

Figure 2.2: A doubling in resolu tion w ith m idpoin t displacem ent

(a) H =0.2 (b) H=0.5 (c) H=0.8

(d) H=0.2 (e) H=0.5 (f) H=0.8

Figure 2.3: Various clouds generated w ith random additions (a)-(c)

and m idpoin t displacem ent (d)-(f)

Since a surface X is Brownian if

E (d (X (P l) , X (P 2)) 2) < x d (P l , P 2) 2 H (2.6)

16

4
2
0

-2
-4
-6
-8

-10 o

H urst coefficient 0.8
amplitude

Figure 2.4: Surface of d im ension 2.2 generated by m idpoin t dis­

placem ent

for p i , p 2 £ X and 0 < H < l,we can deduce th a t for Pi , P 2 £ X and p3 =
P 1 + P 2

2 ’

d(Pi,Ps) = d{p2 ,P‘i) = d(pi,p2)/2 for the standard M2 metric

E (d (X (Pl) , X (P3)) oc 2~2Hd(p1,p2)2H

In practice, what we do is set X (p s) = X M + X<J>2) _|_]j^ where D is taken

from a random variable w ith zero mean and variance <r2/ 2, where o 1 is the

constant of proportionality in equation 2.6, and is the variance of our random

variable for initial selection of corner heights. This gives

E (d (X (Pl) , X (Pz))) = E (d (X (Pl) , X (p 2)) / 2 + D)
d (X (Pl) , X (P2))

H urst coefficient 0.5

Figure 2.5: Surface of dim ension 2.5 generated by m idpoin t dis­

placem ent

By iteration, we can resolve our surface to any resolution.

There is a problem w ith this m ethod, however. It has been shown th a t for

values other than H = 0.5, it does not produce true Brownian surfaces, and

therefore, does not produce pure statistically self-similar surfaces either. The

m ethod can be modified to the random additions method which compensates

for this phenomenon by adding to points which were previously calculated

at each successive level.

For the m ost part, we expect results from the random additions m ethod to

be almost exactly the same as the m idpoint displacement method.

18

amplitude
H urst coefficient 0.5

Figure 2.6: Surface of dim ension 2.2 generated by random addi­

tions

2.4.2 Inverse Fourier power spectrum m ethod

The second m ajor m ethod we use to synthesise textures is the inverse Fourier

power spectrum method. As has been shown previously, the Fourier power

spectrum of a fractal surface can be expected to have a simple power law.

T h a t is to say, in one dimension the power spectrum of a Brownian curve is

expected to have the form

V (f) = \ F (f)\ 2 oc j a

w ith ¡3 = 2H + 1 relating the coefficient to the Brownian param eter [15]. In

two dimensions, this extends easily so th a t we expect

1
V(u, v) oc

(u 2 + v 2) h + 1

19

Figure 2.7: Surface of dim ension 2.8 generated by random addi­

tions

and we can thus produce a function X such th a t

X (x , y) =
k = 0 1=0

for x, y = 0, j j , jj , ■ ■ ■, ^¡=^, and letting our Fourier coefficients fulfill

2 1
E (\ o i k i \) OC ^ 2 ¿2)^+1

taking into account the symmetries which are implied w ith X being a real

function.

The fractal dimension of this surface X will be D f = 3 — H. The algorithm

for generation consists simply of generating our coefficients in the frequency

domain and then performing a 2-D inverse Fourier transform.

Figures 2.8 and 2.9 contain samples of surfaces generated using this method.

20

am plitude

0.008
0.006
0.004
0.002

0
- 0.002
-0.004
-0.006 o

Figure 2.8: Surface of dim ension 2.5 generated by Fourier filtering

m ethod

2.5 R esu lts and d iscussion

For each of the three texture synthesis m ethods used, Fourier synthesis, mid­

point displacement and successive random additions, one hundred test sur­

faces were generated, w ith H = 0, 0.01, 0.02, ■■•,!. For each surface, both

the Fourier power spectrum estim ator and the box-counting dimension were

calculated. The resulting graphs of H est versus H are contained in Figures

2.10 - 2.15. For the purposes of normalisation, we do not use D B for the

box-counting dimension, instead we use H est = 3 — D B. The dimensions of

the generated surfaces were 32 x 32.

21

am plitude
Hurst coefficient 0.2

0.006
0.004
0.002

0
- 0.002
-0.004
-0.006
-0.008

- 0.01
- 0.012
-0.014

Figure 2.9: Surface of dim ension 2.8 generated by Fourier filtering

m ethod

2.5.1 Box-counting dim ension results

From Figures 2.10, 2.12, 2.14, it is obvious th a t in the m ajority of cases, the

box-counting dimension underestim ates the true dimension of the surface,

in some cases by up to 40%. In addition, the correlation coefficients of the

graphs are quite low, particularly on surfaces generated by Fourier synthesis.

The correlation coefficients of all the graphs are laid out in Table 2.1.

Box-counting Fourier estim ator

Fourier synthesis 0.83 0.92

M idpoint displacement 0.91 0.90

Random additions 0.89 0.92

Table 2.1: C orrela tion coefficients from Figures 2.10 — 2.15

2 2

0.8

bO 0 .7

1 0.6

l o ,
XI
j s 0 .4
"O
CD

? 0 ,3co
0>
S 0.2

^ 0.1

0
0 0 .2 0 .4 0 .6 0 .8 1

Synthesised H urst coefficient

Figure 2.10: D o tp lo t of dim ension m easured by box-counting

m ethod versus dim ension generated w ith Fourier synthesis

However, there are several things which can recommend the box-counting

dimension. It is com putationally much faster than most other fractal esti­

m ation methods, and out-performed the Fourier power synthesis consistently.

It is also easy to calculate, even for large images, where the Fourier transform

in the power spectrum estim ate is noticeably slower on larger images.

In term s of the synthesis methods, there is very little discernible difference

in the resulting surfaces.

The box-counting dimensions of the seven textures shown in Figure 2.1 were

also measured, as were the power spectrum estimates. The results are shown

in Figure 2.16. As expected, for textures which do not have universal sta­

tistical self-similarity, such as “burlap” and “dunes” , the methods perform

badly, and produce unlikely estimates, bu t produce reasonable estimates,

23

o

M
£

1

0.8

0.6

0.4

0.2

0

-0 .2 j

-0.4

- 0.6

1.2 x ~xx~

XX xx X

X

X

* \ x W * * * ** * *
x x J ? x X *
x x ^ xx x

->a< xx x j* x
x

X

X X

X
X

0.2 0.4 0.6
Synthesized Hurst Coefficient

X

Figure 2.11: D otp lo t of dim ension m easured by Fourier power spec­

tru m m ethod versus dim ension generated w ith Fourier synthesis

which correspond with our idea of roughness, for the less directional tex­

tures, for example “walnut” .

However, on quite different textures, the estim ator produced almost identical

results, in particular w ith “stone” and “granite” . The estim ated dimensions

would classify these quite different textures into the same texture class. It is

worth noting th a t the effective range of the box-counting dimension appears

to be 2.1 to 2.6 for all bu t a small class of images.

In particular, it appears th a t the dimension was over-estimated for both

“bark” and “burlap” , two images which displayed high contrast and sharp

edges within the texture. I would question whether this small dynamic range

is adequate for texture classification in general. However, I feel th a t for

certain classes of images, namely non-directional textures with small texture

24

bO
.5
'S2Oo
ÖX!
K*“>

T30
cöa;
a

<5

Synthesised Hurst coefficient

Figure 2.12: D otp lo t of dim ension m easured by box-counting

m ethod versus dim ension generated w ith m idpoin t displacem ent

elements, the box-counting dimension is worth considering.

2.5.2 Fourier power spectrum estim ator results

The most notable thing about the Fourier estim ator results is th a t when the

dimension is closer to 2, it underestim ates, but as the dimension approaches

3, it overestimates. However, the graphs generated have a considerably higher

straight-line correlation than the box-counting dimension, making this a more

usable measure for texture classification.

We see, particularly w ith the “dunes” texture, th a t the estim ate resulting

from the Fourier estim ator seems to be lower if the texture has a directional

nature. This may be because of a periodicity introduced, which shows up in

25

£o

î£
>>
TJ
3
S3
E

0.2 0.4 0.6 0.8
Synthesised Hurst coefficient

Figure 2.13: D otp lo t o f d im ension m easured by Fourier power spec­

tru m m ethod versus dim ension generated w ith m idpoin t displace­

m ent

the frequency domain as a spike, lowering the slope of the log-log relationship

which results.

2.5.3 Summary

We have shown th a t on artificially created surfaces, the Fourier estim ator

produces results which imply it to be a better tool for texture classification

than the box-counting dimension. However, when applied to real-life tex­

tures, the dimension estim ates were somewhat erratic, particularly with the

Fourier estim ator.

In fact, quite different textures can have similar fractal dimensions. The

26

bO
.S
5a0 ■_

1
-Q

"O
u
I
g

c?

Synthesised Hurst coefficient

Figure 2.14: D otp lo t of d im ension m easured by box-counting

m eth o d versus dim ension generated w ith successive random ad­

d itions

fractal dimension is ju st one measure we can use to classify textures, however,

and we believe th a t it can play a large part in successfully classifying a

texture, as part of a larger classification vector.

In fact, the box-counting and Fourier estim ators produce quite different re­

sults as well, on some textures. This is the case especially on textures which

are not strictly fractal, such as the dry clay texture, and is probably due to

the fact tha t spikes in the Fourier domain have the ability to substantially

affect the dimension estim ate.

27

£o

I
j?
r'dcd

a>
a

o

1.2

0.8

0.6

0.4

X x
X X

XX

* * * * * * * „ ^ X x x XX ..X XI

X X
Xx

0.2 Xv,

XX*
x x 'W

X XX
*X

X
X x X X >$<

XX

- 0 .2 '

-0.4

« * XX
x X XX X X

•Xx ^
-X *

X
J_
0.2

X

0.4 0.6

Synthesised Hurst coefficient
0.8

Figure 2.15: D otp lo t of d im ension m easured by Fourier pow er spec­

tru m m ethod versus dim ension generated w ith successive random

additions

28

D f = 2.43

D b = 2.43

D f = 2.54

D b = 2.46

Dp — 2.03

D b = 2.29

29

C hapter 3

S egm en tation

3.1 O verview

In terms of image segmentation, the goal is easy to state, and difficult to

achieve. We wish to have a m ethod of segmenting an image into useful regions

w ithout the use of human intervention. Essentially, we want a com puter to

be able to differentiate, by some means, the different areas of an image.

This does not necessarily, it should be said, imply understanding. Where we

see a tree and can identify it as such, a computer will see a region which it

recognises as different, w ithout knowing what it is, or whether i t ’s im portant

in the image or not. A human face and a cloud in the sky hold much the

same significance.

For the sake of clarity, we will refer to objects within an image to be specific

regions of interest, for example a head, a car, a tree, and so on. We refer to

regions as being areas of an image which share some characteristic, and are

30

to some degree homogeneous w ith respect to some characteristic. Image seg­

m entation may perform a complete segmentation (where regions correspond

to individual objects in the image), or partial segmentation, in which case

objects and regions in the image may not correspond exactly.

Segmentation algorithms have been proposed which use many different tac­

tics to segment digital images. Generally these involve taking certain fea­

tures, and trying to find a good classifying algorithm in the resulting feature-

space, for the purpose of determining w ithin certain probabilistic bounds

whether a point is in a region. Most m ethods of this type require some kind

of human intervention, if only to tell the com puter how many regions to

isolate.

