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Abstract

Visual Perception:
An information-based approach to understanding biological and artificial vision

Noel Murphy, School of Electronic Engineering, Dublin City University.
Ph.D. Thesis, September 1992.

The central issues of this dissertation are (a) what should we be doing — what 
problems should we be trying to solve — in order to build computer vision systems, 
and (b) what relevance biological vision has to the solution of these problems. The 
approach taken to tackle these issues centres mostly on the clarification and use of 
information-based ideas, and an investigation into the nature of the processes 
underlying perception. The primary objective is to demonstrate that information theory 
and extensions of it, and measurement theory are powerful tools in helping to find 
solutions to these problems.

The quantitative meaning of information is examined, from its origins in physical 
theories, through Shannon information theory, Gabor representations and codes towards 
semantic interpretations of the term. Also the application of information theory to the 
understanding of the developmental and functional properties of biological visual 
systems is discussed. This includes a review of the current state of knowledge of the 
architecture and function of the early visual pathways, particularly the retina, and a 
discussion of the possible coding functions of cortical neurons.

The nature of perception is discussed from a number of points of view: the types and 
function of explanation of perceptual systems and how these relate to the operation of 
the system; the role of the observer in describing perceptual functions in other systems 
or organisms; the status and role of objectivist and representational viewpoints in 
understanding vision; the philosophical basis of perception; the relationship between 
pattern recognition and perception, and the interpretation of perception in terms of a 
theory of measurement These two threads of research, information theory and 
measurement theory are brought together in an overview and reinterpretation of the 
cortical role in mammalian vision.

Finally the application of some of the coding and recognition concepts to industrial 
inspection problems are described. The nature of the coding processes used are unusual 
in that coded images are used as the input for a simple neural network classifier, rather 
than a heuristic feature set The relationship between the Karhunen-Loève transform 
and the singular value decomposition is clarified as background the coding technique 
used to code the images. This coding technique has also been used to code long 
sequences of moving images to investigate the possibilities of recognition of people 
on the basis of their gait or posture and this application is briefly described.



The greatest thing a human soul ever does is to see something, and to tell 
what it saw in a plain way ... To see clearly is poetry, prophecy and religion
— all in one.

John Ruskin 1856.

'It's only a rough draft/
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Preface

The motivation for this project originally arose within the Control Group in the School 

of Electronic Engineering, Dublin City University1, in the mid 1980s. At the time it 

was articulated as a desire to "close the control loop" in robotic manipulation using 

visual feedback. It was a natural extension of both the concept and application of the 

notion offeedback which is ubiquitous within control theory. What was envisaged was 

some kind of computer vision system capable of using three-dimensional information 

about its environment to guide a robot arm in assembly-type processes, and to do this 

in a relatively unstructured manufacturing situation. The justification for this approach 

was, and is clear [1]. It would allow greatly increased flexibility in the manufacturing 

process, with lower re-tooling, re-configuration and re-training costs. It would permit 

some component handling and feeding tasks, which could not hitherto be achieved by 

traditional means, either because of the complexity of the component or the small 

quantities required2 [2,3]. It would allow a consistency of handling, or finish, and 

a level of accuracy and repeatability, to be obtained, which would be otherwise 

unachievable.3 More recendy, the convergence of Automated Visual Inspection and 

Robotic Manipulation [3, p.vii] and changing views on the role of inspection in 

manufacturing [4,5,6] have led to a greater recognition of the various tangible and 

intangible benefits of integrating vision in process control [7,8]. Put simply, visual 

input promised the potential for fast and unobtrusive gathering of information on a 

completely different scale to alternative means of sensing.

Even in the early stages there were some evident qualifications to the wisdom of, or 

need for, visual input in the types of environment considered. Custom assembly 

machines could for example be cheaper and/or faster in any particular case. Or re­

'Then the National Institute for Higher Education (NIHE), Dublin.

2 This issue of small product quantities, and in particular batch modes of manufacturing has been identified 
by Batchelor [3, p-5] as one of growing importance to manufacturing industry because of increasing 
consumer discernment and changing tastes. Batchelor quotes an estimate, that even at the moment 75% of 
manufactured goods are processed in batches of 50 items or less.

3In some cases such consistency is much more important than any attendant labour savings.
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engineering, perhaps coupled with new product technologies such as greater levels of 

integration, could eliminate some of the situations where visual servoing would be 

useful. But if anything, these issues have decreased in relevance in many 

manufacturing situations because of changing trends in consumer requirements. 

Nonetheless, what were then, and still are relevant, are the potentially huge 

computational overheads and unknown engineering, computational, scientific and even 

philosophical issues which would need to be tackled. But notwithstanding this, the 

likely benefits certainly dictated that these issues should be investigated and the 

research work leading to this dissertation began in earnest

Initially much of this work concentrated on algorithmic issues, principally in the area 

of edge-detection and stereopsis4, on the basis that these types of low-level operations 

are computationally very expensive and a necessary precursor to the less well-defined 

processes that would take place at higher, more abstract levels5. A strong influence 

on my thinking at this stage were David Marr’s ideas about a computational theoretic 

top-down decomposition of the problem in terms of the different levels of description 

of vision as an information-processing task [9]. Much of my effort in this early stage 

of the project was dedicated to trying to come to terms with the implications of Marr’s 

framework and to use it as a basis for our robot vision system. While progress was 

made on the identification of suitable efficient algorithms for carrying out these early 

processes on the input digitized video images [10], there still remained many 

outstanding issues. Principal among these were problems such as how outputs from 

different visual modules like stereo, motion, texture, colour, etc. should be integrated;

* At an early stage in the project a decision was made to use passive means for extending vision into the 
third-dimension, such as stereo or motion analysis, rather than the so-called active approaches involving 
projection of light patterns or using lasers. The reasons for this are outlined in a technical report [1]. Note 
the term "active" has since acquired a new connotation in computer vision in the sense of camera movement 
involved in effective exploration. It is used above in the sense of imposing structure on the lighting 
configuration. Curiously, rejecting the active methods in the earlier sense of "active", meaning structured 
lighting, leads to a situation where the extra computational overhead associated with less structured situations 
can be alleviated by spatially varying resolution (cf. foveation) and the combined ideas of fixation and 
camera movement of the term "active" in the more recent sense.

’This dichotomy between so-called low-level (or image) processing and more abstract processing or 
descriptions has recently been exploited as a means of extending the capabilities (higher-level task 
descriptions and process feedback) and flexibility (less constrained environments) of automated inspection 
systems. This is done by mapping the image-processing functions to dedicated hardware and software, 
closely integrated with the image sensor (the Image Inspection Ltd. Intelligent Camera), and mapping the 
more abstract levels into functions in a specially extended version of the Prolog language. See for example, 
Batchelor [3] or Whelan [8].
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what learning strategies could be used so that the system could cope with the learning 

necessities of an unstructured environment; or how to avoid the problem of needing 

to put more and more information into the system as the environment was allowed to 

become less and less structured.

During this stage I was using some of the more accessible literature on neuroscience, 

psychophysics and cognitive psychology, mainly to cross-reference design parameters 

such as acuity, spatial and temporal bandwidths, sensitivities, coding criteria, etc. (See 

for example Levine [11]). However it soon became clear to me from this literature 

that there were major inconsistencies and flaws in applying the prevalent computer 

vision models to biological vision systems and vice versa. For example, the 

explanation of the properties of neurons in the early visual system in terms of edge 

and line detection were contrived at least. Many of the computational models of visual 

capacities such as shape from shading seemed to have no place either in the edge- 

detection-type early processing of computer vision models, or in the context of the 

properties of neurons being described within neuroscience. The explanation of 

biological vision systems in terms of the "semi-independent modules of perception" 

like stereo, motion, texture, etc. [9] was weak -  there was little evidence from 

neuroscience for this particular division into modules, and what evidence there was for 

independent pathways supported a much more subtle division of labour. And the list 

could go on.

This could all be explained in terms of the stumblings of an immature science, groping 

for some certainties in the mass of either inconsistent results or irreconcilable 

experiments. Or perhaps the top-down design methodology proposed by Marr was 

simply too difficult to carry through — we had little idea of what we should be trying 

to achieve, let alone discover the constraints that would determine a unique solution 

as was advocated by him to be the proper way to proceed. But while I was unhappy 

with the situation where different scientific disciplines were coming up with seemingly 

quite incompatible explanations and models for what was effectively one phenomenon, 

I had no idea of where to look for alternatives. In fact, at the time I probably didn’t 

even think to look for alternatives. As far as I was concerned our scientific tradition 

was a unified objective way of examining and discovering reality — one which, since 

the seminal insights of such pioneers as Bacon, Galileo, Descartes and Newton had
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allowed us to make unprecedented strides in understanding, subduing and controlling 

our environment, and that Marr’s ideas were a thoughtful, broadly-based, and 

hopefully useful approach within this tradition. Our scientific tradition is, as Rosen 

says [12], a canonical account of scientific explanation: it rules that there is 

fundamentally only one way of looking at the world and it is that way — the fact that 

it involves several tacit hypotheses about the natural world is certainly not obvious.

In hindsight it seems that much of the trouble was caused not by lack of knowledge 

of the details, nor using the wrong models, but because the whole foundation to the 

experiments and the models, the whole philosophy of the approach, was at the very 

least limited, without its limitations being recognised. Now, philosophy and biology 

are not topics that usually appear in modem scientific or engineering literature6 so 

why should a dissertation on computer vision be any different? Well it seems that in 

vision, and indeed more generally in AI, we have drifted out of the domain in which 

the assumptions of our scientific tradition are necessarily valid — our philosophical 

positions need to be carefully re-evaluated, and carefully looking at biology may help 

us to do this. By this I do not mean that we should try in any superficial sense to copy 

biological vision systems in the mistaken assumption that they are in some way 

optimal. Rather I am saying that by calling something artificial vision we are invoking 

a biological metaphor — one to help guide our implementations and our applications. 

In some cases, typical of machine vision, this metaphor may be inappropriate and 

biological details quite unsuitable for solving the corresponding problems. In other 

cases, where the environment is less constrained, the biological vision metaphor may 

be quite appropriate and useful in coming to terms with the issues that arise here — but 

it must not be used loosely. Attempts to force biological ideas into the representational 

framework of the domain of engineering and design typical of machine vision, ignore 

the fact that in relatively unconstrained environments this framework is no longer 

appropriate, and a fortiori is not applicable to biological systems. We must be clear 

about the requirements, restrictions, limitations and possibilities of the domain of 

design and engineering, and be clear about which of them are no longer valid when 

we cross over to discussing or invoking metaphors from living systems. This is

‘Having been awarded my primary degree through a department of Pure and Applied Natural Philosophy 
I feel in a sense licensed, though not necessarily qualified, to discuss these issues: unfortunately they are 
usually not on the undergraduate curriculum of a modem physics or mathematics department.
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required so that our engineering efforts are not hampered by attempting to achieve the 

impossible, nor that our biological explanations are contaminated by inappropriate 

analogies, when the assumptions on which they are based, are no longer suitable.

Needless to say, this all seems quite clear to me in retrospect, but at the time it was 

very difficult to articulate exactly what the problem was. However, one concrete 

manifestation which I suspected was a symptom of some sort of a problem, was the 

way the ideas of information and symbol were used in computer and biological vision, 

and in connectionism. The usage of the term information in particular, was loose, 

usually undefined, often inconsistent, and yet seemed to be quite evocative. So, much 

of my work in the middle stages of this project was involved in trying to figure out 

the status of the concepts of information and symbol in a range of related fields. 

Eventually, this search in turn led me to the position described in the previous 

paragraph.

Initial positive influences (as opposed to the simple dissatisfaction expressed above) 

which had the affect of my conversion to this view about the need to re-evaluate some 

very basic ideas, came from a number of sources. There was for example the very 

interesting multi-disciplinary work in biological vision carried out in the late 1980s by 

Livingstone, Hubei and their colleagues [13,14] which seemed to provide clear 

evidence for visual properties that could not be processed serially and hierarchically 

(as for example in Man’s raw-primal sketch, full-primal sketch, 2'A-D sketch, 3-D 

representation hierarchy [9]), but were required to be processed in parallel pathways. 

Also in this and related literature there were growing revelations that information flow 

in biological visual systems was not all in an "upwards" direction towards "higher 

centres". In fact there were large scale projections from parts of the brain where the 

neurons’ activity seemed to correlate with more abstract visual properties, back to the 

early visual cortex where the neural projections first arrived from the retina. Not only 

were these reafferent projections acknowledged to exist but there were substantially 

more of them than the afferent projections from the peripheral sense organs. They 

seemed to have been largely ignored simply because they didn’t fit into prevailing 

ideas about what visual processing involved. A second influence was the careful 

analysis of the retina and early visual cortex described for example by Laughlin [15] 

and Barlow [16,17] which seemed to indicate that information theory in the sense



of communication has much more to say about the function of the activity of these 

organs than the information processing of feature-detection. Another was the work of 

Linsker [18] which demonstrated that an information theoretic principle alone could 

cause a particular artificial neural system to develop very similar microstructure to that 

observed in the receptive fields of the early visual cortex. Related to this was the work 

on neural networks that showed that the so-called "end-stopping" neurons in 

mammalian visual cortex, which were explained as comer detectors in edge/feature- 

detection schemes, could in fact be better explained in terms of shape-from-shading7.

Probably the most important influence on my thinking at this stage was the work of 

Michael Satosi Watanabe. A graduate of Tokyo University (Ph.D., 1933) and the 

Sorbonne (D.Sc., 1935) where he worked with Heisenberg, his background was in 

quantum mechanics, information theory, logic, and later philosophy. In his 1985 book 

[19] he sets out to look at the status of pattern recognition, both as a capability 

embodied in biological organisms and as a function designed into artificial systems, 

tracing its origins from the writings of the classical grceks scholars to modem 

neuroscience and computer science. This book provides the basic inspiration for the 

presentation here. In it I first discovered that there are alternative philosophical 

standpoints from which to view pattern recognition, and by extension, perception in 

general. I discovered that despite its resounding successes there are pitfalls implicit in 

the standard world view when it is applied in areas where its basic assumptions no 

longer hold, particularly so because these assumptions are not presented as 

assumptions as such, with alternatives, and with domains in which their validity might 

not hold. Rather they are presented as part of the way to look at the way the world is, 

with no relativities and no qualifications.

In addition to Watanabe, I found a number of other authors immensely valuable at this 

stage in pointing out what the important issues are and the way to possible solutions. 

I include here the extensive work of Robert Rosen [12,20,21] of which I have yet 

only come to terms with a small fraction; Roland Wilson and his colleagues whose 

work on symbols and uncertainty first led me to Watanabe; and the immensely lucid 

account of information by Fred Dretske [22].

7By definition, something is only a detector for a property if it responds only to the presence of that property 
and not to any other property.
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There is some acknowledgement within pockets of the computer vision community that 

the problems described here are real and need to be tackled. Examples of the sorts of 

questions which have begun to be raised are:

What is the role of vision?

Does vision have a context?

Does vision have an input or an output?

Does it make sense to talk about a vision system?

What is the relationship with the application domain?

How can we classify different vision systems?

What is the relationship between autonomy and vision?

A decade ago such questions would not have merited a second thought. There is now 

a growing awareness that these issues are not as clearcut as they once seemed. 

Prompted by this change, a workshop within the ESPRIT BRA Working Group on 

vision entitled "Vision in Context" was held Killamey in September 1991 to begin to 

address the issues raised by these questions. A further workshop supported by the 

ESPRIT BRA Working Group entitled "Autopoiesis and Perception" was held in 

Dublin City University in August 1992 to examine a possible direction which would 

begin to supply answers. Complete answers are not yet forthcoming to most of these 

questions but at least now we seem to be asking the right questions.

It was in this context that I first became fully aware of the implications of a school 

of thought within which these questions not only made sense but were answerable, at 

least in principle. Much of what is discussed in this dissertation was stimulated by the 

framework and ideas put forward by Watanabe. Nevertheless, the work of Watanabe, 

important though it has been, was just a stepping stone for me to the more radical and 

more sophisticated enactive8 viewpoint expounded in the extensive work of Humberto 

Maturana, Francisco Varela and their colleagues [23,24,25,26] over the last 

twenty or so years. For a number of reasons, the enactive viewpoint is not central to 

the development described in this dissertation, but it is used to evaluate the ideas 

presented, in the role of something like a perspective commentry. An alternative

’The work of Maturana and Vaxela is most closely associated with the term autopoiesis (literally meaning 
self-production). Notwithstanding this, autopoiesis is not actually the key idea of their work. Rather as Varela 
himself has said [26], the term autopoiesis has become "emblematic of a view of the relation between an 
organism and its medium". This view is a notion which he has recently tried to capture with the term 
enactive. A term used by Randall Whitaker to capture the same concepts is autopoietic theory.

xix



approach to the issues discussed here, would be to use the enactive viewpoint as a 

guiding philosophy from the very beginning of the project. This is both possible, and 

quite likely to be fruitful, but such a radical approach was not necessary to point out 

some of the deficiencies or limitations of the conventional understanding of computer 

vision. A change which is incrementally different, might in fact be more likely to 

influence the conventional beliefs. Having said this, I am happy with the content of 

the presentation here for more personal reasons, because it reflects my intellectual 

development over the duration of the research. This is probably the better for having 

grappled with the difficulties of the problems before seeing the potential solutions. 

Certainly I am more in awe of the great intellects which have struggled with these 

problems and advanced our thinking on them so much.

Even though much of the details remain to be elaborated within the enactive approach, 

in it we finally find a single, solid, consistent and quite persuasive framework in which 

artificial and biological intelligence can be discussed and evaluated — not a framework 

in which the representational viewpoint is redundant, for there are domains in which 

it is relevant — but one in which its limitations are recognised, and in which more 

encompassing alternatives are available when required. Much work still needs to be 

done to complete the approach to understanding perception which in described here, 

but it is also time to begin a programme which treats vision purely within an enactive 

context The fact that it has been possible to closely intertwine the two approaches in 

this dissertation is indicative of the strongly complementary nature of the two.

Because the work described in this dissertation is very much cross-disciplinary, it is 

felt appropriate to make explicit the nature and specifics of the contributions being 

made. The original contributions contained in this dissertation include:

a clarification of the relationship between the domains of computer and 

biological vision;

a review of the philosophical basis for work in computer vision; 

a proposal, supported by argument and evidence from the research literature 

that the fundamental unit or event of a perceptual system is a primitive 

observation or classification;
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arguments to support the view that Boolean logic is not a suitable algebraic 

framework for dealing with decisions about a relatively unconstrained 

environment and that non-distributive logics are more appropriate; 

support for the proposal that the development of autonomous systems with a 

perceptual component for operation in unconstrained environments should take 

place at an operational level of the systems’ organisation and dynamics rather 

than at a representational or symbolic level;

a clarification of the role of perception, and the status of the camera/eye and 

computer/brain analogies;

a review of the research literature on the operation and function of the retina 

and particularly of the information-theoretic interpretation of this function; 

a review of some of the different interpretations of information, including ideas 

associated with Shannon and Gabor, and the notions of redundancy, entropy 

and structure;

a clarification of the status of the terms "information" and "symbol" and their 

use in the context of biological and computer vision;

a review of some of the more important theories of perception to date, 

particularly those which have had an influence on research and development 

in computer vision;

a comparison between the causal framework of Rosen and the different types 

of explanation described by Varela and a description of how these might be 

used in the study of the dynamics of autonomous systems; 

pointing out the relationship between the Karhunen-Lo&ve Transform (KLT), 

the modified KLT (related to Watanabe’s "object-predicate inversion") and the 

Singular Value Decomposition (SVD);

demonstrating and clarifying the coding possibilities of the SVD for data 

reduction, particularly in pattern recognition problems; 

the application of these ideas about the SVD, along with artificial neural 

network (ANN) classification, to the problem of inspecting solder joints on 

printed circuit boards;

the application of the SVD and ANNs to the recognition of people through 

their motion when walking;

an investigation of the interpretation of the activity of nodes in a simulated 

ANN in terms of symbol processing ideas;
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a review of the application of probability to pattern recognition, the nature of 

the inductive inferences involved and how the problem of inductive ambiguity 

can be overcome;

While specific contributions in terms of review of progress to date, clarification and 

extension of ideas, applications, and the advancement of new ideas, are contained in 

this dissertation, I think I will gain most satisfaction if, as a whole, it makes a 

contribution to the argument which clarifies what we really should be doing when we 

are carrying out research into vision, or building artificial vision systems. For this 

question, more than any other, is the question which has motivated me to do this work. 

Once I had seen for the first time, unaided, the effects of a random-dot stereogram, I 

dearly wanted to know what it really meant, how it came about, and how I could build 

something that would "see" it as I saw it. The solutions are not contained in this 

dissertation, but I am confident that at last, I am heading in the right direction.
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I

1 Introduction

1.1 Biology and Vision Engineering
There is no doubt that the aim of computer vision is to design and build machines that 

have at least some of the visual capabilities of people and animals to sense their 

environment — and this is not without justification. Little reflection is needed to see 

that it is a most astounding faculty, with a myriad of different aspects, and one which 

underpins so many of our human abilities. Furthermore, it is difficult to describe an 

application task in the engineering domain of computer vision without making use of 

the anthropomorphic terminology and analogies associated with seeing. Even the word 

vision itself immediately conjures up many of the various sensing nuances of our very 

personal interactions with our environment. Nevertheless, the relationship over the past 

three decades, between work in the areas of biological vision on one hand, and that 

of artificial vision systems on the other, has been quite chequered. In his posthumously 

published 1982 book [9], David Marr describes how initial excitement about the 

possibilities of computer vision generated by discoveries in psychophysics and 

neuroscience during the 1950s and 1960s was largely not followed through during the 

1970s. The ideas proposed by Marr and his colleagues led to a renewed interest and 

cross-fertilization during the early and mid 1980s. Marr’s own work was intended to 

be both a computational model for biological visual phenomena and, by definition, a 

potential description for artificial vision systems — he saw no distinction between these 

two different aims at the level of abstraction with which he was concerned. In practice, 

the relationship is far more detached. For example, current work on computer vision 

(see for instance [27]), uses biological results which largely date from this period 

during the early ’80s, with few major advances happening in computer vision because 

of biological discoveries made in the intervening time.

Within the computer vision community, biological vision systems are frequently held 

up as an existence proof, sometimes even as an optimal vision system, on the basis 

that evolution has had millions of years to explore the space of possibilities. Yet 

despite this apparent esteem, usually only cursory reference is made to actual
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psychophysical capabilities or specific neural implementations in computer vision

literature. Some authors, for example Levine, have argued for more positive links:

Everyone agrees that the problem of programming a computer to analyze 
and, what is more, to understand the content o f pictures is extremely 
difficult. My view is that if we are expected to write algorithms to achieve 
these goals, it is incumbent upon us to know how humans and animals 
achieve this same function ... and to show the relevance of biological models 
to engineering systems. [11, pjciv]

Nevertheless, there are a number of reasons why positive interactions between the two 

fields have been more conspicuous by their absence over the years, than by their 

presence. There is the straightforward reason that few practitioners in either domain 

are technically competent in the other, and while some research groups have tried to 

tackle this by forming multi-disciplinary teams, it is a practice which is not 

widespread. Another reason, particularly for the lack of progress during the 1970s, is 

that, as Marr pointed out, the two fields have quite different aims. He claimed:

(i) that traditionally the emphasis in neurophysiology and psychophysics has been 

to describe behaviour (a phenomenological approach), rather than to explain 

that behaviour, so the results were of little use to the engineering and design 

domain of computer vision where the emphasis is on function [9, p. 15], rather 

then mimicry;

(ii) that the approaches in computer vision which predominated during the 1970s 

were mostly either (a) "unashamedly empirical", with little analysis of 

performance or optimality, or (b) designed to be restricted in scope to "toy" 

problems with the hope of subsequent generalization: either way they were 

quite unsuitable for helping in the understanding of real biological vision 

systems.

What was needed Marr suggested, was a decomposition of the problem in terms of 

different levels of explanation:

a computational theoretic level to make explicit "what is being computed and 

why" and to show that it is optimal;

a level of representation and algorithms to describe how the computational 

theory could be implemented;

and a hardware implementation level describing on what physical substrate the 

representation and algorithm would be realized.
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In principle this attempt to distinguish different types or levels of explanation is a 

useful methodological discipline, particularly in organising a posteriori the details of 

a given model or system. In practice, the top-down strategy which Marr strongly 

advocated based on these levels, has had only limited success in providing solutions 

to computer vision problems. The reason for this is primarily because it is so difficult 

to think up a computational theory for many of the ordinary functions of vision. In fact 

we have only a limited conception of what the functions of vision really are at this 

stage. Equally Marr’s approach has had only limited success in helping to understand 

observations within biological vision because having thought up a computational 

theory it is very difficult to relate this to the observed biological mechanisms at the 

realization level. For example, one of the things that seems to be missing, is not just 

a proper description at the computational theory level in Marr’s sense, but rather a 

common framework, equally applicable to both biological and computer vision points 

of view, within which a computational theory might be formulated. The framework of 

set theory, Boolean logic and symbol systems implicit in Mart’s particular 

computational theories of visual functions like edge-detection or stereo vision or 

spatial representations, is something which we argue here to untenable.

More decisive in the lack of success of the interactions between computer and 

biological vision than any of the reasons Marr gives, is something that he failed to 

realize (primarily because, as Marr says himself, his approach was an extension of the 

so-called representational theories of mind). It is in fact often the case that the 

engineering and design domain of computer vision, and the domain of biological 

vision systems’ operation, so apparently closely related by the epithet "vision", really 

have very little to do with each other. More fundamentally, it is frequently the case 

that they actually involve contradictory, or at least incompatible foundations or 

premises. The fact that people do draw inferences about one domain and quite 

inappropriately use them in the other is unfortunate, though understandable. According 

to Varela, this is a situation which has arisen mostly because of a lack of clarity or 

precision in treating the relevant concepts. Having criticized the desire for purely 

operational descriptions (which are discussed below) as a remnant of the logical 

positivist view with its emphasis on methodological monism, Varela continues as 

follows:
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At the other extreme, the vitalist attitude, and more importantly the 
computer-gestalt attitude, which take information as ‘stuff’, are equally 
misguided. The latter attitude is interesting for it has taken the same kind of 
methodological flavor implicit in operational descriptions, and applied it to 
a domain where it simply does not work. This is typical in computer science 
and systems engineering, where information and information processing are 
in the same category slot as matter and energy. This attitude has its roots 
in the fact that systems ideas and cybernetics grew in a technological 
atmosphere that acknowledged the insufficiency of the purely causalistic 
paradigm (who would think of handling a computer through the field  
equations of thousands of integrated circuits?), but had no awareness of the 
need to make explicit the change in perspective taken by the inquiring 
community. [24, p.77]

The use of the ideas covered by the general term "information" is something Varela 

singles out for particular criticism: an attempt to carefully develop an appropriate role 

for "information" is one of the central themes of this document. The change in 

perspective that Varela refers to, is the key to understanding the appropriate context 

for using the term "information", and the appropriate relationship between the domains 

of engineering and design on the one hand and biological systems on the other.

Arguably the only application area in which the general corpus of computer vision has 

achieved real success to date, in terms of effective and valuable utilization, is machine 

vision. This is the application of image processing techniques to automated inspection 

and to a lesser extent to robotic manipulation. The concepts, applications, techniques 

and methodology of machine vision are as far removed from biological vision as any 

other technical domain such as control or signal processing is. Only the vaguest of 

similarity remains: they both use a combination of light, the reflectance properties of 

surfaces and suitable optics to achieve their respective functions. The issues and 

concerns of machine vision are only addressed somewhat obliquely in this dissertation, 

in the sense that one of the aims is to clarify the relationship between biological vision 

and computer vision and to determine under what conditions it is appropriate to draw 

conclusions about one on the basis of the other. For the reason given above, this shows 

that computer vision in certain contexts1 is more closely related to biological vision 

than it is to the context usually referred to as machine vision. Machine vision, in

'There is no name like "machine vision" for these contexts yet, though the working term of artificial 
perception is sometimes used here.
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particular, is primarily concerned with achieving certain results in a particular 

contextual situation where the mechanics, lighting, optics, sensing and processing can 

all be configured to optimize what can be achieved. Even though it is often not made 

explicit, the archetypical application of a general computer vision system is as a 

subsystem of a system which is effectively an autonomous system, and not just that, 

but which is capable of coping successfully with an environment which is effectively 

out own. But the level of specification and control typical of machine vision, is 

anathema to the functioning of an autonomous biological system. Despite the apparent 

sensing similarities or analogies, despite the "vision" common to both, the two 

domains are quite incommensurate. On the other hand, some general conclusions about 

say the logical calculus intrinsic to sensing and measurement systems might apply 

equally to machine vision systems as well as both biological and artificial perception 

though this is not discussed directly. The primary concern here is in dealing with the 

situations in computer vision where understanding biological vision should be of use 

(in other words dealing with relatively unconstrained environments) and examining 

biological vision to this end.

Virtually every technical domain borrows terms from another context, by way of 

analogy, or resemblance, and gives them meanings peculiar to the context of that 

technical domain. Words such as "group" (in mathematics), "work" (in mechanics), 

"information" (in communication theory), or "chaos" (in system theory) spring to mind 

as terms having a technical meaning related to, but somewhat different from their 

everyday connotation. One problem with computer vision, and possibly AI generally, 

is that often the words are actually meant in the technical domain in the sense of the 

term in the original domain and even when they are not, the distinction is not made 

clear2: there is seldom a precise definition of what is intended by the term. In a 

general sense this is what Varela is driving at in the quotation above. The conceptual 

distance between machine vision and biological vision already mentioned means that 

this is not normally a problem for practitioners of machine vision. The wide variety 

of processing and analysis tools which have been devised bear little relationship to the 

processes evoked to explain biological functioning. That is, the tools of machine vision 

are useful, precisely because they are like spanners to fit particular nuts: once we can

2Examples of this are terms like "edge", "shading", "texture", "recognition", "motion", "shape", "feature", or 
even the term "information" itself.
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clearly identify the type of nut in question, there are a range of different spanners 

available to deal with it, depending on the circumstances3. The problems seem to 

become qualitatively different however once we allow the vision system’s environment 

to be substantially less constrained. Now, developing a relationship between artificial 

vision and biological vision becomes potentially more relevant and the pitfalls of 

confusing incompatible ideas from the respective domains more real. The argument is 

not that all artificial "vision" systems can benefit from interaction with ideas from 

biology: this is likely to be the case only where the problem domains are in some 

sense commensurate. They are likely to be for both computer and biological vision. 

They are not for biological vision and machine vision.

Unfortunately, while the problem domains of computer vision, involving as they do, 

far less constrained environments do indeed make biological vision systems more 

relevant, they also bring us further away from the domain of engineering and design 

congruous for example with machine vision. In particular they bring us further away 

from a domain in which representations are an appropriate abstraction for dealing with 

the domain and further away from a domain in which, in a sense to be explained 

below, information is fixed.

1.2 Objectives
The five human senses have been described as conduits for the perception of our 

environment More specifically and more correctly, they are a means for regulating our 

behaviour in our environment. Of the range of sensory modalities, sight is probably 

the most striking in its capacity and utility. Visual proficiency has enormous value for 

survival: it provides the ability to remotely and quickly detect structures and events 

in the surroundings in a most direct and unobtrusive manner. But to talk about the 

visual capacity is misleading. Firstly, it is one which is represented in the animal 

kingdom in such an incredible variety of forms and levels of sophistication that there 

can clearly be no necessary visual sense, no particular physiological structure or

3This is intended to caricature rather than trivialize the situation. In fact many more processing and analysis
tools have yet to be devised and the really useful developments may be in how the tools are selected, 
combined and alternated in a context dependent way.



functional capacity4 which must be present in order to identify a capacity as visual. 

Each species has uniquely adapted visual sensitivity and its implementing mechanisms 

to their particular requirements in their ecological niche. Secondly, what we normally 

refer to as the sense of vision, in humans say, seems to actually consist of a number 

of sensory capacities which happen to share some common mechanisms (e.g. the eye) 

because light is one link in each of the sensory-motor loops involved5. These are two 

important points. They are the first steps towards understanding that, contrary to 

common sense, there is no objective reality full of information which our eyes 

(meaning our brains) simply pick up, and other creatures to a lesser extent depending 

on their ability. In a certain sense we construct our own reality — our own world — not 

in isolation to our environment6 nor logically consequent on it, but instead logically 

compatible with it and with our own organisation. As Cariani says in a colourful use 

of metaphor[28, p.xvi], it simply doesn’t make sense to say that a seagull has a 

more realistic model of the world than a lobster because the former’s interactions are 

more sophisticated. They simply face radically different challenges. (See also [24, 

p.68]).

Notwithstanding the diversity of functions that can be described as perceptual, if there 

are common elements underlying the processes of perception or its developmental 

mechanisms, then knowledge of such elements would be invaluable to the overall 

understanding of biological vision and its artificial implementation. The aim of the 

research culminating in this dissertation has been to discover what, if any, these 

common processes are and how they can be used.

*Other than the trivially necessary function of being sensitive to light within a particular range of 
wavelengths.

^To illustrate this point consider the "sense" of sound perception in the bat. It is actually a medium in the 
two separate sensory-motor loops of spatial perception using sonar principles and sound generation for 
something like mating calls.

6In the context of living systems Varela [26] makes a clear distinction between the notions of environment 
and world. That is, he distinguishes between the environment of the living system as it appears to an 
observer, which he calls simply the environment, and the environment fo r the system which is defined in 
the sense that the system distinguishes itself from what is not itself, and that only exists in that mutual 
definition, which he calls the system’s world. This is a key point because it draws the distinction between 
what is important or relevant for the observer who has access to both the system and its environment, and 
what is important or relevant to the system in its world. This of course only becomes germane if it is realised 
that the observer’s world and the system’s world are not identical, and that in fact by definition there can 
be no single objective world commonly apparent to both.
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It was in an effort to tackle these issues that the questions of what perception is; what 

it means to perceive — to be aware of the world around us; what the mechanisms of 

perception are and how they develop, were posed as a point of departure. It is not 

possible to properly deal with these without confronting some of the classical debates 

which have occupied the minds of philosophers since the time of Plato and Aristotle. 

In fact we find that aspects of certain philosophical positions are valuable, particularly 

in pointing to alternatives to the standard received scientific mindset. So also we find 

that a careful examination of aspects of biological operation, of information theory and 

pattern recognition, and notions of the relation of autonomous systems to their 

environment, provide clues which begin to throw light on these issues. These are the 

primary fields of investigation with which we are concerned in this dissertation.

1.2.1 Understanding the nature of perceptual processes
One of the objectives of this dissertation is to propose that there is a fundamental level 

of description which is the basis of, and common to, all perceptual or sensory 

processes — regardless of the sensory modality, the species of the organism, or whether 

it is a natural or artificial system — and to support this assertion on the basis of a 

broad spectrum of evidence and arguments in fields ranging from philosophy, 

psychology and neuroscience to physics, mathematics and computer science. More 

particularly, a primary objective of this dissertation is to show that information theory 

and its extensions, and measurement theory are very powerful tools which allow us to 

go a long way towards the aim of discovering what processes underlie visual 

perception. What is presented here is not a complete theory or model. Rather it could 

be considered as an essential primitive or framework which should be incorporated or 

reflected in full theories or proper models. This is meant in the sense that Boolean 

logic is reflected in the design and operation of a digital computer but the operation 

of any particular program is not reducible to Boolean logic — the programmer and the 

system designer have an essential input. More specifically it involves an attempt to 

clarify the role and operation of symbols and the relationships between what are often 

characterised as the domain of semantics and the domain of syntax [28].

It is proposed here that there is a level of description of systems in the context of 

which it is appropriate to claim:
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(i) that the fundamental operational unit or event of a perceptual system is itself 

a primitive type of observation, measurement, or classification event;

(ii) that perception involves many of these primitive ‘observations’ arranged as an 

interacting system or network — not as a single layer of transducers or 

detectors, but where the output of one "signal-to-symbol" transition can be used 

as the input of another,

(iii) that these ‘observations’ may not necessarily be implemented as discrete 

physical or physiological units, but may result from the dynamic functioning 

of an underlying structure at a different level of description;

(iv) that without an aspect of its operation which can be described in terms of these 

‘observations’, it does not make sense to ascribe perceptual functionality to a 

system;

(v) that any particular percept involves the simultaneous activation of many many 

primitive observations spread across the system or network. There is nothing 

else required to ‘look at’ any output of the perceptual mechanism for 

perception to occur. The act of making sensory information explicit is 

perception;

(vi) that the primitive observations involve inductive generalization — a 

classification process not unlike that in classical pattern recognition — which 

overcomes the ambiguity inherent in implicit information;

(vii) The classification process is one of measuring a predicate — applying a 

universal property or general concept to the input stimulus data for, or relative 

to, each primitive observation. Each particular measurement output is one and 

only one of a mutually exclusive set of possible outputs, making an explicit 

decision that the input stimulus data satisfies a certain general property or 

concept.
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Exactly what the basis is for these claims and the details of what is meant by them is 

teased out in the following chapters.

Like most modem theories of perception, the ideas described here were originally 

conceived in terms of the assumption that visual data derived from scenes in the 

external world implicitly contain information about the physical structures and events 

contained in the scene and some of their properties. Perception then, is the process of 

making this information explicit. The development for the author of the realisation that 

there are problems with this way of looking at the world was a very slow process. In 

hindsight, and particularly in the light of the epistemological position espoused by 

Maturana and Varela [23], it is possible to see clearly why the description of the 

function of visual perception in terms of "picking-up" and processing information from 

the environment, and the role played by information in this context is inadequate. Most 

of the elements of this shift of position were already in position when the author 

became aware of the work on autopoiesis, but the ideas of Maturana and Varela 

represented a very welcome opportunity for support, clarification and development.

1.2.2 Understanding the nature and role of information
There are at least four distinct views on how the notion of information should be 

interpreted. The conventional approach to interpreting biological vision systems and 

experimenting with computer vision systems has been overwhelmingly dominated by 

a representational view of information [9]. Even more recent connectionist approaches, 

though embodying a substantial change in viewpoint, have only involved a change of 

the type of representation to one of a distributed nature [29]. The notion of 

information as being constructed and co-dependent rather than instructional and 

referential is an interpretation based on the more embracing viewpoint of the 

complementary causal descriptions and symbolic descriptions playing clearly defined 

interrelated and dual roles rather than mutually exclusive or even muddled roles [24]. 

A third, and very different view of the notion of information is that captured by the 

Shannon and Gabor theories of information. It has been argued that these are not 

actually about information at all, being concerned with something more akin to the 

what we think of as the properties of a signal [22]. Finally there is the everyday 

semantic connotation of the term information which has motivated the previous three 

uses, though it is not captured by any one of them (nor necessarily should it be

10



expected to). It is possible to extend the theory of information (in the Shannon sense) 

to accommodate semantic aspects of the everyday meaning of information and we 

discuss this in chapter 7.

These different interpretations have not arisen in a void. They are part of the history 

of the development of the endeavour to understand the human mind, which is what we 

turn to in the next section. Teasing out what is intended by these four different 

contexts and interpretations for information was considered both as an objective of this 

dissertation and as a methodology to support the primary aim of understanding 

perception. So, from the original aim of understanding, at a very fundamental level, 

what the essential nature of a visual capacity is — what vision is — the specific 

objectives of the research described in this dissertation have arisen. In other words, 

understanding vision means coming to understand first the nature of the process of 

perception itself, and the nature and role of information, in what is often referred to 

as an information processing system or task.

1.3 Cognitive Science
The development of computer vision as seen by Marr is described in section 1.1 

above. With the benefit of developments over the decade since Marr’s ideas were 

originally published, it is now possible to get a clearer view of how these 

developments fit into the broader development of cognitive science. The scientific 

effort to come to terms with the nature of intelligence, perception, thought and 

behaviour is usually labelled Cognitive Science. According to Varela [30] there have 

been four major stages in its development over the last forty years: cybernetics, 

cognitivism, connectionism and enaction. This latter term is likely to be unfamiliar to 

many readers. It is a term which has been recently coined by Varela to describe the 

radical departure in the understanding of biology and cognition for which he, along 

with Humberto Maturana, has been primarily responsible.

Cybernetics

The original programme in the new science of cognition, which spanned the decade 

from 1943 to 1953, was called cybernetics. It was a wide-ranging cross-disciplinary 

effort to create a complete science of the mind. It achieved in its time many far- 

reaching results, including the application of mathematical logic to the study of the
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brain, the invention of computers, substantial contributions to systems theory, control 

theory and information theory, and the demonstration of the possibilities for self- 

organising systems. It came to an end largely because the principal participants had 

died, or their views and interests had diverged.

Computationalism

The second phase in the development of cognitive science, began in 1956 and is still 

the dominant position in the field. It goes under many general titles, including 

cognitivism, computationalism, artificial intelligence (AI or GOFAI7), and so on. It 

also has many specialized sub-areas like expert systems, robotics, computer vision and 

speech recognition, focussing in particular types of problem domain or modalities. The 

methodology is generally of a top-down nature and used in both analysis (cognitive 

psychology, computational neuroscience) and synthesis (artificial intelligence). The 

central ethos of this approach is that cognition is defined as rule-based manipulation 

(computation) on symbolic representations, where the meaning of each symbol is made 

to correspond to an external item in a restricted well-defined domain. With this 

definition, what was originally a tentative idea or metaphor within cybernetics, is 

elevated to the status of a full-blown principle. Information in this context is 

considered as an objective quantity associated with objects and properties in the world. 

It can be detected, processed, and used to build internal representations of the way the 

world is external to the organism or system [9].

Connectionism

While the connectionist or emergence approach also has its origins in the early work 

on cybernetics, for various well-documented reasons it has only recently developed a 

level of adherence sufficient to allow it to challenge and complement the dominant 

cognitivist position. The methodology is usually bottom-up and is characterised by 

distributed processing using simple sub-symbolic components and by self-organization 

leading to global network coherence. The self-organisation is usually realised in terms 

of adaptive connections (between nodes) which, affected by "experience," change the 

strength of these connections according to certain rules (eg. the Hebb rule and its 

variants, or error back-propagation). In terms of synthesis its successes have been

7Acronym for Good Old-Fashioned Artificial Intelligence

12



primarily with lower level cognitive capabilities which cause most difficulties for the 

cognitive approach, such as recognition, association, and memory. It may be possible 

to integrate the cognitivist and connectionist positions by embedding symbolic levels 

of description in an underlying distributed system though only limited effort seems to 

have been put into this problem so far. (See the discussion in section 8.5 below).

Much of the emphasis and success within the connectionist community to date has 

been on the distributed and bottom-up aspect of the connectionist approach associated 

with the so-called PDP8 models [31,32]. The basic epistemological position is 

still representational, though the form and construction of the representations is quite 

different from the cognitivist approach [29, p.252]. In this case it is a global state or 

performance of the system which is related to meaning in some chosen domain rather, 

than the value of a localized symbol. Nevertheless, there is still an observer external 

to both the system and its sphere of operation, and this observer provides the 

connection between performance and meaning. That is, there is always a teacher to 

supervise the learning phase of the network model and the model comes to reflect 

more or less accurately and successfully some of the cognitive concepts of the teacher. 

Even the measurement of accuracy and success are dependent in the final analysis on 

the teacher.

1.3.1 Representational view of reality
The objectivist position implicit in both the GOFAI and PDP traditions centres around 

the commonsense idea that the world as we experience it is independent of the 

knower. It does not distinguish between my world and the environment of someone 

or some living thing like me. The problem of perception, within this approach, is to 

find algorithms or mechanisms which will allow this absolute reality to be captured 

from the flux of generally ambiguous visual information that is available. Knowing, 

within this approach, is the act of "duplicating" what is already there outside the 

knower, using the senses to convey information to construct the appropriate 

representations. What is represented is a correspondence between symbolic units in one 

structure (the representation) and symbolic units in another structure (our world or 

frame description).

*PDP is an acronym for "parallel distributed processing", but in fact stands for a more restricted programme 
than the general label suggests.
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Rosen [12] claims that the problem of the representational approach is inherent in a 

view of the world that dates back to Newton’s attempts to develop mathematical 

models of the world. He illustrates what the problem is in the following way. Consider

Figure 1. The Newtonian modelling scheme. Adapted from Rosen [12]. 

the modelling scheme shown in Figure 1. On the left hand side is represented (some

definite laws or relations — by some causal order. On the right is represented some 

formal system with elements which are governed by mathematical relations based on 

logic and implication. Relations are established between these two "worlds" by 

encodings and decodings, where objects or events in the natural world are (arbitrarily) 

identified with elements of the formal system, and vice versa. With this modelling 

relationship one should always obtain the same result by observing the causal order 

unfold in the natural system (arrow 1) or making predictions via the encoding, 

mathematical inference and decoding arrows 2,3 and 4 (given that one uses a suitable 

mathematical model). There are a number of implications of this type of modelling 

scheme, which Rosen draws out within the causality framework discussed below. But 

the primary problem with this view, according to Rosen, is that the encoding and 

decoding arrows that Newton originally posited with the ideas that culminated in the 

so-called Newtonian world view, have become axiomatic, and therefore invisible. Thus 

the natural world is considered as something which in principle, can be modelled to 

an arbitrary accuracy with a Newtonian-type formalism (dynamics) in which each 

element in the natural world plays a fixed causal role and can be represented by a 

fixed symbol in the formal system — a system in which information is thus fixed.

Formal System Natural System

part of) the natural world, for which the supposition is that events are related by
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Hence the reference to "symbolic units in another structure" above. Once this is 

clarified, it is possible to see that:

(i) the encoding arrows are established by us and thus arbitrary; they are not a 

necessary consequence of the nature of the world itself;

(ii) the encoding arrows are not something that can be "picked up" from the natural 

world side of the diagram in the sense that we might expect an intelligent 

machine to "learn" about its environment; and

(iii) that systems other than Newtonian-type formal systems (dynamics) could be 

represented on the right hand side.

The ideas dealt with by Rosen involve encodings of the natural world and formal

models of this world. Nonetheless they are useful because they exhibit clearly, ideas

which suffer from the same shortcomings as the representational view of reality,

perception of that reality and our internal conception of that reality. Varela approached

the same problem from a different angle and brings the idea further

Both in cognitivism (by its very basis) and in present day connectionism (by 
the way it is practised), it is still the case that the criteria for cognition is 
a successful representation of an external world which is pre-given, usually 
as a problem solving situation. However, our knowledge of activity in 
everyday life reveals that this view of cognition is too incomplete. Precisely 
the greatest ability of all living cognition is, within broad limits, to pose the 
relevant issues to be addressed at each moment o f our life. They are not 
pre-given, but enacted or brought forth from a background, and what 
counts as relevant is what our common sense sanctions as such, always in 
a contextual way. [30]

The problem with the representational approach is that there is no way, within the 

system supposed to construct these representations, of ever obtaining the appropriate 

assignment of correspondence — there is no independent access to the supposed 

external reality for any given living system. The cause of this problem according to 

Varela is a confusion of different levels of explanation: it is the confusing of notions 

proper to the domain of an observer (or strictly an observer community) whose 

vantage includes both the system and its interactions with its environment on the one 

hand, with notions proper to the operation of the system on the other. These are
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different phenomenal levels, and links, if any, between them can only be established 

by someone external to both the system and its environment.

1.3.2 Self-organisation — emergence
More recently however the connectionist approach within cognitive science has been 

instrumental in forcing a re-interpretation of the role of individual neurons in the 

analysis of biological neural systems. This reinterpretation involves a move away from 

the information processing and representation role exemplified by, for example, the 

theories of hierarchial visual processing of Hubei and Wiesel [33], Barlow’s 

"grandmother cell" [34], or anything like Marr’s hierarchial structure of primal 

sketch, 2lA-D sketch and 3-D representations. In its new role the neuron is seen as 

belonging to large transient ensembles of coherently active neurons where no single 

neuron is responsible for, or even restricted to, a single aspect of perceptual experience 

[35,36,37]. What is more, the reafferent neural projections from higher cortical 

areas to the early sensory cortex (which far outnumber the afferent projections from 

the sensory organs to the sensory cortex), after being mostly ignored in theories of 

cortical information processing heretofore (largely because they didn’t fit into the 

direction of information flow implied by representationalism) are now being 

recognised for the role they play in the emergence of global cortical phenomena. This 

alternative approach to connectionism is very different in its philosophy from either 

the GOFAI or PDP concepts. It emphasises the ^//"-organising properties of 

connectionist models rather than their representational possibilities 

[38,39,40,41]. Adaptation — if it can be called that — takes place without the 

benefit of supervision: the activity of the systems is determined by the structure of the 

system itself. These developments are already pointing in the direction of Varela’s 

fourth stage within cognitive science, the enactive viewpoint, although the enactive 

perspective is generally concerned with broader issues than the properties of particular 

models and the relationship to their inputs from an environment. It seeks in fact to 

revise the very roots of our epistemological stance, not eliminating the notion of 

representation but making clear its restriction to well-defined situations, described a 

priori by an external agent or observer.
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The enactive perspective

The single most important assumption of the dominant cognitive science tradition is 

that the world as we experience it is independent of the knower [30] and, consequent 

on this, that the primary task of the perceptual part of a cognitive system is to capture 

an accurate representation of aspects of this world. Even though this tradition found 

inspiration from the classical Newtonian view of physics, and as discussed above, 

shares some of its limitations, it has remained despite the radical overthrow of the 

Newtonian world view and its conception of ontological reality. Thus, even though the 

tenets of relativity and quantum mechanics mean that there are fundamental 

deficiencies or flaws in the Newtonian picture, these are mostly only manifest in cases 

of extreme speeds or relatively small sizes, and are mostly perceived as not affecting 

the "common sense" ideas of the world embodied in Newtonianism. Unfortunately, the 

very objectivity which is essential to the Newtonian picture, which is responsible for 

its success, which becomes untenable at very small (or quantum) sizes, and which is 

the basis for the representational view of the world, is also the single most important 

feature which does not carry over to the representational explanation of perception. 

Whatever the merits of objectivity in the analytical sciences, it is increasingly being 

seen as incompatible with reasoned views on the nature of perception and the 

relationship of an organism to its environment.

The opposite extreme to the view that the nervous system objectively maps the 

external world, is the notion of solipsism — that what is perceived depends solely on 

the structure of the organism itself. The fact that cognitive phenomena cannot be 

understood in terms of a world that "informs" us because there is no mechanism that 

makes this informing process possible, makes the non-objective extreme no less 

unpalatable [25]. Fortunately there is an acceptable view, intermediate between these 

two extremes, which has been articulated in the extensive work of Maturana and 

Varela. Basically this is that knower and known arise in a process of mutual 

specification. Neither the structure of the world nor the operation of the observer are 

pre-given — they are co-determined by a history of cognitive interaction, neither 

logically preceding the other, but still logically compatible. There are two main issues 

implicit in this stance: the type of system that can participate in this co-determination 

of a constructed "reality", and the methodology of explanation which maintains
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distinct, the type of description appropriate to each phenomenal domain. We examine 

these in turn.

1.4 The Control/Autonomy Duality
The drawing of a distinction between a system and its environment is the most 

fundamental act of system theory [24, p. 84]. Where we, as observers, put the emphasis 

of this distinction largely depends on our perspective or our purpose in making the 

distinction. If we focus on the internal operation and organisation of the system we are 

putting its environment into the background and relegating interactions with the 

environment to the status of perturbations. We are also emphasising that the properties 

of the system arise from within its own structure (the interactions of its components) 

with the environmental perturbations possibly triggering, but not specifying, the 

ongoing operation of the machine. On the other hand, if we focus on the environment, 

the system is treated as a simple system with given properties and its interactions with 

its environment constitute a part of its definition. The natural problem type arising 

from this latter view is the control of the behaviour of the system by utilising the 

constraints with its environment. This latter case is essentially the subject matter of 

control theory. The former case where the system is emphasised is the domain of 

autonomous systems theory. Varela uses the terms autonomy and allonomy to 

distinguish between these two different ideas.

Allonomy, literally meaning external law, implies the regulation or control of a system 

from outside [24, p.xi]. Interactions between the system and its environment are 

"instructive" and constitute part of the systems organisation. Unsatisfactory results 

from these interactions are errors. The organisational paradigm is usually formulated 

in terms of input-process-output and is organisationally open. This view of a system 

is suitable for the domain of design where an observer specifies by its use what the 

environment should be and how the system ought to use or participate in i t  In other 

words it involves a representational viewpoint with the observer or designer specifying 

the appropriate semantic correspondences between (formal) descriptions of the 

environment and the (formal) organization of the system. Autonomy on the other hand 

literally means self-law, implying the internal determination and regulation of the 

system’s operation. Interactions with the system are seen as perturbations which are 

non-instructive, and independent of the definition of the systems organisation. Varela
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uses the metaphor of conversation to describe our interactions with autonomous 

systems9. Unsatisfactory results from these interactions are represented by mis­

understanding. The organisational paradigm is one of circularity and the system is 

organisationally closed. Information is considered as constructed and co-dependent 

where the outcome of perturbative inputs and outputs reflects structure attributed both 

to the environment and to the internal operation of the system arising over a history 

of continued operation of the system (and hence viability in its environment). In 

particular, information is not something which is simply picked up from the 

environment.

In addition to these complementary ways of making the fundamental distinction 

involved in systems theory, it is important to distinguish between the organisation of 

a system and its structure or realisation. The precise definition of a machine cannot 

be in terms of a list of its parts, or its potential use or purpose — rather it must be by 

these, plus a description of the permitted inter-relations of the machine’s components. 

A machine’s organisation is the set of "relations that define the machine as a unity, 

and determines the dynamics of interactions and transformations it may undergo as a 

unity" [24, p.9]. There is no connection with materiality in the definition of a 

machine’s organisation: it does not specify properties of components that allow the 

realisation of a machine as a particular concrete system. This closely parallels the idea 

of relational biology described in the 1950’s by Rashevsky (see eg. [12])10.

’The metaphor of conversation is an antidote to the sort of "double-think" which it is easy to fall into in 
considering the development of "intelligent" or autonomous systems. The question arises as to how these 
systems might be controlled. Could we suspend their intelligence or autonomy while we program them with 
instructions or are they only going to be partially intelligent or partially autonomous, always subject to some 
master designer, engineer or programmer? To what extent is this latter case compatible with autonomy?

10According to Rashevsky, described in Rosen [12, p.172] "we are interested in the organisational features 
common to all living systems; and in their material structures only in so far as they support or manifest these 
features. Therefore we have heretofore approached organisms in precisely the wrong way; we have abstracted 
out, or thrown away, all those global organizational features in which we are really interested, leaving 
ourselves with a pure material system that we have studied by purely material methods, hoping ultimately 
to recapture the organization from our material studies... Why do we not , in effect, abstract away the 
physics and the chemistry, leaving us with a pure organisation, which we can formalize and study in 
completely general abstract terms; and recapture the physics later through a process of realization.” It is 
important to make this distinction between organisation and realisation because the physics (including the 
molecular biology) involved in the realisation of real organisms is logically compatible with the organisation 
of the organism or biological system but not logically prior to it and therefore quite useless in defining the 
organisation.
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On the other hand, a machine’s structure is the set of actual relations that hold 

between the components that realise a particular instance of a machine in a given 

space, and is determined by the properties of these components. Finally the use to 

which a machine is put is not a feature of the organisation or even directly the 

structure of the machine, but rather the domain in which the machine operates. That 

is, it belongs to our description of the machine in a context wider than the machine 

itself — the domain of observation (or design). This clarification leads us directly to 

the next topic.

1.5 Descriptions and Explanations
In his 1979 book "Principles of Biological Autonomy" Varela sets out to lay bare the 

relationships between "a systems identity, its performance in its interactions with what 

it is not, and how we relate to these two distinct domains" (p.xii). Already, embedded 

in this statement of the issues of concern is a pervading circularity which is the cause 

of much of the confusion of levels implied in objectivism. This is the case, for implicit 

in our act of description of a system and its environment are the peculiarities and 

particularities of the nature of the relationship between ourselves and our environment. 

More explicitly:

... the study of autonomy and [a] system’s descriptions in general cannot be 
distinguished from a study of the describer’s properties ... the system and 
observer appear as an inseparable duo. [p.63]

By expressing an interest in the nature of perception — often inappropriately considered 

as generating a description of one’s environment — we are immediately embroiling 

ourselves in these issues11.

In spite of the circularity we have to start somewhere. Here we will start with the 

notion of description, but in the particular role of explanation — our explanations 

within a scientific community. In this context Varela draws a distinction between 

symbolic (or communicative) explanations and operational (or causal) explanations. 

The difference lies in both their form and use. Operational explanations are assumed 

to be defined in terms proper to the domain in which the systems that generate the

nVareIa tackles these issues head on by attempting to answer the question: "How do we come to have items 
such as, say, frogs or people, of whom we can say that they perceive other things?". See for example [24, 
section 16.5.2].
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phenomena in question operate. The purposes of operational explanations are those of

prediction and manipulation. Symbolic explanations are assumed "to belong to a more

encompassing context in which the observer provides links and nexuses not supposed

to operate in the domain in which the system that generate the phenomena operate"

[p.66]. In this case the purpose is quite different. This type of explanation is for

communicating an understanding between members of a scientific community. The

fundamental bases of operational explanations are nomic or law-like relationships. The

fundamental basis of symbolic explanations is order or pattern, and it is the observer

who establishes the connection. But it is not meant by this that the causes or laws,

often so-called "laws of nature", are in some sense superior by being more remote

from the observer, more objective. Both types of explanation are

modes of description adopted by enquiring communities for some intentional 
purpose ... and they specify modes of agreement and thus coupling with the 
environment, [p.77]

The basic argument of autopoiesis is that all biological phenomena can in principle be

reduced to a particular type of network of nomic relationships in some material

domain. In this operational description notions of purpose, message, information or

code play no causal role. But this is not the whole story: it may not be desirable or

practical or useful to reduce every aspect of biological phenomena to operational

descriptions. It may be very useful for our purposes to abstract or parenthesize a

number of steps in a causal chain, choosing to ignore the operational connections in

favour of more convenient descriptions. This is what Varela claims is at the base of

all symbolic descriptions: a process of abstraction rooted in the emergence of certain

"coherent patterns of behaviour" to which we choose to pay attention.

The fact is that information does not exist independent of a context or 
organisation that generates a cognitive domain, from which an observer 
community can describe certain elements as informational and symbolic. 
Information, sensu strictu, does not exist. (Nor, of course do the ‘laws’ of 
nature), [p.78]

Thus, using information in a causal or operational role, e.g. relating behavioural 

regularities (in the domain of interaction between a system and its environment) to 

structural change (within the system), is a confusion of levels. The behavioral 

regularities are only available to us as external observers with simultaneous access to 

the operation of the system and its interactions with its environment. They reflect our
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operations and they are not operational for the system. The system does not have 

independent access to the nature of the structure of the environment, nor does it 

necessarily share our categorization of the environment

So, what is a valid symbolic explanation? Well according to Varela symbols in natural

systems are characterised by two main features: internal determination and

composition. Internal determination refers to the claim that an object or event can be

considered as playing the role of a symbol

... only i f  it is a token fo r  an abbreviated nomic chain that occurs within the 
bounds of the system’s operational closure ... whenever the system’s closure 
determines certain regularities in the face o f internal or external interactions 
or perturbations, such regularities can be abbreviated as a symbol, usually 
the initial or terminal element in the nomic chain [p.80].

In addition, symbols which are syntactically composible to yield valid combinations 

seen to confer selective value on the organism to which they belong, though we would 

caution that in the light of ideas discussed in chapter 6 below, the syntax involved 

might not necessarily be based on Boolean algebra.

All in all, the distinctions between different types and purposes of explanations 

emphasized by Varela, and the careful epistemological balance portrayed by the notion 

of enaction, both provide a boundary condition, within which to contain our 

developing understanding of the concept of information. In different ways they warn 

us off imbuing information with an excessive and undeserved semantic concreteness 

characteristic of both representationalism and objectivism: what Varela calls the 

"temptation of certainty" [25, p. 16].

1.6 Summary of Chapters of Dissertation
The subject of this dissertation is sensory perception. Visual perception is taken as the 

paradigmatic case and even though little attention is directed here to issues or 

examples drawn from other sensory modalities, there is no reason in principle why the 

ideas addressed here might not also be applied to them. An assumption implicit in 

taking visual perception as a subject of research, is that there is at least some sense 

in which visual perception exists and is instantiated. In other words, there is an 

implication that there is, or could be, some part or subsystem of both biological
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organisms and presumably artificial systems, which could be largely described as 

participating in perception-type behaviour, processes or functioning. It is quite possible 

that this idea of a perceptual (sub-)system is only a first approximation, or that the 

idea is undefined without taking into consideration other non-perceptual aspects of the 

functioning of the organism or system. Nevertheless, in both of these cases, it should 

be possible to make progress in the explication of the nature of such perceptual (sub­

systems. This is the stance taken here. If this turns out to be an inaccurate 

approximation, or an invalid definition, then one would expect that the progress in the 

explication of perception should encounter insurmountable paradoxes or difficulties of 

one sort or another. That there remain difficulties at the conclusion of this dissertation 

is beyond doubt. But there is no indication yet that these are insurmountable, so at this 

stage anyway, the assumption of a perceptual (sub-)system is still a useful one.

Having assumed that it makes sense to talk about perceptual systems, it must make 

sense to discuss the nature, properties or processes that uniquely allow them to be 

identified as perceptual, i.e., give them their perceptual function. We described above 

the assertion that at one level of description, the processes underlying any type of 

sensory perception can be understood in terms of a theory of measurement involving 

networks of primitive "observation" events acting on signals. These primitive 

observations receive their input signals from other parts of the system or network 

which are almost exclusively "local" relative to the site of the primitive observation, 

so there is no global "teacher" or "monitor" "looking at" the results of each primitive 

observation and determining if it is correct or useful. That is, there is no independent 

access to reality, relating the possibilities or outcome of an observation to a particular 

environmental context Nor is there some central site of cognition, some higher centre, 

where the results of all the individual observations are brought together to form a 

single integrated concept.

Linsker [18] draws an evocative picture of this type of scenario, which helps to 

illustrate the sort of relationships involved, both in the immediate processing from 

moment to moment, and in the long term adaptation or development which leads to 

the particular nature of the processing occurring at a particular point and time in the 

system. Consider a person at a certain level of management in an organization, whose 

job it is to make the most informative summary possible of the data received by them
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each week. The particular type of data received depends on the external environment 

in which the organization exists and operates, the structure of the organization, 

(including what level this person is on and what other levels and functions exist within 

the organization), and many other constraints. Over time, this person comes to realize 

that a certain way of representing information (Linsker gives the example of graphical 

plots involving various variables) is most useful for summarizing the data for the 

management level immediately above. If this person interacts with other people within 

their particular layer, they may either (a) try to avoid unnecessary duplication by 

giving almost orthogonal summaries, if everybody does their job diligently, or (b) be 

forced to provide several almost independent copies of the same summary, if several 

people are lackadaisical about their work. In any case, the presumption is that the 

conscientious workers will try to ensure that their layer is as informative as possible. 

It is likely that eventually a set of work practices and job procedures will gradually 

come into operation, so that this person’s layer will end up carrying out a processing 

function, without the workers in this layer needing to know either the goals of the 

entire organization, or what information is considered most important by the more 

senior managers in the layer(s) above. Furthermore, there is no need for any higher 

layer to try to reconstruct the raw data from the summary — rather the higher layers 

simply need the ability to discriminate the relative value of different actions. If the 

required information has been lost in one of the intermediate layers this cannot be 

done. Equally, if workers in the intermediate layers are not aware of the remote high- 

level goals they cannot be expected to know exactly what information might be safely 

discarded, and so it might reasonably be expected that they try to preserve as much 

information as is practical with the given constraints.

Linsker introduces these ideas in the context of a principle of maximum information 

preservation within a layered perceptual system. The corporate metaphor is not perfect 

but serves well to illustrate the key points of the local nature of signals arriving at a 

point, and the purely local primitive processing functions which are isolated from any 

direct contact with an external reality, either by way of direct contact with the source 

of the raw data or with the high-level goals of the system.

The particular processing model of concern to Linsker is that of a multi-layer feed­

forward network with linear weighted summations at nodes and Hebb-type adaptation
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of the weights. There are no non-linear thresholding or classification operations at his 

nodes. The example above illustrates the local nature of the signals arriving at the 

processing points (the worker’s desk or the network’s nodes), but says little about the 

nature of the processing at each of these points. A claim made here is that for the 

purposes of describing the system’s operations it suffices to consider the processing 

that is applied to the local convergence of signals. For the purposes of explaining the 

system’s operations in a wider context that includes its environment, it may be useful 

to relate this processing to the original raw data12, or to the high level goals of the 

system. But this is something that we do as observers, and it is not operational for the 

system. One of the basic claims of this thesis is that the fundamental processing unit 

or primitive in a perceptual system is a type of primitive observation or classification 

on the basis of a local confluence of signals only. These decisions, or classifications, 

or primitive recognition events can also be related to the environmental context of the 

system, (by us as detached observers) and in particular can be related to the original 

raw data, giving rise to the idea of a general concept associated with each primitive 

observation or decision. In other words, the values of these local signals are the basis 

for a decision that the general concept corresponding to each primitive observation has 

a certain value — an output value for the primitive observation is selected, or prepared, 

or decided upon. This value is itself a signal and may provide the input for other 

subsequent decisions or observations. This value is the output state of a local decision 

or classification13, but we may relate it to a certain general concept, or classification, 

or measurement of a property, in the larger context which includes the system’s 

environment. The general concepts which the measurement or observation processes 

apply, by operating on the incoming data, are the key to understanding the need for 

primitive observational processes. This notion of general concepts already has a long 

history which we can use to throw light of the properties of the type of perceptual 

systems under consideration here. We discuss the notion of general concepts, or

,2The raw data case is not unlike the idea of receptive field used in studying biological vision, which is 
explained in section 3.5 below.

nIt might seem, on initial reading that the juxtaposition of signals converging and diverging within 
information processing networks, with classification events based on the local convergence of signals would 
imply some sort of generalized perceptron-type neural network model is being proposed here. In fact, it 
seems likely that even though it is possible to describe both the transport of signals within the sensory 
network, and the primitive recognition events of sensory perception, in information theoretic terms, these are 
in fact descriptions which involve two different levels of explanation. These ideas are discussed further in 
the concluding chapter.
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universals, as interpreted by philosophers through the ages in chapter 2 below. We find 

that we can come to an understanding of the notion which is useful both in mechanical 

pattern recognition and as a basis for a theory of perception. Because the process 

central to a primitive observation is a process of classification, or recognition, we 

examine pattern recognition from the point of view of what it involves and how it 

becomes possible. The process of pattern recognition requires the overcoming of the 

inductive ambiguity inherent in grouping and generalization, so we discuss the status 

of inductive inference. These three subjects: the problem of universals, pattern 

recognition and inductive inference applied to the notion of concepts form the core of 

chapter two.

