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Abstract 
 

The hydrolytic degradation of a series of β-sultams and β-lactams was 
investigated using isothermal microcalorimetry (IMC), to determine kinetic and 
enthalpic data. The importance of these studies was to model the process of 
hydrolysis as this was a simplification of the mechanism by which β-lactams 
and β-sultams function as serine protease inhibitors.  
 
Calorimetric studies were conducted using a Thermal Activity Monitor (TAM 
2277). Three categories of experiments were conducted: in the solid state, 
varying relative humidity (R/H) and in aqueous solution.  Hydrolytic rate 
constants and enthalpies were determined for the solid state studies and these 
were related to substituent effects. However, for the experiments relating to the 
R/H studies no conclusive results were obtained. As expected, for solution state 
studies the hydrolytic rate constant in all cases changed with temperature 
(298K, 310K and 323K). 
 
Theoretical predictions were then made for a novel β-sultam based on these 
results with an excellent correlation observed between theoretical calculations 
and experimental results. 
 
Finally, calorimetric experiments were conducted on a series of β-lactams. This 
was for two reasons firstly; to determine if calorimetry can monitor low                            
reaction rates and secondly; to compare rates of hydrolysis with the β-sultams. 
For a series of β-lactams, solution state hydrolytic rate constants and enthalpies 
were determined. An overall comparison of β-lactams and β-sultams appeared 
to indicate that in all cases β-lactams reacted slower than β-sultams.  
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Chapter 1: Introduction 

 

1.0 General introduction to a calorimetric study of β-sultams and β-

lactams 

The basis of this thesis is a calorimetric study of β-sultams and β-lactams, 

shown in Figure 1. To understand why this research is of scientific interest 

firstly requires an understanding of the role bacterium play in disease. 

 

NSO
O

O
N

H H

1 2
 

Figure 1:  β-sultam (1) and β-lactam (2) 

 

Bacteria are micro-organisms that can be responsible for disease; there are two 

different types, Gram positive and Gram negative. Bacterial cells, unlike animal 

cells, exhibit a cell wall that is made up of peptidoglycan, N-acetyl-glucosamine 

(NAG) and N-acetyl-muramic acid (NAM).1 Antibacterial agents work to 

prevent cell wall synthesis and therefore prevent the spread of disease. For 

example, β-lactams are a group of antibacterial agents that work by inhibiting 

bacterial cell wall synthesis by binding to the transpeptidase enzyme. However 

the efficacy of β-lactam antibiotics is quickly being eroded, with β-lactamase 

enzymes primarily responsible for the increased resistance. β-lactamases bind 

to the β-lactam allowing the transpeptidase enzyme to continue bacterial cell 

wall formation. One solution to this problem is that β-lactam antibiotics can be 

administered with serine protease inhibitors, which can inhibit the β-lactamase 

from binding to the β-lactam antibiotic. 

 

β-sultams are potential serine protease inhibitors.2 β-sultams are highly 

strained, highly reactive cyclic sulfonyl analogues of β-lactams. β-sultams and 

β-lactams differ from each other in that the sulfonyl chemical moiety in β-

sultams is replaced by carbonyl in the β-lactams. β-sultams act as sulfonylating 

agents of serine enzymes, inactivating the enzyme by forming a stable adduct.3 

 The hydrolysis of β-sultams compared with β-lactams is of great interest 
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because the function of the transpeptidase enzyme and the β-lactamase enzyme 

is the same. Previous studies have shown β-sultams hydrolyse via S-N bond 

fission and β-lactams via endocyclic and exocyclic C-N fission.4 Further 

investigation into the rates of hydrolysis of β-sultams compared with β-lactams 

is required together with further analysis at different temperatures. A potential 

serine protease inhibitor should bind to the serine protease enzyme, in the case 

of β-sultams they react only by S-N fission. Therefore if β-sultams are to be 

successful serine protease inhibitors, the study of the rate at which the β-sultam 

ring opens is of great importance.  

 

To fully investigate β-sultams as potential serine protease inhibitors, synthesis 

followed by analytical measurements must be conducted. Previous 

spectrophotometric kinetic studies have shown that there is a relationship 

between the different substituted β-sultams and their rates of hydrolysis. 

Calorimetric studies of β-sultams have not been conducted prior to this thesis. 

Further analytical and thermodynamic investigations are to be conducted using 

isothermal microcalorimetry to understand fully the hydrolytic reaction of β-

sultams compared with β-lactams, but also amongst the β-sultams and β-

lactams with respect to different substituent effects. 

 

Isothermal microcalorimetry requires no prior sample preparation yet yields a 

variety of parameters, for example reaction order, rate constant and enthalpies, 

can be determined. This technique is not limited to compounds in solution, for 

example samples can be in the solid state under atmospheric conditions or 

hygrostats can be used to determine thermodynamic parameters at different 

relative humidities. In addition, isothermal microcalorimetry is not limited to 

compounds with a chromophore, whereas many analytical experiments are. 

Thus, calorimetry may provide a far more versatile analytical technique than 

those traditionally used. Solid state isothermal microcalorimetry is of particular 

importance in the pharmaceutical industry, allowing the determination of 

stability which is crucial in the final stages of drug development. The stability 

and degradation of solid samples can be investigated at different relative 

humidities using isothermal microcalorimetry.5 The amorphicity content within 
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a sample of single or mixed formulations can be studied as well as compounds 

in solution under varying controlled conditions to observe hydrolysis.6 The 

technique can also effectively be combined with other analytical techniques, for 

example NMR, IR and Raman spectroscopy. Therefore synthetic chemistry 

followed by analytical measurements can provide useful information. To fully 

understand the theory behind the compounds that were chosen for study in this 

research firstly requires a thorough discussion of the role of bacteria and its role 

in decreased drug efficacy. 

 

1.1 Bacteria 

Bacteria were first discovered in the 1670s by Van Leeuwenhoek, although it 

was not until the nineteenth century that the French scientist Pasteur discovered 

that these micro-organisms might be responsible for disease.7 There are two 

different types of bacteria that exist, Gram positive and Gram negative. The 

Danish physician Christian Gram invented the Gram staining technique in 1884 

which was used to classify bacteria. The bacteria are treated with a violet dye, 

iodine, and rinsed with alcohol. Gram positive bacteria remain purple and Gram 

negative bacteria stain pink. The difference between the two cells is caused by 

the amount of peptidoglycan in the cell wall. Gram positive are richer in 

peptidoglycan than Gram negative.8

 

The cell wall maintains the structural integrity, temperature, pH and osmotic 

pressure of the bacteria. The polysaccharide part of the peptidoglycan is made 

up of a repeating disaccharide unit of N-acetyl-glucosamine (NAG) and N-

acetyl-muramic acid (NAM). A unique bacterial pentapeptide is attached to the 

D-lactyl moiety of NAM; the peptides from two separate strands are cross 

linked by DD-transpeptidase to give the rigid cell wall.9

 

Cell wall synthesis is a well researched mechanism, the prevention of cell wall 

synthesis leads to bacterial death. Many antibiotics work by inhibiting cell wall 

synthesis for example, penicillins, cephalosporins and carbapenems. These 

antibacterial agents kill or prevent the growth of bacteria and it is therefore 

important to understand their structure and mode of action.10 
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1.2 Antibacterial agents 

Antibacterial agents in the β-lactam class such as penicillin consist of a four 

membered amide ring (Figure 2). Antibacterials are selective in their action 

against bacterial cells. Different mechanisms exist: inhibition of cell 

metabolism, inhibition of bacterial cell wall synthesis, interactions with the 

plasma membrane, disruption of protein synthesis and inhibition of nucleic acid 

transcription and replication. Antibacterials which inhibit cell wall synthesis 

prevent bacterial replication and are therefore of great interest. 

 

Of those antibacterials which inhibit cell wall synthesis, there are two major 

classes of interest, penicillins and cephalosporins. Sir Alexander Fleming first 

discovered penicillin in 1928; he recognised the death of bacterial colonies by a 

rare species of penicillium. It was not until 1938 (Florey) that penicillin was 

isolated, 16 years later it was used as an antibacterial.11 

 

O
N

O O
N

CO2H

R
H
N S

ß-lactam ring              Penicillin  
 

Figure 2: Structure of a β-lactam ring and penicillin. 

 

Penicillins inhibit cell wall synthesis, this leads to bacterial cell lysis which in 

turn is followed by cell death. Cell wall synthesis involves a transpeptidase 

enzyme, which facilitates the incorporation of glycan crosslinks into the cell 

wall. The crosslinks increase the rigidity of the cell membrane. At this point 

energy is generated during amino acid hydrolysis (loss of D-ala) which is used 

in the formation of the crosslink (peptide bond) as shown in Figure 3. 

Penicillins work by mimicking the original D-ala-D-ala amino acid sequence 

and are thus recognised by the transpeptidase enzyme which disrupts cell wall 

synthesis.  
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O

O O

RCONH

NH CH3

CO2
-

Transpeptidase

RCONH

OEnz

+ H2NCH

CH3 RCONH

NH
peptide

NHpeptide

CO2
-

 
Figure 3: The transpeptidase enzyme incorporates glycan crosslinks into 

the cell membrane. 

 

Penicillin is not the only β-lactam antibacterial agent that exists; other classes 

do exist and are similar in structure and mechanism. Some of these related β-

lactam antibacterial agents are discussed in the following section. 

 

1.3 β-Lactam based antibiotics 

Nearly eighty years after Sir Alexander Fleming’s discovery of penicillin,12 β-

lactams continue to be one of the most important classes of antibacterial agents. 
13 β-Lactams are active acylating agents, acylating nucleophilic residues in a 

diverse range of bacterial and mammalian serine active enzymes, hence 

displaying a wide range of biological activities.14, 15 The origin of this biological 

activity originates with the chemical reactivity of the small ring system (β-

lactam ring).16 Antibiotics, which comprise of the β-lactam ring, are: 

penicillins, cephalosporins, carbapenems and monobactams as shown in Figure 

4. 

N

S

N

S
R

O

N
H

O

O
OH

Penicillin

R

O

N
H

O

Cephalosporin

x

COOH

 

N

SO3H

CH3

O

R

Monobactam                                

N
O

C O2H

H

Ca rbapenem  
Figure 4: Antibiotics which contain β-lactam rings. 
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β-Lactam antibiotics prevent cell wall synthesis in bacteria, for example 

penicillin covalently binds to the transpeptidase enzyme (Figure 5) forming a 

stable acyl-enzyme adduct. 

 

N

S S
Transpeptidase

R

O

N
H

O

O
OH

R

O

N
H

O

O
OH

HN

OEnz

 
Figure 5: Inhibition of bacterial cell wall synthesis. 

 

Unfortunately, antibacterial therapy and the efficacy of β-lactam antibiotics are 

quickly being eroded as bacterial resistance to β-lactam antibiotics increases. 17, 

18 Bacterial resistance to all clinically used antibiotics is being identified in 

hospitals all around the world, and now there is an urgent need to develop new 

antibiotics.19 

 

When first discovered the β-lactam antibiotic penicillin was effective against all 

types of Gram-positive bacteria, for example; pneumonia, wound and skin 

infections. However, some bacteria are now resistant to most types of 

antibiotics. Resistance to β-lactam antibiotics occurs by four major 

mechanisms: 20 alterations in penicillin binding proteins,21 efflux via specific 

drug pumps,22 impaired entry into the bacterial cell and production of 

inactivating enzymes, for example β-lactamases. The inhibition of β-lactams 

will now be discussed in more detail. 

 

1.3.1 Inhibition of β-lactams 

As previously discussed, resistance to β-lactam antibiotics occurs via four 

different mechanisms; the mechanism of particular interest for this work is the 

production of inactivating enzymes, for example, β-lactamases. There are 470 

β-lactamases known to date.23 These are divided into four classes: A, B, C and 

D. Classes A, C and D have similar mechanisms. The Class B β-lactamases are 

metalloenzymes which require one or two zinc ions to carry out hydrolysis of 

the β-lactam.24 Classes A and C are of great concern for the resistance of 
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antibiotics.25, 26, 27

 

The β-lactamase enzyme is primarily responsible for resistance by catalysing 

the hydrolysis of the β-lactam (Figure 6), where the ring opens to form a 

bacterially inert β-amino acid.28

O
N

O
R OH

NHR
ß-lactamase

 
Figure 6: β-lactam ring opening. 