3.2 Image segmentation methods

There are many characteristics we might use to segment an image into regions

- colour, brightness, tex ture and edge detection are ju st a few.

However, there are three principal underlying m ethods involved in almost all

image segmentation. Those methods are edge detection, region growing and

histogram analysis [5].

3.2.1 H istogram analysis

This m ethod is usually the first step in attem pting to segment an image, since

it is one of the easier m ethods to implement and it can be quite effective for

certain classes of images.

31

The histogram is made up of some global characteristic of the image, usually

colour or brightness (luminance). However, given an image f (i , j) , we can

also construct and analyse a function g(i, j) from any context-specific feature,

such as texture, which may be assigned to each pixel in the original image

[2]. Mapping f (i , j) to {gn(i, j) } , based on local characteristics, is also one

of the most popular m ethods of producing feature vectors for region growing

techniques.

The basic theory of histogram thresholding is quite simple. If we are looking

for n regions, we are seeking to find n — 1 values {i>i, • • ■, wn_i} in the range

of the histogram which best m ark those regions. Then, we set

s (i , j) = ¿ (0) for f (i , j) < Vi

= 1(1) for-ui < f (i , j) < v 2

= l (n - 1) for < f (i , j)

where l(i) are the greylevels we assign to each group.

Thresholding techniques address the task of finding the {V{} which are the

best boundaries for the given image. In images where we seek to isolate

objects from a background of a distinct background, thresholding is ideal.

Sometimes the task of selecting a threshold is quite easy, when there is a

clear difference between the greylevels of the objects we wish to segment (see

Figure (3.1)). In this case, we find the local maxima, or the highest point of a

given peak, and take our threshold value as the local m inim a (lowest valley)

between them. In our example, there are three clear peaks, corresponding

(on the left) to the two darker sides of the block, and (on the right) a wider

peak corresponding to the light coloured background. The thresholding level

32

(a) original image (b) greyscale histogram w ith threshold

(c) segmented image

Figure 3.1: A sim ple im age to be segm ented

we chose is marked in grey.

Things are not normally so simple. There are several quite complicated

adaptive thresholding schemes [16], most of which revolve around finding

local m axima and m inim a in the histogram, or param eterising the histogram

into a useful form.

However, because it does not consider positional data, and is a purely global

param eter, it is usually not suitable for the segmentation of all but the sim­

plest images.

33

3.2.2 Edge detection

Edge-based segmentation m ethods involve finding the edges of objects in the

image, possibly by more than one m ethod, and using this edge information

to guess a t complete boundaries for the principle objects in the image.

Edge detection has many problems, principally through noise in the image

providing pales edge information, or fragmenting the true edges.

Principal edge detection techniques include convolution m atrix based opera­

tors and Hough transforms, among others, and some of the post-processing

techniques used to refine results from these are edge image thresholding, edge

relaxation and border tracing.

3.2.2.1 Convolution m atrices

This family of filters prim arily concerns itself w ith detecting gradients in

a number of directions, and combining these filtered images to produce an

edge image. Often, convolution operators are defined as 2 x 2 , 3 x 3 or 5 x 5

matrices, which are then convolved w ith our image to produce a number of

filtered images, which are added together to provide our final edge image.

The simplest, and earliest, of these filters is the Roberts operator [5], which

is defined as

1 0 0 1II oo II

1
t -HO

i 1
1 M o

1

34

If our image is A(i,j), we calculate

9k(i , j) =

2

= ^ 9 k { h i)
k=1

Because this is a small filter, it gains in execution speed and loses in fidelity.

Because it only takes account of a 2 x 2 neighbourhood, it is very sensitive

to noise.

h x A(i,j) A (i+ l,j)

A (i,j+ 1) A (i+ l ,j+ l)

(a) original image (b) P rew itt operator edge image

(c) Thresholded edge image

Figure 3.2: Edge detection by P re w itt opera to r

35

Among the many other operators in this class, the most popular are the

Prew itt operator, the Sobel operator, and the Laplacian gradient operator.

Of these, the Sobel operator and the Prew itt operator approxim ate the first

derivative of the image in a given direction, the Laplace operator approxi­

m ates the second derivative of the image.

The Prew itt operator is defined by eight convolution masks for 3 x 3 masks,

corresponding to the image slope in the eight compass directions. I t is pos­

sible to extend the mask to larger than 3 x 3 masks, bu t this reduces the

fidelity of the final edge image, and increases com putation time.

The first three Prew itt operators, /ii ,/ i2,^3 are defined as below, and the

other operators are obtained by rotation.

1 1 1

I
o 1 1 -1 0 1

0 0 0 h2 = -1 0 1 IIco -1 0 1

-1 -1 -1 -1 -1 f
o

-1 0 1

Examples of edge detection using the Prew itt operator, first on the image

in Figure (3.1, and then on a real image (Figure (3.3)) are shown in Figures

(3.2, 3.3).

The Sobel operator consists of three filters, defined as

1 2 1 0 1 2 -1 0 1

h i = 0 0 0 I l 2 = -1 0 1 h z = -2 0 2

-1 -2 -1 -2 -1 0 -1 0 1

Normally, only h\ and h3, which can be interpreted as finding horizontal and

vertical gradients respectively, are used, and as we did before, each image is

36

(a) original image (b) Prew itt operator edge image

(c) Thresholded edge image

Figure 3.3: Edge detection on p ic tu re of shelves

combined as

9{h3) - \9kihi)\
k = 1

or
\ k = 1

37

The Laplace operator, which is used to calculate the second derivative of the

image is defined in one of two ways, one form for 4-neighbourhood calculation

and another for 8-neighbourhood calculations. It is rotation invariant, and

as such consists of ju st one filter.

o
1

1

l
o

1 1 1

1 - 4 1 o r h = 1

GOi 1

1
o 1 o

1

1 1 1

This family of filters perform well, particularly on images with clear, straight

edges. However, on more textured images, these m ethods do tend to intro­

duce a lot of noise to the edge image, possibly resulting in the false detection

of edges.

3.2.2.2 H ough transfo rm

The Hough transform was originally intended to be a m ethod of finding

straight lines in images, but the m ethods have evolved to take into account

other more complex shapes in an image. It is often used both to detect

edges, and to post-process other edge detection techniques to reduce false

information in the resulting edge image.

The general principle of the Hough transform is th a t regular curves in image

space, when param eterised, can be represented as a point in param eter space.

So, for example, a straight line in an image can be param eterised as yi =

mxi + c for some m and c and for all points (yi, Xi) on the line. And if we

take every pair of edge points from our edge image and calculate the m and

c which correspond to a line between those points, many more points will

m ap to the same m and c if a line is present.

38

So if we discretise param eter space as a grid, and increment a counter for

each time a given value of m and c result from a pair of edge points, the

counter in param eter space corresponding to th a t line will be much larger

th a t other counters. So the problem of finding a line in the image has been

reduced to finding local m axim a in param eter space.

Since we need to know beforehand w hat type of curve we are looking for (in

order to calculate param eters from our points), the Hough transform is of

lim ited use in general.

3.2.2.3 Edge re laxation

As we have seen, once we have an edge image, there is often a need to improve

on these results to have a satisfactory segmentation. These post-processing

techniques have two purposes, to remove false edges, and to complete edges

which have lost inform ation due to noise, or a weak edge. Edge relaxation

techniques a ttem pt to address both of these problems.

The m ethod involves producing a confidence measure on how likely every

edge detected pixel is to be a true edge as opposed to a false one. The

probability associated w ith each edge considers a number of factors, including

the proximity and direction of adjacent edge pixels, as well as the strength

and length of the edge. For example, a weak edge between two strong edges

is very likely to be a true edge, while an isolated edge, even a strong one, is

likely to be false [5].

The problem is usually addressed iteratively, w ith an edge pixel being given

a label of yes, no or maybe a t each iteration, until there are no maybes left

and the segmentation is clear. Gaps in edges can also be filled in by this

39

method, which also evaluates the possibility of unm arked pixels belonging to

an edge.

Edge relaxation techniques appear to work well, bu t are computationally

expensive. Also, for several methods [17], non-convergence of confidences

to zero or one is possible, resulting in a degradation of results after several

iterations.

3.2.2.4 B order trac ing

Once we have a complete edge image, our task is then to isolate the regions

in the image for segmentation. One of the easiest and most intuitive methods

of doing this is by boundary tracing [5], which is very similar to a chain-code

representation of shape [18].

The methods used are to detect either the inner or outer boundary perime­

ters, or to calculate w hat’s called the extended boundary [5], and to store the

pixels defining the edge in a string P0P 1P2 ■ • • PnPo■ For this task either 8-

neighbourhoods or 4-neighbourhoods can be used. Once we have defined the

boundary of a region, it is an easy task to label the region for segmentation

purposes.

3.2.3 Region growing

Region growing and merging is the most popular segmentation m ethod for

the m ajority of image classes. It improves on edge detection for noisy images,

and out-performs histogram m ethods in almost all situations. The method

relies on the homogeneity of an image segment, in colour, grey level, texture,

40

or any other criteria.

Methods in this class involve defining some initial m ethod of splitting the

image into a large num ber of small regions, and recursively merging smaller

regions into larger regions by some criterion. For example, initial segmen­

tation might be by local clustering in feature-space after the calculation of

a feature vector by some of the methods described in the previous chapter.

These regions could then be used as a starting point for the iterative merging

of regions.

Among the methods used in this family are merging by the nearest neighbour

or the k-nearest neighbour rules, other cluster analysis algorithms, boundary

melting and splitting and merging. We present here an overview of some of

these methods.

3.2.3.1 N earest neighbour classifier

If we know, in advance, K , the number of regions we wish to segment from the

image, we can classify the feature vectors into clusters by first setting K1 > K

seed points Xi ,X2 ,- ■ • x^i in feature space, defining K 1 sets X i , X 2, ■ ■ ■ X k i

and a metric d(. , .) such th a t Xi 6 X{ and, for any point x in feature space,

d(x ,Xi) = di and x E Xk where dk = m in ^ ld j} .

We then recursively process all points until x £ f°r x - The

metric is normally defined as the distance from the point to the centroid of

the set being analysed.

Once all the points have been assigned to the set, we recursively reduce the

number of sets by taking the smallest set X n and assigning X¡. = X n U X^

41

where dk = minijin{ d (X n, Xj)}. We have thus reduced the number of sets by

one. W hen we have exactly K sets left, our segm entation is complete, and

we map our feature points from feature space back to the points in image

space which produced them to produce our final segmented image.

However, it is rare for the number of distinct regions in an image to be known

before processing, so we need a way of estim ating the optimum number of

regions for classification. One m ethod which provides such an estimate is

the k-means m ethod [5]. Another such m ethod is Akaike’s i information

criterion [19].

3.2.3.2 k-nearest neighbour classifier

This m ethod is similar to the last method, except th a t a number of training

samples are used, ra ther than feature domain clustering, to designate the

feature-domain classification.

For each of the N train ing points, the mean feature vector is calculated for

each class. Then, for an unknown point, its k nearest neighbours in the

training samples are computed, and the new point is allocated to a class

according to the classification of these neighbour points [20].

3.3 S egm en tation by tex tu re using fractal di­

m ension

We will examine and compare existing methods of segmenting textured im­

age, based on fractal dimension estimators.

42

We will use the fractal dimension estim ators described in the previous chap­

ter, the Fourier power spectrum estim ator and the box-counting dimension,

to build up a feature vector for our textured image, as proposed by Chaudhuri

and Sarkar [20, 13, 12] w ith the box-counting dimension, and by Pentland

et. al. [2, 11] for the Fourier estimator.