The concepts embodied in the measurement process of each primitive observation are 

not innate although the architecture and gross connectivity of the hierarchy of 

observations is likely to be genetically specified. The actual concepts used in a mature 

sensory system seem to have arisen from developmental processes which operate 

somewhere on the continuum between (i) resulting from information processing 

principles inherent in the architecture (particularly its pattern of high local connectivity 

and ordered maps between different regions of the hierarchy) and (ii) resulting from 

adaptation to correlations in data from the external world. Chapter 3 begins to explore 

exactly what is meant by this in real biological perceptual systems. This fairly 

extensive chapter is important because it embodies the belief that looking at biological 

visual systems can be useful for understanding the nature of perception in general, 

even artificial implementations if that is possible. It does nonetheless attempt to 

achieve this aim in the cautious manner counselled in the preface. The retina (or 

strictly the retinas of many different species) is the main focus for this chapter because 

its structure and operation are relatively well understood and thus allow us to 

meaningfully compare different views of its function. Much of the early work on the 

vertebrate retina was carried out on the cat and interpretations based on these results, 

which historically have had an important influence on computer vision, are examined 

and compared with some more recent work on the primate retina. The methodology 

of examining the constraints which seem to be responsible for the present forms of the 

retina, is seen as a powerful tool giving clues as to why particular structures are 

relevant and what their function might be.
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In chapter four we begin to tackle the issue of exactly what is meant by information, 

and what the relationship between the different meanings are. The emphasis is mostly 

on quantitative notions of information, but this groundwork is a necessary precursor 

to a cautious consideration of semantic aspects of information. The quantitative notion 

of information is traced from its roots in physics in the form of the concept of entropy, 

through its. development into Shannon’s information theory of discrete symbols on 

communication channels, Gabor’s "minimum uncertainty" representation of analogue 

signals and Watanabe’s structure function for pattern recognition. We also describe 

attempts to give quantitative descriptions of aspects of human vision using information 

theoretic ideas. Possibly the most valuable knowledge of a biological vision system 

would be an understanding of its development, because this would make explicit what 

actual goals the system is trying to achieve and the criteria it is trying to optimize in 

the search for these goals. Initial, but exciting work in this area is described in chapter 

4. The basic conclusion is that aspects of the structure and processing of the early 

parts of biological vision systems can be understood in terms of attempts to maximize 

the flow o f information (or minimize the equivocation) through the system. Finally, in 

this chapter we begin the discussion about the relationship between the quantitative 

and semantic aspects of information.

Historically, theories of biological visual perception have had some influence on ideas 

within computer vision. The major approaches suggested to date to explain neural 

function in the visual system are reviewed in chapter five. The notion of an invariant 

is closely linked with the idea of a symbol14 and since the endpoint of a process of 

visual perception has traditionally been assumed to be a symbolic representation of 

aspects of the outside world, much effort has been put into the identification and 

computation of invariants. The "ecological" approach to visual psychology puts a 

strong emphasis on the idea of invariants. Gibson claimed that even higher-order 

invariants are directly detected, by the visual system "resonating" to them. These issues 

are the subject of section 5.3. There then follows an extensive discussion on Gabor 

filtering and Gabor codes, the relationship between the Gabor representation and 

redundancy, and finally possible explanations for the properties of cortical neurons and

14The direct relationship between symbols and the concept of invariance derives from the fact that because 
a symbol set is a generalisation within the set of possible signals, a single symbol will represent many 
symbols. In particular, signals can undergo certain transformations and still generate a certain given symbol. 
The symbol is said to be invariant to these transformations.
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aspects of cortical processing in terms of Gabor coding. Again information theoretic 

notions play a very valuable role.

Measurement theory, classification theory, pattern recognition and discrimination 

theory are all based on the same fundamental idea: that of assigning labels to 

processes in such a way that processes that bear the same label are considered to be 

alike, and processes bearing different labels are considered to be different. We have 

already begun this discussion in chapter 2 and we try to look at it more carefully and 

in more depth in chapter 6. We review the different aspects of pattern recognition, and 

the notion that experience is vital to the ability to generalize which is intrinsic to 

pattern recognition. The various sources of ambiguity inherent in the generalization 

process of any act of pattern recognition are discussed in a probabilistic context. 

Shannon’s major innovation in his 1948 paper [42] was to introduce the geometric 

representation of communication signals in terms of multi-dimensional spaces. We 

examine here how geometric representations can be particularly useful for 

understanding what is involved in pattern recognition. The really interesting notion is 

that in different situations, different types of geometric representations may be 

appropriate, and these in turn have different underlying algebraic structure. In 

particular, subspace representations of sampled data which code contrast (or relative 

values) rather than absolute values of intensity do not have the usual Boolean algebraic 

structure associated with commonsense views of the world in terms of objects and 

their properties. Propensity theory and fuzzy theory are related ways of dealing with 

ambiguity about objects or their properties, and propensity theory in particular seems 

to give insights into the nature of perception. This is discussed, along with the idea of 

evaluating predicates in a "test" or measurement and the properties of this process.

In chapter 7 the two related strands of measurement theory and information theory are 

finally brought together and used to discuss the possible processing structure and 

function of the early visual pathway, particularly the cortex. Before doing this, the 

notion of a "signal-to-symbol" transition is discussed in some detail, and problems 

with the usual interpretation of this concept are pointed out. Another view on this idea 

of a transition between two different representations with different properties, 

involving some sort of a generalization or classification or measurement, is provided 

by Dretske, and we examine his development of a semantic theory of information for
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this reason. The principal conclusion of this chapter, and the dissertation as a whole, 

is that the information theory/measurement theory interpretation of perception is much 

stronger than the relatively arbitrary computational theoretic explanations, for a number 

of reasons. It helps to avoid the pitfalls caused by hidden assumptions about our own 

values or caused by the prejudices of our own observables. It is a quantitative theory 

which eliminates the need to postulate arbitrary representations and processes. It is 

nearer to the actual operational level of an organism than symbolic descriptions and 

it can be used to understand most aspects of perception in any system, human, animal 

or artificial without requiring the invention of a new computational theory in each 

case.

In chapter 8 we develop some of the ideas introduced in chapter 6 and describe their 

use in an industrial inspection problem. The principal development here is the 

demonstration of a relationship between the Karhunen-Lofcve transform and the 

singular value decomposition. The details of the coding and recognition phases of the 

system are described and results are presented for both of these.
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Chapter 2

2 The Philosophy of Perception

2.1 Introduction
Somewhat surprisingly (at least to the author) the work of the classical Greek 

philosophers Plato and Aristotle, written almost 2500 years ago, still has valuable 

things to say about the matters of concern here. We do find that it is necessary to be 

somewhat selective about the notions that are useful. Even the context in which they 

are used is often far removed from the speculations of the original authors. 

Nevertheless the underlying concepts are frequently sufficiently powerful that they can 

still clarify many of the issues that confront us. We describe here how ideas from both 

Plato and Aristotle can be used in this way. Another reason for the importance of these 

and later related sources is that without necessarily realising it, much of our present 

view of the world and the way we deal with it, particularly in western culture and 

even more particularly in science and engineering, is strongly influenced by them. 

Specifically, Aristotle’s ideas about matter, objects and their properties are strongly 

reflected in commonsense views about the world and in classical (Newtonian) physics. 

In its detail, Newtonian mechanics was an overthrow of the earlier Aristotelian ideas 

about mechanics, but the essence of the Aristotelian view of the world still remained1. 

This discussion brings us to the foundations of modem pattern recognition where we 

see the impossibility of achieving anything without either explicit or implicit heuristics 

which in some way capture our values and our way of seeing things. The importance 

of this notion of value or usefulness is discussed. The subject of inferences, deductive 

and inductive, is one which is often misunderstood but has an important bearing on 

the issues of hypotheses and truth and reality. It is examined here from a probabilistic 

point of view. As a prelude to the later discussion on the nature and function of 

perception we deal with the more obvious fallacies that have caused trouble in the past 

and discuss the extent of what can be assumed about perception. But more generally, 

one of the major issues which has motivated philosophical debate since the time of

'in chapter 8 we show how an alternative point of view on objects and their properties can be very useful 
in certain coding or pattern recognition applications, though this application is not central to the development 
of the ideas in the remainder of this thesis.
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Plato and Aristotle until comparatively recently is the controversy of the status of 

universals. Ideas from this controversy are at the core of the notions being proposed 

in this dissertation and it is to this that we turn first

2.2 The Controversy of Universals

As a point of departure for the discussion that follows, let us consider first the naive 

position that the world can be thought of as consisting entirely of distinct (in a 

material sense) well-defined objects. Objects in the world can be said to share features 

(or predicates like colour, shape and so on) with other objects. It is in the nature of 

most such features that they can characterize indefinitely many objects, and because 

of this, these features are often called universals, where particular object is an 

instantiation of one or more universals, usually very many. So, in this sense, a 

universal is a concept or a general idea. For example, if we make a claim such as "this 

is a wheel", then the pronoun "this" designates some particular object while the noun 

"wheel" designates the general property of "wheel-ness" or the general concept of 

being a wheel, in other words a universal. Similarly an object with the property of 

being a wheel might also be designated by the adjective red, meaning that in addition 

it has the property of "red-ness". The principal problem is to describe the status of the 

universals and the particular objects [43,44]. The standpoint taken on this issue 

has important consequences for pattern recognition in particular, and as we shall see, 

for perception in general.

In the classical philosophical problem of the relationship between universals and 

particulars there were two principal positions (though many shades of opinion within 

each). In what must be an unlikely use of terminology, realism is the view that ideas, 

Forms2 or universals are the only true reality, belonging to a world beyond matter and 

appearance. The world of appearance has only a temporary, illusory existence. 

Furthermore, the human mind can only apprehend the particular by virtue of its being 

able to apprehend universals — the notion of universals prior to the objects. (This latter 

notion is crucial to the development below. It provides the key to the understanding

^ e  modem meaning of Hie word ‘form’ in this context is that of shape, structure or figure, etc. In Greek 
philosophy the Form played the role of the epicentric concept of an ideal representation or definition of a 
class or general idea. In an Aristotelian adaptation of Plato’s philosophy, "the ‘Form’ or ‘Idea’ is an ideal, 
real object that exists in an eternal world different from the actual world of daily experience. Individual 
concrete objects of this latter world are nothing but defective copies of the ‘Foim’” [19, p.7].
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of perception which is presented here). On the other hand, one of the common 

denominators of anti-realist views, including conceptualism and nominalism3 is that 

the human mind can directly apprehend the particular [19, p.52].

2.2.1 Realism

Plato is generally acknowledged to have been the founder of the realist view. While 

he and Aristotle differ considerably over the understanding of the term "Form", they 

both agree that the Form in the sense of universal is something real. The standard 

interpretation of Plato’s work is that he treated universals as real things (Forms or 

ideas) separate from their instances4 (particular objects) and independent of human 

understanding. That is, a particular object does not have a real existence, only a 

deceptive, temporary, illusory existence — what really is, is the (supposed innate) Form 

or idea, which is a state, a function or a meaning. The particular object is only an 

imperfect copy of the ideal Form.

From this point of view, the sensory world of experience has no reality, but the eternal

world of form has reality. A particular object belongs to a class corresponding to a

universal because it "partakes" in the archetype or form corresponding to that

universal. Plato himself, however, encountered great difficulty with exactly what this

notion entailed, passing through at least three different phases involving different,

though related uses of the term Form [19, p.47]. It is possible that much of the

subsequent criticism of Plato’s Forms arises because of the later Aristotelian bias that

forced the idea into the role of substance, which Plato did not intend [p.93]. In fact

Plato introduced the notion of Form mainly for the domains of abstract concepts (such

as goodness, kindness, bravery, and so on) and of mathematical concepts (such as

numbers and geometric shapes), so that application to concrete objects (as in wheel or

car) may be an over-extension of his notions:

The Form is not a perfect object in the best of worlds but rather the 
essential nature or functional meaning of the objects covered by the same 
name. [p.47]

3Popper uses the term essentialism as a name for any (classical) position which is opposed to nominalism, 
especially for the theories of Plato and Aristotle [44, p.20].

4Aristotle is also credited with holding the realist viewpoint although he denied that universals are objects 
or separate from their instances, instead claiming that they are real things which exist just by being 
instantiated — the notion of universals in the objects.
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In this sense then, the interpretation of Form as a universal is not quite appropriate, 

and ironically, may owe more to an Aristotelian interpretation of Plato than to Plato 

himself. Not surprisingly in view of the idea of an eternal world of Forms, in modem 

parlance the term Platonist is usually associated with the reality or truth of abstractions 

(particularly mathematical ones such as numbers, sets, or propositions etc5).

Let us set aside though for the moment the status in terms of reality, truth, or origin, 

of the Forms or ideas playing the role of universal in Plato’s theory. The really crucial 

notion as far as understanding perception is concerned, is the claim that the human 

mind can only apprehend the particular, by virtue of it being able to apprehend 

universals6. Regardless of the specific interpretation of what Plato intended, this 

debate is nonetheless useful because of the emphasis it places on general concepts, 

properties, or universals at the expense of concrete objects, and particularly because 

of the above claim. One of the aims of this dissertation is to examine this claim in the 

enactive context outlined by Varela [30] and to use it as a starting point in the 

development of a theory of perception [45],

To the modem western mind, immersed as it is in a culture which shares much with

Aristotle’s philosophies, the assertion that the world of experience is unreal and the

world of ideas is real, is completely antithetical to "normal" modes of thought The

following example may help to clarify the notion of reality intended:

Think of a geometrical figure like a ‘triangle’. A triangle drawn on paper 
is not a real triangle as defined by geometry. Because we can speak of  
deviation from, or approximation to, a real triangle, we cannot deny the 
reality (in a certain sense) of a geometrically defined triangle, which is the

5The term Platonist in mathematics is usually meant in the sense that what a mathematician does from the 
Platonist viewpoint is to discover these abstractions, rather than view them simply as the formal 
consequences of a particular formal system.

*By emphasising this, our intention is not to claim that the mind can directly "apprehend" a universal like 
"dog-hood" or "wheel-hood". Before getting to predicates as abstract as these many levels of less abstract 
primitive observations (or measurements of predicates, or evaluation of properties) would typically be 
activated in a normal perceptual experience. But at each stage the basic operation is envisaged as being the 
same — one of using locally available signals about less abstract decisions in the perceptual network as the 
input for a decision based on these. Even though the words "network" and "system" are used here, it is not 
intended that the primitive observations or classifications described should be thought of in the sense of the 
nodes of an artificial neural network because it is likely that the level of description in terms of primitive 
observations is a level above the level of physical realization (which was referred to by the terms structure 
and organization in section 1.5).
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Form of a triangle. An actual triangle drawn by human hand is a poor 
imitation and not a true triangle, [p.47]

A similar shift from substance to function is manifest in modem quantum physics.

Here, experimental results have forced the exclusion of the notion of self-identity and

substance (in other words concreteness) for elementary "particles". Properties of

elementary particles are no longer considered as fixed attributes independent of

physical observation, but as variable quantities which are dependant on, and affected

by observation. Instead of saying: particle P is in quantum state Q; the description

must be rephrased as: quantum state Q is occupied by a certain number of the

particle of a certain kind. The roles of object and predicate are interchanged [p.94].

This analogy between measurement/observation in quantum mechanics and

measurement/observation in perception is elaborated in Chapter 7 below. The idea of

object-predicate interchange is useful both as an algorithmic device in certain types of

pattern recognition problems (see chapter 8), and for forcing a rethink of the nature

of observation in perception.

One further point of note in Plato’s writing which is related to pattern recognition, is 

his use of the term "paradigm".7 This changes during different periods and three 

distinct uses have been noted, consonant with the different uses of the term Form 

mentioned above. These are the use of the term paradigm to mean

(i) a general concept in the sense of Form as used above;

(ii) a general concept in the sense of a perfect model to be imitated, and

(iii) a particular example of a concept [19, p.47].

It is interesting in this context to compare the various modem meanings of the term 

"pattern".8 The usage of the term paradigm strongly parallels the modem epicentric 

concept of pattern recognition. It also motivates the important notion of paradigmatic 

symbol in the extension of pattern recognition to general perception.

7Paradigm is used in this section in the sense of an individual object, or exemplar, standing for a class, 
paralleling Plato’s use of the term. This is distinct from the Kuhnian sense of an ideological theory or 
approach to scientific problems for which the German term ‘Zeitgeist’ is probably more appropriate. In fact 
Watanabe describes Kuhn himself as regretting the widespread use of ‘paradigm’ in an ideological theoretic 
sense as "a rather unfortunate fad" [19, p.9]. Nevertheless this (latter) sense of the term paradigm is deeply 
ingrained and well understood in the scientific community and so can be quite useful. Which meaning is 
intended here will usually be apparent from the context.

'Usages of the term ‘pattern’ include (i) design, (ii) model, template, plan, (iii) regular way of acting, (iv) 
person or thing worthy of imitation, (v) a sample (includes not only the one imitated but those which 
imitate); any object qua a sample of a class; a typical case, exemplar, archetype.
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2.2.2 Aristotelian duality

Aristotle, also a realist (meaning that he accepted the reality of universals), recognised 

the reality of particular objects, which he argued, consisted of two real elements — 

Matter and Form. Matter endows real existence to an object, and represents 

"potentiality" in the sense that a plank of wood has the potential to be worked into a 

chair. Form determines the essential nature or functional meaning of an object. It 

represents "actuality" in the sense that regardless of the matter involved, say wood or 

metal, Form is what determines whether the object is a chair or a table. Aristotle then, 

believed in two types of substances. The basic reality is the primary substance — a 

concrete object provided with attributes. The secondary and less important substance 

is the universal to which the objects belong, labelled by the same attributes. He thus 

denied that universals are objects9 or that universals are separate from their instances. 

This leaves us with the fundamental assumption of Aristotelian philosophy which is 

based on his obsession with substance: what exists is (an enumerable number of) 

particular objects with fixed attributes or predicates. This should be contrasted with the 

epistemological position of Plato, that what exists is the Form of which we have an 

innate idea [19, p.443].

For modem pattern recognition and computer vision, for the 19th century version of 

physics which underlies popular intuitive ideas of science, and for much of the 

so-called "western" mode of thought, this view of particular objects and 

object-predicate duality is deeply ingrained. It pervades everyday language in the form 

of the "subject plus predicate" pattern of thinking. It finds its most concrete modes of 

expression in Boolean logic and in the probability calculus of Kolmogorov (see [46, 

p.341]). However, just as almost a century before, the exclusive validity of Euclidean 

geometry was challenged, so in the first thirty years of this century a number of 

challenges arose to the truth of the law of bivalence, or Boolean logic10. These two 

pillars of western thought had stood for over twenty centuries.

9 As discussed above, Plato himself may not have claimed otherwise, but certainly Aristotelian interpretations 
of Plato’s ideas have.

I0See the relationship of Boolean logic to the object/predicate idea, in the discussion on the Frege principle 
and the propensity logic in Chapter 6
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Louis de Broglie was the first to point out the incompatibility of the probability 

calculus based on Borel sets with quantum mechanics [19, p.518, 47]. In 1932 John 

Von Neumann [48,49] pointed to language with its framework of ordinary 

(Boolean) logic as the problem in understanding quantum mechanics.11 He proposed 

the construction of a "logical calculus" in contrast to the concepts of ordinary logic as 

the solution to the problem of interpretation [50, p.271ff]. It seems that this quantum 

(non-distributive and anti-Aristotelian) logic may also be an appropriate framework for 

understanding perception. This concept of non-Boolean logic and Watanabe’s notion 

of object-predicate inversion, display a strong affinity to the Platonic ideas discussed 

above, and are an explicit rejection of the common sense notions of object and 

predicates which are strongly Aristotelian in character.

So, for our purposes, the most interesting aspect of these Aristotelian ideas is that they 

represent a classical and commonsense position which deeply permeates current 

thought and practice in cognitive science, particularly AI. Recognising their origin, and 

their manifold manifestations (in for example, Boolean logic, probability theory and 

classical physics) allows us to begin to see the possibilities of alternatives to these 

modes of thought (or mathematical models), and the likely implications of alternatives.

2.2.3 Aristotelian causality and complex systems12

One further aspect of Aristotle’s ideas is also quite useful in showing very clearly 

within systems theory, the implications of moving outside the usual Aristotelian (and 

Newtonian) framework. In answer to the question of why an object or artifact is the 

way it is, Aristotle attributed four different and inequivalent causes — four different 

ways of saying "because". That is, if we consider an object as the "effect", then its 

material cause is the matter comprising the physical manifestation of the object; its 

formal cause is the shape (form), plan or blueprint for the object; its efficient cause 

is the act of construction or the processes which shaped the object to its present form; 

its final cause is the reason for, the goal fulfilled by, or the use of, the object. 

However, in addition to their classical usage these causal ideas can be used as a useful

"See the discussion on logos and mythos in Zukav [SO].

12The discussion in this section, while a direct development on the Aristotelian ideas met so far, is somewhat 
tangential to the primary discussion on universals and realism, and may be read separately.
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framework for understanding, not only objects but also systems. Consider, for example, 

the following definitions [51]: the material cause13 is the passive receptacle on 

which the remaining causes act; the formal cause is the essence, idea or quality of the 

thing concerned; the efficient cause is the external compulsion that bodies have to 

obey; the final cause, for a machine, is its use, aim or purpose. With these more 

general definitions, it is possible to relate this causal framework to the 

operational/symbolic distinction made by Varela which is discussed in section 1.5 

above. The material, formal and efficient causes belong to the operational description 

of a system — they all involve categories or relations within the phenomenology of the 

operation of the system. The final cause on the other hand, which can be interpreted 

in terms of purpose or use, does not pertain to the machine’s operation — it is not a 

feature of its organisation. Rather it belongs to our description of the machine in a 

context wider than the machine itself — in other words, Varela’s symbolic explanation.

Rosen [12] is even more explicit about these relationships and uses this causal 

framework to directly interpret the dynamics of systems. Consider for example the 

dynamical system description in terms of the rate equations:

|  - t„fcP(0)

where z(t) is a state (or phenotype) vector

g  is a system or species (genome) vector

P(t) is a vector of environments (inputs, forcings or controls).

If the "effect" is the state z(t) of the system at a given time t (cf. the notion of 

phenotype), the material cause is the initial state of the parameters in the state space 

z(t0); the formal cause is the type, form or identity of the system labelled by 

coordinates in a function space; the efficient cause is the operator that transforms the 

initial state to the current state, and which depends on the organisation of the system 

and its environmental inputs, i.e. the operator:

13It is important to distinguish materiality (involving the properties of components that define them as 
physical entities) and material cause as defined, which has very little to do with matter.
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The notion of a final cause plays no role in this Newtonian-type formulation of a 

system’s dynamics14. Rosen’s claim is that the Newtonian paradigm only applies to 

those systems for which the categories of causation can be segregated into 

mathematically independent structures, and there is no category of final causation 

within this paradigm, as in the example above. This class of systems is referred to by 

Rosen as simple systems15 and not all systems can be reduced to this Newtonian 

form.

t

Consider, for example the rate equations for a general dynamic system where the 

environmental controls and genomic labelling are temporarily omitted

dxi

Now consider the quantities

If M,y is positive, then an increase in Xj implies an increase in the rate o f production of 

x,. That is, Xj is an activator of x,. Similarly, if U;j is negative, Xj can be described as

'*We can, for example, only talk about control if we have some external observer setting a reference point 
for the system to attempt to attain. Such a reference or set point cannot be something intrinsic to the 
organisation (in this case the dynamics) of the system itself. If it were, the system would be useless for 
control purposes as it would always try to Teach some internally determined set point, regardless of external 
input

lsRosen uses the term simple here in a very particular sense: he means that it is possible to define a particular 
set of system observables (a state space) and a set of differential equations over these observables (a velocity 
vector field on the state or phase space), which if they initially satisfy some criterion for approximating the 
dynamics of the system, will continue to do so for an arbitrary length of time. However complicated the 
model is, it is essentially a finite and fixed description of the system. In information terms, once the 
empirical process of determining what the appropriate observables and real or abstract "forces" are, no further 
information is required by an observer, to correct or maintain the approximation offered by this model. Rosen 
claims that in general, this is not true of even the least complicated living or biological systems and thus 
refers to these as complex systems. In other words, while it may be possible to construct a multitude of 
partial models of the Newtonian type for biological systems which can approximate the behaviour of the 
systems, these approximations are only local and temporary. As the "complex" system develops in time, the 
discrepancy between what the "complex" system is actually doing, and the predictions of the "simple" 
Newtonian model, grows in an unbounded fashion. When the discrepancy becomes intolerably large, it 
becomes necessary to replace the initial "simple" model with another, typically involving both different 
observables (which are not necessarily functions of the original ones), and a different set of dynamics. An 
observer trying to predict the system’s behaviour needs to regularly get more information about the actual 
system behaviour in order to maintain the accuracy of his short term predictions. It is in this sense that it 
can be said that information is fixed for a Rosen-simple system, just as Varela argues it is for a case where 
the representational paradigm is appropriate.
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an inhibitor of xr

Now, there are many situations where this type of activation-inhibition description is 

more appropriate than a rate-equation description, typical examples being biochemical, 

neural and ecological systems. Here, it is often not possible to determine the absolute 

value of certain variables and the "forces" acting on them, only the differential 

excitatory or inhibitory inter-relationships between variables. In fact, given cartain 

types of activation-inhibition or network descriptions, a corresponding dynamical 

system description may not even exit If we have a description of a system in terms 

of s we can only go to a rate-equation formulation if the differential form for each

“ i ■ E v f y
J

is an exact differential. For n>2 this differential form is exact only if

If uijk is positive, then xk enhances or potentiates the effect of Xj on x t and we can call 

xk an agonist of Xj. Similarly if uijk is negative we can call xk an antagonist of xr  For 

arbitrary systems there is no special reason why the condition for exactness of the 

differential form should hold. When a differential form cannot be integrated to give 

an equation involving the jc. ’s  only, it is referred to as a non-holonomic constraint. 

(There are other types of non-holonomic constraint which do not involve differentials, 

but instead limit the motion of the system to particular parts of the state space. See for 

example [52]). Each such equation of constraint between the Jt.’s and the d x 's  can 

be used to eliminate one degree of freedom of velocity but not the corresponding 

configurational coordinate in the phase space. Because we cannot obtain a rate- 

equation formulation for systems involving such non-holonomic constraints, we cannot 

describe the system in terms of separate categories of causation as in the so-called 

Rosen-simple Newtonian-type formulation described above. Components of the system
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may play more than one causal role at a given time, as is typical of systems with a 

circular organisation16, systems which Rosen explicitly describes as complex. In 

particular there is no such thing in this case as a set of states which are assignable to 

the system for once and for all17. Also, these non-holonomic constraints are examples 

of the type of regularities that an external observer might describe as symbolic in 

Varela’s terms. Perhaps this type of situation is characteristic of systems which display 

non-trivial metadynamical organisation [53].

The point of this section is not simply to add to the development of the idea of 

universals or the realist/anti-realist arguments. Nor does this section attempt a 

unification of the pseudo-Platonist universal used in perception, and Varela’s views on 

autopoiesis and perception, with Rosen’s ideas on systems. The objective is to 

illustrate the fact that the philosophical arguments of epistemology and ontology have 

close parallels in more concrete and more familiar fields. It may be that such a 

unification is possible, or that at least the different results arise from similar sources, 

but I suspect that the mathematical tools required to demonstrate this are not yet 

available.

2.2.4 Anti-realism

Returning to the discussion on universals, if realism is the view that universals have 

real existence, then the diametrically opposed view is referred to as nominalism. This 

is the notion that the universal is a name (or word) without any real existence. 

Conceptualism, holding the middle ground between these two extremes, is the view 

that the universal does not exist in the real world, but has a real existence as an idea 

in our mind. One way of viewing the realist stance is that the mind can only 

apprehend particulars by virtue of their ability to apprehend universals. The common 

denominator among the spectrum of anti-realist views which oppose this position is

16Note that by circular organisation we do not simply intend systems with feedback, as even the simplest 
systems which can be expressed in terms of rate equations include feedback.

17The condition for exactness of the differential fonn above is that both the activadon-inhibition network 
relationships and the agonist-antagonist network relationships are completely symmetrical with respect to an 
interchange of any pair of indices. According to Rosen, this also is a highly nongeneric situation. It is 
possible to consider a hierarchy of networks, uiJh uijd, and so on, each modulating the properties of those 
below it in the hierarchy. If the system is describable by a set of rate-equations, every layer above these is 
found simply by differentiating. But, on the other hand, if any of the differential forms constructed using 
these quantities are inexact, the layers become independent of eachother and it is not possible to find a rate- 
equation formulation under any circumstances.
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that the mind can directly apprehend the particular. In the nominalist position there are 

only general words like "dog", and no universals in the sense of entities like 

"doghood". The logical (if extreme) conclusion of this viewpoint has to be that there 

is nothing in common between the particular objects covered by the same general 

name. This position, which Watanabe [19, p.52] refers to as radical nominalism is 

discussed further below in section 2.3.1.

For conceptualism, universals are thoughts or ideas in, and constructed by, the mind.

That is, universals are concepts in the mind of those who understand the general word

whose meaning the universal is. Plato had rejected this notion as an explanation of

why the world is as it is, which he claimed his Forms explained. These ideas came to

the fore in the seventeenth and eighteenth centuries and are largely associated with

empiricists such as Locke, Berkeley and Hume. Locke, writing in his "Essay

Concerning Human Understanding" (quoted in [19, p.52]) claims:

General and universal belong, not to the real existence of things, but are 
inventions of the understanding, made by it for its own use, and concern 
only signs, whether words or ideas ... Words are general when used for 
signs of general ideas and so are applicable indifferently to many particular 
things; and ideas are general when they are set up as the representatives of 
many particular things. But universality belongs, not to things themselves, 
which are all of them particular in their existence ... [when] we quit 
particulars the generals that rest are only creatures of our own making, 
their general nature being nothing but the capacity they are put into the 
understanding, of signifying or representing many particulars.

There are a number of points of interest to us here. The most straightforward one is

that universals or concepts or generalisations are constructs of the mind which are

found to be useful and can be represented as, or are equivalent to symbols (cf. Locke’s

use of the term "signs"). Secondly, he pointed out the role of general idea as an

abstraction, leaving out all the particular ideas of individual particular objects that are

not common between the objects. It is interesting to note that this is exactly the same

sentiment as the modem notion of abstraction used in pattern recognition.

There is however, one point with which we would like to take issue, i.e., the notion 

of the real existence of particular objects. This, we argue, is itself a construct of the 

mind, for an object is not perceived independently of observation. Perception, we 

submit, is based solely on primitive observations, or measurement of predicates, and
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the relationships between measurements. Perception as such, consists only of the

satisfaction of generalisations (concepts or universals). Popper makes what is

essentially the same point, claiming that association psychology — the psychology of

Locke, Berkeley and Hume — was merely a translation of Aristotelian subject-predicate

logic into psychological terms.

Aristotelian logic deals with statements like ‘Men are mortal’. Here are two 
‘terms’ and a ‘copula’ which couples or associates them. Translate this into 
psychological terms and you will say that thinking consists in having the 
‘ideas’ of man and mortality ‘associated’. [44, p.76]

The essence of the position of perception-mediated-by-the-universal is that the reality 

of particular objects is something that can only be inferred on the basis of relationships 

between observations and cannot be used as the basis for perception itself. So, while 

some of what Locke is saying seems plausible, we must disagree on the most 

fundamental point about the direct perception of the particular. Natually this position 

is not one that can be proved. While some arguments are presented here in its favour 

and to justify its adoption, it is primarily intended as a working assumption whose 

implications may be more useful than most of the alternatives.

Interpreting the general idea as a mental image, Berkeley attacked Locke’s method of

abstraction. He claimed that:

we cannot have an image of a man who is neither tall nor short, or who is 
simultaneously tall and short. Even if we think of a man in general, we have 
to imagine a man with a certain tallness. [19, p 5 4 ]

The alternative interpretation of "general idea" as a logical condition or abstract

symbol (particularly in terms of abstract concepts such as white or large) is immune

to Berkeley’s criticism, but also of little use in understanding perception.18

Berkeley’s own belief on the nature of the universal has much in common with the 

modem ideas of epicentric pattern recognition, and Watanabe’s notion of paradigmatic 

symbol. He claimed:

“Note that in many cases here, both the philosophical ideas presented and the counter arguments seem to 
both have merit, certainly to the author’s mind. Some of the complication arises because of the confusion 
between the complementary processes of classification and grouping, in pattern recognition terminology, 
which are both forms of generalization or inductive inference, (see section 6.2).
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that all general ideas are nothing but particular ones [ideas], annexed to a 
certain term which gives them a more extensive signification, and makes 
them recall upon occasion, other individuals which are similar to them. [19, 
p54]

Hume goes further, claiming that it is impossible to conceive any quantity or quality

without forming a precise notion of its degree. Everything that exists is, for Hume, a

particular idea. Yet, we are not excluded from considering general concepts which are

possibly ill-defined or involving an infinite extension, by the finiteness of our mental

capacity. This is because

... abstract ideas [though] in themselves individual, may become general in 
their representation. The image in the mind is only that o f a particular 
object, tho’ the application o f it in our reasoning be the same as i f  it were 
universal. When we have found a resemblance among several objects that 
often occur to us, we apply the same name to all o f them, whatever 
difference we may observe in the degrees o f quantity or quality, and 
whatever other differences may appear among them. After we have acquired 
a custom o f this kind, the hearing o f that name revives the idea o f one o f 
these objects, and makes the imagination conceive it with all its particular 
circumstances and proportions.
(Chapter VII, A Treatise o f Human Nature), [19, p55].

And again, from chapter IV:

All simple ideas may be separated and reunited differently by the 
imagination. There is no fixed rule fo r  recombination by the imagination, but 
there exist certain guiding principles. These principles are to be regarded 
‘as a gentle force, which commonly prevails. ... nature in a manner pointing 
out to everyone these simple ideas, which are most proper to be united in 
a complex one. The qualities from which this association arises, and by 
which the mind is after this manner convey’d from one idea to another, are 
three, viz. Resemblance, Contiguity in time or place, and Cause and Effect.
[19, p56]

There are three crucial aspects to Hume’s ideas: the notion that only particular 

examples are ever instantiated in the mind; that these particular examples can ‘stand 

for’ others in what amounts to generalisation, and finally, that the extent and type of 

this generalisation is determined by a process of identifying resemblance.

The first aspect of Hume’s ideas is precisely what we would expect within the 

framework of visual perception presented here: the mental representation of any 

perceptual idea, either in the perception or in the recollection, consists of the 

simultaneous activation of many different perceptual concepts at different levels of 

abstraction. The latter two aspects of Hume’s idea amount to a description of an
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inductive generalisation, in this case, based on resemblance. Now, Hume had rejected 

the notion of a logical induction, but here describes an extra-logical non-necessary 

generalisation as an intrinsic part of perception. Like Locke and Berkeley he believed 

that complex ideas (perceived or recollected ideas) could be constructed from simple 

ideas (more primitive sensations) by a process of learning through connection or 

association. In common with the other empiricists, he rejects innate ideas because they 

mean fixed association but he differs in his description of the process of learning 

through association. He claimed that there are no fixed rules for recombination (of 

simple ideas) by the mind. Rather, there exist certain guiding principles related to 

resemblance, continuity in time or space and cause and effect — principles which can 

be regarded as the non-necessary non-compelling heuristics which must be introduced 

in order to overcome any inductive ambiguity19. (Cf. Chapter 6).

From Plato, then, we have the idea of Form which emphasises properties (predicates) 

and function over substance20, and also the rejection of the real existence of particular 

objects. This leads to the recognition that perception involves relationships between 

groups of observations or measurements of predicates — this is the only way we can 

come to know anything. Conversely, what we perceive with our senses are not objects 

or sense data, but simply observations based on previous experience of similar 

observations21. In truth, Plato’s concern was principally with the nature of reality and 

what we are doing here is carrying over his ideas to a view of the nature of 

perception. From the conceptualists on the other hand, we carry over Hume’s ideas on 

(an extra-logical) inductive association of particular observations to form perceptions. 

In addition, we get the notion that the visual sense only has a particular perception -  

not an abstraction with fewer predicates — but that this particular perception can be 

used qua a universal.

19Hume’s "guiding principles" might be the early precursors of our modem information processing principles, 
like the Hebb-type rules, or Linsker’s infomax principle, or Barlow’s ideas on reliable, non-redundant 
communication elements.

20We are not particularly interested here in the source of these Forms according to Plato, or their status as 
"objects". It is the use of the Forms which is instructive in terms of developing an understanding of 
perception.

2IW e  return to discuss the implications of the regress involved in this idea later.
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It may seem trite to say this, but in modem parlance, this view is in essence that 

perception involves the communication of signals, and the processing of these signals 

so that decisions can be made on the basis of them. The nature of these decisions is 

not determined by the properties of the physical world alone (that is, the existance of 

objects with given properties), but by the nature of the perceptual system whose 

structure is compatible with a particular physical world, and whose particular decisions 

about what is to be perceived, are triggered by signals from this world. What we 

would like to know is, what is an appropriate architecture for such a perceptual 

system, and what are the information processing principles which give it its structure, 

consequent on past experience (particularly at critical times)? That the above 

discussion on objects and universals needs to be entertained at all, in order to arrive 

at this conclusion about signals and decisions, is indicative of the somewhat confused 

thinking that characterizes the representational position.

The antithesis to the position taken above on the role of the universal in the processes 

of perception, centres around the real existence of particular objects, which can only 

be seen one way — the way they objectively are (i.e. objectivism). Seeing then 

involves regenerating some explicit internal representation of the nature of these 

objects, mediated by objective (though possibly ambiguous and noisy) information 

about their nature (i.e. representationalism). In classical philosophy, this was 

effectively the nominalist position, which though anti-realist, curiously shares much 

with Aristotle’s emphesis on substance. Watanabe shows how the purely logical 

extrapolation of nominalism is untenable, and it is to this subject that we turn in the 

next section.

2.3 Similarity and Radical Nominalism

The notion of resemblance or similarity used by Hume deserves some examination. 

Hume makes it clear that he does not mean that the notion of similarity is a necessary 

device for producing association. While the notion of similarity reflects nature, he does 

not claim that it is innate (and therefore fixed), nor that it is always correct Rather, 

he says that it is the product of mental habit, and attributable to human nature which 

he does not claim to explain.
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Most modem pattern recognition is based on some form of similarity theory — the 

commonsense view of classes as a collection of particular similar objects. That is

(i) what really exist are particulars, not universals;

(ii) the particular objects in a class are bound together by similarity.

Here, the non-necessary, non-compelling induction associated with Hume’s notion of 

similarity is often forgotten — or replaced by a heuristic device which is not always 

made explicit. It is interesting to note how heavily this view of pattern recognition is 

based on the Aristotelian philosophy of the reality of particular objects — the idea of 

a fixed neutral object-predicate relationship and the existence of natural kinds. We 

have already mentioned some objections to these Aristotelian ideas. Further objections, 

some counter-examples and a thorough discussion on the ill-defined nature of the

notion of similarity can be found in [19, Chap. 3].

2.3.1 Theorem of the ugly duckling

There is, however, a more serious problem with similarity theory, than objections to

the reality of particular objects and the lack of a consistent definition for similarity. 

Even if a set of particular objects is assumed and a similarity relationship defined in 

a suitably restricted domain, it can be shown that there is no logical or empirical way 

to distinguish any pair of objects or subsets of the set of objects. Using logical 

connectives and deductions only, all objects look equally similar.

This somewhat startling result comes to us in the form of the quaintly titled "Theorem

of the Ugly Duckling "22. This theorem states that:

Insofar as we use a finite set of predicates that are capable of distinguishing 
any two objects considered, the number of predicates shared by any two 
objects is constant, independent of the choice of the two objects. [19, p.82;
47, p.376]

The use of the number of predicates shared (simultaneously affirmed or denied) as a 

measure of similarity does not restrict the range of validity of the theorem. This is 

because any given definition of similarity on a finite set of distinguishable objects can 

(if necessary using an arbitrary degree of quantization of continuous variables) be used 

as a basis for a similarity measure of this form. According to Watanabe this theorem

22The title seems to arise from the fact that logically, and on the basis of empirical data only, a swan and 
a duck on the one hand, or two swans on the other, (insofar as they are distinguishable) are equally similar.
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is simply a rigorous expression and logical implication of a radical form of 

nominalism-, there is no such thing as similarity or dissimilarity as far as a logical 

treatment or empirical data are concerned. Any general concept is applicable to any 

arbitrary set of objects.

Clearly this cannot be the whole story. The existence of all intelligent life is based on 

notions of similarity, classification and generalisation applied to the natural world. The 

ability to make and use (and possibly share) mental concepts and generalizations is 

probably a necessary characteristic of intelligence. Even the conditioned reflex 

described by Pavlov and others requires some form of generalization (presuming the 

ability to discriminate different stimuli). There must be some method of escape from 

the "booming buzzing confusion" imposed by this radical nominalism. The problem 

does not seem to lie with the particular objects and the definition of similarity. We can 

quite easily apply measures based on a suitable definition of similarity in a restricted 

problem domain and derive useful generalizations or classifications. The fact that 

serious problems arise when we tiy to carry over our generalizations or classification 

processes to logico-deductive systems, (which computers implement), indicates the 

source of the difficulty. The proof of the Theorem of the Ugly Duckling is based on 

a logical treatment of empirical data. What we need is some extra-logical or 

extra-evidential elements to the argument for measures of similarity. That is, we need 

some predicates to be more important that others or some predicates to be 

incompatible with (and therefore to interfere with) others. The latter case is a denial 

of the suitability of an Aristotelian or Boolean logical framework for a formulation of 

the problem of similarity. This is examined further is Chapter 6 below.

2.3.2 Axiology and radical nominalism
But we do not need to go to this extreme to defeat this form of radical nominalism. 

Within an Aristotelian framework it is sufficient to allow the introduction of a scale 

of importance of predicates such that the resulting classifiers are useful, or have some 

value.

To be similar may be to share more of the important predicates. But, how 
can we evaluate the scale of importance? To answer this question, we have 
to reflect on the reason why we use similarity and classification in life. The 
answer is because it is useful, In other words, our scale o f importance must 
be such that the resulting classifications carry utility or value. We can
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overcome the radical nominalism only by axiological considerations. I do 
not hereby mean any ultimate value, but various instrumental values towards 
more fundamental ends. [19, p.84]

Watanabe considers that mathematically each predicate must be assigned a different

weight (what he calls a preferential pondération) that varies depending on the use that

is going to be made of the resulting classification. He uses an "entropy"-type function

to measure the distribution of these predicate weightings, concluding that we can only

see similarity, and hence grouping of objects, if there is an "uneven" emphasis on the

empirical data about objects:

epistemology can subsist only through its interaction with axiology. It will 
be deprived of its major function, concept formation, if it relies only on 
observational experience and logical manipulation. What makes cognition 
possible is the evaluative pondération, whose origin is aesthetic and 
emotional in the broadest sense of the term. [19, p .88]

In the case of sensory perception of animals, inter- and intra-sense scales of 

importance (what Watanabe refers to as "value-orientated pondération") must surely 

have been dictated by the value of individual survival. There can be no logical 

justification for such a scale of importance however. Neither can there be a 

justification based simply on the empirical data gained from testing predicates. Like 

the tautology in Darwinism: "the fittest are those that survive", the importance of 

predicates have no more justification than that ascribed by the mechanics of evolution 

or the aesthetics of a computer programmer.

2.4 Induction and Deduction
We have already met a number of cases of the ideas expressed by the adjectives 

‘non-logical’ and ‘inductive’, being applied to processes. Examples are Hume’s "gentle 

force which commonly prevails, ... a non-necessary, non-compelling advice" and 

Watanabe’s "axiological" overcoming of radical nominalism. Similarly the process of 

paradigm-oriented pattern recognition is an inductive process, as a classification (the 

application of a universal concept to a possibly infinite number of objects) is made by 

generalization based on a finite number of examples. There have been many attempts 

to properly define the nature of inductive inference and to elucidate rules for the 

application of such inferences. We examine some of these here.
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2.4.1 Induction and evidence
A definition of induction which would probably find most general agreement is one 

which says what induction is not: induction is the opposite process to deduction, i.e. 

any inference whose premises do not logically entail its conclusions. The following 

definitions are also often used: deduction is the derivation of particular facts from a 

general rule and induction is the derivation of a general rule from a finite number of 

particular facts. Alternatively the distinction is defined as one between logical or 

demonstrable inference and probabilistic and non-demonstrable inference [19, p.97]. 

There are problems with both of these definitions. In the latter case there does exist 

a probabilistic deduction and a logical refutation (called "infirmation" [44]) in 

induction. In the former, the emphasis on particular and general belies the real nature 

of induction. The following inferences illustrate some of these points. (Here H  stands 

for the hypothesis or general rule assumed; A for an auxiliary fact and D for an 

experimental datum)

H: John is a boy.

A: John has brown hair.

D: John is a boy with brown hair.

H: All cars have wheels.

A: All wheels are round.

D: All cars have round wheels.

H: Bill is a boy.

A: Bill has brown hair.

D: Some boys have brown hair.

H: All emeralds are green.

A: Everyone has an emerald.

D: My emerald is green.

Of these four inferences [54], the first has specific premises and a specific 

conclusion, the second has general premises and a general conclusion, the third has
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specific premises and a general conclusion, and the fourth has general premises and 

a specific conclusion. All four are deductively valid inferences.

Now consider the following:

H: Men are mortal.

A: Socrates is a man.

D: Socrates is mortal.

D: Socrates died, Plato died, Wittgenstein died, etc.

A: They are all men.

H: Men are mortal.

H: A man is, with probability of 95%, right-handed.

A: Mr. X is a man.

D: Mr. X is, with probability of 95%, right-handed.

D: 95% of men examined were found to be right-handed.

A: They are non-biased random samples of men.

H: Men are, with 95% probability, right-handed.

Of these four inferences [19, p.98], the first is deductive, the second is inductive, the 

third is a probabilistic deductive inference and the fourth is a probabilistic inductive 

inference. The point that is being emphasised here, is that the distinction between 

deductive validity and inductive strength lies not in the generality or specificity of the 

premises and conclusions, but instead lies in the evidential relationship that exists 

between them.

On this point of the evidential relationship between hypothesis and conclusion 

Watanabe criticises Carnap’s theory of induction which is based on the so-called 

"necessary view" of probability also associated with Keynes [19, p. 102]. According 

to this view there is one and only one relation — called a probability relation — 

between any two propositions (as the premises and conclusion of a probabilistic 

inference). This relation is a numerical value and depends only on the connections
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between the two propositions and not on any human opinions or on any other factors 

outside these two propositions. Thus, Carnap introduced the probability c(h,e) of a 

hypothesis h, which is a function of the relationship between the hypothesis h and the 

relevant evidence e only. That this view of the relationship between hypotheses and 

evidence is completely untenable is shown below.

2.4.2 Probabilistic interpretation of induction
One way of discussing notions of deductive and inductive inferences is to adopt the 

standpoint of a personalistic foundation of probability (as opposed say to the frequency 

interpretation23 of the formal probability calculus, or the necessary view mentioned 

above). Such personal probability is applicable to reproducible as well as 

non-reproducible events. Here the past record of frequency reflects on the credibility 

distribution and the credibility distribution in turn reflects on the prediction about the 

future frequency. The so-called "objective" frequency view of probability tries to 

eliminate the role of the person who estimates the probability and makes the 

prediction.

In the case of inferences expressed as propositional inferences (if (hypothesis) and 

{auxiliary fact) are true, then the (deduction) follows), we need to assign probabilities 

to each proposition of the three categories. The probability of A is usually assigned the 

value one as it usually represents a fact. Then the deductive probability, which can be 

described as the probability of occurrence of the empirical event D based on the 

assumption of H and A, is given by p(D ¡HnA). In the case of a logical deduction as 

opposed to a probabilistic induction, this probability takes one of the values zero or 

one. The inductive probability or credibility of a hypothesis p(HfDnA) is the degree 

of confidence we place in H on the basis of D and A. Using Bayes’ theorem we can 

rewrite this as

p(H /D rA) = p(D /H rA) . p(H)

“The frequency view of probability can only be used in a roundabout way to discuss induction. See [47, 
pp.350-351] for objections to the frequency view of probability. The personalistic view, which involves a 
behaviourally observable way of measuring subjective probability is also described in this reference 
[pp.352-361].
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where p(H) is the degree of confidence we place in hypothesis H without taking into 

account the evidential factD and the auxiliary fact A. Thus p(H fDc\A) can be thought 

of as an a posteriori inductive probability, while the personalistic probability p(H) is 

the a priori inductive probability.

Hume is often credited with proving on logical grounds that induction does not exist 

(see for example [44, p.51]). In fact Hume was interested in the connection between 

cause and effect which like the universal, he believed, was not a necessary connection, 

but was based on an association in the mind created by "habit". What he recognized 

was the same origin for the formation of universal ideas and the formation of general 

rules by induction, thus showing that induction has no logical foundation.

At this juncture it is probably appropriate to comment on Popper’s views about 

induction [44, p.20]. In short, Popper believes that there is no such thing as induction. 

To be fair however, there are two ways in which Popper’s notion of induction differs 

from that used here. Firstly he uses the word induction to mean logical induction, and 

as by definition there is no logical induction, his statement is true, even if at odds with 

the accepted use of the terminology. Secondly, when Popper talks about induction he 

is really talking about the scientific method, the acquisition of scientific knowledge 

and the place in this process of scientific theories. While Popper does not admit a 

process of indication, or proof by induction24 he proposes what he refers to as 

infirmation. This, in fact, amounts to a logical refutation in induction: if a hypothesis 

states that a phenomenon will not occur and it does occur then the hypothesis is 

rejected. This can be clearly demonstrated with the Bayesian formula given above: if 

p(D /H rA) = 0 (the evidence contradicts the hypothesis) then p(H /D rA ) = 0 (the 

hypothesis is wrong). There is no need for the personalistic a priori probability p(H) 

in this process of infirmation or refutation, just as it is not relevant in constructing the 

deductive probability p(D /HnA).

It is argued here however, that induction in general is not restricted to this particular 

process of infirmation — whatever its merits in scientific discovery. Hume recognized 

the process of confirmation by positive evidence and the work described here is based

^Th e m athem atical case is a d ifferent use of the term  induction
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on the assumption that some such process operates as the basis of sensory perception. 

Again the Bayesian formula allows the process to be clearly demonstrated: the larger 

the deductive probability p(D jH rA), then the larger the inductive (a posteriori) 

probability p(H/DnA), if the a priori probability p(H) remains the same. The a 

priori (in the sense of prior to the evidential fact) probability p(H) does influence the 

evaluation of a hypothesis p(H /D rA), but in a extra-evidential, extra-logical way. 

The quantitative strength of this factor can never be uniquely, logically and universally 

determined. To this extent there is always remaining inductive ambiguity. This effect 

is easily seen in the case of scientific discovery and theory building. If experiments 

are repeated, particularly in an effort to refute a theory (infirmation), and all 

experiments continue to support the theory within the calculated margin of error, then 

the effect of confirmation will tend to overwhelm the a priori factor even if this theory 

is considered particularly unlikely (p(H) is small). However, insofar as the body of 

evidence is always of finite size we can always change the value of the a priori factor 

to counteract the evidential factor. This would be the case for example if a rival theory 

were proposed which was much simpler or more consistent with an existing 

framework. In this case p(Ht) for the first theory would become smaller, and p(H2) of 

the newer more pleasing theory would be larger than p(Hj).

In this context it may be useful to introduce to the discussion a notion about scientific

theories which we draw on below in the discussion of perception. Basically, this view

is that there is no such thing as truth in science. Any theory is just a useful model to

correlate the facts. Zukav’s direct style puts the idea very well:

So much for the relationship between the 'truth’ of a scientific assertion and 
the nature of reality. There isn’t any. Scientific ‘truth’ has nothing to do 
with ‘the way that reality really is’. A scientific theory is ‘true’ if it is 
self-consistent and correctly correlates experience (predicts events). In short, 
when a scientist says that a theory is true, he means that it correctly 
correlates experience and therefore, it is useful. If we substitute the word 
‘useful’ whenever we encounter the word ‘true’ physics appears in its proper 
perspective. [50, p287]

A similar substitution — using ‘useful’ for ‘true’ — puts induction, particularly in

perception, into proper perspective. Induction is not a necessary logical progression.

Any particular inductive step (or inductive jump, or decision) finds its justification not

in how it was achieved, but in how useful it is. An induction is no more true (in the

sense of necessarily following from reality) than any scientific theory is true. As soon
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as a more useful theory comes along [55] confidence in the original theory 

wanes.25

2.4.3 The necessary view of probability
Returning to the discussion on the relationship between probability and induction, the 

Bayesian formula above also helps to clarify the flaw in Carnap’s necessary view of 

probability. In the notation used here, the probability of a hypothesis based on the 

relationship between the hypothesis and the relevant evidence e, c(h,e), is given by 

p(hje). Now

p(h/e)p(h) = p(hfe) = p(elh)p(e) 

but before using this probability relationship it is necessary to determine which of the 

five probability distributions are determined by the nature of the problem. If the joint 

probability p(hcw) (which completely describes the relationship between the hypothesis 

and evidence) is available, then all of the remaining four probability distributions are 

implicitly contained in it and can be directly derived by straightforward computation.

However, instead of computational processes based on the joint probability, what we 

usually have are inferential processes (inductive or deductive) based on the conditional 

probabilities. That is, only one of pfhfe) or p(ejh) is determined by the nature of the 

problem. In the case of deduction, the deductive probability, p(elh) is determined by 

the relationship between h and e: from a hypothesis we can make logical predictions 

about experimental data, without any further considerations of probability. In the case 

of induction however, logical predictions of hypotheses based on evidence cannot be 

made. The inductive probability p(hje) is given instead by p(e /h)p(h)/p(e). It also, 

therefore, depends on the prior probability of h, p(h). This prior probability is 

independent of the relationship between h and e. If p(hje) is determined by the

“The process of generating new hypotheses or theories and assigning a non-zero prior probability has been 
referred to as abduction by Peirce [55]. Little is known about the process except that certainly in the case 
of scientific theories it is very difficult to think of even one new hypothesis. It is possible that the process 
of generating new hypotheses is related to the process of analogy or the idea of metaphor. These are 
probably tempered by the logical consistency of the mind’s theoretical structure and particularly by the 
aesthetic harmony between different parts. In any event the mind cannot generate all possible hypotheses 
arising from a particular problem structure — the choice of those actually placed for evaluation is made in 
a highly contingent fashion. In [30] Varela comments on the complete absence of common sense in the 
representational position within cognitive science. In this view the aim is to successfully represent an external 
world which is pre-given. Yet, according to Varela, precisely the greatest ability of cognition is to pose the 
problems to be addressed at any given moment. See the relevant quotation from Varela in section 1.3.1 
above.
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problem we cannot also arbitrarily determine p(e/h) because variations in p(h) would 

allow this factor to immediately contradict the given value of p(hfe). All that can be 

determined along with p(h/e), without being open to contradiction, is p(h). Thus 

Carnap’s assumption that c(h,e) is determined by the necessary relationship between 

h and e cannot be correct Even though the Bayesian formula is symmetric, there is 

a fundamental asymmetry in conditional probabilities. c(h,e) should include the 

extra-evidential evaluation embodied in p(h).

2.4.4 Abduction
The over-riding question with inductive inference is exactly what process or 

‘reasoning’ allows the inductive jump or decision to be carried out. That is, induction 

is not necessary (logical), nor is it based solely on the available evidence or theoretical 

structure, nor is it even always correct. Yet induction demonstrably happens and is 

usually useful to the organism that makes the generalization.

One possible presumption is that there exists a set of extra logical extra-evidential 

guiding principles (like that of the principle of simplicity), which — though giving no 

guarantee of the "correctness" of an inductive conclusion — do allow a tentative 

evaluation of p(h). This factor, which often leads to the successful progress of an 

inferential process, is called a heuristic. Whether or not organisms have a fixed set of 

heuristics, the products of accidents of evolution, (consistently useful heuristics help 

survival) is not known. Another possibility is that the mind has the ability to generate 

heuristics to satisfy particular requirements. We return to the topic of induction to 

discuss the various types of induction involved in pattern recognition in section 6.4 

below. The notion of minimizing entropy as a heuristic for overcoming inductive 

ambiguity in pattern recognition is discussed in section 4.5.

2.5 The Purpose of Perception
The status of the assumption that it makes sense to consider such things as perceptual 

systems has been alluded to above. The discussion on the nature of the universal, and 

its role in perception, certainly assumes that this is a valid assumption. The more 

recent work of Maturana and Varela, and more generally the so-called deconstructivist 

school of western metaphysics associated with names like Heidegger and Derrida, 

takes a very different position to the traditional one. It emphasizes what Varela refers
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to as the "surplus of signification", the additional significance brought to a physical

world (or enacted) by cognition, and the intrinsic circularity or reciprocal causality of

the neuro-logic of cognition [26]. In the traditional representational view, strongly

embodied within the computer/robot vision community, perception — particularly visual

perception — is considered as something which allows greater control over action. The

primary direction of information flow is considered to be from scene to sensory system

to motor system. The picture suggested by Varela and his collegues turns this idea

almost on its head. Here action is considered primarily as the control of perception,

and information (devoid of the semantic connotations of representationalism) is

considered to flow equally from sensorium to motorium, and vice versa.

The fundamental logic of the nervous system is that of coupling movements 
with a stream of sensory modulations in a circular fashion. ... the state of 
activity is brought about most typically by the organism’s motions. To an 
important extent, behavior is the regulation of perception.

In fact, in the sort of operational explanation appropriate for discussing the

organization of a cognitive system, there will be no mention of information. The

description will instead involve just circular or cooperative dynamical interactions

between the sensorium and motorium within the cognitive system (which give it its

properties), and the circular dynamical interaction between the motorium and

sensorium, which are mediated by elements of the external physical world (and which

we describe as behaviour).

The neuronal dynamics underlying a perceptuo-motor task is, then a network 
affair, a highly cooperative, two-way system, and not a sequential stage-to- 
stage information abstraction.

We do not attempt here to situate our discussion solely within this alternative 

viewpoint, though clearly our sympathies are strongly aligned with it. Our objectives 

here are more of a transitional nature: promoting the transition away from the 

traditional picture, by examining some of its shortcomings, and attempting to describe 

alternatives. Our approach attempts to use the language and terminology of the 

traditional or conventional position and make the corrections or point out the 

difficulties as required. The starting point for the Maturana and Varela position is a 

radical and complete break with the ideas and terminology adopted heretofore, and it 

is sometimes difficult to see at exactly what point the traditional picture breaks down. 

If both the ideas presented here and the Maturana and Varela position are correct,
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there should be some convergence, and every attempt is made to point out the 

parallels, where applicable, but our aim is not simply to present arguments which 

support lets say, the autopoietic position.

2.5.1 The eye/camera analogy
The eye and the video camera (the so-called "electronic eye") are often the subject of 

a superficial comparison. It is interesting to examine the limitation of this analogy as 

a means of emphasising the actual role of the eye [11,56]. The functional analogy 

probably has its roots in the discovery of the image-forming properties of lenses, and 

observations by natural philosophers such as Descartes of structural similarities with 

the image-forming optics of the single-chambered eye. The image-forming, 

single-chambered eye is, however, just one of an intriguing collection of adaptations 

which serve as the transducers for a visual sense [57]. The compound eye, for 

example has similar spatial discriminatory capacity to the single-chambered eye, yet 

does not form any type of projected "image" in the conventional sense. Taking the 

collection of different "eye" types as a whole, the function of the eye becomes much 

clearer. It is to maximize the amount of information available from the changing optic 

array needed to guide the animal’s or the person’s actions26.

The purpose of a camera is to produce pictures to be viewed by people. It is to 

reproduce as accurately as possible either a single "snap-shot" of, or a continuous 

stream of "snap-shots" from, some part of the optic array27. The camera is thus 

principally characterised by the quality of its optics. By comparison, the 

image-forming optics of the single chambered eye are of extremely poor quality. As 

well as optical and chromatic aberrations causing blur, there are lens and corneal 

aberrations which cause distortion of the image. There is also the curvature of the 

retina which means that straight lines are curved and metrical relations in the image 

do not correspond to those in the external world. Apart from the small area 

corresponding to the fovea which accounts for less than 1% of the retinal area, the

Recall that in line with Varela’s view on the role of "information” in explanation it is possible to use the 
term in a pedagogical or expositional way as long as we do not assume that this is operational for the 
system.

^Computers can even help in this process by making changes to visual data — enhancing or "cleaning up" 
an image —  which eases the task of the viewer.
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light sensitive elements are spaced in a fairly irregular pattern. The average spacing 

of the daylight sensitive cones changes by two orders of magnitude over the surface 

of the retina. Finally, the retina is overlaid by a matrix of blood vessels and there is 

a relatively enormous hole (the blind spot) just off-centre in each retina where the 

ganglion cell axons exit. The single chambered eye then, is not characterized by its 

image quality, but by its ability to move, to adapt, and to transmit an incredible 

amount of information to the brain, considering the nature of the components of which 

it consists.

Although all these factors cause predictable distortion of the retinal image and it 

might, in principle, be possible to correct for them, producing a better representation 

of the external world, this approach would betray a misconception of the rationale 

behind the function of the eye. The process of extracting information from the 

changing optic array has already begun in the retina. What is transmitted to the visual 

cortex along the optic nerve is not a "neural image". It is a highly non-redundant set 

of physical signal measurements28 extracted from the visual patterns formed on the 

retina. In fact it is not even a transformed image in the sense of a synchronized set of 

data. It is a continuous flow of information, where information concerning 

simultaneous events on the retina can actually reach the cortex at very different times 

depending on the nature of events.

2.5.2 The status of functional explanations of perception
This discussion emphasises a point also made by Francis Crick [57] about the brain 

as a whole. We must be very careful about interpreting what any part of the brain is 

doing because:

the brain handles information in ways quite different from those we might 
have guessed a t ... we are deceived at every level of our introspection ... our 
capacity for deceiving ourselves about the operation of our brain is almost 
limitless.

This is a point the author believes cannot be emphasized too much. It is interesting to 

try to interpret the function of a particular part of the eye or brain. The brain however, 

is so vast and so complex that such interpretations must be tentative to say the least.

“Measurement is used here in the normal engineering sense rather than in the quantum mechanical sense 
used elsewhere in this report.

58



We must be careful not to claim that such and such an interpretation is all that is 

going on. There are two reasons for this. Firstly, to claim on the basis of introspection, 

neurological data or mathematical arguments that early biological vision processes 

"look like" edge detection or feature detection or Fourier analysis does not mean that 

one or more of these must be the first step in a computer vision implementation. That 

is an abuse of the role of metaphor. Marr shows that he was sensitive to this point (see 

e.g. [9, p.348]) but his notions of computational theory, representation and separate 

levels of analysis are particularly susceptible to abuses of this type.

A second, even more fundamental reason is pointed to by Varela [26,24]. This is that 

our descriptions of the functional role of aspects of a living system are based on our 

access, as observers, to both the system and its environment. But the concepts which 

we use to describe the interactions between the system and its environment arc 

privileged to us in our role as observers — the system does not have access to them 

and they are not operational for the system. The system only has access to its world 

through its interactions with what it is not. Whatever in its world is important to it, is 

not so because of any objective intrinsic importance of the thing in itself (objectivism 

or representationalism), or because the system has "decided" in complete isolation to 

assign importance to it (solipsism). Instead the system and its world are the result of 

the history of the system’s interactions with its world in the ongoing maintenance of 

its (the system’s) identity. What in the system’s world is important to it, is not 

necessarily important, or even necessarily accessible, to us in our world consisting of 

the system and its environment. We do not necessarily have access to the system’s 

perception of its world (as we would if there was an objective, well-defined fixed- 

information world), nor does it have independent channels of access to its world other 

than through its interactions as a result of its operation [26].

Marr emphasised the role of constraints in the discovery of the appropriate 

computational theory for visual perception [9, p.23]. There are two problems with his 

use of constraints in this way. The constraints are usually formulated in a framework 

which encodes our biases. They depend on the pre-existence of a perceptual system, 

ours, without which they have no meaning. They exist because of "assumptions" made 

by our perceptual system in overcoming inductive ambiguity, not as a causal reason 

for these assumptions. This point is just a rephrasal of the objections to the
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Aristotelian object-predicate notions. Because the visual system has found it useful to 

"code" the external world in this way, this does not mean that this is the way the 

external world is. It is, so to speak, a useful illusion created by the system, not the 

modus operandi of the system. A more practical problem associated with the use of 

constraints to discover a computational theory is that of the sufficiency of the 

constraints. It is very likely that in all but a few reasonably trivial cases, such as the 

cash register example that Marr uses [9], the computational theory will be 

underconstrained by the available knowledge of what the system must achieve. Thus 

further unjustified biases enter the problem through the introduction of heuristics to 

overcome the ambiguity in solution. The assumption that we can understand the direct 

computational theory of a perceptual system — "what is being computed, and why and 

that this is in some sense sufficient" is in the author’s belief, a dangerous assumption 

which has yet to be justified.

2.5.3 An approach to understanding perception
A much more cautious, and we believe in the longer term, more profitable approach 

is espoused here. This approach does not presume that we know what the end-point 

of perception is. (The notion of an end-point to perception, such as a 3-dimension 

representation, may not even be well-defined). Nor does it presume to know how the 

so-called "output" of perception is related to action. It recognizes that all perception 

has to work on at any time is previous perceptions and an information processing 

system with suitable "dispositions". Concepts of space and time, of objects and depths 

and 3-D representations are not innate; nor can they be proved to be really as we 

conceive them. They are simply our limited conception of what our perceptual system 

is doing based on interpretative mechanisms provided by our perceptual system. What 

is real, is the coordinated activity of layers of neurons, their development and adaption, 

the structure of their maps, their relationships to their neighbours — and more 

fundamentally -  why things are this way. That is, not "why?" in the sense of 

"top-down" and imposed computational theories and representations, but "why?" in the 

sense of the only thing that perceptual mechanisms deal with — data signals transduced 

from the external world, and their own organisation at any particular moment This 

change of philosophy is summed up quite succinctly by H.B. Barlow:

... for detecting global, or non-local, properties a form of representation is
required that brings signals of the events to one locus in the cortex where
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ever they occur at the sensory surface, and to do this non-topographical 
mapping is required. In this way the whole cortex acquires its unity again, 
for it all becomes association area, and the primary projection areas with 
good topographic maps are simply regions specializing in the detection of 
local association. This is an important change of viewpoint, for the natural 
question to ask about a particular cortical locus becomes ‘What types of 
information are brought together here?’ rather that 'What is represented 
here?’ [16]

From this point of view, a knowledge of the constraints or limiting factors on a real 

perceptual system (rather than its imagined computational equivalent) convey much 

more about the nature of the information processing problem. We shall see that very 

interesting inferences can be drawn from such things as the regularity of receptor 

spacing in the fovea and periphery of the retina; the number of ganglion cells 

compared to the number of receptors; the information capacity of neurons; the 

connectivity of the cortex and so on. Fundamental to all of this must be the following 

realization: Regardless of the length of time over which a species has evolved to its 

current form, its perceptual system is not simply an ad hoc assemblage of components 

with suitable properties engineered to implement a computational theory which has 

been found to be useful. There simply are not enough variables in genes, nor enough 

generations in the evolutionary time-span to discover and specify arbitrary perceptual 

systems and brains in this way. Rather there must be underlying 

information-processing principles which have been discovered by evolution and which 

can be exploited to a greater or lesser advantage by each individual species depending 

on its biochemical makeup and its ecological niche. These information processing 

principles rather than a high level computational theory are what would be common 

across species and across perceptual modalities. These are the goals of our research 

— to recognise the importance of their existance and the nature of their operation.

In 1979, Francis Crick [57], one of the discoverers of DNA, warned of two dangers 

which must be avoided in constructing a general theory of the brain. One is the fallacy 

of the homunculus which is discussed below, the other is the fallacy of the "overwise" 

neuron. If a computational theory is claimed to be any more than a "commentary" on 

an evolved information processing system, it has fallen foul of one aspect of this latter 

danger. In an attempt to understand and reproduce perceptual systems, such as a visual 

sense, or particular modalities such as stereopsis, we should not presume to know or 

be able to discover all there is to know about sensing in that particular way. Our
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guesses and our framework are hopelessly biased. Instead we should try to discover 

the constraints on existing visual systems and their underlying information processing 

principles. We should try to discover what information is being brought together at a 

locus in the system, taking care not to attribute too much to capabilities of any 

particular components or subsystems. It is with these ideas in mind that we examine 

information processing in the retina and cortex in the following chapters.

2.6 Summary
The ideas of object-predicate inversion introduced by Watanabe are extremely useful 

for pointing out an alternative way of addressing the perception of an external world. 