 

One way to overcome resistance of some bacteria to β-lactam antibiotics is to 

administer mechanism based inactivators with penicillin, for example 

sulbactam, tazobactam and clavulanate. These inactivators inhibit β-lactamase 

and preserve antibacterial activity. Further research is being carried out to 

develop novel β-lactam compounds, which are more stable towards the β-

lactamase.29, 30 The University of Huddersfield have also been investigating β-

sultams as potential serine protease inhibitors of the transpeptidase and β-

lactamase enzymes. To understand serine protease inhibition it is important to 

understand the structure and mechanism of serine protease enzymes. 

 

1.3.2 Serine protease enzymes 

Serine proteases are a class of enzymes that cleave peptide bonds in proteins. 
They are characterised by the presence of a serine residue in the active site of 

the enzyme. There are a wide range of serine proteases that exist; participating 

in a wide range of functions in the body, for example, trypsin and subtilisin are 

involved in digestion and thrombin in blood coagulation.31 The three most 

studied serine protease enzymes are chymotrypsin, trypsin and elastase. They 

are synthesised by the pancreatic cells and secreted in the small intestine. All 

three are very similar in structure, as shown in Figure 7. 
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Figure 7: Comparison of 3-D structures of trypsin, chymotrypsin and 

elastase.32

 

Serine proteases are involved in a catalytic mechanism. The active site of    

serine proteases are characterised by a catalytic triad and an oxyanion hole. 

There are three groups in the catalytic triad, Ser-195 which acts as the 

nucleophile, His-57 and Asp-102 which behave as a general base and a H-bond 

acceptor. The oxyanion hole consists of a backbone of amide NHs of Ser-195 

and Gly-193 33. A summary of the catalytic mechanism is shown in Figure 8. 
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Figure 8: Serine protease catalytic mechanism.31, 32 

A polypeptide substrate binds to the surface of the serine protease enzyme; the 

carbonyl carbon of this bond is positioned near the nucleophilic serine.  

Serine -OH attacks the carbonyl carbon, nitrogen of the histidine accepts the 

hydrogen from the -OH of the serine. A pair of electrons from the double bond 

of the carbonyl oxygen moves to the oxygen. A tetrahedral intermediate is 

generated.  

The nitrogen carbon bond in the peptide is broken. The covalent electrons 

attack the hydrogen of the histidine, breaking a bond. The electrons that 
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previously moved from the carbonyl oxygen double bond move back from the 

negative oxygen to recreate the bond, generating an acyl-enzyme intermediate.  

Water replaces the N-terminus of the cleaved peptide, and attacks the carbonyl 

carbon. Nitrogen from the histidine accepts a proton from the water. Electrons 

from the double bond move to the oxygen making it negative. A bond between 

the oxygen of the water and the carbon is formed. Generating a tetrahedral 

intermediate.  

The bond formed in the first step between the serine and the carbonyl carbon 

moves to attack the hydrogen that the histidine just acquired. The electron-

deficient carbonyl carbon re-forms the double bond with the oxygen. As a 

result, the C-terminus of the peptide is now ejected.  

An important part of this mechanism is the generation of tetrahedral 

intermediates. The serine proteases preferentially bind to the transition state; 

preferential binding is responsible for much of the catalytic efficiency of the 

enzyme. Serine proteases therefore make good targets for transition state 

analogue inhibitors (TSA). TSA inhibitors resemble the substrate’s structure in 

the transition state; they are stable, similar in geometry and charge. It is for this 

reason that β-sultams are potential inhibitors of serine proteases; they are 

structurally similar to β-lactams. In addition the chemical properties and 

behaviour are important if they are to be considered as potential inhibitors. For 

example, synthetic difficulty, chemical stability and more importantly their 

mechanism of action must all be known. 

 

1.4 β-Sultams 

β-Sultams (1, 2-thiazetidine 1, 1-dioxides) (1) are highly strained, highly 

reactive sulfonyl analogues of β-lactams (2)34shown in Figure 9. They contain 

three different heteroatom bonds: N-S, S-C, and N-C.35  
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Figure 9:  The basic structure of a  β-sultam (1) and a β-lactam (2). 

 

It is already known that the β-sultam ring is less stable in comparison with the 

β-lactam ring; this is a result of increased distortion within the β-sultam ring.36 

The increased distortion is created by the difference in the C-S and N-S bond 

length. The C-S and N-S bonds are longer than the corresponding C-C and C-N 

bonds of the β-lactam ring. β-sultams act as sulfonylating agents of serine 

enzymes, inactivating the enzyme by forming a stable adduct shown in Figure 

10. 

 

S NO
O

S N
HO O

+     E n z O H E n z O

 
Figure 10: Serine enzyme inactivation of a β-sultam. 

 

β-Sultams react with nucleophilic centres and can also behave as peptide 

mimics, where the sulfonyl group replaces the carbonyl to mimic the peptide. 

They also mimic tetrahedral intermediates by acting as transition state analogue 

inhibitors.37

 

There are 4 distinct routes of synthesis for β-sultams, these are: 

1) Cyclisation by S-N bond formation. 

2) Cyclisation by C-N bond formation. 

3) [2 + 2] cycloadditions of sulfonimines and alkenes (C-N and C-S bond 

formation). 

4) [2 + 2] cycloadditions of sulfenes and imines (C-C and N-S bond formation). 

 

An example of C-N bond formation is the cyclisation of β-hydroxysulfonamide 

mesylates (Figure 11); this method was first described by Thompson in 1984.38  
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Figure 11: Synthesis of a β-sultam via C-N bond formation. 

 

Baganz synthesised the first β-sultam in the 1960s by the oxidative chlorination 

of cystine diethyl ester which gives a β-amino sulfonyl chloride. Intramolecular 

cyclisation with dehydrochlorination follows to give the β-sultam shown in 

Figure 12. 39
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Figure 12: Synthesis of β-sultam by Baganz. 

 

Investigations are still ongoing for novel compounds and the development of 

new serine protease inhibitors. There are many factors to be considered when 

developing a new drug (inhibitor). The first being the identification of 

candidates, followed by the characterisation of these candidates by such 

techniques such as NMR (Nuclear Magnetic Resonance), IR (Infra Red) and 
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Raman spectroscopy, mass spectrometry and biological testing. Further 

analytical tests can then be conducted, for example, HPLC (High Performance 

Liquid Chromatography), thermal measurements using DSC (Differential 

Scanning Calorimetry), IMC (Isothermal microcalorimetry) and enzyme 

binding studies. Molecular modelling also plays an important role as many 

predictions and calculations contribute to drug discovery. Once all these factors 

have been considered drug development follows which includes toxicity, 

pharmacokinetics, metabolism, physicochemical properties, formulations and in 

vitro studies, followed by clinical trials. This process of drug discovery can take 

many years. This particular research project is part of an ongoing research 

programme where potential medicinal compounds (β-sultams), have been 

synthesised and partially characterised. This project is to carry on this work by 

employing calorimetric techniques to study β-sultams. 

 

1.4.1 β-Sultams and β-Lactams:  kinetic and organic synthetic studies. 

The chemical reactivity of β-sultams is of great interest. Sulfonation is not a 

well studied process and sulfonyl derivatives are much less reactive than their 

acyl counterparts.40 β-sultams are the sulfonyl analogues of β-lactams and have 

been studied to determine the difference in chemical and physical properties 

between these two groups. β-sultams are potential serine protease inhibitors and 

can therefore stop the β-lactamase enzyme from binding to the pencillin, which 

prevents bacterial cell wall synthesis. The serine enzymes transpeptidase and β-

lactamase enzyme have an OH group.41 Hydrolysis studies using water and 

alcohols can mimic the OH group in these enzymes. This allows simple, cost 

effective studies to initially be carried out. The hydrolysis can then be further 

looked into using these enzymes.  

 

Many hydrolysis and organic synthetic studies have been conducted at the 

University of Huddersfield, and many of these have a focus of comparison 

between the β-lactams and β-sultams.  Some of these studies will now be 

reviewed.  

 

The aminolysis reactions of N-aroyl β-lactams have been studied. In water the β 
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-lactam ring of β-lactam antibiotics undergoes attack by nucleophilic reagents 

such as amines and alcohols in competition with hydroxide ions. 

 

Nucleophilic substitution at the carbonyl centre of the β-lactams is an acyl 

transfer process involving covalent bond formation between the carbonyl 

carbon and the nucleophile as well as C-N bond fission of the β -lactam. 

 

As shown in Figure 13, the reaction of amines with penicillins gives the 

corresponding penicilloyl amide via cleavage of the amide bond: the amine is 

acylated.42 

 

O
N

S RNH2
O

S

COO-

RCONH

COO-

RCONH

RNH

HN

 
Figure 13: Pencillin hydrolysis. 

 

Incorporating a benzamide as a potential leaving group into a simple azetidin-2-

one gives the imide N-benzoyl-β-lactam (Figure 14), which is of interest as it 

contains an endocyclic and exocyclic centre both of which are potential sites for 

nucleophilic attack. When hydrolysis with hydroxide was studied, there was 

competition between the two sites for hydroxide ion attack as a function of 

substituents in the aroyl group. 

 

O
N O

Ar  
Figure 14: N-benzoyl-β-lactam. 

 

N-aroyl β-lactams were investigated further by determining the effect on the 

rate of reaction, where the basicity of amine nucelophiles was varied and 
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studying the effect of varying the substituents in the aryl residue of the amide 

leaving group. The environment the subtituents are exposed to effects the rate 

of hydrolysis.  

 

The rates of the aminolysis of the N-aroyl β-lactams were studied by UV-

spectrophotometry in 1% acetonitrile-water (v/v) at 30°C with 1.0 M ionic 

strength maintained by KCL. The amine behaved as a nucleophile and a buffer.  

 

The site of nucleophilic attack was determined by a product analysis of the 

reaction, using NMR and ESI-MS (electrospray ionisation mass spectrometry). 

Results showed at least 90% of the attack occurs via the β-lactam carbonyl. The 

kinetics of aminolysis were studied by spectrophotometrically measuring the 

change in absorbance due to product formation using the amine as both buffer 

and reactant with excess amine over N-aroyl β-lactam. Simple first order 

kinetics were observed.43  

 

The aminolysis of N-aroyl β-lactams showed a high sensitivity to both the 

basicity of the attacking amine and that of the amide leaving group. The 

aminolysis of N-aroyl β-lactams appears to occur by a concerted pathway in 

which bond formation and fission occur simultaneously. 

 

The structure of individual β-sultams and β-lactams play a key role in their 

reactivity. Structure-reactivity relationships in the inactivation of elastase in a 

series of β-sultams has been studied.44 

 

Human neutrophil elastase (HNE) is a serine enzyme which is a destructive 

proteolytic enzyme which is able to catalyse the hydrolysis of the components 

of connective tissue. As previously mentioned the development of serine 

enzyme inhibitors are of great interest.  

 

HNE is released in response to inflammatory stimuli and has a major role in 

protein digestion. It has been implicated in the development of diseases such as 

emphysema, cystic fibrosis and rheumatoid arthritis. HNE belongs to the 
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trypsin class and the structure has been determined by X-ray crystallography.45 

There have been numerous studies to find small molecule inhibitors of HNE.46  

However, structural and inhibition studies have been conducted on the related 

but readily available Porcine Pancreatic Elastase (PPE), due to the difficulty in 

obtaining HNE.47 

 

Many inhibitors are acylating agents of the active site serine residue of serine 

proteases.48 The mechanism of inhibition involves the displacement of a leaving 

group from the acylating agent to generate a stable acyl enzyme which only 

reacts slowly with nucleophiles such as water to regenerate the enzyme and so 

this process leads to effective inhibition. 

 

Serine enzymes react with acyl substrates, but they are also known to react with 

other electrophilic centres such as phosphonyl derivatives.49 The main reason 

why sulfonation of serine enzymes is not a well studied process is because 

sulfonyl derivatives are much less reactive than their acyl counterparts. β-

sultams are excellent candidates to explore the mechanism of sulfonation and 

possible inhibition of serine protease enzymes.  β-Sultams are unique amongst 

the sultams and sulfonamides, in that they are more reactive than their amide or 

lactam counterparts.50 

 

The following β-sultams were studied and synthesised at the University of 

Huddersfield in order to study their enzyme inhibitory properties.  
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Figure 15: Substituted β-sultams synthesised at the University of 

Huddersfield 

 

In order to test the inhibitory properties, N-acyl-β-sultams were incubated 

together with PPE in a buffered solution. Aliquots of the incubation solution 
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containing enzyme and potential inhibitor were then removed from the 

incubation cell after an incubation time and assayed for PPE activity against an 

anilide substrate that was introduced for the enzyme to hydrolyse.  

 

It was found that N-substituents not only influence the rate of S-N bond fission 

and reaction through inductive effects altering the electrophilicity of the 

sulfonyl centre, but also change binding energies through molecular recognition 

effects such as interactions between the substituent and a binding pocket in the 

enzyme. 