The features we will use are the differential box-counting dimension, the

m ulti-fractal dimension [12] and the Fourier power spectrum estim ator [2]

measured over a moving window.

Therefore, for an image A, our features will be

F1(i , j) = 3 — D b {A(i + k , j + I) : —W < k , l < W } (3.1)

F2(i , j) = 2 — D m (2) (3.2)

F3(i , j) = 3 — D f {A(i + k , j + l) : —W < k , l < W } (3.3)
w

F^ s : i) = (2 W + Z) A (i + k , j + 0 (3.4)

where D M(2) is the m ultifractal dimension, defined by

t - >o ln r

where n'r is j^-, w ith n r being the number of boxes centered on (i , j) of radius

r required to cover the image divided by the number of boxes of th a t size

required to cover the whole image A.

In reality, we will take a log-log relationship of r against [n'T]2 for a number

of values of r, and estim ate the slope of the graph.

Once we have our feature vector Fn(i , j) : n — 1,2,3 for each pixel A(i , j) ,

we will use the edge-preserving noise smoothing quadrant filter (EPNSQ)

43

[20, 21] to smooth each of the filter images before deriving seed points for

clustering from analysis of each feature image histogram.

We will also examine variations over scales, and see how these variations fare

in segmentation. T hat is to say, we will define features by

W J) = « logr

where r = s / (i + 1), and s the maximum box side in image space. This is

a variation on the “fractal signature” m ethod used to characterise shape, as

well as texture [1].

After smoothing the feature domain, we will seed feature space in exactly

the same way as Chaudhuri and Sarkar [20]. The seeding of feature space

involves finding points which we believe are in a specific region, and then

using these seed points to find the other points belonging in th a t region. For

each histogram H(Fi) , we will identify the set of dom inant local maxima

Mi = {mi ti , m i t2 , and seed feature space w ith the cross product

of the sets of histogram peaks for each feature. For example, assuming we

have two features F\ and F2 w ith maxima M i = { ^ 1,1, Wi,2} and M2 =

{m 2,i, m 2,2, ^ 2,3}, we will seed feature space w ith 6 points, namely Mi x M2 =

{(mi, 1 , m2,i), (mi,i, m2,2), • • •, (mi,2, m2,3)}.

We will then assign each point to a set by the nearest-neighbour rule, and

merge the regions together until we have a predeterm ined number of seg­

mented regions.

44

3.4 Segm en tation using fractal codes

A m ethod, previously proposed [22], will be used to isolate regions with only

one feature being used, th a t being the basins of a ttraction resulting from the

affine maps generated by a fractal coder. These maps will form a dynamical

system which, at least intuitively, results in a logical partitioning of an image

into regions of similar fractal characteristics. T hat is to say th a t if two parts

of an image are similar on different scales, the relevant points will end up in

the same basin of a ttraction , and be classified as being in the same region.

An in-depth introduction to fractal coding will be covered in section 4.4. We

will not preem pt th a t discussion, but the definition of a number of terms,

and the explanation of some ideas are necessary for the understanding of this

section. A partitioned iterated function system (PIFS) is a set of maps from

image space to itself. The general principle of a fractal coder is th a t under

iteration, a PIFS can be found which approximates any image A, according

to the collage theorem [23].

The mappings involved in a PIFS are of the form

th a t normally we will only consider the isometries of the square.. These are

m aps from the image to itself, which include a contraction, a spatial offset,

and an affine mapping, normally one of the isometries of the square. There

is also an affine m apping of the grey-scale values in the block of the form

y)) = a/j,(x: y) + /3, where y) is the grey-scale value at point (x, y)

[23]. Mi can be any affine
cos 9 — sin 0

sin 9 cos (j)

45

Upon coding an image, we have a set of maps M — U ^eA (/¿j where A

is our image, and {Ri} is the set of range blocks in our coding procedure.

If one assumes, and it is logical to do so, th a t domain blocks map onto range

blocks in similar regions (that is, edge blocks m ap onto edge blocks, interior

blocks m ap onto interior blocks and exterior blocks m ap onto the exterior

of a region), then we can invert this process, m ap smaller blocks onto larger

blocks, and reach a steady state eventually, in which a small number of points

characterise a region completely. See Figure 3.4 for a visual explanation.

in the image, and

Figure 3.4: E xam ples of how we assum e blocks m ap onto each o ther

As can intuitively be seen from the diagram, points in a region not only

remain w ithin the region, but tend towards an a ttractor, a small subset of

the basin of attraction. To see the intuitive m erit of this, observe th a t points

46

of distance e from the boundary of the region map onto a point of distance

6 from the boundary, where 5 > e for points near the boundary.

To segment the image, if this is true, we need only find the attractors for

each region, and find out which points get m apped onto them. This is the

basis for our segmentation algorithm.

M athematically, we define a map M (x , y) such tha t

M{ x , y) = f r l {x,y) when (x , y) E A

This m ap M maps our image I to itself, since /¿(-Dj) E I Vi. M is determined

purely by our fractal codes, and the inverses are trivial to calculate.

f i iy) = Av + b

fi \ v) = A \ v - b)
1

W '
and A 1 = t t t ^ “

w ith A a =

so f i 1

ri cos (¡)i ri sin </>i

—fj sin 9i ri cos 6i

r \ c o s - <j)i),

1 I cos cj)i sin fa

rj(cos(#i — I _ sin ^ cos9i

By iterating M , we approach the lim it set L = limn<_oo M n(I), bu t since I is a

discrete set, and we are working in a discrete space, M n(I) = M m(I) for n >

k and m > n, where k is finite, and less than 300, as found by experiment.

The segmentation algorithm to be implemented finds this lim it set L, and

classifies each of the stable cycles in this set.

47

3.5 R esu lts and d iscussion

3.5.1 Fractal dim ension segm entation results

Figure 3.5: Test im age containing five tex tu res for segm entation

As test images we used a 256 x 256 picture of Lenna (Figure 3.6) and a

5-texture mosaic m ade up of some of the textures in Figure 2.1 (Figure 3.5).

For all examples we used 1 7 x l 7 o r l 9 x l 9 windows for feature calculation,

and 7 x 7 or 13 x 13 for feature domain smoothing.

To detect dom inant peaks in the histogram s of the feature domain images,

we first sm ooth the histogram by replacing H(i) with (H(i — 1) + H (i) + H (i +

l) /3 . We then calculate the histogram gradient A H(i) = H (i) — H{i — 1),

and the second derivative A 2H.

A value Sj is then classified as a dom inant peak if

1. H(si) >

48

Figure 3.6: “Lenna” te s t im age used for segm entation

2. A H(si) = 0 or A H(si) > 0 and A H(si + 1) < 0

3. A 2H (Si) < 0

> e where e is a value preset to minimise false m axima

from the same peak, normally around 1 /3 0 ^ of the histogram span.

Rules 2 and 3 ensure th a t we have a local maximum, rule 1 guarantees th a t

the peak is dom inant, and rule 4 is, as previously stated, an effort to eliminate

multiple m axim a from the same histogram peak.

As described earlier, we have examined two sets of features for classification.

F irst we use the differential box-counting dimension [20], the Fourier esti­

m ator [11], the m ulti-fractal measure of order 2 [12], and a local averaging

filter. Secondly, we use a m ethod derived from the description of the fractal

49

signature [24, 1], using the estimates of the box-counting dimension over a

number of scales as our feature vector for classification. We use box-sizes

between 4 and 8, resulting in 5 features. We will call this m ethod the fractal

signature segmentation method.

For the montage image, we segment the image into 5 regions, and for Lenna

we a ttem pt to segment into 32 regions, which should be sufficient to demon­

strate the properties of the segmentation algorithm.

Figure 3.7: Segm entation of m ontage w ith 13x13 feature sm oothing

and 17x17 fea tu re estim ation window

Initial segm entation results were slightly disappointing, but a closer look at

the feature images helps to explain the reasons. In particular, the histograms

of the fractal based features show considerable bunching between 0.2 and 0.5

times the dynamic range (see Figures 3.14, 3.15, 3.16 and 3.17), which make

the decision on optim um seed points extremely difficult.

Also, it is worth noticing th a t textures which were more homogeneous, for ex-

50

Figure 3.8: Segm entation of m ontage w ith 7x7 feature sm oothing

and 17x17 fea tu re estim ation window

Figure 3.9: Segm entation of m ontage w ith 7x7 fea tu re sm oothing

and 19x19 fea tu re estim ation window

ample burlap, tended to provide more consistent regions than non-homogeneous

textures, such as mud, and more entropie textures, such as walnut. The rea­

51

sons for this, I believe, are th a t in the burlap section, the fractal dimension

was higher than it should have been, particularly in the Fourier measure, and

distinctly higher than the other features, resulting in a consistent cluster in

feature space. However, it is evident th a t among the other features (Figures

3.10, 3.11, 3.12 and 3.13) both the narrowness of the range of the fractal

measures and the range of values w ithin each region result in considerable

mixing in feature space, thus resulting in less accurate segmentation.

Figure 3.10: F ea tu re im age generated by box-counting dim ension

It is also fairly obvious th a t the feature w ith the greatest dynamic range, and

the greatest contrast between regions, is feature four, the simple averaging

filter. This feature, especially in the context of the burlap and dunes sections,

dominates feature space.

The m ethods used to find histogram peaks, and also the clustering methods,

are open to question. However, there are clearly flaws in using the box

counting dimension to segment texture, namely the narrow dynamic range

of values on real textures, and the tendency to overestimate dimension on

52

Figure 3.11: F ea tu re image generated by th e m ultifrac ta l d im en­

sion

Figure 3.12: F ea tu re image generated by Fourier e stim ato r

sharp edges.

The a ttem pt a t segm entation of the Lenna test image also shows up several

53

Figure 3.13: F eatu re image generated by sm oothing filter

III

Figure 3.14: H istogram for fea tu re 1 (F igure 3.10)

flaws in the fractal dimension measure. The principle among these is the

necessity for a relatively large smaple of pixels to calculate the measure. Since

images such as Lenna typically contain many smaller regions of interest, a

box of 17 x 17 will almost certainly overlap two or more regions, making the

fractal dimension inconsistent, even within a region.

54

Figure 3.15: H istogram for fea tu re 2 (Figure 3.11)

F igure 3.16: H istogram for fea tu re 3 (Figure 3.12)

The resulting a ttem p t a t segmentation bears little resemblance to the origi­

nal, since many of the smaller regions of interest were eliminated and merged

with larger ones long before the algorithm finished, and the considerable mis-

classification near edges makes regions barely identifiable.

Our a ttem pts to segment by the fractal signature m ethod was similarly un­

convincing. Here the high correlation between the features, and the narrow

range of values were again the main problems.

Figure 3.17: H istogram for fea tu re 4 (Figure 3.13)

Figure 3.18: Segm entation of “L enna” w ith 13x13 feature sm ooth­

ing and 17x17 fea tu re estim ation window

Having said all th a t, however, the feature provided by the Fourier estimator,

in particular, shows promise, and if used with features which have a lower

correlation with itself, it may be able to contribute to a good segmentation

algorithm.

56

Figure 3.19: Segm entation of tex tu re m ontage by fractal signature

m ethod using 17 x 17 estim ation boxes

Figure 3.20: Segm entation of tex tu re m ontage by fractal signature

m ethod using 25 x 25 estim ation boxes

3.5.2 Fractal codes segm entation results

Three types of m appings were used in our experiments to verify whether

mapping do occur in th is fashion. 57

First, we constrained the spatial offset, Si, t i: bu t we left a.i unconstrained.