In particular we have tried to argue for the view that objects are not directly perceived 

but rather are artifacts of our perceptual mechanisms which are mediated by the 

observation, measurement or evaluation of predicates. This in turn leads to the 

assertion that the nature of perception is one of relationships between predicates which 

is discussed further in chapter 7 below. In addition we see that the only way of 

overcoming the radical nominalism inherent in a completely logical empirical approach 

to pattern recognition is to in some sense associate a value or level of importance to 

predicates and this notion of value or usefulness is one to which we return again. 

Finally in a discussion on the nature of the camera/eye analogy the fallacies of the 

homunculus and the overwise neuron were implicated in some of the misconceptions 

about the role of the visual system.
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Chapter 3

3 Natural Visual Perception: The Retina

3.1 Introduction
Just over a century ago Ramon y Cajal published his first studies on the retina using 

the Golgi method. Because of its orderly organization in alternate layers of cell bodies 

and intercellular contacts and the easy identification of the main direction of the 

nervous message flow, Cajal was able to draw important conclusions about the basic 

organizational principles of the nervous system. These led directly to his theories of 

the neuron doctrine and "dynamic polarization" of nerve cells which are the basis of 

modem understanding of the information processing function of the neuron [58]. 

Over the intervening 100 years, the retina (which developmentally is part of the brain) 

has continued to be a focus of great interest in terms of its anatomy, its physiology 

and the processing functions which it contrives to carry out on the incoming visual 

data. Much of the earlier work on electrophysiology (directly monitoring the activity 

of single nerves) was carried out on the compound eyes of invertebrates, because of 

the difficulty of using similar measurements on vertebrate eyes. Lately many of the 

gaps have been filled in with work on the eyes of higher animals including cats and 

monkeys and, as we shall see, the basic information-processing functions carry over 

with only minor modifications and extensions.

The relevance here of this material is that because the structure and function of the 

retina are quite well understood, and quite well explained in terms of signal and 

information theoretic considerations, we are given an insight into the constraints that 

these early parts of the visual system need to satisfy and the information processing 

principles that they might use to satisfy them. The importance of a thorough 

understanding of the concepts that underlie the operation of any part of a neural 

system cannot be over-emphasised. Otherwise any attempts to model these systems 

amounts to little more than mimicry. An example of the type of problem is the 

arguments used by Marr [9, 59] and others to justify a theory of "edge-detection" 

on the basis of what seemed to be the function of the ganglion cells in the cat retina. 

This theory ignored an amount of relevant data which was available even then. This
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data indicated that edge-detection was at the very least an over-simplification and most 

probably an over-extension of what could be inferred from the evidence (cf. Barlow’s 

"overwise" neuron fallacy mentioned in section 2.5.3). Nevertheless, the same 

arguments continued to be used in the computer vision community for several years 

afterwards.

This does not mean that we should be complacent about the information theoretic 

explanations discussed here. After all, our explanations of the functioning of something 

like a neural system are just that: our explanations, from the privileged position we 

occupy as observers. They are not operational for the system. Thus, attributing the 

property of detecting "edges" to a system is dependent on our ability to generate and 

discriminate the concept of an edge, and simultaneously describe the operation of the 

system with our criteria of discrimination -  they are not properties that are theory 

neutral. On the other hand, information theoretic ideas are at least nearer to the 

operational level of a system than explanations in terms of edges or features, and are 

therefore less tied-up with our particular conception of the way we see the world (our 

world). These ideas are explored with an emphasis on the constraints that are 

responsible for the present form of the retinal structures being examined.

3.2 Retinal Structure
One of the first and most striking discoveries was made by Hartline and Graham in 

1932, recording from the receptors of the compound eye of the horseshoe crab 

Limulus [56, p.34]. They found that the receptor generated an output signal which was 

approximately proportional to the logarithm1 of the incident light intensity [60]. 

This logarithmic compression allows Limulus to see over a 6-7 order-of-magnitude 

range in input intensity (26 octaves) with neurons which have a dynamic range of 2-3 

octaves. It was also found that the receptors’ output activity adapts from an initial peak 

value at the onset of a stimulus to a sustained value after approximately one second 

— both peak and sustained values being related to the logarithm of the intensity. Thus,

'There has been some debate as to whether there are theoretical reasons why a log compression should be 
used and if the compressive process in biological vision systems is best approximated by a log. It seems that 
in any case, the actual function is different for different species, and different light levels, and is often best 
modelled as a power law [60, 11].
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slow temporal changes in light intensity such as those due to diurnal fluctuations, are 

filtered out and cannot be seen.

Similarly Hartline et al discovered in 1956 [56, p.36] that slow spatial change in light 

pattern across the eye are also ignored. The mechanisms which are mainly responsible 

for implementing these filtering processes are mutual lateral inhibition (effectively 

high-pass spatial filtering) and self-inhibition (effectively high-pass temporal filtering).

Light

O ptic nerve fibers

G anglion ceils

Inner synaptic layer

A m acrine cells 
B ipolar cells 

H orizontal cells

O u ter synaptic layer 

Receptor nuclei

Receptors 
P igm ented layer 

(Epithelium  cells)

Figure 2. A highly schematic cross-section through the vertebrate retina. Note that the 
light passes through the semi-transparent layers of neurons before being detected by 
the photoreceptors. Adapted from [9, p.338].

The vertebrate retina is more complex than the arrangement of neurons in the 

ommatidia of compound eyes of invertebrates [56, p.39, 61]. In information
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processing terms however it still has much in common with these. It generally consists 

of three layers of nerve-cell bodies separated by two layers containing synapses made 

by the axons and dendrites of these cells. The first cell layer, nearest the back of the 

eye consists of the light receptors — the rods and the cones. The middle layer contains 

the bipolar cells, the horizontal cells and amacrine cells. The bipolar cells receive 

input from the receptors and feed their output to the third layer of cells — the ganglion 

cells which output directly to the brain. The bipolars are part of what is described as 

the direct path, linking receptors to the output of the retina produced by the ganglion 

cells. As well as this direct path of information flow, there are two lateral pathways. 

In the outer plexiform layer the dendrites of horizontal cells (which, usually, have no 

axons), form synapses with receptors and bipolars cells and "gap-junctions" with each 

other. In the layer of connections nearest the front of the eye, the inner plexiform 

layer, the processes of the amacrine cells, interconnect with the bipolar axons and the 

ganglion cell dendrites. Some ganglion cells receive their input from bipolar and 

amacrines, some receive input only from amacrines. The axons of the ganglion cells 

pass across the inner (front) surface of the retina, collect in a bundle at the optic disk 

(or blind spot) and exit as the optic nerve to the lateral geniculate nucleus (LGN) of 

the brain.

Probably the most striking facts about the eye are: the number and arrangement of 

photoreceptors; their ability to respond to single quanta of light; and their ability to 

resolve to the diffraction limit. There are about 120 million rods which are responsible 

for vision in dim light and about 6.5 million cones which do not respond in dim light 

but are responsible for our ability to see colour, motion and fine detail in "normal" 

daylight Our principal interest here is in the vision mediated by these cones. Recent 

work has clarified the relationship between the cone mosaic in fovea and periphery, 

the eye’s optics, and neural processing in the retina, in the provision of the acuity 

measured by experiments in visual psychophysics [62]

3.3 Fovea

3.3.1 Foveal acuity
Diffraction at the pupil and aberrations in the optics of the eye cause the retinal image 

to be blurred. Under optimal conditions the point spread function has a diameter of 

about 1 min, of arc. In terms of spatial frequency, the contrast of a retinal image falls
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Figure 3. Contrast sensitivity curves for the cat (left) and man (right). Adapted from 
[11, p .l 18].

by an order of magnitude between 0 and 35 cycles per degree (c/°) and is negligible 

above 60c/°. In the fovea, the blurred retinal image is sampled by an array of cones 

which form an accurate triangular lattice. The cone inner segments (the active sensing 

element) fill most of the area between them. This normally has the dual effect of 

maximizing the quantum catch, (thereby minimizing the photon noise), but also of 

reducing the spatial frequency response because of integration of light across the cone 

aperture. However, with a point spread function of the eye of about 5pm, the 2.3pm 

diameter of the cone aperture means that the blurring due to integration across the 

aperture is small. (Loss of contrast is less than 25% at 60c/°). The minimum 

centre-to-centre spacing between human foveal cones is about 2.8-3.0pm. With a row 

spacing in the triangular2 lattice of 2.4-2.6pm (0.5-0.54 min. of arc) the spatial 

sampling frequency yields a Nyquist limit of 56-60c/° [62]. These measurements have 

been confirmed by the generation of fine laser interference fringes directly on the 

retina of human observers who report the Moiré patterns formed by the cone mosaic. 

The Moiré patterns are coarsest at a frequency of 110-120c/° and can be seen up to

^ e  row spacing is important here because the lowcut spatial frequency gratings that can produce aliasing 
in a triangular array are those oriented in one of the three orientations lying parallel to rows of sampling 
elements.
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frequencies of 150-160c/°. They also show a 60° rotational periodicity and some 

distortion consistent with a slightly irregular triangular lattice.

The fact the Moiré fringes cannot be seen in the fovea under normal viewing condition 

indicates that the eye’s optics remove the higher spatial frequencies from the retinal 

images which would cause abasing. This would suggest that diffraction and aberration 

are the limiting factors on spatial acuity rather than receptor density. The particular 

form of the eye represents a choice between a larger pupil diameter, where diffraction 

would be reduced at the expense of aberrations, or a smaller diameter which would 

reduce aberrations but cause diffraction to limit acuity. Interestingly, it may actually 

be the cones’ size and spacing which are the ultimate limit to spatial acuity, with the 

optics evolving to a stage where they do not interfere with the acuity achievable with 

the minimum cone spacing. Cones smaller that 2pm have never been found, even in 

very small eyes, and there is remarkable constancy in cone diameter over a large range 

of eye sizes [16, 63]. The apparent minimum "allowed" spacing of cones, may be 

required to prevent optical "cross-talk" between the outer segments of receptors. These 

segments are essentially short optical waveguides, with limited ability to retain incident 

light due to the limited refractive index differences in the biochemical materials 

available. Photons captured by one cone could easily cause a photopolymerization (the 

first step in the detection of a photon) in a neighbouring cone, if the spacing were 

sufficiently small. Many structural details of the eye, including the pupil diameter and 

optical quality, may be a consequence of the need to optically isolate cone outer 

segments, rather than the cone spacing being a consequence of the lack of further 

evolutionary pressure from the poor optical quality. The match between the highest 

frequency passed by the eye’s optics and the resolution limit set by the spacing 

between cones at the foveal centre has long been known [64]. This recent 

explanation of which of the two factors, optics or cone separation, is responsible for 

the actual acuity value puts the meaning of acuity in new light [16].

3.3.2 Information processing implications of acuity
Regardless of the particular interpretation of the limiting factor or the eye’s acuity, 

what is clear is that evolutionary pressure has conspired to produce in primates, an eye 

which stretches physical and biochemical processes almost to their theoretical limits. 

Few eyes have higher resolving power, with the exception of some birds of prey such
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as the hawk.3 Yet, even the compound eyes common in many insects have achieved 

similar discriminatory capacity [11, 65]. It seems that remarkably simple neuronal 

systems can derive substantial survival benefit from the vast amount of data, or the 

high level of interactability, which high acuity vision supplies. It is mentioned above 

that the optical quality of the single chambered eye is poor in relation to a simple 

single lens camera. In an optical system where the sensing element spacing is 

consistently pushed to its biochemical limit, not only is the processing system (the 

retina and the brain) well able to deal with the vast amount of data, but it is also able 

to extract useful information from poor optical- and geometrical-quality image 

projections. This fact says quite a bit about neural systems. It indicates that it is 

relatively easy to generate the appropriate neural hardware and get it to interconnect 

and adapt to carry out useful functions. It tells us that while there may be some 

specialist adaptation of neural systems, as in the retina, that largely we should expect 

that neural systems of great power can be constructed with networks of basic neural 

components coupled with general information processing principles widely and flexibly 

applied. We shall see that with the exception of the retina itself, most of the 

information processing apparatus of the cortex seems to be very flexible and based on 

a small number of general information processing concepts. What innate structure there 

is, seems to specify mostly the gross mapping from site to site. This type of mapping 

can and has been subverted [66], exposing the effects of the underlying information 

processing principles4.

As mentioned above, we do have to be careful about using evolution as a prop for our 

theories. Crick warns of the danger of arguing in anything other than the broadest

’The fovcal depression (or pit), where the upper layers are spread aside, exposing the underlying receptors 
to direct light may, in the hawk, act as a further optical element. The tissue of the retina itself, which 
contains mainly transparent neurons and their processes, has a higher refractive index than the overlying 
vitreous humour. This, coupled with the shape of the interface between the two, means that they act as a 
diverging lens. It has the effect of both magnifying the image incident on the cone active elements and 
correcting for aberration. This beautiful adaptation which helps to give the hawk 2-2Vi times belter acuity 
than man, must surely represent the absolute limit of what is achievable with the available physical and 
biochemical processes.

4It has been shown [66] that early developmental manipulations of the cortex can induce sensory projections 
from one modality (eg. the retina) to project to cortex belonging to a different sensory modality (eg. the 
auditory cortex). The fascinating result of these manipulations is that they can have a significant influence 
on the internal connectivity, or microcircuitry of the cortex. This gives rise, eg., in the auditory cortex, to 
cells with response characteristics similar to visual cortex. The laminar character and interlaminar patterns 
of connectivity were not significantly affected -  they were very much as they would have been in the visual 
cortex — yet these structures are not observed in the auditory cortex under normal conditions.
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possible terms about constraints imposed by evolution, — whether it could have done 

this, or could not have done that [57]. On the other hand, The author would also 

disagree with the argument commonly used in computer vision (see e.g. Marr [9, 

p. 19]) that because such-and-such is a mathematically optimal solution to a problem 

and evolution has had an enormously long time to work, it must have happened on this 

solution. If as Crick suggests, constraints are searched for by us with caution and 

confirmed with direct experiment then we may find valuable pointers to what is or is 

not possible and avoid the pitfalls of over-specificity or over-presumption. The 

"cross-talk" between receptors pointed to by Barlow is one such constraint which can 

give a perspective on another aspect of the problem (in this case neural information 

processing) and show the direction of a fruitful research framework.

That the neural processing of visual signals is not a factor which strongly limits acuity 

has been implied by further results derived with the interference fringe techniques 

mentioned above. These involve the measurement of foveal contrast sensitivity when 

the fringes are constructed directly on the retina [67]. The results suggest that neural 

blurring is roughly comparable to optical blurring under optimal condition. On average, 

only 8% contrast was required by observers to detect fringes with a spatial frequency 

of 60c/°. This indicates that the retina manages to carry out processing and coding 

functions which involve massive data compression and extended lateral interactions 

without substantially "blurring" spatial information — a further sign that it has not 

reached the limit of what is possible with this type of neural processing. These results 

are also consistent with the belief that the receptive-field centres of some ganglion 

cells are fed by a single cone. Such a belief is quite tenable as it is the simplest 

configuration which would maintain acuity, but it does not tell us very much about the 

nature of the processing carried out by the configuration.

3.33  Colour transduction
Much more interesting, is the way the retina has adapted to accommodate colour 

vision [62]. The retina contains three subpopulations of cones, each sensitive to 

incident light with frequencies in one of three particular bands in the visible colour 

spectrum. Recall that a TV camera takes colour images by separately sampling three 

different filtered images at the same high resolution that would be required for 

monochrome viewing. The retina has adopted a number of strategies which allow
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Figure 4. Typical spectral absorption curves of pigments in human retinal cones. 
Adapted from [60, p.32].

satisfactory colour perception without significantly degrading monochrome acuity. The 

combined mosaic of red- and green-sensitive cones comprise 90% of the cone 

population and mediate high-resolution vision. The substantial overlap in the 

absorption spectra of the red and green sensitive cones, coupled with the relatively 

smooth reflectance spectra of images of real scenes, means that the outputs of the red 

and green cones are strongly correlated. This makes it possible for the red and green 

outputs to be effectively combined to produce luminance information. This luminance 

data is more finely sampled than the sampling any one of the populations taken 

individually could produce. It is degraded little by the offset in the spectral sensitivities 

of the red- and green-sensitive cones. Colour information at a somewhat lower 

resolution is still available as a difference signal between the interspersed red and 

green populations of cones. As well as being at lower resolution it will be somewhat 

noisier than the luminance information because of the smaller differences involved 

between the red and green sensitivities.

In contrast to the dual function of red and green cones, the blue-sensitive cones which 

comprise the remaining 10% of the cone population contribute little to spatial vision, 

but extensively to colour perception. Their absorption spectrum is strongly shifted from 

that of the red and green and thus provides a strong colour difference signal. 

Blue-sensitive cones are particularly sparse in the very centre of the fovea, which 

minimizes the loss in resolution that would be caused by the interruption of the
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red-green mosaic. It might be expected that the paucity of blue-sensitive cones in the 

fovea would cause aliasing of blue components of incident light. Aliasing can be 

demonstrated in the lab using the interference techniques mentioned above, but there 

are two reasons why it is avoided in the natural course of events. Firstly chromatic 

aberrations of the blue components cause strong blurring of these components without 

substantial deleterious effects on the spatial acuity mediated by the red/green 

combination. Of course this also contributes to the low spatial resolution of colour 

perception (maximum acuity is 6-10c/° [68]). Nevertheless the brain seems to be 

able to combine the high resolution luminance information with this low resolution 

colour information to produce a unified high resolution spatial colour percept which 

is accurate in most cases.5 The second way in which the blue mosaic is protected 

from inaccurate percepts due to aliasing arises from the fact that blue-sensitive cone 

mosaic forms a lattice which is somewhere between being perfectly regular and 

perfectly random. The net effect of this is that frequencies above the nominal Nyquist 

limits (given by the average inter-cone spacing) are not converted into conspicuous 

Moire patterns, but instead are scattered into broadband noise [62,68,69].

3.4 Extrafovea
3.4.1 Extrafoveal sampling
Outside the fovea the average spacing between cones increases rapidly. At 4° of 

eccentricity the average sampling rate has dropped by a factor of three. By 10° the 

spacing is an order of magnitude down on the foveal value. Optical quality on the 

other hand, declines slowly, suggesting that aliasing may be an important factor in the 

visual performance of the extra fovea. Apart from change in average cone spacing 

there is a striking change in the cone mosaic with increasing eccentricity from the 

fovea. By 2-3° the cone mosaic has "degenerated" into an almost random lattice with 

no obvious regularity and with the space between the cones filled with rod receptors. 

The lattice is not completely random however. A perfectly random (2-dimensional 

Poisson) array would have no Nyquist limit in the sense in which a regular anray does, 

and therefore it would never produce Moiré effects due to aliasing. The cost is a

^Two cases where the eye is "fooled" by high resolution colour patterns are the heiringbone pattern of 
coloured tweed viewed at a certain distance and the "pointillistic" style of painting. Here the eye can 
distinguish the spatial variation of luminance, but the colours of the individual spatial features cannot be 
resolved and "run" or bleed into each other.
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Figure 5. Rod and cone distribution as a function of angular position on the retina. 
Adapted from [60, p.31].

scattering of spectral energy of all frequencies into a "veil of white noise" [69]. Yellott 

has shown, by taking the optical power spectra of cone array sampling points, that the 

cones provide a novel form of optimal spatial sampling. The semi-irregular cone array 

is optimal in the sense that the minimal noise is introduced for spatial frequencies 

below the nominal Nyquist limits (computed on the basis of a regular array with the 

same local sample spacing or sample point density). For spatial frequencies above the 

local Nyquist limits, conspicuous Moire patterns are avoided by scattering the pattern 

energy into broadband noise [69] .6

There are conflicting views about whether the irregularity of the extra-foveal cone 

mosaic is a device which has been selected for by evolution to defeat aliasing 

distortion [69], or if it is simply a residual disorder as a result of a lack of selection

sIn the same way that blue cones within the fovea avoid aliasing by virtue of forming a semi-iiTegular lattice 
structure, the coloured fringes which appear on a television because of aliasing of the colour signal could 
be avoided. This would require the resampling of the colour signal (which is initially sampled at the same 
resolution as the luminance signal because of the use of RGB filtering) in a low-resolution semi-irregular 
way as opposed to the low-resolution regular way now used. The properties of lattices other than square and 
rectangular is a fascinating topic which deserves further study. For example it has been recently shown that 
Penrose lattices with a 5-fold symmetry have the property of blocking out some frequency bands entirely 
while allowing others.
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pressure for further regularity [70]. Whichever is nearer to the truth there are a 

number of reasons why aliased patterns (for a regular array) or aliasing noise (for an 

irregular array) may not be a significant problem for extrafoveal vision. Most of the 

time the eye is not well accommodated to objects projected on the periphery: to 

scrutinize something, the eye makes a saccade to allow the image to be projected onto 

the fovea and then accommodates to bring the foveal image into focus. It is also 

suspected that light scatter in pre-receptoral layers of the peripheral retina causes a 

blurring of the projected image in these regions. Finally it has been shown [71] that 

natural scenes have most of their power appearing at low frequencies. These three 

factors all have the effect of giving low contrast at higher spatial frequencies and 

consequently reducing problems due to aliasing noise.

3.4.2 Extrafoveal function
A more important factor in the development of the extrafoveal cone mosaic may be 

the function of the periphery. The primary function of the peripheral retina in daylight 

is the detection of objects -  particularly the detection of any type of motion. An 

eye/head fixation movement then allows the fovea to scrutinize the region where 

something was detected. This function requires the periphery to maximize contrast at 

sub-Nyquist frequencies, even at the expense of aliasing noise. Good contrast means 

that the extrafoveal cones must have good quantum efficiency and therefore need to 

be larger than foveal cones. Even though aliasing could be avoided by reducing the 

extrafoveal cone size to that of foveal cones and then reducing the sample spacing, this 

biologically possible step is not taken. It seems that in the case of the extrafoveal 

retina, a premium is placed on detection, with several factors conspiring to reduce the 

cost of this in terms of aliasing noise. In fact, the close match between optical quality 

and sample spacing in the fovea may be the exception rather than the rule. There is 

widespread undersampling of the cone mosaic of many other species of animals which 

do not have the specialized scrutinizing parvo system of primates.

The decrease in sample spacing of the foveal mosaic to the limit allowed by the 

refractive indices of available biochemical materials may have been closely associated 

with the development of the parvo system in primates. The much older (in 

evolutionary terms) magno system seems to be responsible in primates for the 

detection and processing of motion, stereo and depth cues and for gestalt grouping
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effects. It is not capable of the detailed and sustained scrutiny of patterns or objects 

necessary for fine manipulation. The newer, and in the primate, much more extensive 

parvo system is capable of sustained and detailed pattern scrutiny (though this ability 

is substantially degraded by motion and lacks the gestalt abilities characteristic of the 

magno system). It is impossible to say at this stage if any one of the three adaptations 

of (i) fine cone sampling for high acuity (ii) the parvo system for object/pattern 

scrutiny or (iii) the development of dexterous manipulation abilities, provided the 

impetus for the development of the others. It does nevertheless seem that they are 

closely related in some manner.

In contrast to the fovea where post-receptor neural processing hardly effects acuity at 

all, neural mechanisms in the peripheral retina impose substantial limitations on visual 

acuity. Extrafoveal acuity falls well below the cone mosaic’s average Nyquist limit and 

this is reflected in the 5-to-l ratio of cones to ganglion cells in the far periphery [62]. 

This decrease in acuity caused by the subsequent neural processing may not be 

surprising in view of the acknowledged role of the periphery in detection rather than 

examination, and the fact that the processing in the fovea demonstrates that acuity can 

be maintained, if  required. It also further reinforces the rejection of the notion of a 

retina which simply transduces and codes "images". Clearly the retina carries out the 

role of detecting appropriate information available in the optic array. Our interest is 

in knowing what the "appropriate information" is, and how it can be extracted or made 

explicit The neural processing of the retina and how it develops may give clues which 

would help to answer these questions.

3.5 Receptive Fields and Point Images
3.5.1 Receptive fields and feature-detection theories
The ideas of receptive fields and point images are important links between the activity 

of a single neuron and overall processing function of the eye and brain. Receptive 

fields in particular, provide a qualitative relationship between a cell early in the visual 

pathway and the sampled retinal image, and have been important in attempts to 

interpret the information processing function of the visual system. The receptive field 

of a cell in the visual pathway is the set of all points on the retina which contributes 

in some way to the activity of that cell. It is a concept which arises naturally from 

what has been the dominant experimental technique of electrophysiology to date — the
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Figure 6. Plot of cat receptive fields for cells with ON-centre responses. Adapted from 
[11, p. 105].

recording of the electrical activity of single neurons. Kuffler working in the early 

1950’s was the first to realize that localized spatial or temporal changes in light 

intensity on the retina were required in order to affect the activity of mammalian 

ganglion cells [72]. Recording from the retina of a cat, he discovered concentric 

fields on the retina, within which spots of light would consistendy increase or decrease 

the activity of the cell being recorded. He found that there were two interspersed 

populations of ganglion cells. One set, called " O N - c e n t r e "  responded with a burst of 

impulses to the onset of a spot of light in the centre of its receptive field or to the 

switching off of a spot of light in the surround area of the field. They gave no change 

in response to stimulation outside this concentric region. The second population, 

referred to as " O F F - c e n t r e "  responded in the opposite fashion.

Enroth-Cugell and Robson (1966) were further able to differentiate two sub-categories 

of the mammalian cells, in terms of whether they had a linear response (X-cells) or 

a non-liner response (Y-cells) to sinusoidal gratings [73]. These, and further related 

results, particularly the interpretation by Hubei and Wiesel [74] of the functions of 

cells in the early mammalian visual cortex, have prompted what is the dominant theme 

in studies of sensory systems over the last 20 years. This is that the activity of 

individual neurons can represent particular aspects of a stimulus [75]. It is a view 

that has also strongly permeated the computer vision community, providing 

justification for processes of edge and feature detection as descriptions of the function
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of early vision. Marr’s raw primal sketch with its blobs and other primitives is a more 

sophisticated extension of this idea [9].

However, not all observations on sensory neurons are easily reconciled with this view.

Recall Crick’s caution about the "overwise" neuron. He summed the idea up in terms

of edge detection as follows:

A  s i n g l e  ‘e d g e  d e t e c t o r ’ d o e s  n o t  r e a l l y  t e l l  u s  t h a t  a n  e d g e  i s  t h e r e .  W h a t  

i t  i s  d e t e c t i n g  i s ,  l o o s e l y  s p e a k i n g  ‘e d g i n e s s ’ in  t h e  v i s u a l  i n p u t ,  t h a t  i s  a  

p a r t i c u l a r  t y p e  o f  n o n u n i f o r m i t y  in  t h e  r e t i n a l  im a g e  t h a t  m i g h t  b e  p r o d u c e d  

b y  m a n y  d i f f e r e n t  o b j e c t s .  . . .  t h e  i n f o r m a t i o n  r e l a y e d  b y  a  s i n g l e  n e u r o n  is  

b o u n d  to  b e  a m b i g u o u s  ... w e  c a n  e x t r a c t  m o r e  i n f o r m a t i o n  b y  c o m p a r i n g  

t h e  f i r i n g  o f  o n e  n e u r o n  w i t h  t h a t  o f  o n e  o r  m o r e  o t h e r  n e u r o n s .  [ 5 7 ]

Recent observations support the idea that sensory coding may also depend on patterns 

of activity within large populations of neurons [75,76,77,78]. One example is 

the representation of movement in terms of a neuronal population vector. Another is 

the observation of correlation or synchronization between neurons in the cat visual 

cortex which share some attribute represented in the incident image. This includes 

things like having overlapping receptive fields, or having non-overlapping fields but 

responding to the same extended object Even the concept of receptive field itself 

which provided the initial motivation for the notion of neurons as dedicated to a 

particular task (like feature detection), is now difficult to reconcile with this notion. 

Receptive fields appear to increase in size with distance along the visual pathway 

despite the fact that the behaviour mediated by these neurons often require a high 

degree of spatial resolution [75]. An idea which has recently prompted a fresh look at 

this phenomenon in terms of the collective activity of neural populations is that of 

"point-images" in the presence of retinotopic mapping. That is, the problem is 

examined from the point of view of how such populations deal with information from 

a single visual point (turning the receptive field notion on its head).

3.5.2 Point image and retinotopic maps
The original definition of p o i n t - i m a g e  attributed to Fischer [79,80] is that it is the 

distribution of excitation among retinal ganglion cells resulting from illumination of 

a single photoreceptor. More abstractly it could be defined as the set of elements that 

may potentially be affected by a stimulus at some point because that point is common
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Figure 7. Relationship between receptive field -centre size, cell density and retinal 
coverage factor. The point at the centre of the diagram lies within the receptive fields 
of the cells marked in black. Adapted from [75].

to all their receptive fields. Fischer’s original proposal was that any point on the retina 

falls within the receptive field centres of a constant number of retinal ganglion cells. 

If we consider the fact that only ganglion cells within one centre radius of a point will 

cover that point with their receptive field centres, then the number of these cells is 

given by the product of the area of the receptive field’s centre and the ganglion cell 

density for that particular part of the retina. Fischer’s point is that even though these 

factors separately vary enormously with eccentricity across the retina, their product 

(called the " c o v e r i n g  f a c t o r " )  is approximately constant, because ganglion cell density 

decreases and receptive field size increase with eccentricity.

Peichl and Wassle, working on the cat, showed [81] that for Y-cell, the coverage 

factor is 3-6 for any retinal point. For X-ganglion cells the covering factor ranges from 

7-10 in the periphery to above 30 in the fovea. The notions of covering factor and 

point image, though related, do not correspond exactly. For example, the covering 

factor does not take receptive field surrounds into account. Nor is the covering factor 

as generally applicable as the idea of point image because it is difficult to apply to cell 

layers other that the ganglion cells, such as those in the striate cortex. Also the 

diameter of the point image can increase with increasing receptive field size across the 

retina, regardless of covering factor.
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The calculation of point images can be simplified using receptive field images. These 

are the projections of a receptive field in visual space (on the retina) to the retinotopic 

coordinate system (map) of the layer in which the cell is located. Then cells whose 

receptive field images contain a particular map point have receptive fields that contain 

the corresponding reference point in visual space.

In the cat superior colliculus, the point image of a retinal point is approximately 3mm 

in diameter. This clearly rules out traditional ideas of point-to-point mapping from the 

retina to parts of the brain in the nature of a recognizable image. After only 4 or 5 

layers of synapses, the information provided by a single receptor is capable of 

affecting the activity of an enormous number of neurons. In the case of the superior 

colliculus, this type of diffuse mapping to an extended distributed representation, may 

be part of a mechanism for translating visual coordinates into a motor code [75].

In the pathway from the retina, via the lateral geniculate nucleus (LGN) to the visual 

cortex, the mapping seems to be much less regular than in the superior colliculus 

pathway. Here there is substantial scatter in visual space of the receptive fields of 

neighbouring cells. This could mean that the receptive field images are not centred on 

the cells, or that the retinotopic map is discontinuous or even that there is more than 

one retinotopic map into a number of interspersed neural populations. Again in the 

striate cortex of the cat, Albus showed that the product of local retinotopic map 

magnification and the aggregate receptive field diameter is equal to a constant of about 

3mm in the area of the cortex representing the central 10° of the visual fields. This 

means that each retinal point provides input to the same number of cortical cells 

irrespective of whether it is within the fovea or outside [82]. Hubei and Wiesel, 

working on the visual system of macaque monkeys claimed [83,84] that the 

average receptive field image (and point image) diameter doesn’t change with 

translation across the surface of the cortex and is approximately 2mm across.

These claims have been challenged in the intervening years [85,86] but recently 

Wassle e t  a l  [87] claimed to have resolved the controversy over the constant size 

of aggregate cortical point images. They were able to show that there are more than 

three ganglion cells per foveal cone in the primate retina. (The overall ratio is about 

1 million ganglion cells for 120 million rods and about 6 million cones). They also
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showed that the ganglion cell density changed by a factor of 1,000-2,000 between the 

fovea and periphery. Because this result is within the range of estimates of cortical 

magnification factor there is no need to postulate selective magnification of the fovea 

either in the LGN or in the cortex. The distorted representation of the visual field on 

the cortex seems simply to be a manifestation of a simple rule which has been found 

to hold true for other sensory modalities: the central representation follows the 

peripheral receptor or neural density. This means that the architecture of the retina is 

alone responsible for the fact that the fovea accounts for such a substantial fraction of 

the cortical map. It also underlines a growing impression that cortical processing is 

initially relatively uniform, both within and between modalities — the structure 

apparent in mature organisms may be due almost entirely to the architecture of the 

associated sensory system and the nature of the information7 impinging from the 

external world [66]. We shall return to this point again below.

Of course speculating about how and why the cortex develops in such a way says 

nothing about what the system is doing. The architecture of the retina has evolved so 

that one part of the visual field is sampled (by photoreceptors) and represented (by the 

ganglion cells) with a substantially larger number of units than the remaining visual 

field. Because of the nature of distributed representations, this fact alone is sufficient 

to account for the high degree of spatial resolution associated with the fovea. It is a 

property of distributed representations that the accuracy of encoding a feature is 

proportional to the number of units viewing the feature from slightly different 

perspectives [75, 88]. What the overall system is doing is "magnifying" a particular 

part of the visual field by providing more units to analyze that part of the field in the 

retina. The cortex is unaware of this magnification in the sense that it must be pre- 

structured in any way to deal with it. It simply receives projections from large 

numbers of ganglion cells (via one relay at the LGN). Two nearby cortical cells in a 

region representing the foveal visual field will belong to nearby points in the visual 

fields. Two nearby cortical cells in a region representing part of the periphery will 

belong to relatively widely separated points in the visual field. From this we would 

expect that the pairs of cells would carry very different information and be correlated

7Read: correlations within the signal.
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in very different ways. These facts alone may be sufficient to set the two pairs of cells 

on very different development paths.

Before leaving the discussion on point images there are a couple of points worth 

noting. The first is that the aggregate point images are very large compared with the 

spatial grain of the observed cortical structure of hypercolumns and blobs etc. which 

is discussed below. There seems to be no fixed relationship between point images and 

the cortical architecture. Because of the substantially vertical (many-layered) structure 

of the cortex, the picture which the aggregate point image gives of cortical processing 

is too general and lacks precision. Just as problems arose with the "overwise" neuron 

because of an over-extension of the concept of receptive field, so too the notion of 

point image needs to be used with caution.

It seems that several different psychophysical phenomenon yield different equivalent 

cortical distances when scaled by the local magnification of the retinotopic map. This 

would seem to suggest that as well as considering as point images just mappings onto 

particular layers or particular populations of cells in the cortex it may also be useful 

to consider the point images of maps corresponding to particular visual 

(psychophysical) properties or phenomena.

3.6 Retinal Neurons — Processing, Function and Structure
3.6.1 An overview of the cat retina
Much of the work in the 1960s and ’70s on the vertebrate retina was carried out on 

one species, the cat. As a result, by the late 1970s the overall architecture of the cat 

retina was believed to be well understood and results from it began to be used as the 

basis for computational models in computer vision [9]. This stage of development is 

reviewed here in the form of an overview of the basic features of the structure, 

processes and presumed function of the cat retina. It is not intended to be exhaustive, 

but simply to give a flavour for the level of detail and the type of processing concepts 

involved. At the time, it seemed as if the basic computational features would be 

common to most of the higher animals — certainly comparisons were made between 

these anatomical and physiological results from the cat and psychophysical results on 

human subjects. Somehow it seemed that the visual world was sufficiently in common 

(shared or mutual), sufficiently objective, that anatomical and physiological structures
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associated with vision might not have needed to be as adapted to a particular 

ecological niche as other anatomical structures such as limbs or mouth, etc. The notion 

of substantial commonality among different species is belied by the difficulty of 

making comparisons between, for example, the cat and monkey retinas on the basis 

of these early descriptions. The issues involved are discussed in section 3.6.2

The ability to adapt to light intensities varying over several orders of magnitude 

accounts for much of the functional architecture of the retina. From the rods and cones 

there are three separate paths leading to the ganglion cells in the vertebrate retina 

which mediate vision in daylight, twilight and starlight The various properties of these 

paths are best characterised by the receptive fields of the bipolar cells which carry 

signals from the outer to the inner plexiform layer. In the dark adapted retina the 

receptive field consists simply of an e x c i t a t o r y  centre and the bipolar cells act as 

spatial summators of single quantal events. In the light adapted retina the bipolar cells 

have a concentric e x c i t a t o r y  centre and i n h i b i t o r y  surround structure allowing the 

bipolar cell activity to accurately represent local contrast It is believed [89,90] 

that individual type B  horizontal cells are responsible for the centre of the bipolar 

receptive field in the cat. The receptive field surround seems to be the result of the 

electronic interaction (via gap junctions), of many of the larger type A  horizontal cells. 

A detailed description of the various known retinal pathways and the role played by 

the horizontal bipolar and amacrine cells can be found in Levine [11] and Hubei [61].

At the stage of the bipolar cells, the processing carried out by the light adapted retina 

seems to be restricted to a linear combination of local transduced intensities. There is 

one subtle difference between the centre and surround mechanisms which becomes 

important in the next layer of cells, the ganglions. The response of a particular type 

of bipolar cell, the C B b j  cell, to light and dark bands in its receptive field c e n t r e  are 

nearly equal, but of opposite polarity [89, 91]. The responses of this cell to light and 

dark bars in its receptive field s u r r o u n d  are of the same polarity. It seems as if any 

change in a cone’s output, whether an increase or decrease, is rectified to give an 

increased response in the bipolar’s receptive field surround. What this type of detail 

illustrates is that in a very fundamental sense a d i f f e r e n t  t y p e  o f  s e e i n g  is involved 

with the dark-adapted retina than the conventional interpretation of "seeing" which is 

in light-adapted conditions. The retina literally changes its processing structure to place
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a premium on detection rather than spatial shape and colour. In other words to 

interpret these changes in c o m p u t a t i o n a l  t h e o r e t i c  terms would necessitate a 

completely different computational theory for the dark-adapted case from the normal 

computational theory, and would also require a mechanism or description for the 

gradual movement between these two extremes. On the other hand the i n f o r m a t i o n  

t h e o r e t i c  approach invokes mechanisms and processes which are i n v a r i a n t  throughout 

the transition between photopic and scotopic vision: viz. information transduction and 

transport and protection from noise (see section 3.7.1) and the light/dark adaptation 

can be seen to be a consequence of these rather than vice versa.

In the cat it is possible on the basis of cell morphology to distinguish between two 

different types of ganglion cell. The a l p h a - c e i l  has a large soma and sparsely branched 

dendrites which form a wide field. The b e t a - cell at the same location in the retina, has 

a medium sized soma, and a smaller field of more densely branched dendrites.8 The 

physiological distinction between the small receptive field and linear X-cell and the 

larger receptive field and non-linear Y-cell was mentioned above. There is now 

substantial evidence [89] to support the identification of the X and beta-cells and the 

Y and alpha-cells. These cells share the cone bipolar cells as a common input, but 

their substantially different connections to the cone bipolar cells gives the X/beta and 

the Y/alpha cells very different properties.

The X/beta cells collect about 50 synapses from each of about 4 cone bipolar cells 

with substantially overlapping fields, while the Y/alpha cells collect only a few 

synapses from each of up to 700 cone bipolars whose receptive fields overlap to a 

much lesser extent These connection mechanisms between the cone bipolar and 

ganglion cells, seem to be sufficient to account for the very different properties of the 

ganglion cell types, despite their common input In particular Sterling e t  a l  [89] argue 

that they account for the transient and non-linear nature of the Y/alpha cells, though 

this has yet to be verified.

It is interesting to note the extent to which the vertebrate retina has evolved to gain 

the most from the available dynamic range of neural processing, and to minimise the

*The cell size and dendrite field vary with eccentricity across the retina and it is therefore important to 
compare cells at the same eccentricity.
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deleterious effects of noise from the quantal nature of transduction in starlight and 

from random thermal isomerizations of receptor molecules. Because noise is a 

particular problem in the dark adapted retina, the most significant efforts to offset it 

can be found in the rod pathways [89]. The problem of the limited dynamic range of 

neural processing and transport is common to all stages of light/dark adaptation and 

the retina uses two approaches to maximise the overall functionality. The one which 

is of particular interest to us is the extent to which the eye (and later the brain) 

exploits redundancy inherent in the incident visual patterns to reduce the amount or 

accuracy of data which needs to be processed or transported. From a theoretical point 

of view it is important to understand what mechanisms are used, to reduce the 

redundancy of the visual data and how these mechanisms develop. If they are entirely 

genetically programmed — which is unlikely — we need to understand how they work. 

If they are not fully genetically specified then we must find out what it is, on top of 

the basic genetically derived structure, which allows the mechanisms to develop the 

way they do.

From a more practical point of view, it is instructive to see how the capabilities of the 

limited resources are maximized. Probably the most substantial and widespread 

adaptation is the separation of processing into an "ON" pathway and an "OFF" 

pathway. The "ON" pathway is one which involves, or responds positively to, a spatial 

or temporal increase in light intensity from the current adapted level. The "OFF" 

pathway is one which involves or responds to a decrease in light intensity. This 

dichotomization between something akin to "black" and "white" is also apparent in 

other sensory modalities as pairs like hot/cold, bitter/sweet, left/right etc. It probably 

arises because less metabolic energy is expanded if a nerve cell’s normal firing rate 

is zero or low. Because there is no such thing as negative activity (in spiking cells 

anyway)9, one population of cells will then be required to signal "positive" excursions 

above the adapted level and another to signal "negative" excursions below the adapted 

level. Note that the division between "ON" and "OFF" populations does not extend 

down to the transduction part of the photoreceptors themselves. It seems to arise at the

*The photoreceptors, horizontal cells, bipolar cells and most of the amacrine cells do not "spike" — i.e. 
produce action potentials. Information is conducted by means of graded or "slow" potentials whose physical 
values above or below the resting potential directly represent the required signal. In cells which produce 
action potentials (which can travel long distances), it is the frequency of the spiking which represents that 
signal.
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receptor-bipolar synapse, possibly by different bipolars responding in opposite fashions 

to the same neurotransmitter released by the receptors [61]. The receptors themselves 

are unusual in the way they respond to incident light. In the dark the potential across 

the core membrane (maintained by molecular ion pumps in the membrane) is about 

-50 milliVolts, rather than the -70mV typical of nerve cells. When the core is 

illuminated, the potential difference increases and the receptor membrane 

hyperpolarizes, cutting down on the amount of neurotransmitter released. Stimulation 

seems to "turn off' receptors [61]. It is not known if there is a metabolic reason for 

this.

Another mechanism which allows for increased gain and greater dynamic range 

operates at the junction of core bipolars and X/beta cells in the inner-plexiform layer. 

"ON" and OFF" cells synapse in different parts of the inner-plexiform layer — ON 

cells in sublamina b and OFF cells in sublamina a. Two complementary types of core 

bipolar innervate the ON-beta cell in sublamina b — designated CBbl and CBb2. The 

CBbl cells depolarize and the CBb2 cells hyperpolarize to the same stimulus. The 

response of the ON-beta cell is caused by increased excitation from the CBbl and 

decreased inhibition from the CBb2 cells in the manner of a "push-pull" amplifier [89].

3.6.2 More retinas, more functions, more complexity

In the 1970s it was believed that the five cell types contained in the retina — receptor, 

horizontal, bipolar, amacrine and ganglion cells — were relatively homogeneous, and 

completely defined the functional elements of the retina. By implication it was 

believed that understanding the interaction of these basic elements would completely 

specify the processing and function of the retina. It now appears that there may be 

between 50 and 60 distinct functional cell types in the retina [92] giving the lie to 

the notion of a retina doing little more than acting as a prelude for later edge 

detection. The amacrine cells alone have been categorized into up to 30 

morphologically and functionally different types, many of whose function is almost 

completely unknown.

The concentric centre-surround antagonistic class of ganglion cell which Kuffler [72] 

discovered in the 1950s comprises a number of different subclasses characterized by 

ON/OFF, X/beta or Y/alpha, brisk or slow. However, all of these are still just one
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general type of ganglion cell. Another type is the directionally selective cell and there 

are many others with complex stimulus selectivities. Possibly the concept of a 

receptive field plotted by spots of light is not even an appropriate way of investigating 

the functioning of these cells. Ways of varying light intensity or pattern which more 

accurately reflect the natural degrees of freedom of their dynamics need to be found.

At the level of the bipolar cells the basic centre surround mechanism already exists. 

The transient nature of the Y/alpha cell response in the cat retina may be mostly 

attributable to the distributed nature of the bipolar cell input to the Y/alpha ganglion 

cell [89]. One role of some of the amacrine cells which are characterized by a very 

transient response may be to sharpen this response in the ganglion cells. This however 

is currently just speculation and still does not account for the large variety of amacrine 

cells [93]. It has been shown that amacrine cells with different shaped dendritic trees 

can be matched with an equally large variety (up to two dozen) of particular 

neurotransmitters existing in the retina — further emphasizing the fact that the different 

classes of amacrine cells must have different biological functions. Masland and his 

colleagues have described the properties of four of these cells [93,94,95] which 

give an indication of the diversity of functions that need to be carried out in the retina.

The amacrine cell with the clearest processing role of the four, is the cholinergic or 

acetylcholine-accumulating amacrine cell — also referred to as the "star-burst" cell 

because of its characteristic morphology. One of the most surprising facts about the 

cholinergic cell is the degree of overlap between neighbouring cells in the retina. In 

the peripheral retina, where the overlap is the greatest, a point on the retina is overlaid 

by the processes of up to 140 cholinergic amacrine cells [93]. It has been shown 

electrophysiologically that the cholinergic amacrine cell excites directionally selective 

ganglion cells, among others. Directionally selective cells respond selectively to spots 

of light much smaller than their receptive fields moving in certain directions within 

their receptive fields. However, the acuity with which these directionally selective cells 

can resolve small spots of light seems to be inconsistent with the size of the dendritic 

field of the associated amacrine cells. Masland suggests an explanation of this 

phenomenon, which if correct, could have far-reaching implications for the 

understanding of retinal processing mechanisms. He suggests that the dendrites of the 

cholinergic amacrine cell are locally electrically isolated and that excitation and
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response involve local branches of the dendrites, rather than the entire cell, its soma 

and processes, as is usually the case for neurons. This idea is supported by the length 

and thin-ness of the dendritic processes. The electrical activity of these cells is solely 

in the form of graded potentials which only travel quite small distances before fading 

away entirely. It is also supported by the fact that input and output synapses on these 

cells are typically situated side by side on the dendrites. Finally this way of 

functioning of the acetylcholine amacrine cells is consistent with what is known about 

the mechanism of directional selectivity [95] and provides an alternative explanation 

to those advanced by Koch, Poggio e t  a l  [96]. This issue has yet to be resolved,

[97]10 but the possibility of autonomous local functions within regions of the 

dendritic tree of amacrine cells, i.e. organization at a subcellular level, increases 

enormously the degree and variety of function possible, as these cells mediate the 

pathway between bipolar and ganglion cells.

The second amacrine cell whose operation has been substantially worked out is the A ll 

amacrine cell. This cell is characterized by having a narrow lateral spread of its 

processes and also by the fact that it appears to be bifunctional, operating with gap 

junctions and chemical transmitters in the ON and OFF pathways respectively. It is 

known to mediate the rod-bipolar to ganglion cell pathway for vision in dim light 

[89,90,92]. The indoelaminergic amacrine cell, of which there seems to be five distinct 

morphological types, is thought to have a major influence on the pathway by which 

dim light passes through the retina, though exact details of the mechanism remain to 

be elucidated [92].

The dopamine-accumulating or dopaminergic amacrine cells are notable by their 

scarcity and by their few long and thinly branched dendrites. The fact that the mosaic 

they form on the retina is sparse and full of holes suggests that they are not involved 

in any high resolution activities in the way that the cholinergic cells are. A diffuse 

overall control function is further hinted at by the fact that they only synapse with

10Recent findings, described by Miller [97] show that the cholinergic amacrine cells release neurotransmitters 
which are both excitatory and inhibitory. The directionally selective ganglion cells are known to receive 
strong excitatory cholinergic input. Pharmacological evidence suggests that the inhibitory neurotransmitter 
GABA also released by the cholinergic amacrine cells provides the inhibitory input in the null direction. It 
thus seems to be possible that a single cell type at a critical phase in the neural pathway may be responsible 
for both excitation in the preferred direction and inhibition in the null direction of directionally selective 
ganglion cells.
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other amacrine cells. Dowling [95] has shown that the neurotransmitter dopamine can 

diminish the effectiveness of horizontal cells in mediating lateral inhibition effects. It 

does this by causing a decrease in conductance of gap junctions in the outer plexifoim 

layer. One function of the dopaminergic amacrine cell may be to regulate the strength 

of lateral inhibition and thereby the centre-surround antagonism as a function of 

light/dark adaptive state. It may also mediate the overall excitability of inner retinal 

neurons. This indicates that in addition to there being three separate paths for vastly 

different ranges of light intensity, there is likely to be a continuous gradation of 

adaptation within each of these ranges. Instead of being stuck with a fixed 

centre-surround mechanism which must cope with large changes in light intensity, the 

centre surround mechanism may be continuously adapted to optimize its response 

depending on the ambient intensity at any time.

The picture that is now emerging is of a retina carrying out an amazing array of subtle 

and complex processes, with a delicately balanced system of controls which confer 

enormous adaptability. There are a number of possible reasons why the retina should 

be so complex [92]. One possibility is that the process of conversion of light patterns 

falling on the retina into an efficient and meaningful sequence of nerve impulses to 

be sent to the brain is extremely difficult. The factor which most compounds this 

difficulty is probably the need to operate with light levels varying over 10-11 orders 

of magnitude. Another possible reason for retinal complexity may be that what seem 

to be straightforward tasks may require sophisticated biochemical circuitry to 

implement in the retina. As long as we feel we understand what function a certain 

mechanism is carrying out there is nothing to stop us from engineering an 

implementation which is more suitable to the type of hardware and processing 

components available to us. It is important not to be too complacent about this 

approach however as the neural circuitry may be solving some problem of which we 

are not yet even aware.

The one factor which seems to distinguish the retina from other neural processing 

systems in the brain is the need to package a complex transduction and coding process 

into an extremely small volume. A number of mechanical and physical constraints 

force the retina to be very thin and force receptors to be as closely spaced as possible 

to minimize size and maximize acuity. Masland points out that if retinal neurons were
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the same size as those in the brain, the eye would need to be the size of a tangerine 

[92], It is clear from the ability of the eye to operate at limits imposed by physical 

laws and from the enormous variety and complexity of its function, particularly in the 

inner retina, that the eye is a masterpiece of miniaturization and of evolutionary 

adaptation. The fact that it seems to be much more tightly specified by genetic factors 

and rigidly constrained in its development and architecture than the bulk of the brain 

is a hopeful sign. It suggests that we will be able to see to a much greater extent, the 

action of underlying developmental and information processing principles in the 

architecture and processing of the brain. In the case of the retina we seem to be 

constrained in the immediate future to discovering exactly what it does and why these 

functions are necessary and important Epigenetic factors seem to play a smaller role 

than elsewhere in the brain.

3 .6 3  The ganglion cells — a biological film?

The ganglion cells collate and transmit output from the retina. They form the layer of 

cells on the innermost surface of the retina (nearest the front of the eye), and their 

axons run across the surface of the retina, exiting as the optic nerve and travelling to 

the brain. Traditionally they have been the easiest to record activity from because of 

their location on the inner surface of the retina and because unlike all other retinal 

neurons (except possibly some amacrines) they "spike" or produce action potentials 

in their axons. These action potentials which code signal strength as pulse frequency 

are much easier to detect than the tiny changes in potential difference across the cell 

membrane which are involved in graded potentials

If any further evidence were needed to distinguish what a retina does, from the process 

of a camera, then it is provided by the ganglion cells. Instead of conceiving the eye 

as an optical device which projects onto a sensitive film from which neural "images" 

are transmitted to the brain, we are forced by the ganglion cells to modify our ideas. 

A more appropriate metaphor is one of the retina being made up of many "neural 

‘films’ overlaid on one another, each transmitting a separate filtered version of the 

optical image formed by the eye" [98]. Now too, it is not "images" of intensity or 

colour which are being transmitted but things like motion primitives and contrast and 

data suitable for stereo and gestalt grouping on one hand or data suitable for detailed 

scrutiny on the other. We would again echo Barlow’s sentiments:
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... p e r h a p s  t h e s e  a r r a n g e m e n t s  s h o u l d  b e  t a k e n  a s  a  h i n t  o f  N a t u r e  t h a t  t h e r e  

i s  m o r e  to  t h e  p r o b l e m  o f  t r a n s m i t t i n g  t h e  im a g e  t o  t h e  b r a i n  t h a n  c a n  b e  

u n d e r s t o o d  f r o m  s a m p l i n g  th e o r y .  [ 1 6 ]

In the cat, ganglion cells are normally classified as X,Y or W where the distinction 

between X and Y is made on the basis of their response to periodic gratings. The X 

and Y cells are believed to be most important in terms of pattern perception because 

of their high spatial sensitivity and the fact that their axons connect via the lateral 

geniculate nucleus (LGN) to the primary visual cortex. The term W-cell is basically 

a "catch-all" grouping which includes everything not classifiable as X or Y. The 

W-cells include several sub-classes, many of which have slow conduction velocities. 

One class of W-cells have a concentric centre-surround colour opponent response and 

project to the c-laminae of the cat LGN and to the superior colliculus. It is worth 

noting, because it has many properties in common with the cells in the colour-sensitive 

parvo system which dominates primate visual systems.

As well as distinguishing X and Y cells on the basis of their response to a periodic 

spatial grating there are many other factors which can be used as the basis for 

comparison. One in particular, which is related to this spatial grating response is their 

response to temporal modulation of a stimulus. The X ganglion cells response is 

modulated at the same rate as the temporal modulation of the stimulus. The Y 

ganglion cells however, respond with two components. One is a linear component 

which behaves like the X cell in responding at the same (fundamental) frequency as 

the stimulus modulation. (Incidentally, this component also displays the sinusoidal 

variation with spatial phase which is characteristic of the linear spatial response of the 

X cells). The Y ganglion cells also respond with a second, non-linear component at 

the second temporal harmonic frequency of the temporal stimulus modulation. This 

component shows no variation with spatial phase of a periodic grating and therefore 

is responsible for the lack of a null-position for grating reversal which is characteristic 

of Y-cells.

The behaviour of Y-cells is consistent with their response being due to the summation 

of many sub-units within their receptive field after some type of non-linear 

transduction process. These subunits look like the response of entire X-cells and
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probably correspond to individual core bipolar inputs. Sterling e t  a l  argue that the 

overall non-linear response of the Y-cells is a result of the lack of polarity of the core 

bipolar surround mechanism in conjunction with the large spread of bipolar inputs 

which the Y/alpha ganglion cell receives [89]. An alternative site for the underlying 

non-linearity is proposed to be at the bipolar-amacrine connection by Shapley and 

Perry [98] and they support this by examples of similar non-linearities in some lower 

vertebrates.

While both X  and Y cells are sensitive to contrast, the Y cells are about a factor of 

three poorer in spatial resolution than neighbouring X cells. This poorer resolution is 

despite the ability of subunits of the Y ganglion cell receptive field to detect patterns 

with a similar spatial resolution as neighbouring X cells. It appears that Y cells signal 

the presence, and particularly the movement of small patterns within their receptive 

fields but because of the large spread of bipolar cells which are summed to give this 

response, the Y cells only locate the pattern imprecisely. Finally, the Y cells respond 

more transiently than X cells, particularly at high contrast and the average conduction 

velocity of Y cells axons tends to be slightly faster.

Although there is a large degree of similarity in the gross structure and function of 

vertebrate retina across different species, there are very significant differences which 

make identifications of particular classes of cells in different species difficult This is 

the case with the X and Y ganglion cells of the cat and classes of ganglion cells in the 

primate retina labelled by the letters P and M (because they connect to parvo and 

magno cells in the primate LGN respectively). A firm identification of a 

correspondence, if any, would be very valuable because much work has been done on 

the visual system of the cat which could be carried over to the primate visual system 

if  the similarities were sufficiently close. Briefly, the P-cells are the most numerous 

in the primate retina. They exhibit a sustained response to monochromatic light at the 

peak of the cell’s spectral sensitivity curve but a generally transient response to 

broadband illumination. They have concentric centre-surround receptive fields and 

often show some type of colour opponency within or between the centre and surround. 

They send axons to four of the six layers of the LGN (2 for each eye). The M-cells 

also have concentric centre-surround receptive fields and give a transient response to 

broadband illumination. In contrast to the P-cells, they show little overt wavelength
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sensitivity though they may receive antagonistic signals from different cones. Their 

axons project to the two magnocellular layers of the LGN. In terms of spatial 

summation and spatial filtering, about 80% of M-cells in the Macaque monkey behave 

like X-cells with most of the remainder showing the non-linear behaviour typical of 

cat Y ganglion cells. Again there is a ragbag of assorted ganglion cell classes which 

are neither M- or P-type. None have been found to be selective to wavelength and they 

provide the bulk of the retinal input to the superior colliculus [98].

Principally on the basis of comparisons in terms of contrast gain, contrast sensitivity 

and variation of receptive field/dendritic field with eccentricity, Shapley and Perry 

have proposed a new correspondence between X, Y, P and M cells [98]. They suggest 

that the M ganglion cells and their magnocellular targets in the LGN are composed of 

two subpopulations, designated Mx and My which correspond most closely to the X 

and Y cells of the cat retina. The P group have no exact equivalent in the cat, certainly 

among the X and Y cells, but may be related to the colour sensitive ganglion cells 

grouped as W-cells. This replaces an earlier proposed equivalence between P and X 

on the one hand and M and Y on the other, which with recent evidence is seen to be 

untenable. Given this comparison it is very interesting to consider the functional 

properties of the various primate groups, Mx, My and P.11 The behavioral contrast 

sensitivity of primates as a function of spatial frequency (see e.g. Levine [11]) and in 

its variation with retinal eccentricity has been shown to be consistent with the contrast 

gain and contrast sensitivity of primate M-cells. The high gain and high sensitivity of 

the M-cell pathway are probably important for pattern perception at low contrasts and 

at medium to low spatial frequencies. The high frequency tail of the behavioral 

contrast sensitivity may be due to the small P-cells which need high contrast to 

operate.

The P-cells have small receptive fields which vary little in size up to eccentricities of 

5°, unlike all other retinal ganglion cells and unlike the scaling behaviour of contrast 

sensitivity or acuity functions. Small dense receptive fields are particularly good for 

achieving high acuity yet the P-cells do not have particularly good acuity due to their 

relatively small contrast gain. Shapley and Perry suggest that the P-cells may have a

"There may not in fact be two completely separate X-like and Y-like groups of M cells, but a continuum 
between these two extremes.
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role in supporting the low gain, low resolution colour system and that the small

receptive fields are for wavelength selectivity rather than acuity. If during

development, cones with different spectral sensitivity are virtually indistinguishable,

then the only way to guarantee that a ganglion cell achieves wavelength specific

inputs, is if the receptor—bipolar—P-ganglion cells connections are all one-to-one

contacts. This hypothesis is also consistent with the observed colour sensitivity and

P-cell receptive field scaling with eccentricity. Beyond 5° the P-cell dendritic field

gradually increases with eccentricity and many P-cells begin to lose the strong colour

opponency which they exhibit inside 5°. Similarly, the ability to see a full range of

colour is restricted to central vision and colour perception suffers substantially after

about 10° out from the fovea. Shapley and Perry neatly summarize the situation:

C a t  X  c e l l s  h a n d l e  f i n e  d e t a i l  a n d  a r e  i m p o r t a n t  f o r  p a t t e r n  d e t e c t i o n  w h i l e  

Y  c e l l s  s i g n a l  c h a n g e  a n d  m o v e m e n t .  M a c a q u e  m o n k e y  M  c e l l s  r e p o r t  a b o u t  

f i n e  d e t a i l  a n d  a r e  im p o r t a n t  f o r  p a t t e r n  d e t e c t i o n .  M a c a q u e  P  c e l l s  c a r r y  

i n f o r m a t i o n  a b o u t  c o l o u r  a n d  a b o u t  f i n e  d e t a i l  a t  h i g h  c o n t r a s t .  

T r a n s - s p e c i e s  c o m p a r i s o n s  m a y  c l a r i f y  o r  o b s c u r e  t h e s e  f u n d a m e n t a l  f a c t s

[ 9 8 ] .

3.7 Neural Coding

3.7.1 Noise in the compound retina of the fly

Surprisingly, it is work on the fly retina which may take us closest to understanding 

the overall purpose of the individual processing functions described above. The 

particularly modular structure of the fly’s compound eye has allowed a detailed 

description of both the photoreceptor array and the neural wiring within the various 

components. Because the system is so well-defined, a careful analysis of form and 

function is feasible. Such a direct analysis is not currently possible in the retinae of 

higher animals because of the great number of unknowns still involved. Nevertheless, 

similar forms of processing seen in vertebrate retina do suggest similar overall function 

to that which has been described in the fly. It is expected that very similar design 

principles would operate in governing the transfer of information from photoreceptors 

to later processing structures — the principal differences arising from the type of 

information each species needs to extract from its environment and the biochemical 

activity it can support In the case of the fly, the conclusion is that the principal 

function of the neural systems of the retina (which are analogous to the cones and
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bipolars of vertebrate retina) is information transduction and transport, and noise 

protection. To achieve these, a premium is placed on the efficient use of the available 

information, the available bandwidth and low-noise amplification.

Most natural objects are visible because they absorb and reflect constant proportions 

of the light falling on them in various parts of the visible spectrum. This is a physical 

property determined by the molecular makeup and surface characteristics of the matter 

comprising the object. It is a property which is invariant with normal changes in 

ambient illumination of natural scenes and is encoded by contrast or relative intensity 

(possibly as a function of frequency). Objects "look" the same to a contrast encoding 

system as the mean intensity changes over a wide range of values. The ability of 

individual photoreceptors to adapt their sensitivity to match the ambient light level is 

important for coping with the 10,000-fold range of light intensities dining the day. 

This type of adaptation automatically allows them to encode contrast in their outputs

INTENSITY,  I

(a) No Background

I N T E N S I T Y ,  I

(b) With Background

Figure 8. Schematic showing the range over which the Weber relation holds. Any of 
the curves for fixed I 0 in (b) is comparable with the dynamic range of most electronic 
imaging systems. From [60, p.33].

rather than absolute intensity. The ratio of just noticeable intensity difference to local 

mean intensity, called the Weber fraction AI/I [60], is found to have a nearly constant 

value of 2 %  over a wide range of intensities in human vision. As this ratio is
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equivalent to a small change in the logarithm of intensity, A(log I), then just 

perceivable contrasts at any mean intensity are directly related to changes in the log 

of intensity. Consider a response where inputs are considered equivalent if the quantity 

described by contrast, when superimposed on a background signal that increases with 

mean intensity, is constant. This type of response is equivalent to a logarithmic 

transformation of input intensity. It is a transformation which is found in a number of 

different types of insect photoreceptors and vertebrate cones [15].

Even though the photoreceptor response is matched to contrast which is an invariant 

of natural scenes, average contrast values are relatively low (0.4) and so the signal is 

still weak. In addition the contrast signal is superimposed on the relatively larger 

background signal which tends to use up the available dynamic range of photoreceptor 

response. The small fluctuations in membrane potential are therefore very sensitive to 

noise generated by neural processing and transmission. Two principal sources of noise 

have been identified in the fly retina: noise generated in the photoreceptors during 

transduction and noise generated at the synaptic transmission from photoreceptors to 

the large monopolar cells (LMCs).
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Figure 9. Diagram illustrating the waveform transformations and signal envelopes 
corresponding to most efficient use of the neural dynamic range. From [15].



These two sources of noise are about equal in the extent to which they limit signal 

quality during daylight At any given intensity, summing intensity over a larger area 

to reduce photoreceptor noise will also have the effect of reducing acuity. The overall 

effects of synaptic noise can nonetheless be reduced by maximizing the amplification 

at the first synaptic stage after transduction which is the receptor-LMC synapse. 

Maximizing the signal-to-noise ratio by maximizing the amplification at this stage 

corresponds in physiological terms to maximizing the amount of transmitter released 

for a given change in receptor membrane potential difference,12 but avoiding the 

saturation of post-synaptic response. Thus noise limitation considerations are sufficient 

to explain the widespread occurrence of high-gain synapses observed in sensory 

receptors [15]. Another device which both provides large gain and ameliorates synaptic 

noise (and is availed of in the fly retina) is a large array of chemical synapses between 

receptors and the succeeding neural processing stage (in this case LMCs). This array 

works on the principle that many synaptic connections made between a single 

pre-synaptic cell and a single post-synaptic cell transmit independently the same neural 

signal many times over. All of these signals are summed in the postsynaptic cell, 

providing a strong potential difference across the post-synaptic cell membrane simply 

at the metabolic expense of maintaining synapses.13 As well as the summation over 

multiple synapses providing a large gain it also has the advantage that the quantization 

noise is introduced independently at each synapse into the identical copies of the 

signal being transmitted there and the averaging process reduces the effect of the 

noise.

3.7.2 Neural predictive coding
In addition to being amplified at the first set of synapses in such a way as to increase 

the signal-to-noise ratio, the visual signals undergo transformations in the retinal 

neurons of the fly which serve to increase immunity to noise by making more efficient 

use of the neurons’ dynamic range. The signals recorded from the LMCs are made

,2Since neuro-transmitters are released from synaptic vesicles in discrete amounts there is an intrinsic 
quantization "noise" inherent in synaptic transmission. If large amounts of transmitter are released for a 
given input signal, then this quantization effect is less noticeable.

lsThe pre-synaptic cell releases neurotransmitters which bind to receptor sites on the post-synaptic side of 
the synapse. These cause a release of energy in the macroscopic form of a graded potential — energy which 
was originally stored up by the metabolism of the post-synaptic cell. Simply at the expense of generating 
neurotransmitter molecules, the pre-synaptic cell can cause a large release of energy in the post-synaptic cell.
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more transient by an antagonistic mechanism corresponding to the process of 

self-inhibition described in Limulus and similar effects in the vertebrate retinae. There 

is also an antagonistic response from neighbouring cells in the fly retina which are 

similar to the lateral inhibition which occurs in Limulus and the process mediated by 

the A-type horizontal cells in vertebrate retinae. The effect of these types of 

antagonism is to subtract away the background signal which remained after the 

logarithmic transduction process of the receptors and thereby allow subsequent 

amplification to expand the contrast signal alone to fill the dynamic response range of 

the LMC.

Laughlin [15] describes how these antagonistic mechanisms can be explained in terms 

of a predictive coding process which attempts to represent the visual data more 

efficiently thereby increasing both the capacity of the neural system as an information 

carrying channel and increasing the signal-to-noise ratio. Within any image of the 

natural world, spatial correlation will exist because, by the very nature of the external 

world, neighbouring points are more likely to have similar intensity values than more

time

stimulus

LMC Receptive Field LMC Impulse Response

Figure 10. Illustration of the change in lateral- and self-inhibition corresponding to a 
change in signal-to-noise ratio and effectively different levels of light/dark adaptation. 
Adapted from [15].
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widely separated points. There is also temporal correlation within signals transmitted 

by photoreceptors in an eye which is introduced by the relatively slow time course of 

these photoreceptors and also by virtue of continuity of existence in the external world. 