 

The rates of enzyme inactivation could be increased if recognition elements 

were built into the structure of the β-sultams. Alkyl chains can therefore be 

added to the simple β-sultam ring at the 4-position with the intention of 

improving binding at the active site of PPE as shown in Figure 16. 

 

Variation in the N-substituted β-sultams causes differences in the rates of 

inactivation by 4 orders of magnitude. It is hoped that in the future, improved 

enzyme binding will allow the application of more stable and more selective 

enzyme inhibitors.51 
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Figure 16: Substituted β-sultams synthesised at the University of 

Huddersfield 

 

N-acyl substituted β-sultams and N-aroyl substituted β-sultams showed that 

rates of hydrolysis are affected by the different substituents within each group. 

 

To further understand the hydrolysis of β-sultams the reactivity and selectivity 

in the inhibition of elastase by 3-oxo-β-sultams was looked at. Hydrolysis 
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occurs via S-N fission and C-N fission (Figure 17). These compounds are 

extremely interesting as they are both β-lactams and β-sultams.  The 

compounds used in this study were synthesised at the University of 

Huddersfield by Naveed Ahmed and the hydrolysis studies were conducted by 

Wing Tsang. 

 

3-Oxo-β-sultams were found to be a novel class of time-dependent inhibitors of 

elastase.  The enzyme hydrolysed the amide bond by acylation.  The hydrolysis 

of 3-oxo-β-sultams with hydroxide occurs at the sulfonyl centre with S-N 

fission and expulsion of the amide leaving group.52  

 

Increasing the selectivity between these two reactive centres was explored by 

examining the effect of substituents on the reactivity of 3-oxo-β-sultams 

towards hydrolysis and enzyme inhibition. 53, 54 

 

The 3-oxo-β-sultams were found to be a new class of acylating agent for the 

enzymes, but the structure is chemically too reactive for further studies towards 

therapeutic application as sulfonylation in water was too fast - the half life of 

the N-benzyl derivative at pH6 in water is only 6 minutes.55 

O
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NS Ph

Enz
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Figure 17: 3-oxo-β-sultams, hydrolysis can occur via S-N and C-N fission. 

 

The 3-oxo-β-sultams are unusual in that the enzyme reacts at the acyl centre 

whereas the hydrolysis reaction occurs at the sulfonyl centre. Variation of the 

structure by simple substituents leads to differences in rates of inactivation. 

There is a large differential effect of substituents on the relative reactivities of 

hydrolysis and enzyme reaction.  
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For this reason, second order rate constants for alkaline hydrolysis (kOH) at the 

enzyme inhibition (ki) of PPE at pH6 (0.1 M MES buffer) by 3-oxo-β-sultams 

in 1% acetonitrile, 1.0 M ionic strength at 30°C, were studied and the results are 

shown below.56 
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S N

COOH  
kOH M-1 s-1 1.83 x 10-5 1.86 x 10-4 5.99 x 10-3 3.89 x 10-4

 

Table 1: Shows rates of hydrolysis for 3-oxo-β-sultams. 
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kOH M-1 s-1 Not 

determined 

2.42 x 10-4 3.27 x 10-4 1.74 x 10-3

 

Table 2: Shows rates of hydrolysis for 3-oxo-β-sultams. 

 

β-Sultams themselves have been the study of further investigation and the 

reactivity and the mechanisms of reaction of a series of β-sultams with 

nucleophiles were studied. Reactions were studied by stop flow UV 

spectrophotometry, stock solutions were prepared at twice the standard UV 

concentration in 1 M KCl. The substrate solution and the reaction mixture were 

placed in separate syringes at a thermostatted temperature of 30°C before 

pneumatic injection into the reaction cell.  

 

Pseudo first-order rate constants from exponential plots of absorbance against 

time were obtained using the commercial fitting software (Applied 

Photophysics). The pH of the reaction was measured before and after each 

kinetic run. The solubility of compounds was maintained by working within the 
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linear range of absorbance in corresponding Beer-Lambert plots. Pseudo first 

order rate constants from exponential plots of absorbance against time or 

gradients of initial slopes were obtained. 

 

Results for the reactivity of N-unsubstituted β-sultams in aqueous sodium 

hydroxide solution gave first order rate constants. The observed pH 

independent reaction and absorbance changes are consistent with the hydrolysis 

pathway shown in Figure 18. 
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Figure 18: β-sultam hydrolysis. 

 

Exploring the possibility of neighbouring group participation by a carboxy 

group on the β-sultam nitrogen in the hydrolysis of β-sultams was also studied 

and an example structure is shown below. The rates of hydrolysis were 

determined spectrophotometrically at a wide range of aqueous solution pHs.  

 

 

O S N

O
CO2H

Ph

Figure 19: Carboxy group incorporated on the β-sultam. 

 

Second order rates of hydrolysis were observed. Rates of hydrolysis were 

typically 20 fold lower that that for the N-benzyl β-sultam shown in Figure 20. 
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Figure 20: N-benzyl β-sultam. 

 

Similar rates of hydroxide ion hydrolysis have been observed for benzyl 

penicillin and its methyl ester. Interestingly, N-(m-chlorophenyl) β-sultam, 

shown Figure 21, has a low reactivity towards nucleophiles.57 
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Figure 21: N-(m-chlorophenyl) β-sultam. 

 

N-Benzoyl β-sultam Figure 22 have also been studied and the parent compound 

is an extremely reactive β-sultam and undergoes alkaline hydrolysis with S-N 

fission and expulsion of an amide leaving group. It reacts with O-nucleophiles 

in aqueous solution but does not readily react with other nucleophiles.58
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Figure 22: N-benzoyl β-sultam. 

 

In general amides and lactams are more reactive than the corresponding 

sulfonamides.59  However, β-sultams are 102 to 103 fold more reactive than their 

corresponding acyl analogues the β-lactams.  This is believed to be due to the 

extra strain relief that is available to β-sultams over β-lactams and due to the 

increased bond and angle distortion that is present in the β-sultams compared to 

β-lactams.60, 61

 

This research project is concerned with N-aroyl-β-sultams and isothermal 

microcalorimetry which has fewer limitations.  For example, extensive studies 
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can be conducted in the solid and solution state and any compound with or 

without a chromophore can be investigated. For example, Figure 23 shows a β-

sultam without a chromophore. Isothermal microcalorimetry can observe rates 

of hydrolysis for β-sultams without a chromophore (see Chapter 3). 

 

O S N

O H
 

Figure 23: β-sultam without a chromophore. 

 

An introduction to calorimetry, solid state and solution phase systems and an 

introduction to the Thermal Activity Monitor (TAM) used to conduct 

experimental research will be now be discussed. 

 
1.5 Introduction to calorimetry. 

Calorimetry is an analytical technique where there is an exchange in heat 

energy. Thermodynamic and kinetic parameters can be derived from the 

thermal calorimetric data obtained.62 Calorimeters can be divided in to three 

groups: adiabatic, heat conduction and power compensation calorimeters.63, 64 

The principle difference between all three calorimeters is their mode of heat 

measurement, which is discussed as follows: 

 

Adiabatic calorimeters – there is no heat change between the reaction vessel 

and calorimeter. The heat output during the experiment is equal to the product 

between the measured temperature change and the heat capacity of the vessel 

and its content.  Isoperibolic calorimeters also exist and are sometimes called 

semi adiabatic, the heat exchange with the surrounding is important and 

significant, and a corrected value for the temperature change is used. 

 

Heat conduction calorimeters – this is the most common type of calorimeter 

and is used for solution chemistry and biology. Heat conduction calorimeters 

produce heat at the reaction vessel which flows to a heat sink and the amount of 

heat evolved is recorded by allowing it to pass through a thermopile wall. The 

heat flow is directly proportional to the thermopile potential. One particular 
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type of heat conduction calorimetry is isothermal microcalorimetry. 

 

Power compensation calorimeters – use the idea of combining both adiabatic 

and heat conduction. The adiabatic calorimeter is used to monitor exothermic 

processes also heat conduction calorimeters can cause a temporary increase in 

temperature. In both these cases a cooling power can be applied to the reaction 

vessel to compensate for the temperature increase. This can be achieved when 

an electrical current is allowed to pass through a thermopile plate (an electrical 

device that converts thermal energy into electrical energy), where there is a 

cooling power on one side of the plate and a heating power on the other side of 

the plate.  

 

Heat conduction calorimetry is commonly used; the type that is used in this 

thesis is isothermal microcalorimetry. 

 

1.5.1 Isothermal microcalorimetry. 

Isothermal microcalorimetry is an analytical method allowing the determination 

of minute amounts of evolved or absorbed heat.65 Calorimetric observations can 

be made where compounds in the solid state are used which is not normally 

feasible using other analytical techniques,66, 67 for example, HPLC. In addition 

thermodynamic parameters obtained can give mechanistic information, rate 

constants, enthalpies and reaction order. From these parameters activation 

energy, change in entropy, Gibbs energy and heat capacity can be determined. 

  

The isothermal heat conduction calorimeter comprises of two main chambers, 

the sample and reference chambers, which are manufactured with an inert 

material. They are identical in geometry and have the same physical properties 

with respect to heat capacity and thermal conductance. Both chambers are kept 

in isothermal conditions, heat that is released or absorbed in the reaction vessel 

flows to or from a surrounding heat sink. Thermopiles detect the heat change in 

the sample cell relative to the reference cell. 

  

Sample preparation is minimal and non-invasive, and this technique is therefore 
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suited to a wide range of systems, such as solids and simple solution phase 

systems to complex heterogeneous pharmaceutical formulations. One example 

of a solution phase reaction is the oxidation of ascorbic acid.68 Data output 

observed after 1.5 hours showed there was a mechanistic change, initially 

assuming a first order process, after 1.5 hours the rate constant changed by 

almost two orders of magnitude. The rate change was observed over a small 

period of time, which undoubtedly would have been missed when using 

conventional analytical methods. Isothermal microcalorimetry is also widely 

applied to pharmaceuticals to assess changes in crystallinity induced during the 

processing of powders by determining the heat of crystallisation, 69, 70, 71 and to 

characterise drug powders by measuring the heat of solution or the heat of 

water adsorption.72, 73, 74 An example is a solid state experiment into the stability 

of benzoyl peroxide, which is a non-toxic, colourless, odourless and tasteless 

crystalline solid, used in the treatment of acne. Rate constants were determined 

at a range of temperatures appropriate for storage and the observed degradation 

rate of benzoyl peroxide showed that it is suitable for medicinal use.75 

 

Isothermal calorimeters, for example, the Thermal Activity Monitor (TAM, 

Thermometric, AB, Jarfalla, Sweden) are also fitted with an isothermal titration  

calorimetric unit (ITC), which is suitable for studying biological reactions. For 

example, in the pharmaceutical industry ITC could facilitate the prediction of 

the affinities of potential drug compounds for particular enzymes, avoiding 

expensive synthesis and analysis.76 

 

The type of isothermal microcalorimetry used to conduct experimental work in 

this thesis is isothermal batch calorimetry. 

 

1.5.2 Isothermal batch calorimetry. 

Isothermal calorimetry (batch mode), isothermal titration calorimetry and DSC 

are the most common types of calorimetry used today. Literature supports the 

use for combining the different types of calorimeters to obtain thermodynamic 

and kinetic information. For example, the physical stability of amorphous 

nifedipine and phenobarbital was studied by melting and subsequent cooling in 
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a differential scanning calorimeter (DSC), followed by their heats of 

crystallisation monitored by isothermal microcalorimetry.77 

  

Isothermal batch calorimetry can also be used to predict shelf lives, calculate 

rates and enthalpies. This is achieved by direct measurement, in real time and 

by conducting experiments at different temperatures. The main advantage of 

using isothermal microcalorimetry is that solid and solution phase systems can 

be studied. 

 

1.5.3 Solid and solution phase systems 

Isothermal microcalorimetry (IMC) is a useful tool within the pharmaceutical 

industry. Solid and solution state systems can be studied to determine stability, 

compatibility, amorphicity, shelf life, drug-drug interactions, enzyme based 

kinetic and drug screening studies. The technique is non-invasive and non-

destructive and the quality of data is better than that of traditional techniques. A 

traditional technique that is used to study stability is HPLC (High Performance 

Liquid Chromotography), where sample preparation is often extensive and 

destructive. In addition the technique is not sensitive to small changes in 

concentration, where small amounts of compound can be used in a calorimetric 

experiment and significant outputs can be achieved.78 

 

Microcalorimetry is often preferred over traditional methods, in some cases 

more information is provided on the reaction mechanism, kinetics and 

thermodynamics associated with the process.79 There have been a number of 

studies conducted throughout the years involving solid state material and 

solution phase systems and in some cases solid state material with the addition 

of water to observe various phenomena. The reason being some 

drugs/compounds are hygroscopic and once a tablet is in solution how long it 

takes to dissolve and its bioavailability is important. In particular within the 

pharmaceutical industry solid drug compounds present a number of challenging 

analysis problems to pharmaceutical scientists. Initial problems arise within the 

early stages when a potential medicinal compound has been identified. 