We constrain the offset to the range Si, i* 6 { —16, • • •, 16}, so th a t effectively,

the range block is a subset of the domain block for all i.

Second, we constrain a,i G {0.4, 0.6}, and allow unconstrained offset. This is

because in m apping from 16 x 16 blocks to 8 x 8 blocks, we can expect the

variance of grey-levels in the block to contract by | as well. We will show

th a t varying this scaling factor substantially can change the fractal dimension

of the block, substantially changing the characteristics we wish to keep to

preserve our assum ption of blocks mapping w ithin a region.

To illustrate the point, we will dem onstrate w ith the box-counting dimension,

as presented in chapter two.

Given a domain block, D , and a range block onto which its mapped, R, by

a spatial scaling factor of s, and a greyscale scaling factor of a, and taking

Ng(S) as the number of cubes of side 6 required to cover the surface, we have

R = s I (a(D) + o) + 1

where I is an isometry, and o and t are greyscale and spatial offsets respec­

tively. This gives

N, (R) ~ s tPN,(D) (3.5)

and since the box-counting dimension is defined as

we have

(3.6)

(3.7)= D b (D)

58

under normal circumstances. This is the result we expect.

However, in practice we do not take a limit, we merely correlate the interior

of the limit over a number of 5, and take a best fit line. For a

16 x 16 box, this will probably be limited to 4 or 5 values. Thus we have a

situation where 5 takes a number of values between 0.125 and 0.5, while s is

normally constant a t 0.5.

At these scales, the line of best fit is skewed substantially in the range block,

resulting in an estim ate of dimension for the range block which is lower than

the domain block for values of a lower than 0.5, and higher for a greater

than 0.5. To allow for an acceptable domain pool, however, we set 0.4 and

0.6 as reasonable lower and upper bounds for the greyscale scaling ratio.

Finally, as was done by Ida and Sambonsugi [22], we constrain both spatial

offsets, and greyscale scaling.

In the first example, we performed perfect classification, th a t is, every limit

point was classified in a different region. In the second and th ird example,

we treated the a ttrac to r as a two dimensional feature space, and used nearest

neighbour clustering, as described earlier in the chapter, to segment the

image.

By finding the a ttrac to r of the maps, we can classify each point in the skeleton

as belonging to a distinct orbit of values. These orbits define the initial

clustering we use in the classification of regions. We determine the centroids

of each distinct orbit, which describes n distinct regions corresponding to the

number of distinct orbits in the skeleton.

Once we have classified the skeleton points into regions, we calculate, for

59

each point (i , j) in our original image A, M n(A(i , j)) , and term inate when

M n (A (i , j)) is an element of the skeleton. We then assign the value of the

skeleton element to S (i , j) , the (i, j) element of the segmented image.

The centroid values of each region are then calculated (using (i, j) as the

feature vector), and regions are merged according to the nearest neighbour

m ethod defined earlier, until we have arrived a t the desired number of regions.

Figure 3.21: Segm entation of “Lenna” by frac ta l codes w ith a and

offset constrained

As can be seen from the first Lenna example, and the segmentation of the

texture mosaic, this m ethod can produce excellent results, once we tightly

constrain conditions on the fractal coding associated w ith the method. The

m ost crucial factor w ithout a doubt is the greylevel contraction factor, which

provides good segm entation when it is constrained, bu t we find th a t most

60

f e w »

. . *?• /*%* ,vw *? ;•*,£ -i;

Figure 3.22: S egm entation of “L enna” w ith constrained a and un­

constrained offset

blocks tend to alm ost identical domain blocks, resulting in an almost uniform

segmentation image, if an unconstrained a is used a t the coding stage.

There is also considerable misclassification a t the boundary of the circular

section of the tex ture montage. I believe th a t th is is due to the block-based

nature of the coder, which may have some difficulty matching straight edges.

However, the segm entation along the straight horizontal and vertical edges

(which are, coincidentally, also bounding edges of range blocks) is almost

perfect.

This approach, while being conceptually attractive and intuitively sensible,

fails to achieve acceptable segmentation in general, for a number of reasons.

61

Figure 3.23: Segm entation of te x tu re m ontage w ith constrained a

and unconstrained offset

W hen the mappings are not constrained to the immediately local area, we end

up w ith disparate and unrelated regions being m apped onto each other, since

this introduces the possibility of regions being matched when, for example,

one is light and the other is dark.

A larger domain pool introduces a large number of diverging orbits, as a re­

sult of points which are m atched to each other from different regions. These

orbits propagate throughout the image, leaving only small, and almost indis­

tinguishable, basins of attraction for quite large regions.

Also, when the contraction factor of the greyscale is outside a very small

range (about 0.4 < a < 0.6 for a spatial contraction of 0.5), we find regions

w ith completely different characteristics being mapped. Since we are dealing

6 2

with discrete image space, we find th a t areas we would call rough, w ith high

conrast in a small area, can be m apped onto sm ooth areas with the mapping

having a low value of a.

T his is a flaw in the initial logic of the segm entation system. Under an affine

map in continuous space, fractal dimension (the characteristic we assume

marks out regions under this scheme) is conserved. However, in discrete

space, when we are dealing w ith images of sizes 16 x 16 and 8 x 8, fractal di­

mension is not conserved, when the greyscale scaling factor is unconstrained.

We have shown th a t this is true for the box-counting dimension estimator.

Also, it is worth pointing out th a t discrete objects, such as images with

finite resolution, are not strictly fractal a t all, since there is a minimum scale

beyond which they are constant. It stands to reason, then, th a t scaling does

have an effect on the apparrent dimension of the image, or image segment,

for other estimators.

This m ethod shows considerable promise, however, and attem pts to improve

the orbit classifications, as well as attem pts to provide better fractal codes for

the generation of the dynamical system, could produce substantially better

results.

63

C hapter 4

Fractal m eth od s in im age

coding

4.1 In trod u ction

By image coding we m ean the compression of images for the purposes of im­

proving storage efficiency or increasing transm ission speed. To dem onstrate

the need for compression, it is probably easiest to give a case in point.

Considering th a t the storage size of an image of dimensions 512x512 in 24-bit

colour is 512 x 512 x 24 bits, or 768 kilobytes, one second of film, assuming a

frequency of 50 Hz, contains 38400 kilobytes. At th a t rate, the entire storage

size of, say, “2001: A Space Odyssey” would be 124 minutes x 60 seconds x

38400 kilobytes, or 285 gigabytes. Note th a t this is merely image data, and

does not take account for the sound-track da ta which would also have to be

transm itted.O bviously this kind of storage space is not available.

64

In terms of transmission, the top of the range modems available at the mo­

ment support data transm ission at the ra te of 96 Kb per second. Which

means th a t to send our complete, uncompressed copy of the movie 2001

(stored as a series of frames), we would need to m aintain a constant, fully

saturated connection w ith our modem for 2976000 seconds, or 49600 minutes,

over 826 hours. At current Eircom phone charge rates, th a t single phone call

would result in a charge of IR£357.12.

A DVD disk can only hold up to 8 gigabytes of information, and entire films

are stored on them using the MPEG-2 coding standard [25], compression

factors of 40:1 or more are required on the image data. This compression

ratio is obtained w ithout noticeable loss of image quality through a number

of measures, including m otion estim ation and lossy compression of reference

frames.

In this chapter we will concentrate on fractal m ethods of coding still images,

and we will mention how this relates to coding of video segments. We will

also explore other m ethods of image coding, including transform methods

and vector quantisation methods.

Finally, we will present a new approach to the com putation of the fractal

transform , and examine the success of this m ethod in comparison to other

popular methods. We also explore the relationship between the fractal trans­

form and the wavelet transform , which has been made famous in recent years

through its adoption by the FBI for the coding of its fingerprint database

[26].

65

4.2 Im age cod in g m eth od s

4.2.1 Lossless com pression

Several good lossless compression algorithms exist, and although most of

them are more used w ith d a ta streams than images, they are worth mention­

ing here for reference. In fact, some of these m ethods are used after lossy

compression to further reduce the information needed to store the image.

Possibly the best known of the lossless compression algorithms is Shannon-

Fano coding [23]. The general principle used in Shannon-Fano coding is th a t

if there are n symbols used in the string to be coded, and each appears with

a probability Pn, then the higher Pi: the smaller the number of bits which

will be used to code it. T h a t is, the more common a letter is, less space is

required to store it.

For example, ASCII coding is an extremely poor coding scheme in this re­

spect, since every character uses the same num ber of bits, 7 for character

da ta or 8 for binary data. A Shannon-Fano scheme might, for example, only

use 3 bits for the le tter ‘e’, since in w ritten English it is much more probable

than the letter ‘q’ or the punctuation m ark ‘ for example.

Perhaps a simple example would be the best way to dem onstrate. Assume we

are dealing w ith an alphabet of size 4, and we wish to encode a 16-character

string. Say our alphabet is {^4, B, C, D}, and the string we wish to encode is

A B A C B B A A A D A B D A C A . We can then assign the following probabilities

to each letter.

6 6

Letter Probability

A 8/16

B 4/16

C 2/16

D 2/16

Under standard ASCII storage, a 4-letter alphabet would be assigned 2 bits

per letter, resulting in a storage space of 32 bits. This is equivalent to a

probability of 1 /4 being associated w ith each letter. Under the Shannon-

Fano scheme, however, we combine the probabilities of the individual letters

until they are close to, or equal to, 1/2. Them we assign one bit to one

branch, and the other b it (at th a t level) to the other branch. We then repeat

for the sub-branches until we have assigned a unique value to each character.

So our coding scheme in this case would end up as shown in the table below.

And the final storage space occupied by our 16-character string is 8 x 1 + 4 x

2 + 2 x 3 + 2 x 3 , which is 28 bits, a saving of 12.5% over normal coding.

A(8/16) 0

5 (4 /1 6) 1 0

(7(2/16) 1 1 0

£>(2/16) 1 1 1

Obviously, this is a very simple example. In fact, substantial compression

ratios are achieved w ith Shannon-Fano coding for larger sets of symbols. It

has, however, been shown th a t Shannon codes do not produce optim al codes

for a given set of symbols in general [23].

Huffman coding, which is a variant on Shannon-Fano coding, provides op­

67

tim al codes for symbol sets whose probabilities are all an integral power of

| , as is the case above. The only difference between the algorithms is tha t,

whereas in Shannon codes the division of probabilities to make up 1/2, or

as close to 1/2 as possible, is arbitrary, w ith Huffman codes, symbols are

combined in order of probability.

The symbol table is listed in order of probability, the two symbols with lowest

probability are combined to form a composite symbol, marking one with 0

and the other w ith 1, and the process is repeated until a complete binary

tree is achieved. In the case above, the resulting coding is exactly the same.

A m ainstay of many compression algorithms used for computer da ta files,

including compress, g z ip and p kz ip is the Lempel-Zif coding algorithm.

There are several variants on this algorithm, known as LZ77, LZ78, LZH and

LZB, but the general principle is the same.

This method stores a buffer of the last n characters encountered, and a buffer

to look ahead in the file. It then attem pts to m atch the longest string which

matches one of the characters or phrases in the buffer, and outputs the initial

phrase, the length of the phrase and the position of the match in the file.

Variants of this m ethod apply other coding algorithms, such as variable-

length coding or Huffman coding, to the output to produce further compres­

sion.