These correlations can be described statistically. Given this information and the 

intensity value of a particular element of a scene, predictions can be made about the 

possible values of neighbouring or succeeding scene elements. Predictive coding is the 

process of removing any components of a signal which can be predicted statistically 

from the context The calculation of spatial and temporal statistical weighting functions 

for prediction within natural scenes [99] indicates two interesting results. Firstly, the 

weighting functions show little dependence on particular scenes. This finding runs 

counter to the intuitive notion that images of different scenes are so dissimilar that 

there could be little statistical relationship between them [100]. Secondly, there is 

a strong dependence of the statistical weighting functions on the signal-to-noise ratio 

in receptors, and therefore indirectly on light intensity. At the low intensities, 

randomness in the quantal receptor signal becomes more prominent and has the effect 

of decorrelating receptor signals. According to Laughlin, this means that the weighting 

functions must be extended to include a sample of neighbouring or preceding elements 

to give a reliable statistical estimate. By measuring the signal-to-noise ratio, impulse 

responses and receptive field at different intensities, it was possible to show [99] that 

predictive coding is a good model of the retinal process, so that for example, the 

extent of retinal antagonism changed with intensity as described by the predictive 

coding theory. The implication of this finding is that considerations of efficiency, noise 

immunity and matching to the statistical properties of natural scenes are close to the 

evolutionary pressures which conspired to bring the retina to its present state of 

development

3.73  Matched gain
Returning to the problem of amplifying the visual signal produced by transduction in 

the photoreceptors: if there is too little amplification, the signal is lost in noise; if there 

is too much, then even ordinary low contrast inputs cause the output response to 

saturate. The ideal amplification process has a different gain for each intensity, 

depending on the frequency of occurrence — i.e. proportional to the signal probability. 

This type of amplification process helps to better distinguish intensity or stimulus 

values which occur most often. An alternative but entirely equivalent way of viewing
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the process is to consider the response range as being best utilized if all output values 

occur with equal probability regardless of the probability distribution of the input In 

this way response values "contribute their fair share in carrying information" [99]. The 

desired amplification process is achieved when equal increments in response 

correspond to input changes equivalent to equal areas under the probability distribution 

curve of the input signal levels. This means that the input/output transfer curve, i.e. 

the relationship between stimulus contrast and LMC response in the fly, should follow 

the cumulative distribution curve of the input signal. This process of matching the 

amplification stage gain to the first order statistical characteristics of the input signal 

is exactly equivalent to the process of histogram equalization used in image processing 

as a means for improving contrast in a picture for human viewing. Considerations in 

terms of efficiency for information transport are rarely used in this context

To summarize the material that has been covered so far: the retina of the fly has 

evolved to minimize the effect of synaptic noise. It achieves this by using predictive 

coding and matched gain to make more efficient use of the available neural dynamic 

range. These processes happen as early as possible in the retinal circuit at the interface 

between receptors and intemeurons so that maximum effect is achieved. The predictive 

coding leads to a reduction in redundancy of the output signal from the retina. The 

antagonistic mechanism which implements the predictive coding seems to be able to 

adapt to the signal-to-noise ratio of the incoming signal.

Similar work, couched in exactly these terms has yet to be done on vertebrate retinae, 

including critical experiments which would indicate the relationship between lateral 

inhibition, receptive fields and the signal-to-noise ratio. The dopaminergic amacrine 

cells described above seem to behave in a manner which is in qualitative agreement 

with that required by the predictive coding model but the quantitative relationship 

which would link theory to reality has not been investigated. The bipolar cells in the 

vertebrate retina are the second order intemeurons equivalent to the fly’s LMCs and 

the ones which first exhibit lateral antagonism in their receptive fields. It is the 

response of these cells that we expect to see changing to match signal-to-noise ratio. 

The gross changes which occur between the light-adapted state for daylight and the 

dark-adapted state for twilight are too coarse to definitely support the predictive coding
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model. It would be much more interesting to see the effect of relatively small changes 

in ambient illumination completely within the light-adapted state.

The mechanism of colour opponency in human colour vision can also be explained 

using redundancy reduction arguments similar to those used for predictive coding. As 

described above the strong overlap in the spectral sensitivities of red and green cones 

allows them to be used as alternate elements in the sampling of luminosity. This strong 

overlap also introduces correlations between the red-sensitive and green-sensitive cone 

outputs which make coding in terms of parallel red and green colour channels very 

inefficient. Antagonistic colour opponent combinations have been observed in the 

concentric centre-surround receptive fields of primate ganglion cells. Behavioral 

studies of colour opponency also suggest that the human visual system codes colour 

in terms of spectrally opponent channels [101,102]. It seems that these 

mechanisms are compatible with the application of information theory to the reduction 

of redundancy in colour coding also [15, 101].

3.7.4 Alternative theories of neural function
Barlow’s approach to understanding the visual system in terms of critical limiting 

factors is mentioned above in section 3.3.1 in the context of photoreceptor spacing. He 

proposes that the narrow dynamic range of neurons thought of as communication links, 

is another critical limitation which has a fundamental effect on the architecture and 

mechanisms of sensory information processing. As we have just seen, this approach 

in terms of communications theoiy, noise immunity and redundancy is successful in 

providing a model which corresponds closely with reality. It is a viewpoint that helps 

us to interpret the arrangements that we find in the visual system and hence improves 

our understanding of it [16]. The version of the approach presented in the previous 

section, so far claims little priority over other, possibly equivalent, explanations of the 

working of the visual system, like feature detection. It simply presents a model which 

is only supported in the extent to which it correlates with the reality of measurements 

on biological vision systems. There are however, theoretical reasons for a stronger 

stand on this issue. Laughlin sums up the situation in respect of the alternative and 

more traditional "explanation" of retinal processing in terms of feature enhancement:

. . . f e a t u r e  e n h a n c e m e n t  i s  o f t e n  p r o p o s e d  a s  a  m a j o r  f u n c t i o n  o f  t h e  r e t i n a .

F o r  e x a m p l e ,  r e t i n a l  a n t a g o n i s m  a n d  a m p l i f i c a t i o n  e m p h a s i z e  t h e  t i m i n g  o f
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i n t e n s i t y  c h a n g e s  a n d  th e  l o c a t i o n  o f  e d g e s .  T h e r e  n e e d  b e  n o  c o n f l i c t  

b e t w e e n  t h e  p r i n c i p l e s  o f  r e d u n d a n c y  r e d u c t i o n  a n d  f e a t u r e  d e t e c t i o n .  I n  t h e  

a b s e n c e  o f  c r i t i c a l  e v id e n c e ,  t h e  c o d i n g  e f f i c i e n c y  a r g u m e n t  e m b r a c e s  a l l  

f e a t u r e  e n h a n c e m e n t  a r g u m e n t s .  E f f i c i e n t  c o d i n g  w i l l ,  b y  d e f i n i t i o n ,  

e m p h a s i z e  e v e r y  f e a t u r e  t h a t  c a r r i e s  i n f o r m a t i o n ,  i n c l u d in g  t h e  l o c a t i o n  o f  

e d g e s  a n d  th e  t i m i n g s  o f  i n t e n s i t y  c h a n g e .  T o  r e j e c t  a  c o d i n g  e f f i c i e n c y  

a r g u m e n t  in  f a v o u r  o f  f e a t u r e  e n h a n c e m e n t  o n e  m u s t  n o t  o n l y  i n v o k e  t h e  

q u a l i t a t i v e  b e n e f i t s  o f  e n h a n c e m e n t ,  o n e  m u s t  c o n s i d e r  a n d  e v a l u a t e  t h e  

i n f o r m a t i o n  t h a t  i s  l o s t  o r  c h a n n e l l e d  e l s e w h e r e .  [ 1 5 ]

Barlow presents a somewhat stronger viewpoint on which of the approaches — the

statistical redundancy one, or the feature enhancement one -  has logical priority:

W e  o f t e n  u s e  c o n t o u r s  to  r e c o g n i s e  o b j e c t s ,  a n d  l a t e r a l  i n h i b i t i o n  i n  t h e  

r e t i n a  t e n d s  to  p r o m o t e  t h e  a c t i v i t y  o f  g a n g l i o n  c e l l s  a t  c o n t o u r s ,  w h e r e  

l u m i n a n c e  c h a n g e s  r a p i d l y .  I t  i s  t h e n  s u g g e s t e d  t h a t  t h e  p s y c h o l o g i c a l  

i m p o r t a n c e  o f  c o n t o u r s  'e x p l a i n s ’ t h e  e x i s t e n c e  o f  l a t e r a l  i n h i b i t i o n ,  b u t  o f  

c o u r s e  t h i s  p u t s  t h e  r e l a t i o n  c o m p l e t e l y  b a c k w a r d s :  t h e  b r a i n  c a n  o n l y  u s e  

w h a t  i n f o r m a t i o n  t h e  r e t i n a  s u p p l i e s ,  s o  t h a t  t h e  p s y c h o l o g i c a l  i m p o r t a n c e  

o f  c o n t o u r s  m i g h t  r e s u l t  f r o m  l a t e r a l  i n h i b i t i o n  b u t  c o u l d  n e v e r  e x p l a i n  i t .  

C a l l i n g  i t  a n  e x p l a n a t i o n  d i s t r a c t s  a t t e n t i o n  f r o m  t h e  c r i t i c a l  d i f f i c u l t i e s  t h a t  

m u s t  b e  o v e r c o m e  t o  e x t r a c t  u s e f u l  k n o w l e d g e  f r o m  v i s u a l  i m a g e s ,  a n d  i t  i s  

u n d e r s t a n d i n g  t h e s e  l i m i t s  t h a t  g i v e s  r e a l  i n s i g h t  i n t o  t h e  o r g a n i s a t i o n  o f  t h e  

v i s u a l  s y s t e m .  [ 1 6 ]

Barlow is fairly unequivocal in his attitude to the "importance" of feature enhancement 

and subsequent detection as "explanations" of visual processing. Instead he stresses the 

need to understand visual processing in terms of reducing the redundancy of visual 

images by the "neat packaging of information" [16,103,104,105]. He 

suggests that the purpose of natural image processing is "to represent visual scenes by 

the activity of a sparse selection of reliable and non-redundant (i.e., independent) 

elements" [16]. Barlow’s position is used here as a step to a much stronger view which 

puts the elimination of redundancy and the extraction of "invariants" in a pre-eminent 

position in the process of perception.

The whole point of an information processing approach to understanding sensory 

perception is that of all the processing configurations that the sensory system could 

adopt, it converges on one which is well matched to the statistics of its particular 

environment As described by Torre & Poggio [106], visual perception is an 

ill-posed problem with no necessary solution. Biological organisms seem, as part of 

the strategy of overcoming the ambiguity inherent in "seeing", to have adopted the
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device of becoming "attuned" to the properties and structure of their surroundings. 

Thus we see in the fly that the ability of the retina to adapt to different signal-to-noise 

ratios and the matching of amplification to expected signal levels is a strategy which 

makes maximum use of the available neural signalling power. In a manner of speaking 

"assumptions" about the external world are built into the lowest level of neural 

processing. There is every reason to suspect that similar information processing 

principles are built into the processes of the cells of the vertebrate retina also. We find 

ourselves in close agreement with Laughlin in taking this idea a step further. Matching 

to the statistical properties of an organism’s environment is not necessarily restricted 

to the lower levels of visual processing. In fact we suggest that it is a fundamental 

principle of all neural processing that neural subsystems in the brain are or become 

matched to the statistical properties of their input and indirectly to some properties or 

structures of the external world. Such a strategy may be interpreted in terms which are 

meaningful in our conception of our environment like edges, features, surfaces, 

volumes, objects etc., but these fundamentally do not explain the strategies. Again we 

take the opportunity to quote Barlow’s aphorism: it is not "What is represented here? 

... rather what types of information are brought together here?" [16]. There is no high 

level and low level vision with vastly different types of representation — there is only 

low level vision at different degrees of abstraction, i.e. dealing with information with 

different statistical properties.

The view proposed here however goes further than Laughlin. Inspired by Barlow’s 

"activity of a sparse selection of reliable and non redundant ... elements" and by 

Watanabe’s comparison of information processing and quantum mechanical systems,we 

believe that there is a much more fundamental reason for matching to the structure and 

properties of the environment than simply to get the most out of a neural transport 

mechanism (which it does). The elimination of redundancy at progressively more 

abstract levels, the detection of progressively more abstract invariants, the making 

explicit of implicit information i s  perception. There is nothing more, no homunculus 

in disguise "watching" what is going on. We return again to expand out these ideas 

below.

One very important question arises from this view of neural processing — what 

mechanisms determine the characteristics of neural processing circuits and how are
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they specified during development and maturation? For the visual system of the fly 

this question can be readily if incompletely answered. The development of fly lamina 

has been extensively documented and recent results suggest that both the performance 

and wiring of the visual system are influenced by early visual experience [15]. It is 

difficult to understand the position of the primate retina in this context as its 

development seems to be relatively complete by the time of birth. The situation for the 

primate cortex is more clear cut as effects of early experience on its development have 

been demonstrated.

3.7.5 Edges or artifacts: the Mach band phenomenon
The Mach band phenomenon, apparently the result of lateral inhibition in the retina, 

has inspired much of the work on edge-detection as a first step in visual perception. 

Barlow [16], Laughlin [15] and others have argued very strongly against the view that 

lateral inhibition subserves the task of emphasising contours or edges. Instead they 

claim that the Mach effect is simply a side-effect of the necessity to reduce as much 

as possible the gross spatial and temporal redundancy which exists in the visual data 

just after transduction. Laughlin describes how results on the SNR dependency of 

signal processing from the fly support the explanation of self-inhibitory and 

lateral-inhibitory mechanisms in terms of predictive coding for redundancy reduction. 

While the process of redundancy reduction is required to exploit to the maximum the 

information-carrying bandwidth of the rather noisy ganglion cells, it is not known if  

this type of processing is a pre-requisite for later stages of processing. Certainly 

contours are important in certain types of pattern perception but there is no convincing 

evidence that they are required for perception and not just a side-effect of coding for 

efficient data transport Whichever is the case, it seems likely that the idea of a world 

consisting of a discrete number of self-identical objects is a view that is strongly 

influenced by the existence of the Mach band phenomenon [19, chap.2], and in turn 

by the peripheral coding which has more to do with the statistics of our environment 

than anything else.

3.8 Summary
Many useful ideas become apparent upon a careful analysis of the detail of research 

results that are available about the structure and operation of the retina. Thus we see, 

for example, that the form of the eye has more to do with the limitations caused by
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receptor cross-talk and organism size than striving to produce a faithful representation 

of the external world. It is very difficult to sustain notions about image-type 

representations when confronted with the details of the operation of the eye — 

particularly the eyes of invertebrates which nevertheless can have comparable acuity 

to ours. Also it seems that quite stable and quite powerful neural processing 

capabilities are relatively easy to generate, implying that there may be underlying 

structural dynamics or information theoretic principles which contribute to the final 

observed system. These principles or dynamics could be quite far removed from the 

apparent purpose of the system or unit. In other words, Marr’s computational theory 

which emphasises the need to discover the role of a capacity: "what is being 

computed, and why", by ignoring either evolutionary or ontogenetic development, 

ignores a parallel system of structural modification — probably similar to what Varela 

refers to as a m e t a d y n a m i c s  [53]. This is related to the most important idea to emerge 

from the above discussion which is that much of the form and function of the retina 

can be understood in terms of information theoretic ideas. Because in turn the retina 

is more constrained (or "programmed") genetically than other parts of the nervous 

system, such information theoretic ideas may be even more relevant in these other 

parts, like the visual cortex.

We also see coming through, the important distinction between different functions of 

the visual system in terms of differentiation of into two or three different "strands" 

(magno/parvo initially) along the visual pathway. Much of the introspective idea of the 

way that the brain sees its environment seems to be strongly coloured by the properties 

of the scrutinising parvo system. A visual sub-system with these properties may be 

unique to primates. The magno system which is responsible for many of the less 

"solid" and more intriguing properties of vision like figure/ground separation, gestalt 

organisation, motion perception and so on, may be more representative of the visual 

capabilities of other vertebrates like the cat This is yet another reason to try to erase 

from our ideas of how to build computer vision systems, notions of 2V4-D sketches or 

3-D representations.
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Chapter 4

4 Information in Perception

(a)
V i s i o n  i s  t h e  p r o c e s s  o f  d i s c o v e r i n g  f r o m  i m a g e s  w h a t  i s  p r e s e n t  i n  t h e  

w o r l d ,  a n d  w h e r e  i t  is .  V i s i o n  i s  t h e r e f o r e ,  f i r s t  a n d  f o r e m o s t ,  a n  

i n f o r m a t i o n - p r o c e s s i n g  ta s k ,  b u t  w e  c a n n o t  t h i n k  o f  i t  j u s t  a s  a  p r o c e s s .  F o r  

i f  w e  a r e  c a p a b l e  o f  k n o w i n g  w h a t  i s  w h e r e  i n  t h e  w o r l d ,  o u r  b r a i n s  m u s t  

s o m e h o w  b e  c a p a b l e  o f  r e p r e s e n t i n g  t h i s  i n f o r m a t i o n  — i n  a l l  i t s  p r o f u s i o n  

o f  c o l o r  a n d  f o r m ,  b e a u ty ,  m o t i o n  a n d  d e t a i l .  [ 9 ,  p  3 ]

(b) In a book entitled V i s u a l  I n f o r m a t i o n  P r o c e s s i n g ,  Spoehr and Lehmkuhle consider 

the human visual system as an information processing system — a system that can 

transform information from one form to another, that can reduce it (to avoid overload), 

that can elaborate it (filling in missing details), that can store it to memory and 

subsequently retrieve it [107, p.2]. Furthermore, they explicitly use a computer 

analogy to "refine our understanding of information processing".

(c) According to Marr [9, p.29], JJ. Gibson’s important contribution was to note that

the important thing about the senses is

t h a t  t h e y  a r e  c h a n n e l s  f o r  p e r c e p t i o n  o f  t h e  r e a l  w o r l d  o u t s i d e  o r ,  i n  t h e  

c a s e  o f  v i s i o n ,  o f  t h e  v i s i b l e  s u r f a c e s .  H e  t h e r e f o r e  a s k e d  t h e  c r i t i c a l l y  

i m p o r t a n t  q u e s t i o n ,  ‘H o w  d o e s  o n e  o b t a i n  c o n s t a n t  p e r c e p t i o n s  i n  e v e r y d a y  

l i f e  o n  t h e  b a s i s  o f  c o n t i n u a l l y  c h a n g i n g  s e n s a t i o n s ? ’

The answer according to Gibson was, in the direct detection of higher order variables

or invariants:

T h e s e  i n v a r i a n t s  c o r r e s p o n d  t o  p e r m a n e n t  p r o p e r t i e s  o f  t h e  e n v i r o n m e n t .

T h e y  c o n s t i t u t e ,  t h e r e f o r e ,  i n f o r m a t i o n  a b o u t  t h e  p e r m a n e n t  e n v i r o n m e n t .  

[ T h e ]  f u n c t i o n  o f  t h e  b r a i n ,  i s  n o t  t o  d e c o d e  s i g n a l s ,  n o r  t o  i n t e r p r e t  

m e s s a g e s ,  n o r  t o  a c c e p t  i m a g e s ,  n o r  to  o r g a n i s e  t h e  s e n s o r y  i n p u t  o r  t o  

p r o c e s s  t h e  d a t a ,  i n  m o d e r n  t e r m i n o l o g y .  I t  i s  t o  s e e k  a n d  e x t r a c t  

i n f o r m a t i o n  a b o u t  t h e  e n v i r o n m e n t  f r o m  t h e  f l o w i n g  a r r a y  o f  a m b i e n t  

e n e r g y .

(d) Consider the following which Dretske claims rests on the confusion of information 

with meaning:
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... s o m e t h i n g  o n l y  b e c o m e s  i n f o r m a t i o n  w h e n  i t  i s  a s s i g n e d  a  s i g n i f i c a n c e  . . .

T o  s p e a k  o f  i n f o r m a t i o n  a s  o u t  t h e r e  i n d e p e n d e n t  o f  i t s  a c t u a l  o r  p o t e n t i a l  

u s e  b y  s o m e  i n t e r p r e t e r , a n d  a n t e d a t i n g  t h e  h i s t o r i c a l  a p p e a r a n c e  o f  a l l  

i n t e l l i g e n t  l i f e ,  i s  b a d  m e t a p h y s i c s .  I n f o r m a t i o n  i s  a n  a r t i f a c t ,  a  w a y  o f  

d e s c r i b i n g  t h e  s i g n i f i c a n c e  f o r  s o m e  a g e n t  o f  i n t r i n s i c a l l y  m e a n i n g l e s s  

e v e n t s .  W e  i n v e s t  s t i m u l i  w i t h  m e a n i n g ,  a n d  a p a r t  f r o m  s u c h  i n v e s t m e n t ,  t h e y  

a r e  i n f o r m a t i o n a l l y  b a r r e n .

(e) Dretske [22, p.ix] puts the thing back into perspective:

I t  i s  m u c h  e a s i e r  t o  t a l k  a b o u t  i n f o r m a t i o n  th a n  to  s a y  w h a t  i t  i s  y o u  a r e  

t a l k i n g  a b o u t .  A  s u r p r i s i n g  n u m b e r  o f  b o o k s ,  a n d  t h i s  i n c l u d e s  t e x t b o o k s ,  

h a v e  t h e  w o r d  i n f o r m a t i o n  in  t h e i r  t i t l e  w i t h o u t  b o t h e r i n g  t o  i n c l u d e  i t  i n  

t h e i r  i n d e x .

4.1 Introduction
The extracts above are intended to give a flavour of the sense in which the term 

information is typically used in computer vision. If one begins to question exactly 

what it is that perception is, the vagueness and plurality of connotations of the term 

information becomes an immediate stumbling block. Information can have an objective 

and quantifiable quality as in the pulses on a wire, or the bytes stored in a computer’s 

memory. Alternatively, it can have a more abstract, less quantifiable quality, as in the 

message or "news" earned by these pulses or in the bytes. And this ambiguity can be 

useful — it allows us to move from the concrete structure of the environment to the 

vagueness of meaning or ideas. The author can at each stage feel free to rely on 

whatever intuitive understanding the reader has of the term to convey their meaning. 

Like "knowledge" and "perception" it is one of these terms associated with (natural) 

intelligence which has so far substantially eluded definition or explanation in an 

objective context.

The aim of this chapter is to clarify some of the different quantitative interpretations 

of the term information as applied to signal processing, communications, the human 

visual system, pattern recognition and neural networks. Starting with the origins of the 

concept of entropy in physics, we first examine how this idea was generalized and 

adapted for use in describing discrete symbol systems in the work associated with 

Shannon. The key concepts described here are those of s u r p r i s e ,  e q u i v o c a t i o n  and 

n o i s e , and we return to these several times in the remainder of this dissertation. A
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quite separate development of quantitative ideas about information was concerned with 

continuous or analogue systems and notions of sampling and quantization in these 

systems. This area provides the basis for the Gabor filtering and coding described in 

the next chapter and used there to interpret the filtering or coding properties of the 

visual cortex. The Shannon-type notions of information have also been used to 

quantify the human visual system (HVS) considered as a communication channel and 

this topic is discussed in section 4.4. A more general formulation of the physical 

concept of entropy than that used in information theory has been applied as an 

explanatory device in pattern recognition and pattern description and this is dealt with 

in section 4.5. Perhaps not surprisingly, the ideas of redundancy and equivocation have 

been shown to be very useful in describing the information processing function of 

certain types of simple artificial neural networks. However the simulation results 

achieved by Linsker, and described in section 4.6, present a great opportunity to begin 

to describe the developmental "forces" which are responsible for the information 

processing functions of natural sensory systems also. Finally having discussed many 

of the different aspects of quantitative and statistical interpretations of information in 

signals and in living systems we turn our attention to the issue of whether of not there 

is any other relevant aspect of the application of information to sensory perception, in 

a discussion of statistical and form redundancy in section 4.7. This topic is returned 

to in more detail in section 7.4, when we describe Dretske’s semantic theory of 

information and relate it to the ideas being developed here.

The Collins dictionary defines information as

(i) knowledge acquired in any manner, facts; news or

(ii) as any data stored in a computer [108].

It is interesting to see these two definitions side by side. The first seems to imply that 

"knowledge" is internalised "information". That is, whatever the mind can acquire and 

store as "knowledge" — that is "information". The second definition -  computer data 

— is often associated with the description of a computer as an "information processing 

system". The origin of this usage presumably arises from the loose identification of 

the terms "information" and "data". No doubt this is because of the usual assignment 

of meaning by people to the data stored in a computer. The juxtaposition of these two 

definitions for information above is no coincidence. Cognitive psychology, artificial 

intelligence and computer vision relies on, if not always the formal identification, then

107



at least a strong association and some sort of interchangeability between these concepts 

[9,107,109,110,111]. This association itself is no coincidence — the modem 

concept of computation grew out of attempts to understand the brain as a logical 

machine [30,112], It is unfortunate that the terms "information processing" and 

"computing" in the sense of the modem digital computer have become virtually 

synonymous. It is often useful to describe what biological sensory organs (including 

the brain) do, as the "processing of information", without implying that it is "cold", 

logical, unbiased functioning in the sense of a digital computer. Here we use the term 

"information processing" mostly in its more general sense.

There is a quantitative information theory (communications theory) but it literally tells 

us nothing about information — rather it deals with quantities of information, and not 

the information that comes in these quantities. Strictly speaking communications theory 

is not in its usage even directly concerned with amounts of information, but in how 

to characterize sources and channels for the flow of data. Still, it is possible that the 

ideas involved in the mathematical theory of communication could provide a 

foundation for relating semantic and syntactic aspects of what it is we call information.

A major driving force behind the study of human vision is the expectation that 

explanatory links can be forged between the experience of being able to see and the 

structure or processing of the visual system. In other words, while it is interesting in 

itself to explore and understand the workings of a complex system — and the visual 

system is certainly that — to find and understand neural correlates of subjective visual 

perception in a comprehensive way is one of the major outstanding unsolved problems 

[113]. One of the first major hurdles in this quest is the confusion that exists 

between the concept of information as it is used in science, the information that is 

represented by the activity and processing of neurons and neural systems and the 

information which the mind can conceive as knowledge and to which it can attach 

meaning.

4.1.1 Information in physics
The confusion does not stop with its interpretations outside of the so-called hard 

sciences. There are two quantitative uses of the term "information", one associated 

with physics and one, the one mentioned above, associated with mathematics
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(probability theory) and communications. The history and present usage of 

"information" in mathematics and physics is deeply intertwined with the concept of 

entropy introduced by Clausius [19, p. 139] in the formulation of a conjecture — now 

called the s e c o n d  la w  o f  t h e r m o d y n a m i c s 1. The ideas involved arose out of work on 

heat engines done by Carnot in the early 19th Century. In any system undergoing a 

reversible change, the change of entropy is defined as the energy absorbed, divided by 

the thermodynamic (absolute) temperature: d s - d q l T . The entropy of a system is thus 

a measure of the availability of its energy for performing useful work. This is a 

definition in terms of macroscopic physical quantities: work, temperature, heat engines 

and so on. With the advent of statistical mechanics as a microscopic level of 

explanation for thermodynamical quantities, the interpretation of the concept of the 

entropy of a system found a natural extension as a measure of the way in which the 

total energy of the system is distributed amongst its constituent atoms [114]. This 

re-interpretation of the thermodynamic quantity from an atomist point of view is due 

mainly to Boltzmann, Gibbs and Maxwell, working in the late 19th Century on 

statistical interpretations of mechanical systems [115]. In the statistical 

interpretation, the idea of entropy has been extended to include changes of the system 

that do not necessarily involve changes in energy. In general, the entropy of a system 

is used as a measure of its degree of "order" — the more disordered a system, the 

higher its entropy. In the subjectivist theory of entropy, originally due to Szilard 

[116], the entropy of a system increases whenever our information about it 

decreases. According to this theory "any gain of information or knowledge must be 

interpreted as a decrease in thermodynamic entropy: in accordance with the second law 

it must be somehow paid for by an, at least equal, increase in entropy". Entropy is 

r e l a t e d  t o  the lack of information.2

'The second law states that entropy can only increase in a closed system. Experience teaches us to associate 
increasing entropy with the forward movement of time. Time "flows" in the direction of high probability, 
which is the direction of increasing entropy. The second law is statistical -  "individual subatomic particles 
are conceived as such conceptually isolated short-lived entities that the second law does not apply to them 
... Time reversibility exists in potentia, i.e., while the particles are represented by propagating wave functions 
[in Quantum dynamics]. Time irreversibility is an artifact of the measurement process [50, p.239],

2These ideas have recently been extended to logical computation, where a measure of randomness algorithmic 
complexity, is defined without recourse to probabilities (see Shannon’s definition of entropy below). 
Algorithmic complexity sets limits on the thermodynamic cost of computations.
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The first use of entropy outside of thermodynamics and statistical mechanics is 

attributed [19, p. 139] to John von Neumann in his 1932 book on the foundations of 

quantum mechanics [48]. He introduced a quantity which he referred to as 

"microscopic entropy" defined as S  =  —T r a c e ( o L o g c ) ,  to demonstrate the 

irreversibility of the process of physical observation. Here a  is a density matrix over 

an ensemble of identical quantum mechanical systems [115]. He did not make any 

reference in this treatment to order, or structuredness or co-operation. In a series of 

articles [117,118], Watanabe claims to have used von Neumann’s "microscopic 

entropy" as a measure of structuredness or degree of co-operation between nuclear 

particles [19, p. 140]. He used the term " b u i ld i n g  b l o c k  e n t r o p y "  to distinguish it from 

the usual thermodynamic entropy. It was shown to measure

(i) the degree of indeterminacy of the nuclear state of a single particle taken 

individually;

(ii) the degree of interaction and interdependence of particles constituting an 

organised system.

In the terminology of modem information theory (see below), the first measure 

corresponds to "ignorance" or uncertainty, and the second corresponds to 

"organisation" or "redundancy" [47, p.50].

In communications, Nyquist in 1924 [119] and Hartley in 1928 [120] had

suggested that the logarithm of the number of alternative symbols (corresponding to

maximum ignorance: ( i g n  E ) ^  =  L o g  n )  could be used as a measure of

communication. However, it was not until over 20 years later that Shannon and

Weaver [121,122] put a mathematical theory of communications on a solid

theoretical basis. As in thermodynamics and statistical mechanics, the term entropy

again plays a key role but it should be emphasized that the uses are purely a n a l o g i c a l .

A further point worth stressing is that whether or not a message in a communication

system is attributed a m e a n i n g  by any external agency is irrelevant to its

Shannon-information content:

T h e  f u n d a m e n t a l  p r o b l e m  o f  c o m m u n i c a t i o n s  i s  t h a t  o f  r e p r o d u c i n g  a t  o n e  

p o i n t  e i t h e r  e x a c t l y  o r  a p p r o x i m a t e l y  a  m e s s a g e  s e l e c t e d  a t  a n o t h e r  p o i n t .  

F r e q u e n t l y  t h e s e  m e s s a g e s  h a v e  m e a n i n g ;  t h a t  i s  t h e y  r e f e r  t o  o r  a r e  

c o r r e l a t e d  a c c o r d i n g  to  s o m e  s y s t e m  w i t h  c e r t a in  p h y s i c a l  o r  c o n c e p t u a l  

e n t i t i e s .  T h e s e  s e m a n t i c  a s p e c t s  o f  c o m m u n i c a t i o n  a r e  i r r e l e v a n t  t o  th e  

e n g i n e e r i n g  p r o b l e m .  T h e  s i g n i f i c a n t  a s p e c t  i s  t h a t  t h e  a c t u a l  m e s s a g e  i s  o n e  

s e l e c t e d  f r o m  a  s e t  o f  p o s s i b l e  m e s s a g e s .  T h e  s y s t e m  m u s t  b e  d e s i g n e d  to
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o p e r a t e  f o r  e a c h  p o s s i b l e  s e l e c t i o n ,  n o t  j u s t  t h e  o n e  w h i c h  w i l l  a c t u a l l y  b e  

c h o s e n  s i n c e  t h i s  i s  u n k n o w n  a t  t h e  t i m e  o f  d e s i g n r*. [ 1 2 1  ]

4.2 The Mathematical Theory of Information
The mathematical theory of information, or communication theory or Shannon’s 

information theory, should be carefully distinguished from any s e m a n t i c  theories of 

information. As mentioned above, the former terms are synonyms for a theory that 

deals with information in quantitative terms: with amounts of information and not the 

information that comes in these amounts [22, p.3]. As is articulated in the quote from 

Shannon, the task of information theoiy is to characterize message s o u r c e s  and data 

c h a n n e l s .  Its methodology is to evaluate the amount of information identified with or 

generated by the occurrence of an event, and the reduction of uncertainty or the 

elimination of possibilities, represented by that event. Because the concept of 

Shannon-information is so important to the topics which are developed below, we will 

review some of the basic definitions and properties.4

A logical spectrum or partition [123] is a set E  of propositions { E u  E 2, . .„  E J  such 

that any two distinct members are disjoint, i.e.,

£, r \  E j =  0  for 1* 7, 

and its members are exhaustive, i.e.,

E ,  r \  E 2 r \ ... n  E n  = E L  

We assume that at a certain s t a t e  o f  k n o w l e d g e  we can assign probabilities p { E J  =  

P i to each proposition or event E , such that the probabilities p, satisfy

p f E J Z O  Vi; X  p f E J  = 1  ( 1 )

We assume that the £,’s can be experimentally tested but that the probabilities p, are 

assigned, before testing which one of the E ' s  turns out to be true in this particular 

experimental test Now, assuming that the test is made, our state of knowledge changes 

drastically. Now we know that one (and only one) of the E /s has turned out to be true 

and we have a new "probability" distribution over the set of propositions or events: 

p ' j  = 1 , for some j ;  p ' .  =  0 , i * j  ( 2 )

’Dretske suggests that one source of the confusion which is endemic in the use of the term information is 
the fact that while between 1928 and 1948 American engineers and mathematicians began to talk about a 
theory of information in quantitative terms associated with communication, in the UK the usage moved away 
from communication towards a more general interpretation of the term.

4The terminology and notation follow those of Walanabe [47, p.8ff].

111



Considering again the situation before the test The probability is a measure of our 

expectation that £, will turn out to be the case given our existing state of knowledge. 

If A  is small for some particular i, we do not think it likely that the event E t will 

occur. If in our test E t does occur or the proposition becomes true, then our "surprise" 

is large. Alternatively, if  p t = I  for some / then our state of knowledge guarantees us 

that E, will happen in the test and we are not at all surprised when it does. Our 

"surprise" is zero. Any monotonic decreasing function <p(pj can act as a measure of 

our surprise caused by the result E c  Two useful functions are

<P(W = - l o g  P i  ( 3 )

and

<P(PJ = ~ P i (4)

The logarithmic expression is more convenient and somewhat more intuitive because 

it satisfies an a d d i t i v i t y  constraint over two sets of mutually independent partitions [47, 

p.8ff]. If this property is not required then eqn. (4) is just as useful. The probability 

P i means that we will suffer "surprise" < p (p j if the event £, occurs in the test We 

expect that this event will occur with a probability p„ however, and so the "expected 

(or average) suiprise" is

E {< p (p i)}  = X, P i ( t fP i)  = -X ; P i l o g  P i ( 5 )

Given our "state of knowledge" before the test then the expected surprise is also a 

measure of our i g n o r a n c e  with regard to the outcomes of the test:

i g n ( E )  = P i l o g  p ,  ( 6 )

The minimum ignorance occurs if we know that a particular event is certain to be the

outcome of the test i.e., if one of the p, is unity (and all the others zero). The 

maximum value of ignorance occurs when we have absolutely no reason to think that 

any one event is more likely to occur than the other with our current state of 

knowledge. In this case all n  events are equally likely with probability p ;  =  1 /n ,  Vi.

Before the test given our pre-test state of knowledge, we have some distribution of 

probability values p ; amongst the possible outcomes of the test This state of 

knowledge can be assigned a measure of ignorance as in eqn. (5). After the test the 

probabilities become the p'(- values of eqn. (2) with a corresponding zero measure of 

ignorance. The measure of information supplied by the test can be considered as the 

decrease in a corresponding measure of ignorance as a result of the test:
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i n f o r m a t i o n  = d e c r e a s e  i n  i g n o r a n c e  

= i g n ( E )  - i g n ( E )

= -X , P i l o g  P i

As Watanabe points out, even though ignorance and information have exactly opposite 

connotations, we end up with the same formula as a m e a s u r e  of each, in the case 

where the set of propositions E  are testable. If the propositions E  are not directly 

testable, the probability distribution of the p '/s in eqn. (2) cannot be achieved in one 

test Eqn. (6) however can still be interpreted as a good measure of our degree of 

ignorance or of indeterminability and (7) can still be interpreted as the amount of 

information or the decrease in ignorance supplied by any test that yields a new 

distribution over the p /s.

The quantity S  = — £,• p, l o g  P i is usually referred to as a measure of "e n t r o p y ", by 

a n a l o g y  with the thermodynamic entropy which increases with increasing disorder, 

chaos or ignorance. When the logarithm function is taken to the base 2, S  is measured 

in units called "bits" where one bit corresponds to a pair of alternatives with equal 

probability.5

These ideas can be used specifically to describe what happens at s o u r c e s  of 

information which is one of the primary concerns of communications theory. If a 

source s  has a number of discrete possible outcomes s { with associated probabilities 

p ( S i ) ,  then the average amount of information generated by this particular source, (the 

source entropy) is I ( s )  = X p ( s j  I ( S i ) , where we now d e f i n e  the information obtained 

or generated by the occurrence of s , as I ( s {)  = — l o g  p ( s f .  As well as sources, 

communications theory also considers data channels, generalising the treatment from 

the possible o u t c o m e s  of individual events, to the quantitative evaluation of the 

possible r e l a t i o n s h i p s  between events. Any event s  with discrete, mutually exclusive

*111 this context it is important to distinguish the amount of information (measured in bits) generated by a 
particular event, and the number of binary digits required to represent the possible outcomes of that event 
or state of affairs. In general, a redundant message will have more binary digits than bits of information, but 
in addition "bits" is a unit that can have fractional values while binary digits can only ever come in multiples 
of whole units.

sWhen discussing the notion of entropy itself we use the symbol S, but when talking about the infonnadon 
generated by an event we use the symbol I. They both refer to the same formula, just in different contexts 
or with different emphasis.
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possible outcomes can be considered in isolation as a generator or source of 

information. However some situations or events r  with discrete, mutually exclusive 

possible outcomes can be considered as r e c e i v e r s  of information and more precisely 

as receivers of information about s . So instead of just being interested in the 

information generated by r ,  I ( r ) ,  we are concerned with how much of the information 

I ( r )  is information received from, or about, the outcome of the event s .  This quantity 

is labelled by I J r ) .  In other words, if there is a "reduction in possibilities" at r  — what 

we have been calling an "outcome" — then I J r )  is a measure of how much of this 

reduction is related to the outcome of the event at s  — a measure of the dependency 

between s  and r. From this definition two important ideas arise:

Noise is defined as a measure of the information, or reduction in possibilities7, at r 

that is i n d e p e n d e n t  o f  what happened at s . (It is always defined relative to 

some particular source [22, p. 19]).

N(st> = - £ p ( rjlsi) log p(rj\s) N = Y,P(si>N(si>
J i

Equivocation  is defined as the information generated at s  that is n o t  t r a n s m i t t e d  to 

r .

E(r) = ~Y,P(sj\r)  log p(sAr) E = ^ p (r )E (r )
J '

I J r )  =  I ( r )  -  n o i s e  < I ( r )

I J r )  = I ( s )  — e q u i v o c a t i o n  <, I ( s ) .

Now usually in communications theory the noise and equivocation are numerically 

equal in value, because I ( s )  and I ( r )  are defined to be the same: the s a m e  set of 

possibilities (or symbols) are used at both the source and receiver. In the more general 

case of interest to us here, this is not necessarily the case [22, p.239]. Increasing noise 

(the information available at the receiver which is independent of the information

7The "event” at r related to the arrival of information from s need not necessarily involve one single discrete 
outcome happening. It might simply involve a redistribution of the probability distribution over the possible 
outcomes r, so that some become more likely and some less.
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generated at the source), does not n e c e s s a r i l y  result in a reduction in the amount of 

information received at r. However, increased noise c a n  eclipse part of the received 

signal, increasing the equivocation and reducing I , ( r ) .

Dretske makes an important point that is often not immediately apparent in treatments

of communications theory even though it is hinted at in the quote from Shannon

above: because communications theory is concerned with sources rather than particular

messages the primary quantities of interest are the a v e r a g e  amounts of information

generated by particular sources (the source entropy I ( s )  = X p ( s j  I ( s J ), rather than the

amount of information generated by a p a r t i c u l a r  event I ( s ) .  Nevertheless in the

context of epistemology it is precisely the amount of information generated by

p a r t i c u l a r  events that is relevant:

F o r  w h e n  w e  t a l k  a b o u t  w h a t  c a n  b e  k n o w n ,  w e  w i l l  b e  c o n c e r n e d ,  n o t  w i t h  

a v e r a g e s ,  b u t  w i t h  t h e  a m o u n t  o f  i n f o r m a t i o n  t r a n s m i t t e d  b y  ( h e n c e ,  t h e  

e q u i v o c a t i o n  a s s o c i a t e d  w i t h )  p a r t i c u l a r  s i g n a l s .  [ 2 2 ,  p 2 6 ]

We return to this idea again in sections 4.7 and 7.4 below.

This treatment of the quantities of information associated with events, sources, and 

receivers, like most of Shannon’s 1949 book [121], is based on discrete events. 

Shannon’s communication channel models, accepted inputs and delivered outputs, at 

discrete instants in time, where the input and output symbols are drawn from a 

countable set By means of coding theorems, he was able to rigorously establish the 

limits o f information communication over such channels and these results could be 

expressed in numbers of bits transmitted per channel use [124]. The extension of 

these ideas to the continuous case of a model describing real communication systems 

was more troublesome. We examine this next

4 3  Gabor’s Theory of information
Shannon invoked the sampling theorem and used a "hand-waving" argument to claim 

in an imprecise way, that using signals of bandwidth W ,  one can transmit only 2 W T  

independent numbers in time T  [124]. It was necessary to wait until the work of 

Landau and Pollack before the notion of 2 W T  degrees of freedom for signals of
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Figure 11. I n f o r m a t i o n  d i a g r a m  as a Cartesian product of a time and frequency 
variable showing the representation of a pure sinusoid and a pure delta function. 
Adapted from [128].

duration T  and bandwidth W  was made rigorous8 [125,126]. Nyquist [127] 

and Gabor [128] had earlier pointed out that approximately 2 T W  numbers were 

sufficient. Gabor’s work is particularly interesting for many reasons. Firstly, his use 

by analogy of the uncertainty principle from quantum mechanics in signal processing 

indicates useful parallels between the two topics. His use of the term "information" is 

consistent with Shannon’s later ideas but his method of application is very different. 

His introduction of time/frequency analysis paved the way for recent re-interpretations 

of the processing in the early visual system. Finally, he introduced an elementary 

function which accurately describes many of the characteristics of simple cells in the 

primate visual cortex (see chapter 5 below).

*David Slepian gives an excellent thought-provoking account of the paradox of real finite duration signals 
being band-limited in [124].
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The motivation for Gabor’s work published in 1946, and the related work of Ville

[129] and Page [130], was a fundamental analysis and clarification of the

physical and mathematical ideas needed to understand what a time-varying frequency

spectrum is [131,132]. The application was the conveyance of information in

communication channels and the optimal utilization of frequency bands. Up until that

time communication theory was based on the two mutually exclusive idealized

alternatives of time-domain analysis and frequency domain analysis.9 Time-domain

analysis employs operations at sharply defined instants in time. Fourier analysis

employs infinite duration wave-trains of sharply defined frequency. Both of these

methods of analysis are at variance with our intuitive notions of time and frequency,

based on everyday experience — particularly our experience of auditory sensation like

tones, and varying pitches in music, and also of human speech with its intricate

modulations. The approach introduced by Gabor is to represent a signal in

2-dimensions with time and frequency as co-ordinates. This means having to find a

2-dimensional joint distribution, a function of time and a function of frequency, which

describes the energy density or intensity of a signal s i m u l t a n e o u s l y  in time and

frequency. Gabor called these 2-dimensional representations " i n f o r m a t i o n  diagrams",

as areas in them are proportional to the n u m b e r  o f  i n d e p e n d e n t  d a t a  which the "area"

can convey. This sampling theoretic interpretation of time-frequency distributions was

claimed by Gabor to arise from the fundamental "uncertainty relation" that exists

between time and frequency description:

T h e  f r e q u e n c y  o f  a  s i g n a l  w h i c h  i s  n o t  o f  i n f i n i t e  d u r a t i o n  c a n  b e  d e f i n e d  

o n l y  w i t h  a  c e r t a i n  i n a c c u r a c y ,  w h i c h  i s  i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  

d u r a t i o n ,  a n d  v i c e  v e r s a .  [ 1 2 8 ]

Gabor defined "elementary signals" (now referred to as G a b o r  f u n c t i o n s , though he 

called them l o g o n s ) which occupy the smallest possible a r e a  in the information 

diagram10. These are Gaussian modulated sines/cosines, and any signal can be 

expanded in terms of them by a process of which time analysis and Fourier analysis

’Results using the short-time Fourier transform in the form of the "sound spectrogram" were published at 
almost the same time as Gabor’s work. See [128,129] for details. The problem with the short-time Fourier 
transform is choosing the time domain window-width suitable for a given time-varying signal.

‘"Because the Gabor information diagram is a Cartesian product of time and frequency, areas in the diagram 
are dimensionless quantities: pure numbers or scalars, literally data.
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(a) - i
(c)

(b)

Figure 12. Illustration of Gabor elementary functions (a) on the information diagram,
(b) in the time domain and (c) in the frequency domain.

are extreme cases11. Each elementary signal can be considered as capable of 

conveying exactly one d a t u m  of information.

At this stage Nyquist, Hartley and others had already concluded that the total amount 

of information that may be transmitted down a communications channel is proportional 

to the product of frequency bandwidth and time allowed for transmission. Gabor was 

attempting to put this result on a more rigorous footing, and at the same time give 

expression to more intuitive representations of signals. He described how no physical 

instrument for transducing sound can be represented either on the one extreme by a

“While the main advantage of the Gabor elementary function (GEF) scheme for representing signals is the 
achieving of the lowest bound on the joint entropy (defined as the product of effective spatial extent and 
frequency bandwidth), and the GEFs form a complete set, the GEFs are not independent An analytical 
solution of the problem of finding expansion coefficients requires the introduction of an auxiliary elementary 
function as described in [132],
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delta function, or on the other extreme by a pure harmonic oscillation. For eveiy 

resonator ("oscillograph" or "reed"), finite damping times and tuning widths can be 

defined when the oscillations or response have fallen by some fixed amount (say 

l O d B ) .  Then there is a fixed relation of the form

D a m p i n g  T i m e  x  T u n in g  W i d t h  = a  n u m b e r  o f  o r d e r  o n e ,

and a characteristic rectangle in the information diagram with order unity area, for all

types of resonators. Thus

p h y s i c a l  i n s t r u m e n t s  a n a l y z e  th e  t i m e - f r e q u e n c y  d i a g r a m  in t o  r e c t a n g l e s  

w h i c h  h a v e  s h a p e s  d e p e n d e n t  o n  th e  n a t u r e  o f  t h e  i n s t r u m e n t  a n d  a r e a s  o f  

t h e  o r d e r  u n i t y ,  b u t  n o t  l e s s  th a n  o n e - h a l f .  T h e  n u m b e r  o f  t h e s e  r e c t a n g l e s  

i n  a n y  r e g i o n  i n  t h e  n u m b e r  o f  i n d e p e n d e n t  d a t a  w h i c h  t h e  i n s t r u m e n t  c a n  

o b t a i n  f r o m  t h e  s i g n a l ,  i . e . ,  p r o p o r t i o n a l  to  t h e  a m o u n t  o f  in f o r m a t i o n .  T h i s  

j u s t i f i e s  c a l l i n g  t h e  d i a g r a m  f r o m  n o w  o n  th e  ‘d i a g r a m  o f  i n f o r m a t i o n ’ " .  

[ 1 2 8 1

Gabor attributes the fundamental limit, on the size of rectangles in the information

diagram corresponding to physical instruments, to the making of a function of one

variable — time o r  frequency — a function of two independent variables — time a n d

frequency. He proves mathematically that this fundamental limit exists but offers no

physical or intuitive explanations:

. . . a s  a  r e s u l t  o f  t h i s  d o u b l i n g  o f  v a r i a b le s  w e  h a v e  t h e  s t r a n g e  f e a t u r e  th a t ,  

a l t h o u g h  w e  c a n  c a r r y  o u t  t h e  a n a ly s i s  w i t h  a n y  d e g r e e  o f  a c c u r a c y  i n  t h e  

t i m e  d i r e c t i o n  o r  i n  t h e  f r e q u e n c y  d i r e c t i o n ,  w e  c a n n o t  c a r r y  i t  o u t  

s i m u l t a n e o u s l y  i n  b o t h  b e y o n d  a  c e r t a in  l im i t .

If At  and Af  are uncertainties inherent in the definition of the epoch t and the

frequency f, i.e. they are the damping time and tuning width respectively, then for all

physical resonators we have

A t .  A f  ~  1 (8)

This expression bears a formal resemblance to the Heisenberg uncertainty principle of

quantum mechanics. Gabor introduced the concept of the complex or analytical signal

as the sum of the physical signal and its Hilbert transform in quadrature. He was able

to use this function, along with the quantum mechanical wave-function formalism due

to Schrodinger, Bohr, Pauli and others [46], and along with the usual procedure for
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deriving the Heisenberg uncertainty formula, to derive an uncertainty formula for 

signals described in time and frequency:12

A t . A f  >  V i

where

A i = -  r)2, A /  = ~ f ) 2

are the "effective duration" and the "effective frequency width" respectively [128],

In quantum mechanics the minimum wavepacket is the wavefunction which 

simultaneously minimizes uncertainty in position and momentum representations. Since

■U

. ÎS

4 

3- 

2 -  

I

0 3 5 7 - * • /

m i 
» 11 1 » i

II ii

Figure 13. Illustration of a frequency modulated signal on the information diagram 
(centre), in the time domain (left) and in the frequency domain (below). From [128].

the mathematics of quantum kinematics and this time/frequency representation of

12Note that this result does not derive from quantum mechanics. It does not arise because of the quanta! state 
of matter at microscopic levels. It is simply the result of a formal mathematical analogy which exists for 
underlying reasons that Gabor does not pretend to explain.
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signals is formally identical, the same function describes a communications signal 

which is simultaneously localized to the greatest possible extent in both time and 

frequency domains. The time domain description of the minimum uncertainty function, 

the GEF or logon, is a Gaussian modulated sine or cosine. In the frequency domain 

it is two Gaussian functions on opposite sides of the origin. It turns out that the 

information diagram gives an intuitively very satisfying description of phenomena such 

as chiips signals, frequency modulation (FM) or time-division multiplexing [128].

Just as in the spectrogram, however, there is a free parameter in this GEF signal 

representation scheme. In this case it is the ratio of the sides of the GEF/logon 

rectangle in the information diagram, (and it is related to the notion of Q factor for an 

oscillator). We shall see below that the primate biological vision system may have 

come up with an appropriate way of selecting values for this parameter based on the 

statistics of images of natural scenes. The specific type of approach used in biological 

vision systems is not usually one availed of by engineers in general signal processing 

or communication problems because the signal ensembles in this case are assumed to 

be so general, but the freedom to vary this ratio can be useful here also.

Ville [129] applied a distribution originally used by Wigner [46,p.422ff; 133] to 

characterise the quantum mechanical duality between the position and momentum of 

a particle, to signal analysis. The Wigner-Ville distribution is

w ftco) = —  is  '^ u‘s{t+\PL)di

As mentioned above, Gabor in the case of one time dimension, and more recently 

Daugman [134] in the case of two spatial dimensions have shown that the class of 

Gabor filters achieve a minimum value of uncertainty as measured by the product of 

effective widths in the spatial and spectral domains respectively. That is, the 

uncertainty (as it relates to entropy) is measured separately along each dimension of 

the joint spatial/spectral representation [135]. Recent results published by Jacobson 

and Wechsler have thrown more light on the issues of resolution and uncertainty 

[136]. They claim that uncertainty should be measured in a joint Cartesian product 

domain rather than being the result of separate computations over two independent 

dimensions. They also show that the spectrogram, the difference of Gaussian (DOG)
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representation (see below) and the Gabor power representations are all smoothed 

versions of the Wigner-Ville distribution and as such cannot improve on the resolution 

achieved by this distribution.13 The Wigner distribution is in turn a member of an 

infinite set of a more general class of distributions described by Cohen [137].14

Like Gabor, Cohen [131] makes it clear that the quantum analogy evoked by Gabor, 

and Ville is a formal analogy only. According to Cohen, the similarity arises because 

the probability distribution describing the likelihood of finding a particle at a certain 

position, is given by the absolute square of a wavefunction (which is the solution of 

a second order partial differential equation). The probability of finding that the particle 

has a particular momentum, is given by the absolute square of the Fourier transform 

of the wave-function. By associating a signal in communication theory with the 

wave-function, time with position and frequency with momentum, it is found that both 

systems have identical marginal conditions and are formally the same, even though the 

variables have different physical interpretations.

4.4 Sampling and Quantization

4.4.1 Isopreference curves
The discussion of information in the previous two sections has mostly been in terms 

of signals, discrete and continuous respectively. It is possible to extend these measures 

of information to investigate and quantify the information capacity of the human vision 

system (HVS), considered as a communication channel. These results, based on visual 

psychophysics are the subject of this section. Huang [138, 139] investigated the 

human ranking of different images and image classes as functions of the spatial 

resolution (the number of pixels per unit length) and accuracy of quantization (the 

number of grey value quantization levels). He plotted i s o p r e f e r e n c e  curves on 

2-dimensional diagrams with axes representing the number of bits per pixel m  the 

number of pixels along one size of the (square) images N ,  by linking points 

corresponding to images with equal ranking. The results are shown in Figure 14, for 

images with principally low frequency content (a), and for images with power

1’Another advantage of the Wigner distribution over power representations is that it encodes phase implicity. 
Even though the distribution is strictly real valued the original signal can be recovered to within a sign.

14See [131] for a thorough review of the various time-frequency distributions which have been explored 
within this set, a description of their properties and some application.
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(a) No. of Pixels/line N (b) No. of Pixels/Line N

Figure 14. Isopreference curves for (a) most energy is in low frequency part of the 
spectrum and (b) energy is spread throughout the spectrum. Dashed lines are lines of 
constant bit rate. Adapted from Gonzalez & Wintz [139].

distributed throughout the available spectrum (b). Hardly surprisingly, he found that 

the quality of images tends to increase with n  and m . This being said, there were a few 

instances, where for fixed N ,  perceived quality improved by d e c r e a s i n g  m ,  possibly 

because this increases the apparent contrast of an image. Secondly, he found that 

curves tend to be more vertical, as detail in the image increases (i.e. with an increase 

in power at higher frequencies). This result suggests that for images with a large 

amount of detail, only a few grey levels are required to represent the content of the 

image. Finally, Huang found that the isopreference curves depart markedly from the 

curves of constant numbers of bits b  =  N  x m .  Points on the isopreference curves can, 

with some care, be considered as representing images which, for humans, contain 

roughly equivalent amounts of perceptually (or semantically) relevant information. 

Lines of constant b  represent what is, for the computer, constant amounts of data (also 

normally called information). The departure between the two again illustrates the 

difference between Shannon-information and semantic information.
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4.4.2 The human spatial MTF
The spatial m o d u l a t i o n  t r a n s f e r  f u n c t i o n  (MTF) of the human visual system, has 

always featured strongly in psychophysical approaches to describing the capabilities 

and properties of the visual system [11, 64]. Its use assumes that at least to a first 

approximation, the visual system (including the optics, retina and the transduction and 

processing leading to a perceptual experience) can be modelled as a linear system. 

This assumption is not true [11,140,141,142,143,144], not least 

because of the logarithm-like non-linear compression which occurs in the 

photoreceptors. Notwithstanding this and other non-linearities, the first order 

approximation is sufficiently accurate in many cases for the MTF to be an extremely 

useful tool for quantifying aspects of the HVS.

For sinusoidal input, the spatial MTF is defined as the ratio of output contrast to input 

contrast as a function of spatial frequency. If it were possible to measure input and 

output contrast values directly, the human visual system (HVS) could be completely 

characterized (to this approximation) in the spatial Fourier domain. Unfortunately it 

is not possible to measure perceptual contrast output because of the many assumptions 

about the systems behaviour required to evaluate psycho-physical variables. Instead, 

the c o n t r a s t  s e n s i t i v i t y  function (CSF) in the form of the threshold of contrast 

perception as a function of spatial modulation frequency C j f u ) ,  is used:

M T F  =  H ( u ) ,  a s s u m e  =  C S F ( u )  = H C J u ) .

Roetling [145] showed how it is possible to use the MTF to make an estimate of 

the Shannon-information (in units of bits per pixel) that is retained by the visual 

system. He points out that normally in image processing for human re-viewing, the 

sample spacing and quantization levels are chosen so that the eye does not see 

degradations due to either process. On the basis of the high frequency cut off of the 

visual systems the sample spacing is assumed to be 20 pixel/mm or 60c/°. On the basis 

of the ability to perceive low-contrast differences in intensity at somewhat lower 

frequencies it is assumed that the visual system quantizes and represents signals to an 

accuracy of 8-bits per pixel. But this combined estimate is based on two different 

visual limits corresponding to two different points of the MTF curve, Figure 15. The 

estimate of the number of grey-levels required is made at a much lower frequency and 

therefore needs to be supported by a much smaller set of samples than the maximum 

sampling frequency. At the maximum sampling frequency, the visual system is very
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Figure 15. Visual contrast sensitivity (horiz. dashed line) and high-frequency cutoff 
(vert, dashed line) represented on the contrast sensitivity curve (with linear spatial 
frequency axis. Adapted from Roetling [145].

insensitive to contrast and only very few grey levels need to be coded. The 

combination of these limits, results in an over estimate of the "information" perceived 

by the eye.

Using a fitted curve to describe the MTF of psychophysical data, Roetling was able 

to show that an improved estimate of "visually useful bits of information" based on 

the entire MTF rather than just two points, is:

N o .  o f b i t s l p i x e l  ~  2 n A 2( 1 7 7 .5 )

~ 2 . 8  b i t s  p e r  p i x e l  f o r  a  s a m p l e  s p a c i n g  o f  2 0 / m m

Briefly, he derived this result as follows. For the MTF he used the fitted curve [64, 

146] which is normalized so that the peak of the curve corresponds to a just 

detectable modulation of 0.005:

M T F  = 5 .0 5 ( e - ° I38f) ( l - e M lf) ,  f i n  c l °  .
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Assume that at every spatial frequency, grey values should be quantized so that the 

just detectable modulation represents one quantization step. The modulation is

^  _ max -  min _ detectabledifference 
max + min totalrange

i.e. the number of intervals is the reciprocal of the just detectable modulation (original 

form of MTF data). So, (taking out normalization and converting to c/mm)
U le v e l s  =  1 0 1 0  ( e - o m : ^ ) ( 1 . e W ) )  + L

- I / 2 A I / 2 A

K -  L
2 A

I
2 A

(a) Image Space (b) Frequency Space

Figure 16. Sampling points in spatial and spatial-frequency domains.

The visual performance is described in the spatial frequency representation where an 

image with area L x L  and sampling interval A x  A is represented by a frequency 

range ±46A with frequency samples spaced at intervals 1 / L .  (The total number of 

samples is the same in each case: n 2 = ( L / A ) 2. The number of useful bits is the 

integral over the frequency range, of the product of the number of bits per frequency 

sample, L o g 2( # l e v e l s ) ,  and the number of samples per unit frequency interval, L 2\

No. bitslpixel = J"flog2( Ievels)L2d\xdv

The visual performance data has (assumed) circular symmetry so this can be rewritten
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P n »

N o .  b i t s l p i x e l  = 2tïA 2 j  log^ l e v e l s ( p ) ) p d p

o

where p is a radial spatial frequency. A numerical integration yields the required 

result.

Note that the number of bits/pixel «= A2, so that assuming binary quantization of 1 bit 

per pixel, a sample spacing of 33.4 mm'1 would yield the same amount of visually 

useful information as the actual mechanisms of the eye. This is the reason why only

Figure 17. Low contrast reproducibility of 2 and 3 bit/pixel images as a function of 
spatial frequency with contrast sensitivity curve superimposed for comparison. From 
Roetling [145].

black and white dots in the form of dithered or half-tone patterns are able to reproduce 

full grey-scale representations if sampled at a sufficiently high frequency. Figure 17 

shows the approximate equivalent low contrast reproducibility of different numbers of 

bits per pixel as a function of frequencies lower than the Nyguist limit. The human 

MTF curve is superimposed for comparison.
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4.5 Entropy and Structure
The development of the concept of entropy from a purely thermodynamic quantity to 

the modem variants of the term is described above. The notion of entropy was 

subsequently used, by analogy, as one of the central planks in information theory. Its 

use in information theory does not however exhaust the possibilities of this notion as 

an explanatory device. An extension of the notion of entropy is useful for capturing 

the notion of the structure involved in pattern description and classification. This 

extension is based on Von Neumann’s use of the quantity which he called m i c r o s c o p i c  

e n t r o p y

S  = T r a c e  ( a  L o g  a ) ,  T r a c e  a  =  1

where ct is a non-negative Hermitian matrix called the d e n s i t y  m a t r i x .  (The density 

matrix is mathematically equivalent to the covariance matrix of probability theory). 

This interpretation of entropy (1932) is the first known use of entropic concepts 

outside thermodynamics. This expression is a more general concept than the usual 

definition of entropy in terms of the probability distribution of individual events only 

[123]. However, because thep ,  are contained on the diagonal of the covariance matrix, 

the normal measure of entropy is implicitly contained in the microscopic entropy, 

which also in addition acts as a measure of second order redundancy. Von Neuman’s 

use of the microscopic entropy to demonstrate the irreversibility of the process of 

physical observation was as a "simplified facsimile of the thermodynamic entropy" 

[47, p.518]. He did not use it in the context of structure, redundancy or co-operative 

phenomena discussed here.

Watanabe used the microscopic entropy of e a c h  nuclear particle in a system as an 

indication of the degree of their c o - o p e r a t i o n  in nuclear matter. He called this use of 

the microscopic entropy a " B a u s t e i n e n t r o p i e "  or building block entropy to distinguish 

it from the thermodynamic entropy. This Baustein entropy "plays the double role of 

a measure of [the] inexactitude of our knowledge of e a c h  Baustein (building block) 

and of a measure of strength of m u t u a l  d e p e n d e n c e  of constituent parts" [19, p.140]. 

This may give the somewhat confusing impression that on the one hand, the entropy 

of a constituent part contributes to the degree of organization while on the other hand 

structure is usually associated with low values of entropy, but, the existence of
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structure means that knowledge about a part allows us to more accurately predict the 

rest of the whole. "The possible variety of the state of the whole is restricted in spite 

of the [large] variety of states of the individual parts separately taken" [19, p. 142]. 

Structure is maximized when the individual parts have large entropy but they act in 

consort so that the joint distribution has small entropy. The entropy of the whole is 

simply the sum of the entropy of the parts when there is no correlation or 

interdependence between the individual parts. If there is correlation or structure, this 

fact is measured by the disparity between the entropy of the whole and the sum of the 

partial or marginal entropies. The stronger the structure, the more the sum of partial 

entropies exceeds the entropy of the whole. Watanabe defines a function which 

captures a measure of the structure of a multipartite system:

J  = s t r e n g t h  o f  s t r u c t u r e  

= s u m  o f  p a r t i a l  e n t r o p i e s  - e n t r o p y  o f  w h o l e .

If for example, the system consists of two parts represented by the variables x and y 

then

/  = - I j J ( x )  L o g  p ( x )  -  X> p ( y )  L o g  p ( y )  +  X X  p ( x , y )  L o g  p ( x , y )

In non-physical applications, like image analysis, it often happens that the partial 

entropies do not appreciably change from one to another, so the structure often is a 

decreasing function of the entropy of the whole. Thus, the smaller the entropy (of the 

whole) the stronger the structure. In pattern recognition, this idea can be used as a 

heuristic principle: what Watanabe refers to as our "conceptual framework"15 should 

be adjusted so as to maximize the structure, or in most cases, so as to minimize the 

entropy of the whole.

It is useful to explore this idea of structure further and to try to relate it to invariants 

and symbol systems in primitive perceptual observations. Consider the example of a 

pair of experiments; each experiment individually is a "part" and the joint experiment 

of the two taken together is the "whole". Independence between this pair of

“ Recall that the process of making information explicit involves first determining a probability distribution 
over a symbol set which is equivalent to expanding our data vector in a certain co-ordinate system (axes are 
the eigenvector of the measurement operator corresponding to the symbol set). The choice between different 
symbols is easiest (the information or structure in the system is most apparent) when the probability 
distribution is as uneven as possible. This corresponds to minimizing the entropy of the whole as the symbols 
are defined in terms of the whole (or joint statistics), not in terms of the parts (or marginal statistics).
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experiments means that there is no redundancy between them -  our "suiprise" at the 

result of the second experiment is not affected by the result of the first, and vice versa. 

Each time we carry out the second individual experiment we are getting new 

information about its outcome (our a  p r i o r i  uncertainty about the outcome goes to zero 

after the result becomes known). This is information which we had no reason to expect 

to know beforehand. The amount of information conveyed by the individual 

experiments is maximized and the structure function is zero.

Suppose now that there i s  some connection between the experiments — say we use one 

or other of two differently biased coins in the second experiment, depending on the 

result of the first experiment Then, even before we carry out the second experiment 

we have an inkling of what the result is likely to be, and so are not terribly surprised 

on average when this result happens. On average then, we do not get as much new 

information as is possible in an unbiased experiment. There is structure in the 

experimental setup (witness our extended description). The results are redundant to 

some extent and so the J function is non-zero.

The combined or Cartesian product experiment is the largest common refinement of 

the two marginal partitions of the joint event space. The entropy of this joint, or 

product experiment — what Watanabe calls "the enixopy of the whole" — is maximized 

if  all the elementary events of the combined experiment are equally likely. This 

corresponds to the case of no structure and we should find that the entropy of the 

whole cancels out the sum of the partial entropies. On the other hand, if the joint 

probability distribution is as uneven as possible, the structure will be as large as 

possible, within the constraints of the partial entropies (which are based on the 

marginal distributions).

4.6 Linsker’s Neural Information-processing Principle
Probably one of the most intriguing and original extensions of the use of Shannon- 

information to understand aspects of perception was work done by Ralph Linsker 

described in a series of articles published during the 1980s 

[18,147,148,149,150,151,152]. The basic problem he sets out to 

consider is the fact that unlike conventional computer hardware, neural circuitry is not
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hard-wired, but develops under the influence of genetic specification, and epigenetic 

factors such as neural electrical activity, both anti- and post-natally.

Much work has been done and continues to be carried out in embryology to investigate 

the mechanisms of the genetic specification of the development of the nervous system. 

In terms of epigenetic factors a number of specific details are known. Firstly, naturally 

occurring "noise", probably arising from thermal isomerisations in the photoreceptors, 

plays an important role in the in utero development of ganglion cell axons from the 

retina to the LGN in primates. Secondly, in the period immediately before and after 

birth, the visual cortex is being innervated by axons growing from the LGN, whose 

growth was in turn triggered by the arrival of the ganglion cell projections from the 

retina. There is a critical period during which the visual system must be subject to 

normal visual experience in order for the usual cortical structures to develop. 

Deprivation of visual experience in specific ways, such as blocking all light, or 

blocking all horizontal patterns to one eye, results in very specific corresponding 

deficits in the cortical structure [153]. These three factors, naturally occurring 

receptor "noise", early visual experience, and critical periods, are all known to be 

important in visual system development but the precise reasons why is what Linsker 

set out to investigate.

To motivate his approach he considers the following two questions [18]:

(i) What processing function does the neural "machinery" of the visual system 

perform on perceptual input, and what is the circuitry that implements these 

functions?

(ii) How does this "machinery" come to be?