Characterisation techniques must identify the most stable form and how much 
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of it is crystalline and how much is not (amorphicity).  

 

In addition the drug must be formulated so it can be packed and stored 

correctly. Also the rate at which the drug dissolves i.e. bioavailability.80 A 

number of stability studies have been conducted, some of which are discussed 

below. 

 

An example of stability studies, were those conducted by Pikal and Dellerman, 

where they studied the solution and solid state stability of several 

cephalosporins. Within the solid state, the stability of various physical forms of 

the cephalosporins were investigated, reaction enthalpies were calculated and 

correlated to the concentration of water present. The study proved that reaction 

rates as low as 1% per year can readily be observed using isothermal 

microcalorimetry.81 

 

Further stability tests have been conducted to determine the drug stability in 

tablets using isothermal heat conduction calorimetry. The decomposition of a 

drug usually constitutes an exothermic process accompanied by an evolution of 

heat which is low and at present only microcalorimetry has the ability to detect 

such low signals. In one example, a variety of drug mixtures were compressed 

to 300 mg in weight and 10 mm in diameter. Placebo and non compressed 

mixtures were examined by microcalorimetry at 80°C. Emcompress® which is 

a pharmaceutical excipient was tested on its own and Emcompress® containing 

tablets were tested, the calorimetric outputs were compared. Decomposition of 

a drug usually constitutes an exothermic process accompanied by an evolution 

of heat which is low and at present only microcalorimetry has the ability to 

detect such low signals. The study showed Emcompress® (a pharmaceutical 

excipient) exhibited a high exothermic value because of a change in 

crystallinaty and for Emcompress® containing tablets the same signal interfered 

in such a way that the calorimetric output did not directly reflect the drug 

decomposition with sufficient accuracy. However, if the heat flow signal 

detects other processes including drug decomposition, the calorimetric outputs 

can provide information about interactions in dosage forms that can influence 

 39



Chapter 1: Introduction 

 
the quality of a final drug product.82 

 

It is important to note that in the pharmaceutical industry, variation can occur in 

the extent of crystallinity in a medicinal product. The ability to detect and 

quantify the amount of amorphous material within a highly crystalline drug is 

important when considering a solid dosage form. Processing operations such as 

milling, 83 spray drying, 84, 85 mixing and lyophilisation86 can cause disruption or 

activation to the crystal structure, leading to various degrees of disorder. 

Briggner et al.62 used isothermal microcalorimetry to study changes in the 

crystallinity of spray dried and micronized lactose monohydrate. This study 

used a humidity chamber, where the sample was placed in an ampoule under 

conditions that allowed the transition to the thermodynamically stable 

crystalline state to occur. Saturated salt solutions were used to generate 

different relative humidities between 53% and 85% RH. The hygrostat method 

was used, where a small glass insert is filled with the desired saturated salt 

solution and placed into an ampoule. The absorbed water behaved as a 

plasticizer to lower the glass transition temperature of the amorphous lactose 

below the experimental temperature (298K), at which point recrystallisation 

occurred. The calorimetric output is shown in Figure 24. 

 
Figure 24: Typical microcalorimetric output for spray-dried lactose (20 mg 

powder, 85% RH, 298K).87 

 

The initial response is thought to be caused by a slight imbalance in the 

generation of water vapour or the amorphous material undergoing structural 

collapse followed by absorption of water (endothermic). This is followed by a 

sharp response from the recrystallisation process or sorption of water vapour 

onto the powder (exothermic).88 The results discussed show how isothermal 
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microcalorimetry is not limited to compounds in the solid state or solution. 

Various phenomena were detected and analysed and the data presented in this 

study showed complex isothermal microcalorimetric outputs that may not have 

been detected using traditional methods.  

 

The studies discussed so far are within the pharmaceutical industry; however 

isothermal microcalorimetry has also proved to be useful within the biosciences 

field. For example, IMC has been used to predict storage stability of pellets of 

implantable bone void filler formulated with and without the antibiotic 

tobramycin. The experiment was conducted using batch calorimetry. Two 

different pellets were used made up of fully hydrated calcium sulfate, which 

were defined in the study as CaS (calcium sulfate) and CaS-tobra (calcium 

sulfate with antibiotic tobramycin). The mass used was 12.5 g corresponding to 

100 pellets at 27% RH. The calorimetric outputs were analysed and compared. 

At each temperature, heat flow was more exothermic for CaS-tobra than for 

CaS. At temperatures 313K and 323K there was an apparent decrease in heat 

flow rate at over 25 hours. The exothermic differences observed between the 

two pellets were due to degradative changes in tobramycin.89 

 

IMC has also been used to compare the dynamic stability of ultra-high 

molecular weight polyethylene (UHMWPE). UHMWPE is a thermoplastic and 

can be used medicinally, for example in spine replacement or as a biomaterial 

in knees or hips. The experiment was conducted at 298K, 30% RH. Four 

different methods of sterilisation were used to sterilise the UHMWPE: gamma 

ray irradiation in air ( Air) and in nitrogen ( N2), ethylene oxide gas (EtO), and 

gas plasma (GP). The exothermic activity observed was the oxidation of various 

chemical bonds. The GP and EtO showed no significant rate increase compared 

with unsterilised. The Air and N2 showed a seven fold increase rate of 

reaction. This initial work suggests that IMC is a promising and sensitive 

technique for evaluating and predicting the dynamic chemical stability of 

biomaterials, and for measuring in vitro metabolic responses of living cells to 

various biomaterials in solid and particulate form.90 
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IMC is not only limited to the pharmaceutical and bioscience field it can be 

used in many other fields such as in the food, dental and cosmetics industries. 

For example, a detailed study was conducted assessing the stability of spray-

congealed solid dispersions with carnauba wax. The study was conducted to 

observe the change in the thermodynamic state of spray-congealed carnauba 

wax during storage. The wax showed instability and slow aging during storage 

to a stable form. The objective was to accelerate stabilisation, in order to 

accelerate the thermodynamic change in the spray congealed wax; three 

annealing procedures were developed and compared using isothermal 

microcalorimetry. Results showed carnauba wax had different stable states at 

different temperatures; the stabilisation process was delayed at room 

temperature and accelerated by an annealing procedure. IMC was used to 

observe the effect of annealing on the stabilisation of spray congealed carnauba 

wax, showing that it can be a useful tool in determining stability within 

different formulations of the same compound.91 

 

As previously mentioned IMC can be combined with other analytical 

techniques to determine various physical phenomena. For example, IMC was 

used to study the thermo-oxidative stability of polyamide 6 films III between 

the temperature range of 373K-403K and sample weight of 0.5 g in 3 mL 

ampoules. The calorimetric output observed showed a continuous decrease in 

heat flow due to the depletion of oxygen. The heat flow output was 

characterised by an initial peak and a sigmoidal increase. Altering the 

temperature changed the position of the peak. Isothermal microcalorimetry heat 

flow curves provided information relating to exothermic and endothermic 

processes created by oxidation to determine the stability.92 

  

IMC stability studies have provided useful information whether IMC is used on 

its own or in combination with other techniques. Amorphicity studies have also 

been conducted using isothermal microcalorimetry, for example assessing the 

degree of solid-state disorder (amorphicity) of lyophilised formulations of 

proteins. Two formulations of growth hormone were prepared by lyophilization 

and studied using a calorimeter at different relative humidities at 298K. 
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Microcalorimetric outputs showed recrystallisation events occurred in the 

different formulations.93  

 

IMC was found to be useful over traditional techniques such as differential 

scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) as these 

techniques are unable to detect solid-state disorder at levels < 10%. To assess 

the amorphous content of mixed or single formulations the analytical method 

used must be sensitive enough. For example, the amorphous content of mixed 

systems, trehalose with lactose, has been looked at using IMC. Calorimetric 

results detected and quantified the amorphous trehalose that was mixed with 

lactose.94 

 

Amorphous raffinose has also been studied calorimetrically and combined with 

near IR (Infra Red) to investigate water sorption and desorption of crystalline 

amorphous raffinose. The importance of calorimetry in this investigation was to 

monitor water vapour interaction with amorphous raffinose under controlled 

RH (relative humidity) to see the effect of sample mass. Calorimetric outputs 

showed that crystallisation of amorphous raffinose is a prolonged process. 

Different hydrates and hydrate mixes are formed depending on the amount of 

water available and these differences contributed to different enthalpies of 

crystallisation.95 

 

The amorphicity of lactose which is a pharmaceutical excipient has also been 

studied.96 An excipient is an inactive substance used as a carrier for the active 

ingredients of a medication. Experiments were conducted at 298K, sample 

weights of 25–500 mg in the solid state. The powder sample was placed in the 

sample vessel together with a small tube filled with a saturated salt solution. 

Potassium bromide (81% RH) was used for samples with an amorphous content 

of 20% or more and sodium bromide (57% RH) was used for samples with 

lower concentrations of amorphous material.97 Deionised water was used in the 

reference vessel. The calorimetric results showed typical heat curves and were 

similar to those reported by Sebhatu et al., 199498 Briggner et al., 199499 and 

Buckton et al., 1995.100 These heat curves showed complexities where many 
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different events occurred simultaneously during the crystallisation of 

amorphous lactose. The three different processes creating these distinct heat 

profiles were possibly absorption of water vapour followed by crystallisation of 

amorphous lactose ending with a probable recrystallisation of anhydrous β-

lactose to the α-monohydrate-form. 

 

As previously mentioned IMC can be used in combination with other analytical 

techniques. A variety of thermal techniques have been used to assess the impact 

of feed concentration on the amorphous content and polymorphic forms present 

in spray dried lactose. Isothermal microcalorimetry was used to assess the heats 

of crystallisation of the amorphous materials, which enabled the determination 

of the % amorphous content. Experiments were conducted using batch 

calorimetry, 20 mg samples and 75% RH. The study showed isothermal 

microcalorimetry combined with other analytical techniques, which allowed the 

determination of appropriate feed concentrations of spray dried lactose, which 

can be manufactured with various polymorphic proportions which suit the 

desired tabletting properties.101 

IMC has also been used to quantify low levels (<10%) of amorphous content in 

micronised (reducing the average diameter of a solid materials diameter) active 

batches, using dynamic vapour sorption.102 Micronisation is a pharmaceutical 

process where the average diameter of solid materials is reduced.  During the 

processing of pharmaceutical solids (e.g. milling, spray drying, tablet 

compaction, wet granulation and lyophilisation), various degrees of disorder in 

the form of crystal defects and/or amorphous regions were generated. Samples 

(500±5 mg) were prepared by weighing known quantities of amorphous and 

crystalline BED (a development candidate for Pharmacia, a benzyl ether 

derivative) directly into the vapour perfusion ampoules. The samples were then 

exposed to the following method: 0% RH for 3 h, 30% relative pressure acetone 

for 3 h, 90% relative pressure acetone for 4 h, 0% RH for 3 h then finally 30% 

relative pressure acetone for 3 h. The isothermal microcalorimetry and dynamic 

vapour sorption data showed agreement (±0.2% amorphous content) and 

indicated that the amount of amorphous material generated is extremely 

sensitive to small changes in the operating conditions of the microniser.  
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Shelf life predictions can also be made using solid state IMC. A study was 

conducted to show the stability and excipient compatibility of a solid drug (S)-

(3-(2-(4-(S)-(4-(amino-imino-methyl)-phenyl)-4-methyl-2,5-dioxo-

imidazolidin-1-yl)-acetylamino))-3-phenyl-propionic acid ethyl ester, acetate in 

the solid state) through the use of IMC combined with HPLC. Results showed 

chemical decomposition after 3-4 days at temperatures 333K – 353K. The 

evolved heat versus the amount of degraded drug showed a linear relationship. 

Larger calorimetric outputs were observed for the binary mixtures and granules 

(microcrystalline cellulose, potato starch and lactose), indicating decreased 

stability. Other formulations gave similar calorimetric outputs as that for the 

pure solid drug. Calorimetric analysis combined with HPLC allowed prediction 

of shelf life at room temperature.103 

The solid state oxidation of L-ascorbic acid (Vitamin C) has also been studied 

using the TAM.104 Dry un-sieved samples (0.5 g) with the addition of 0, 10, 20, 

30, 50, 100 and 200 μL of water were used, the experiment lasted 50 hours. 