4.2.2 Transform m ethods

Transform coding m ethods involve transform ing the image from discrete im­

age space to a transform space, and then applying some kind of meaningful

6 8

filter to the transform ed data. The best known transform methods are the

Fourier transform and its variants, the Hadam ard transform and the wavelet

transform.

The general form of any transform m ethod involves pre-multiplying and post-

m ultiplying the original image da ta by m atrices of the form

F = P x f x Q (4.1)

where / is an image of dimension m x n, P is of size n x n and Q is a m atrix

of dimension m x m. The transform is invertible if matrices P -1 and Q~x

exist, giving

f = P ~ 1 x F x Q - 1 (4.2)

Once the transform has been computed, there are a number of ways we can

compress this da ta w ithout substantial loss of image quality. Among these

are the various entropy coders, such as arithm etic coding, Huffman coding

and Lempel-Zif coding, as mentioned in the previous sections.

We can also use various feature domain filters to remove da ta which is likely

to be superfluous in the transform domain. Among the methods used for

this are low-pass filters and quantization of transform domain coefficients.

A low-pass filter is merely a hard thresholding of all coefficients above a

certain frequency in the transform domain, while coefficient quantization

normally uses bandpass filters to assign different quantization levels according

to the frequency (and thus the relative importance) of the coefficients.

69

4.2.2.1 Fourier transform

The Fourier transform is normally interpreted as a m apping from spatial to

frequency based domains. It is defined, for continuous functions, as
/ OO r 00

/ f (x , y) e - 2ni{xu+vv)dx dy
-oo «/ —OO

However, since digital images do not reside in continuous 2-D space, we

must use a discrete transform , which is directly analogous to the continuous

transform. This is defined as

H n ,v) = Mn,n x f (x , y) x M m>m

where

Mn,n{x ,y) = \e ~ 2irixy/n
t

and / is an m x n image, as described in equation 4.1. The inverse transform

is defined by the relation

and equation 4.2.

So the forward and inverse discrete Fourier transforms, written in longhand,

are as follows, with an obvious analogy to the continuous transform.
, n —1 m —1

T (u , = f (a’ b)e-2ni{au/n+bv/m'> (4.3)
a = 0 6=0

n—1 m—1
f (u , v) = 6)e2,ri(au/n+6u/m) (4.4)

a = 0 6=0

where u = 0 ,1 , • • •, n — 1 and v = 0,1, • • •, m — 1.

Many variants of this m ethod exist, but the best known and most popular is

the discrete cosine transform, (DCT), which uses only the cosine part of the

exponential factor. This is the variant used in JPE G coding standard [1].

70

4.2.2.2 Hadamard transform

Where the Fourier transform has as its basis sinusoidal wave-forms, the

Hadam ard transform has square waves, or more accurately Walsh functions.

These functions consist entirely of the values ±1 [27, 5].

The H adam ard transform consists of using H adam ard matrices of size m x m

and n x n in equation 4.1, instead of P and Q.

The Hadam ard m atrix itself is defined (for orders 2n x 2") recursively, as

H 2o =

H<2k,2k ~

1 1

1 - 1

Hk,k ~Hk,k

The calculation of the inverse Hadam ard m atrices is a simple task, and w ith

a little effort it can be shown th a t

^k,k

Because only additions are calculated during the m atrix multiplication in

the transform, and because there are no trigonom etric or complex term s to

consider, the H adam ard transform is both fast and easy to calculate.

4.3 W avelet transform

We will address the wavelet transform separately from the other transform

methods, since it acts somewhat differently in the discrete case than the

4.3.2 Frames and orthonormal bases

Fourier analysis is based on the fact th a t for the space L2(R) of square

integrable functions, the functions {exp(2irinx)} form an orthonormal basis

under the norm (/ , g) = f (x)g(x) dx. This means th a t any function

/ G L 2(R) can be expressed as
OO

f (x) = (f (x) , e 2ninx)e2ninx
71— — OO

In general, however, it is not easy to satisfy the m yriad of conditions necessary

to easily find an orthonorm al basis for an arb itrary space. We must be able to

easily find the basis, easily calculate the coefficients, and so on. However, for

wavelet theory we use a slightly less stringent criterion th an orthonormality.

We will use instead the concept of a frame [30]. A set { x n} is a frame if, for

all x G H, there exist numbers O < A < B < 0 0 6 R such th a t

A-IMI < Z /1 Xn) I2 — -®INI
n

We call a frame tight if A = B, and exact if it ceases to be a frame upon the

removal of any element of the frame.

The goal is, for a given frame { xn}, bounded by A, B , to find a means of

calculating {c„} such th a t x = Yhn cnx n f°r all x G H. We define an operator

S by the equation

S x = ^ 2 (x , x n) x n
n

It can be shown th a t this operator is bounded below by a positive number

[30], and is therefore invertible, th a t S'-1 is also bounded, th a t is

also a frame, w ith bounds 5 _1,v4_1, and finally th a t for every x G H, th a t

x = Y A x , S - l x n) x n
n

73

{ x n} and { S 1x n} are called dual frames. It can be shown th a t every exact

frame is a basis, th a t is, th a t the representation by the frame of any x G H

is unique [30]. We also have th a t if { x n} is an exact frame, th a t {xn} and

are biorthonorm al, th a t is,

where Sa;b = 1 if a = b and = 0 otherwise. We now have a means, given

a frame, to break down and re-constitute any function. Next, we will define

exactly w hat we mean by a wavelet, and expand from the wavelet series,

which corresponds to the extension above, to the continuous and discrete

wavelet transforms.

The following operations are defined for all functions / G H.

1. Translation: Taf (x) = f (x — a) for a G E

2. M odulation: E af (x) = e2nmxf (x) for a G E

3. Dilation: D af (x) = |a |-1/2/ (^) for a G E

A function g G L2(E) is called a wavelet, or a mother wavelet if

defines a frame in L 2 (R). This definition implies a number of things, many

{ D aTi,g}a,b£l,

of which are very involved m athem atically [31]. Some of these are th a t the

function vanishes a t infinity, th a t f^°oog(x) dx = 0, and th a t

74

where g is the Fourier transform of g.

Define {(?«,{,} as the dual frame to <y, th a t is

where ga,b = D aTbg = |a | 1/2g (^) and S = ^ a>beZ{-, ga,b) 9a,b- Then the

wavelet series of a function f € L 2 (R) is

f (x) = Z (f>9aj>)9a,b
a ,6 £ Z

In practice, we usually discretise a such th a t the dilations are powers of an

integer, setting a0 = 1, for example, and an = 2a„_i, where a > 1 is a

contraction, and a < 1 is a dilation.

The continuous wavelet transform <1>gf is then deduced directly from the

series [29] by

or <bflf (u , v) = (f , g C'‘,v), for v £ R. The inverse of this transform is

4.3.3 M ultiresolution analysis

There remains the problem of how to find a m other wavelet which generates

a frame, and how the continuous transform extends to a discrete transform.

This leads us to the idea of a multiresolution analysis.

A multiresolution analysis (MRA) for L 2(R) consists of [32]

75

1. Closed subspaces Vn C L 2(R) for n £ Z satisfying

(a) Vn C Vn+1 Vn £ Z

(b) • • • n K n K - i n K _ 2 n • • • = 0

(c) Unez ^ is dense in L2(R)

(d) K = D 2K +1 = { D 2f : / £ K + i}

2. A function ip G Vo such th a t {Tm<£>}meZ is an orthogonal basis for Vo-

It is easy to find Vo and ip which fulfill these conditions, for example, ip =

X[o,i] and Vo = { / G L2(R) : / is constant on each [m, m + 1]} produce the

well-known H aar wavelet. It has been shown [29] th a t every multiresolution

analysis produces an orthonorm al basis for L2(R).

Since Vn is contained in Vn+i, we can define W n to be the orthogonal com­

pliment of Vn in Vn+\. It is then possible to find a function (j) G W 0 such

th a t is an orthonorm al basis for W q. From the definition of our

Vn, it is obvious th a t W n+i — D 2W n = {D2f : / G W n}, so { D 2nTm(j)}

forms an orthogonal basis for W n. Finally, since Vn+i = Vn ® W n where

A ® B = {a + b : a G A, b G B } , we have Vn+i = 0 ”=_oo Wi, and by

extension, L 2(R) = ® !°00 Wi, so {D 2nTrn(j)}Triin&i forms an orthonorm al basis

in L 2 (R).

This gives us an interesting way of expressing a function. Given a function

f (x) , we can find {gi{x) : gi(x) G Wi} and h{(x) G Vi such th a t

/ (a;) = h0(x) + gi(x) + g2(x) -\-----

= hi(x) + g2(x) + g 3(x) -I-----

We can consider the gi to be detail functions, and hi to be an averaging filter.

76

This is how the discrete wavelet transform works, by repeatedly filtering a

signal through both high-pass and low-pass filters, and using the output of

the low-pass filter as the input to the next high-pass filter, keeping only the

final low-pass output at the required sampling level.

The definition of an MRA gives us an interesting means of expressing the

wavelet which generates one level w ith each of the wavelets in the next level

of the analysis. This is

M - 1

0 (®) = Z Ck4> (2a; + k)
k -o

[33]. The value M , which is the number of non-zero coefficients required to

satisfy the relationship, is the order of the wavelet. The self-similar nature

of this equation is what gives some wavelets a distinctly fractal appearance.

A number of constraints must be m et for a set of given coefficients to generate

a wavelet. The area under the curve should normally be 1, which requires

th a t ^ 2 C k = 2. We also wish to have a curve ip which is not only orthonorm al

to translations, as 0 is (since f <p(x)(f>(x — k) dx = 0), bu t is also orthonorm al

to dilations.

This curve ip exists, and is given by

^ (x) = Z Cl~k^ (2x -
k

Normalization of both 4> and <p require th a t

^ ̂Ĉ C/j_2m — 25om
k

th a t is, th a t the sum of the squares of the coefficients is two, and the sum

of the pairwise products of odd and even coefficients is zero. It can also be

77

shown [31] th a t

Z (~ ^) fc c l - * c fc-2m = 0
k

for all m.

The coefficients which generate the H aar basis, for example, are co = l,C i =

1. The Daubechies 4-wavelet [33] is generated by the coefficients

Co = 1(l + >/3)

Cl =
Ï

^3 + \/3^

C2 =
1

CO 1

A

C3 =
1

4
(1 - ^ 3)

Once we have the coefficients for the wavelet we’re using for the task at

hand, we then proceed to apply our high- and low-pass filters to the signal

as follows. Given a discrete signal / , we calculate the low-pass filter as

1 \ r -
= 2 /

3= 1

and the high-pass filter as

1 N

p 1

for i = l , 2 , - - - , N / 2 [33].

4.3.4 W avelet transform in image processing

There exist means of extending the wavelet to two or more dimensions [34],

but computationally, these are unwieldy and are not often used. The normal

extension to two or more dimensions of the discrete wavelet transform is by

the means described above for one dimension, changed only slightly.

Given a discrete surface A (i , j) : 0 < i , j < N — 1, we first apply our high-pass

and low-pass filters horizontally, generating L(A) (i , j) : 0 < i < N - 1,0 <

j < (N — l) /2 and H (A) { i J) : 0 < i < N - 1,0 < j < (N - l)/2 .

Then for each of G and H, we perform the low- and high-pass filter oper­

ations vertically, resulting in four sub-images, L(L(A))(i , j) , L (H(A)) (i , j) ,

H (L (A)) (i , j) and H(II (A)) (i , j) for 0 < i , j < (N — l)/2 . We then repeat

the operation with L(L(A))(i , j) as the input image for the next iteration, as

with the one-dimensional version. A sample decomposition of the Lena sam­

ple image using the Daubechies 4-wavelet (Figure 3.6), greyscale equalised

to emphasise high-pass filter output, is shown in Figure 4.1.