On the basis that biological development processes are enormously complicated, and 

that anyway much of the detail is not yet known, his aim was not to model this 

development Rather it was to see if there were underlying organisational or 

information-processing principles, which would explain some essential aspect of how 

the system developed or functioned, without necessarily having a neural model which 

was correct in all the details. If such principles could be discovered then they are 

likely to be generic to many different types of neural system carrying out diverse 

information-processing functions. Again this type of knowledge would be much more 

useful than a computational theory for the particular function because it would be less
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prejudiced by our particular values, or our particular observables, and closer to what 

is actually operational for the system, as opposed to our symbolic explanations. They 

might also give us an insight into exactly what quantities developmental rules or 

mechanisms act on, that are important to the information-processing function of a 

perceptual system.

The justification for the type of neural structure he investigates is as follows. The 

visual system of mammals is roughly organised into a multi-layered structure with 

connections within and between the layers. This is particularly true in the case of the 

early visual pathways including the retina, LGN and early visual cortex, The cells in 

each layer take their inputs signals from within that layer and from other layers and 

give a non-linear response which depends on these inputs and on the internal state of 

the cell. As well as the expected feed-forward of signals from the sensory surface 

towards "higher" layers within the nervous system, there are substantial feedback 

pathways where outputs from "higher" layers are used as inputs to the earlier stages. 

Nevertheless, if interesting self-organisational properties could be demonstrated in 

much simpler models involving feed-forward connections only, and involving cells

Figure 18. A schematic multi-layer feedforward network with linear nodes and random 
connections between layers.
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with linear responses only, then we would know that these properties are not a 

function of the non-linearities or the feedback mechanisms. This knowledge is vitally 

important if we are to investigate what is the role of these latter mechanisms.

Function Function

Figure 19. Schematic diagram illustrating the various symbols and functions used in 
the mathematical formulation of Linsker’s network.

The simple multi-layer feedforward network16 that Linsker uses is illustrated in 

Figure 18. Each layer is two-dimensional, with connections between the layers chosen 

randomly according to a distribution like a Gaussian. This ensures that most of the 

input comes from the cells in a neighbourhood immediately above the target cell, with 

few long range connections. The positions of these connections once selected, are not 

altered during an experiment, but the strength or weighting corresponding to each 

connection is adapted according to various rules like the Hebb rule and variants of 

it17. The input to the system as a whole is supplied to the first layer, (layer A in 

Figure 18) and could be actual visual input or random "noise".

lsNote that any transformation implemented by a multi-layer feedforward network with linear nodes as 
described could just as easily be implemented by a single layer with the appropriate weights. But the point 
here is not to develop any particular transformation (cf. a computational theory), but to examine how the 
various layers of the network self-organize with random input or visual input to the first layer and using 
various weighting adaptation rules.

17The Hebb rule increases the strength of a connection between an input to a cell and that cell’s output if 
the activity of the input is correlated with the output and vice versa.
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A more precise version of the relationship between any two particular layers18 is 

illustrated in Figure 19. Here a  and P label cell positions in whatever layer is the input 

layer19 for the connections being considered, while x and y  label cell positions in the 

output layer for these connections. Each of a, P, x  and y  range over the full range of 

positions in the 2-D layers. Let LJt) be the activity of a cell in the input layer at a  

at time t  and M Jt) be the activity of a cell in the output layer at x at time t. The 

connections between the two layers are described by an "arbour" function A(x-a), and 

the connections between cells within the output layer are described by an "interaction" 

function I(x-y). The input to position y at time t  is given by

G,(/) = £  s „ W 2(i.(«))
s

This in turn affects the output of a neighbouring cell in the same layer at position x. 

Thus the activation at x at time t is

Mx(t) = Yj hyGy®  + constant 
y

If S fjt)  is the connection strength between a cell at position a  in the input layer and 

a position x  in the output layer then a typical Hebb modification is described by

/,(L .W ) -  Y S „ (0  -

Averaged over a large number of presentations this effectively becomes

4. - *4» E E  W „ « ) - ts„M - **,.
y P

where = <f1(LJt))f2(Lfi(t))> is the covariance matrix of the activities of cells in 

the input layer.

Now Linsker uses a Gaussian arbour function and ignores interaction within the output 

layer

’*The formulation described here is more general than that used by Linsker so as to accommodate the
description of a system where the output layer can take input from two completely separate layers as in the 
ocular dominance model described by Miller el al [153], and also to describe the decorrelation ideas 
presented by Barlow et al [17 J.

19Note this is not the input to the system as a whole.
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i4(*-a) = «-<*-■>* I(x-y) = Ô(x->)

and gets the following differential equation for the change of connection strengths over 

time (averaged over large numbers of presentations):

&xa °* iC CapSxp + 5«P + *2
p p

What he discovered in simulations of this system is that (for certain combinations of 

parameters) when random noise is presented at layer A the cells at layer B adapt to 

calculate the local average of the activity in the overlying cells in layer A20. Once the 

cells in layer B have matured it is possible to fix their connections, feed their outputs 

to layer C and start adapting the connections between layers B and C. What is found 

is that cells mature in layer C, with what is effectively a centre-surround characteristic 

(or "receptive field") with respect to the original input in layer A. Continuing this 

adaptation through succeeding layers it is found that for certain parameter values the 

centre-surround characteristics become more pronounced, and at a particular stage 

cells develop which have orientation selective receptive fields with respect to the 

original input in layer A. Furthermore, if interactions are allowed between cells in a 

given layer the orientation selective cells become organised into patterns. This type of 

configuration is strongly reminiscent of the activity of cells in the layers of the early 

visual pathways in mammals, particularly the LGN and VI.

In a related series of experiments Miller et al [153] simulate the effect of having two 

separate sets of inputs corresponding to a right and a left view, with separate 

weighting functions 5° = S* + &  and four separate correlation functions CM, Cu , C“  

and C*1. With Gaussian correlation within and between layers, (and also anti­

correlation in certain cases), Gaussian and difference of Gaussian (DOG) layer 

interaction functions, and "box" arbour functions, they have demonstrated the type of 

"ocular" dominance patterns that are known to exist in the early visual cortex. 

Marshall [154] shows how Hebb-adaptive layered feed-forward networks with a 

natural propagation delay within layers, can develop quite sophisticated visual-motion 

processing capabilities (including direction and velocity sensitivity). He even suggests 

that it may be possible to show that higher-order capabilities, such as depth perception

20The connection strengths need to be limited so that they do not ramp to ± » .
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and object-recognition, can arise as self-orginizing properties in suitable network 

structures.

These results are tremendously interesting, although much work needs to be done to 

investigate and understand them fully. It could be argued that they are little more than 

structural mimicry, and do not even seem to carry out any particularly useful function 

to boot, what they demonstrate is that quite diverse aspects of the structure of a certain 

complex information-processing system (the nervous system) can be related to 

common and relatively simple adaptive mechanisms. This relationship puts a different 

complexion on attempts to explain these processing structures as separate aspects 

within a computational theory for something or other. It shows that there may be a 

more "primitive" level of explanation, nearer to the dynamics of development and 

activity of the information-processing system, where a unified account of the separate 

aspects can be given. The emphasis here is on may. Exactly what is happening in these 

simulations, and what this means, needs to be properly understood

Linsker goes further than the simulations, and attempts to understand what the Hebb 

adaptations are actually achieving in information theoretic terms. Consider each 

presentation of inputs L  = (Llt...JLN) as a message, with L, denoting the activity of the 

f* cell in the input layer, where the L, values are quantized so that the N-dimensional 

space of L  vectors is partitioned into boxes. (Two input messages are regarded as 

identical if they lie in the same box). If p(L) is the probability that a randomly chosen 

message will lie in box L, the information obtained by selecting this message is I(L) 

= log p(L), as described above. The average information conveyed is —HiP(L)log 

p(L). Now each input message L generates an output vector M  which similarly lies in 

some box in an N-D space. Now the question is, if we know M, then how much more 

information do we need to reconstruct L? The answer is given by the amount of 

equivocation — the information about L  that was not "transmitted" to M, i.e., the 

information we have about L  given that we know M, IjJL) = —log p(L/M). The 

average rate R of transmission of information from the cell’s inputs to its output is 

given by

R = <log p(L/M) / p(L) >

= <I(M)> - <IL(M)>
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So on the basis of an examination of the effect of the Hebb rules described above, 

particularly when the cell output is affected by noise relative to its input, Linsker 

claims that the network adapts to a transformation which maximizes the rate of 

transmission o f information from L  to M, subject to constraints or additional cost 

terms. Furthermore he illustrates how depending on the level of noise, the Infomax 

principle organises a tradeoff between the benefit of having redundant M  cell 

responses, which mitigate the information destroying effects of noise, or the 

informational value of having different cells evaluate a different linear combination of 

the input [18]. This description in information theoretic terms of the effect of a certain 

type of adaptation mechanism, yet again provides a different perspective on the 

"purpose" of perception: there is no need for any higher layer to attempt to reconstruct 

the raw sensory data or a "real" world representation, from what information it 

extracts. Rather the point is to enable the higher layers to use environmental 

information to discriminate the relative value of different actions. If the required 

information is discarded at any stage, it is no longer available for further use. 

Alternatively, if a local optimization principle is used at any stage, it cannot attempt 

to take account of global goals of the system and cannot know what information can 

be discarded. The principle of maximum information preservation ensures that the 

maximum information is transmitted through the system at all times, in a way which 

is neutral to the overall goals of the system. Remember the overall goals are not 

available at any level lower than the system as a whole anyway.

4.7 Statistical and Form Redundancy

One of the important features of communication theory in general, and Shannon’s 

sampling and information analysis in particular, is that no account is taken of the 

semantic content of the messages. The information measures are based solely on 

choices between symbols, and probability distributions over sets of symbols. The 

quantities based on these information measures which are of concern, are averages 

over all the possible outcomes. There is a difference between the intuitive notion of 

information as the vehicle for knowledge, with all its connotations of meaning or 

semantics, and the measures of information in units of bits used in computer science 

and communications theory. The only type of information that we can quantitatively 

measure on the one hand is the Shannon information, while the only type of 

information associated with intelligence is the semantic variety. The tantalising
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similarities seem to only emphasize the gulf between the two. Bossomaier and Snyder 

[155] characterize the difference as a distinction between statistical and form 

redundancy. For example, in the English language, the letter q is always followed by 

the letter u; therefore in this context, the letter u carries no information (it does not 

help to discriminate symbols) and so can be omitted without loss. The letter e occurs 

more frequently in English than any other letter and so for example is assigned a short 

code in the Morse code. This is a statistical analysis of information. It involves 

correlations and frequencies of occurrence of letters or combinations of letters — first 

and higher order statistics — and it can be used to reduce statistical redundancy. It 

operates independently of words or meaning.

On the other hand Bossomaier and Snyder give the example of improving coding by 

using "a lexicon of English words". Coding can be made more efficient by rejecting 

nonsense combinations of letters which cannot occur (even though compatible with the 

statistics) or by introducing abbreviations which do not cause ambiguity. This is an 

analysis based on the semantic content of the message or text to be coded and it 

allows a reduction of form redundancy. It would seem that no achievable amount of 

logical computation can ever allow form redundancy to be directly analyzed on the 

basis of various orders of statistical redundancy. Yet there are reasons to believe that 

biological organisms are able to carry out this process. According to Bossomaier and 

Snyder, the processing of form information is a multi-level task which involves many 

operations in parallel. While very little other than this is known about the process, the 

authors claim that it is

greatly assisted by removing statistical redundancy and producing an
economical representation at each level.

They also argue that local spatial frequency analysis is the optimum strategy for 

removing statistical redundancy in vision.

One of the proposals considered here is that the removal of statistical redundancy is 

important, not because it assists later analysis, but because it is the first of many 

similar steps in the processing of visual data. The later steps (probably corresponding 

to the processing of form redundancy) have essentially the same nature as the earlier 

ones — like those that involve statistical redundancy reduction. The later stages have 

the same underlying nature, but are not identical with the early analysis for three
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reasons. Firstly, simply because the earlier processes have already happened and 

statistical redundancy has been removed, subsequent analysis will be operating on 

input with very different (statistical) properties from the input to the earlier processes. 

Secondly, the formation of cortical regions and the gross immature projections between 

them seem to be genetically specified and it seems to be this that determines the 

overall character of the sensory, motor and cognitive functions.21 Thirdly the 

dynamics of signal flow within cortical regions, involving both afferent and reafferent 

travelling of information seems to play an extremely important, though as yet poorly 

understood role [37, 40]22. One reason why the early processing stages of biological 

vision systems, seem to deal with the aspect of visual data that would normally be 

described by statistical measures, might simply be that at this early stage of 

processing, this is the only aspect of the overall visual data which is available to 

mechanisms whose connections are very restricted in spatial range.

4.8 Sum m ary

There is always statistical redundancy in visual data in the form of correlations 

between nearby intensity values. These correlations arise from the finite size of objects 

in scenes and are increased by blurring effects such as diffraction and aberrations. 

Psychophysical evidence has shown [156, 157] that the human visual system 

utilizes at least 50%, and often much more of the statistical information in an image, 

regardless of form. The primary function of this chapter has been to begin to clarify 

the various quantitative usages of the term information, to apply them in precisely the 

context of a quantitative measure of visual information and to attempt to determine the 

extent to which they describe or quantify the information processing capabilities of 

biological vision systems. Starting with the notion of entropy, its development is traced 

through various extensions and re-interpretations, to the definitions of quantitative 

theories of information in the case of both discrete and continuous signals. The 

information theoretic notion of entropy is used in section 6.2 below as a heuristic

2,It is interesting at this point to recall Crick’s general description of the architecture of the brain in terms 
of a series of discrete maps which nonetheless interact to some extent at their edges. He also claims that 
when new functional areas of the brain arise in evolution, they arise in pairs [57],

“ At the ESPRIT workshop in Killaraey, Vision in Context, mentioned in the preface, the suggestion was 
made that "upwards" (or afferent) projection of information from the sensory surfaces, meeting the downward
(or reafferent) flow of information from processing in "higher" regions of the cortex could be thought of 
using the metaphor of "controlled hallucination". Freeman’s models seem to emphasise more of a dynamic 
"resonance" between these two flows of information [37, 40].
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device and its expanded inteipretation in terms of Watanabe’s structure function helps 

to make clear the notion of statistical redundancy applied to pattern recognition. 

Linsker’s work on simulations of simple neural networks leading to the infomax 

principle, allows an intriguing insight to the possible developmental mechanisms that 

cause the observed arrangements in biological vision systems to arise. These 

quantitative views of information are contrasted with semantic inteipretations of 

information discussed by Bossomaier and Snyder and this topic is returned to again 

in much more detail when we discuss Dretske’s semantic theory of information in 

chapter 7. Finally, the concepts introduced here allow us to begin to discuss different 

possible explanations or theories of perception, which is what we turn to next
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Chapter 5

5 Theories of Perception
5.1 Introduction

To properly describe the functioning of a biological visual system, one needs more 

than just a catalogue of different unit responses at different stages in the processing 

system. Not only do we need to know how neural mechanisms work at various 

physiological levels of abstraction, but also why that particular way is appropriate and 

what it is doing. Marr [9] was one of the first to clearly point out that description of 

the behaviour of neural system alone is not sufficient to allow man-made 

implementations — description alone in fact is dangerous: it subtly leads to mimicry. 

Explanation of behaviour in terms of the "whats?" and the "whys?" was the missing 

factor which accounted for much of the lack of progress in both biological and 

computer vision in the 1970s. His "computational theory" and "levels of analysis" is 

an attempt to fill the gap. Possibly because of the lack of time and the need to 

introduce a completely new approach to understanding natural and artificial sensory 

processing, Marr concentrated on explaining properties of the mature neural 

mechanisms, but in exactly the same way that we need an explanation of the mature 

mechanism’s functioning as well as a description, so a description of how the 

mechanisms arise or develop is not the whole story. We also need to explain why they 

arise in this particular form carrying out this particular function. The computational 

mechanism which Mair describes as the first stage of his computational theory of 

vision calls for a very specific set of neuronal connections between different 

processing stages. To argue that such a specific programme of connections can arise, 

needs more justification than simply that the completed system is useful a posteriori. 

The work described here arose out of an attempt to allow an explanation of why the 

mechanisms for processing of visual information evolved and develop the way they 

must and apparently do. At least one important aspect of these problems of function 

and development can be illuminated by examining the issues in information theoretic 

terms. In the context of this chapter this means thinking of the visual data and the 

processing mechanisms in statistical terms. In chapter 7 we return to discuss a 

semantic theory of information which concentrates on the information in specific 

signals rather than ensemble or statistical averages.
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Returning for a moment to the operation of the mechanisms for visual processing 

rather than their development, we need to construct a theory which explains this 

functioning. At this stage there have been several candidate theories some of which 

have been discredited for various reasons. The two interpretations of the properties of 

single cells in the visual pathway which have been around the longest are the rival 

theories of feature detection and spatial frequency filtering [56, chap. 3]. Historically 

these have had ample, if patchy influence on the development of computer vision. The 

concepts of, and basis for these theories are reviewed, in addition to arguments as to 

why they are untenable.

In many attempts to come to terms with the problems involved in perception, 

"invariants" have played a significant role. There are many different types of invariant 

For example, some types of invariant can be described in mathematical or geometric 

terms, and computational ideas involving these have been gaining currency recently 

[158]. Another type of invariant can be associated with statistical constraints in 

signals or data, and can be detected or used by analyzing the data using concepts of 

redundancy or structure. The Gabor coding formalism for representing information, 

introduced in the previous chapter, can be understood in terms of the analysis or 

transformation of redundancy, and we deal with both of these subjects in some detail 

in the present chapter. Gabor filtering (which is closely related to the Wavelet theory 

of signal processing) has in fact been used as a model for the response characteristics 

of cortical cells. The work of Field on Gabor-based codes, which is not intended to 

directly model cortical function but possibly to illustrate some of the information 

theoretic ideas involved, is described. The notion of an invariant is also closely linked 

with the idea of a symbol, and again we see a relationship between the Gabor ideas 

and the notion of symbols, uncertainty and multi-scale analysis described by Wilson 

and his colleagues, where they capture an information theoretic idea that does not exist 

in Shannon’s framework. This is an issue that we return to in chapter 7. We do not 

pretend to fully grasp all the subtleties or implications of these issues but are confident 

that this is certainly a good place to look for solutions or explanations of the matters 

that are of concern here.
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5.2 Feature Detector and Frequency Analysis Theories

The feature detection theory tries to interpret the input/output relationship of single 

cells as detectors of geometrical features involving a local analysis of the transduced 

visual pattern. The interpretation was originally motivated by the strong response 

which cells in the striate cortex of the cat show for edges or bars of 

luminance-contrast at specific orientations [159]. It was supposed that the sparse 

activity of "edge detectors" would produce an economical representation of the visual 

pattern. In later stages of the visual pathway it was found that cells seemed to become 

more specialized, needing more and more specific features to provoke a response, in 

what was described as a simple, complex, hyper-complex cell hierarchy [40, chap.5]. 

The location of the trigger feature needed to elicit a response also became less precise 

with progression along the pathway showing that later cells had larger receptive fields. 

These facts indicated the possible existence of a hierarchically organized visual system 

with increase in abstraction and decrease in localization with progression up through 

the hierarchy. At the base of the hierarchy were the precisely localized edge detectors. 

The top of the hierarchy it was expected to find cells which only responded when very 

particular objects — such as one’s grandmother, or a yellow Volkswagen — came 

anywhere within the field of view.

With the increasing sophistication of knowledge about the visual system it has become 

clear that this interpretation of the response of single neurons in the cortex is untenable 

[160]. One of the first pieces of contradictory evidence was the demonstration by 

Stone in 1972 [161] that complex cells which were supposedly higher up in the 

hierarchy than simple cells because of their more complex response pattern and wider 

receptive field were actually driven directly by visual input from the LGN and 

responded before the simple cortical cells. A more crucial objection described in Bruce 

and Green [56, p.65] claims to refute the notion of feature detector altogether. To be 

a detector for a particular pattern a unit would have to respond to that and only that 

pattern at its input. In fact the cells typically give a range of responses which depend 

for example on the particular pattern at the input, its contrast or orientation. The rate 

of response only provides ambiguous information about the pattern of light in its 

receptive field, ie., it does not make explicit any specific type of information. Almost 

every part of a real visual image would have enough contrast to provoke some 

response in virtually all of the cells in earlier stages of the visual pathway.
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One answer to this criticism is to reject the notion of single cells as feature detectors 

and claim only that they carry out some type of filtering operation. A further 

alternative position is to claim that single cells do not do anything which is identifiable 

by examining a single cell at all and that the real "movers" are groups of neurons 

acting in consort:

As members of local cooperative assemblies, they could collectively offer 
more exact descriptions ... More information may be represented by the 
pattern of temporal relationships between the firings of neighbouring units 
that by the firing patterns of any unit in isolation. [162].

An even more radical position is to abandon attempts to explain the activity of cortical

neurons in terms of a visual processing algorithm altogether and to rely on human

ingenuity alone to devise a suitable computational theory of visual processing.1

Despite the fact that a feature detecting theory is unsustainable as an explanation of

the activity of single cortical cells in vertebrate visual systems, the principle of using

edge detection as the first step in computer vision systems and theories is wide-spread

in the computer vision community. The justification that edge detection has proved to

be an effective means of coding many types of images is pragmatic, but somewhat of

a "cop-out". There are many situations where edge detectors do not work, yet the

human visual system does and we need to understand why, because these situations

are as, if not more important than the ones where edge-detection does work. In

addition an account compatible with biological vision systems might be very useful

in the explication of later visual processing. A different account is quite likely to lead

in the wrong direction.

A variation of the filtering position as an explanation of cortical cellular processing 

was inspired by the pioneering work of Campbell and Robson [163] using as 

stimuli, gratings consisting of sinusoidal modulation of luminosity contrast at different 

frequencies. Feature detection is a "local" process, involving only data from a very 

small part of the visual scene in each instance. Because of the global nature of the 

visual percept, some type of large-scale global analysis must take place sooner or later 

in the visual system. Then, the argument goes [56, p.68], if single cortical cells cannot 

be described as local feature detectors it may be because they do not carry information

'See for example, [56, p.86]. There seems to be an implication that whether or not Man’s theory is 
compatible with physiological findings, it is sufficiently well-grounded to stand on its own as an explanation 
of perceptual processing.
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about local properties of visual pattern at all, but instead are involved in the processing 

of global properties such as spatial frequencies. (Its a weak argument!)

To investigate this possibility, physiological experiments were carried out to examine 

cortical cell response to spatial sinusoid patterns at the input, in terms, for example, 

of the frequency of maximum response, the selectivity to different frequencies or the 

sensitivity to contrast. Retinal ganglion cells and LGN cells were found to have broad 

spatial frequency tuning with little or no variation in tuning between cells with 

receptive fields at the same retinal eccentricity. This result correlated with 

physiological findings that receptive fields of these cells at the same eccentricity were 

usually very similar sized. In the cortex, things were very different. Both simple and 

complex cells were more narrowly tuned while each locus in the cortex contained cells 

with a wide range of optimal spatial frequencies. In the monkey, the optimal spatial 

frequencies ranged between 2c/° and 8c/° with bandwidths ranging from below one 

octave to about 3 octaves (with a median just greater than one octave).

The experiments of Campbell and Robson also inspired psychophysical investigations 

of the human response to spatial frequency gratings. This research culminated in the 

demonstration of the existence of multiple independent spatial frequency channels2in 

the human visual system and the proposal of a model by Wilson and Bergen in 1979 

[164, 165].

While the physiological and psychophysical evidence of selective response to spatial 

frequency gratings is clear, the interpretation of the results in terms of a type of global 

Fourier analysis, like that of feature detection, cannot be sustained [71]. There are a 

number of reasons for this conclusion. Primary amongst them are the facts that the 

bandwidths are too wide and the responses too localized to support global Fourier 

analysis (see [56, p.71]). There simply is not the phase coherence across the image that 

would be needed to generate global Fourier coefficients, while phase sensitivity causes

^The original work suggested four spatial frequency channels. More have been described since, and even the 
suggestion of an unlimited number (135]. Recently, Barlow and Ffildiik have cast some doubt on the 
technique of response saturation which was often used in the investigation of spatial frequency properties 
of cortical systems [17]
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ambiguity in single cell responses making the interpretation of their responses in terms 

of spectral component power very difficult.

Several suggestions (most of which did not amount to full theories of perception as 

the feature detection and Fourier analysis aspired to be) were made to explain the 

channel mechanism [56, p.72]. One of the most successful of the theories in terms of 

its explanatory power and subsequent exploitation is the idea proposed by Marr and 

Hildreth [59] that the multi-channel mechanism is an intrinsic part of an edge-detection 

process3. Marr objected to the two more traditional explanations on a number of 

grounds — the most important of which is the function which the theories imposed on 

the visual system in an attempt to justify properties of units within the system. Each 

of the two rival traditional theories — feature detection and Fourier analysis — is 

assumed to have as its goal the recognition of objects, not necessarily because of any 

a priori decision that this is the goal that needs achieving but because it is the logical 

conclusion of the assumptions made about single cells. In the case of the "feature 

detection" theory it is argued that pattern recognition is achieved by detecting the 

invariant set of geometric features that specify an object In the Fourier analysis theory 

it is argued that recognition is achieved by detecting the invariant spatial frequency 

components that specify an object

The problem with both of these theories is the "large degree of commitment of the 

visual cortex to a particular kind of abstraction of information; that required to identify 

objects" [56, p.84], when in fact there is a large amount of other information available 

from the environment about such things as the positions of objects, their depth and 

relative movement etc. In both of the traditional theories, this type of information is 

thrown away at an early stage in the visual pathway.

Marr claimed that his "raw primal sketch" still retains all the information about 

position and movement etc., present in the input images. This means that it can in 

theory be used as the input to a wide variety of processes for recognizing objects, 

analyzing three-dimensional structure and computing motion. But a careful analysis 

of the type of processing that must be involved in visual perception

Vield [71] presents an alternative explanation in terms of the statistical redundancy of natural images which 
we shall discuss below.



[166,167,168,169] and constraints on the computational resources 

[170] indicate that there must be form/motion subdivision of visual processing 

which is incompatible with Marr’s generalized feature detection (edge; blob; orientated 

line segment, etc.) theory. Wilson et al show that attempts to simultaneously measure 

spatial position and spatial frequency are incompatible — measurements of position 

destroy all spatial frequency information and vice versa. The analysis of form requires 

the extraction of detail at high spatial resolution which implies a large spatial 

frequency bandwidth; (a delta function has infinite bandwidth). Measurements of 

velocity then result in large uncertainties due to the consequentially wide temporal 

frequency bandwidth. (Velocity is related to the ratio of temporal to spatial frequencies 

[170,171]). This reasoning is strongly supported by a growing body of evidence 

which describes the existence of a foim/motion subdivision of the visual pathway in 

primates [13,172]. It is now becoming clear that the cortex, including the primary 

visual cortex VI, has a more complex set of interconnection, including multiple 

reciprocal pathways, than could possibly be consistent with any of the step by step 

theories of early visual perception mentioned — including Marr’s based raw 

primal sketch and full primal sketch models [173,174]4. To an extent, the 

difficulty of building a complete theory of perception and the virtual impossibility of 

reconciling it with the growing body of knowledge of biological sensory systems, 

particularly vision, has encouraged a different line of attack. Instead of trying to see 

the "big-picture" in terms of a global theory of vision, like feature-detection, Fourier 

analysis or Marr’s theory of vision, many researchers in biological vision have 

concentrated on trying to better understand the functioning at a local level in the 

cortex or in parts of the visual pathway. The hope is that a more precise description, 

possibly in mathematical terms, would constrain the functional possibilities sufficiently 

to construct a full scale theory. Much research work has been carried out on the 

parallel subdivisions of the visual pathway mentioned above; on the topographic and 

non-topographic maps between peripheral and cortical subsystems and within the

^For example, it has been shown in these references, that the response of "even" cells to bar stimuli can be 
modulated by motion of a textured background, while most complex striate cells show different responses 
to texture and bars. More recently it has become clear that many of the response properties and selectivities 
ascribed to cortical neurons are only displayed in anaesthetized animals. Under normal sensory conditions 
when the animal is awake and behaving, the stereotyped neural responses to "features" are no longer as 
apparent or as stable. Even such factors as posture, affect the response for unchanging visual stimulus. This 
and other recent evidence lends increasing support to the notion that the function of perception is not to map 
an environment, but to control the organisms own movement and more generally, interaction within the 
environment [26].
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cortex; on the processes of learning and development at individual neuronal and 

synaptic levels; and on thoroughly describing the selectivities of individual cells to a 

wide variety of visual stimulus attributes. Included among the stimulus attributes 

investigated are various aspects of location in visual space, size, orientation, motion 

(direction and magnitude), colour, stereo and perspective depth, depth from shading, 

spatial frequency and many others.

5.3 Invariants
Much play is made of the term "invariant" in describing the process of perception,

particularly from the semantic viewpoint. The feature detection theories relied on the

detection of invariant features despite changes in illumination, pose, amount of

occlusion etc. Marr [9, p.29] credited J.J. Gibson with directing debate on visual

perception away from the "philosophical considerations of sense-data and the affective

qualities of sensation" to the notion that the senses "are channels for perception of the

real world outside". Gibson’s starting point is the question: "How does one obtain

constant perceptions in everyday life on the basis of continually changing sensations?"

According to Marr this showed that Gibson correctly understood the problem of

perception as one of recovering "valid" properties of the external world from sensory

information. The properties or invariants that Gibson had in mind were "higher-oider"

variables like time-to-collision, the rate of change of texture density, binocular

transformation, the ratio of angular height to angular width and other ratios and

proportions like these.

These invariants correspond to permanent properties of the environment. ...
The function of the brain, when looped with its perceptual organs, is not to 
decode signals, nor to interpret messages, nor to accept images, nor to 
organize the sensory input or to process data, in modern terminology. It is 
to seek and extract information about the environment from the flowing 
array of ambient energy [175],

Also, according to Marr, he thought of the nervous system, as "resonating" in some

way to these invariants. The adherents of this so-called "ecological" approach were

content to leave further explanations of the mechanisms by which the perceptual

system "resonates" to invariants to the neuroscientists. Their concern became the study

of animals in their environments in an attempt to discover perceptually useful

invariants to which their nervous systems might resonate.
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In line with his ideas on the importance of the environment (the real external world) 

to perception, Gibson claimed that the starting point for visual processing is the 

structure of light in the optic array rather than the point intensities of light 

representing the projected image on the retina. From the optic array the higher-order 

variables representing the invariant information could, according to Gibson, be directly 

detected without ambiguity or indeterminacy. The traditional theories of perception 

which considered the retinal image as the primary input were plagued by ambiguity 

and multiple interpretations because of the impoverished nature of the 2-d retinal 

image. Since the time of Helmholtz, it was believed that perception required "... 

inference to supplement the supposedly impoverished nature of the flat, static retinal 

image. These processes of inference were held to mediate between retinal image and 

perception". [56, p.321]. According to Gibson the necessity to introduce these indirect 

"mediating" inferential processes only arose because of the restricted nature of the 

retinal image as a description of the perceptual input

The interest in using invariants of the environment as a means to perceiving the nature

of the external world is one of a number of points in common between the

"traditional"5 approach typified by Marr’s computational theory and the "ecological"

approach to perception introduced by Gibson. The principal point on which they differ

is how the visual systems are organised to perceive the external world. In the

traditional approach, objects are perceived (or "reconstructed") by piecing together

primitive elements such as edges and blobs using knowledge of the external world. In

the ecological approach

there is information to specify shape in higher-order invariants in the light, 
and it is not necessary, or even possible to decompose such processes into 
more primitive psychological operations or 'computations’ . . .I t  may be a 
task for physiologists to unravel the complexities of how nervous systems are 
attuned to such high order invariants, but the ecological psychologist need 
enquire no further once invariant information has been described [56J.

In any theory of perception there must be some level at which direct detection of a

physical quantity takes place. For the traditional theories this is normally taken to be

the function of the photoreceptors which is then regarded as an "elementary process

closed to further analysis" [56, p.322]. In the sense that traditional theorists would

argue that this detection of incident intensity does not involve "mediation" by

^The terminology is from Bruce and Green [56].
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knowledge of the world, the detection process of the receptors is a perfect example of 

what Fodor and Pylyshyn [176] would call a cognitively impenetrable process. 

Bruce and Green point out that a biochemist would not be content with this 

parcellation of the function of photoreceptors. He would seek explanations in terms of 

isomerizations induced by the absorption of photon energy and the subsequent 

"tidal-wave" of biochemical and ionic transport processes which amplify the signal. 

In a similar way, the proponents, such as the ecologists, of the so-called "direct" 

theories of perception are content to regard the detection of invariants as a cognitively 

impenetrable process, not mediated by knowledge of the external world, and from their 

point of view, requiring no further explanation.

In many ways this seems to be a somewhat arbitrary delineation of where explanation 

ends and description begins. A neurophysiologist who succeeded in locating circuits 

which "resonated" to the appropriate invariants would seek a functional description of 

the processes that contribute to this effect But he might also seek to explain these 

processes in terms of computations on information from the external world in the spirit 

of Mair’s computational theory. Marr’s [9, p.30] and Ullman’s [177] criticism of 

Gibson’s approach is levelled at the exclusion of this algorithmic level of explanation 

between the ecological and physiological levels:

... the detection of physical invariants, like image surfaces, is exactly and
precisely an information-processing problem, in modern terminology ... he
[Gibson]  vastly underrated the sheer difficulty o f such detection. [9, p.30].

In hindsight it is possible to see that Marr himself was also doing his fair share of 

vastly underrating difficulty. On the face of i t  the analysis of a problem in terms of 

computational theory, algorithm and representation, and finally implementation, forces 

a thorough effort at explanation of the "information processing" aspects of the problem 

at hand. It also smooths the way to engineering alternative algorithms and alternative 

implementations which nonetheless carry out the same overall function. However, 

Marr’s insistence on the logical priority of the computation theory level of analysis 

grossly underestimates the difficulty of knowing what information, (of all the 

information available in a stream of visual data) is perceptually useful, and how it can 

be made explicit The fact that there are subtleties involved in visual perception about 

which we are not yet even aware, is indicated by the limited explanatory power of 

current models in computer vision. Both the traditional and the ecological approaches 

to understanding perception, labour under the assumption that we are sufficiently
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sagacious to know what perception needs to do. There is a big gulf between 

"perception helps us to ‘know’ about the external world", and the activity of neural 

systems, and we argue below that Marr’s progression of representations is untenable 

as an attempt to bridge that gulf. Thus knowledge of invariants discovered say by 

ecological optics does not help us to know how to characterize these invariants in 

terms of the operations that need to be implemented to extract this "structure" from 

the optic array. Similarly, introspective descriptions of things of which we have 

"constant perceptions ... on the basis of continually changing sensations" like some 

planar surfaces, would seem on the face of it, to be suitable candidates for invariants. 

But are they really primitive directly detectable invariants, and if not what are — edges, 

blobs, features? We are again reminded of Francis Crick’s admonition about our mind 

deceiving us at every turn about what our brain is doing. On the other hand, 

assumptions of the physical invariance of things like surfaces based on substantive 

ideas of reality closely related to Aristotelian philosophy do not necessary imply that 

these things are perceptually invariant as well. I personally have great difficulty in 

understanding how Marr and Nishihara’s [178] 3-d representation could be 

extended to cope with natural objects and substances such as trees and water. What 

are the invariants in these and other similar cases? Birds and bees can build nests in, 

and fly around trees. What invariants are these creatures detecting? Are they the same 

as each other and as the invariants of our perception? Perhaps the invariants we should 

be talking about are not those of the illusion of physical reality presented to our 

consciousness, but instead elements of the neural signalling received by the brain 

which remain invariant despite changes in the light pattern projected on the retina. 

These signals are real physical quantities which we can measure and quantify and 

whose statistics we can estimate. Redundancy either in an individual signal or between 

many simultaneous signals indicates the presence of invariants. Elimination of 

redundancy as in the way suggested by Field described above, and the subsequent 

measurement of variables in the visual data makes these invariants explicit This 

approach where we can measure and quantify the variables involved seems more 

promising than traditional approaches to the problem.

5.4 Gabor Filtering
In the early 1980s it was realized that the dichotomy between feature and Fourier 

interpretations of the activity of single cortical cells was an illusory one
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[179,162,180]. Under the assumption of linearity (which is usually the case for 

simple cells6, and components of complex cell activity) it was realized that 

descriptions in terms of features and in terms of global spatial frequencies are 

complementary. "Selectivities in either domain imply complementary [selectivities] in 

the other and the crucial experimental results could be captured equally well by 

modest versions of either theory" [134]. This realization suggested that a fuller 

description of cortical cell responses should be couched in both spatial and spectral 

terms rather than in either alone. Marcelja [179] and independently Daugman [134] 

were the first to point out that the representation of the image in the visual cortex must 

involve both spatial and spatial-frequency variables in its description. This type of 

representation, which is intermediate between spatial sampling and Fourier analysis is 

exactly that described by Denis Gabor in the 1940s. Although Gabor’s work (see 

section 4.3 above) was concerned with the communication of information, rather than 

information processing, or analysis or understanding. Coincidently, the inspiration for 

Gabor’s interpretation arose from perceptual psychophysical qualities attributed to the 

human sensing of sound.

5.4.1 Mathematical models of cortical neural responses
As mentioned above, Gabor’s analysis of space/spatial-frequency representations of 

communication signals is just the first one of many such representations discovered 

since, and just one of an infinite number of possible representations of this type [131]. 

Most of the interest in the vision community has centred on Gabor’s approach because 

it lends itself well to modelling the stimulus sensitivity properties of many cortical 

neurons. Recently, however, Reed and Wechsler [135] used the Wigner distribution, 

another of Cohen’s infinite class of space/spatial-frequency distributions to demonstrate 

gestalt organization clustering in textured images. The problem with the Wigner 

function and another combined position-frequency distribution, the "ambiguity 

function" [181] is that unlike the Gabor scheme, they are non-linear. This means 

that the addition of a new object in the visual field affects the representation of other 

objects [134].

sSimple cells actually show a rectified linear activity .. Their response to a moving sinusoidal grating 
is a rectified sine wave with the neurons in their normally silent state for about half of the stimulus cycle. 
This property is probably related to the separate "ON" and "OFF' processing of visual data. By adding visual 
noise to the stimulus pattern, to increase the background activity well above the rectification level, the 
response of the cell is shown to be linear [179].
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An alternative formulation of the signal uncertainly principle in terms of simultaneous 

windowing or truncation operations in space and spatial frequency was explained by 

Slepian et al in a series of classic papers [124,125,126]. Here the problem was 

formulated in terms of maximizing the energy in a finite spatial interval of a 

band-limited function (or vice versa). Like Gabor, their interpretation was in the form 

of a sampling theorem [167]. Wilson and Spann used feature sets based on finite 

versions of the functions described by Slepian and colleagues, called finite prolate 

spheroidal sequences (FPSS’s) to describe and segment texture images. They showed 

that by using multiple-scale representation, the effects of uncertainty can be minimized 

if some assumptions are allowed about the nature of the image [168,169]. It may be 

that rather than any one particular mathematical model having priority over all others 

as the one "selected" by the visual system, many of these methods of analysis captures 

in their own way, something of the character of what processing function the visual 

system implements.

The Gabor scheme is to expand arbitrary signals in terms of a complete set of 

elementary function (the GEFs mentioned above) which simultaneously maximize 

location in space and spatial frequency domains. For one-dimensional signals, the 

GEFs occupy a minimum area in the time-frequency "information diagram" 

corresponding to one independent datum of information. This area can be redistributed 

in shape to give good localization but poor bandwidth or good spectral selectivity 

though poor localization but it cannot be made smaller. The important feature of the 

Gabor model is that it allows the freedom to vary parameters of the elementary or 

basis functions without losing information or adding free parameters.

Following the initial use of GEFs as models for simple cortical cells much work was 

done to confirm the hypothesis that experimentally determined simple-cell receptive 

fields could be combined together to represent a coding of visual data as a Gabor 

pseudo-expansion [162,182,183,184,185,71,186,134]. Apart from the 

fact that Gabor signals with suitably chosen parameters provide a good fit to the 

receptive field profiles, an important discovery was made by Pollen and Ronner in 

1981. They found that pairs of nearby cells with overlapping receptive fields often had 

virtually identical stimulus response selectivities for parameters like orientation and 

spatial frequency but their phases were related in quadrature within their receptive
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fields. This is exactly the relationship required between harmonic components to 

provide a complete representation in the frequency domain of the signal amplitude in 

the spatial domain for a restricted region of visual space.7 This quadrature phase 

relationship was demonstrated in pairs of cells even when their receptive fields did not 

display even or odd symmetry (That is, the receptive fields were orthogonal in the way 

sine and cosine functions are, with a constant relative phase, but with arbitrary 

absolute phase).

5.4.2 2-D Gabor functions
Daugman [134] extended the one-dimensional modelling of cortical simple cell 

receptive-field profiles by Gabor functions to two dimensions. This allowed further 

testing of the Gabor theoretical framework as a model of the overall spatial receptive 

field response of the linear cortical cells it also allowed an investigation of the 

representation of orientation sensitivity and its relationship to spatial and spectral 

selectivity by explicitiy treating them within the same framework. Daugman shows that 

the extension of Gabor’s 1-dimensional Schwartz inequality arguments to two 

dimensions allows the derivation of a 4-dimensional uncertainty principle expressing 

the theoretical limit of joint 2-dimensional resolution which is the product of the 

occupied areas in the 2-D spatial and 2-D spectral domains8. The 2-D GEF in the 

spatial domain is the product of an elliptical Gaussian profile with a complex 

exponential. This complex exponential consists of two real-valued components, each 

of which looks like a sinusoidal grating with parallel peaks and troughs. Again the 

pairs need to be in quadrature phase to properly calculate Gabor coefficient, though 

they need not be centred at the origin of the Gaussian ellipse nor aligned with its axes 

to be a valid GEF. It is the individual real-valued components which correspond to the 

filter spatial impulse response9 or receptive field of the simple cortical cells. All GEFs

7A  complete set of GEFs spanning information space is not orthogonal. The transform based on these basis 
sets o f  functions will not be reversible like a Fourier transform [71] without the introduction of auxiliary 
functions biorthogonal to the GEF [132], Presumably this problem does not arise in biological vision systems 
and with appropriate spacing the GEFs can be quasi-orthogonal.

'The effective area of a 2-d GEF in either of the spatial or spectral domains separately is given by the 
product of its marginal second moments along the principal axes of the Gaussian ellipse. The modulation 
wave vector must be parallel to one of the principal axes of the Gaussian profile ellipse -  rotating out of 
alignment will in general increase the effective area.

9The (dot) product of an input image region with a GEF gives a coefficient which is the amount of energy 
contained in the minimum "quantal" information volume corresponding to that GEF. It is the independent 
datum corresponding to the GEF.
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achieve the theoretical minimum "information volume" of 1/16k2 (regardless of the 

values of their eight parameters) in the 4-d "information hyperspace" with x, y, u and 

v as its orthogonal axes.

The GEFs for 2-D signals like images, have eight degrees of freedom [134]. Two 

coordinates, specify the location of the filter in 2-D (visual) space. Two "modulation" 

coordinates specify the location of the filter in 2-d frequency space where the most 

useful representation is the polar coordinate system of spatial frequency and preferred 

orientation. These four coordinates must be spanned in order to completely represent

Spatial Filter Profile Frequency Response

Figure 20. A perspective plot of 2-D GEF in the spatial domain (real-part) and the 
frequency domain. From [134].

the energy of the input image10. One degree of freedom specifies the phase of the 

modulation component This can have an arbitrary value as long as there is another 

filter with identical values for all the other parameters (overlapping receptive field; 

identical frequency selectivity, bandwidth etc.) but with a quadrative value for this 

phase parameter. (There is no preferred absolute phase value, and the components do 

not even have to display even or odd symmetry). Finally, two parameters specify the

10The fact that the Gabor functions are not used to sample the image in the spatial domain as often as in the 
pixel representation, and do not sample the image in the frequency domain as often as in the Fourier 
representation, but do sample in both domains simultaneously means that there are exactly as many degrees 
of freedom — exactly as many Gabor coefficients -  as there were pixels in the original image.
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length and width of the Gaussian envelope (reciprocally related in the conjugate 

domains) and one specifies the angle between the principal axes of the Gaussian 

ellipse and the modulation wave vector orientation. They parameterize bandwidths and 

the "axes of separability".

In the 1-d case, Mackay [162] described how the receptive fields of simple cells 

(which were invariably measured as 1-d profiles at that time - 1981) represented a 

near-optimal solution to the problem of sampling optical images in both the frequency 

and the spatial domains. But he goes on to point out that "their relatively wide 

bandwidth (low "Q") suggests that at this stage the inevitable information-theoretic 

compromise is weighted in favour of spatial resolution". The extension to a description 

in the framework of 2-d GEFs shows the same trends in bandwidth (as it must) but 

now includes the added sophistication of allowing a division of labour which could 

favour either spatial resolution or orientation bandwidth, i.e., any gain in 

spatial-frequency resolution is offset by a loss in orientation resolution and vice versa 

if the filter effective area remains unchanged.

Despite the very wide variation of receptive-field dimension, orientation bandwidths 

and spatial-frequency bandwidths among neurons in the visual cortex, a strong positive 

correlation has been reported [187,188] between orientation bandwidth and 

spectral bandwidth in the cat striate cortex. In one case [188], the orientation 

half-width increased by 10° per octave increase in spatial-frequency bandwidth. This 

fits well with a predicted value derived from the GEF model at an aspect ratio of 0.6 

[134], Now, for 2-d GEFs occupying a fixed "information volume" in the 4-d 

conjugate product hyperspace11, centred on a particular modulation frequency we 

must have an inverse correlation between orientation bandwidths. On the other hand, 

for 2-D GEFs with a fixed aspect ratio but occupying different areas the orientation 

and spectral bandwidths will be positively correlated. If A, is the aspect ratio (in both 

domains), the GEF has moderate spectral bandwidth and the modulation vector is 

parallel to the profile ellipse principal axis, then the positive correlation is shown by 

the explicit expression [134]:

nThe 2-D equivalent of the infoimation diagram for 1-D signals.
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A0^ = arcsin X 
2

x (2Au -  1) 
(2Aw + 1)

where A0^ is the orientation half-bandwidth and Aco is the spectral half-bandwidth 

(in octaves). This relation is independent of the receptive-field modulation frequency 

cDq, though both orientation and spectral bandwidths can be made sharper at the 

expense of spatial accuracy by increasing co0 or increasing the size of the 2-D spatial

Figure 21. Schematic illustration of the relationship between the Gabor profiles in the 
spatial and the frequency domains. Adapted from [71].

It is interesting to examine this connection between orientation and spectral

bandwidths, and other correlations between calculated parameters for GEFs fitted to

cortical cells. Daugman points out that

... significant constraints on the degrees of freedom of the 2-D filter family 

... may reveal an important underlying logic in the sampling scheme that 
paves information hyperspace. ... The variety of orientation bandwidths and 
spatial-frequency bandwidths encountered suggests that different cells 
occupy information space with different strategies, sometimes favouring A0W 
at the expense of Ay, sometimes favouring Ax at the expense of Aco , and so 
on ... [representing] a division of labour among diverse strategies for  
extracting different kinds of spatial information subject to the inescapable 
uncertainly relations [134].

profile.
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Pollen and Ronner [184] discuss this latter issue in terms of whether bandwidth is 

reciprocally related to preferred spatial frequency or whether receptive field size is 

inversely proportional to the centre frequency where the bandwidth in octaves would 

be a constant independent of the prefeired spatial frequency. They conclude from 

experimental evidence that neither system is solely in operation; although there is a 

tendency for bandwidth to narrow with increasing spatial frequency, there is 

considerable scatter in the bandwidth at any spatial frequency. An intermediate system 

with scatter and redundancy may be used; narrower tuning might be useful for periodic 

stimuli while broadly tuned spatially restricted fields would be more useful for scrutiny 

of fine detail. In the region of the cortex receiving axonal projections from the fovea, 

the aspect ratio X varies between XA and 1. In the same region there is a 30:1 range in 

the diameters of simple-cell receptive-field centres — corresponding to a 1000:1 range 

of areas. Thus it seems that for some as yet unknown reason, the ratio b/a is 

constrained and relatively stable, while the product ab is either unconstrained or forced 

to span a large range and varies by a factor of 1000 between cells in the same region 

of cortex. In the same way, it seems the modulation axis is constrained to lie along the 

receptive field axes but there seems to be no strong constraint on the absolute 

modulation phase value (only on the relative phase value of a quadrature pair).

Lest one gets carried away with enthusiasm for the Gabor theoretical framework on 

the basis that because it is optimal in some sense, the visual system must implement 

it; it is important to remember a few caveats. Most of these results have been derived 

for the cat visual cortex — we have no real idea how the results will carry over to the 

more complex primate cortex. Not all simple cells, even in the cat, fit this model. 

There is some evidence that other models may better represent a larger set of cells

[189]. Although the authors in this case admit to having more parameters in their 

model than in the 2-d GEF, they do point out ways in which the Gabor model differs 

from the experimental data. The main reason why GEFs do not provide a precise fit 

for the spatial-frequency tuning curves of cortical simple cells is because they fail to 

capture the relative symmetry of the cells’ tuning curves on a log axis [71]. Field 

describes a log-Gabor function which is symmetric on a log axis and so may provide 

a better description. The fact that the Gabor framework, which has very strong 

theoretical reasons for being the processing model "of choice" in the cortex, is not 

exactly implemented again leads one to believe that it is not a mechanism based on
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some particular mathematical processing model that the visual system implements. 

Either it seems to indicate that the system develops in a way that may not be 

describable a priori by a theoretical model because the final operational mechanism 

depends on accidents of development, or whatever underlying quantities are being 

optimized lead towards some ideal or optimal configuration but don’t succeed, or 

perhaps even need to get there for successful operation. At least one gets the 

impression that, in spite of the fact that it is difficult with the current level of 

knowledge to ascribe a purpose to this type of processing, of the sort envisaged by 

Marr as a computational theory, that the results and models are nearer to the processes 

that cause the system to develop than the computational theoretic descriptions.

Although thus far the Gabor ideas have only been used in a comparative, descriptive 

manner, the overall unified theoretical framework is a solid basis from which to begin 

the "interpretive debate" about what Gabor-like representations achieve and beyond 

that to constructing a new theory of perception.

5.5 A Model Gabor Code
Apart from the entropy localization properties of the Gabor representation, the

approach provide no further insight into the behaviour or development of cortical

neurons [71]. While the Gabor code is an efficient means of filling "information

space" to provide a complete representation of any signal or image, Field points out

that this does not necessarily mean that such a code is an efficient way of representing

the information in any image or set of images. In fact, for a wide variety of images,

a Gabor code will be quite an inefficient means of representing information. In

contrast, the Karhunen-Louve transform is always the optimal linear way of

representing a particular ensemble of signals with minimum least-squares error. But

while literally anything can happen in an image, in general, the "things" that do

"happen" are drawn from a relatively small subset of all the possibilities.

The fact that natural images are optical projection of 3-d objects whose 
physical constitution and material unity yield local autocorrelation and 
homogeneity, whether this be merely the local luminance value or a more 
subtle textural signature captured by some higher order statistic, leads to 
anisotropic local correlations which in turn suggest appropriate sets of 
primitives for capturing and representing image structure. The existence of 
such correlations in image structure, which reduce image entropy and which 
can be made explicit by an appropriate set of image primitives is the
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fundamental reason that image data compression is possible. ... Images 
containing non-random structure or coherence, as natural images do, have 
a statistical complexity which does not correspond to their resolution 
(number of resolvable states).... Efficient neurobiological or artificial visual 
systems must exploit the statistical correlations inherent in image structure.
[190].

This theme of the efficiency of a processing or coding system depending on the 

statistics of its input was taken up David Field in a paper published in 1987 [71], We 

examine Field’s ideas and findings in detail because of the clear insight which they 

give to perceptual coding.

5.5.1 Efficient codes and perception
According to Field, an optimal or efficient method for encoding or representing 

information about observed scenes depends on two things:

(i) the goal of the code and

(ii) the statistics of the input.

Traditional theories of perception have tended to fall down in one or both of these 

areas. For example the Fourier analysis theory mentioned above seemed to have little 

a priori justification other than that it performed a type of global analysis (which must 

be useful), and it is a helpful mathematical tool in many other application areas. 

Similarly, edge detection theories were based on the not unreasonable assumption that 

because physical boundaries or edges are useful, their projection on an image should 

be perceptually useful. However, there was and still is substantial confusion between 

the two separate and only vaguely related concepts of a physical edge in the external 

world and an intensity "edge" in an image. The confusion is compounded by the fact 

that the nomenclature does not even distinguish between the two concepts. Marr’s 

computational theory tried to make the goal of a system (in the sense of its processes 

and representations) explicit, but he made the error of assuming that we know enough 

about the world to say how it should be represented. In insisting on the top-down 

computational theoretic approach, Marr fell foul of Field’s second criterion. It is not 

surprising that this should happen, because the mainstream vision community never 

really took perception of natural scenes very seriously.

Perhaps one reason for this tendency to concentrate on what we think needs to be 

perceived rather than what has been influencing the development of our senses
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throughout evolution, is the fact that much of the development of computer vision has

been motivated by the application areas of robotics and automation. The objects of

perception here are usually quite unlike anything in the natural world. They are often

simple regular geometric shapes, easily interpreted in terms of geometric concepts such

as lines, planes and volumes. (Cf., for example, the geometric cylinders representations

of Marr and Nishihara [9, 191] and others). Another possible reason is the strong

reductionist philosophy which permeates all fields of scientific endeavour. To our

mind, what might seem conceptually like a simple or primitive stimulus might bear

scant resemblance to what the visual system is optimized to see. Symptomatic of this

is the concentration within the computer vision community or extracting information

from "snap-shot" image stills. Nothing in the world we have grown to be able to see

is ever really still — either we are moving or things within our environment are moving

— and this is reflected within our visual system12. If an image is stabilized on the

retina it disappears within seconds. The older magno system (which we seem to share

to some extent with lower vertebrates like the cat and) which seems to be responsible

for detecting movement and depth and the structure of the world around us, is

particularly vulnerable in this way. Field points out that our present theories about the

function of the visual cortex

... are based primarily on the response of such neurons to stimuli such as 
checkerboards, sine-wave gratings, long straight edges, and random dot 
patterns ... There seems to be a belief that images from the natural 
environment vary so widely from scene to scene that a general description 
would be impossible.

He thus sets out to show that images of the natural environment show a number of 

consistent statistical properties which help in the interpretation of the processing of the 

visual system.

The goal of the system, needed to satisfy Fields’ first criterion for an efficient code, 

comes from Horace Barlow. For thirty years Barlow has been emphasizing the need 

to understand visual processing in terms of the reduction in the redundancy inherent 

in natural images [16,192,103,104,105,193]. The purpose of natural image 

processing is according to Barlow

,2An even stronger position on this point is that our visual systems are not "optimised" to perceive our 
environment at all, regardless of whether it is "natural" or geometric, but to control our movement. The fact 
that we are capable of appreciating or describing our environment may be a side-effect of the main purpose 
of vision, or possibly a later adaptation associated with the development of the parvo system.
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to represent visual scenes by activity of a sparse selection of reliable and 
non-redundant (ie„ independent) elements [105].

Field introduces a coding model based on the Gabor theoretical framework, in order

to show how the response properties of cortical cells could be an efficient way of

representing spatial visual information from the external world. There is nothing

special about the Gabor framework in this context: It simply provides a tractable

mathematical structure which quite accurately models the cell responses. The Gabor

code has many different elements and levels which are normally distinguished in a

verbose descriptive manner, and so to avoid confusion he uses the following

terminology. A sensor is an individual Gabor elementary function with particular

values for all its eight parameters. A channel is a spatial array of sensors tuned to the

same spatial frequency and orientation. A code is the entire set of channels required

to represent an image. The GEFs are not in general orthogonal, so there is no unique

or canonical way of constructing a code or selecting the parameters for channels and

sensors — as mentioned above, different combinations give different "divisions of

labour". The model used by Field has characteristics which makes it compatible with,

and allows it to span the parameter combinations found in mammalian vision systems.

(i) The code is chosen so that the sampling distance in space (sensor spacing) and 

in frequency (channel spacing) is proportional to the size of the function in 

space and spatial-frequency domain respectively. This means that the channel 

separation in the frequency domain is determined by the frequency bandwidth 

which determines the width of the individual sensors and the spacing along the 

width of the sensor.

(ii) Similarly, the orientation bandwidth specifies: the spectral distance between 

adjacent orientation channels; the length of the sensor (parallel to the 

modulation lobes, perpendicular to the modulation wave vector); and the 

separation between neighbouring sensors in the length direction.

(iii) The model is chosen with the sensor frequency bandwidth proportional to the 

sensor central frequencies. This means that the orientation bandwidth is 

constant in degrees and the spatial-frequency bandwidth is constant in octaves, 

leaving the freedom to choose the actual size of the bandwidths.
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(iv) Like the pairs of cells described by Pollen and Ronner [184] with quadrature 

relative phases, this model contains pairs of orthogonal phase-selective sensors.

(v) The combination of sampling, bandwidths, etc., used in this model mean that 

the output code can represent the same number of independent data as there are 

input pixels. That is, the total number of sensors (each one gives an output 

coefficient) is constant and equals the number of free parameters in the input 

image which is simply the total number of input image pixels. The 

spatial-frequency or orientation bandwidths can be chosen without affecting 

these values.

This last point illustrates one of the convenient features of the Gabor framework 

mentioned above: it allows the freedom to vary parameters of the sensors without 

loosing information or adding free parameters [71].

5.5.2 Influence of statistics on perceptual codes

Despite the apparent complexity of patterns and incomprehensible range of possible 

images and scenes, which mostly look very different to us, Field claims, like Daugman 

quoted above, that they do have statistical properties in common. One of these 

properties is that for many natural images, the power spectrum falls off as 1/f2 — 

approximately at least. This type of power fall off is reasonable if the relative contrast 

energy of the image is roughly scale invariant (independent of viewing distance) as 

this gives equal energy in equal octave frequency ranges.13 Because the code model 

being used has spatial-frequency bandwidth channels which are a constant octave 

width (their bandwidth increases with f  measured on a linear scale), this means that, 

on average, the channels of the code all carry equal amount of energy. By Parseval’s 

theorem, which relates energy in spatial and spectral domains, equal amounts of energy 

(in the spectral domain) carried by the various channels of the code, gives roughly 

equal response activity or variance for the channels in the spatial domain.14 If the

13For a 1/f2 power falloff, Field quotes a fractal dimension value of 2.5 for the luminance profile of the 
image.

,4Just to clarify this last point: the channels are selective for ranges of frequency in the Fourier spectrum 
which become relatively broader with increasing frequency. There is a corresponding selectivity in the spatial 
domain to patterns with ranges of feature size or detail. The range of sizes of detail selected for by a 
particular channel decreases (becomes more selective in range of sizes that give response) with decreasing 
detail size. (Proportionately equal differences between two small objects and two large objects involve much

(continued...)
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assumption of stationary statistics across the entire image is made, then different 

sensors have roughly the same probability distributions and they thus carry 

approximately equivalent amounts of information on average.

The use of the 1/f2 power falloff of natural images to show that cortical cells seem to 

be "tuned" to carry approximately equal amounts of information (because of the 

constant bandwidth in octaves) is very encouraging. It shows a metabolic balance 

between the work rates of different cells which is compatible with the average demand 

made by the external world on them to carry out their diverse processing activities, 

measured in terms of Shannon information. As Field points out however, the constant 

bandwidth in octaves does not make the code more or less efficient — even the original 

pixels carry equal amounts of information if the image statistics are stationary. Other 

parameters need to be varied consonant with the constant octave bandwidth to increase 

the efficiency. One of these parameters is the bandwidth value itself. A constant octave 

bandwidth means that all the sensors have the same value of bandwidth (in octaves). 

But they could all be changed to some other constant value in octaves it this were to 

change the efficiency.

To achieve the goal set out above by Barlow (representing information by "a sparse 

selection of reliable and non-redundant elements") our code must satisfy a number of 

criteria:

(i) Its coefficients (the sensor output) should be statistically independent — or 

approximately so. This means that the possibility of a few sensors representing 

a particular image is not compromised by two sensors with strongly 

overlapping overall selectivity. Also, because sensors code for different 

(orthogonal) aspects of the input, information about these aspects is made more 

explicit

(ii) Information should on average be evenly spread over the arrays of channels 

and sensors. This gives a better utilization of available processing resources, 

greatly increasing the amount and breath of processing ability over codes which 

make less effective use of their resources.

14(...continued)
smaller absolute differences in the smaller case). Equal variances in these channels mean that differences 
between objects occur in proportion to the objects overall size, rather than these differences being equally 
distributed on an absolute scale, as is the case with white noise.
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(iii) The sensors should have a large signal to noise ratio. In the case of cortical 

neurons which have a small dynamic range and are relatively noisy, this means 

that they should signal strongly or not at all. At the very least they should not 

be required to carry signals which depend for their interpretation on subtle 

changes in the activity of an already noisy component. Implicit in this is the 

suggestion that any particular image should be encoded by the smallest 

possible number of active sensors. The image information is thereby spread 

over a few sensors which are consequently very active for this particular 

image, (they are carrying all the "energy" for this image), with large 

signal-to-noise ratios.

The first two criteria are automatically satisfied by the Gabor code described. It is 

interesting to try to satisfy the third criterion, by varying the sensor bandwidth, which 

is a free parameter of this Gabor model.

5 .5 3  Coding to optimize the SNR

Two extreme examples illustrate how variation in the spectral bandwidth is an 

effective parameter for tuning a code so that it responds in the manner described above 

for particular ensembles of images with different characteristics. One is the set of 

images which consist of sparse randomly distributed point intensities like a picture of 

the night sky on a starry night The other is a set of images with obviously periodic 

patterns of light intensity like a picture of the weave in cloth. In the first case, which 

corresponds to the "spatial" extreme of the Gabor framework, little if any further 

coding need to be done to achieve a code which satisfies the stated criteria. The 

"pixel" representation already codes the visual information in a sparse array of 

responses (for each image), which are easily distinguished from their background 

(large SNR), which are on average (over the set of images) all just as likely to be 

active at some time or other, and finally which have little or no effect on each other 

(i.e., are independent). In this extreme, sensors with the widest possible spectral 

bandwidth (point or delta-function representation) allow most of the total variance for 

any particular image of this type to be represented within the smallest possible subset 

of sensors. A Fourier transform of an image from this sparse dot-pattem ensemble 

would correspond to a code with the opposite extreme of the narrowest possible 

bandwidth. These images would have a broad spectrum with most of the Fourier 

coefficients (sensor outputs) being non-zero, with values which need to be accurately

165



represented to capture the original image information. For this ensemble of images, the 

Fourier code would be a grossly inefficient way of coding the image data.

The second ensemble of images corresponds to the "spatial-frequency" extreme of the 

Gabor framework. Here the periodic patterns, which in the spatial representation 

require the constant activity of virtually all the pixels, can be represented in the 

spectral domain by a small number of non-zero Fourier coefficients (sensor outputs). 

In other words, for the highly periodic ensemble of images, more of the total variance 

corresponding to the original image’s information is represented by a smaller subset 

of sensors when the sensors’ bandwidth is narrowest. Broadband pixel representation 

is the inefficient extreme in this case.

As with the two extreme cases presented by Field, the goal of a code in a system 

where "natural" images are the primary visual input, is to represent most of the image 

variance, (ie maximize the energy) within the smallest possible number of strongly 

active sensors, for each image.15 By measuring the proportion of the variance 

represented by the most active sensors, as a function of sensor bandwidth, Field was 

able to show that the optimal sensor bandwidths in the sense of the efficiency of the 

representation of image energy (or variance, or information), are in the range 0.5 to 

1.5 octaves for the natural images used. When sensors with bandwidths in this range 

are used to code "natural" images the maximum amount of energy is represented by 

the large activity of the fewest sensors. Because few sensors represent the total energy 

of any particular image with relatively high activity, if the sensors are noisy (as in the 

case of cortical neurons), they do so with the best possible signal-to-noise ratio.

5.5.4 Gabor models of cortical cells

There is some evidence that the Gabor elementary function fails to capture the precise 

form of the spatial-frequency tuning curves in monkey cortical cells, possibly because 

they lack the relative symmetry which the tuning curves often display on a log axis 

[71,189]. Field suggests that the log-Gabor function (the profile of which is 

automatically symmetric on a log axis) might provide a better description in cases of

1sNote that different subsets of sensors will be active for different images. This means that efficient coding 
in this context can not involve the reduction of dimensionality to a particular subset of sensors, as is the case 
with the Karhunen-LoSve transformation. Sooner or later each one of the sensors will be strongly active.
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wider sensor bandwidth (i.e. > 1 octave). It is also more compatible with the polar 

distribution of sensors in the frequency domain used in his Gabor model. Once again 

this illustrates the point, that it is not which theoretical model of the processing or 

coding function is optimal (in our terms) that is important It does not matter what 

theoretical model we use as long as it captures the "real goal" of the processing or 

coding system. So far the best description of the "real goal" that we have is not feature 

extraction or spectral estimation, but Barlow’s "sparse activity of reliable and non- 

redundant elements". This is exactly the spirit in which Fields’s analysis is carried out 

The visual system during development is not trying to build Gabor or log-Gabor filters 

or Canny edge detectors because it "knows" from millennia of years of evolution that 

these are optimal is some sense. It is trying to find the best way of extracting 

maximum information from its environment with the available metabolic resources. 

This means attempting to represent information in as efficient a manner as possible, 

which can only be effective if the system is "tuned" to the statistical properties of this 

information.

Thus we see that the response properties of cortical cells, captured in this case by 

Gabor or log-Gabor functions in 2-dimensions, are quite well matched to the statistics 

of natural images. Their range of bandwidths measured in octaves show that there are 

probably interspersed populations of neurons optimized to carry out efficient 

information processing on different types of input (and therefore with different 

statistical properties) as there must be to support the form/motion division of labour, 

for example. Interestingly, the fact that the cortical coding systems seem to be matched 

to the statistical properties of their particular type of input giving a representation in 

which only a few units are active at any time (the units "giving a large response or no 

response at all"), bears a resemblance to the implicit goal of feature-detection systems. 

The output of a feature detecting system, like the pandemonium model in cognitive 

psychology [107], feature-detection in mechanical pattern recognition [194], or 

edge-detection in computer vision [195], is also presumed to consist of the reliable 

activity of a small number out of a large set of independent detectors. However, 

Field’s coding model does not describe any type of "feature-detection" in the general 

sense of the term normally used in the vision community. He does not attempt to 

determine statistics of the environment which might be biologically significant to the 

animal, or to give arbitrary preference to any particular object or event in the

167



environment. Rather, "information is defined in relation to the variability of the 

images, not any specific feature" (emphasis added) [71], The goal of the code (to be 

an efficient representation), and the statistics of the ensemble of input images, alone 

determine the response properties of the Gabor sensors in this model and by 

implication in many of the cortical simple cells. Human selected feature sets or 

top-down theories of what a visual system should be representing play no role.

5.6 Gabor Codes for Transforming Redundancy

The non-redundancy of sensor responses is one of the criteria demanded of the code 

model above. Measures of redundancy of various orders in the input images axe also 

a useful means of interpreting what the cortical code is doing overall. According to 

Kersten [157] one of the distinguishing characteristics of intelligence is the ability to 

make accurate and reliable predictions or inductive inferences from partial or 

incomplete data. This ability "depends on the existence of statistical dependencies or 

redundancies in natural images". Attneave [196] like Barlow [192-193] also 

claimed that the principal task of biological vision is to encode the visual image in a 

less redundant form so that "rather than searching for features in an image, the visual 

system codes a given image with regard to its relation to the statistical properties of 

the set of natural images" [157]. The enormous number of degrees of freedom in the 

image signal captured by a camera or eye means that some type of dimensionality 

reduction is inevitable. Exploiting naturally occurring redundancy to reduce the amount 

of data being processed and transported makes good engineering sense. The same 

amount of information can then be carried by fewer neurons with a smaller dynamic 

range. These are exacdy the arguments that we have used above to explain the 

processing function of the retina. But there may be even stronger reasons than efficient 

transport for redundancy reduction in the visual cortex. Kersten suggests that image 

understanding tasks may be simplified by reduction of redundancy. We argue below 

that perception is only possible because of the existence of naturally occurring 

redundancy in visual data. Eliminating redundancy or "detecting invariants" is a 

fundamental part of the process of perception.