Kinetic and thermodynamic parameters were calculated using the Origin 

graphics package. The experimental results showed that the rate constant and 

change in enthalpy for the oxidation process were independent of the quantity 

of water in the reaction sample. The power time curves showed that the rate of 

reaction increased with increasing amounts of water. The initial calorimetric 

output is possibly due to the oxygen dissolved in the water phase, reacting at 

the ascorbic acid crystal surface. It can be noted that the rate of reaction was 

dependent on the quantity of water, and hence the available oxygen 

concentration. (The rate constant for the reaction remained the same) and will 

only change if there is a change in the reaction mechanism or temperature.105 

 

It has been reported that IMC can be used to characterise a model solid-state 

interaction, for example, the browning reaction. The degradation of the HIV 

protease inhibitor with DMP 450, a primary amine, in a binary mixture with 

hydrous lactose was followed in the presence of 5% (w/w) additional water. 

Brown discoloration was observed in the post experiment mixtures and the 

associated activation energy was determined. This experiment demonstrated 

that the utilisation of microcalorimetry for rapid screening of drug and excipient 
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interactions can provide the same information in one week, where traditional 

methods can take 8–12 weeks.106 

 

As mentioned previously, IMC is not limited to the physical state of a 

compound.  Solid state and solution IMC plays an important part in drug 

candidate screening, in the development of new pharmaceutical products and in 

testing the stability and amorphicity of biochemical and industrial candidates. 

The data for complex and simple systems allows the determination of 

thermodynamic and kinetic parameters. Calorimetric studies are still ongoing to 

understand complex systems further, particularly solid state systems.  

 

The basis of this thesis is a batch isothermal microcalorimetric study of solid 

and solution phase systems using β-sultams and β-lactams. The calorimeter 

used to conduct these experiments is the thermal activity monitor (TAM 2277-

201). 

 

1.5.4 Thermal Activity Monitor (TAM) 

The calorimeter used for this research was the Thermal Activity Monitor 

(TAM). Two different types of calorimeters exist, single calorimeters and twin. 

Single calorimeters consists of a sample holder surrounded by an aluminium 

block (heat sink) maintained at a constant temperature, which is achieved by 

close contact with a surrounding thermostat. The TAM 2277-201 is a twin 

calorimeter; four separate twin calorimeters are built into the TAM.  

 

The Thermal Activity Monitor (TAM, 2277-201) is a non invasive, non- 

destructive technique in which the rate of a reaction can be measured 

continuously as a function of time. The calorimeter has no influence on the 

reaction and prior to analysis no sample preparation is required. The sample can 

be in any physical state, solid, liquid, gas or any combination; it can be of any 

form e.g. wood shavings, biological tissue or even live animals and is therefore 

versatile.107 - 110 The technique is highly sensitive, the sensitivity is such that the 

reaction environment can be controlled (humidity, temperature, partial pressure 

and pH). It has been reported that the TAM has sufficient sensitivity to monitor 
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slow reactions with lifetimes of up to 10,000 years, and that only 50 hours of 

data is required to discriminate between a reaction that has a first order rate 

constant of 1 x 10-11 s-1 and a reaction with a first order rate constant111 of 2 x 

10-11 s-1.  The calorimetric outputs observed are endothermic (heat absorbed by 

the reaction) and exothermic (heat produced by the reaction) providing 

information related to rate, basic chemical reactions, change of phase, changes 

of structure and metabolism of living systems. 

 

The TAM system can be seen in Figure 25 it comprises of a precisely 

thermostatted water bath, amplifier, digital calibration unit, a control and digital 

display unit.112 

 

 

Figure 25: The TAM system and calorimetric unit.113 

Temperatures are maintained via a heat flow system which is achieved by 

utilising the thermostat which surrounds the reaction measuring vessels and acts 

as a heat sink, the thermostat is responsible for isothermal conditions. The water 

thermostat comprises of a heat sink which surrounds the measuring cylinders, 

water is continuously pumped upwards into a cylindrical stainless steel tank. 

The complex system described maintains the water at a constant temperature 
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which is monitored by two thermistors situated in the connecting tube. One 

thermistor operates upto 323K and the other above 323K, the temperature can 

be set by the operator using the appropriate method supplied. A pre-heater and 

fine heater work continuously with the water thermostat and thermistors to 

maintain the desired temperature. The amplifier is another control that is set 

prior to experimentation; there are a range of settings 3, 10, 30, 100, 300 or 

1000 μW. The TAM is linked to a PC via a RS232 serial port, controlling and 

capturing data through a software package, DigitamTM. This calorimetric unit 

consists of four channels operating in the microwatt range; 114 all four channels 

are contained within the accurately controlled water bath. The temperature of 

the water bath is regulated by the thermostat with an operating range of 5 to 

90oC.115 Each of the four channels consists of two identical chambers; sample 

and reference, permitting four separate experiments to be conducted 

simultaneously, all computer controlled. Conducting experiments in batch mode 

requires reference and sample ampoules to be closely matched, for example if a 

solution phase reaction is under study, consisting of 2 mL solvent and 1 mL 

deionised water then the reference material might also be 2 mL solvent and 

1mL deionised water. The reference material should always be inert                            

to ensure the thermal power observed is not a result of external factors. When 

performing batch mode experiments the ampoules are initially lowered just 

above the thermopiles (equilibrium position). The thermopiles are situated 

around the reaction vessel and are used to quantify and detect the temperature 

difference. This system works by measuring heat flow, for example the rate of 

thermal energy produced or absorbed by the sample, which accompanies all 

physical, chemical and biological processes. The ampoules (Figure 26) 115 are 

left at the equilibrium position for approximately 40 minutes, minimising any 

thermal shock when lowering into the measuring position. It should be noted 

that, with respect to ampoule fill volume, there is a significant effect on the 

derived rate constant and enthalpy.116 A fill volume below 50% for 3, 4 and 20 

mL glass ampoules has a significant negative effect on accuracy. 
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Figure 26: Diagram to show 3 mL ampoules used for TAM calorimetric 

studies.115 

 

The channels that hold 3 mL and 4 mL ampoules are designed in such a way 

that the thermopiles only cover a fraction of the ampoule surface; experiments 

conducted should involve ampoule fill volumes above 75%. 

 

1.5.5 Calibration unit. 

The TAM must be calibrated prior to any experiment change or use for the first 

time or if the TAM is switched off. The digital calibration unit is responsible 

for accurately supplying known power levels to the calibration resistors in the 

sample side A and reference side B, calibration is static or dynamic. The 

calibration resistors are situated close to the position of the reaction ensuring 

the calibration and measurement results are accurate. The power values required 

are supplied by the calibration unit and an external computer provides the 

overall control of the calibration, via the RS232 interface and the input/output 

sockets.  

 

The TAM operates in two modes which are the ampoule mode and the flow 

mode. The following steps must be followed to carry out the ampoule mode 

static calibration, which is the method used throughout the research presented in 

this thesis. The first step is to select the range in μW using the appropriate 

channel amplifier 3, 10, 30, 100, 300, 1,000, or 3,000. The Digital Voltmeter 

(DVM), computer amplifier, electrical calibration and calorimeter signal setting 

are also switched to the same output. The experiment is switched on and left 

until a stable baseline is achieved. If the baseline is off scale, adjustments are 
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made via the amplifier zero control until the DVM reads zero. The zero base 

line is left to plateau; once plateau is achieved the electrical calibration is 

switched on and again left to stabilise. If the output is not correct the amplifier 

control is adjusted and left to plateau. Once achieved electrical calibration is 

switched off and left to return to zero. 

  

Calorimetry can be used alone or combined with other analytical techniques, 

such as Raman spectroscopy. When combined they are used to determine 

various chemical, physical and structural properties. Structural properties play 

an important role in enzyme inhibition and drug activity. 

 

In summary, the aim of this research is to characterise and conduct calorimetric 

experiments on a range of unsubstituted and substituted β-sultams and β-

lactams. The primary reason for conducting this research is to contribute 

towards the development of an inhibitor to enhance the efficacy of β-lactam 

antibiotics.  
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1.6 Research objectives 

The overall aim for this research is to synthesise a series of β-sultams and β-

lactams and carry out calorimetric hydrolysis and degradation studies using a 

Thermal Activity Monitor (TAM).  There are seven individual objectives 

associated with this work: 

 

1. To synthesise a series of β-sultams and β-lactams using conventional 

synthetic techniques. 

 

2. To conduct solid state calorimetric experiments to determine the 

stability of four β-sultams (A-D). 

 

3. To conduct calorimetric relative humidity experiments on the four β-

sultams investigated in objective 2. 

 

4. To conduct solution state calorimetric experiments using the same four 

β-sultams investigated in objective 2 at both pH4 and pH8 at 298K, 

310K and 323K. 

 

5. Using the information obtained from objectives 2-4 to predict and test 

the calorimetric method on a β-sultam without a chromophore (F). 

 

6. To conduct solution state calorimetric experiments for a series of four 

β-lactams at both pH4 and pH8 at 298K and 323K. 

 

7. To compare and contrast β-sultam and β-lactam data with respect to 

hydrolysis and substituent effect based on the data obtained in 

objectives 2-6. 
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2.0 Introduction 

The β-sultams and β-lactams were synthesised at the University of 

Huddersfield. All reagents were obtained from Aldrich.  

 

In order to conduct successful calorimetric experiments pure compounds were 

required, in particular β-sultams as they are reactive, temperature and moisture 

sensitive. To determine purity after synthesis and before calorimetric 

experiments, TLC, IR and 1H NMR experiments were conducted. 

 

Chromatography was performed on silica gel 60 (0.063-0.200 mm). TLC was 

carried out using fluorescent (254nm) aluminium backed TLC plates. Melting 

points were determined using a Gallenkamp melting point apparatus. IR 

spectroscopy was carried out on the Perkin Elmer 1600 and NMR spectra were 

recorded on a Bruker Avance DPX400 NMR Spectrometer. 

 

2.1 Synthesis of taurine sulfonyl chloride 

 

H3N
S

 2

Cl

H3N
SO2Cl

ClCl2+ +

 
 

Step 1: Chlorine was passed into a -10ºC solution of cystamine dihydrochloride 

(Aldrich) (20.2 g, 89.8 mmol) in dry chloroform (400 mL) and absolute ethanol 

(200 mL) under nitrogen until saturation, noted by a permanent pale green 

colour. The system was purged with nitrogen followed by the addition of dry 

ether (100 mL) and stirred for one hour. The reaction mixture was stored at 4ºC 

overnight. A white crystalline precipitate was formed and filtered (vacuum 

filtration) and washed with dry ether, to yield (30.4 g, 96 %) of white solid. 

 

IR: υmax (cm-1) (nujol) 3421, 1654, 1457, 1380, 1400, 1161, 774 identical to 

that reported in the literature.1
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2.1.1 Synthesis of 1,2-thiazetidine 1,1-dioxide (ethane β-sultam) (A) 

 

H3N
SO2Cl

Cl
S NO

O H

Na2CO3+

 
Step 2: Taurine sulfonyl chloride (30.4 g, 169 mmol) was added to finely 

ground sodium carbonate (35.9 g, 339 mmol) in dry ethyl acetate (950 mL) and 

stirred at ambient temperature for 48 hours. The reaction mixture was filtered 

(vacuum filtration) through Celite and the solvent removed by reduced pressure 

rotary evaporation at 30ºC, which gave a fine white powder, (11.27 g, 62 %), 

m.p. 50 - 51 oC. (Literature value 51 – 52 oC).2   

 

IR: υmax (cm-1) (nujol) 3305, 3046, 1336, 1300, 1172, 1151, 760. 
1H NMR: δ (CDCl3) 3.40 (2H, dt J 3.9 and 6.9 Hz CH2SO2); 4.30 (2H, dt J 1.6 

and 7.0 Hz CH2N); 5.7 (1H, s, NH). 
13C NMR: δ (CDCl3) 28.1 (CH2SO2 ) 60.9 (CH2NH). 

 

Synthesis of 2-aroyl-β-sultams 

 

2.2 Synthesis of 2-benzoyl-1,2-thiazetidine 1,1-dioxide (B) 

 

S N

O

O
O

S NO
O H

O

Cl
DMAP

Et3N

+

 
Benzoyl chloride (2.6 g, 18.5 mmol) was added dropwise to a solution 1,2-

thiazetidine-1,1-dioxide (2.0 g, 18.6 mmol) and DMAP (0.15 g, 1.23 mmol) in 

anhydrous dichloromethane (50 mL) at –78 oC. The reaction mixture was 

stirred for 30 minutes at –78 oC and 15 minutes at room temperature. 