Figure 4.1: Two stages of wavelet decom position of Lena

79

This image can then be compressed w ith any of the methods which are used

w ith other transform methods, namely entropy coding methods, and band­

pass quantisation filters. Since the wavelet transform is essentially a series

of bandpass filters, this quantisation process is considerably easier th an with

other transform methods. Using only entropy coding and coefficient quan­

tisation, the wavelet transform has been shown [35] to achieve compression

ratios exceeding 100:1, w ithout considerable loss of image fidelity.

Figure 4.2: W avelet transfo rm encoded Lena (128:1)

As with the Fourier transform, the principle loss of image quality is near

edges (see Figure 4.2), bu t the edge effects, even a t high compression ratios,

are less prom inent th a t w ith the DCT, or the fractal transform.

80

4.4 Fractal transform

Fractal image compression is based on two principle assumptions. First, th a t

every natural image has self-similarity contained within it, and second, th a t

there is a means of finding this self-similarity and extracting it.

The presence of fractals in nature, from ferns to coastlines, has been discussed

for many years [36, 15, 37], and in the late 1980s, Michael Barnsley and

Arnaud Jacquin [38, 23] introduced a means of extracting redundant self­

similarity.

4.4.1 Contraction mappings

The m ethods they proposed are based on contraction mappings and iterated

function system (IFSs). A contraction mapping, informally, is any mapping

where the distance between any two points before the mapping is greater than

the distance between them after the mapping. It can be thought of as the

cooling of a surface, or any of the other processes where the same content is

shrunk into a smaller space. More formally, a function / : X —> X is called a

contraction m apping of the set X under the metric d(-, •) : X x X —» M[0, oo]

if, for all x, y G X ,

d (/ (x) , f (y)) < c x d(x , y)

with 0 < c < 1.

The m ost im portant property of a contraction mapping is th a t there is exactly

one point which is invariant under the mapping, th a t is th a t f (x f) = x f , and

th a t under iteration, every point eventually contracts to th is point. This is

the “Contraction m apping theorem ” , and these properties are the foundation

81

of the theory of fractal image compression.

T h e o re m 4.1 (C o n tra c tio n m a p p in g fixed p o in t th e o re m) L e tr : X -

X be a contraction mapping on a complete metric space (X , cl). Then r has

exactly one fixed point xp G X , and

lim { rn(rc)} = Xp Vrr G X
n—*00

P r o o f

Let x G X , d(r (x) , r (y)) < s d (x , y) V.T,y G X and 0 < s < 1. Then define

x 0 = x

X \ = r(x)

Xn = r (® n_ !)

And we have

d(xm, x n) sd^Xjji—i, x n—i)

fi s d (xm- n ,x 0)

< sn (d(xm-n ,X m- n- i) + •■■ + d(x2, x i) + d(x 1,X0))

< sn (sm- n- 1d(a;1, rcoH 1- sd(xi, .To) + d(x i , x0))
/ 1 _ ¿»n-n \

< sn f ■ 1 _ ; - J d(*i»®o)

sn
< d {xu x 0)

1 — s

Since is constant and finite, and sn can be made arbitrarily small, so

for any e > 0, we can choose an n such th a t

And we have th a t {a;n} is a Cauchy sequence, and thus converges in X . Let

limn^oo x n = x F and

so xp is a fixed point of r . The uniqueness of x F follows from the observation

th a t if t were to have two different fixed points, they would have to satisfy

the equation

which is obviously a contradiction. This concludes the proof.

W hat this means, in the context of our problem, is th a t if we consider digital

images as points in image space, in other words as elements of the set of all

possible digital images, and if we find a contraction m apping for which our

image is the fixed point, then we need only th a t m apping to reproduce our

original image. T hat is, starting w ith any image we can iterate th a t m ap a

number of times to get an approxim ation of our image. Our only problem is

how to find an appropriate contraction.

4.4.2 Iterated function system s

lim Tn+1(:co)

d(r (xp) , r (yp)) < sd(xF,yF)

=> d(xF, y F) < sd(xF,yF) < d(xF, y F)

A particular group of contraction mappings which are of interest to us are

IFSs. An IFS is a group of contraction mappings which each act on the set

83

X, w ith the overall m apping being m ade up of the union of the individual

maps. More formally, an IFS is a set F = { /i , ¡ 2 , • ■ •, f n} of contraction

mappings. The transform F : X —Y X is defined as

F{x) = U i=1fi(x)

for all x G X . It is easy to show th a t if each of the fa is a contraction

mapping, then F is also a contraction.

A wide variety of weird and wonderful images can be drawn w ith ju st three

or four contractions making up an IFS, and many of these have an oddly

natural look to them . Some examples are contained in Figures 4.3, 4.4 and

4.5).

Figure 4.3: IFS a ttra c to r generated by 4 contractions

4.4.3 Collage theorem

The collage theorem was an a ttem pt to provide a way of finding an iteration

function system which has an arbitrary image as its a ttractor. The Hausdorff

84

Figure 4.5: Sierpinski triang le , generated by 3 contractions

metric, which provides a way of measuring the distance between point sets,

is central to the theorem.

Given a complete m etric space (X, d), and point sets A ,B C X , we define

d(x, B) = min (d (x , y) : y G B)

d(A , B) = m ax (d (x, A) : x G A)

h(A , B) = m ax (d (A , B) , d (B , A))

85

It can easily be shown th a t din fulfills the conditions to be a metric, namely

th a t h (x ,x) = 0, li(x ,y) = h (y ,x) > 0 and h (x ,z) < h (x ,y) + h (y ,z) . As

such, if we can find a contraction mapping on k we are guaranteed a fixed

point. We also have a metric which measures in some sense the similarity

between point sets.

Having laid the foundations, we can now proceed with a proof of the Collage

theorem.

T heorem 4.2 (Collage theorem , Barnsley, 1985) L e t (E J i) b e a c o m ­

p l e t e m e t r i c s p a c e , l e t W = U » = iw* a n w i t h c o n t r a c t i o n f a c t o r s ,

a n d f i x e d p o i n t T p . L e t T b e a c lo s e d s u b s e t o f X . L e t e > 0 b e a n y p o s i t i v e

n u m b e r , a n d s u p p o s e t h a t t h e {'o>n} a r e c h o s e n s u c h t h a t

li (T ,W (T)) < e

T h e n

h (T ,T F) < — —̂ Vx € E
1 — s

P roo f

h {T ,T F) = lim h (T ,W n(T))

< lim ' y i si- 1h {T ,W {T))

< h (x ,W (T))
1 - 9

86

< --------
1 — s

The general meaning of this theorem is th a t if we can find an IFS which

approximately covers a point set, we are guaranteed th a t the final attractor

will also approxim ate the point set, and we have a well-defined bound, based

on the contraction factor of the IFS.

There still remains the problem of how to find the individual contraction

mappings. We need to minimise N , the num ber of mappings, and e, the

initial error in the collage, and even if we lim it our search to affine maps in

K2, the problem of finding maps which minimise the error is difficult.

4.4.4 Partitioned iterated function system s

A m ethod of system atically coding arb itrary images was proposed by Jacquin

[38]. He proposed using partitioned IFSs, which are more flexible for general

applications. The general principle is th a t we divide the image into range

blocks, small sections which partition the image, and then proceed to search

for larger regions (domain blocks) which minimise the difference between the

original block and the transformed block under a contraction map.

More formally, let X be a complete metric space, and let Di C X for i =

{1, 2, ■ • •, n}. A partitioned iterated function system (PIFS) is a collection

of contractive maps {wi : Di —> X}™=1.

We choose our maps Wi such th a t Wi (Di) = X and P liL i wi i ^ i) — 0> so

87

th a t the range blocks are non-overlapping and partition the image. We then

search for Di which m ap to Ri under a contraction [39, 23],

There are a number of decisions which must be made when coding an image

by a PIFS. First, we must decide on how we partition the image into range

blocks. Second, we m ust decide what type of contractions we will use to

map domain blocks to range blocks. Thirdly, we m ust decide what search

strategy we will use to find good domain block matches. Finally, we need to

decide w hat type of quantisation we will use to further compress the resulting

mappings.

4.4.4.1 P a rtitio n in g strateg ies

The first partitioning schemes used involved uniform partitioning of the image

into 8 x 8 range blocks, but this strategy limits the compression ratio which

can be achieved, and takes no account of the context of the image, with a

plain greyscale image requiring the same number of maps as a portrait, for

example.

Q uadtree partitioning [39] is a normal extension to th is partitioning scheme,

which attem pts to find an acceptable m atch for the largest possible block,

and if it fails to do so, splits the block into quadrants, each of which is coded

individually.

Several other novel partitioning schemes have been proposed, including hexag­

onal or triangular partitions w ith quadtrees [40, 39]. Irregular block shapes,

obtained by adaptive merging of individual squares, have also been proposed.

However, quadtree partitioning schemes are by far the most used, and pro-

8 8

duce good results for most images, even at very low b it rates [39].

4.4.4.2 C on trac tion choice

While any contractive mappings suffice for coding, the amount of tim e re­

quired to search for good matches mean th a t we lim it our mappings to simple

affine maps, th a t is, maps of the form

Wi(x,y)
Ci dì

where (e*, /¿) is a spatial offset, and

x

y

Q>i bî

Ci di

e*

fi

is an affine map, which can

take into account scaling, shear and isometries of the square. Normally to

save coding tim e only square domain blocks are used, which negates the

need for asymm etric transform ation, and reduces the transform ation m atrix

to a l n where In is one of the isometries of the square and a is the contraction

factor. However, other affine maps [23] have been used successfully.

Mappings also take into account a greyscale scaling and offset, which can be

figured into the transform if we consider grey scale as a th ird dimension [1].

Normally, only spatial contractions of order 2~n are used, prim arily for ease

of calculation.

4.4.4.3 D om ain block searching

The number of possible domain blocks is huge, in comparison to the number

of range blocks. For example, using 16 x 16 domain blocks, and a 256 x 256

image, there are 250x250 possible (overlapping) domain blocks for each range

89

block. This means th a t a full search, even on this fairly basic partitioning,

requires the scaling and comparison of 250 x 250 x 32 x 32, or approximately

226, 8 x 8 matrices. Obviously, the required tim e to calculate the transform

is excessive for this type of search. We wish to reduce the number of domain

blocks we check against each range block, w ithout a considerable loss in the

quality of the coding.

Among the schemes which have been proposed are classification of domain

blocks into various categories (edge, mid-range, smooth, etc.), and only ex­

amine domain blocks from the same class for range blocks of th a t type, and

local searches [39].

4.4.4.4 Coefficient quan tisa tion

Once we have calculated a best-m atching domain block and transform, we

can further increase compression ratios by reducing the number of bits we

use for each stored transform .

Transforms are identified, normally, by six values, the scaling ratio a, the

isometry of the square Jn, the spatial offset (e*,/*), the greyscale scaling

ratio Si and the greyscale offset Oj.

It is reasonable to store the isometry used as three bits, since there are eight

possible isometries, although some authors [41, 42] have suggested th a t larger

domain pools, or a subset of the isometries, may behave as well, while re­

ducing some of the com putation, and reducing the per-transform da ta which

must be stored.