5.6.1 Redundancy

First, we carefully define what we mean by redundancy and than discuss Field’s 

results about efficient coding in the visual cortex in terms of the usual ideas about
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redundancy. The n'h order redundancy in an ensemble of digitized images is defined 

in terms of the nlh order conditional probabilities of the pixels. Assume for the moment 

that the images are ideally sampled at k points arranged in an appropriate lattice and 

than the sampled values quantized with an accuracy of m bits per sample. Then if the 

probability of grey levels is constant (all levels equally likely) and independent of all 

other pixel values in the image the entropy takes on a maximum value of m bits per 

pixel. Knowing previous or neighbouring pixel values tells us nothing about the value 

we could expect from a particular pixel before we look at it. This figure of m bits per 

pixel acts as reference against which predictability and redundancy can be measured. 

If there is some redundancy between this pixel and others in the image, then knowing 

the values of the other pixels concerned allows us to make predictions about the 

likelihood of the pixel having each of its possible values. In other words, we can 

construct a probability distribution over the possible grey levels for this pixel, p(i). If 

there is redundancy, the probability of getting grey level i depends on the particular 

values of (some of) the neighbouring pixels. Suppose n neighbouring pixels affect the 

value of the pixel under consideration. These n pixels can appear in (2mf  different 

combinations or states (labelled bj, for j  = 1 to 2mn, say), assuming order is important 

Each one of the possible 2™ states that the neighbouring n pixels can take up can 

affect the probability of our grey-level i differently. So for each grey level i we can 

define a function of the set of states labelled by bjf p(i/bj), called the conditional 

probability of grey-value i, given (or conditional on) the particular combination or 

state, bj. In reality, this is a set of 2™1 different probability distributions labelled by 

bj, over the grey-levels labelled by i which our particular pixel might take up when 

next observed. Suppose the n neighbours are found to be in a particular state, bj, for 

some particular value of j. Then the probability distribution p(i/bj) allows us to work 

out our expected (average) ignorance of the grey-levels of this pixel on condition that 

the neighbours are in state b}. This is described by the conditional entropy of the 

distribution over grey-levels for the pixel assuming its neighbours are in the state b ‘.

2"
S \  = log p(i\bp

’ j=i

But the n neighbours are just normal pixels which can take grey values in the range 

0 to 2m - 1, each with its own probability distribution p /i)  over the grey-levels i, where 

/ ranges as a label from 1 to n. We can thus define a probability distribution over the
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2"" states, where the state b, occurs with probability p(bj). If SbJ is the entropy 

assuming that state A>; has occurred among the neighbours then the expected value of 

Sbj over the ensemble of states of n neighbours is

2M"  2" *  2"

S* = £  P(bps \  = p(i\typ{bp \ogp(i\bp
7=1 '  y=l <=i

and p(i lbj).p(bj) = p(i,b}) which is the joint probability distribution over the n + 

1 pixels. 5" is the n'h order conditional entropy for the ensemble of images. The limit 

as n —> k is the minimum average number of bits per pixel required to code images 

from the ensemble.16

Recall that p(i) is the a priori distribution for the pixel grey-levels before the values 

of any of its neighbours is known. There is a corresponding entropy function S° 

measuring our "average surprise" when the pixel value becomes known. It describes 

an uncertainty or ignorance about the grey-level values. p(i/bj) is the a posteriori 

distribution of probabilities when the values of n of its neighbours are tested. 5" is the 

corresponding a posteriori n'h order entropy measuring our remaining uncertainty about 

the grey-level values of our chosen pixel when the values of a particular set of n of 

its neighbours is known. The information that the n pixels convey to us about their 

common neighbour which is the subject of our interest is

r  = S° -  Sn

Two possible definitions of the n‘h order redundancy could then be

Kersten uses the latter, which simply assumes that all pixel grey-values are equally 

likely (a flat histogram) before the information about this pixel conveyed by its 

neighbours, is taken into account His goal is to estimate the entropy of a set of natural 

images. However, the calculation of anything other than the lowest order entropies is 

impractical. Instead he computes bounds on the entropy and redundancy of the image 

set using human and algorithmic nearest-neighbour predictors to guess pixel values.

leStrictly, the calculations just apply to the pixel selected for discussion, but if  stationary statistics are 
assumed the same calculations hold for the whole image.
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Both the human and median predictors gave upper bounds on the entropy for the set 

of images used, of around 1.3 to 1.4 bits per pixel.

First order statistics concern the probability distribution p(i) of the grey-levels of a 

pixel without any knowledge of its neighbours. The grey-values are mutually exclusive 

"events" which can be indexed by a finite subset of the natural numbers. Each 

probability assignment p(i) is a number drawn from the reals which satisfies

p(i) * 0, Vi; £  p(i) = 1 
1=1

The natural representation of this probability distribution is a 1-d array of real numbers 

indexed by i, or graphically as a block histogram indexed by i in its natural order.

5.6.2 Transforming from high to low order redundancy

There is redundancy in the first order statistics when the pixel grey-levels are not 

uniformly distributed — when some intensities are more likely to occur then others, this 

introduces some degree of predictability to the intensity values. The amount of 

predictability is quantified by the first order entropy function 5° above. Second order 

statistics concern the probability distribution of a pixel’s value conditional on 

knowledge of the value of one of its neighbours. They are completely specified by the 

joint probability measure defined on the product space of the two individual sets of 

experimental outcomes. (This looks like a 2-d histogram labelled by the grey-level 

indices of the two pixels in this context). Unfortunately, second order redundancy 

cannot be seen by simply looking for non-uniformity in the 2-d probability 

distribution. It depends on the extent to which the 2-d distribution cannot be separated 

into the product of two 1-d distributions. A spatial auto-correlation function computed 

on the basis of pixel values being values of a "discrete-time" random process contains 

the complete second-order redundancy information about any pair of pixels.

Kersten [157] has shown that even third order entropy, S2, does not capture all the 

predictability that can be achieved by humans or a simple nearest neighbour median 

predictor. There typically is redundancy in the values of three and more neighbouring 

pixels that is exploited by humans, but not captured by the power spectrum and 

autocorrelation functions. One of the stated objectives of Fields’s code model is that
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the sensor responses be non-redundant Depending on the overlap of the GEFs in space 

and spatial frequency, this condition is approximately fulfilled by the quasi-orthogonal 

functions. But the code model which Field describes contains as many sensors (64K) 

as there are pixels in the original image, so the overall redundancy of the code must 

be exactly the same as the overall redundancy of the image ensemble. A reduction in 

redundancy would allow the set of images to be coded with fewer total independent 

data — reducing the dimensionality — which clearly does not happen. The problem is 

not with a superfluity of sensors channels. The full complement of sensors is required 

to completely cover the information space defined by the size and bandwidth of the 

image. To omit any sensors or increase the relative spacing would result in the loss 

of information as well as data. It would seem, that despite the semi-orthogonality 

between individual sensors, we are no nearer Barlow’s goal of reducing overall 

redundancy.

Fortunately the code, which is previously described as efficient because of the high 

signal-to-noise ratio and paucity of simultaneously active elements, can also be 

described as efficient because of its substantial transformation of the data redundancy. 

In the original image ensemble, the overall redundancy is spread over many orders — 

the more one knows about the nearest 4, 8 or 16 neighbours and sometimes about 

pixels much further away, the more predictable is the value of the pixel under 

consideration. But the GEFs (sensors) of Field’s Gabor-code model are 

quasi-independent Having knowledge about the values of the responses of 

neighbouring sensors, or indeed any other sensors in the model, hardly makes the 

response value of the sensor of interest any more predictable This means that between 

the output values of the Gabor code there is very little 2“1, 3rd or higher order 

redundancy. Since the overall redundancy has remained unchanged, the Gabor code 

model must have the effect of converting high-order redundancy in the input images 

into large first order redundancy of the output code. First-order statistics describe the 

probability distribution of the grey-levels of a pixel or the probability distribution of 

the response-va/u^s of a sensor. Large first-order redundancy means that the sensor 

responses are very unevenly distributed with some values occurring very often (for 

example, very large values or very small values), and some very seldom (intermediate 

values). This was the case with the spatial representation of the sparse point intensity 

image and with the spectral representation of the largely periodic image, and now with
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the Gabor code representation of natural images if the code bandwidth is chosen 

suitably.

With a one octave bandwidth, the information [in a set of natural images] 
is packed into the smallest number of sensors, giving a highly skewed 
distribution and therefore a redundant code. In other words, the most 
efficient code by our terminology is the code with the most redundant 
first-order statistics [71].

Overall redundancy has not been reduced by this type of representation. It remains for

further stages of processing to make the most efficient use of the outputs with these

first-order statistics by coding only the non-redundant elements (in other words, the

highly active sensors), or whatever other processing is relevant to the continued

existence of the organism. Since any of the sensors can be highly active at some time

or another, subsequent processes cannot simply ignore the output of some sensors, as

happens by definition with the KLT. Perhaps Barlow’s goal should be altered to the

necessity of reducing the redundancy of the code at any instant

The point about ignoring the output of any sensors is important here. The 

Karhunen-Louve transform, which is based on coding in terms of the largest 

eigenvectors of the covariance matrix of the input data, is an efficient code in the 

sense that it minimizes the mean-square-error (MSE) for any given data reduction. The 

eigenvectors of the covariance matrix are automatically fully orthogonal. They can also 

be arranged in order of the amount of energy they represent in the input image 

ensemble by the size of the eigenvalues (which are the square-root of the variances of 

the ensemble along the corresponding eigenvector). The KLT works by making the 

information carried by the complement of sensors as unevenly distributed as possible 

and eliminating those which account for small amounts of the information (or energy, 

or variance).17 (Recall how the Gabor code model distributes the information as 

evenly as possible between the complement of sensors).

,7A point of note here is that perceptually important information is often contained in low-amplitude high 
frequency components of image data. Because the KLT removes the lowest-energy components, the 
transform often causes a level of perceived distortion which is belied by the contribution to 
mean-square-error. This effect could be overcome by transforming the data in a perceptually relevant way, 
so that equal amounts of energy in different coefficients are equally perceptually relevant.
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5.7 Summary

Like Marr, our aim is to try to find the answers to the "What?" and "Why?" questions 

about visual perception. Unlike Marr we believe that the key to answering these 

questions lies, not in a computational theory for vision, but in the three crucial notions: 

information, development and measurement The notion of development is an 

undercurrent to the logic of our approach which is dealt with explicitly in the previous 

chapter in the section on Linsker’s Infomax, but plays a much more background role 

in this one. Measurement is something which is taken up in the next chapter and the 

following one. In this chapter the development of the role of information theoretic 

concepts in understanding visual perception problems, begun in the last chapter, is 

continued.

The notion of cortical cells as feature detectors is first discussed and discarded as 

untenable. At the level of each cell there may a localized filtering function but the 

belief here is that a more general description in information theoretic terms is more 

appropriate. Certainly there is no basis for any sort of Fourier-analysis type model. 

Even though the information theoretic notions go a long way to helping us to 

understand the role of parts of the cortex, it is difficult to be as precise as in the retina 

because effects are much more dispersed and much less is known about the system. 

Certainly the form/motion or parvo/magno division and the macro-structure of the 

cortex seem to be related in some way to the structures that we see in Gabor codes but 

we cannot yet be sure of the details, or why. The notions of a statistical redundancy 

interpretation of Gabor codes allows useful insights into the possible functions of these 

codes and gives hints to possible applications not related to vision.
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Chapter 6

6 Pattern Recognition, Concepts and Generalization
6.1 Introduction

Pattern recognition as it is commonly understood is only one aspect of human visual 

capacities. One of the primary points that we are trying to make in this thesis is that 

at some level of description, all aspects of perception can be at least approximately 

modelled by something like primitive pattern recognition events. The philosophical 

justification in chapter 2 and the information theoretic descriptions in the subsequent 

chapters have all been more or less leading in this direction. In this chapter we 

examine more closely what pattern recognition is, including different ways of 

representing the data to be classified and the logico-algebraic implications of these. 

This in turn leads to a discussion of Watanabe’s propensity theory and the basic 

properties of observations or measurements.

Watanabe’s 1985 book [19] is devoted to discussion of many different aspects of

pattern recognition in humans and machines. The title of his first chapter is "Pattern

Recognition as Seeing-One-In-Many" — a phrase which very neatly captures the two

very different but complementary aspects of pattern recognition. On the one hand, we

have pattern recognition meaning "seeing as" a member of a class, i.e., the process of

being able to collectively refer to many different objects1 by one name (or symbol)

— a process of generalization. On the other hand we have pattern recognition meaning

"seeing as" a shape, where one object is seen to be formed from a collection of many

parts — a process of grouping or gestalt organization. Watanabe traces the relationship

between the two aspects:

a pattern is the opposite of chaos; it is an entity, vaguely defined that could 
be given a name ... when we see a [pattern] we are somehow associating the 
present particular case before our eyes to other cases o f [patterns with the 
same name], ... recognising similarity [19, p2J.

'The Aristotelian view of the world as consisting of a discrete number of self-identical objects with a 
relatively fixed set of properties or predicates is a tacit assumption of modem mechanical pattern recognition. 
We have already argued against this view but continue to use it in this discussion because it is in these terms 
that the ideas are normally formulated.
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The ability to recognize similarity allows us to recognize or identify an object as a 

member of a family or class. It allows us to group objects together. This clustering 

habit — characteristic of intelligence — may have grown out of adaptation to primitive 

generalizations: similar causes have similar effects. Whatever its origin, man in 

particular seems to have a natural instinct for recognizing groups and making a 

classification of his own. The word "cognition'’ is sometimes used to describe the 

formation of new classes — the process of "clustering", ie., "taking cognizance of the 

existence of a group of similar objects". In this terminology, "re-cognition" is reserved 

for the process of identifying an object as a member of an already known class. In 

general usage of the term "recognition", this distinction is not made and the woxd 

covers both cases.

6.2 Patterns and Classes

The two complementary aspects of pattern recognition mentioned above involve two 

complementary uses of the term pattern. In the former a pattern is an object qua a 

sample of a class. In the latter a pattern is an individual object as a form, shape or 

figure, whole or gestalt2. In other words the term pattern "includes not only the one 

imitated but also those which imitate". In mechanical pattern recognition, the emphasis 

is on patterns as samples of a class with two variants, one involving this notion of 

imitation. The epicentric concept involves the notion of a "central object,3 which is 

the master of other imitations" [p.7]. An aggregative concept involves relationships 

(e.g. similarity) between class members but without a "typical case, exemplar, or 

archetype" — without a central object or imitated.

A concept, or its corresponding class is defined in logic by its extension or its 

intension. The extension (or denotation) is the set of all particular objects making up 

a class and therefore corresponding to the associated concept The intension (or 

connotation) is the set of predicates which is just sufficient to identify all the objects 

in a class and differentiate them from objects outside the class, i.e., just sufficient to 

define a concept Normally however, in real life, neither the extension nor intension 

are available. Even if they were it is likely that it would be completely impractical to

'This use of the tenn pattern is associated below with mathematical notions of entropy and structure.

’Compare Aristotle’s adaptation of Plato’s Form.
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use either. Instead, intelligence seems to be able to generate and use concepts with 

enormous, and often ill-defined, intensions and extensions, by means of a few class 

samples or paradigms4 (and sometimes samples from outside the class or negative 

paradigms). "Theoretically [or logically] speaking this is not a definition of a class, but 

it generates a working capability of distinguishing a member from a non-member of 

a class".

Mechanical pattern recognition does not deal with concepts or classes in terms of the 

logical concepts of intension and extension. Rather, like human pattern recognition, the 

aim is to be able to show a few paradigms (and their class affiliation) in a learning 

phase, and subsequently be able to classify an object (whose properties, but not class, 

is known), in a decision phase. This is the essential function of both human and 

mechanical pattern recognition: inferring a general concept from a few concrete cases. 

It is an inductive inference, with no necessary or logical basis. In mechanical pattern 

recognition, extra-logical, extra-evidential heuristic measures of similarity are often 

introduced to overcome the inductive ambiguity and allow the classification to proceed 

by logical computations. These heuristics either implicitly or explicitly express the 

value judgement of the computer programmer through the weight we attach to each 

variable, or threshold which we set, etc. While the heuristic principles have a role to 

play in resolving the inductive ambiguity of generalization, they are not foolproof. 

They can only be judged by the usefulness of the resulting classification. As well as 

this "paradigmatic" pattern recognition, there is pattern recognition in the sense of 

clustering or forming new classes (or cognition). This involves further inductive 

ambiguity which is discussed below.

We cannot condemn some of the enthusiastic experts of pattern recognition 
claiming that all intellectual acts are pattern recognition. Indeed, inductive 
inference and pattern recognition are basically identical in their essential 
function — inferring a generality from a few concrete cases [19, p.9].

Whatever about all intellectual acts, the central thesis of this document is that

perception involves, at a certain level of description, both of the complementary

aspects of pattern recognition ("seeing-one-in-many"). Perception we submit, can be

described in terms of many acts of primitive observation or classification or

*The word "paradigm" which Walanabe uses in this context, is in the sense of its meaning a pattern, example 
or model — a sample of a class. See footnote 1, chapter 2.
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measurement, and also in terms of grouping processes which are capable of associating 

the activity of the primitive observations at different levels of abstraction, often in 

parallel pathways. Watanabe’s comparison implies that our theory is at least along the 

right lines, so we examine this relationship between perception and the formal theory 

of pattern recognition more closely. But first we discuss the role that sensory 

experience plays in the development of a perceptual system.

6.3 The Basis for Perception in Experience

In the discussion on the controversy of the Universals above, we concluded that certain 

ideas borrowed from Platonic philosophy capture what we believe is a better 

understanding of the nature of perception than heretofore. The most important is the 

emphasis on the primacy of properties or predicates over substance: particular objects 

can only be identified by the observation of predicates — i.e., "testing the applicability 

of general concepts". (We define these terms carefully below). Since we know nothing 

about the world, except what is perceived via the senses, everything we know must 

be based on relationships between different observations. We see what we do see, not 

simply because that is the way the world is, or because we are bom with the ability 

to see in this way but because of a lifetime of experience of constructing perceptions 

from sensations.

To tease out a little better what we mean by this we consider the example of learning 

a natural language. Prelingual infants have an innate ability to learn language. In fact, 

we can make an even stronger statement than this. Children have an innate ability to 

construct language. When a heterogeneous group of adults with no common language 

are thrown together by force of circumstances, they develop a pidgin in order to 

communicate. This is not a true language with grammatical structure and syntax. The 

dictionary describes it as "a jargon incorporating the vocabulary of different languages" 

— a hotchpotch of words separated from their function as nouns, verbs, adjectives etc., 

in their own language and used in a virtually arbitrary fashion. It is a makeshift 

language with a limited vocabulary and with almost non-existent structure and syntax, 

and few prepositions [197, p.l79ff]. What is astounding though is what happens 

in the first generation after the original mixing of cultures and languages:

The adults who create pidgin speech are not able to provide it with any
structure; they're past the critical age at which syntax develops. The
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children, however, are not. Syntax develops in them just as naturally as any 
other part of their bodies. It’s natural, it’s instinctive, and you cannot stop 
them doing it. I  think the only explanation you can have for the way syntax 
works is that, somehow, it is built into the hard wiring of the brain 
[198].

The children in these circumstances create a creole language. This is not a language 

with a history, and literary or oral tradition, fashioned over thousands of years. It is 

a proper language with well-defined vocabulary and a relatively complete grammatical 

structure. It is a completely new language constructed by children in one generation. 

As further evidence that people have in their brains the inherent machinery to make 

language, grammatical similarities have been found among creoles spoken all across 

the world.

Notice that we have said: brains have the machinery to make language -  not that

brains have the inherent machinery of language. Chomsky claimed that

linguists should search for ‘language universals’ — the similarities among 
all languages ... The capacity for language is uniquely human and is not 
learned through experience ... but is innate [197, p.178].

However, the search for true universal similarities in all languages has been singularly

unsuccessful and the notion of a "universal grammar that determines much of the

surface structure" is without support There are further indications of what is

happening in the brain during the development of language. At birth, any child

anywhere in the world is capable of learning to speak any language. By eight months,

a child will have lost the capacity to make or to distinguish some sounds of other

languages which are not present in its mother-tongue. By the end of a sensitive period

lasting until the age of seven or eight years a child must have been exposed to some

kind of language if a true language is ever to be leamt Children seem to innately have

the mechanisms that allow a language capacity to develop, but the language capacity

itself is not innate as Chomsky claimed The mechanisms for developing syntax

generation and comprehension modules within the brain require language experience

in order to carry out their task, and this experience must occur during a critical phase

lasting up to seven or eight years. It is experience that determines the exact path that

the development will take, and the final linguistic ability. Yet this experience, as

evidenced by creole development need not even be a proper language. Any type of

communicative interaction is sufficient to trigger and guide the development of true

linguistic capacity. Children do not simply have neuronal mechanisms which allow
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them to learn to imitate language. They can actively construct their own concepts 

about their environment, their cultural milieu and about communication and its 

structure, based on (often) indirect experience from, or about, any of these.

It is notoriously difficult and often misleading to argue about other functions or 

capabilities in the brain purely on the basis of linguistic concepts. Two particular 

reasons for this first came to light in work inspired by Gazzaniga’s findings on 

"split-brain" patients. The two hemispheres seem to have very different modus 

operandii in their interaction with the external world. Loosely speaking, the left 

hemisphere is verbal, sequential, temporal, logical, analytic and rational, while the 

right hemisphere is non-verbal, visuo-spatial gestalt, synthesising and intuitive.5 [19, 

p.465; 197, p.188, 26]. Care is needed in describing visual function in terms of 

language related activities because (i) at an abstract level there is a very fundament i 

difference in the way information processing is carried out and (ii) because o. 

linguistic description from one hemisphere of what is happening in visual processing 

in the other hemisphere bears little resemblance to what really seems to be happenr. 

According to Crick [57] "we are deceived at every level by our introspect ir 

Nevertheless, the general characteristics of development in vision and language 

children do show similar characteristics. In both, experience is a very important if 

in determining the eventual cognitive ability. The existence of a true mother-toi.f 

will determine whether a child will learn its mother language or develop a compic 

new creole. Similarly, if the visual data available to a developing bird is arranged » 

be devoid of horizontal information, it has been shown to cause.the bird to come to 

"see" vertical information only and to ignore all horizontal information — never to 

regain this aspect of vision which is common to all properly developed birds. Equally, 

both show a critical or sensitive period, during which the child or animal must be open 

to experience in order for the capacity to develop normally. Finally it seems 1hat both 

have initial genetically-specified information processing structures which allow (or 

indeed drive the young towards) the development of neuronal structures which directly 

subserve adult capacities. In particular, we see as we do because our minds have the 

right structure for us to use appropriate experience to develop adult ability. Just as

iPrimary sensory and motor capabilities are located in cach hemisphere for the opposite side of the body. 
So, for example, each hemisphere processes visual information in an identical fashion to the other -  at least 
in the early stages that are known about. It is really only high level cognitive abilities, with a locus relatively 
remote from the primary areas, that show the traits listed here.
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there is no unique universal pre-language or syntax which is a foundation for the 

learning of all languages, so there is no necessary view of the world which is 

instrumental in causing visual abilities to operate in a certain way or perception to 

involve one particular way of looking at things. Just as language, even sign-language 

cannot develop in the absence of attempts to communicate, so vision cannot develop 

in the absence of appropriate visual experience.

This last comparison hides a difference between ways of attributing ability to 

experience in the two cognitive capacities singled out While statistical methods have 

been used in linguistics for various purposes, the author is not aware of a statistical 

explanation or interpretation of the development of language processing, nor how this 

might be attempted On the other hand as Laughlin [15] and Field [71] have shown, 

statistical or information/communication theoretic interpretations of the form and 

function of information processing in the retina and cortex are very successful in 

explaining the experimental observations. These explanatory power of information- 

based ideas may even be further extended by the semantic considerations of particular 

messages described by Dretske. Barlow [192,193] has been saying for years that 

interpretations of visual processing in organism and computer in terms of redundancy 

is much more appropriate than whatever conceptual theory like edge/feature detection 

or geometric representations was then in vogue. The nature of sensory modalities with 

their well-defined physical input means that ideas like "sampling" and "entropy" are 

easily applied With language processing, the cortical regions of interest Broca’s area 

and Wernicke’s area are relatively far (in synaptic terms) from the direct measurable, 

input and output contact with the external world. Unlike the peripheral visual input to 

the cortex it is very difficult to quantify the variables involved and relate them to 

statistically describable stimuli.

We have suggested, following Platonic ideas described by Watanabe [19] that what we 

perceive is based solely on the relationships between different observations: the nature 

of our perception is determined by a life-time of visual experience. This is a bit like 

Locke and Berkeley’s ideas about perception being constructed through a process of 

learning through association. It is also a bit like the "transactional functionalism" idea 

that "what one sees will be what one expects to see, given one’s life-time of perceptual 

experience" [56, p.92]. One significant difference between these philosophical or
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psychological positions and the model presented here based on psychophysical and 

neuroscientific evidence is the following. The implicit assumption in the former 

positions is that the type of process involved in the relationship between observations 

is describable at an abstract or cognitive level similar to the language based tokens and 

procedures normally associated with A.I. programming in Lisp or Prolog. In the latter 

an attempt is made to explicitly define statistical relationships between observations 

in terms of redundancy and Shannon-information content Another point of note is that 

virtually all the development leading to the mature perceptual capacity takes place 

within a number of relatively short critical periods early in a child’s life. The onset of 

any of these critical periods like that associated with the development of binocular 

vision coincides with the first arrival of neuron axons growing from more peripheral 

parts of the perceptual system. The critical period usually lasts for several weeks or 

months and thereafter little further long-term adaptation — certainly on this scale — 

occurs again. This burst of development followed by a life-time of relatively quiescent 

application is difficult to reconcile with an ongoing process of perceptual construction 

by association. In visuo-semantic terms the range of perceptual experience available 

to an infant in the first weeks and months of its life is usually very restricted. In fact 

there is some suggestion that early parts of the visual pathway develop in utero in 

ways that do depend on the neuronal signals being carried even when these signals 

arise from random fluctuations in receptors without any external perceptual input The 

burst of development is compatible with interpretations of the mechanisms driving 

development in terms of statistics and information theory. Despite the limited semantic 

range of early perceptual experience it is expected that the range of statistical variation 

is as extensive as the total ensemble of possible images of all possible scenes. In fact 

the existence of a critical sensitive period during which most development takes place, 

followed by a stable period of application may be a necessary part of some as yet 

unknown aspect of the mechanism of perception. It may even be a necessary aspect 

of the development of an ontogenetically flexible but perceptually stable system.

6.4 Inductive Ambiguity in Pattern Recognition

6.4.1 Supervised pattern recognition

Consider the probability measure p(Hj n  Ak n  DJ defined on the product space {HJ 

x {AJ x {DJ, where {HJ is the set of hypotheses available, {AJ is the set of auxiliary
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conditions and {DJ is the set of possible outcomes. According to Watanabe there are 

three types of inductive inference:

(i) Given D, and Ak we are interested in guessing the right Hjt i.e. in evaluating the 

inverse conditional probability p(Hj /  £>, n  AJ.

(ii) given D, and Hj we want to derive p(Ak / D- n  H}).

(iii) given only Dt we want to derive p(Ak n  Hj /  DJ.

Pattern recognition involves two stages of inductive inference of different kinds, and 

extra-evidential, non-necessaiy factors are involved in each stage.

Suppose we have two classes labelled by k = 1,2 where A1 states that "object O 

belongs to class 1" and A2 states that "object O belongs to class 2". Suppose that H} 

states that each member of class 1 has probability f }(DJ of giving experimental result 

(a representation vector) Di and each member of class 2 has probability f 2(DJ of 

giving experimental result Dr

The deductive probability of object O having experimental value Di is then

p W  =E Y , P ( D i \A f to p P (A p h p
J *

= E  W W i ) + f JiWp<Aj)p(Hp 
j

If A is given,

PfP) = T,PlfPt\H)p(flp

During the training period of a pattern recognition process, the classifier is shown a 

D t with its class affiliation At  The training process is one of evaluating the hypothesis 

Hj using the Bayesian rule

d (H ID) -
* ‘ Y.PiPiWpS-H) pM

I

and improving the quality of the credibility through the experimental facts D, r> Ah 

This improvement process is a sequential one involving the substitution of the a

183



posteriori probability of one stage for the a priori probability of the next stage. As the 

number of stages increases, the influence of the a priori probability of H} on the a 

posteriori probability of Hj decreases, though insofar as the evidence is finite, the prior 

probability can always overcome the evidential factor.

During the application period of the process, the classifier is given £>, and asked for 

the probability of its class affiliation Ak. That is, it is required to evaluate (for the 

second type of inductive inference mentioned above)

p<AADi = — I----------------------

1 *

Usually, e.g. in a single neural network, only one H} is taken as true at any one time 

so we use

p W  -  m
E p/ A I ' W ' 4»)

An example where many hypotheses would be current and under evaluation at any 

given stage would be the application of a genetic algorithm to a population of artificial 

neural nets with different internal structures and processes.

Usually the prior probability of class p(AJ is taken from the actual relative frequency 

of members of the various classes but this might not be justifiable. For example, the 

known and unknown class samples may be taken from different populations. So, quite 

apart from the problems associated with reliably evaluating probability density 

functions in situations where there are only a small sample of class elements available, 

the process of pattern recognition intrinsically involves at least two different sources 

of inductive ambiguity of different kinds.

6.4.2 Clustering

Usually in pattern recognition, the number of classes and some paradigms (class- 

samples) are given during the training period, and objects without class-assignment are 

given during the application stage. The task of the classifier is to place these latter
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objects into the classes exemplified by the paradigms. The number of classes and a set 

{Hj} of possible hypothesis, i.e. possible statistical definitions of classes, are available 

to the classifier. In the clustering problem, neither of these things are known. 

Clustering is the process of grouping objects into classes where only the properties of 

each object are available — no information is available on possible class assignment 

of these objects. It is assumed that the members assigned to any particular cluster are 

in some sense "bonded" together more intensely than members of different subsets. 

The task of deciding how many clusters there should be and statistically defining the 

classes or clusters corresponds to Pierce’s "abduction" and hence involves further 

inductive ambiguity above and beyond that involved in supervised pattern recognition. 

As well as these theoretical difficulties there are practical difficulties associated with 

the entirely arbitrary measurement variables available, and, if the classification is based 

on similarity, the measure of similarity chosen (i.e. the metric in the data space).

During the training period of a pattern recognition task, the inductive probability of 

the first kind p(H¡ /  D¡ n  A¡) is determined. If each object is represented by an n- 

component vector x, then D, is a point in the corresponding /i-dimensional space. Ak 

designates the class to which this point belongs. In many problems we do not need to 

know the exact value of p(H¡ /  D¡ n  AJ, but only want to obtain the particular Hj that 

would maximise this. This is the approach of parametric methods of pattern 

recognition.

In the application stage we are concerned with the second kind of inductive probability

Y,P<Ak\Hf)D¿p{Hj,

or simply

= p ^ t W p D )

using only the H¡ with the current highest credibility. Here D, is the vector of the new 

object whose class affiliation is yet to be decided upon.
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Suppose there are two class, At and A2. We would expect to classify an object x in 

class 1 if

p f A j n f k )  > 

p<A2\H fk)

However, if "misclassifying" an object from class 1 into class 2 causes a greater loss 

than vice versa, then we could classify an object to class 1 only if f(x) > 0 for 0 < 1. 

Now 0 can be determined if the loss function is known. The border surface or 

"decision function" f(x) - 0  = 0 depends on the loss which in turn depends on the 

usage of the classification.

6.5 The Geometric Representation of Perceptual Data

We have already mentioned above the two different interpretations that are usually 

attributed to "information". When it is said that there is "information" about a scene 

contained in an image of that scene, the term is being used in a sense veiy different 

from the classical Shannon view of information which is related to probability and 

counting alternatives. This is like the differentiation described by Bossomaier and 

Snyder between form and statistical redundancy. They contend that the processing of 

form information, which is a multi-level task, is "greatly assisted by removing 

statistical redundancy and producing an economical representation at each level" [155]. 

In the case of a standard computer-stored video image with 512* 8-bit pixels, 

individual pictures can be represented as points in a 218 dimensional space with each 

dimension quantized to 256 possible values or positions. Of this enormous set, only 

a small fraction would be recognized by people as being interpretable in any way. The 

remainder would in whole or in part look like random noise. Is it that these images 

have some intrinsic property that allows an attempt by humans at interpretation, or is 

it simply a tautological position that we can recognise or interpret the individual 

pictures that "make sense", i.e. those that we can recognize or interpret?6. Compare 

for example, the evolutionary tautology: the fittest are those that survive.

‘Remember that from a computer’s "point of view", all images stored in its memory, no matter how visually 
realistic to us, "look" as unintelligible as random noise does to us.
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It seems clear that small changes in the intensity of individual pixels would not greatly 

affect the inteipretability of most images, nor would changes in the overall average 

intensity. In the geometric representation, these translate into images corresponding to 

nearby points in the data hyperspace, looking very similar, or images corresponding 

to vectors with identical directions, looking very similar. The fact that interpretable 

images are redundant means that they can be represented by fewer bits (or equivalently 

that they correspond to a proper subset of the signal space), and still carry the same 

information for us.

Consider an ensemble of N  objects on each of which we measure n observable 

properties or predicates. This gives a total of nN quantities:

Xa;, a  = 1,..., N; i = 1,..., n, 

which is referred to as the object-predicate table. Following Watanabe [19, Appendix 

3] we can consider these either as N  vectors with n components, or as n vectors with 

N  components. The first case is a geometric representation of the Aristotelian view of 

the world as consisting of a countable number of particular objects with a fixed set of 

well-defined attributes. The second case is a geometric representation where the 

predicates are considered as the primary quantities and rather than each number being 

considered as the extent to which each predicate in turn holds for a particular object, 

the numbers can be inteipreted as the extent to which each object in turn satisfies (or 

has a measured value of) each predicate. This latter viewpoint has been referred to as 

"object-predicate inversion" and was introduced by Watanabe as a Platonic reaction 

to the Aristotelian world view, which is so ingrained in mechanical pattern recognition 

and computer vision.

6.5.1 Object-predicate inversion and the covariance matrix

Normally the covariance matrix for an ensemble of objects is calculated as the 

expected value over the ensemble of the outer product of the feature vectors 

corresponding to objects in the ensemble:
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c v = £  x *i x ‘j  = n x n-
«=1

The object-predicate inversion viewpoint gives a natural definition of an alternative 

"covariance matrix" that can be calculated. This is the outer product of "object 

vectors" for each feature:

n
D “ p = Y , x *i x *i ¿ M W  =  N xN .

<=i

In fact, Watanabe shows that the eigenvalues of both of these covariance matrices arc 

identical, and the author has pointed out the relationship between these ideas related 

to the KLT and the singular value decomposition (SVD). The identical eigenvalues of 

the two covariance matrices correspond to the (square of the) singular values of the 

original data considered as an N x n matrix, under the Singular Value Decomposition7. 

This relationship is discussed in more detail in chapter 8.

Continuing the theme of the geometric interpretation of the object-predicate data, the 

outer-product of any vector with itself has very particular properties. If A, 5, and C 

are any three vectors then the outer or dyad product of A and 5  (often just written as 

juxtaposition) is defined by the following equation:

(ABJ.C = A(B.C)

Thus the outer product of a vector with itself is a linear operator with the following 

properties:

(i) it produces a vector whose length is the dot-product of itself and the vector it 

operates on (to the right).

(ii) the direction of this new output vector is the direction of the vector whose 

outer product was taken.

That is, the outer product of a vector with itself produces a projection operator onto 

this 1-D vector subspace defined by the vector. This means that the covariance matrix

s

7Sirovitch and Kirby [222] use an algorithm equivalent to this system of object-predicate inversion to apply 
the Karhunen-Loève transform to the coding of images of faces in registration. In fact, while the 
diagonalization of the dual covariance matrix and the singular value decomposition are equivalent 
mathematical procedures, from a purely numerical computation point of view, the SVD introduces lower 
order «tors.
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is the sum of the all the projection operators corresponding to each vector in the 

ensemble.

6.5.2 Geometric representations and their algebraic structure

There are two important classes of data vectors which were briefly mentioned above, 

that are conveniently described in the geometric representation. One class consists of 

all vectors where the actual value of each component in the vector is important and 

is captured by the notion of the "volume picture". The other class consists of all 

vectors where the relative values of components are important This second class 

corresponds to data from such things as sampled speech or images. Here the absolute 

magnitude of the vector component is measured or transduced, but is not relevant for 

subsequent interpretation. The natural representation for the first class of vectors is an 

«-dimensional metric space with the Euclidean metric. The natural representation for 

the second class of vectors is a vector space where all the vectors are of unit length. 

If we consider each component of a vector as the result of evaluating the property 

corresponding to that component on the object represented by the vector, then the 

vectors corresponding to a collection of objects can be arranged into an object- 

predicate table, the components of which we label by the matrix of elements PC 

above.

Now, the principal conclusion drawn from the discussion on realism in chapter 2 was 

that the mind can only apprehend the particular by virtue of it being able to apprehend 

universals. It was based on a belief in the need to subvert the notion of substance 

which held a primary position in Aristotle’s philosophy8. Consider the following, more 

explicit statement of this idea in answer to the question of how an object (particular) 

is identified:

It is identified by observation, just as a predicate is confirmed or denied by 
observation. A raven is identified by first observing all kinds of predicates 
that ravens are supposed to satisfy, and then by observing some special 
marks of this-ness, such as the one that lives in a certain tree, or the one 
that has a defective right wing or some other characteristic. ... We 
mentioned a recent work by Strawson, which maintains that a particular

*Watanabe compares this subversion of substance implicit in the object-predicate inversion with the negation 
of substance (anatman) in Buddhism. A similar shift from substance to function is noted in the introduction 
of the quantum theory o f elementary particles where the self-identity of elementary particles must be 
relinquished.
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object can only be identified through testing applicability of some general 
concepts (universals), which, in our context [pattern recognition], amounts 
to observation of some predicates. If we agree that an object can be 
identifiable only by a group of observations, the object-predicate relation is 
no more than a relation between two groups of observations. [19, p.92]

Now, consider the following extract from C.S. Peirce which further supports this view

and extends its implications even into logic:

I  have maintained since 1867 that there is one primary and fundamental 
logical relation, that is illation ...A proposition, for me, is but an argument 
divested of the assertiveness of its premise and conclusion. That makes every 
proposition a conditional proposition at bottom ... This is the very same 
relation that we express when we say that ‘every man is mortal,’ or 'men 
are exclusively mortal.’ For this is to say, ‘Take anything whatever, M, then 
if  M is a man it follows necessarily that M is mortal.’ [199]

These ideas supply us with an indication of how to represent predicates in the

geometric representation of pattern recognition data [19, p.510]. A proposition P(a)

that an object a satisfies predicate P means, according to the usual Aristotelian

interpretation of pattern recognition, that object a is placed in class P; (the class of all

elements for which P is true). The interpretation of P(a) suggested by Peirce, is that

if x  satisfies A, which is the predicate or property of being a (i.e. A-ness), then x

satisfies P. In other words the Aristotelian logical formula P(a) becomes an

implication between predicates: A —> P. Peirce goes further though, in the first part of

the extract above, claiming that the relation which underlies all logic is implication.

So for our geometric representation of predicates, we need to find some way of

representing the predicates such that the implication relation is also represented

geometrically. In turn then, representations of all other logical connectives in

geometric form can be derived from the basic geometric representation of implication.

This means that extensive logical formulas involving our pattern recognition primitives

(observables) can be decided by referring to the solution in the corresponding

geometric picture, and in fact even the underlying structure of the logic can be derived

from the geometric picture. What we find is that different types of pattern recognition

situation (e.g. comparing absolute or relative data vector component values) give rise

to different geometric representations of predicates and implication and even to

different logical or algebraic structure underlying the interactions of these terms.
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In the situation where the value of each component has meaning, which is the 

so-called "volume" picture, a predicate A is represented by a subset of the metric space 

(usually a volume):

Va = { x / A ( x ) }

The corresponding geometric representation of implication, is the volume (or set) 

inclusion relation: "is a subset of':

A -> B => VA C VB 9 

Watanabe shows that this representation satisfies all the laws of Boolean Algebra, 

including the distributive law, which is not surprising as the distributive law is also 

characteristic of set theory. There is a one-to-one correspondence between Boolean 

algebra and set theory.

In the case where only the relative values of the vector components corresponding to 

a single object are meaningful, each object is represented by the direction of a unit 

vector in the vector space; i.e. by a 1-dimensional subspace of the space. The subspace 

corresponding to a predicate A is then:

M A =  { x  ¡ A ( x ) }

where if two vectors satisfy A, any linear combination of the two vectors satisfy A. 

The corresponding geometric representation of implication is the subspace inclusion 

relation: "is a subspace o f:

A -> B => Ma c Mb 

The predicate 0  that represents the constant absurdity has no member and corresponds 

to the zero vector

M0 = {x 10(x) } = 0.
The predicate □  that represents the constant truth is satisfied by every object and 

therefore is represented by the entire vector space:

Ma = {x I Qx) } = {x} => 0 c A c O

*It is important to distinguish relations belonging to the "object language" and relations belonging to the 
"meta-language". Consider a collection of predicates A, B, C,..., each of which can be true or false [47, p.2]. 
An operation which combines members of the collection to produce a member of the collection is a part of 
the object language. This corresponds to using the predicate A , regardless of its truth or falsehood in a 
particular case. But, when we assert that A, in a particular case, is true, this assertion is not itself a predicate 
— we are talking about the predicate A and so this assertion belongs to the meta-language. Here -»  and = 
belong to the meta language. r \  u  and -> belong to the object language. Note the difference between A in 
A -»  B and A in A n  B. The former is in the meta-language and means "the proposition that the predicate 
A is true". The latter is in the object language and simply means "the predicate A is true".
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Using the definition of implication —» we can define conjunction A n  B and 

disjunction A vj B for any two predicates A and B. (They correspond to the meet and 

join operations in lattice theory respectively).

A n B  -» A;
A n  B —> B;

If X -» A and X —» B, then X  —» A n  B.

Thus the subspace corresponding to the conjunction A n  B is the largest subspace 

which is a subspace of A and is a subspace of B.

A -» A u fi;
B -» A u  B;

If A -» X  and B —> X, then A u  B —*X  

MAnB is the set of all vectors that can be expressed as linear combinations of vectors 

belonging to MA or MB or both. (Note that the combination can produce a new vector 

which does not belong to either MA or MB). The following laws still hold:

Idempotent Law: A n A  = A, A u A  = A.

Commutative Law: A n B  = B n  A, A u  B = B u  A.

Associative Law: (A n  B) n  C = A n  (B n  C)

( A u B ) u C  = A u ( B u C ) .

Absorptive Law: (A n  B) u  A = A

(A v  B) n  A = A 

0  n  A = 0 ,  0 u  A = A  

O n  A = A, D u A  = D  
However, the distributive law breaks down when C is not a subspace of A or B:

( A n B ) v C  *  (A u  C) n  (B u  C)

( A u B ) n C  94 ( A n C ) y j  (B n  C)

For finite dimensional vector spaces a less restrictive modular law holds:

( A n B ) K j C  = A n ( B v C )  

which is equivalent to the distributive law when C —> A because A u  C —» A.
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Another case where the distributive law holds in the subspace picture is if the 

predicates A and B are compatible.10 This is the case, for example, if there is a 

rectangular coordinate system in the vector space, and the subspace in the geometric 

representation of any predicate, is a subspace subtended by some of the coordinate 

axes [19, p.514]. In general, the distributive law holds in the subspace picture when 

predicates share a common coordinate system.

The subspace picture, which is derived on the basis of the relative values of the vector 

components of the vector representing a particular object, being the meaningful 

quantities, shows that in certain cases the distributive law does not hold for 

incompatible predicates. This is equivalent to saying that the order in which predicates 

are measured is important and changing the order can give a different result

6.5.3 Propensity theory

Watanabe gives another more fundamental derivation of this non-distributive or 

quantum logic which shows a direct relationship to the problem of measurement 

Recall again the essence of Pierce’s idea about the fundamental basis of logic being 

the notion of implication, i.e., instead of saying P(a) is the proposition that the object 

a satisfies the predicate P, we say that if x satisfies A , which is the predicate of being 

a (i.e. a-ness or o-hood; cf. doghood) then it satisfies P, i.e.:

P(a) becomes A P 

However, continuing to make use of the notion of subjective probability described 

earlier, Watanabe points out that in human pattern recognition there seldom is a 

definite (yes/no) implication. We can seldom say that an implication is definitely true 

or definitely false. Usually there is some sort of "a graduated evaluation of the veracity 

of an implication", i.e. there is a probability associated with whether or not the 

implication holds. This is of the form of a conditionality probability: p(P /A) which 

assigns a measure to the probability of P being true or applicable given that A is 

known to be true or applicable.

10The terminology comes from quantum mechanics and means that it is possible to simultaneously measure 
both predicates to an arbitrary accuracy, unconstrained by uncertainty relations. This is not the case with 
position and momentum in quantum mechanics or equivalently with position and spatial frequency in signal 
theory (see discussion on Gabor above)
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There are two ways of incorporating this conditional probability, which encodes the 

veracity of a logical implication, into a logic system. The conventional approach is to 

assume Boolean or Aristotelian logic as the starting point and to incoiporate notions 

of probability into this system. This is the approach developed by Kolmogorov, where 

probability is defined as a measure on a Borel field which satisfies certain 

properties.11 Watanabe shows how this definition of probability is only consistent if 

the underlying lattice satisfies the distributive law [19, p.518]. He credits Louis de 

Broglie with pointing out that the use of probability is anomalous in quantum

mechanics. This is because [47] the distributive law does not hold for observables in

quantum mechanics12 while the use of the usual Kolmogorov concept of probability 

requires the distributive law to hold.

One way of getting around this problem is to relax the definition of probability. The 

usual definition of probability requires:

(i) p(A) > 0;

(ii) p (0 )  = 0 ;

(iii) p ( Q  = 1;

(iv) If A n  B = 0  then p(AvjB) = p(A) + p(B).

In the distributive case (iv) is equivalent to (iv)':

(iv)’ p(A) + p(B) = p(AnB) + p (AkjB)

To cope with a non-distributive lattice, replace (iv) by (iv)":

(iv)" P(A) + p(-'A) = 1

which is a restricted version of (iv)’ when B is ~>A.

In order to inteipret the conditional probability P(AfB) consider the case P(Ajx) 

where x  stands for B when the geometric representation of B is a 1-dimensional 

subspace.

‘’Borel fields form a lattice which differs from a Boolean lattice only in the fact that a countably infinite 
conjunction and disjunction is allowed in the case of Borel ñelds. This does not materially change the results. 
[19, p-5173.

,2In quantum mechanics observables can be represented by operators in a Hilbert space or as matrices in 
Dirac’s bra/ket form. The fact that operators corresponding to incompatible observables do not commute (the 
order o f  operation is important) is a mathematical representation of the fundamental nature of quantum 
systems. TTiis non-commutativity leads directly to the breakdown of the distributive law.
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Define p(A /x) = | Ajc |2/ |jc |

where Ax is the projection of x  on the subspace corresponding to A.

p(Alx) + pf-'A ¡x) = 1 

by the properties of subspaces [19, p.519]. If P(A /B) is considered as the average over 

all vectors x  contained in B then p(AjB) + p(-<A/B) = 1, which is a weaker form of 

the conditional probability version of (iv) above.

This problem with the distributive law needing to hold in the case of a probability

defined on a Borel field can be avoided in another way. While the conventional

approach assumes Boolean logic and then defines probability on top of this, an

alternative approach starts with the conditional probability and uses this to derive a

logical structure.13 Watanabe claims that although the orthodox way of introducing

probability is to add it to an existing logical structure,

it seems to be the opposite of the natural order of development of ideas in 
human cognition ... In ordinary thinking, a vaguely conceived association 
between cause and effect with a graduated degree of certainty is generated 
first in mind, and in rare occasions it is crystallized as an infallible 
implicational law. The logical axioms can be considered as a formalization 
o f such exceptional cases of singular associations [19, p520J.

Recall again that our starting point is the implication A(x) —» P(x), and we want to

introduce some way of dealing with "a graduated evaluation of the veracity" of the

implication. According to Watanabe the most natural way of doing this is to allow a

continuous range for the truth value of A(x) or P(x) which usually have one of the

dichotomous values 0 or 1. To represent this he introduces a function f(Ajc) (for A

say), such that

0 <f(Apc) < 1

where as usual the value 1 means that the object x definitely satisfies the predicate A 

(is in class A), and the value 0 means that the object x definitely does not satisfy the 

predicate A (is outside class A). The class A can be understood as the extension of the 

predicate A (the set of all objects that satisfy A). W hen/is limited to the values zero 

and one we get the usual Boolean logic out of the formalism. This is equivalent to the 

assumption that at any instant each predicate corresponds one-to-one to a well-defined,

’^Recall the discussion above about the conditional probability being a more fundamental concept than the 
unconditional (absolute) probability. This discussion is on the basis of the conditional probability being a 
more fundamental concept than logic which is derived from it
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fixed set of objects that satisfy the predicate (i.e. a fixed extension). This is an 

assumption which Watanabe calls "the postulate of definite (or fixed) truth set" and 

which he attributes to Frege with the name "the Frege Principle", [19, p.521; 46, 

p.408].

This introduction of f(Apc) as a graduated measure of the certainty of an object * being 

a member of a class defined by the predicate A arose out of the fundamental role 

assigned to implication by Pierce, and the extension of this to ideas about the 

vagueness of human thinking by Watanabe. Having defined the /-function, there are 

two interpretations that can be assigned to it, depending on the interpretation of 

implication. In the first case /is  called a "propensity" function. Here we assume that 

we have an empirical method of determining whether or not the object x satisfies the 

predicate, with the/-function expressing the "degree of expectation of obtaining the 

positive empirical result in the A-ness test". But, the critical point is that after the 

observation is made, the result is either definitely true or definitely false. After the 

observation any uncertainty about the membership of x  in the A-set or class is 

unambiguously removed. In the second interpretation of the formalism, /  is called a 

"fuzzy" function or "membership" function. In this interpretation there is no empirical 

method or test that can affect the values of the /-function. The fuzzy function 

expresses a purely subjective evaluation of the A-ness property of object x. We are not 

concerned further with this fuzzy set theory here [200]. The propensity theory, 

however, is extremely interesting from the point of view of perception. Using an 

interpretation of the process of perception introduced by Wilson et al [201,202] 

we are able to explain several interesting aspects of perception using the propensity 

theory.

6.5.4 The properties of measurement

Three assumptions underlie the propensity theory [19, p.521ff]:

(i) An observational method called an A-ness test or A-test can be defined to 

determine whether or not an object x satisfies predicate A.

(ii) The observer has a degree of expectation,/(A,x) of getting an affirmative result 

in the A-test of x.

(iii) The result of two consecutive tests, an A-test and a fl-test may depend on the 

order of the two observations.
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The fact that the result of two tests depends on the order in which they were carried 

out could be because:

(a) the observed object is changed due to the observation, or

(b) the observer changes as a result of an observation on an object, or

(c) both observer and observed change as a result of an observation [19, p.522].

The quantal nature of microscopic physical systems seems to arise from reason (a). 

The effect of the measuring apparatus on the physical system being measured (and 

therefore interacting with the measuring apparatus) has been discovered to be finite. 

This means that the effect of measurement on the measured system cannot be ignored, 

which was one of the basic assumptions of classical mechanics. Watanabe [47, sections

5.3, 5.4] discussing the fact that information loss is an inevitable consequence of 

observation or measurement, indicates that the term measurement is somewhat of a 

misnomer — the actual process is something more akin to preparation. Our knowledge 

about the system before the act of "observation" is entirely probabilistic and random. 

Our knowledge about the system after the act of "observation" is that the system is in 

a definite state which can be represented by the eigenvector (of the measurement 

operator) whose corresponding eigenvalue was the outcome of the act of "observation". 

An example of the need for a propensity theory on the basis of reason (b) is possibly 

the psychology of medical diagnosis: "when A and B are very close or similar to each 

other, the ordinary human doctor will tend to classify a patient with a higher 

probability into A when A is considered before B than when B is considered before A". 

[19, p.522].

We are generalizing the predicate A used above from the simple dichotomous case of 

a predicate defining a set or its set-complement, to the polychotomous case of a 

predicate classifying objects into one of several mutually exclusive sets - a partition. 

This does not affect the underlying theory, as every finite multi-way classification can 

in theory be reduced to a finite number of binary dichotomies.

6.6 Summary

The basic generalization process involved in generating non-overlapping equivalence 

classes and labelling them, is common to classification, measurement theory and 

pattern recognition. In chapter 2 we related this to perception itself, inspired by the
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notion of a universal due to Plato. In this chapter the properties of classification or 

pattern recognition are described in more detail, particularly the sources of the various 

inductive ambiguities that are involved in the process. The properties of various types 

of classification are discussed using the idea of a geometric representation of sampled 

data and we find that the properties of different types of geometry are reflected in the 

corresponding type of pattern recognition problem, In particular, for problems where 

the relative values of predicates are important (e.g. contrast), rather than absolute 

values, we find that the representation in terms of subspaces means that the distributive 

law is not guaranteed to hold. This means that it is sometimes not possible to 

simultaneously evaluate some (conjugate) predicates. The actual process of evaluating 

a predicate (measurement) also comes under scrutiny and the reasons why different 

predicates might not be compatible are mentioned. Because probability is based on 

Borel sets, it is not strictly correct to use probability in cases where the distributive 

law does not hold. The propensity theory introduced by Watanabe is described as a 

means of overcoming this problem. This chapter finally brings us to the stage where 

we can begin to meaningfully discuss what it is that we mean by an observation or 

measurement, the implications of this in terms of the breakdown of Boolean logic, and 

the relationship to perception in general.
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Chapter 7

7 Perception as Measurement
7.1 Introduction

In a book published in 1978 on the "Fundamentals of Measurement and Representation 

of Natural Systems" [20], Rosen attempts to clarify the relationships between

(i) the theory of measurement, which forms the basis for all our knowledge of 

physical properties;

(ii) the theory of recognition mechanisms in biology and engineering;

(iii) the theory of discrimination which deals with the specificity of interactions 

between systems, and

(iv) the theory of classification as used in the establishment of diverse taxonomies. 

A common factor in all these topics is the generation of some sort of invariants such 

as numbers, which serve to label the processes with which they are associated. This 

happens in such a way that processes which are considered to be alike bear the same 

label, and those which are considered different bear different labels. This definition of 

the basic element which connects these related processes prompts a number of 

questions which Rosen attempts to address [p.x]:

(1) What has been learned about a system when we have measured it, or 

recognised it, or classified it, or otherwise labelled it in a particular way?

(2) How is this knowledge related to that obtained from a different procedure for 

measuring, recognising or classifying it?

(3) What does it mean to say that distinct systems (which can be distinguished 

according to some criterion), nonetheless bear the same label (and are thus 

indistinguishable according to some other criterion)?

(4) When does indistinguishability with respect to one type of observation entail 

indistinguishability with respect to some other type of observation?

The approach he uses to begin to confront these questions is based on the idea that 

every recognition, measurement, discrimination or classification process depends on 

the capacity of a given system S to induce a dynamics (in other words, a change of 

state) in another system M, which he refers to as a meter, discriminator, recogniser or 

classifier.
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I have been constantly and continually confronted with these very questions, 
in a variety of guises, in the course of my investigations into the 
organisation, development and evolution of biological systems, for as long 
as I  can remember. Over the course of time I have come to realize that these 
questions are not merely subsidiary matters to be dealt with cursorily within 
the confines of a specific investigation as circumstances indicate; rather they 
are the primary questions on which the resolution of all the other questions 
essentially depend [pjcJ.

In chapter 2 above we discussed the problem of the status of universals and how one 

aspect of the position associated with Plato is that the basis of our knowledge about 

the external world is not the direct perception of real objects but the ability to 

apprehend universals. In chapter 6 the notion of what it means to "apprehend 

universals" is made more explicit: it is an evaluation of whether or not a particular 

concept, or value of a property, or predicate, applies in a given case; it is something 

we could represent as a number, as a component in a particular component position 

of a vector. According to Peirce, the most fundamental relation of logic, and therefore 

of all relations, is the implication relation between predicates. Furthermore, by 

representing this implication relation with different interpretative models (set-based, 

or vector-everbased) corresponding to different possible applications, we find that it 

is possible to have very different logical or algebraic formulations for the association 

between the predicates of our systems. One of these corresponds to the usual Boolean 

framework. Another is described which does not, and there are likely to be yet other 

formulations. The aspect of the problem concerning whether or not a particular 

predicate or value is applicable — abstractly depicted as a test — was discussed, and 

some of its properties described. We thus suggest that Rosen is correct in emphasising 

the measurement problem as the primary problem of the nature of the interaction of 

a system with its world, and therefore the primary problem of the nature of perception.

7.1.1 The Explanation of Perception

At various points we have argued that what perception does, is not defined by the 

external world, in the sense that we think of a world full of objects, events and other 

perceiving beings like ourselves. Neither is perception independent of an external 

world, for such a process would either be useless as an aspect of interaction, or
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accidental and therefore without explanation. Perception is compatible with physics 

and with, at the very least, the statistics of the medium of our existence, i.e., the 

statistics of what we call signals or physical properties. As observers, we can describe 

the structure of other living organisms, as having various capacities to interact with 

what we describe as their environment The parts we describe as having the specific 

and primary function of mediating the ingoing signals we refer to as perceptual (sub­

systems. Nevertheless, our descriptions and explanations of the functional role of 

these parts of the organism cannot be a part of the organisation and structure of that 

system, because our functional descriptions necessarily invoke what we see as the 

organism’s environment That environment is something that only exists to us. In 

particular, our conception of that environment may have little or no relevance to the 

organism concerned. Our explanations of that organism’s perception in terms of 

representations of its environment might be useful for us, but cannot be relevant to the 

organism, because they (the explanations) again involve our conception of that 

environment

So, what is relevant to the organism? Well, the physical properties of the medium in 

which it exists, the signals mediating its interaction with that medium, its organisation 

and structure which determine how these signals affect i t  and what if any relevance 

they have. There are two points here: the seemingly arbitrary character of what is 

observable or what is relevant and the fact that what is relevant is not determined by 

a single objective world, but by the current state of the organism and the history of 

interactions that compatible with its world and maintaining it viability, have led to this 

state. The first point the choice of observables and the relationship between them are 

the issues that Rosen is concerned with in the four questions he poses above. But the 

second point the appropriate level of explanation of a living organism is a more 

fundamental issue and therefore something that needs to be discussed first

Now the type of explanation at a particular level is tightly bound up with the level of 

explanation, so that for example, a description in terms of the dynamics of a complex 

system will also entail a particular "outlook" on the interaction of the system with it’s 

environment Thus for example, in a discussion on a systems dynamics, one would not 

expect to reference to 3-D representations. If then, the dynamical system can do 

without 3-D representations, they may be less necessary than would seem on initial
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consideration. Consider for example, how the following description of an "information-

processing" system in dynamical terms actually reverses many of the accepted ideas

on the relationship between perceptual systems, the environment, and information:

Perception does not begin with causal impact on receptors; it begins within 
the organism with internally generated (self-organised) neural activity that, 
by re-afference, lays the ground for processing of future receptor input. In 
the absence of such activity, receptor stimulation does not lead to any 
observable changes in neural dynamics in the brain. It is the brain itself that 
creates the conditions for perception by generating activity patterns that 
determine what receptor activity will count for it. Perception is interaction 
initiated by the organism, not a reaction caused by the object at the receptor 
level. Thus the story o f perception cannot be told simply in terms of feed­
forward causation in which the object initiates neural changes leading to an 
internal perceptual state. What is missing in the reflex-based model is 
recognition of the role played by self-organised neural processes and by 
dense feedback among subsystems in the brain that allow the organism to 
initiate interaction with its environment [39].

The picture that is emerging from the work of Freeman [37, 40], Zak [41], Grossberg 

[203], Rosen [12] and others, is that what we describe as the functional properties 

of a perceptual system, are a direct result of the dynamical interactions of the 

components of that system, which collectively compose its structure. According to 

Maturana and Varela, this exactly is the appropriate level of explanation of the systems 

operation, because it is defined completely in terms of the systems organisation, and 

its realisation as a structure of components and relations between components. The 

system’s world perturbs this structure and the system tries to maintain its identity, but 

these perturbations are not part of the definition of the system’s organisation [24].

The work to understand the details of the dynamics of these systems is in its infancy. 

It seems though, that the dynamics may contain stable attractor states where the system 

goes into a period of relatively stable oscillation. Under the influence of external 

perturbation, the dynamics can very quickly switch from one stable global activity 

consisting of a distributed group of neurons oscillating in synchronisation, to another 

attractor and a completely different distributed pattern of activity. The precise nature 

of the attractors, particular the distributed pattern of activity, seems to be a function 

of many factors including the previous experience of the system, its state of arousal, 

its posture and so on. Loosely, however the system could be described as having a 

"fast" dynamics (the actual moment-to-moment collective and distributed neural
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activity), and a "slow" dynamics, involving the gradual change of attractor 

configuration and characteristics. This latter "slow" dynamics has, more correctly, been 

referred to as a metadynamics by Varela and others [53], because it involves, not just 

the change in the operating parameters or operating conditions of a dynamical system, 

but the actual change of the system itself. A description in terms of a particular 

Newtonian dynamical model would be slowly invalidated as the metadynamics 

transforms it into a different system1.

Nevertheless, while this level of description in terms of dynamics is the only level that 

can be operational for the system, the system can be described at other levels. The 

central thesis of this dissertation is that information theoretic (IT) and measurement 

theoretic (MT) terms, are an appropriate level at which to usefully describe a 

perceptual system, even if ultimately any proper artificial realization will involve 

designing a dynamical system. This is the case, because this level of description 

displays many of the properties that are implicit in the organisation of the system, 

despite being at a more accessible, better understood level of description. On the other 

hand, because a description in terms of information/measurement is nearer to the level 

of operation of the system, it is less influenced by our particular prejudices on what 

observables are appropriate, than a purely functional description in the spirit of Marr’s 

computational theory would be.

So, having identified an information and measurement type of analysis as an important 

level of explanation, we can go further to see what particular properties of a perceptual 

system this viewpoint lays bare. We do not attempt to describe a full theory of 

perception. That would require other levels of explanation in addition to this — 

particularly the dynamical type just considered — and perhaps other properties that are 

not included in the informational or measurement ideas. Instead we try to identify 

some of the elements or components, out of which an IT/MT theory would be 

constructed. The key idea is the notion of a transition from "signals to symbols" as a 

measurement, or classification, or primitive observation.

’This is one of the points that Rosen [12] makes in arguing against the standard reductionist approach to 
describing complex systems, which is what he claims biological organisms are.
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7.1.2 Redundancy and inferences

Having carefully defined what we mean by measurement in chapter 6 and clarified the 

nature of our level of explanation above, we can apply this notion to attempt to 

explain what happens in a perceptual system. We examine the notion of a transition 

from signals to symbols and the role of symbols. The active or dynamic aspect of 

perception also is discussed

Several authors have emphasized the fact that we can only see because of structure or

correlations in natural images.

Our own ability to interpret the images that our eyes receive involves 
making inferences about the environmental causes of image intensities, often 
from incomplete data. This ability to make predictions or inferences depends 
on the existence o f statistical dependencies or redundancies in natural 
images [157].

Attneave’s [204] and Barlow’s description of biological vision as encoding the 

visual image in a less redundant form carried the implication that eliminating 

redundancy automatically makes the structure contained in the image clearer, by 

separately representing some of the more important aspects of this structure. The 

Principle of Prägnanz which embraces such properties as regularity, symmetry and 

simplicity was introduced by the gestalt school of psychologists to capture the notion 

of form-discerning. It has much in common with the heuristic principle of least 

entropy or the principle of simplicity [19]. All of these heuristic principles point to the 

existence of correlations between different parts of images when the image is of the 

real world It is these correlations at many different statistical levels, which when 

appropriately distributed, allow an image to be interpreted by a biological vision 

system. The immediate questions is: what are these correlations or redundancies of the 

various orders, and why are images which contain these, automatically interpretable? 

That is, how does a visual system know exactly what correlations are important and 

how to use them.

One type of statistical information available in natural images is captured by the 

spectral power function. This indicates, as described by Field [71] that there is a 1/fi 

power falloff with increasing spatial frequency in natural images. This is a very simple 

example, but it still confirms (in this case through Field’s multi-equal-energy-channel 

hypothesis) that even low order correlation can have a profound effect on the structure
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of the visual system. So, according to this argument, we can see because our visual 

systems have adapted to the structure (redundancy, interdependence) contained in the 

ensemble of visual data of natural scenes and described by various orders of statistics. 

If our visual system was exposed to an ensemble with a completely different set of 

statistical properties, one would expect it to adapt to be able to interpret the images 

of this ensemble. Images of our natural world would then "look-like" random noise or 

little better. Unfortunately, while the idea is quite plausible, the author is not aware 

of a direct explanation which links the notion of redundancy and that of inference, 

other than in a very imprecise way.

7.2 A Semantic Theory of Information

7.2.1 Information theory and semantics

So far we have separately discussed the ideas of information theory and measurement 

theory. There is a direct relationship between them: the methods of information theory 

can be used to characterize the amount of generalization taking place at the 

classification or measurement of each input signal. The equivocation measures the 

amount of information lost in going from distinguishable inputs, to a single 

undifferentiated output signal, usually represented as an abstract symbol. Dretske’s 

theory, which we discuss here, covers this aspect of the relationship between 

information and measurement, but also tries to interpret a theory of information in a 

semantic context.

The usual understanding of the mathematical theory of information, (or communication 

theory) is that it tells us something about information — if not what it is then at least 

how much of it there is [22, p.40]. On the other hand there have been arguments that 

information theory actually tells us nothing about information as such, rather that it 

is a theory of, or about signal transmission, i.e., a theory about the physical events 

that, in some sense not defined within information theory, carry information. 

According to this argument, in other words, a distinction is made between signals — 

abstract descriptions of physical events or properties, particularly time-varying ones 

— and the information they carry, their semantic content. Thus information theory is 

a sophisticated theory for describing the statistical features of the physical events 

(signals) that are used by us for communication, and their interdependence or
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correlations2; but information has to do with what exactly we communicate using 

these physical events or signals. A proper theory of information should thus be a 

theory about the content of our messages, as well as the form of the messages in 

which this content is embodied -  in other words it should be a semantic theory as well 

as a quantitative one.

Now, according to Shannon as illustrated in the extract in section 4.1.1, the semantic 

aspects of communication are irrelevant to the engineering problem of describing and 

designing communication systems. Nevertheless, as Dretske points out, this does not 

mean that the engineering (quantitative) aspects are necessarily irrelevant to the 

semantic aspects; (see for example, Weaver’s introduction to [121]). While information 

theory does not pretend to say anything about what specific information a signal 

carries, it does tell us how much information a particular signal carries and therefore 

places a constraint on what information a signal can cany. This is the basis of 

Dretske’s attempt to use information theory as the framework on which to built a 

proper semantic theory of information, which information theory does not claim to be.