Triethylamine (1.9 mL, 18.78 mmol) was added dropwise over 12 minutes at –

78 oC forming a white precipitate. The mixture was allowed to stir at room 

temperature for 24 hours before the reaction mixture was filtered (gravity 

filtration) and the solvent removed by reduced pressure rotary evaporation at 30 
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oC. The pale yellow oil was purified by column chromatography using silica 

(75 g) (3:1 ether : DCM) to give a white solid. (0.99 g, 25 %), m.p. 95-96 oC.1 

 

The numbering scheme for the N-aroyl substituted β-sultams used for NMR 

analysis is as follows: 

 

S N

O

O
O 1 2

34

1'

2'
3'

4'

5'
6'

5

 
 

IR υmax (cm-1) (nujol) 3150, 2923, 1667, 1461, 1376, 1344, 1200, 1156, 718 
1H NMR: δ (CDCl3) 8.00 (2H, Ph 2’/6’), 7.63 (1H, Ph 4’), 7.52 (2H, Ph3’/5’), 

4.30 (2H, t, J 7.4 Hz, CH2-NR), 3.92 (2H, t, J 7.4 Hz, CH2-SO2). 
13C NMR: δ (CDCl3) 167.4 (C5), 133.5 (C1’), 133.6 (CH-Ph 2’/6’), 132.1 

(CH-Ph 3’/5’), 128.9 (C4’), 56.9 (CH2-NR) 30.9 (CH2-SO2). 

 

2.3 Synthesis of 2-(4-chlorobenzoyl)-1,2-thiazetidine 1,1-dioxide (C) 

 

Cl

 

4-Chlorobenzoyl chloride (1.63 g, 9.31 mmol) was added dropwise to a solution 

of 1,2-thiazetidine-1,1-dioxide (1 g, 9.33 mmol) and DMAP (0.2 g, 1.63 mmol) 

in anhydrous dichloromethane (50 mL) at –78 oC. The reaction mixture was 

stirred for 30 minutes at –78 oC and 15 minutes at room temperature. 

Triethylamine (1.2 mL, 9.31 mmol) was added dropwise over 12 minutes at –78 
oC forming a white precipitate. The mixture was allowed to stir at room 

temperature for 24 hours before the reaction mixture was filtered (gravity 

filtration) and the solvent removed by rotary evaporation 30 oC. The pale 

S N

O

O
O

Cl

S NO
O H

O

Cl
DMAP

Et3N

+

 65



Chapter 2: Organic synthesis 
 

yellow oil was purified by column chromatography (silica 75 g) (3:1 ether: 

DCM) to give a white solid. (1.35 g, 59 %), m.p. 84-86 oC.1 

 

S N

O

O
O 1 2

34

1'

2'
3'

4'
5'

6'

Cl

5

 
 

IR υmax (cm-1) (nujol) 1649, 1591, 1461, 1377, 1331, 1159, 1092, 1013. 
1H NMR: δ (CDCl3) 7.96 (2H, d, J 8.5 Hz, H2’ / H6’), 7.52 (2H, d, J 8.5 Hz, 

H3’ / H5’), 4.33 (2H, t, J 7.4 Hz, CH2NR), 3.93 (2H, t, J 7.4 Hz, CH2SO2). 
13C NMR 166.4 (C5), 140.2 (C1’), 130.4 (C4’), 129.8 (CH 2’/6’), 129.3 (CH 

3’/5’), 57.0 (CH2NR), 30.9 (CH2SO2). 

 

2.4 Synthesis of 2-(4-methoxybenzoyl)-1,2-thiazetidine 1,1-dioxide (D) 

 

S N

O

O
O

OMe

S NO
O H

O

Cl

OMe
DMAP

Et3N

+

 

 
4-Methoxybenzoyl chloride (1.59 g, 9.32 mmol) in 10 mL DCM was added 

dropwise to a solution of 1,2-thiazetidine-1,1-dioxide (1 g, 9.33 mmol) and 

DMAP (0.2 g, 1.63 mmol) in anhydrous dichloromethane (50 mL) at –78 oC. 

The reaction mixture was stirred for 30 minutes at –78 oC and for 15 minutes at 

room temperature.  Triethylamine (0.94 g, 9.29 mmol) was added dropwise 

over 12 minutes at –78 oC forming a white precipitate. The mixture was stirred 

at room temperature for 24 hours and then filtered (gravity filtration) and the 

solvent removed by rotary evaporation at 30 oC. The colourless oil was purified 

by column chromatography (silica 75 g) (3:1 ether: DCM) to give a white solid. 

(1.01 g, 45.08 %), m.p. 98-99 oC.1
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S N

O

O
O

OMe

1 2

34

1'

2'
3'

5'
6'

4'
5

 
IR υmax (cm-1) (nujol) 2284, 1663, 1603, 1512, 1376, 1264, 1202, 1155, 1028. 
1H NMR: δ (CDCl3) 8.01 (2H, d, J 8.7, H2’ / H6’), 7.01 (2H, d, J 8.7, H3’ / 

H5’), 4.29 (2H, t, J 7.3, CH2NR), 3.91 (2H, t, J 7.4, CH2SO2), 3.89 (3H, s, 

CH3). 
13C NMR 166.7 (C5), 163.9 (C1’), 130.7 (CH 2’/6’), 124.2 (C4’), 114.2 (CH 

3’/5’), 56.5 (CH2NR), 55.5 (CH2SO2), 30.7 (CH3). 

 

2.5 Attempted synthesis of 2-(4-nitrobenzoyl)-1,2-thiazetidine 1,1-dioxide 

(E) 

S N

O

O
O

NO2

S NO
O H

O

Cl

NO2
DMAP

Et3N

+

 

4 -Nitrobenzoyl chloride (1.73 g, 9.32 mmol) was added dropwise to a solution 

of 1,2-thiazetidine-1,1-dioxide (1 g, 9.33 mmol) and DMAP (0.2 g, 1.63 mmol) 

in dry dichloromethane (50 ml) at –78 oC. The reaction mixture was stirred for 

30 minutes at –78 oC and 15 minutes at room temperature. Triethylamine (1.3 

ml, 9.29 mmol) was added dropwise over 12 minutes at –78 oC forming a dark 

brown precipitate. The mixture was stirred at room temperature for 24 hours 

before the reaction mixture was filtered and the solvent removed by rotary 

evaporation at 30 oC. The dark oil obtained yielded none of the desired product 

upon attempted chromatographic purification. 
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Synthesis of 1-aroyl-β-lactams 

 

2.6 Synthesis of 1–benzoyl-1-azetidin-2-one 

 

 

N

O
O

N
O H

O

Cl
DMAP

Et3N

+

 
 

Benzoyl chloride (0.99 g, 7.07 mmol) was added dropwise over 12 minutes to a 

stirred solution of 2-azetidinone (Aldrich) (0.5 g 7.04 mmol) and DMAP (0.1 g, 

0.82 mmol) in dry dichloromethane (20 mL) at -78 oC. The reaction mixture 

was left to stir at -10 oC for 40 minutes. Triethylamine (0.98 mL, 7.02 mmol) 

was added dropwise over 12 minutes forming a white precipitate at -78 oC and 

the mixture left to stir for 15 minutes at the same temperature, then left to stir 

for 24 hours at ambient temperature. The pale yellow reaction mixture was 

filtered (gravity filtration) and solvent was removed by reduced pressure rotary 

evaporation at 30 oC to yield a pale yellow oil, which was purified by column 

chromatography (silica 75 g) (3:1 ether:DCM). The solvent was removed by 

reduced pressure rotary evaporation, and the flask was washed again with 

DCM. The solvent was removed and the flask was left to stand at -10 oC in an 

ice bath under nitrogen to yield a white solid. (0.59 g, 48 %), m.p. 125-127 oC. 

O
O

N
1 2

34

1'

2'
3'

5'
6'

4'

5

 
IR υmax (cm-1) (solid) 1671, 1330, 1316, 1195, 1448, 1295, 958. 
1H NMR: δ (CDCl3) 7.98 (2H, 2’ / 6’), 7.58 (1H, 4’), 7.47 (2H, 3’/ 5’), 3.79 

(2H, t, J 4.3 Hz, CH2-NR), 3.12 (2H, t, J 5.5 Hz, CH2-CO). 
13C NMR: δ (CDCl3) 166.2 (C1), 163.9 (C5), 133.2 (C1’), 131.9. (H2’/ H6’, 

Ph), 129.7, 130.0 (C4’) 128.1 (H3’ / H5’, Ph), 36.8 (CH2-NR) 35.1 (CH2-CO). 
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2.7 Synthesis of 1-(4-chlorobenzoyl)-1-azetidin-2-one 

 

N

O
O

Cl

N
O H

O

Cl

Cl
DMAP

Et3N

+

 
 

4-Chlorobenzoyl chloride (1.48 g, 8.45 mmol) was added dropwise to a solution 

of 2-azetidinone (Aldrich) (0.5 g, 7.04 mmol) and DMAP (0.1 g, 0.82 mmol) in 

dry dichloromethane (25 mL) at -78 oC. The reaction mixture was stirred for 15 

minutes at -78 o C and for 30 minutes at room temperature. Triethylamine (0.98 

mL, 7.02 mmol) was added dropwise over 12 minutes at -78 oC (forming a 

white precipitate) and the mixture was left to stir at ambient temperature for 24 

hours. The reaction mixture was filtered (gravity filtration) and the solvent 

removed by reduced pressure rotary evaporation at 30 oC. The pale yellow oil 

was purified using column chromatography (silica 75 g) (3:1 ether:DCM) and 

gave a white solid, (0.51 g, 30 %), m.p 127-128°C.1

 

O
O

N
1 2

34

1'

2'
3'

5'
6'

Cl

5

 
 

R υmax (cm-1) (solid) 1779, 1662, 1587, 1403, 1294, 1283, 1037, 641. 

3  

3 2 2

) 131.1 (CH a/c), 

1 2 2

I
1H NMR: δ (CDCl ) 7.95 (2H, d, J 9.0 Hz 2’/6’), 7.30 (2H, d, J 9.0 Hz, 3’/5’),

.76 (2H, t, J 5.5 Hz, CH N), 3.12 (2H, t, J 5.5 Hz, CH CO). 
13C NMR: δ (CDCl3) 164.9 (C1), 163.8 (C5), 139.4 (C1’

30.1 (C-Cl) 128.4 (CH b/d), 36.7 (CH N), 34.9 (CH CO). 
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2.8 Synthesis of 1-(4-methoxybenzoyl)-1-azetidin-2-one 

 

N

O
O

OMe

N
O H

O

Cl

OMe
DMAP

Et3N

+

 
4-Methoxybenzoyl chloride (1.44 g, 8.44 mmol) in 10 mL dichloromethane was 

added dropwise over 12 minutes to a stirred solution of 2-azetidinone (0.5 g, 

7.03 mmol) (Aldrich) and DMAP (0.1 g, 0.82 mmol) in dry dichloromethane 

(20 mL) at -78 oC and left to stir for 15 minutes at -78 oC and 30 minutes room 

temperature. Triethylamine (0.98 mL, 7.02 mmol) was added dropwise over 12 

minutes forming a white precipitate. The reaction mixture was left to stir for 1 

hour at -10 oC and for a further 24 hours at ambient temperature. The reaction 

mixture was filtered (gravity filtration) and the solvent was removed by reduced 

pressure rotary evaporation at 30 oC to yield a pale yellow oil, which was 

purified by column chromatography (silica 75 g) (3:1 ether:DCM) and gave a 

white solid, (0.18 g, 10.4 % m.p), 125-127 oC.1

O
O

N

OMe

1 2

34

1'

2'
3'

5'
6'

5

 
IR υmax (cm-1) (solid) 1789, 1659, 1311, 1283, 1254, 1191, 1175, 1099, 1017, 

766. 
1H NMR: δ (CDCl3) 8.03 (2H, d, J 9.5 Hz 2’ / 6’), 6.96 (2H, d, J, 9.5.Hz 3’ / 

5’), 3.87 (3H, s, CH3), 3.76 (2H, t, J 5.5, CH2N), 3.09 (2H, t, J 5.5, CH2CO). 
13C NMR: δ (CDCl3) 165.5 (C1), 164.1 (C5), 163.7 (C1’), 132.2 (C2’/6’) 

123.9 (COMe), 113.5 (C3’/5’), 55.4 (CH3) 36.6 (CH2N), 34.7 (CH2CO). 
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2.9 Discussion 

The β-sultams synthesised are potential serine enzyme inhibitors, which 

function via attack of the serine OH group at the sulfonyl. Small differences 

between each β-sultam may contribute towards enzyme recognition increasing 

the reactivity of the β-sultam. These small differences include changing the 

substituent in the aryl ring of the N-aroylated β-sultams.  