The scaling ratio, which as I have previously mentioned is normally fixed

90

at 0.5, is not usually stored. However, it seems reasonable to use 5 bits (a

resolution of 1/32 for numbers between 0 and 1) to code this, if we decide to

use non-dyadic scaling factors.

The spatial offset of the domain block, in a worst case scenario, requires

log2(n) + 1 bits for an image of size 2n x 2n. However, w ith local block

searches, and non-comprehensive searches, we can use considerably less than

that.

Quantisation levels for the greyscale transform (sj, Oj) of 5 bits for Sj and 7

bits for Oi have been suggested by Fisher [39].

In to tal, for a 256 x 256 image, w ith a fixed range block size of 8 x 8, yields

1024 transform s, each requiring 3 (square isometry) + 5 (scaling ratio) + 9

(domain offset in x direction) + 9 (domain offset in y direction) + 5 (greyscale

scaling) + 7 (greyscale offset) bits, to talling 38 bits per transform, or 4864

bytes, for an original image size of 256 x 256, or 65536, bytes, yielding a

compression ratio of 13.47.

However, this compression ratio is considerably improved by measures such

as a fixed scaling ratio, a quadtree partitioning scheme, or some other par­

titioning scheme which reduces the number of transform s required. We can

also substantially lim it the size of the pool of candidate domain blocks we

match against each range block.

91

4.5 W avelet-fractal hybrid transform s

Because of the means by which the wavelet transform is created and imple­

mented, many authors have suggested a link between the wavelet and fractal

transforms [43, 44, 45]. Bearing in mind th a t in its creation by a multireso­

lution analysis, the wavelet itself is self-similar, and th a t the discrete wavelet

transform examines an image on many related frequency levels, it is easy to

see how this suggestion could be made.

4.5.1 Fractal coding in the wavelet domain

A means of exploiting the similarities between the wavelet and fractal trans­

forms has been suggested [44]. This m ethod centres on coding the image

by the fractal transform in the wavelet domain. The reasoning behind this

m ethod is th a t if the fractal transform would normally map a domain block

onto a range block in the spatial domain, th a t the frequency information at

one level of the wavelet decomposition would correspond well with the fre­

quency information of the range block at the previous level of decomposition,

assuming dyadic fractal contractions.

Using the decomposition of Lena introduced earlier, if the fractal transform

were, for example, to m ap the squares in Figure 4.6 to each other, we would

expect these sections to be similar a t different decomposition levels of the

wavelet domain, as they are shown to be in Figure 4.7. Figure 4.7 shows

a thresholded version of the wavelet decomposition (to improve visibility)

shown in figure 4.1, w ith this mapping highlighted in the wavelet domain.

92

Figure 4.6: Sam ple m apping in Lena

4.5.2 W avelet post-processing of fractal coding

R ather than the m ethod used above, we present a different m ethod of com­

bining the fractal and wavelet transform s which codes the image to a high

compression ratio using the fractal transform , and codes the errors only with

very high entropy using the wavelet transform .

Since the errors in any fractal coding of an image occur mostly a t region

boundaries in blocking effects, the m ajority of the wavelet transform infor­

m ation will be contained in higher frequencies, and the result can be entropy

coded to give very high compression ratios due to the sparse nature of the

low energy sections of the transform. In this way we hope to get the best

of both transforms, efficient compression of non-edge da ta w ith the fractal

93

Figure 4.7: M apping from figure 4.6 in wavelet dom ain

transform, and the edge preserving qualities of the wavelet transform, as tes­

tified by its use as the compression algorithm used for the FBI fingerprint

library [26].

A flowchart representing the algorithm is shown in Figures 4.9 and 4.10. This

coder should produce good visual quality, and should improve considerably

on the fractal transform in signal to noise measurements. Because most of

the edge inform ation in the wavelet domain will be well coded, we also expect

not to see the edging effects which are common with the wavelet transform.

94

4.5.3 R esults and discussion

The hybrid coder consists of a standard quadtree based algorithm [39] and

the Baseline Wavelet Transform Coder Toolkit wavelet coder [35]. The pa­

ram eters used to vary the compression ratios of the fractal coder were the

number of bits required to store greyscale offset and contraction, and spatial

offset, the maximum and minimum size of range blocks, and the acceptable

error tolerance in comparison of domain blocks and range blocks.

For the hybrid algorithm one main decision had to be made. We had to decide

what portion of the final codes would be made up of fractal codes, and what

proportion would be wavelet codes. For this decision, we used a number of

combinations of param eters with the fractal coder, which yielded compression

ratios from 30:1 to 250:1. We then coded the difference image w ith the

required compression ratio to give a final compression ratio of between 30:1

and 100:1. The results for this operation are given in Figure 4.8.

It can be seen th a t the optimum proportion appears to be around 40:60, th a t

is, if we wish to compress an image by 60:1, then we will compress the image

by 150:1 with the fractal coder and the difference image by 120:1 using the

wavelet transform to give the final compression.

For the comparison of the algorithms, three test images were used, Lena (Fig­

ure 3.6), B arbara (Figure 4.14) and Goldhill (Figure 4.19). These represent

a good cross-section of the types of images a coder might be expected to han­

dle, and also cover all of the problems which traditional coders experience.

For example, the checked shawl of B arbara and the buildings of Goldhill will

show up any problems w ith edge artifacts. The peak signal to noise ratio

(PSNR) was used as the measure of fidelity for comparison.

95

% of hybrid codes consisting of fractal codes

Figure 4.8: A nalysis over various com pression ra tios of hybrid

coder

Figure 4.13 contains the results of a comparison of the three coders used for

the test image Lena. From this comparison it is obvious th a t the results

achieved w ith the hybrid are worse than those achieved with the wavelet

coder only, bu t improve substantially on those given by the fractal transform

alone, a t least w ith regard to the peak SNR.

Visually, the results achieved by the hybrid do reduce the edging artifacts

which result from the fractal transform , but fall somewhat short of the

wavelet transform results. There may be several reasons for this. In ef­

fect, the wavelet coding of the image codes the high frequency detail (edges,

complex areas) at a higher b it rate than the fractal-wavelet hybrid. Ideally,

we would like the wavelet part of the hybrid to concentrate exclusively on the

edge information, since the fractal coder is already taking care of the larger,

smoother areas quite well.

96

Lùssy EractaJ
co-ding

0:25xl\%;f) F(S) fy-S1

Input Image l(x,y.

d w t -̂̂ 5
lade up.

*n4DWT(£-Sn

Figure 4.9: Im age coding w ith hybrid fractal-w avelet codec

&

FfS)

DW T
iowt.

U{S'+(S-2,)y

(SS1-,S1) 1 Sucn o f tw o images
UpsampLed

triage

Figure 4.10: Im age decoding w ith hybrid fractal-w avelet codec

Since essentially this approach appears to do nothing more than split the

difference between the best results of the wavelet transform and the relevant

97

Figure 4.11: Lena encoded a t 40:1 w ith hybrid coder

fractal transform , I believe th a t we can eliminate this as a possible future

line of work. While the idea of a wavelet based coder complimenting a

fractal coder by coding only edge effects a t a very low b itra te is attractive,

it is obvious th a t this approach does not improve on the results achieved by

using only one coder a t the same compression ratio. However, we feel th a t

th is result is in itself useful in elim inating this possibility for the future.

98

Figure 4.12: Lena encoded a t 40:1 w ith frac tal coder

Compression ratio

Figure 4.13: C om parison of frac ta l, hybrid and wavelet codecs us­

ing P S N R for Lena

99

Figure 4.14: B arb ara te s t image

100

Figure 4.15: B arb ara encoded a t 30:1 w ith hybrid coder

101

Figure 4.16: B arb ara encoded a t 30:1 w ith frac ta l coder

102

PS
N

R

F igure 4.17: B arb ara encoded a t 30:1 w ith wavelet coder

Compression ratio

Figure 4.18: C om parison of th ree codecs for B arb ara

103

Figure 4.19: G oldhill te s t image

104

Figure 4.20: G oldhill encoded a t 35:1 w ith hybrid coder

105

Figure 4.21: G oldhill encoded a t 35:1 w ith frac tal coder

106

PS
N

R

Figure 4.22: G oldhill encoded a t 35:1 w ith wavelet coder

Compression ratio

Figure 4.23: C om parison of th ree codecs for G oldhill

107

C hapter 5

C onclusion and d iscussion

5.1 Sum m ary

W hile the field of fractal geometry is only 20 years old, people have exam­

ined nowhere differentiable functions since Poincare a t the beginning of this

century. Fractals have been shown to be of aesthetic use, as well as practical

use [4, 36]. Fractal a rt has become widespread, and beautiful and complex

images have been created using iterated function systems and chaotic func­

tions. However, it is in the description of natural phenomena tha t fractal

analysis has had the greatest impact.

In particular, fractals have been used to examine and model physical phe­

nomena, such as the curviness of coastlines and rivers and the complexity

of mountain slopes. This has been extended to the compression and analy­

sis of physical structures which are not self-similar, or even globally pseudo

self-similar, such as real-life images and textures.

108

In this thesis, we have given a comprehensive overview of fractal methods in

texture analysis and image segmentation, as well as other methods of inter­

est in these fields. We have also given an introduction to iterated function

systems, as well as some of the vast body of work which has been w ritten

on their application to image compression, as well as showing some of the

relationships between fractal and wavelet methods.

In chapter two, we layed out the basic premises behind texture analysis, and

examined some of the m ethods which have been used to classify textures in

the past. We also introduce fractal dimension as a means of measuring the

complexity of textures. We have shown th a t very different textures can have

a similar fractal dimension (see figure 2.16), lim iting its value as a measure,

but our hypothesis is th a t it can successfully be used as part of a larger

feature vector.

In chapter three, we expand on the feature vector, incorporating both Fourier

and box-counting dimensions, and a luminance feature, which simply aver­

ages the greylevels in a square around a given point. We also use the m ulti­

fractal dimension proposed by Chaudhuri and Sarkar [12, 13, 20].

W hile the segmentation given by this combination of features was somewhat

flawed, and segmentation of more complicated images was very difficult due

to the relative size of window needed for a decent estim ator, we believe th a t

this approach holds some promise.

We also perform an in-depth analysis of segmentation using fractal codes,

a m ethod which requires a coding of the image using a partitioned iterated

function system, as proposed by Ida and Sambonsugi [22]. This revealed

some interesting facts. In constraining the greyscale scaling factor allowed,

109

we produced some excellent results. However, when the scaling ratio was

unconstrained, the coding which we used produced results which were almost

homogeneous, and failed to pick up regions at all.

This is due to the fact th a t, in smaller (8 x 8 and 16 x 16) image segments, a

greyscale scaling ratio substantially different to 0.5 changes the characteris­

tics of the block (particularly the fractal dimension) such th a t our premise,

th a t fractal coding maps regions of similar fractal dimension to each other,

no longer holds. In addition, we found th a t spatially unconstrained mappings

produced similar results.

Although this is more difficult to explain, we believe th a t this effect is due to

the fact th a t when m apping over a number of different regions with similar

characteristics, tha t a substantial number of orbits which do not strictly

belong to the (spatially separated) regions are introduced, and th a t as we

repeatedly iterate the map, th a t these orbits dom inate the image, leaving

only a small number of points as the basins of regions. It is also possible

th a t our means of classifying orbits into regions may have been flawed.

In chapter four, we present an overview of the theory behind fractal image

compression, and behind wavelet analysis. We also present a summary of the

work which shows a link between these apparently disparate fields.

We propose using a wavelet coder with very low bit-rate as a means of im­

proving the results from fractal coding. We show th a t this substantially

reduces the edging effects in a fractally encoded image.