The first problem is to decide exactly what is meant by the term "semantic" in this 

context Weaver, for example, cautions that in a semantic theory of information, the 

term information in this semantic sense should not be confused with meaning, and 

similarly it should not be confused with the value of the information or with 

knowledge [22, p.41]. While information in the term’s ordinary usage does have a 

semantic connotation, this is not the same as meaning, "for, on the face of it there is 

no reason to think that every meaningful sign must carry information or, if it does, that 

the information it carries must be identical to its meaning" [p.42]. Usually people 

communicate (i.e. exchange information) by employing the customary meaning of 

signals or signs, but the two ideas are not synonymous: signals may have a meaning 

by convention and agreement but they carry information. Exactly what this 

information that signals or signs carry, is not completely clear. In ordinary usage the

2Dretske makes it clear [22, chap.l] that there does not necessarily even need to be a causal relationship 
between events for the communication of information between them. Ia fact the two extreme cases of having 
full information without causality and having no information with causality are both possible. "From a 
theoretical point of view, however, the communication channel may be thought of as simply the set of 
dependency relations between [a source] s and [a receiver] r. If the statistical relations defining equivocation 
and noise between s and r are appropriate, then there is a channel between these two points and information 
passes between them, even if there is no direct physical link joining j  with r." [p38].
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term information has different interpretations and connotations, but Dretske claims that

there is a common nucleus to these different interpretations and that this can be

captured in the notion of truth.

What information a signal carries is what it is capable o f 'telling’ us, telling 
us truly, about another state of affairs. Roughly speaking, information is that 
commodity capable of yielding knowledge, and what information a signal 
carries is what we can learn from it. If everything I say to you is false, then 
I  have given you no information. At least I  am giving you no information of  
the kind I proported to be giving. If you happen to know (on other grounds) 
that what I  am saying is false, then you may nonetheless get information, 
information about me (I am lying), from what I  say, but you will not get the 
information corresponding to the conventional meaning of what I  say. 
[p.44].

Information is what is capable of yielding knowledge, and since knowledge 
requires truth, information requires it also, [p.45]

So what information a signal carries is what we can learn from it, and there need be

no correspondence between the meaning of the symbols and the information conveyed.

From this point of view, "false information and /mi-information are not kinds of

information — any more than decoy ducks and rubber ducks are kinds of ducks"3.

The key to using the quantitative viewpoint of information theory to tell us something

about the semantic aspect of information, is that while information is a commodity that

is capable of yielding knowledge, given the right recipient, exactly what and how

much the recipient can learn, is limited by the amount of information available. The

critical factor in this changeover from a purely quantitative theory concerned with the

properties of sources and channels, to a semantic one, is "the difference between the

study of the conditions of any message whatsoever and the study of the content of

particular messages" [p.47]. The average information carrying capacity of a channel

is irrelevant to the understanding of semantic information.

Information is a question of both what and how much can be learned from 
a particular signal and there is simply no limit to what can be learned from 
a particular signal about another state o f affairs ... Channel capacity (as 
understood in communication theory) represents no limit to what can be 
learned over a channel (from a specific signal) and therefore represents no

’Note that there are other informal or colloquial usages of the term information which are at variance with 
the notion described here, but Dretske claims that if you try to carefully tie down what the semantic aspect 
of the term means, than the central notion must be one of truth.
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limit to the amount of information (in the ordinary sense) that can be 
transmitted [p J l] .

Consider the example of an information carrying channel which is capable of carrying 

only one bit of information. Suppose this channel is used to convey information about 

the position of a coin on the squares of a chess-board. From an information theoretic 

point of view the most efficient code is one which, say, indicates whether the coin is 

on a white square (a binary 1) or on a black square (a binary 0). On average, every 

time the coin is placed on some random square and the one bit of information sent, 

the number of possibilities for the position of the coin, available to the recipient of the 

information, is reduced from 64 options (which needs 6 bits to be fully specified) to 

32 options (which needs 5 bits of information to be specified). On average the same 

amount of information is transmitted each time, and this amount is one bit, so the 

channel capacity is fully utilized. Suppose on the other hand, by prior arrangement, the 

recipient knows that if a binary 1 is received that the coin was placed on one 

particular special square, and if a binary 0 is received the coin was placed on some 

one of the other 63 not-so-special squares. Now, when a 1 is received the recipient 

knows that the coin is on one particular square and the number of possibilities for the 

position of the coin is reduced from 64 (presuming they had no idea of its location 

before the message is sent) to just one possibility, i.e., the position of the coin is fully 

specified and the equivocation is zero. If r} is the receiver symbol corresponding to 

a binary 1 , then the conditional probability p (sfr1) = 1 if i = 1 (say) but 0 otherwise. 

So the equivocation for r1 is given by

^i) = X>CyJri) log /?(sjri) 
i 

= 0

In this case 6 bits of information are sent down the 1 bit channel because

I/r) = I(s) - equivocation, and I(s) = 6.

In the case that a binary zero is received, the recipient knows that the coin is placed 

on some one of the 63 squares — that it is not on the special square. The number of 

possibilities is reduced from 64 to 63 so the conditional probability pfsfrg) = 1/63 for 

i = 2,...64 and 0 for i = 1. Thus the equivocation for r0 is given by
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£(ro) = £  P(st ko) lo8 P(si ko)
I

= 5.977

and consequently only 0.023 bits o f information is received. Of course receiving a 

binary 1 does not tend to happen very often — on average only once in every 64 

random placings of the coin. Most of the time very little information is being 

transmitted — on average only approximately 0 .1 1  bits — and this code makes very 

inefficient use of the channel capacity. Nevertheless, this code allows the possibility 

of fully specifying the position of the coin (albeit not very often), and thus transmitting 

6 bits of information. Thus we see from this example, that the amount of information 

sent in a particular signal can be evaluated, and can be different from the data content 

of the signal. So the inescapable conclusion is that if we want a proper measure of 

information content rather than data content, we must concentrate on the amount of 

information contained in particular signals. This is quite different from the usual 

approach to information theory in the sense of communications, where statistical 

averages over ensembles of possible signals are the prime focus of concern.

7.2.2 The information content of a message — equivocation and truth

The amounts of information contained in particular signals can in fact be evaluated 

with the aid of ideas involved in the derivation of formulae in communication theory. 

The notion of the surprisal ¡(sj of a particular event is one of the quantities of 

interest Another is the equivocation used above. In communication theory, where 

equivocation is unavoidably present the most efficient codes result from the 

equivocation being evenly spread over the symbols or possibilities of the code. This 

is illustrated in Figure 22(a) where the two bits of equivocation is equally spread over 

the two symbols rt and r2 (2 bits each). On the other hand, the greatest values of 

surprise occurs when some symbols of the code have no equivocation associated with 

them, while whatever equivocation exists is spread over the others. This is illustrated 

in Figure 22(b) where there is no equivocation associated with the event s1 and 

information about it received by r}, but there is substantial equivocation associated 

with the events s2-s8 and the information about them received by r2. Whether or not 

a particular signal is equivocal depends on how the possibilities at the source are 

partitioned relative to the receiver (or the signal itself).
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In order to get a definite measure of the information generated by a source or arriving 

at a receiver from a particular source, we must be able to evaluate the distribution of 

probabilities associated with the full range of possible outcomes of the source and 

receiver events. This is possible in the toy scenario envisaged above, or in typical

Figure 22. Illustration of the connection between source and receiver events (symbols), 
in the cases of maximum average information capacity (a), and maximum surprise (b).

communication engineering applications, but in ordinary everyday situations it is not 

possible. In many circumstances it may not even make sense to ask the question "How 

much information is being transmitted?", because the range of alternative possible 

outcomes is not well-defined. It usually is possible nevertheless, to compare the 

amount of information generated by a particular event, with the amount of information 

a signal carries about that event, without evaluating either of the absolute amounts of 

information separately. The crucial factor which needs to be evaluated to make these 

comparisons is the equivocation. If the equivocation at a receiver, of the information 

generated by an event at some source, is zero, then the signal arriving at the receiver 

carries as much information about the source, as is generated by the particular event 

at the source.

The epistemological application of communication theory, and in particular 
the use of this theory in developing an account of a signal's informational 
content (the message it bears), does not require that we know whether a 
subject has received 20, 200 or 2,000 bits of information. All it requires 
(quantitatively) is that the subject receive as much information as is 
generated by the state of affairs he knows to obtain [p.55].
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An important point that needs to be stressed is that the conditional probabilities used 

to define the equivocation between the source and receiver are intended to be objective 

quantities. Whether or not they are known or can even be evaluated is irrelevant to the 

value of the equivocation and therefore irrelevant to the relationship between the 

information carried by the signal and that carried by the source. "How much 

information a message carries is not a function of how much information the recipient 

thinks it carries. It is a function, simply, of the actual possibilities that exist at s and 

the conditional probabilities of these various possibilities after the message has been 

received" [p.55].

To sum up this idea about the amount of information a signal carries about a source: 

"if a signal carries the information that s is F (where s is some item at the source), 

then the amount of information that the signal carries about s must be equal to the 

amount of information generated by s's being F. If s ’s being F generates 3 bits of 

information, no signal that carries only 2  bits of information about s can possibly carry 

the information that s is F" [p.58]. Note that Dretske is speaking here about a 

particular signal like the signal that is generated when Sj occurs in Figure 22(b).

The quantitative fact that

(i) a particular signal carries as much information about s as would be generated 

by s's being F

is not a sufficient condition to define the content or information carried by a message. 

A second condition is that

(ii) it must be the case that s is F.

In other words the message must be a true message. In addition, to ensure that the 

message is not only carrying enough information, but enough of the right information 

we need a further condition:

(iii) the quantity of information that the particular signal carries about s is that 

quantity generated by s’s being F, and not for example, by s ’s being G.
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These three conditions collectively are the basis for Dretske’s semantic theory of 

information. They clearly mark out the separate requirements of the message in order 

that its information content be described. In a more precise reformulation, Dretske also 

includes the notion of what the receiver might know about the possibilities that exist 

at the source:

Informational content:

A signal r carries the information that s is F -  The conditional probability of

s 's being F, given r  (and k), is 1 (but, given k alone, less than 1).

7.23  Analog and digital coding of information

Our interest in Dretske’s semantic theory of information is that it allows us to give a 

precise definition of what is meant by the intuitive concepts of implicit and explicit 

information used here. Dretske does this using the terminology of analog and digital 

coding in a quite suggestive, if unorthodox way. The usual distinction between analog 

and digital is intended to distinguish between the notions of a continuous and a 

discrete representation. Interpreting this distinction in informational terms however, in 

terms of the way facts can be represented, leads to a more general understanding of 

the concept than that applying just to the representation of physical magnitudes. Thus 

"a signal carries the information that s is F in digital form if and only if the signal 

carries no additional information about s, no information that is not already nested in 

s 's being F. If the signal does carry information about s, information that is not nested 

in s's  being F, then I shall say that the signal carries this information in analog form" 

[p. 137]. This statement about the relationship between the different forms of 

information that a signal can carry about a source is, I submit, equivalent to the 

intuitive distinction between implicit and explicit information. It also captures the idea 

that every signal carries information in both analog and digital form or carries both 

implicit information and explicit information. The most specific piece of information 

that the particular signal carries about a source, is the only information about the 

source which is explicit — the only information which is in digital form. In contrast, 

when a signal carries information about a source, for example that s is F  in analog 

form, there is always some more specific information about the source contained in 

the signal than the information that s is F.
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Dretske uses the example of the difference between a picture of a cup with coffee in 

it, and the statement "The cup has coffee in it" to illustrate the distinction between the 

two forms of information. The statement (in its usual meaning and use) carries 

information about the cup and its contents in digital form. No more information about 

the situation is available from this message or signal. The picture on the other hand 

also carries this information, but this is not the most specific information that the 

picture carries, nor is it the only information. The picture might also carry all sorts of 

subde information about the size, shape and texture of the cup, the amount and colour 

or the coffee and so on, but these are not explicit What is explicit in this case, what 

is the most specific information carried by the picture would be the sampled and 

quantized intensity values of the pixels making up the image (presuming that it is a 

digitized image in the conventional sense of digital), or the analogue light intensity 

emitted by the phosphors on a TV screen (in the conventional sense of analogue).

Another example described by Dretske which illustrates an important aspect of the 

relative transition between analog and digital, is of a digital speed warning system4. 

Consider a digital speed signal in a car, perhaps coming from a computerised engine 

control system. The digital signal is quantized in steps of one, in the range zero to one 

hundred. This is a digital representation of the speed in both senses of the word used 

above: the speed value is the most specific piece of information that this signal carries, 

and the value is quantized. Now suppose that this signal is further transformed to give 

the driver an indication of what gear they should be driving in, given the road speed. 

This transformed signal might consist of a number of discrete ranges:

0-14: first gear,

15-24: second gear,

25-49: third gear,

50-99: top gear.

Now, in this new (lets call it the "gear") representation, the most specific piece of 

information is which of the four gears in being indicated. In the previous Gets call it 

the "speed") representation, this gear information was implicit Relative to the gear 

representation, the gear information coded in the speed representation is in analog

4An important point to note is that the terms analog and digital, in the sense that Dretske uses them, are 
always relative. What might be analog in tenns of one source and the information about it, could actually 
be digital in terms of another related source.
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form. The speed information generates 6.64 bits of information, but there is positive 

equivocation involved in the transformation or classification involved in the speed to 

gear transition. Because of the different speed ranges classified into the individual gear 

indications, each of the (four) gear values carries different amounts of information: 

2.75 bits, 3.32 bits, 2 bits and 1 bit respectively5. The process of transforming 

information from an analog to a digital form is always one that involves a loss of 

information: "Until information has been lost, or discarded, an information-processing 

system has failed to treat different things as essentially the same. It has failed to 

classify or categorize, failed to generalize, failed to ‘recognise’ the input as being an 

instance (token) of a more general type" [p. 141]. We show next how this is related to 

the process of going from "signals to symbols".

7 3  Going Symbolic

Several authors, such as Marr [9], and Wilson et al [166, 201,167] have described the 

process of perception in terms of "going symbolic". In Marr’s case this is seen as a 

once-off transition that takes place as early as possible in the processing stages of 

visual information

Most would agree that an intensity array I(x,y) or even its convolution 
V2G*7 is not a very symbolic object. It is a continuous two-dimensional 
array with few points o f manifest interest. Yet by the time we talk about 
people or cars or fields or trees, we are clearly being very symbolic, and I  
think again that most would find suggestions of symbols in Hubei and 
Wiese I’s (1962) recordings. Our view is that vision goes symbolic almost 
immediately, right at the level of zero crossings, and the beauty of this is 
that the transition from the analogue arraylike representation of the discrete, 
oriented, sloped zero-crossing segments is probably accomplished without 
loss of information [9, p343J.

The careful analysis of information theoretic ideas in this and the previous chapters

was carried out so that exactly this type of confusion on the meaning and role of

symbols could be eliminated. The most obvious problem with Marr’s statement is the

notion of a transition to symbols happening without any loss of information. By

definition a classification, or so-called signal-to-symbol transition must involve positive

5 A subtle point about this example which is nonetheless important for understanding the nature of perception 
is the following. Even though the information about what gear the driver should be in, is contained implicitly 
in the speed value (say 30kph), it is the classification process that makes this explicit and decides what it 
means. There is nothing intrinsic in the signal "30 km/h", regardless of its representation, which also says 
"3rt gear". If there was we could make a logical deduction; if  speed is 30 kph, then gear must be third, but 
of course we cannot
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equivocation. It must involve some notion of invariance — some notion of different 

input events, states or signals being somehow grouped together, or considered as alike 

in some way, and labelled with a single symbol. In other words, each symbol must 

represent a whole class of signals — it is a process of generalization in which symbols 

express invariances or define equivalence relations among the set of signals. That is, 

according to the definition of what symbols are and what they do, the process of 

"going symbolic" necessarily involves a loss of information. Without a loss of 

information, we cannot associate two different input signals and call them the same. 

One possible source of this confusion of the role of symbols is the emphasis on the 

referential idea of symbol without considering fully the infoimation theoretic 

relationship between signals and symbols.

Cariani describes some more of the salient characteristics of symbols:

Symbols are only possible as discrete alternatives implemented through 
distinguishable signs via material tokens. Without alternatives nothing can 
be communicated, without discreteness, the alternatives cannot be 
distinguished [28, p.20], 

but he too makes the second mistake that is inherent in Marr’s description of "going

symbolic" above. Consider the diagram shown in Figure 23, which illustrates the

relationship between the notions of explicate (symbolic) and implicate (non-symbolic)

as used by Cariani. In this diagram and in the text, he considers a single level of

transition between non-symbolic and symbolic (called measurement) and a single level

of transition between symbolic and non-symbolic (called control). Everything in the

upper half of the diagram is completely symbolic and involves formal computational

processes. As we attempt to show in Dretske’s account of the "analogue to digital"

transition, and in our own discussion below on implicit and explicit information, the

notion of a measurement, or "signal-to-symbol" or "analogue-to-digital" transition is

a relative one, involving a generalisation over the input signals, and necessarily

involving the introduction of equivocation between the input and the output of the

process of transition. But there is nothing stopping us from carrying out further

relative classification processes, introducing further amounts of positive equivocation,

either on one given signal input which has already been classified, or across several

input signals, each of which have already undergone some sort of a generalisation or

classification process. The important thing to remember is that despite our appending

the abstract notion of a symbol or a label to the output of a classification, the output
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Syntactic Axis

Explicate
(Symbolic)

Implicate
(Nonsymbolic)

Figure 23. Illustration of the relationship between explicate (symbolic) and implicate 
(non-symbolic) in Cariani’s basic semiotic functionalities of organisms and devices. 
From [28, p.75].

is just as much a signal as the input6, albeit a different signal with different properties 

and carrying less information, but a signal nonetheless7.

Recall that during our discussion on universals (or concepts or generalization or 

classes) we described them as things that could be named — that could be represented

sCariani uses the term "sign" to denote the physical token embodying or carrying the associated abstract idea 
of a symbol. The point being made here is that there is no need to distinguish the output "sign" from the 
input "signal": they are both embodied as some physical value or property. Certainly they are not the same 
signal, but introducing the distinction of a "sign" only serves to hide the relative nature of a generalisation 
or classification or measurement

’Despite clearly pointing out the relative nature of what he calls an "analogue-to-digital" transition or 
generalization, Dretske actually goes on to take exactly the position as Cariani on the relationship between 
sensory (analogue) and cognitive (digital). Here we do not pretend to clarify the status of "cognitive" 
processes, but we do emphasize that there is not one single level of transition between signals and symbols, 
but rather the possibility of many such transitions.
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by, or are equivalent to, symbols. The input to a visual system is ambiguous in many 

ways. It is a flux of signals impinging from many different sources and is capable of 

carrying to the perceptual system, perturbations correlated with (or carrying 

information with respect to) the properties of these sources. Much of the information 

about the external world is implicitly contained in the distribution of grey level (or 

colour if appropriate) intensities across the image (pixels). The intensities are the only 

quantities that are explicit at this stage8. Notice that the intensity detected at a 

particular pixel is one of a mutually exclusive set of possible values — there is no 

"vagueness" about the value — one and only one is selected (deemed to be 

appropriate). This notion can be extended to any quantity which one wishes to know, 

or which is required to be measured. The only way we can know something is to 

decide that it is one and only one of a set of possible alternatives, i.e. to make its 

value explicit if a numerical representation is suitable. There can be no overlap, 

superposition or ambiguity about the answer: a quantity is only known if it has a 

particular value. This is a straight-forward classification process, which is one of the 

vital steps in classical pattern recognition processes. If the value of a quantity or its 

classification is ambiguous — if there are a number of alternative possible 

classifications, if the classification is anything other than trivial, then the classification 

process is inductive: there is no necessary solution9. But furthermore, not only must 

we decide what value to pick if there is any ambiguity, but we even determine what 

information we are going to extract by deciding what measurement to make. We 

determine what is important in the flux of signals perturbing our perceptual system. 

We are not simply trying to extract some objective, if ambiguous, information which 

is the only information that is available.

The information implicitly contained in the intensities of a grey-level image is highly 

ambiguous. There is a (virtually) infinite number of possible interpretations that could 

be made with many different variables. Most of these variables we know nothing about

'Recall the discussion on direct and indirect "detection” vis-a-vis the photoreceptors above — a detector is 
a device which makes the value of a quantity explicit.

’This process of deciding on one out of several possible alternatives is also referred to as measurement, 
particularly in the context of quantum mechanics. In substance it is the same as the common-sense notion 
of measurement: assigning one particular value out of an often continuous range of values, although in the 
common-sense case, the assignment is trivial (only one value is possible), while in the quantum mechanical 
case, there is often a probability distribution over the range of possibilities.
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— they are combinations of the input data which capture in some way the statistical 

structure (in the sense of redundancy) contained in the image. Some of these variables 

do have names and include things like orientation, shading, illumination, texture, depth 

etc., etc. But the most important thing to remember about the meaning of these 

variables is that they are not some ad hoc "knowledge of the world", which has been 

acquired by undetermined means, to assist in the process of interpreting or inferring 

hypotheses from an inadequate and ambiguous image representation. The basis of the 

meaning of these variables, and therefore of the perceptual decisions involving them, 

can only be the relationship between this observation and others in space and time 

(made by us), captured by the statistics of the ensemble. This emphasis on observation 

and the relationships between observations, as opposed to considerations of objects and 

their properties, is a point of view introduced to pattern recognition by Watanabe and 

originally inspired by some of the ideas of Plato10.

We have seen that the step of going from signals (containing implicit ambiguous 

information) to symbols (where information is explicit and unambiguous), is vital to 

the process of perception — without this there can be no perception; no knowledge. It 

was suggested that this step is somehow related to the redundancy contained in an 

ensemble of images. We will now try to make these connections somewhat more 

transparent One of the connections is particularly simple: if there is implicit 

information there is ambiguity (except in the trivial case). If we want to make 

information explicit we should try to get rid of ambiguity — or at least make it as 

small as possible before the measurement or classification decision. This means 

making the probability of class choices as unevenly distributed as possible, or 

equivalently, minimizing an entropy function over the set of possibilities for the values 

of the explicit information.

7.4 M easurement Aspects of Perception

The framework within which perception is discussed here, is based on the assumption 

that both observer and observed affect each other. This can happen in a number of

10For example, Watanabe considers the object-predicate table as simply a set of relationships between 
different observations: those which we use to "recognise" "objects", and those which we use to "recognise" 
"properties".
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different ways, but the application of propensity is solely on the basis of reason (a) in 

section 6.5.4 above: the effect of observation on the observed.

Before proceeding it is important to clarify what we mean by observer and observed 

in this context. The natural assumption is that the observer is the person or machine 

involved in "looking at" and interpreting the external world which is the observed. 

This is not the case here in this chapter11. We use the term "observed" is a sense 

which is much clearer, if we ignore the distinction that is drawn between input 

(signals) and output (symbols) of a classification process. Initially the "observed" is 

the sensory data input to the observing system (the input signal). Subsequent to the act 

of observation the "observed" is the result of the classification process, which is 

necessarily a part of observation if information is to be made explicit (the output 

signal). The observer is not the entire person, but the functional unit which is 

responsible for taking some small fraction of the sensory data (or processed versions 

of it) as input, and producing a classification of that input into exactly one of several 

mutually exclusive classes, thereby introducing equivocation to that signal. In order 

to distract the reader from the usual engineering linear input/output system 

conceptualization, it might be useful to make the following analogy: the observing 

mechanism is like a phase-locked loop that can "lock" onto one of a number of 

discrete frequencies.12 If the circuit is excited with energy at a frequency other than 

one of the selected ones, it might use that energy to excite one of its preferred modes 

— perhaps the one nearest to the applied frequency. If energy is applied spread over 

a wide range of frequencies, it might be difficult to know which of the discrete modes 

will win-out and be selected, but one and only one will. It will never operate at any 

frequency other than one of its preferred modes.

In line with the ideas proposed by Wilson et al [166, 201,167] we can consider the 

sensory data as defining a probability distribution over the set of possible outcomes

"in discussions in other parts of this dissertation, particularly those associated with the enaclive approach 
to perception and cognition, the tenn observer is used in something like the conventional sense specifically 
being excluded in this section, although there it has the additional connotation of someone separate from the 
machine or organism being focussed on. In this chapter the specific sense in which the term observer is 
being used is a sense akin to the notion of a quantum mechanical measurement apparatus.

IJNo real phase-locked loop might act in the way imagined here but we will consider as a "thought" system 
in the spirit of the "thought experiments" in theoretical physics.
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for a particular primitive measurement or observation process. Then, consonant with 

Watanabe’s notion of the "preparation" of a quantum mechanical state, we define the 

A-test (the test of A-ness) to be a random selection o f one of the possibilities allowed 

by the polychotomy defined by the predicate A, where the likelihood of a particular 

selection is given by the probability distribution. That is, the A-test is the generation 

of a sample of a discrete random variable with the appropriate probability distribution. 

If our N  sensory data are represented by an N-tuple of complex numbers in a linear 

complex vector space C?, then an observation will correspond to the application to an 

initial vector v a Hermitian operator A to yield a final vector u:

u = Av.

In general the vector u will have several non-zero coefficients corresponding to the 

likelihood of different possible classifications in the A-test Remember, just as in 

quantum mechanics the only possible outcomes of the A-test are those represented by 

the eigenvalues of the A operator. In other words, to make an A-test here means 

deciding between one of a number of possible outcomes13. No result is allowed which 

is not one of these outcomes. No result is allowed which involves thinking that two 

mutually exclusive and therefore contradictory outcomes can simultaneously be the 

case. The predicate A defines a number of possible mutually exclusive outcomes, 

which in the geometric vector space representation, are represented by the eigenvalues 

of the corresponding measurement operator A. The result of applying A to a vector is 

another vector which must be one of the eigenvalues of A. A result of any other vector 

is simply not valid.

The non-zero co-efficients of the vector u which result from the application of the 

operator A to the input vector v are best thought of as the values for the projection of 

v onto the corresponding eigenvectors of A. Then, as described by Wilson and 

Granlund [167] we need a decision rule for assigning probabilities to the eigenvectors 

of A (which are the only possible outcomes of the measurement of A), considered as 

final vectors. If the vectors n = 0,..., N  - 1 are the eigenvectors of A then we 

need a rule which gives the probability pJA.v) that <p̂ „ is a final vector, given that 

the initial vector is v. The natural choice for a general vector uses the co-efficients of

ISIn the case of a measurement of position the decision is between one of an uncountably infinite number 
of possibilities; the probability distribution becomes a continuous distribution; and the possibilities are 
represented by an uncountable infinity of position eigenfunctions in an infinite dimension Hilbert space. The 
underlying ideas are not however changed in substance.

220



v expressed as a linear combination of the (pVs (M *s the representation of v is the 

co-ordinate system with the eigenvectors of A as basis vectors).

v i * |v«*2V = X , Vn <P ,  Pn =
a  £  |V*|2

k

Note that the output of the measurement of A is not a simple expansion of v in terms 

of the eigenvectors of A. Rather the process described here is one of inference or 

decision: "pick the eigenvector (p4, which best represents v and if you cannot decide, 

toss a (n-sided) die to help you" [167].

7.5 Implicit and Explicit Information

We are now in a position to make clear the difference between implicit information 

and explicit information and the role of primitive perceptual observations. Primitive 

perception involves going from the particular to the general. It is an inductive process 

which involves a non-necessary extra-evidential decision about a general concept (a 

predicate) applied to a particular object (our input data). Implicit information means 

nothing on its own — it does not exist, except as an interpretation or concept assigned 

or applied to the input data by an external agency — in this case the observing 

mechanism. Implicit information is not knowable. The same data can be assigned 

infinitely many interpretations (infinitely many different measurements of concepts or 

predicates can be applied) and so the data can be thought of as containing all these 

different types of information implicitly. The implicit information attributed to the 

input data set by virtue of a decision to make a particular observation on this data set 

(to measure or classify as per a particular predicate) is usually ambiguous. The data, 

interpreted as containing a particular type of implicit information, defines a probability 

distribution over the set of possible outcomes of a measurement defined by this 

predicate.

Explicit information is the decision that a particular case (or possibility) of the set of 

possible outcomes defined by this concept (predicate), is the one that was implicitly 

contained in the input signal. But there usually is no necessary result for this decision 

— any one of the possibilities with non-zero probability could have been (and if the
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measurement were repeated on the same data, sooner or later would have been) 

selected. Note that in explicitly deciding that one particular possibility (whatever its 

probability defined by the data set) is implicitly described by the input data, we are 

loosing implicit information about other possible, but incompatible inteipretations that 

could be made. If we wish to simultaneously know the result of two different 

observations or measurements, the input for the second must be the output of the first 

We can do two different measurements of two different predicates or concepts on the 

original data (like to measure the position of edges and measure the class, or type of 

edges) but the two explicit results are not simultaneously true. The very statement that 

we would like to make: that an edge of a certain class lies at a certain position, is 

exactly the statement or conjunction that we are not allowed to make when the 

measurements are incompatible. At least we are not allowed to make this statement 

with a joint accuracy or specificity in the pair of observables, which is greater than a 

certain amount defined by an uncertainty relation [166, 201]. The information lost 

when one possibility defined by the first predicate (the position) is selected, is exactly 

the information needed to decide between members of the second set of possibilities 

(the edge type or class). The non-distributive or quantum logic involved in primitive 

perceptual observations enters the system for the following reason. If there is any 

doubt, any ambiguity about which class a signal falls into (or the value of a 

measurement on input data), and the signal is subsequently classified into one 

particular class defined by the concept or generalization, then the propensity theory 

(for which the distribute law does not hold), immediately applies. Deciding that some 

signal does belong to a particular class, changes that signal if there was any ambiguity 

about which class it belonged to before the observation.

Implicit information is an interpretation of data which is ambiguous. Within this 

interpretation, implicit information defines a probability distribution over the set of 

unambiguous results. Only if a decision is made about which class or result is selected, 

or what state the perceiving systems enters as a result of the input data, does the 

information in this interpretation become explicit So this particular inductive 

ambiguity — which class or result is suitable to describe the input — is overcome by 

using the available data to determine a probability distribution and randomly picking 

a class, consistent with this probability distribution. The notion that a random process 

is involved in deciding what particular class or measurement value is appropriate when
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making a primitive observation, sits a bit uncomfortably at first One alternative is to 

pick the most probable result each time, but on average this rule fails to capture the 

essence of how the input data implicitly weighs the various possibilities. Wilson and 

Granlund give a thorough analysis of why the rule for deciding between different 

possible alternatives in a classification process is appropriate [167].

7.6 Adaptation or Metadynamics

It was mentioned above that as well as the observing system affecting the observed 

data, at least as far as subsequent observations are concerned, the observed data has 

an effect on the observing system — the observer. While the observer can have a 

drastic effect on each individual set of input data, it is assumed that the reciprocal 

process of the observer adapting to the data involves such small changes that it is only 

over the ensemble of data (or a representatively large sample from it) that the 

development of the observer’s response can be seen. Nevertheless, it is now becoming 

clear that statistical properties of the input data are appropriate to control the 

development process of perceptual mechanisms in order to achieve some result which 

seems to be desirable for a perceptual mechanism. We describe the work done by 

Linsker above which shows how a simple Hebbian-type of adaptation in a multi-input 

adaptive linear system has the effect of maximizing the amount of 

Shannon-information flowing through the system. Recent findings by Barlow and 

Foldiak show that neurons adapt to decorrelate their response to give the sort of effects 

described above [17].

A much broader view of metadynamical procedures for changing the dynamics of the 

system has been taken in the area of artificial life (Alife). Varela has categorized at 

least three different metadynamical strategies [53]:

(i) neuronal strategies: the number and types of nodes in a network are fixed 

throughout the period of adaptation, the connections vary in number and/or 

strength according to some rules (e.g. Hebb rule);

(ii) genetic strategies: the emphasis is on the application of rules for replacing and 

updating nodes (there may be no interaction between nodes within the adapting 

system) [205,206,207];
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(iii) immunological strategies: the connections between nodes are not modified per

se, but the list of active or participating agents (nodes) changes continuously

— not as a recombination of old nodes, but in the form of new recuits [208].

Consider a dynamical description of an autonomous system’s closure giving rise, not

to a unique solution, but to an ensemble of possible solutions or trajectories for the

system. In order that the system remain viable the system must pick a trajectory so as

not to depart from the domain of constraints which guarantee the systems continuity

— the viability subspace [209]. At any moment the system must guess an appropriate

set of solutions by eliminating all the others. This process is basically what Peirce

refers to as abduction:

the capacity to guess the hypothesis with which experience must be 
confronted, leaving aside the vast majority of possible hypotheses without 
examination [53].

The metadynamical strategies above are intended to ensure that the operational closure 

of the system is respected, not only in the state space, but also in this continual change 

in the defining dynamics so that the chances of remaining in the domain of viability 

are maximized.

7.7 Symbolic Descriptions

Before leaving this topic of the non-distributive logic that underlies perception, it is 

important to point out the relationships between the primitive perceptual (classification) 

processes described here for making information explicit According to Wilson and 

Knutsson [166, 201], the primary goal of visual processing is to obtain invariant 

(symbolic) descriptions from the signals constituting an image. By a symbolic 

description, these authors mean anything from a low-level description in terms of 

primitives such as line and edge elements, to a description in terms of solid objects 

occupying a definite 3-dimensional volume. Here we make no such attempt to define 

what the symbols represent or the observations measure. Rather, we believe, like 

Barlow, Field and Linsker, that the perceptual mechanisms adapt to the statistical 

properties of the input data, usually during a certain critical or sensitive phase of 

development in order to optimize some function like the ability to extract (make 

explicit) information; to maximize discrimination, etc. We can probably make a 

posteriori guesses about the functions of particular perceptual sub-systems in terms of
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our cognitive concepts of the real world like edges, surfaces or volumes, but we must 

be careful for two reasons:

(i) Such interpretations are notorious for being wide of the mark. For example, 

work on artificial neural networks has shown that cells in the cortex which 

were interpreted as being edge and comer detectors using the classical bar and 

edge stimuli of neurophysiology, may be better interpreted as estimating 3-d 

shape from shading, and measuring curvature, respectively 

[210,211,212].

(ii) These interpretations also give no clue about why the system developed in the 

particular way it did; what the mechanism of development was, or what 

variable or function was being optimized. As Laughlin [15] and Barlow [16] 

both claimed, our cognitive judgements about the perceptual importance of 

things such as edges and surfaces etc., are probably more caused by our 

perceptual systems than explaining them.

Wilson and Knutsson’s treatment of the mathematics of the extraction of symbolic

descriptions of the world is independent of any interpretation of what these symbols

represent and so is consistent with our treatment here.

The essential property o f symbols is not, therefore, their position in the 
hierarchy of image description, but that each symbol represents a whole 
class of symbols ... it follows that symbols express certain invariances 
among the totality o f signals ... Another way of expressing this idea is to say 
that symbols carry a notion of identity. Two signals are regarded as 
identical if they give rise to the same symbol ... symbols define an 
equivalence relation among signals [166, 201].

So, as well as the ambiguity that exists over which symbol best represents a particular

signal, one symbol can represent many different signals. Again, we consider our input

data or signal as an element of an iV-dimensional complex linear vector space Cf1; (it

could be a sampled 1-dimensional signal). The condition that probabilities remain

unchanged despite changes in luminance for constant contrast is important It means

that all vectors belonging to the same 1 -dimensional subspace (that have the same

direction but different lengths) are equivalent In general, the equivalence classes for

a complete set of symbols correspond to the invariant subspaces of some suitable

transformation. The elements of the invariant subspaces are the eigenvectors of the
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transformation and for any linear transformation there is a unique decomposition of 

the vector space into irreducible subspaces. Each symbol is associated with a particular 

eigenvector and so for an Af-dimensional space the symbols are organized into groups 

of N  which are associated with a particular transformation or operator. Different 

transformations, if they do not commute, give different, incompatible sets of 

eigenvectors and therefore symbols. Wilson and Knutsson then go on to show that the 

eigenfunctions of the translation operator (the class-defining symbols which must be 

invariant to translation) are the complex exponentials, and the expansion of the input 

signal in terms of these symbols is equivalent to the Fourier transformation. These 

Fourier co-efficients are the probability distribution over the set of symbols discussed 

above. The Fourier symbols are one particular way of interpreting the given data 

vector. In the propensity theory there is an /-function for each particular Fourier 

symbol measuring the degree of certitude that our input vector can be represented by 

that symbol alone. The Fourier expansion still implicitly contains all the information 

in the original data vector but it contains no explicit information — we do not know 

which of the mutually exclusive possibilities (the complex exponentials) should be 

selected as the one to represent explicitly the implicit information contained in the 

original data. As soon as the Fourier information is made explicit and one particular 

Fourier symbol (complex exponential) is selected, other implicit information is lost. 

The data can no longer be reconstructed. Thus in this case, observation — the inductive 

decision that a particular symbol is suitable for representing input data — means that 

some information is made explicit at the expense of an overall loss in implicit 

information that would allow the determination of other symbol interpretations. This 

selection of a particular Fourier symbol is similar to the attempt to decide that a 

particular class of edge exists in an image. In theory there is no limit to the amount 

of spread that must be allowed to determine the class of edge. But this means that all 

information about the position of the edge is lost. Position is coded by a different, and 

incompatible set of symbols.

The position symbols correspond to the subspaces that are invariant when an operator 

or transformation which switches between classes is applied, i.e. they are invariant to 

"translation" in the Fourier domain, or equivalently, they are simply invariant to 

classification. The eigenfunctions are the set of delta functions on (F  — one for each 

component of the ¿V-tuple representing each vector. The probability distribution over
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the position symbols for a particular vector is just the set of components in the N-tuple 

representation of the vector, i.e., the original data. The making explicit of the implicit 

positional information in the input data corresponds to selecting one of the positions 

in the data vector. All the implicit information required to subsequently decide that a 

particular class of edge, say, exists in this data is then lost These two systems of 

representation are fundamentally incompatible in the sense that the class symbols 

(complex exponentials) cany no positional information and the position symbols 

(impulse functions) carry no class information. Only limited resolution can be 

simultaneously achieved in both of these extreme representations and the trade off in 

simultaneous resolution is described by the Gabor/Daugman uncertainty relations. The 

symbol set which achieves the limit described by the uncertainty relations are the 

logons or elementary functions described by Gabor (GEFs). Note that any particular 

set of N  GEFs (for vectors in C^),M forming a complete set of symbols15 does not 

capture all the information implicit in the input data. Parallel sets of primitive 

observations need to be simultaneously carried out on the same input data. If these 

parallel "channels" suitably represent different trade-offs in simultaneous localization 

in the two incompatible domains, the maximal amount of information can be extracted 

(made explicit) from the input data. (See Field [71], Daugman [134] or Porat et al 

[132] for different ways of tiling the information diagram).

Grossberg and his colleagues have also used similar arguments about fundamental 

"minimum uncertainties" inherent in visual perception, to motivate a distinction 

between two very different types of processes, which are both concerned with "edges" 

or contours in an image [203], He describes these processes as boundary contour (BC) 

and feature contour processes. The reason for concern with contours in the first place 

is the need to "discount the illuminant". Only at the image projection of scene 

contours, where a transition in reflection but not in illumination takes place, is there 

reliable information available about the reflectance. However this information cannot 

be made explicit in a single process because

14StricUy speaking the GEFs are only defined in the continuous domain so sampled versions need to be used 
in the example given here, but we do not want to get lost in the nitty-gritty.

,iThe set of symbols are not complete in the sense that they cover all of Gabor’s information diagram. They 
are complete in the sense of a complete set of W-eigenvectors in an /̂ -dimensional space. The set of symbols 
corresponding to the eigenfunctions of a particular transformation are equivalent to one of Field’s channels.
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... there exist fundamental limitations on the visual measurement process -  
that is, uncertainty principles are just as important in vision as in quantum 
mechanics. For example the computational demands placed on a system that 
is designed to detect invariant colors are, in many respects, complementary 
to the demands placed on a system that is designed to detect invariant 
boundary structures [213].

This is why the BC systems and the FC systems must process incoming signals in

parallel. Now Grossberg does not explicitly couch the argument in terms of

incompatible sets of symbols or subspace inference, but the effects are the same.

Certain classifications or labellings are not simultaneously decidable, so either a level

of minimum uncertainty is accepted in a single processing pathway, or two or more

parallel pathways need to be involved in the classification processes representing

different compromises in the tradeoff of incompatible variables or concepts.

7.8 Perception as a Grouping Process

The two complementary aspects of the term "pattern recognition" discussed above 

reflect the fact that in order for recognition to take place grouping processes are 

required

(i) to allow different objects to be collectively represented by one symbol 

(generalization) and

(ii) to allow a single object to be described as a collection of parts (gestalt 

instantiation).

These two different grouping processes are different facets of a single function -  they 

can be separately described but any pattern recognition or perceptual processes other 

than the primitive observations discussed above involves them bound in inseparable 

dual roles. One of the central theses of this report is that general perceptual sensory 

processes can be described in terms of functional components which are noimally 

associated with pattern recognition. Thus the basic process of knowledge apprehension 

by which explicit interpretations of sensory data are made, based on past experience, 

is an inductive inferential classification process. This process, which we have referred 

to as a primitive observation or measurement, is based solely on the data supplied to 

it and the statistical properties of the ensemble from which it is drawn. It is not 

directly affected by other primitive observations in the hierarchy of perceptual 

mechanisms, except in so far as some of these provide its input The hierarchy is 

arranged into various parallel and serial pathways to cope with the conflicting
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(incompatible) requirements of different interpretations (e.g. form vs motion, BC vs 

FC), of information implicit in the constant stream of sensory data. The primitive 

observations however, are only one side of the perceptual duality. The perception of 

real extended patterns and objects demands that many different primitive observations 

at different levels of abstraction be somehow associated with each other. Recent results 

in neurophysiology discussed below, indicate that this linking process may be 

implemented by the synchronized activity of neural circuits. We also discuss below the 

mechanisms by which the neural connections required to subserve both the process of 

primitive observation and the association or linking circuits, are set up. Before this 

however, there are two other aspects of perception that need to be examined — 

attention, and bias or value-weighting.

7.9 Axiology and Value-Weighting

We have already discussed the fact that pattern recognition is a non-necessary,

non-logical, extra-evidential process. The theorem of ugly duckling makes it clear, that

without some "preferential pondération" of variables, paradigm-based pattern

recognition is impossible. Watanabe’s "axiological overcoming" of this impasse

involved the introduction of an "extra-evidential or extra-logical element" to the basic

process. In other words depending on the usefulness of a classification, some

predicates should become more "important" than others. "Useful" is used here in the

sense, not of "any ultimate value, but various instrumental values towards more

fundamental ends" [19, p.84]. Some of these instrumental values are clearly innate:

the sensory organs have developed themselves in such a way that the more 
important predicates are directly observed, whereby importance is mainly 
dictated by the value of survival. To individual animals, these predicates are 
... innate ideas, but they are without doubt results of the long experience 
through evolution [19, p.85J.

In the case of discrete predicates, the value of a predicate can be recognised by

assigning a weight to it. The values of the set of weights can change depending on the

usefulness of the classification which they allow. We can only see similarity and in

fact, can only see at all, because of the "uneven" emphasis on the empirical data from

the external world. One useful way of measuring "unevenness" is with the entropy

function and a useful way of assigning weights to variables is as a function of their

variance. These two ideas, coupled with the minimization of the entropy (which is

equivalent to the "principal of simplicity") defined over the variance weightings, and
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the elimination of derived predicates (variables) with small weighting (dimensionality 

reduction), form the complete mathematical basis for the principal axis transform and 

the Karhunen-Lo£ve transform. It is important to remember that these extra-logical 

extra-evidential considerations are heuristic guiding principles. They do not guarantee 

a correct solution to the problem of overcoming inductive ambiguity, though often 

prove to be successful or useful in particular cases. In the next chapter we describe 

how dimensionality reduction, based on a modified version of the KLT (inspired by 

a Platonic view on universals), can be used as a preprocessing stage before 

classification.

The overall impression we get from our considerations of the problems of biological 

vision is that sensory perception is not a passive and unbiased transmission of physical 

stimuli. Rather it is an active selective formation of valuable information. This idea 

of "active perception" involving interaction with and exploration of the external world, 

rather than passive forbearance with restricted input has recently received some 

attention in computer vision. Normally, active perception implies an active movement 

for the sensing organ (eye, camera) depending on what has just been seen. A typical 

example is moving ones head to introduce depth parallax, or looking at something 

"from different angles" if a single view is not sufficient for purposes. These ideas can 

be extended to purely internal processes involving active selection of data or 

processing function within the perceptual apparatus. This leads to a rejection of the 

notion of a passive acceptance of a real world which imposes its reality on perception 

without any room for individual interpretation. Each individual organism actively 

constructs its own perception based on statistical properties of real world images, but 

also on value-weighting (which depends on usefulness, emotions, attention etc.) and 

on random primitive classification events. Note that the gross structure of the brain and 

its perceptual subsystems seems to be largely genetically predetermined, but with the 

exact detail of the wiring depending on visual activity -  some of it noise generated 

in the retina prenatally, some of it as a direct result of visual experience.

7.10 Attention

A weak form of active perception involves the notion of attention. Some work has 

been carried out in psychophysics and neurophysiology which demonstrates 

quantitative and some qualitative differences in function depending on attention. For
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example, the pattern of saccadic movements that people make in viewing a scene has 

been shown to be influenced both by the scene, and by what questions people are 

asked about the scene [107]. The phenomenon of attention is closely related to gestalt 

organization. There have been suggestions that the lateral geniculate nucleus (LGN), 

a relay station on the path between the retina and visual cortex, which is embedded 

in a part of the brain shown to be connected with emotion, may play a role in attention 

[37, 40]. While there have been some tantalizing clues about the nature of attentional 

mechanisms and their role in perception little concrete can be said at this stage other 

than that like the gestalt organizational properties of perception, attention and its 

switching may play an important role in the nervous system.

7.11 Cortical Function

One of the most original voices in the debate on visual perception in recent times, has 

been Horace Barlow. By simply considering the apparent constraints imposed by 

physical and biochemical processes on the architecture and processing capability of the 

eye and brain he has drawn some remarkable conclusions about the nature of visual 

perception [16], The quality of human performance is high in comparison with purely 

statistical inferences [157], which means that the information received by the eye about 

the external world is effectively utilized. This is despite very strong limitations on 

connectivity within the cortex. The vast majority of the brain’s volume is taken up 

with connections, rather than the directly active processing elements, (which are the 

synapses and neural cell bodies). The system seems to be limited, not by the number 

of processors, but by the difficulty of interconnecting them. In any part of the cortex, 

connectivity between nearby points is very high, up to distances of about 1mm. The 

remaining connections over longer distances tend to be relatively sparse (in 

comparison with the amount of very local connectivity), but nevertheless systematic 

projections, between different regions of cortex. Given that much of perception 

involves using information from widely separated parts of the visual field, the question 

of how the relevant information is brought together must be considered. Barlow 

proposes three stages:

(i) the improvement of the cortical map in the primary visual cortex by processing 

similar to spatial and temporal integration,

(ii) the detection of "linking features" and,
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(iii) the concentration of this information by non-topographical mapping into 

adjacent visual areas of the cortex.

The spatial acuity of the visual system is well known, as is its hyperacuity abilities in 

particular situations. For example, a vernier displacement can be seen by the eye/brain 

down to a resolution which is an order of magnitude better than what would be 

expected from the sample spacing and modulation transfer function. Barlow argues that 

the very large number of primary cortical cells per retinal sampling point is quite 

sufficient to allow this type of hyperacuity with appropriate computation. Less well 

known are the temporal characteristics of the eye/brain system. The "noisy" character 

of individual cortical neural activity means that in many neurophysiological 

experiments, response activity is averaged over 10-15 milliseconds before results are 

analyzed. Psychophysical results which show that temporal frequencies higher than 

about 8 hz are very difficult to see, are in complete agreement with our everyday 

experience with television and cinema which have full stationary picture update rates 

of 25 per second and field rates of 50 per second. Recent work by Burr and Ross 

[214] has demonstrated that the extraction of motion information involves 

integration over times of the order of 100ms. This is not simply a temporal integration 

process at a fixed position in the visual field It is a spatiotemporal integration 

"following the motion" and has been shown to yield a temporal hyperacuity involving 

the utilization of timing information which is accurate to the order of 150ps.16

Another interesting example is the Pulfrich effect where an illusion of movement in 

depth can be created by dimming the light reaching one eye (thereby increasing the 

latency) for an object moving across the visual field. It has been shown that time and 

position are completely interchangeable in giving the cue to depth. Barlow suggests 

that the systems good performance for moving objects may be achieved by arranging 

that the neural signals corresponding to the targets, should pass through a screen of 

spatial and temporal inhibition.

A system capable of such spatial and temporal accuracy must surely need extreme 

precision in its connections and their strength. It is believed that chemical gradients,

lsBarlow points out that this value of 150jis should be compared with the latency of neural activity, which 
is about 100 times longer.
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presumably genetically specified, are responsible for guiding fibres to their target areas 

and positioning the terminals across the target area [215,216,217]. However, 

the actual synaptic connections, their number and efficiency, are believed to be 

determined by processes which depend on neural activity of both the projecting and 

target cells. Much of the projection from the LGN and retina to the visual cortex is 

already in place before a baby monkey is bom. The work described above by Linsker 

[18] on artificial neural nets and Mastronarde [218] on the correlated firing of 

retinal ganglion cells has shown that random fluctuations generated in the retina may 

be responsible for the activity-dependent pre-natal mappings which are constructed in 

the early visual pathways. Prenatal interruption of neural activity in the retinal 

projections to the LGN and cortex have shown similar disruptive effects to the 

deprivation of visual experience during the post-natal critical period.

Gestalt organization was mentioned above as one of the two fundamental aspects of 

pattern recognition, and possibly of perception. Barlow suggests that the keys to 

collecting together the information for detecting global properties in spite of the very 

localized connections in any particular part of the cortex, are what he calls "linking 

features", and also non-topographical maps17 between different regions or patches of 

cortex. Barlow defines linking features as

those locally detectable qualities of a portion of the visual scene that in
Gestalt terms, cause segregation, or separation of figure from ground.
Colour, texture, disparity, direction and velocity of motion, and orientation
are examples18 [16].

The localized ( * 1mm) connectivity throughout the cortex means that in order for 

information to be allowed to interact, it must be "brought together". Thus as we have 

quoted Barlow as saying already, the important thing about any patch of cortex is what 

information is "brought together" there — for unless cells whose activity represent the 

information in question are within a small distance of each other they (usually) cannot

’’Topographical maps are maps in which neighbourhood relations are preserved. In other words points are 
mapped near together, which have similar values of some spatial parameters. In non-topographical maps, 
points which have similar values of some other parameter such as colour or orientation or motion are mapped 
nearby in the target region.

"It seems [13] that the magno system which comprises only a fraction of the visual processing machinery, 
(even though it is evolutionally older than the more extensive parvo system) may be responsible for the 
familiar grouping or gestalt effects associated with perception as well as aspects of depth and motion 
processing. In short it is principally concerned with the "where" part of the "what versus where" dichotomy 
identified by Marr [9], i.e. it is responsible with the perception of spatial structure. The magno system is 
apparently "colour-blind" and at equiluminance, many of its functions cease, with startling effects.
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interact The linking features are detected in VI (area 17) according to Barlow by a 

"local analysis of the topographically organised reconstructed image". Projections to 

other regions of the cortex subsequently redistribute this information for further 

processing.

Much less is known about the response properties of cells in these extra-striate regions, 

V2-V5 and the projections to them from the retina and VI. There does seem to be a 

progressive functional segregation into at least three fairly identifiable parallel 

pathways for separately processing colour (blob pathway), high-resolution static form 

(parvo-interblob), and movement and stereo depth (magno pathway) [13]. These 

pathways are not isolated from each other — there are cross projections and cells often 

seem to retain some responsiveness to stimuli not nominally coded for in their 

pathway. Higher cortical areas such as V4 and MT (middle temporal area) do have 

cells which are fairly specialist in their tuning, but it is not known if they are 

organized in the way the LGN, VI and V2 seem to be.

And for the next step — Barlow has his own ideas:

what is done with the information that there is a region of the visual field  
with some common direction o f motion, or that collinear orientation 
detectors are being activated? I  like the idea that this information is 
signalled back to the reconstruction in 17, enabling the area that has the 
common characteristic to be ''flashed" or "cross-hatched" in some way, 
though I  am not sure that this idea would be so appealing if we had 
successfully banished the homunculus from that area [16].

This suggestion by Bariow is particularly interesting as it seems to be the first time

that anyone has seriously suggested a role in perception for the very extensive back

projections from the "higher" visual areas to VI. It also provided one of the impetuses

for the theory of perception presented here.

As mentioned above there have been several attempts, which are widely known, to 

elaborate a theory of perception, i.e., how all the various components or visual 

properties into which the visual system seems to decompose its input are re-integrated 

into a single percept Hubei and Wiesel proposed a system of hierarchial feature 

detectors of increasing specificity. An alternative suggestions at about the same time 

was in terms of Fourier analysis. Marr combined ideas from both, justified by his 

computational theoretic approach, to describe a succession of filtering processes

234



between well-defined representations which culminated in an object-centred 

3-dimensional description. The logical conclusion of the hierarchical feature detector 

theory is the idea that somewhere in a "higher" cortical area, there could be a 

"grandmother" cell, with obvious response properties. This idea, which was probably 

just a "straw-man" originally anyway, is demolished by the inevitable combinatorial 

explosion.

Recently an alternative notion has begun gaining ground [219]. This is the idea that 

the representations in the brain of various visual properties of objects in the world are 

only transiently combined, rather than in fixed receptive fields. This is done "in some 

way that makes the conjoint output of different property-specific detectors available 

to the mechanisms for perception or action. A possible mechanism for the "transient 

combination" may be illustrated by the result that "neurons in the visual cortex 

activated by the same object in the world, tend to discharge rhythmically and in 

unison. (This gives a whole new meaning to Gibsons notion of the visual system 

"resonating" to "invariants" in the external world).

One of the reasons why these correlations had not been reported before was the 

difficulty of recording the activity of one neuron, let alone two or more. With the 

advent of procedures for recording and cross-correlating data from several individual 

cells, a whole new vista has been opened up on the brain. Visual stimulation seems 

to cause many neurons in the visual cortex to fire rhythmically at 40-50Hz or 40-80Hz 

[220] and the oscillation seems to originate in the cortex. Oscillations in the range 

20-80 hz are usually called y-waves. The oscillations are usually in phase, when 

recorded from neurons with overlapping receptive fields, irrespective of selectivity for 

stimulus orientation. For cells more than 2mm apart, (no receptive field overlap), 

oscillations are only in phase for neurons with the same orientation tuning. For very 

distant pairs of neurons (7mm; same orientation specificity) the cells’ activities were 

strongly correlated when a single long bar cut both receptive fields. Two shorter bars 

which did not bridge the gap between the receptive fields did not produce correlated 

outputs. The correlated patterns of activity seem to encode a global property of the 

stimulus, in this case whether or not the stimulus is a single contiguous object The 

power spectra for the oscillations seem to be broadly distributed indicating a chaotic 

rather than sinusoidal source [2 2 0 ].
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Over the last 100 years, as more and more of the cortex has been identified as being

directly or indirectly related to some or other sensory or motor activity, the

"uncharted" areas of cortex for which no such link had been established (often called

the association cortex), have been steadily decreasing. Barlow’s approach with linking

features and non-topographic maps puts the cortex into a completely new light The

fact that some areas of cortex contain well-organised neighbourhood-preserving

(topographic) maps of the sensory surfaces (retina, cochlea, skin, etc.) is not just so

that they can carry a "representation" of the sensory surface. Rather, the information

contained in a visual data stream has a natural representation in terms of a large

number of parameters, including space, time, colour, motion, orientation, binocular

disparity, etc. The topographic maps onto the primary sensory areas of the cortex are

simply those maps where the spatial parameters are made explicit and spatial data is

brought within the processing range of the cortical machinery. In this way local

properties of the visual data can be detected or processed Local interactions in the

formation of these topographic maps can and do give rise to more global ordering of

sensory parameters which cannot be immediately mapped within the cortical

processing range. Thus we see in the topographically organised primary visual cortex,

that parameters such as ocular dominance and orientation selectivity are mapped on

the primary cortex in an organized way. But interactions explicitly involving this

information cannot be fully implemented at this stage because they are out of range.

Subsequent non-topographic maps to so-called secondary sensory areas on the cortex

seem to make these parameters — colour, motion, stereo — more explicit and the spatial

parameters less so. This is exactly the type of mapping needed to detect and process

more global properties of the data which depend on data which is "nearby" in some

sensory parameter "space", and not necessarily nearby or local in physical space. This

also helps to explain why there are projections from the LGN (carrying data from the

retina) directly to these secondary areas: in these cases the spatial parameters is not

the one which dominates in the initial projection but some other parameter associated

with this cortical region.

In this way the whole cortex acquires its unity again, for it all becomes 
association area, and the primary projection areas with good topographic 
maps are simply regions specializing in the detection of local associations 
... the natural question to ask about a particular cortical locus becomes 
"what types of information are brought together here?" rather than "what 
is represented here? [16]
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This quote from Barlow sums up what we believe is the appropriate way of trying to 

understand the visual cortex in biology, and in trying to implement artificial systems 

with visual perceptual components. This idea of the whole cortex as association cortex, 

coupled with a mechanism for transiently making explicit the associations for a 

particular stimulus (coherent oscillations), led us to formulate the viewpoint on 

perception which is presented here. It is probably best not described as a full "theory" 

of perception as there are several important gaps. It is so to speak an initial position 

— a theoretical framework — from which a full theory of perception might be 

formulated

We believe that there is no hierarchy of visual cognition where features detected in 

one area are fed onto another area for higher-level processing, and subsequently to 

even higher areas culminating finally in some cognitive centre which is the seat of 

consciousness. Rather, we suggest that cognition is the totality of synchronized activity 

at all levels in all cortical structures at a given time. If some things like edges are 

detected early on in the processing hierarchy, they are not passed on as a fait accompli 

for cognition elsewhere. This is the only place that edges are detected, or used, or 

perceived. In this way, different facets of perception and consciousness are 

simultaneously supported in the appropriate processing structures. In the context of 

Marr’s theory of perception, this idea would be like saying that Marr’s primal sketch 

is just as active a part (or fact) of perception as the 2V4d or 3-D sketches -  not that 

they are earlier stages which feed their output to higher centres for final representation, 

recognition or memory storage. There is a hierarchy of processing in the sense that 

some later processing normally depends on the activation of lower-level processing but 

we do not believe that the information processed or detected at the lower-levels is 

channelled to the higher centres.

Hubei [61] asks the question of "how all the information [processed by the cortex] is 

finally assembled, say for perceiving a bouncing red ball?. It must be assembled 

somewhere, if only at the motor nerves that subserve the action of catching. Where it’s 

assembled, and how, we have no idea". Our light-hearted reply to this question is, "For 

what purpose would the motor system need to know that the ball is red?" The motor 

system receives the appropriate abstract information to cany out its function. No, we 

suggest that the perception of a red bounding ball "out-there" in the external world
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depends on the coherent activity in all the various visual cortical regions, but crucially, 

on the activity in VI, the direct topographic link with the external world. If all of the 

other regions are active but VI is silent we may be dreaming or imagining but we are 

not "seeing". If VI is active because of the action of drugs or whatever, not input from 

the retina then we are "seeing" — but not the real world, we are seeing hallucinations. 

Recent work on neural correlates of perception seems to confirm that VI is not active 

during imagery but that other visual cortical regions are [221]. To summarize, it 

is fairly clear that each visual area brings together particular types of visual 

information, and a particular stimulus with a range of characterising attributes 

simultaneously arouses activity in parts of many of the appropriate visual areas. We 

suggest that the collective synchronized excitation of cells in all of these particular 

regions is visual perception.

Our explanation of the function of each particular cortical region differs somewhat 

from the detection of linking features described by Barlow in 1981 [16], but is 

supported by Barlow’s more recent work. Because of the limited range of connections 

in the cortex, any particular cell only receives relatively local input. We suggest that 

like the coding system described by Field [71], neighbouring cells in any small region 

of cortex act to remove redundancy from their (relatively) common but local input 

Because, initially the mapping from the many dimensional visual parameter space to 

the cortex preserves locality for the spatial parameters, it is only the redundancy 

defined in the visual data by these parameters that gets eliminated The activity of the 

cells still exhibits redundancy for less local spatial relations and for all the other 

parameters in the visual data. But little by little, the redundancy in each of these is 

eliminated too, after non-topographic maps to further cortical regions.

7.12 Summary

The relationship-between-observations idea allows a glimpse of an aspect of the 

mechanism of perception, but not how these relationships come to exist Several 

authors employ the notion of value or usefulness but it is difficult to see how this 

would be acquired. One of the ideas coming through in this chapter, is that as well as 

the fundamentally important level of description in terms of primitive observations, 

which is the main focus here, there seems to be a less abstract level of description -  

possibly an operational or a dynamic level of description on the scale of neural
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populations, where it might be more appropriate to investigate or model some aspects 

of perception. The observational level of description may be only an approximation 

to this operational level and may be too rigid to capture some of its features. The 

organisational closure description of Varela and the notions of circularities of 

description may be one suitable direction in which to continue this investigation.
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Chapter 8

8 An Automated Visual Inspection Application

The topic of this chapter is not a direct development of, or application within, the 

theoretical framework which comprises the primary subject matter of this dissertation. 

It is rather, an attempt to show that the philosophical ideas discussed in chapter 2 are 

not completely divorced from real, down-to-earth problems. As such, it reinforces the 

message of chapter two, that there are alternative ways of addressing the issues of 

pattern recognition, objects and features, to the conventional, Aristotelian-influenced 

one.

8.1 Introduction

A problem with existing feature-based methods of automated visual inspection is the 

difficulty of selecting suitable feature sets. Usually the features used for error 

classification are heuristically determined. In this chapter we describe an attempt to 

improve difficult and repetitive inspection tasks by automatically selecting feature 

sets which best (in a well-defined sense) represent the distinctions required in a 

classification. The method is based on a modified version of the Karhunen-Lo&ve 

transform (KLT) applied to sets of normalized imagelets of individual joints. The 

modification is a direct consequence of the "object-predicate inversion" ideas proposed 

by Watanabe as an alternative to more conventional pattern recognition approaches in 

certain cases. Watanabe’s description of the theory involved is in terms of covariance 

matrices and this is reviewed below. We show how these ideas can be reinterpreted 

in terms of the Singular Value Decomposition (SVD) and illustrate the method by 

describing its application to the inspection of solder joints on surface-mount 

technology (SMT) printed circuit boards. The output of the coding method is a small 

coefficient set suitable for use with standard statistical classification techniques or with 

novel neural-network based classification. We describe how a simulation of a straight­

forward neural-network classifier was used to classify the original solder joints with 

very good accuracy. This coding/classification implementation also gave us an 

opportunity to investigate the possibility of interpreting nodes within the network in 

symbolic terms.
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The work described in this chapter is one aspect of a project which was originally 

motivated by the difficulty experienced in automating a particular industrial inspection 

process: the examination of solder joints on the legs of Surface Mount Technology 

(SMT) Integrated Circuit (IC) devices during the assembly of PCB-based products1. 

However, because of their generality the ideas described here have a much wider 

applicability. This particular application is simply one good example of their use. 

Experience has shown that the best basis for a decision on the long term reliability of 

a solder joint is often not the electrical or mechanical properties at the time of 

manufacture, but the visual appearance of the joint2. It has however proved to be 

particularly difficult to describe the criteria that humans use to detect defects. 

Consequently efforts to reliably and robustly code these criteria in automated 

inspection systems using standard statistical image analysis has had only limited 

success. These facts suggest that an alternative approach might be of benefit.

This approach is described in the next section, 8.2. The first steps in this approach rely 

on the dimensionality reduction properties of the KLT, which is described in section

8.3.2. While the KLT is particularly well suited in theory to the type of application 

discussed here, there are major computational disadvantages. These disadvantages can 

be overcome by the implementation of a modified version of the KLT, which allows 

the eigenvectors to be found indirectly. This modified KLT was originally described 

in the Pattern Recognition literature by Watanabe [19] and more recendy by Sirovich 

and Kirby [222,223]. The modified KLT and normal KLT are shown to be 

simply different facets of the SVD of the original data and this is described in section

8.3.3. The interpretation of the modified KLT in terms of the SVD allows for

'At the moment there is a growing sentiment within manufacturing industry that inspection of a product at 
the end of the production line does not add value to the product, in other words: "quality cannot be inspected 
into a product". Instead there is an effort to maintain much greater control over the production process and 
the production-line equipment itself. It is in this spirit that inspection is discussed here: not as an end point 
in the manufacturing process but as a sensing mechanism which is integrated at as many points as is 
necessary into the process, providing not just information about the product, but a feedback path for control 
of the process itself [5,7], This type of implementation imposes a completely different set of requirements 
on the inspection sub-system(s) than finished-product inspection. In particular it means that many more 
inspection systems will need to be engineered, in shorter time, by people who are not necessarily vision 
engineers [6J. Not only does the automatic feature-set selection process described here allow problems to 
be solved which might not hither to have been possible, but allows this to be carried out in a very much 
problem-independent, and therefore not knowledge intensive way.

2Thermal and thermo-mechanical properties of joints are quite powerful as a basis for diagnostic procedures 
but are often considered unacceptably invasive by their nature. X-ray imaging is another direct way of 
determining the integrity of a solder joint but it can be quite expensive.
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increased accuracy, particularly in limited word length applications. It also allows for 

the possibility of more efficient implementations based on modem algorithmic 

techniques for matrix decomposition though this part of the calculation is in any event 

carried out off-line. Finally, in section 8.4, examples are presented of the modified 

KLT/SVD being applied to a set of imagelets for the application concerned.

8.2 Pattern Recognition with Neural Networks

The term "artificial neural networks", (ANNs, or simply neural nets) is used to 

describe classes of non-linear algorithmic procedures and structures, loosely based on, 

or inspired by some aspect of natural neural systems. They are usually characterized 

by the massively parallel and distributed nature of their computational processes. In 

addition, neural nets typically provide a greater degree of robustness than traditional 

sequential Von Neumann-type computers, and an intrinsic potential to continuously 

adapt to the input data [224]. The most direct way of describing the function of a 

neural net is in terms of pattern classification. Here we take the broad view (see [19, 

p. 199]) that the entire process of pattern recognition can be considered as a gradual, 

step-by-step reduction of the dimensionality of variables. The starting point is the raw 

observed quantities (pixels in our case) and the process culminates in a single variable 

with two values indicating membership or non-membership of a class (or 

generalisations thereof).