 

During hydrolysis the amide-leaving group plays an essential role and its ability 

to stabilise any intermediate negative charge onto the amide nitrogen will 

depend upon the benzene ring substituents. The N-aroylated β-sultams in 

particular are synthetic targets because of their potential enhanced reactivity 

towards hydrolysis and possible inactivation of serine enzymes. 

  

Ethane β-sultam, which is initially synthesised from taurine sulfonyl chloride 

and is used as a precursor to synthesise N-aroylated β-sultams. It is important to 

note taurine present in mammals shows various biological properties. The 

mechanism of action is still not well understood therefore investigating 

derivatives of taurine such as β-sultams is of interest, furthermore they are 

convenient synthons in heteroatom chemistry.3

  

The synthesis of ethane β-sultam (Figure 27) requires specific experimental 

conditions to ensure a high yield. The yields for all β-sultams discussed 

depends upon experimental conditions including column chromatography 

which was used for separation. The synthesis and mechanisms of these 

reactions will be discussed followed by an analysis of previous hydrolysis and 

kinetic studies carried out by Page et al. 

 

Synthesis of ethane-β-sultam 

H3N
S

 

Cl NH2

S
Cl

O O

S NO
O H

Cl2 / EtOH Na2CO3

CHCl3 EtOAc+
..

2

 

Figure 27: Synthesis of ethane-β-sultam (A). 
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Cystamine dihydrochloride is a disulfide compound and was oxidised to taurine 

sulfonyl chloride using chlorine gas. Figure 28 shows the possible routes 

through to the taurine sulfonyl chloride, shown as R-SO2Cl. 

R S S R

O

O

HOCl

R S S R

O

HOCl
R S S R

O

O

HOCl
R S S R

O

O
R S S R

O

O O

R S S R

O

O O
R SO2Cl R S S R

O

O

HOCl

[ RSOH ]    +     RSO2Cl

+     HCl

+     HCl

RSCl   + + +     HCl

Figure 28: Possible mechanistic routes for the formation of taurine sulfonyl 

chloride. 

 

These mechanisms require the generation of hyperchlorous acid (HOCl) 

together with an oxidised sulfur precursor. The chlorination is carried out in 

ethanol. The ethanol reacts with chlorine generating in situ hyperchlorous acid 

(1), which is an oxidative species. This step is still unclear and reports only 

suggest it.4

 

EtOH EtCl HOCl
Cl2

+
(1)

(equation 1)
 

Hyperchlorous acid then reacts with the disulfide cystamine to form sulfenic 

acid (2) and sulfenyl chloride (3) (equation 2). 

 

RS SR
HOCl

[ RSOH ]    +     RSCl (equation 2)
(3)(2)  
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Another possibility is that chlorine interacts with the disulfide cystamine to give 

sulfenyl chloride (equation 3). However, this mechanism is unclear.5

 
Cl2

RS SR 2RSCl (equation 3) 
 

Sulfenic acid (2) has never been isolated and could possibly react with the 

sulfenyl chloride (3) to form a thiosulfinate (4).6 (equation 4). 

 

R S S R

O
[RSOH]     +   RSCl +    HCl (equation 4)

thiosulfinate (4)
 

Disproportionation of sulfenic acid has also been suggested as a possible route 

for the formation of the thiosulfinates (equation 5).7  

 

R S S R

O

[RSOH] +    H2O (equation 5)

(4)  
Thiosulfinate (4) could also disproportionate to form a thiolsulfonate and 

disulfide (equation 6).8

R S S R

O

R S S R R S S R

O

O
2 

(4)

+ (equation 6)

 

The thiosulfinate (4) or thiosulfonate could then form the sulfonyl chloride as 

already shown in Figure 28. 

 

The final step involves the cyclisation of taurine sulfonyl chloride using 

Na2CO3 in EtOAc. The cyclisation step involves nucleophilic displacement of 

chloride. This intramolecular reaction is favourable and no polymerisation is 

observed.  
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The method used to synthesise N-aroylated-β-sultams was developed by 

Naveed Ahmed from a method originally described by Otto et al.9 Figure 29 

shows a general mechanism where ethane β-sultam is used as a precursor to 

synthesise N-aroylated-β-sultams. 

 

Synthesis of 2-aroyl-β-sultams 

 

S NO
O H

S NO
O

O

R

i. R-C6H4-COCl, DMAP, DCM, Et3N, -78 oC - ambient 24 hours  

R = H, Cl, OMe
i

 
Figure 29: Figure to show unsubstituted β-sultam converted to 2-aroyl-β-

sultam. 

 

Synthesis by this method involves the dissolving of the β-sultams in DCM at –

78oC, followed by the dropwise addition of an acid chloride in the presence of 

DMAP, concluding with the dropwise addition of triethylamine to give the N-

aroyl-β-sultam. The general mechanism using DMAP as the catalyst for the N-

aroyl-β-sultams is shown in Figure 30. The DMAP speeds up the acylation step 

by several orders of magnitude.10
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S N
H

O
O

Cl

O

R O

R

NSO
O

N

N

N

N

Cl SN O
OH

- DMAP

Cl

R

O

N

N

O

+ uncat.
Slow

Catalysed

Fast

:

+

Et3N

:

Fast

DMAP

DMAP  
 

Figure 30: A general mechanism using DMAP as the catalyst for the N-

acyl-β-sultams. 

 

The N-aroylated-β-sultams have different substituents on the benzene ring. 

Although only three have been looked at in detail, synthesis of other N-aroyl 

and N-acylated-β-sultams is possible. 

 

When considering the unsubstituted benzene ring all carbons are equivalent. 

However the addition of a new group onto the carbon changes the reactivity. 

Different substituents have mesomeric and resonance effects. The mesomeric 

effect is an electron redistribution that occurs via a pi-orbital.  The mesomeric 

effect is M- negative for electron withdrawing substituents and M+ for electron 

releasing substituents. Chlorine and the NO2 substituent are electron 

withdrawing. The methoxy and benzyl substituent are electron releasing.  
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The lone pair on the oxygen of the methoxy group can be incorporated into the 

ring making the phenyl ring electron rich. Conversely, chlorine withdraws 

charge from the ring leaving it electron deficient. These factors are to be 

considered when attempting to synthesise N-aroylated-β-sultams which contain 

a phenyl ring and more importantly need to be considered when looking at 

hydrolysis and hence reactivity. 

 

As previously discussed, kinetic studies carried out at the University of 

Huddersfield have shown a structure–activity relationship between the enzyme 

and inhibitor (P99, R61 or PPE with the N-aroyl-β-sultam).11 From the results 

obtained N-benzoyl-β-sultam appears to be the most potent inhibitor of porcine 

pancreatic elastase (PPE). X-ray crystal structures of PPE showed that the 

active site serine is sulfonylated.12 N-benzoyl-β-sultam also inactivates the 

transpeptidase enzyme R61, via reaction at sulfur as shown in Figure 31.12

 

R285 S62

K65

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: shows the serine residue (S62) covalently attached to the N-

benzoyl-β-sultam at the sulphur and that the ring has opened via S-N 

fission.12 

 

The hydrolysis studies carried out by Wing Tsang distinguished between S-N 

fission and (O=) C-N fission. 1H-NMR studies showed that the alkaline 
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hydrolysis of the N-benzoyl-β-sultam occurred via S-N fission as a result of 

attack on the sulfur of the β-sultam ring. Thus previous studies can be seen to 

indicate that N-aroyl-β-sultams react with nucleophiles at sulfur (SO2) and not 

at the exocyclic carbonyl, shown in Figure 32. 

 

HN

O2 Ar Nu-

H+
O2 Ar

Nu

O2 Ar Nu-

H+ O2

H

ArNu

Nucleophiles react at sulfurS N

O

S

S N

O

S N

O

O

C

+
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O2 Ar Nu-

H+
O2 Ar

Nu

O2 Ar Nu-

H+ O2

H

ArNu
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O

S

S N

O

S N

O

O

C

+

 
Figure 32: N-Aroyl-β-sultams react with nucleophiles at sulfur. 

 

To further understand the stability, reactivity and mechanistic nature of the β-

sultam and β-lactams in detail, calorimetric studies can be conducted to 

determine rates and enthalpies. In addition the unsubstituted β-sultam and β-

lactam do not have chromophores, therefore traditional techniques for example, 

HPLC used at the University of Huddersfield, could not be used for previous 

studies. Calorimetry however, is not limited by the physical state or if the 

compound has a chromophore. 

 

Calorimetry when combined with previous studies will provide useful data 

which can lead to potential medicinal compounds that can be used within the 

pharmaceutical industry. β-Sultams are good candidates to explore because of 

their possible inhibition of serine protease enzymes. Compounds containing 

sulfonamides are also well known for their wide range of biological activities as 

antibacterials13 and peptidomimetic properties.14, 15, 16

 

When considering a successful inhibitor chemical reactivity is usually 

considered in terms of the electrophilic nature of the acyl centre and the leaving 

group ability of the group displaced. Increased chemical reactivity may lead to 
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a faster rate of reaction with the target enzyme but may also lead to greater 

hydrolytic and metabolic instability.17 For this reason a study of chemical 

reactivity is also important. 

 

A calorimetric study will follow. Where hydrolysis experiments were 

conducted under varying conditions in the solid state, varying RH, 

water/solvent mixtures and buffer controlled conditions. The calorimetric data 

will help to understand the stability, hydrolytic and mechanistic nature of these 

molecules. Some β-lactams have been studied previously by calorimetry, 

however there is no comparative study to date involving β-lactams and their 

sulfonyl analogues β-sultams. To understand the chemical reactivity and see 

how these compounds that are very similar in structure vary with regards to 

hydrolysis, 1H-NMR can be used in conjunction with calorimetry. This will 

allow a detailed comparison to further understand and clarify what processes 

are occurring on a molecular level and to determine hydrolysis. 

 

Calorimetric experimental methods and results will now be discussed in the 

following chapter. 
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3.0 Calorimetry introduction 

Calorimeters can observe all processes, chemical and physical which involve an 

exchange in heat energy to or from their surroundings.1 Calorimetry is a non- 

specific technique, which will monitor and record all reactions that occur. There 

are many advantages that are associated with isothermal microcalorimetry, for 

example, compounds without a chromophore can be studied, and only small 

amounts of compound are required to observe a significant output. 

 

All experimental data obtained must be validated and it is therefore important to 

initially discuss the imidazole catalysed hydrolysis of triacetin which is a 

universal test reaction system for the validation of isothermal heat conduction 

calorimeters.2 This reaction is suitable for the following reasons: it is simple to 

perform, robust in operation, it requires readily available cheap materials and it 

is applicable to a range of commercially available calorimeters. The experiment 

is conducted at 298K, 0.267 g triacetin is added to 5 mL deionised water. 

Triacetin is not readily soluble so thorough mixing is required. A buffer 

solution is made up consisting of 1.6 g acetic acid, 2.72 g imidazole and 10 mL 

deionised water. 3 mL glass ampoules supplied from Thermometric are used to 

conduct the experiment. The time is noted at the time of addition of buffer to 

triacetin, time = 0. The values obtained for the reaction rate, kR, and the 

enthalpy of reaction, ΔRH, are: kR = 2.80 ± 0.10 x 10-6 dm3 mol-1 s-1, ΔRH = -

91.7 ± 3.0 kJmol-1. These values are used to validate reaction systems for any 

given calorimeter, and such a test reaction will be discussed later. 

 

Previous calorimetric research using the Thermal Activity Monitor (TAM) has 

been conducted within the pharmaceutical, chemical and life science industries. 
3 4, 5 Examples in the pharmaceutical industry include degradation,6 drug 

excipient compatibility7 and dissolution studies.8

 

Within the biosciences field the TAM system has been used to measure 

complex metabolic processes, as well as the effects of pollutants on ecological 

systems.9 The TAM has been used extensively in this work to study the 
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hydrolysis of β-sultams and β-lactams. Experimental procedures will now 

follow. 

 

3.1 TAM experimental 

(All reagents were supplied from Aldrich and were used without further 

purification. Solution state sample spectra were obtained using a Jeol ECA, 500 

MHz FT-NMR spectrometer. The Mettler Toledo pH Meter was used to 

monitor the pH before and after solutions were made up. The isothermal 

microcalorimeter TAM 2277 was used to conduct all calorimetric experiments). 