110

5.2 Future p ossib ilities

W hile fractal techniques are widely used, this is still a relatively young area

of research. In the area of texture analysis, there is a lot which is not yet

known about the fractal dimension, particularly the relationship between

the various estimators. In the area of image segmentation, for example, the

m ethod of segmenting using fractal codes shows substantial promise. More

robust measures of the fractal dimension would also contribute positively

to more accurate feature vectors for both texture classification and image

segmentation. And improving fractal coders, possibly through more region-

oriented partitioning schemes, would be one way of linking these disparate

areas for one coherent purpose.

5.2.1 Image segm entation

The analysis presented here of the segmentation by fractal codes shows a

number of shortcomings in th is m ethod which can be addressed in the future.

The segmentation could be substantially improved if we understood a little

more about the nature of how the orbits generated by be tter fractal coding

schemes behave and interact, and by examining further the constraints under

which this segmentation scheme can be improved.

More generally, fractal m ethods in image segmentation have some problems.

Fractal dimension estim ators are not, in general, robust on smaller data sets.

There is room for substantial improvement in terms of improving the robust­

ness of fractal dimension estim ators. It is also worth investigating whether

the fractal dimension really is a valid means of classifying textures, and seg-

111

meriting images. We may find th a t the fractal dimension is not appropriate

as a measure at all. More likely is th a t we will find th a t the fractal dimension

does have a part to play in image segmentation, albeit as part of a larger

feature vector.

5.2.2 Image coding

The weakest link in fractal coders is the fact th a t they are block based. This

results in blocking effects near edges, and means th a t fractal coders are not

sensitive to the context in an image.

The obvious solution to these problems is a context-based fractal coder. This

would combine image segmentation w ith a fractal coder which is not block-

based. In this way, edging effects would be reduced, and the possibility would

exist of coding and storing individual objects in an image.

This could be accomplished by using partitioning schemes based on non­

block areas, triangular or curved, for example, which could exploit similari­

ties w ithin a region. The m ajor tasks in accomplishing this are the isolation

of control points which would be the vertices for the partitioning, the param-

eterisation of the m appings from areas which are not necessarily congruent,

and the efficient storage of those mapping, once calculated. Block based

partitioning schemes do not have any of these problems, which is one of the

main reasons they are widely used.

The advent of an efficient region-based fractal coder, which would presumably

encompass segm entation as a first stage, will be a trem endous boost to fractal

coding in general. Once the problems with deciding partitioning schemes,

112

and then coding these efficiently, are overcome, I believe we will see a greater

m ainstream acceptance of the m ethod in general.

5.2.3 Video telephony

One of the applications which holds the greatest potential for context-based

image coders in general is video telephony and video conferencing applica­

tions. In general, the object of interest is the face and shoulders of the caller,

and the background is not im portant. An object based coder could more

efficiently code the object of interest, rather than wasting resources coding

the background w ith equal fidelity.

In combination with image segmentation, a context based fractal coder would

be ideal for this type of application. Currently, encoding speed would be a

huge issue for this type of application, but with network bandw idth capability

improving, and processor speeds increasing, and prices for both of these

decreasing a t an amazing rate, it may not be too long in the future until

real-time encoding and decoding are possible for video streams.

Already fractal techniques are ideally suited to decoding stored video or im­

ages, in th a t decoding tim e is substantially less than encoding time, and

w ith dedicated hardware can already be done almost in real-time. It is only

a m atter of time, in my opinion, until an object-based fractal coder, in com­

bination w ith other video coding techniques such as m otion estimation, will

be capable of real-tim e video telephony.

113

B ibliography

[1] M artin J. Turner, Jonathan M. Blackedge, and Patrick R. Andrews.

Fractal Geometry in Digital Imaging. Academic Press, London, 1998.

[2] P. K ube and A. Pentland. On the imaging of fractal surfaces. IEEE

Trans, on PAM I, 10(5):704-707, September 1988.

[3] Kenneth Falconer. Fractal Geometry - Mathematical Foundations and

Applications. John W iley &; Sons, Chichester, 1990.

[4] R .F. Voss. Random fractal forgeries. In R.A. Earnshaw, editor, Funda­

mental Algorithms in Computer Graphics. Springer-Verlag, 1985.

[5] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Ma­

chine Vision. International Thompson Com puter Press, London, 1993.

[6] S. Livens, P. Scheunders, G. Van der Wouwer,

and D. Van Dyck. Wavelets for texture analysis,

h t t p : / /w c c . r u c a .u a . a c .be/~livens/WTA/WTA.h tm l.

[7] Com puter Vision Group. Segmentation of textured images. Technical

report, University of Bonn, 1997.

[8] G. Sm ith and I. Burns. Meastex image tex­

ture database and test suite v l . l . Available at

http://wcc.ruca.ua.ac.be/~livens/WTA/WTA.html

h t tp : / / www. c s s i p . e l e c .u q .e d u .au /~ g u y /m ea s tex /m ea s tex .h tm l,

May 1997.

[9] J. McCauley, pgm texture. Software package, available in l ib g r -p ro g s

for R edhat Linux.

[10] P. Ohanian and R. Dubes. Performance evaluation of four classes of

tex tural features. Pattern Recognition, 25(8):819-833, 1992.

[11] A. Pentland. Fractal-based description of natural scenes. IE E E Trans,

on Pattern Analysis and Machine Vision, 6:661-674, 1984.

[12] N. Sarkar and B.B. Chaudhuri. An efficient differential box-counting

approach to compute fractal dimension of an image. IE E E Trans, on

Sys., Man. and Cyber. A, 24(1):115-120, January 1994.

[13] B.B. Chaudhuri and N. Sarkar. Texture segmentation using fractal di­

mension. IE E E Trans, on PAMI, 17:72-77, January 1995.

[14] P.A. Freeborough. A comparison of fractal tex­

ture descriptors. Available via the web at

h t tp : / /p e ip a .e s s e x .a c .u k /b m v a /b m v c 9 7 /p a p e rs /0 0 2 /f r a c ta l .h tm l

[15] H.-O. Peitgen and D. Saupe. The Science of Fractal Images. Springer-

Verlag, New York, 1988.

[16] P. Sahoo, S Soltani, A. Wong, and Y. Chen. Survey of thresholding tech­

niques. Computer Vision, Graphics and Image Processing, 41(2):233-

260, 1988.

[17] M. Levy. New theoretical approach to relaxation, application to edge

detection. In 9th International Conference on Pattern Recognition, pages

208-212, Rome, Italy, 1988.

115

http://www.cssip.elec.uq.edu.au/~guy/meastex/meastex.html
http://peipa.essex.ac.uk/bmva/bmvc97/papers/002/fractal.html

I

[18] T. Kaneko and M. Okudaira. Encoding of arbitrary curves based on the

chain code representation. IE E E Trans, on Comms., COM-33(7) :697-

706, July 1985.

[19] Y. Hu and T. Dennis. Textured image segmentation by context enhanced

clustering. IE E Proc. - Vis. Image Signal Process., 141(6):413-421, De­

cember 1994.

[20] B.B. Chaudhuri, N. Sarkar, and P. Kundu. Improved fractal geometry

based texture segmentation technique. IE E Proc. E, 140(5):233-241,

September 1993.

[21] J. Hsiao and A. Sawchuk. Supervised texture image segmentation using

feature smoothing and probailistic relaxation techniques. IE E E Trans,

on Pattern Analysis and Machine Intelligence, 11(12):1279-1292, 1989.

[22] T. Ida and Y. Sambonsugi. Image segmentation using fractal coding.

IE E E Trans on Circuits and System s fo r Video Technology, 5 (6):567-

570, December 1995.

[23] M.F. Barnsley. Fractal Image Compression. AK Peters, Wellesley, Mass.,

1993.

[24] R.I Taylor and P.H. Lewis. 2D shape signature based on fractal mea­

surements. IE E Proceedings on Vision and Image Signal Processing,

141(6):422-430, December 1994.

[25] M PEG Home Page, h t t p : / / d r o g o . c s e l t . s t e t . i t / m p e g / , August

1997.

116

http://drogo.cselt.stet.it/mpeg/

[26] T. Hopper, C. Brislawn, and T. Bradley. The FBI wavelet/scalar quan­

tisation standard for gray scale fingerprint image compression. Visual

Info. Processes II, SP IE Proc., 1961:293-304, April 1993.

[27] H. Myler and A. Meeks. The Pocket Handbook of Image Processing

Algorithms in C. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[28] H. Royden. Real Analysis, Third Edition. Macmillan Publishing Com­

pany, New York, 1988.

[29] Christopher Heil and David W alnut. Continuous and discrete wavelet

transforms. S IA M Review, 31(4):628-666, December 1994.

[30] Ingrid Daubechies. The wavelet transform , time-frequency localisation

and signal analysis. IEEE Trans, on Inform ation Systems, 36(5):961—

1005, Setpember 1990.

[31] C.K. Chui. A n Introduction to Wavelets. Academic Press, New York,

1992.

[32] Gerald Kaiser. The Friendly Guide to Wavelets. Birkhäuser, Boston,

1994.

[33] T. Edwards. Discrete wavelet transforms: Theory and implementation.

Technical report, Stanford University, September 1991. Available at

h t t p : / / q s s . S ta n fo rd . e d u /~ g o d fre y /w a v e le ts / .

[34] O. Rioul and M. Yetterli. Wavelets and signal processing. IE E E Signal

Processing magazine, pages 14-38, O ctober 1991.

[35] G. Davis. Baseline wavelet transform coder construc­

tion kit version 0.3. Technical report, University of

117

http://qss.Stanford.edu/~godfrey/wavelets/

D artm outh, January 1997. Available via the web at

h t t p : //www.c d .d a r tm o u th .e d u /~ g d a v is /w a v e le t/w a v e le t .h tm l.

[36] Benoit B. M andelbrot. The Fractal Geometry of Nature. W.H. Freeman

& Co., 1983.

[37] M.F. Barnsley. Fractals Everywhere. Academic Press, Boston, 1988.

[38] A. Jacquin. A Fractal Theory of Iterated Markov Operators with A p ­

plications to Digital Image Coding. Ph.D . thesis, Georgia Institu te of

Technology, A tlanta, GA, 1989.

[39] Yuval Fisher. Fractal Image Compression - Theory and Applications.

Springer-Verlag, New York, 1994.

[40] K. Schroder and R. Mech. Combined description of shape and motion

in an object based coding scheme using curved triangles. In ICIP95,

W ashington DC, October 1995.

[41] J. Liu. Fractal Block Coding Techniques in Image Compression. PhD

thesis, Dublin City University, 1994.

[42] D. Saupe. The futility of square isometries in fractal image compression.

In IC IP 96, pages 161 164, Lausanne, Switzerland, 1996.

[43] George W. Wornell. Signal Processing with Fractals: A Wavelet Based

Approach. Prentice-Hall, Englewood Cliffs, New Jersey, 1996.

[44] B. Simon. Image coding using overlapping fractal transform in the

wavelet domain. In IC IP 96, pages 177-180, Lausanne, Switzerland,

September 1996.

118

http://www.cd.dartmouth.edu/~gdavis/wavelet/wavelet.html

[45] Geoffrey M. Davis. A wavelet based analysis of

ta l image compression. Available via the web

h t t p : //www. c s .d a rtm o u th . e d u /~ g d a v is /p a p e r s / ie e e .p s .gz .

frac-

at

119

http://www.cs.dartmouth.edu/~gdavis/papers/ieee.ps.gz