The structure of the problem concerned here is one of supervised adaptation to suitable 

decision classes. In other words, examples of both satisfactory and unsatisfactory 

versions of the solder joints are available for off-line "practice". During this, the 

system is expected to adapt to the criteria most suitable for distinguishing one set from 

the other. The on-line process is then required to use these criteria to automatically 

make the classification. There are indications that relatively simple neural nets, such 

as the multi-layer perceptron type, are capable of accomplishing this type of adaptation 

and classification — at least on data sets with quite small numbers of input parameters 

[224]. So while this type of pattern recognition is possible in principle, the large 

number of inputs (images of size 150 x 50 = 7500 pixels are used here) effectively 

rules out the direct application of neural nets with currently available technology.
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8.2.1 Karhunen-Lofeve Preprocessing

In addition to the final classification step, the large numbers of inputs involved for 

pattern recognition on entire images, mean that some type of dimensionality reduction 

step must also take place. It is assumed that the input parameters (pixels in images) 

are not completely independent. They are correlated with each other and thus are 

dependent on some smaller number of unknown underlying parameters. The extent of 

this correlation is increased by taking care during the image formation and acquisition 

process to "pose" or register the individual images so that all unnecessary variation due 

to the position or size etc., of the item being imaged is removed [222]. Experiments 

with particular types of multi-layer neural nets applied to problems with a small 

number of inputs where there is some correlation between the inputs, have been 

carried out [18,225,226]. They have shown that the initial layers of the neural 

net adapt to effectively "code" the input data in terms of a much reduced number of 

parameters (dimensionality reduction). Different nodes within the networks often 

converge to semi-orthogonal combinations of the input parameters in a manner 

reminiscent of the KLT [18,225,227]. Indeed, Oja [228] shows theoretically that 

certain types of constrained adaptation in particular types of network lead the relevant 

network to estimate the eigenvectors of the input covariance, which is the KLT.3

It would be completely impractical to attempt to repeat these experimental results on 

data sets of the type under consideration here. The amount of computation for the 

large number of inputs, the number of images required for satisfactory adaptation, and 

the training time, are simply too large. These results do however indicate a way to 

proceed. If the dimensional reduction stage of the pattern recognition procedure were 

carried out by a standard algorithmic process such as the KLT, then the neural net 

might provide a powerful way of determining classifications on the basis of the output 

data from the KLT, with a much reduced number of parameters. A number of 

assumptions underpin this argument:

(i) that the preprocessing KL step reduces the number of parameters required to 

represent the input data to a number suitable for neural nets — of the order of 

tens rather than thousands or more,

^ o te that this is not true of neural net in general.
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(ii) that the remaining parameters are sufficient to distinguish between the required 

classifications, and

(iii) that a linear parameterization of the data is possible.

The first aim of the work described in this chapter is to use the linear analysis 

methods of the KLT to determine the number of parameters required to code the 

images to allow reliable and robust classification. The disadvantages described above 

of getting the neural net to carry out this step would thus be avoided, without losing 

the desirable discriminating properties of particular neural architectures.

83  Dimensionality Reduction

8 3 .1  Features

As mentioned earlier, it is useful to consider pattern recognition as a process of 

step-by-step reduction in dimensionality. This reduction corresponds either explicitly 

or implicitly to making some variables more "important" than others. The more 

"important" variables are then referred to as "features" and can be used in the final 

steps of classification [229]. In general the only difference between "observations" 

and "features" is that there are fewer features, though they collectively contain most 

of the information required to make a classification on the basis of the original set of 

observations.4

A useful tool in the analysis of this type of pattern recognition problem is the 

mathematical concept of a vector space [230,231]. If each pixel is considered 

as an independent variable, then any image can be represented as a point in a space 

with as many dimensions as there are numbers of pixels. Thus a particular 150 x 50 

image is a particular point in a 7500-dimensional space. Most operations in this space 

are simply generalizations of the familiar vector and matrix operations in two and 

three dimensions.

*In Machine Vision, the term "feature" usually refers to some measurement taken on an image, such as 
distances, moments, areas, lines, etc. Jain [229] classifies features as spatial, transform, edge/boundary, shape, 
moments or texture on the basis of the type of processes used to derive them. Here we will be content with 
the more general idea of a feature described above. The term feature is simultaneously used on the one hand 
for single pixels, and on the other, for particular combinations of pixel values with the same dimensionality 
as the original images, ie. image-like combinations of pixels with particular properties
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Consider, for example N images with M pixels each (ie. N  objects, each subjected to 

the observation of M variables). We can express these as N  feature vectors with M  

elements each: PCJ, where i = 1....M  labels components and a  = 1....JV labels

Figure 24. Schematic of SMT IC leg showing the positioning of a window used to 
"cut-out" the leg "imagelets".

vectors. In the case of general images, sizes are usually of the order of 512 x 512. 

Here we are dealing with segments "cut-out" from the original images (see Figure 24), 

referred to as "imagelets", which are typically of the order of 150 x 50, ie. M = 7500 

pixels (see Figure 25). To make any solution practical, we need to reduce this to the 

order of M' = 10 to 100.

Figure 25. Ten examples of leg "imagelets" placed side by side for display purposes.

Consider, for example, N vectors consisting of two features (observations or 

components) each. In the arbitrary initial coordinate axes configuration shown in
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Figure 26, the data are scattered in the plane defined by the orthogonal axes. In this 

contrived case the data seems to fall into two clusters, which might possibly be a 

useful basis for classification. Consequently the X1 and X2 axes are equally important 

or equally necessary in the classification process.

Figure 26. A schematic plot of a 2-D data set with substantial redundancy, but roughly 
equal variance in each variable.

If however we pick a different set of axes X', and X'2 as shown, then the X'2 axis is 

now relatively unimportant for distinguishing in which cluster a particular point lies. 

That is, X'2 is less important for representing the data, and by implication, as a basis 

for classification. In fact, components along the X'j axis alone are sufficient to allow 

a clear discrimination in this example. The dimensionality has been reduced from two 

to one and the classification step is correspondingly simpler. This is exactly the type 

of dimensionality reduction that we wish to achieve in our application. The only 

difference is that here our initial dimensionality is of the order of thousands or tens 

of thousands, while we can only cope with a number of variables of the order of ten 

to one hundred in the classification step.5

5This discussion somewhat over simplifies the situation by assuming that a good representation allows good 
classification. As Duda and Hart [230] and Therrein [231] state, this is not necessarily the case.



83 .2  The Karhunen-Loeve Transform  

Formulation

Consider an n x m image or image sub-block. This is usually written and displayed as 

a 2-D matrix with n rows and m columns but for the purposes of mathematical

throughout The KLT is based on the statistical properties of an ensemble of images 

of this type X“. In general, a  ranges over the elements of the ensemble, though if only 

a finite number of samples of the ensemble are available a  is taken to range over these 

instead.

The pixel representation of an image is the standard interpretation of image data, 

where each pixel or variable represents the light intensity imaged at a point in the 

image plane from the original scene. In general, in the pixel representation or in an 

arbitrary unitary transform of it, the coefficients (pixel values or transform coefficients 

respectively) are correlated. A more efficient representation of the data could be 

obtained with a transformation which left the coefficients uncorrelated. This can be 

achieved by transforming to a coordinate system where the covariance matrix is 

diagonalized. The coordinate axes in this system are in fact the eigenvectors of the 

covariance matrix ([229] p.23, [60] p. 127). The covariance matrix of the vectors X“ 

is defined as Cx = E{(X-QxXK-Hx)1}  where H* = EfX} is the mean vector and T 

denotes the vector or matrix transpose. For a given set of N  samples from the 

ensemble, the mean vector and covariance matrix are approximated by

Let et and i = l,...,nm be the eigenvectors and corresponding eigenvalues 

respectively of the nm x nm matrix Cx (with the X,’s in decreasing order: X,;

If A  is the nm x nm unitary matrix with the vectors e, as its columns, then A can 

be used as a transform to a coordinate system where the eigenvectors are the basis 

vectors. It can easily be shown that the covariance matrix CY = A Cx A T = A of the 

random vector Y given by F* = AiX"-Tw). is diagonalized. Here A is an nm x nm 

matrix with the X,’s along its diagonal and zeros elsewhere (see e.g. Gonzalez and

analysis is often written as an nm x 1 column vector (labelled here by X). The actual 

ordering of the vector is not important as long as the same ordering is maintained
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Wintz [139]). This transformation of the data vectors is reversible and the original data 

vectors X“ can be recovered without error by means of the inverse transformation, i.e. 

X“ = + r^. Also Cx real symmetric => A'1 = A T. The transformation by itself

does not give any reduction in dimensionality because the transformed data vectors are 

still of dimension nm x 1, but the coefficients of the 7“ vectors are uncorrelated.

Suppose that, instead of using all the eigenvectors of only the k eigenvectors 

corresponding to the k largest eigenvalues are used to form the columns of A (which 

will now be of size nm x k). The Y vectors will then be ^-dimensional and the 

reconstruction given above will not be exact. The mean square error is

nm
mse = 53 Xj

<=jt+i

so the representational error is minimized with respect to all other possible orthogonal 

transforms coding to k coefficients by selecting the eigenvectors associated with the 

k largest eigenvalues. The KLT is optimal in a least-square-error sense over the sample 

set of data vectors selected by packing the most signal energy into the first k 

coefficients.

Computational Complexity

In the case of the n x m imagelets described above, the direct application of the KLT 

requires the construction and diagonalization of an nm x nm matrix. For n = 150 and 

m = 50, the covariance matrix has 75002 elements. For image processing applications 

of the KLT the n x m image array is usually divided into a number of equally sized 

blocks of sizep x  q. Eachp x q  block is coded as a unit (possibly represented as a pq 

x 1 vector) independently of all other blocks. Also, the statistics are often assumed 

ergodic. The size of these blocks is usually in the range 8x8 to 16x16 pixels. This 

latter point is because correlations which exist between pixels and which the KLT is 

designed to remove, usually only exist over short distances in the neighbourhood of 

each pixel. Bigger blocks in general give diminishing returns due to the lack of a 

substantial amount of long range correlation. There are some notable exceptions to this 

point in particular applications and it is one of these exceptions that is exploited in this 

application.
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Consider the case where all of the images in the ensemble are of the same type of 

object, with the objects all in register in precisely the same position in the image. The 

grey levels are also normalized to have identical grey level mean and variance. Then 

it is likely that whatever variation still exists between the individual objects that 

comprise the chosen set may be described by a small number of parameters. This is 

the case if say, all the images in the ensemble consist of human faces in register [2 2 2 ], 

or if in the case under consideration here, all the images are of a particular type of 

SM TIC leg and its solder joint to a PCB. Examples of some of these imagelets of IC 

legs are displayed in Figure 25.

In theory the ordinary KLT is capable of optimally reducing the original set of 

measurements or pixels to any required smaller number of parameters. It also directly 

gives the residual error introduced by representing with only this number of 

parameters. Unfortunately, the direct application of the KLT requires the calculation 

of the covariance matrix of the data vectors and its diagonalization. In the case of the 

IC leg imagelets (which are relatively small images of size 150 x 50 = 7500 pixels), 

the covariance matrix has dimensions of 7500 x 7500. Fortunately there is a way of 

carrying out the required dimensionality reduction without incurring impossible 

computational penalties. The ideas involved are most easily explained in terms of the 

singular value decomposition (SVD).

8.3.3 The Singular Value Decomposition 

The Covariance Matrix by Matrix Products

Invariably, the covariance matrix is defined in terms of the outer products of M x 1 

vectors, and the linear sum of these outer products [139,229]. (Here M = nm = number 

of pixels in the imagelets). However, the calculation of an approximation to the 

covariance matrix over a finite set of N samples from the ensemble actually amounts 

to the matrix multiplication of the M x N data "matrix" -X“,- with the transpose of itself,

i.e. (Xa,)(Xai)T, or simply XXT (see e.g. Golub and Van Loan, [232, p.10])6. We 

can use this fact as a bridge between the KLT and the SVD. Note that in our 

application each column of QFJ is the vector form of a single image, i.e. each column 

has dimensions M = 7500 x 1. If a sample of N = 100 images is used to calculate the

*We sometimes write the matrix {X°J simply as X  but it will usually be possible from the context to 
distinguish it from the random vector X  .
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approximate eigenvectors, the matrix (X^J will be of size 7500 x 100. (Note a  = 

labels the columns of while i = 1,...,M where M = nm, labels the elements 

in each column, i.e. each row).

The SVD Formulation

The first step of the KLT is to get the eigenvectors of the covariance matrix XXT. 

This operation is however reminiscent of the definition of the singular value 

decomposition (See e.g. [60, p. 126; 229, p. 176; 232, p.70]):

Definition: An arbitrary M x N  matrix X  of rank r can be decomposed into the sum 

of a weighted set of rank one matrices by the SVD. That is, there exist orthogonal 

matrices U = [Uj>—>Mu] e RMxM and V -  [v1,...,^] e RNxN such that UrXV = Aw, 

where (for Xj >,...,> Xr)

The columns of the unitary matrix V  are composed of the M x  1 eigenvectors m, of the 

symmetric square M x M  matrix XXT. The columns of V  are the eigenvectors va of 

the symmetric square N x N  matrix X^X. The X,- are the identical non-zero 

eigenvalues of both the XXT and X*X matrices. Since N  < M, there are at most r <

and v“, the Ith left singular vector and the a "1 right singular vectors respectively. The 

outer products up̂ T form the set of unit rank M x N  matrices mentioned above. The 

SVD is also called the spectral representation or the outer product expansion of X. The 

row transformation matrix V performs the diagonalization operation VXTXV  = A, 

while the column transformation matrix U performs the diagonalization operation 

V X X U  = A. The SVD has many useful properties [229, p.177]. Probably the most 

useful one here is the fact that if the r Nxl right singular vectors v“ are known, the r 

Mxl left singular vectors m, can be determined:

r N-r <— —>
t
r 0 r J

X  = HAivT = £ ^  (Up)(vP)T  
p=l

Ai I
t

H-r
I

0  1

+

0

□

N  non-zero eigenvalues. The A,14, are called the singular values of X  and the vectors u,-
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cMxl) (MxN) (Nxl)

This is the crucial point of both the modified KLT and the SVD as it is applied here. 

Calculating the large (7500 x 1) left singular vectors is often virtually impossible in 

reasonably realistic problems of this type. But in fact they do not need to be calculated 

directly. They are available upon solution of potentially smaller problem.

Relationship between the SVD and KLT

One important aspect of the usual use of the SVD needs to be clarified at this point. 

Usually the SVD is defined for a single 2-d image, (or 2-d matrix in the general case 

[229, p. 178]). The energy concentrated in the transform coefficients p  = is 

maximized over any other unitary transform of that image or matrix. The KLT on the 

other hand maximizes the average energy in a given number k of transform 

coefficients where the average is taken over the sample images from the ensemble. On 

an image to image basis, the SVD concentrates more energy in the same number of 

coefficients than the KLT but has to be calculated for each image. The KLT needs to 

be calculated only once for the sample set and if this is representative of the whole 

ensemble, can even be used for any further samples of the ensemble.

The parallel drawn for our application between the KLT and the SVD is quite different 

from the general case described in the previous paragraph. Here the matrix 

decomposed by the SVD is a data matrix. Each of its columns is a vector representing 

a particular object That is, each column vector in the data matrix could itself be an 

image. The entire set of N  samples of images is represented in the single matrix X  

undergoing the SVD.

The SVD is not interesting here so much for its decomposition properties of X, but 

rather that it provides an alternative method for accessing the eigenvalues and 

eigenvectors of the covariance matrix XXT. This can be done either via a direct SVD 

algorithm such as the LINPACK QR factorization algorithm used in Matlab™ 

[233,234,232] or using the eigenvectors of the other "pseudo-covariance" matrix 

X'X. The latter case is particularly interesting for image processing and image coding 

where typically M is much larger than N. For example, 100 imagelets, each of size 150



x 50 means that M = 7500 while N = 100. Solving for the right singular vectors by 

diagonalizing the covariance matrix means diagonalizing a 7500 x 7500 matrix. On the 

other hand, solving for the left singular vectors involves either implementing some 

type of reduced SVD algorithm (such as the "economy" SVD from Matlab) on the data 

matrix X  or simply diagonalizing the 100 x 100 matrix X'X. The eigenvectors of this 

matrix which are also called the left singular vectors of the matrix X  are 100 x 

1 vectors. They can be used to directly calculate the originally required 7500 x 1 

eigenvectors of the covariance matrix (the left singular vectors or eigenimages) of X  

by straightforward dot product operations using X, as described above. Remember the 

7500 x 7500 matrix XXT and the 100 x 100 matrix X ^  have the same number of 

non-zero eigenvectors and have identical eigenvalues. Knowledge of one set of 

eigenvectors is equivalent to knowledge of the other, due to the ease with which one 

set can be calculated from the other.

8.4 Coding Procedure and Results7

The sides of SMT ICs, including the full length of the legs and the solder joints to the 

PCB were imaged live on a monitor as 512 x 512 x 8 bit images [235]. Each 

image contained at least ten legs. A graphics overlay consisting of 10 "windows" of 

size 150 x 50 pixels was superimposed on the live image. The PCB was placed so that 

the IC legs "fitted" into the windows, as shown in Figure 1, and the corresponding 

7500 pixels for each leg was stored as an imagelet. A set of 100 images was then

Figure 27. Mean image (first imagelet on left), and examples of "caricature" imagelets 
(original minus the mean).

picked out for processing. These 100 images were converted to vectors and loaded into

7The implementation of the coding and classification procedures described here was carried out by James 
Gunning as a part of his Ming, project under the author’s supervision.
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386-Matlab as a 7500 x 100 matrix. The mean column (imagelet) was calculated and 

subtracted from each of the 100 images to produce "caricatures" of the imagelets, as 

shown in Figure 27. The 100 x 100 matrix X l i  was calculated, diagonalized and its 

eigenvectors/values found. These 100 x 1 eigenvectors (right singular vectors) were in 

turn used to calculate the corresponding 7500 x 1 left singular vectors (or 

eigenimages). The first 10 eigenimages with largest eigenvalues are shown in Figure 

27. Some test images were coded with the first 30 and the first 5 eigenvectors to yield 

30 and 5 coefficients respectively. The test images were then reconstructed by linear 

combinations of the eigenimages. As shown in Figures 28 more eigenvalues give better 

results, but the main point is that images with 7500 pixels (variables) can be accurately 

coded with as few as 30 parameters.

Figure 28. The ten eigenimagelets with the largest eigenvalues (decreasing from left 
to right).

Figure 29. Caricature imagelets reconstructed with 30 coefficients (left) and with 5 
coefficients (right).
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Figure 30. Plot of normalized eigenvalues vs eigenvalue index. Adapted from [235].

The 7500 x 1 and 100 x 1 left and right singular values were also calculated using the 

"economy" SVD function provided in Matlab. This took much longer, possibly due to 

the virtual memory swapping arrangement within 386-Matlab. With the IEEE floating 

point precision offered by Matlab, the results were virtually identical to those of the 

modified KLT. The eigenvalue data is plotted in Figure 30 and a graph showing the 

profile of two lines from original and reconstructed images is plotted in Figure 31. 

These results are only qualitative, and given purely to illustrate the ideas involved. 

Remember that the only part of this process that needs to be carried out on-line is the 

capture of test images and their coding with preselected eigenvectors. If for example 

30 coefficients are required, then the computations involve 30 dot products of pairs of 

7500 x 1 vectors.
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Figure 31. Plot of two succeeding lines (50 pixels per line) from the reconstructed 
caricatures. From [235].

8.5 Classification with Feature Sets
The third stage of the defect recognition process is to use the features or coefficients 

coded in the previous stage for classification. A multi-layer perceptron network 

structure with error-back propagation is used as the basis of the classification 

algorithm. This is augmented with a number of improvements to increase the rate and 

reliability of classification. Two of these, neural bias and adaptive training rate are 

reasonably standard and described in [236,237]. Some of the other 

improvements are less straight-forward and are briefly discussed below.

Momentum

This involves adding a term to the weight adjustment that is proportional to the 

amount of the "previous weight change". The weight adjustment equation is modified 

to become
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A W ^in+1)=t) (&qJcxOUTJ+cc (A W^/n)) (3)

using the notation described in [236]. a  the momentum coefficient, is normally of the 

order of 0.9. Note that the "previous weight change" A w M J n )  is the cumulative 

average weight change taken over the entire training set. This additional term increases 

the memory requirement by a factor of three but convergence rate is greatly improved. 

(Note: Convergence is quantified here using the root-mean-square (RMS) measure 

described by Dayhoff [236]. An RMS value below 0.1 is taken to indicate that the 

network has learnt the training set). As well as increasing the convergence rate the 

momentum term helps to avoid getting stuck in local minima.

Use of Noise in Network Training

The generalization properties of a neural net can be improved by adding pseudo­

random noise to the training set. It also helps overcome problems associated with a 

small training set.

Pruning the Network

One major problem with ANN algorithms is choosing a network of the right size. The 

training algorithms tend to spread non-vanishing weights over the entire network, 

regardless of the size optimally required. There are a number of advantages to using 

a smaller network:

1. The time required to train and test a neural network grows linearly with the 

number of connections. Hence a smaller network is more efficient.

2. A neural network which is too large will simply memorise the training set and 

have poor generalisation ability. But if the neural network is too small it may 

never solve the problem.

Exhaustive testing of different sizes of networks is computationally unfeasible even 

for relatively small networks, so one solution is to prune a larger network [238].

Pruning involves estimating the sensitivity of the error function to the exclusion of 

each interconnection in the network. This is achieved by introducing "shadow" arrays 

that keep track of the incremental changes to the weights during backpropagation
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learning. The network is pruned by discarding the connections with the lowest values 

of sensitivity. The computation is relatively straightforward and the sensitivities can 

be estimated using the equation,

AM
V i  Tr(n) Aw<tn)

/ ,  \

o

w (4)

where is the estimated sensitivity of the error function to the removal of the weight 

Wjj, N  is the number of training epochs, is the initial value of the weight and v / tj 

is the final trained value.

While there are other techniques for optimising network size [238], pruning provides 

a measure of the importance of inputs to the nodes in the various layers. This allows 

us to examine the relative importance of the coefficients from the coding stage for the 

classification process. It also provides the possibility of interpreting the functionality 

of the trained network in a rule-based sense.

Coding and Feature Set Size

Figure 27 shows 10 eigen-imagelets corresponding to the largest eigenvalues and hence 

the largest variance. For imagelets external to the set used to construct the covariance 

matrix the KLT does not provide the best LSE representation. How representative the 

eigen-imagelets actually are of the global data set improves with the quantity and 

uniqueness of the imagelets used in their calculation, but with diminishing returns. 

Figure 29 shows this fall off clearly. Here we see that the difference between the 

average reconstruction error using 20 eigen-imagelets from a 9 0 x 9 0  covariance matrix 

and a 4 0 x 4 0  matrix is almost negligible in this case.

On the basis of these results 20 eigen-imagelets with the largest variance were used 

to represent the imagelets initially. In other words the neural network classifies 

imagelets on the basis of 20 coefficients only. For initial testing the eigen-imagelets 

were obtained from a 5 0 x 5 0  covariance matrix. To ensure the eigen-imagelets were 

representative of a global data set, the 50 imagelets included in the covariance matrix 

calculations were an admixture of good solder joints, and defective joints from the 

classes with excessive solder, insufficient solder, bridging and displaced legs. The 

coefficient sets obtained in the coding stage were then used in training and testing the 

neural network.
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Figure 32. Plot of average reconstruction errors for "internal" images (a) and for 
"external" images (b).
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The Neural Network Configuration

The number of input nodes is usually decided by the data preprocessing stage, one 

node for each input variable. The number of output nodes is task dependant, 

determined by the number of classes - five in our case. The problem is to decide on 

the number of hidden nodes or layers.

Three active layers were chosen to allow the most general type of classification, if 

required. The issue of the number of hidden nodes is discussed in the literature 

[224,239,240] but no clear rules are available for a particular case. After some 

experimentation the numbers were chosen as 12 nodes in the first hidden layer and 8 

nodes in the second hidden layer, ie., a 20:12:8:5 neural network. It does not matter 

if this is in excess of the optimum requirements, because of the subsequent pruning.

Simulation of the Neural Network

The coding stage and ANN were simulated with the matrix processing package 

Matlab™. Random noise with a uniform distribution was added to each coefficient (in 

proportion to the coefficient size) to aid the convergence and generalisation of the 

network. The neural network typically converges to an RMS value of below 0.1 using 

an adaptive training rate in approx. 50 iterations. Each iteration consists of a single 

pass through the network with a 50 imagelet training set The trained network was 

then tested using coded imagelets that were external to the training data and the result 

was a 100% correct classification rate.

Optimising the Neural Network Size

The sensitivity results obtained from the 20:12:8:5 network showed that the majority 

of the large sensitivity (important) connection weights from the input layer to the first 

hidden layer were from the coefficients corresponding to the eigen-imagelets with 

larger variance. However, none of the nodes in the first hidden layer had important 

connections from the input coefficient with the largest variance. A plot of the 

coefficients corresponding to the eigen-imagelet with the largest variance is shown in 

Figure 33. The traces show examples of the range of coefficients’ values 

corresponding to the different classes of solder joints. They show that this coefficient 

is important for distinguishing displaced solder joints from the other four joint types 

but does not distinguish between these other types. It is because it does not distinguish
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Figure 33. Plot of the coefficients corresponding to the eigenimagelet with the largest 
variance. From [235].

between these four types that it consistently shows low sensitivity.

The overall results of this pruning process was to reduce the neural network from a 

20:12:8:5 to a 7:7:7:5 configuration with only a slight decrease in classification 

robustness. This meant that classification of image content with as few as 7 

coefficients (down from 7500) was possible. The pruning implemented was a modified 

version of the original algorithm which was designed for pruning individual low 

sensitivity weights. Our main concern is with nodes - particularly input nodes - so 

entire nodes with low sensitivity weighted inputs were pruned out and discarded.

Some indication of the features the nodes in the neural network extract is shown in 

figure 34. Each image corresponds to a single node, i.e., 7 nodes in the first hidden 

layer, 6 in the second and five output nodes. Each image is calculated by averaging
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all images that activate a particular node and subtracting the average of the images that 

inhibit the node. The result is a picture of the internal representation of the ANN.

Figure 34. Characteristic images of each of the nodes (7:6:5) in a three-layer network. 
From [235].

8.6 Application to Motion Recognition
The ideas described above of KLT-based dimensionality reduction or coding and 

neural-network-based recognition has also been applied to the problem of recognising 

people through their particular posture or gait during normal walking motion. The 

experimental setup used was particularly simplified in order just to demonstrate the 

feasibility of coding/recognition idea. Three sequences of different people walking on 

a treadmill were used (30 seconds each at 12V5 frames per second). Each image was 

reduced to 32x64 pixels, to reduce computational overhead, but also so that the people 

would be less likely to be recognised by some detail not relevant to the motion. At 

walking speed, the people went through one complete walking (pose) cycle in 14-15 

seconds. Four pose cycles were taken as a representative set for the coding and 

recognition stages (56-60 images). The covariance matrix was constructed as above 

without taking cognisance of the order of the images in the original sequences. It was 

found that any of the images could be represented with a 5% error for 20 eigenimages 

constructed from the same sequence and to within 8-12% error for images not from 

the sequence used to construct the eigenimages.
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Two methods of analysis were used on the coefficient data. Firstly the Fourier 

transform was taken of the coefficients for each image in a sequence. This clearly 

showed the periodicities associated with the movement of the legs, arms and body 

during walking. The second type of analysis was to use a neural network to learn the 

particular position in a pose cycle corresponding to the coefficients of the image of 

that position in the cycle. The output of the neural net (a pose cycle position value) 

was then used to control the pose of a graphical "stick figure". The pose positions of 

the stick figure were derived by associating a particular angle for each of the major 

body joints with a position in a walking pose cycle. The computer graphics sequence 

generated using the cycle position output by the neural network was then animated into 

a video display. The result was that the stick figure quite accurately followed the 

motion of the person in the corresponding images. No attempt has been made to 

implement a person recognition as opposed to a pose recognition process as yet, 

though the results from the pose recognition were very encouraging.

8.7 Summary and Conclusions
The results were very encouraging and worked well for both of the applications 

described. They indicate that for given situations KLT preprocessing can be used to 

substantially reduce the amount of data required for classification of image content 

The online operations required to carry out this preprocessing are simply the multiply- 

accumulate operations of the dot product and are easily implemented on existing 

hardware. ANN’s can then be used to provide a robust classifier that also allows 

further selection of the important inputs. Work is ongoing to investigate the possibility 

of integrating this distributed decision approach with more traditional rule-based 

heuristic approaches in the industrial inspection application and more general pose and 

person recognition processes in the motion analysis application.
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Chapter 9

9 Conclusions
Originally, at the start of the project which has led to this dissertation, we saw vision 

as a very useful capacity with which to equip a robot manipulator, particularly when 

we expected the manipulator to operate in a relatively unconstrained environment We 

did not set out to prove any particular thesis about how this s h o u l d  be done, but 

sought to find a way that it c o u l d  be done. In other words we wanted to find and use 

some suitable "theory of vision", or some appropriate formalism, that would allow us 

to understand the processes and problems of vision, that would allow us to design a 

vision system with particular goals in mind. After extensive research through a broad 

range of literature, after extensive efforts to understand and describe visual perception, 

to come to terms with what really are the problems with vision, and to see the scope 

for potential solutions to these problems, we have come to a position which partially 

answers these questions: at this stage it appears that there are at least three different 

ways that we can approach vision problems. These are the conventional 

representational approach, the radically different enactive approach, and the primary 

topic of this dissertation which is the an information theoretic approach.

The Representational Approach

One possible approach to understanding and working with vision, is the standard 

representational approach. The basic assumption here is that the environment of our 

machine is sufficiently well defined or constrained, that we can capture it in a suitable 

type of representation, and that we can give our machine enough information to 

manipulate and update this representation as it requires. We firstly (possibly explicitly 

but more usually implicitly) determine a symbolic representation of o u r  world. Then, 

based on the assumption that this representation or description is also an appropriate 

description of what we see as the system’s environment, we "ground" the symbols in 

the system’s formal processes, by providing the appropriate links or heuristics. In this 

context information should be interpreted as fixed and instructive, and we are 

ultimately the creators of this information. It is possible in the constrained 

circumstances characteristic of this approach, for us to formulate (at least in principle), 

an explicit symbolic representation of the environment of the machine in question,
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with a level of approximation which is constantly bounded1. Because of this, there is 

a direct sense in which the amount of information required to describe the situation 

is fixed. Furthermore, our use of this information is instructive, in the sense that the 

machine which uses this information is, in a very literal way, just carrying out our 

instructions.

The actual means of instructing the machine within this approach, may be made 

increasingly flexible by the use of sophisticated interfaces, such as natural language 

interfaces or voice activation, or alternatively by using sophisticated programming 

languages like prolog and programming techniques like sub-symbolic computation as 

in artificial neural networks. Nevertheless, we must be careful to always acknowledge 

the special role of the designer, programmer or engineer as the ultimate source of 

instruction — the grounding for the system’s information or symbols. This role is thus 

one of an o b s e r v e r ,  separate from the system, whose function is to provide the 

appropriate mechanisms, the appropriate computational processes, and the appropriate 

connections or definitions for the system’s symbols. In this sense the major thrust of 

the recent upsurge in interest in connectionist approaches for information processing 

is not qualitatively different from the more established computational approach which 

is explicitly representational. The basic epistemological position of much of 

connectionism is still representational by design. Of course there is absolutely no 

problem with this, as long as the fact is realized. The majority of artificial neural 

systems are simply trained to do exactly what we teach them to do, and often do it 

quite successfully.

That this, fundamentally representational approach is immensely valuable, is illustrated 

by the continuing success of machine vision applications. Machine vision works, not 

because its representations are necessarily identical to what we see as our picture or 

representation of the world, but because the representations and processes used are 

geared to the problem, and the problem is relatively tightly constrained. This approach 

is valuable as long as we recognise the assumptions that are implicit in it and which 

determine its limitations. The representations and processes of machine vision are still 

representations and processes constructed by us, or derived from our heuristics. The

'See the discussion on Rosen’s meaning of the tenns simple and complex in one of the footnotes in section 
22 3  above.
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success of machine vision will always only be as good as our understanding of the 

problem or the implications of our heuristics2.

This approach on the other hand, is n o t  suitable for describing biological systems, and 

it is not suitable for designing truly autonomous systems capable of displaying 

anything like the level of "intelligence" or "common sense" that we expect of humans. 

In other words it is not suitable for many of the applications or situations usually 

associated with general computer vision systems, where the emphasis is on 

unconstrained environments, behaviours and interactions. Now, whatever the merits of 

the representational approach, there was implicit in our research from the very 

beginning, a desire to consider relatively flexible and unconstrained situations as the 

environment for the visual processes that we were investigating. Thus, in hindsight, 

we can be quite sure that representational approaches are not the way to ensure success 

and we are forced to consider alternatives.

The Enactive Approach

The second approach to understanding the problems posed by vision, and indeed by 

perception in general, is related to a subset of the connectionist strategy for adaptation 

and learning, and also has its roots in efforts to understand the essential nature of the 

meaning of "living". In fact it is a confluence of the work of researchers in areas 

ranging from philosophy, theoretical biology, robotics and connectionism, which has 

in common the rejection of the representational position as a means of understanding 

the operation and behaviour of real cognitive systems. The work of several researchers 

in this area has been discussed in the body of this dissertation, but pre-eminent for its 

absolute incisiveness and all-encompassing logic is the extensive work of Humberto 

Maturana and Francisco Varela. Their work is usually associated with the term 

a u t o p o i e s i s ,  though this is only one particular case of a much wider view that they 

express on the nature of explanation, the relationship between observer, machine and 

environment, the autonomy of living systems, and so on.

2It is worth commenting that at the moment, neither of these factors are the primary constraints on what level 
of penetration it is possible to achieve with machine vision in industry. The effort and expertise required to 
engineer each individual application with current hardware and software technology are generally more 
immediate constraints [6].
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It is impossible to do justice to this approach here by trying to explain what is a quite 

radical reappraisal of the nature of being and knowing, strongly at odds with the 

mainstream of objectivism. Nevertheless I try to make what are the major points that 

differ from the representational approach above. From the perspective of this approach, 

for which Varela has recently coined the term e n a c t i v e , information is literally i n ­

f o r m a t i o n  — something that is formed within, something that is constructed. The 

"meaning" of information, so to speak, is related only to the continued viability of the 

system’s functioning. Information is never picked up or transferred, nor is there any 

difference between informational and non-informational entities in the system’s 

environment. Any significance that can be attributed, from the perspective of the 

cognitive system, to aspects of i t s  world, arises solely from within the system itself. 

This is not in the solipsistic sense, meaning that significance is attributed arbitrarily 

and independently of the physical substrate of the organism’s existence, but in the 

sense of the significance and signifier arising in a process of mutual specification. 

Neither the structure of the cognitive system’s world, nor the operations of the 

cognitive system as observer are pre-given — they are co-determined by a history of 

cognitive interaction, neither logically preceding the other, but still logically 

compatible. What is significant — what can be known — is e n a c t e d  or brought forth 

from an un-differentiated background. The fundamental logic or "foundation of 

reference" of the enactive approach is neither reductionist nor holistic, but an 

intermediate position which emphasizes the intrinsic circularity or reciprocal causality 

of cognition. Instead of perception being considered as primarily for the control of 

action, which is the conventional view, in the enactive view, action or behaviour is 

considered mostly in terms of the control or regulation of perception.

The only things relevant to the cognitive system’s ontology in the enactive perspective 

are its organisation, its realization of that organisation in terms of a particular structure 

and the maintenance of its organisation. The relationship between the observer, the 

system, the system’s environment and the system’s identity are all made clear to avoid 

confusion, particularly confusion about the source of signification (or meaning). There 

i s  a symbolic role for information in this context, where an observer (or observer 

community) can decide to use a symbol as an abbreviation for a chain of nomic links 

relative to the organisation of the system. But this assignment of a symbol makes no 

sense outside the context of the organisation of the system and it is also not
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operational for the system itself. This is the case, because the symbol is defined by the 

observer who is in the privileged position of being able to interact with b o t h  the 

systems and its environment, but who suffers from the disadvantage that they cannot 

see what they think is the system’s environment from the system’s point of view — 

what the system sees as its w o r ld .

An example from autopoiesis of the type of circularity typical of the enactive approach 

is the so-called genetic "code". The meaning or significance of, or specification by, the 

base sequences of the genetic "code", makes no sense outside the context of the 

metabolic machinery which interprets that code to regenerate itself3. Neither the 

genetic code nor the metabolic machinery are logically prior to the other. They are co­

dependent and exist by mutual definition. Similarly in the cognitive domain we again 

have an example of the pervading circularity, not in a paradoxical sense, but in the 

nature of the definition of the phenomenon itself. The world that we perceive is not 

a particular objective world waiting for us to open our eyes and to look at it. What we 

perceive as o u r  w o r l d , along with our ability to perceive, have arisen by mutual 

definition, in the history of each of our individual interactions with what is not us in 

the medium of our realization. We actively determine what is important, what we want 

to see, in a way that gives us an illusion of a stable solid world that could, it seems, 

not be any other way.

For a variety of reasons, the enactive approach, (or what has also been called 

autopoietic theory) has had little direct success in computer or information technology 

applications, including vision, to date [241]. The primary reason is that the ideas 

were never directly aimed towards addressing engineering issues: the principal aim 

was to understand the grounding or basis of biological systems and cognition. In fact 

the main reason for any change in this, is not that the emphasis in autopoietic theory 

has changed very much. It is that in research areas like computer vision and artificial

’Seeing that the genetic structure is stable through many generations of reproduction and ongoing metabolic 
regeneration we might refer to the chain of nomic links that involves this structure, and gives it stability by 
some label or symbol. But this is an arbitrary reference made by us from our viewpoint. It does not describe 
the dynamics of the system which provide the nomic reason for the stability of this particular structure. Note 
that we can still describe the components involved in the genetic structure in information theoretic terms, 
and describe their capacity to be a link in the specification of regularities over many generations, in terms 
of an information charnel capacity. However, their meaning still comes from the entire organisation: genetic 
and metabolic components.
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life, engineering has begun to address issues which are normally proper to the domain 

of biology and cognition.

The work of Brooks in an alternative approach to robotics, is however, an example in 

the spirit of the enactive approach, even though it is not formally within the 

framework described by Maturana and Varela. Brooks’ approach is to eschew 

representations altogether, preferring to let the world "serve as its own model". The 

robotic designs are not based on serial processing in stages or blocks called say, 

"sensing", "planning", "action", which has been the traditional robot control paradigm. 

Rather the complete sensory/motor control system is designed for a primitive task or 

functionality like walking. Many of these task-systems are then combined together in 

what is referred to as a s u b s u m p t i o n  architecture. This work is presently at an early 

stage of research and development While there has been some success with the 

particular systems designed, there are major engineering problems in designing systems 

for more complex behaviours. At the workshop on A u t o p o i e s i s  a n d  P e r c e p t i o n  held 

in DCU in August 1992, there was some pessimism expressed about the possibility of 

being able to engineer systems with "usefully" complex behaviours. It was believed 

that the process of generating "better" machines within the general e n a c t i v e  paradigm, 

might be more related to animal husbandry, than to the conventional process of 

engineering and design. Whichever of these two extremes the final situation is nearest 

to remains to be seen, but the first steps towards this would be to develop a suitable 

mathematical formalism for setting up models of the concepts involved and making 

predictions about what might be possible.

The autopoietic theory or enactive approach stresses the organisation of a system, in 

terms of an operational description, as the embodiment of its properties, or abilities, 

etc. Varela has proposed an algebraic system for describing the abstract recursivity or 

self-referentiality inherent in the circular definition of autopoietic and cognitive 

systems, but little work seems to have been carried out using this formalism in 

practical situations to date. A less general, but more accessible level of formulation is 

in terms of dynamics. However, the sensory signal processing properties of dynamical 

systems is a subject which is only beginning to be explored. So all in all, the enactive 

approach as a theoretical paradigm is impeccable, but much work needs yet to be done 

to realize concrete benefits in practical applications. The third approach also attempts
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to highlight problems with the conventional view of computer vision, but does so in 

a less radical way than the e n a c t i v e  approach. It is this that we turn to next.

The Information Theoretic Approach

A common thread through the first two approaches described above has been the 

different ways of viewing information. In the third approach, information takes centre 

stage as the primary subject and tool of investigation. This third approach is the main 

topic of this dissertation. As enunciated in the abstract, the central motivation for the 

research leading to this dissertation has been to determine what we should be doing 

in our research into artificial vision systems — exactly what problems should we be 

trying to solve. This dissertation is an attempt to show that we can at least begin to 

answer these questions in the context of a quantitative theory of information.

The notion of "closing the control loop", coupled with the desire to understand how 

to build machines which could learn and behave in unstructured environments set the 

opening agenda for our research. Although it was not initially apparent, it is now clear 

that the representational approach described above would not be suitable for this type 

of situation. In the early stages of the research, literature on biological vision ranging 

from neuroscience to cognitive psychology was used to try to give a better 

understanding of the issues involved. After a time it was realized from this literature 

that there were deep-rooted problems in understanding visual perception, either 

biological or artificial, in terms of the conventional representational approach. A part 

of this process was the realization that there is much more in common between 

biological and computer vision than there is between computer and machine vision. 

Machine vision was seen to occupy a world of fixed information, controlled variation 

and restricted representations — a man-made world where man-made ideas about the 

world are perfectly useful. But at a certain stage it became apparent that these ideas 

were no longer valid within the research agenda that had been adopted; that they 

cannot be the basis of explanations within biological vision, and that they cannot 

provide a suitable basis for examining the issues of general computer vision systems 

or autonomous systems.

In general, the processes and representations involved in machine vision are relatively 

accessible. The decisions to be made automatically by the system, and the analysis or
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heuristics leading to them, are usually formulated explicitly. One of the main issues 

that arises on the realization of a fundamental shift in perspective between machine 

and computer vision, is to find a suitable theoretical framework and mathematical 

formalism for describing the development and operation of biological vision systems 

in a way that would be common with the related computer vision capacities. On the 

other hand, it must also be realized that it was not good enough to simply copy 

biological processes and functions. If we were to be able to use results from biological 

vision in any meaningful way, we would need to have some fundamental 

understanding of what problems were being solved by visual sensing and sensory 

systems. A suitable theoretical framework for dealing with these issues is presented 

and argued for in this dissertation. The development of an appropriate mathematical 

formalism, based on the fundamental groundwork laid here, is the next step. We 

already have some clues as to how we should progress in the work of Rosen, Varela 

and Wilson.

There were three main topics of influence which helped to put some structure on the 

approach to solving the problem of finding a suitable theoretical framework within 

which to work. The first was the anatomy and physiology of the early visual system, 

particularly (i) the mappings (topographical and non-topographical) between different 

visual areas, (ii) the pathways through the visual system for separately processing 

form, colour and motion/depth4, and also including (iii) the massive reafferent 

projections in the "opposite" direction to the expected direction of information flow. 

These mapping or projection ideas, and the multiple pathways ideas are largely not 

represented in this dissertation. This is because they are not central to the conclusion 

presented here that information theoretic concepts are the appropriate means for 

answering many of the questions posed about the nature of vision. They would also 

have made the dissertation unmanageably large, and biased it towards biological 

vision, which was not the intention. They have however informed a particular way of 

understanding the nature of vision which is a subtext for the primary presentation.

*The idea being alluded to here is the magno/parvo separation described by a number of research groups 
working in neuroscience, particularly the work of Livingstone and Hubei. On the basis of anatomical, 
physiological and psychophysical evidence they identified three pathways through the early visual system 
of primates which are at least somewhat specialized for the separate processing of shape and fine detail, 
colour, and 3-D organization including depth and motion. The basic dichotomy here is like the original 
"what" versus "where" one identified by Marr. More recent work by Goodale and Milner has suggested that 
a "what" versus "how" dichotomy might be a better characterization.
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The second direct influence was the use of information ideas and information theory 

to describe and explain a wide variety of visual concepts and phenomena, ranging 

from the processing stages in the retina of the fly, to the uncertainty relationships 

between various parameters in visual analysis. This of course has become central to 

the research approach or theoretical framework which is presented here as an 

appropriate way of dealing with the issues arising in vision, either artificial or 

biological. Now there are at least four distinct interpretations of the term information, 

and attempting to distinguish and relate these different views has been a part of the 

research methodology used here to support the primary aim of understanding 

perception. This for instance, is the subject of chapter 4 where the quantitative concept 

of information is traced from its roots in physics and engineering to the position 

presented here of using it as the basis of explanations in biological sensing systems. 

Prior to this, in chapter 3, an extensive survey of aspects and examples of biological 

vision is presented, to illustrate the extent to which much of what is known about 

biological vision can in fact be explained in information theoretic terms alone.

The third major influence which led to the theoretical framework for understanding 

perception which is presented here, was an analysis of the pattern recognition aspects 

of perception and a philosophical reinterpretation of the roots of pattern recognition, 

which is described at some length in chapter 2. Having assumed that it makes sense 

to talk about perceptual systems, the next step was to try to discover or describe the 

processes or properties that allow a system to be described as perceptual. This careful 

reexamination of the nature of pattern recognition led to the conclusion that it is 

possible to describe a fundamental perceptual primitive — the basic unit or event or 

process which is essential in order to describe a system as perceptual. Furthermore, we 

make the claim that this fundamental level of description can be effectively applied 

to all sensory modalities in particular organisms like ourselves, and also to perceptual 

capacities in different organisms, though more evidence needs to be gathered to fully 

validate this conviction. This is a property that is essential to any attempt at a unified 

treatment of perception. The human nervous system for example, does not build 3-D 

representations for vision, or pitch/location representations for sound, because these 

are the particular solutions of computational problems in visual perception or aural 

perception respectively. We do not pretend to understand why our conscious 

perception distinguishes as it does, between different subjective aspects of perception
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within one sensory modality, or between different modalities. But we do claim that, 

in terms of the processes or mechanisms of perception as they are currently 

understood, there is nothing to distinguish different modalities, other than say, the 

intrinsic dimensionality or statistical properties of the sensory signals, or the type of 

transduction involved, or the gross genetically specified architecture of the 

corresponding neural systems. Acknowledging that there is a level of genetic 

programming in the gross architecture of the nervous system, which affects the way 

its properties are expressed, it is still possible to claim that the primary determinant 

of the development and operation of a perceptual system is the same across modalities, 

and can be explained in terms of information and measurement theory alone, without 

recourse to representational notions of modelling aspects of the world.

With the benefit of hindsight it is possible to see that progress in solving these 

problems was only possible in the context of the shift of emphasis away from 

representationalism and objectivism, and this shift was prompted by the effect of these 

three areas of influence on the development of my understanding of the problems. This 

new way (for the author) of looking at visual perception is based first and foremost 

on the realisation that how we see depends on us, and our perceptual system’s 

capacities, and on its history of visual experience — particularly at certain critical times 

during development It is based on the realisation that we cannot "see" objects: we 

construct (some might say hallucinate) "objects", on the basis of interpretations of light 

signals, based on our structure and our prior experience. Furthermore we claim, on the 

basis of the treatment of the philosophical foundations of pattern recognition described 

above, and on the basis of the understanding of the notion of r e l a t i v e  i n f o r m a t i o n  and 

s i g n a l - t o - s y m b o l  transitions in the context of information theory, that the most 

primitive signal transformation which can be of any relevance to an organism 

interacting with its environment is just such a signal-to-symbol transition, in other 

words, a primitive measurement or classification process.

Overall this approach is based on the realisation, that in order to allow something we 

design to escape our particular conception of reality, we must not try to incorporate 

our interpretations of the functional capabilities of our visual system. There must be 

a freedom for the system to find its own relevance in its own environment with its 

own organisation. The highest level at which we can describe this, without encoding
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our observables, or our values, is, I submit, at an informational level: at the level of 

particular information-carrying signals relative to a source and relative to a receiver, 

and at the level of ensemble averages of information rates, equivocation and so on. 

This level of description is not intended to be incompatible with the e n a c t i v e  one. It 

is intended to be a level which captures some of the important properties of the 

underlying system’s organisation, not to replace it, but if necessary to generalize it to 

other realizations and other mechanisms or structures. It is not intended either to be 

directly operational for the system, but one might find aspects of the system’s 

dynamics, and particularly the system’s organisation, which are reflected in properties 

of the informational description. Thus for example the attractor states described in 

dynamical models of cortical operation and the capability to quickly switch between 

different attractors seems to have a parallel in the primitive decisions or measurements 

of classifications postulated as one of the fundamental components of the informational 

description.

The main justification for the informational approach presented here, as opposed to the 

purely o p e r a t i o n a l  of the enactive viewpoint, is that we need to get "low" enough to 

find common explanations across many different realizations of the visual capacity. By 

explaining biological vision we a r e  explaining vision, as long as our explanations are 

at a level where they are not trying to interpret what are actually accidents of 

evolution.

Both the results presented by Linsker and Marshall on the self-organization of 

perceptual networks, and the view that the fundamental unit of perception is a 

primitive observation or recognition event, can be discussed in terms of information 

theory. It is not yet clear however, if both sets of ideas are at precisely the same level 

of description. The more obvious interpretation is of signals converging to nodes, and 

the decision or classification operations taking place at these nodes in the manner of 

a generalized perceptron, say. A different, and the author feels more plausible view is 

illustrated in Figure 34. Here there is not a unidirectional flow of signals from "input" 

towards "output" in the manner of a multi-layer feed-forward perceptron network. 

Instead, the basic operational unit is a bidirectional loop or flow of signals between 

layers corresponding to different levels of abstraction. The diagram is labelled with 

suggestive interpretations of the various stages and processes in this operation, but
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Hypothesis

Abstraction
(Abduct)
Afferent

Predict
(Hallucinate)
Reafferent

Test

Figure 35. Schematic illustration of the basic signal flow in a sensory information 
processing primitive.

these are intended only for explanatory purposes. The operational description of this 

loop would be purely in terms of signals (i.e., information theoretic concepts) and/or 

dynamics. In this picture, the process of making a decision might be interpreted as a 

back and forth flow of signals until a resonant state is arrived at which involves 

consistent or compatible "interpretations" between the different levels. In this sense, 

the level at which a decision-making or recognition process takes place, even though 

it can be formulated in information theoretic terms, is a different level of description 

from the processes that control the connections of signals into and out of this system. 

There are parallels between this picture and the work of Freeman on the olfactory 

system (the sense of smell). He describes recognition as chaotic attractor states of 

coupled systems of distributed oscillators. Some initial work by Marshall on coupled 

oscillators used for recognition also supports these conclusions.

However, these suggestions about the signal or information processing mechanisms 

involved in perception, are not in themselves the conclusions of this research. The 

original aim described above was to ask what we should be doing in order to make 

progress in vision. The conclusion is that we should not be trying to define how to 

map from scenes or images to 3-D representations, say. We should be trying to 

understand the information or signal processing properties of certain types of
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dynamics. We should be trying to understand and model the dynamics of perceptual 

systems in biological organisms. We should be trying to formulate a more complete 

picture which encompasses the results of self-organization-based information 

processing ideas, with the results on recognition based on relative information and 

signal-to-symbol transitions.

To make this more concrete, consider for instance Grossberg’s model of the early 

stages of human visual perception, which is a phenomenological model, formulated in 

terms of differential equations. The model seems to be uniquely successful at 

describing the properties of certain aspects of human visual perception like object 

recognition, intensity, colour, texture and stereo perception, and so on. The fact that 

this is a phenomenological model means that it gives little clue of the developmental 

pressures which might have led to this particular type of processing. But these 

questions about development are on the other hand, the very types of questions 

answered by Linsker’s work. Unfortunately, at the moment there is not a unified way 

of coupling the domains of these two sets of research results. The fact that Grossberg’s 

models are dynamic models, described in terms of differential equations, gives no clue 

about whether the processes can be described in other terms, such as algorithmic terms 

that do not need the painstaking incremental integration of the differential systems. 

Reinterpreting Grossberg’s results for example, in information theoretic terms which 

are compatible with other results, like Linsker’s, already expressed in informational 

terms would give tremendous insight into the mechanisms of perception. The 

conclusion of this dissertation is that this is the sort of thing we need to do. A 

theoretical framework for doing this, centred around information theory is presented. 

The mathematical formalism based on this framework, within which explanatory 

models of perceptual capacities could be constructed, is the next step in this research 

process.
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G lossary

Accommodation Adjustment of the optics of an eye to keep an object in focus on the 

retina as its distance from the eye varies. In the human eye this is achieved by 

varying the thickness of the lens.

Action potential The interior of a nerve cell has a negative electrical charge relative 

to the exterior. If the axon of a nerve cell is stimulated electrically, the 

membrane allows current to cross it and the charge is momentarily reversed. 

This change in membrane behaviour spreads rapidly down the axon and the 

wave of change in voltage across the membrane which it causes is called an 

action potential.

Activator In a dynamical system with many interacting components, one component 

is an activator of another if it tends to increase the activity (rate of production) 

of the other.

Agonist In a dynamical system with many interacting components, a component is an 

agonist for another, if it tends to increase the effect of the other on the activity 

(rate of production) of a third.

Aliasing The generation of low frequency artifacts when a high frequency signal is 

sampled below the Nyquist frequency (twice the maximum frequency contained 

in the signal).

Allonomy Literally external law. Used by Maturana and Varela to refer to control, or 

input-process-output type systems where the system is d e f i n e d  in terms of its 

input and output by some external agent

Amacrine cell A type of cell in the vertebrate retina.

ANN Synonym for artificial neural network



Antagonist In a dynamical system with many interacting components, one component 

is an antagonist for another if it tends to decrease the affect the other has on 

the activity (rate of production) of a third.

Anti-realism In the philosophical debate on the status of universals, it is the view 

that universals are not real and are not needed for the perception of particulars 

(objects).

Autonomy Literally self-law. Used by Maturana and Varela to refer to systems with 

a circular organisation which are self-defining or assert their own identity. 

They can be perturbed by external influenced but are not defined by these. A 

more general concept than autopoiesis below.

Autopoiesis Literally means self-production. An a u t o p o i e t i c  system is organised 

(defined as a unity) as a network of processes of production (transformation 

and destruction) of components that: (1) through their interactions and 

transformations continuously regenerate and realize the network of processes 

(relations) that produced them: and (2) constitute it (the machine) as a concrete 

unity in the space in which they exist by specifying the topological domain of 

its realization as such a network. It is intended by Maturana & Varela as a 

definition of the minimum criterion for something to be l i v i n g .

Axiology The theory of value

Backpropagation In the field of artificial neural networks, the backpropagation rule 

is used to feed the output error, (difference between actual output and desired 

output) back to affect the weights of connections between previous layers in 

a multi-layer network, in a way which is proportional to the effect they have 

on this output

Bandwidth The range of signal frequencies over which a signal processing device can 

operate.



Bausteinentropie Literally building block entropy. It is simultaneously a measure of 

the individual entropies of parts of a multi-partite system and of the entropy 

of the whole system. Introduced by Watanabe, it is related to the notion of 

redundancy in information theoiy.

Bayesian inference Statistical inference based on Bayes theorem

Bipolar cell A type of cell in the vertebrate retina.

Boolean algebra An algebraic system consisting of a set of elements, together with 

two binary operations obeying certain axioms. Used as an algebraic formulation 

of logic. Effectively equivalent to mathematical system of set theory.

Borel fields are effectively equivalent to sets of subsets of a given set, but can involve 

countably infinite unions and intersections of these subsets.

Broadband or wideband A frequency band that extends over a wide range of 

frequencies.

Complex system Term used by Robert Rosen to describe systems which cannot be 

accurately modelled by a Newtonian type of dynamical system.

Complex cell Cell in the visual cortex responding either to an edge, a bar or a slit 

stimulus of a particular orientation falling anywhere within its receptive field.

Compound eye An eye constructed of many o m m a t i d i a ,  each one a small elongated 

eye-cup with a crystalline cone at its tip and the light sensitive r h a b d o m  below 

it. There are two main types: the a p p o s i t i o n  type where light passing through 

a particular cone lens is mostly absorbed by the receptor of that ommatidia; the 

s u p e r p o s i t i o n  type where there is a clear space between the cones and 

rhabdoms making more efficient use of light

Computational theoretic A term introduced by Marr. Computational theories of 

vision are concerned with how, in principle, particular kinds of information



such as the shapes of objects or distances of surfaces can be extracted from 

images. Solutions to such problems involve consideration of the constraints 

which apply to the structures of natural objects and surfaces and the ways in 

which they reflect light. An example is the demonstration that the shape of an 

object can be recovered from its silhouette if the shape approximates to a 

generalised cone.

Cone receptors Cone shaped photoreceptors in the vertebrate retina which are 

sensitive to the wavelength of light in normal lighting conditions.

Connectionism Research program within cognitive science concerned with the 

properties of dynamical systems consisting of very simple interconnected 

n o d e s . The connections, which carry the output activity value of one node one 

of the many inputs of another node, often have variable weights affecting the 

strength of the interconnection. See also artificial neural networks, PDP, 

emergence.

Control theory An extension of dynamic systems theory which puts the emphasis on 

forcing a system to follow or tend to a particular trajectory under the influence 

of externally determined inputs. See also allonomy.

Cortical magnification factor A factor describing the extent to which a particular 

area on a certain part of the retina, is mapped on to an area of a particular size 

on the cortex. This factor changes substantially across the retina from high 

values for the fovea (represented by a large area of cortex) to low values in the 

far periphery (represented by small areas in the cortex).

Deductive inference An inference where the conclusion are evidentially implied by 

the premises.

Dendrites The processes of nerve cells which carry slow potentials from synapses to 

the cell body.
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Directional selectivity A difference in the response of a cell to a pattern of light 

moving through its receptive field according to the direction of movement

Doghood The property of being, or belonging to the class of, a dog.

Edge-detector Strictly, a detector for "edges" or intensity changes in an image which 

are supposed to correspond to object edges or contours in the real world.

Eigenimages Eigenvector of a matric which is the covariance matrix of an ensemble 

of images represented as vectors.

Entropy Roughly speaking, the entropy of a probability distribution measures how 

chaotic the distribution is. Thus the entropy is low if the distribution is 

concentrated around one value, and zero if it is concentrated on exactly one 

value. A uniform distribution has the maximum entropy. Formally, for a 

discrete distribution with outcomes l ,2,...,i,... having probabilities p1,p2,...,pi,..., 

the entropy q ( p )  of the distribution is given by q ( p )  = X, -p, l o g  p t

Ergodicity A topic dealing with the relationship between statistical averages and 

sample averages.

Essentialism A term Popper uses to denote the classical realist position on the status 

of the universal.

Exact differential A differential form which is the total derivative of some function. 

That is an exact differential can be integrated.

Extension The collection of all objects corresponding to a concept or satisfying a 

predicate. Compare in t e n s io n .

Extra-evidential Without the support of evidence.

Extra-logical Not the basis of a logic deduction or inference.
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Extra-fovea The part of the retina immediately outside of and surrounding the fovea 

(between 1° and 5-10° off the visual axis).

Fovea Pit-shaped depression in a vertebrate retina, usually in an area centralis.

Frege principle A term used by Watanabe to indicate the view that every predicate 

has a finite extension, i.e., a finite and definite set of objects in the set 

corresponding to that predicate. It is a notion closely aligned with Boolean 

logic and set theory.

Gabor elementary function A Gaussian modulated sinusoid signal in the time or 

space domain. It minimizes the product of spread in both time (or space) and 

frequency domains. It is equivalent to the minimum uncertainty function in 

quantum mechanics.

Ganglion cell A type of cell in the vertebrate retina. The axons of ganglion cells are 

packed together in the optic nerve and carry information from retina to brain.

Gap junctions Interactions between neural processes (dendrites, axons), involving 

purely electric effects rather than the more usual chemical transmission that 

takes place at synapses.

GEF Acronym for Gabor elementary function

Graded potential or slow potential. A potential difference between the inside and 

outside of a neural membrane which is relatively constant with time (compared 

with a "spiking potential"). They do not travel far along dendrites without 

significant attenuation.

Holonomic A kinematic condition on a dynamic system that allows the elimination 

of a coordinate variable and a velocity (or momentum) variable, thus reducing 

the number of configurational degrees of freedom of the system by one and the 

number of dimensions of the phase space by two. It corresponds to a



differential form in differentials of the coordinates (or velocities) which is 

exact or integrable.

Homunculus Literally a tiny man. Associated with the fallacy that in order for us to 

see there must be a little man in our head looking at images coming from the 

eyes.

Horizontal cell A type of cell in the vertebrate retina.

Hyperacuity Humans can carry out a variety of tasks to accuracies that are more 

precise than the dimensions of the retinal cones from which the information 

originates. Foveal cones have a diameter of about 27" (of arc), yet many tasks 

yield accuracies of around 5", and stereoscopic acuity may be as good as 2". 

Such tasks are said to fall within the range of hyperacuity.

Hypercolumn A block of the visual cortex in which all cells have receptive fields 

falling in a single area of the retina.

Hyperpolarisation A change in the membrane potential of a nerve cell such that the 

interior becomes more negatively charged relative to the exterior. If the 

membrane of an axon is hyperpolarised, action potentials are generated with 

lower frequency.

Imagelets A term used to indicate that the objects of interest are images of a sort, but 

with far fewer pixels than would typically be the case.

Inductive inference An inference for which there is insufficient evidence to 

necessarily follow from the premises.

Information theory A theory of the properties of signal sources and communication 

channels based on the average or statistical properties of these. Associated with 

the name of Shannon.



Inhibitor In a dynamical system with many interacting components, one component 

is an inhibitor of another if it tends to decrease the activity (rate of production) 

of the other.

Inner plexiform layer Layer in the vertebrate retina where the bipolar, ganglion and 

amacrine cells synapse with each other.

Intension The collection of predicates just sufficient to describe a concept.

Isopreference curves Curves drawn on a graph of different physical parameters 

indicating that subjects had roughly equal preference for say, images, 

corresponding to a particular curve, despite the variation of parameters along 

the curve.

Karhunen-Lo£ve transform A mathematical transform based on the transformation 

from a default coordinate system to one where the axes are the eigenvectors 

of the covariance matric of the original data.

KLT Synonym for the Karhunen-Lo&ve transform.

Kolmogorov Responsible for the axiomatic approach to probability theory

Large monopolar cells Neural cells in the compound eye of the fly which are roughly 

the anatomical analogue of the bipolar cells in the vertebrate retina.

Lateral geniculate nucleus (LGN) The part of the mammalian brain where the axons 

of retinal ganglion cells terminate, and from which axons run to the visual 

cortex.

Logon A term used by Gabor to denote the "minimum uncertainty" signal which is 

now usually called the Gabor elementary function.

Mach band phenomenon A subjective perception of light or dark bands on either 

side of the boundary where two regions with different reflectance meet



Metadynamics A term used mostly within the Alife research community to describe 

adaptation which actually involves change in the dynamic structure of a 

system.

Moiré fringes The low spatial frequency interference pattern formed when we look 

through two overlaid grids or gratings with high spatial frequency.

Modulation Transfer Function (MTF) The amplitude of the Fourier transform of a 

filter or function. The MTF is useful because by looking at its graph, one can 

tell at a glance which frequencies are passed and which are suppressed by the 

filter.

Newtonian paradigm The use of Newtonian type dynamical systems to describe a 

system which does not necessarily involve the interaction of physical 

"particles".

Nominalism A position opposed to realism which holds that there are no general 

kinds like doghood, only particular words.

Non-holonomic constraint A kinematic condition on a dynamical system which 

allows the elimination of a velocity variable or a differential of a 

configurational variable, but does not allow the corresponding configurational 

variable itself to be eliminated. Thus the freedom to vary a particular velocity 

is removed but not the freedom to vary the corresponding configurational 

variable and in other words without reducing the number of degrees of 

freedom. It corresponds to a differential form which expresses a connection 

between the velocities (or coordinate differentials) but cannot be integrated to 

give a related constraint on the configurational coordinates themselves.

Nyquist limit The highest frequency that can be sampled in a digital system without 

causing aliasing.

Octave An increase in frequency of one octave is a doubling of frequency.



Ommatidium Unit of the compound eye containing a light-sensitive rhabdom.

Opponent-colour response If light of one wavelength falling in the receptive field of 

a cell causes that cell to fire more frequently than its resting rate, and light of 

a different wavelength causes it to fire less frequently, the cell is said to have 

an opponent-colour response.

Outer plexiform layer A layer in the vertebrate retina where receptors, bipolar and 

horizontal cells all synapse with each other.

Paradigm Either the original sense of (i) a pattern, example, model, class sample, or 

(ii) the Kuhnian sense of an ideological theory or approach to scientific 

problems.

Paradigmatic symbol A term introduced to Watanabe to describe what human 

thought operates with, as opposed to an abstract symbol which a computer 

operates with. It is used in th sense of a particular example "standing for" or 

"eliciting" all other examples of a class.

Periphery The part of the retina greater than approximately 10° off the visual axis.

Phase space For a dynamic system model with N degrees of freedom, the phase space 

is the 2N-dimensional space with the configurational variables, and their 

velocities (or momentum) as coordinates. The state of the system is uniquely 

defined by giving its position in phase space (or its position and velocity in 

configuration space, for comparison).

Phenomenology Literally, the description or study of appearances. Any description of 

how things appear, especially if sustained and penetrating.

Phenomenological domain is defined by the properties of the unity or unities that 

constitute it, either singly or collectively through their transformations or 

interactions. Thus, whenever a unity is defined, or a class or classes of unities



are established that can undergo transformations or interactions, a 

p h e n o m e n o l o g i c a l  d o m a i n  is defined [24, p.46].

Photoreceptor A receptor cell sensitive to light.

Platonist In mathematics, Platonists, or realists, think that abstract concepts, like 

numbers, are entities, and that mathematical truth, including those about infinite 

numbers, exist independently of our researches. Compare formalist and 

constructivist.

Point spread function The 2-D spatial equivalent of the i m p u l s e  r e s p o n s e  in a time- 

varying system in engineering, or a G r e e n  f u n c t i o n  in the mathematics of 

differential equations, or the p r o p a g a t o r  in physics, or the k e r n e l  in quantum 

mechanics.

Polychotomy A choice between several mutually exclusive possibilities.

Predicate What can be said of (predicated of) a subject. In ‘Grass is green’, g r a s s  is 

the subject and g r e e n  is the predicate.

Processes One sense of the term refers to the elongated extensions of nerve cells 

divided into dendrites and axons.

Psychophysics The analysis of perceptual processes by studying the effect on a 

subject’s experience or behaviour of systematically varying the properties of 

a stimulus along one or more physical dimensions.

Raw primal sketch In Marr’s theory of vision, a rich representation of the intensity 

changes present in the original image.

Reafferent A f f e r e n t  designates a nerve cell that transmits ingoing signals from the 

peripheral receptors to the central nervous system. R e a f f e r e n t  designates signals 

that go from the CNS back towards the peripheral sensory receptors. 

Distinguish e f f e r e n t .



Receptive field The area of the retina in which light causes a response in a particular 

nerve cell.

Refractive index A measure of the extent to which a medium refracts light

Retinal eccentricity Angular distance of a point on the retina from the centre of the 

fovea.

Retinotopic map An array of nerve cells which have the same positions relative to 

one another as their receptive fields have on the surface on the retina.

Rod receptors Vertebrate photoreceptor with long outer segment sensitive to light of 

low intensity.

Saccade Rapid movement of the eye to fixate a target

666ple cell Cell in the visual cortex showing linear spatial summation of light 

intensities in parts of its receptive field separated by straight line boundaries.

Simple systems Used by Rosen to designate systems that can be fully modelled in 

terms of the rate equations of a Newtonian dynamics.

Solipsism Literally, ‘only-oneselfism’ The view that nothing exists outside one’s own 

mind, or that nothing such can be known to exist

Soma The cell body of a neuron.

Spiking potential or action potential A relatively large fluctuation in the potential 

across the membrane of a neural axon from the normal resting potential of - 

60mV to a positive potential of 20-30mV and back in <lms. Usually they 

appear as a train of pulses travelling down the axon. They can travel large 

distances ( l-2m) along axons at high speed without significant attenuation.



Stereopsis Perception of depth dependent upon disparity in the images projected on 

the retinas of the two eyes.

Striate cortex The primary visual cortical receiving area in the monkey and in man. 

So called because of the stria of Genarii, a band of white matter running 

through only this region of the cortex.

SVD Synonym for singular value decomposition

Synapse A point where the membranes of two nerve cells nearly touch and where 

electrical activity in one cell influences the membrane potential of the other 

cell.

Topographic map A map which preserves in its range, the spatial ordering of its 

domain.

Transduction The process by which external energy impinging on a receptor cell 

causes a change in its membrane potential.

Visual cortex Primary region of the mammalian cortex in the occipital lobe receiving 

input from the LGN. Cells in the primary visual cortex respond to light falling 

on the retina and are arranged in a retinotopic map. In primates, this region is 

also known as the striate cortex5.

’References [9] and [56] are gratefully acknowledged for assistance in preparing this glossary.
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