 

Initial experiments were conducted on compounds A, B, C and D (Figure 33) 

in the solid state at 298K, 310K and 313K. Further experiments were conducted 

at different relative humidities, in solution using water and acetonitrile, 

controlling pH and ionic strength. A fifth compound (F) was also investigated 

in later studies. For all calorimetric experiments 3 mL glass ampoules were 

used and supplied from Thermometric Ltd. Each separate experimental protocol 

will now be detailed. The concentration used in the following experiments was 

the concentration of β-sultam and acetonitrile and not the final concentration. 

 

S NO
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A                                          B                                        C

D  
Figure 33: β-sultams used to conduct hydrolysis experiments. 
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3.1.1 Calibration of a calorimetric unit. 

 

Prior to experimentation, calibration of the calorimetric unit was routinely 

undertaken. Calibration of a calorimetric unit required two glass ampoules 

containing identical material i.e. water, solvent or empty. The ampoules were 

loaded onto the calorimeter at the equilibrium position and left to equilibrate for 

approximately 40 minutes. The ampoules were then lowered further into the 

sample and reference chambers, during which a slight disruption was observed 

to the data which was a direct result of frictional heat. The ampoules were left 

for a further 50-60 minutes to achieve a stable baseline. The base line should 

have read 0.00, in those cases where the base line did not; it was adjusted via 

the amplifier. Once a stable base line was achieved the electrical calibration was 

switched on. The calibration signal was then adjusted to the required thermal 

power. Once the calibration signal was corrected and plateau was observed, the 

calibration was switched off. The signal was left to decay back to zero until a 

stable baseline was observed again. A typical calorimetric calibration curve is 

shown in Figure 34. 
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Figure 34: A typical calorimetric output from an electrical calibration. 

 

3.1.2 Test and reference reaction: Imidazole catalysed hydrolysis of triacetin. 

 

The reaction was conducted in a pH 7 buffer solution. Buffer solution: 1.6 g 

acetic acid was added to 2.72 g of imidazole and made up to 10.0 mL with 
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deionised water. The reaction solution consisting of 0.267 g triacetin was made 

up to 5.0 mL with buffer solution, which was shaken to obtain a homogeneous 

mixture. Addition of buffer (2 mL) to triacetin (1mL) was monitored using a 

stopwatch. This is the time zero (t=0) for the reaction. The reference ampoule 

was filled with 3.0 mL of buffer. Both ampoules were lowered carefully at 

298K and left to thermally equilibrate for 45 minutes -1 hour. They were then 

lowered carefully to minimise any thermal shock. Once lowered, data was 

collected via DigitamTM. 

 

3.1.3 Solid state hydrolysis of β-sultams A, B, C and D at 298K, 310K, 323K. 

 

For solid state experiments at 298K, 310K and 313K, an empty glass ampoule 

was hermetically crimp-sealed to be used as the reference. β-sultam A, B, C or 

D (20.0 mg) was transferred to a 3 mL glass ampoule and the sample ampoule 

was hermetically crimp-sealed. The reference and sample ampoules were then 

placed into the calorimeter and left to thermally equilibrate for 40 minutes in 

the load position prior to being lowered over a one minute period to the 

measurement position, at this point data was collected.  These experiments were 

repeated several times to ensure accuracy, validity and reliability was achieved. 

 

3.1.4 Solid state study of β-sultams A, B, C and D, varying relative humidity 

(RH) at 310K. 

 

Two different RH experiments were conducted at 310K, 7% RH (NaOH) and 

75% RH (NaCl), using β-sultams A, B, C, and D. An empty glass ampoule 

containing a small vial with the desired saturated salt solution in it was 

hermetically crimp-sealed to be used as the reference. The reaction ampoule 

contained a small vial of the same saturated salt solution together with β-sultam 

A, B, C or D (10 mg). Experiments were also attempted with 20 mg. The 

reference and sample ampoules were then placed into the calorimeter and left to 

thermally equilibrate for 40 minutes in the load position prior to being lowered 

over a one minute period to the measurement position, at this point data was 
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collected. These experiments were repeated several times to ensure accuracy, 

validity and reliability was achieved. 

 

3.1.5 Hydrolysis of β-sultams A, B, C and D at 298K in aqueous solution, pH 

7 (water and acetonitrile). 

 

For hydrolysis experiments at pH 7 (sodium hydroxide or hydrochloric acid 

was added to obtain pH 7) and at 298K a variation of sample weight (40 mg or 

20 mg) and solution volumes were used to determine the feasibility of the 

experiments. The various volumes used for the reference were 2.0 mL or 2.5 

mL acetonitrile and 1.0 mL or 0.5 mL water at pH 7. For example, 2.0 mL 

acetonitrile was used with 1.0 mL water to make 3.0 mL. The desired volumes 

were transferred to a 3.0 mL glass ampoule and hermetically crimp-sealed to be 

used as a reference.  

 

The point of solvent/compound mixing with water was recorded as the start 

time of the reaction. The sample ampoule was hermetically crimp-sealed. The 

reference and sample ampoules were placed into the calorimeter and left to 

thermally equilibrate for 40 minutes in the load position prior to being lowered 

over a one minute period to the measurement position, at which point data 

recording began. These experiments were repeated several times to ensure 

accuracy, validity and reliability was achieved. 

 

3.1.6 Hydrolysis of β-sultams A, B, C and D at 298K in aqueous solution  

(controlled ionic strength, pH 4 at 0.02M). 

 

The reaction was conducted at 298K and pH 4.0. The buffer solution consisted 

of 0.49 g potassium acetate and 3.35 g potassium chloride, which was added to 

50.0 mL distilled water and shaken vigorously 60 times to ensure thorough 

mixing. HCl was added to obtain pH 4.0 using a pH meter. The β-sultam was 

mixed with acetonitrile to make a 0.02M solution. The reference ampoule was 

filled with 2.0 mL of buffer and l.0 mL solvent. The reaction ampoule was 

filled with 2.0 mL buffer, 1.0 mL of the desired β-sultam solution and 
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hermetically crimp-sealed. Both ampoules were lowered into the calorimeter 

and left to thermally equilibrate for 40 minutes in the load position prior to 

being lowered over a one minute period to the measurement position, at which 

point data recording began. These experiments were repeated several times to 

ensure accuracy, validity and reliability was achieved. 

 

3.1.7 Hydrolysis of β-sultams A, B, C and D at 298K, 310K, 323K in aqueous 

solution (controlled ionic strength, pH 4 at 0.008M). 

 

The same method was used for the next set of experiments which were 

conducted at temperatures 298K, 310K and 323K at 0.008M. The buffer 

solution consisted of 0.49 g potassium acetate and 3.35 g potassium chloride, 

which was added to 50.0 mL distilled water and shaken vigorously 60 times to 

ensure thorough mixing. HCl was added to obtain pH 4.0 using a pH meter. The 

β-sultam was mixed with acetonitrile to make a 0.008M solution. The reference 

ampoule was filled with 2.0 mL of buffer and l.0 mL solvent. The reaction 

ampoule was filled with 2.0 mL buffer and 1.0 mL of the desired β-sultam 

solution and hermetically crimp-sealed. Both ampoules were lowered into the 

calorimeter and left to thermally equilibrate for 40 minutes in the load position 

prior to being lowered over a one minute period to the measurement position, at 

which point data recording began. These experiments were repeated several 

times to ensure accuracy, validity and reliability was achieved. 

 

3.1.8 Hydrolysis of β-sultams A, B, C and D at 298K in aqueous solution    

  (controlled ionic strength, pH 8 at 0.008M). 

 

The reaction was conducted at pH 8.0. The buffer solution consisted of 0.6 g 

sodium dihydrogen phosphate and 2.26 g potassium chloride which was added 

to 50.0 mL distilled water and shaken vigorously to ensure thorough mixing. 

HCl was added to obtain pH 8.0 using a pH meter. The β-sultam was mixed 

with acetonitrile to make a 0.008M solution. The reference ampoule was filled 

with 2.0 mL of buffer and 1.0 mL solvent and hermetically crimp-sealed. The 

reaction ampoule was filled with 2.0 mL buffer, 1.0 mL of the β-sultam 
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solution and hermetically crimp-sealed. Both ampoules were lowered into the 

calorimeter and left to thermally equilibrate for 40 minutes in the load position 

prior to being lowered over a one minute period to the measurement position, at 

which point data recording began. These experiments were repeated several 

times to ensure accuracy, validity and reliability was achieved. 

 

3.1.9 Hydrolysis of β-sultam F at 298K in aqueous solution (controlled ionic 

strength, pH 8 and pH 4 at 0.008M). 

 

Experiments were conducted at pH 4.0 and pH 8.0. The buffer solution for pH 

8.0 consisted of 0.6 g sodium dihydrogen phosphate and 2.26 g potassium 

chloride which was added to 50.0 mL distilled water and shaken vigorously to 

ensure thorough mixing. HCl was added to obtain pH 8.0 using a pH meter. The 

buffer solution for pH 4.0 consisted of 0.49 g potassium acetate and 3.35 g 

potassium chloride which was added to 50.0 mL distilled water and shaken 

vigorously to ensure thorough mixing. HCl was added to obtain pH 4.0 using a 

pH meter.  A 0.008M solution of β-sultam in acetonitrile was used for all 

experiments. The reference ampoule was filled with 2.0 mL of buffer and 1.0 

mL solvent and hermetically crimp-sealed. The reaction ampoule was filled 

with 2.0 mL buffer and 1.0 mL of the β-sultam solution and hermetically crimp-

sealed, both ampoules were lowered into the calorimeter and left to thermally 

equilibrate for 40 minutes in the load position prior to being lowered over a one 

minute period to the measurement position, at which point data recording 

began.  

 

3.2 Data Analysis 

Kinetic and thermodynamic parameters can be determined from calorimetric 

outputs. Kinetics is the study of the rates of chemical processes. The 

relationship between rate and concentration which can be expressed 

mathematically in the form of an equation called a rate law, rate varies with 

time and concentration.  
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Reactions are found to have rate laws of the form; 

 

r = k [A]a [B]b
Equation 7 

 

Where k is a constant, the power a is the order with respect to A and b is the 

order with respect to B. The first order rate law is one in which the rate is 

proportional to the concentration of A raised to the power 1. First order rates 

constants have units of time-1. 

 

r = k1st [A]1 
Equation 8 

 

A second order reaction has the concentration raised to the power of 2. The 

units are conc-1 and time-1. 

 
Equation 9 r = k2nd[A]2 

 

First order reactions have their rate dependent on only one reactant species, i.e.  

                    A → Products 

 

         δA 

Rate at which A converts to products     =  -  ——  = k[A] 

         δt 

 

                 δ[A] 
Equation 10                                                         kδt   =  -  ——   

                   [A] 

 

If [A]0 is the concentration when t = 0 (t0) and [A]’ is the concentration at t’ 

then  

 

    t’      [A]’ 

    ∫   kdt        =   -       ∫    d ([A]’/[A]0) Equation 11 
    t0        [A]0  
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Then  

 

           [A]0 

               kt  =     ln  —— 

           [A]’ 

 

                [A]’ 

             -kt  =     ln  —— 

           [A]0  

 

                         [A]’ 

        e (-kt)   =        —— 

                     [A]0  

 

            [A]’   =       [A]0e-kt  

 
Equation 12                     ln [A]   =      -kt + ln[A]0 

 

This equation is equivalent to the general form y = mx + c, i.e. a straight line 

with a gradient equal to the negative of the rate constant, k. Calorimetric 

outputs yield a plot of power (Φ) with time (t). For a standard calorimetric 

analysis the output observed at any time point during the experiment is 

proportional to the quantity of material available to react (n) and the change in 

enthalpy for the process (ΔH) i.e. number of moles reacted multiplied by the 

enthalpy per mole. This assumes over the concentration range studied the 

mechanism for the process remains constant. A general calorimetric 

relationship can therefore be written as 

 

Equation 13 Calorimetric output = Φ ∝ n . ΔH 

 

Therefore, the calorimetric output is proportional to the quantity of reactable 

material, i.e. Φ α n. This allows calorimetric power outputs to be analysed using 

standard first order mathematical models as outlined previously, i.e. 
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Equation 14 ln Φ = -kt + lnΦ0 

 

 

 

Therefore, assuming the reaction to be first order leads to a linear plot of ln 

(power) with time, thus establishing the associated rate constant, k. In addition, 

the change in enthalpy can also be determined from identifying the linear 

intercept (Φ0), and applying Equation  

 
Equation 15 ΔH = Φo x10-6

                                                          -k x An 

 

Equation 15 was used to determine ΔH. Where Φo (dq/dt) is the intercept, -k is 

the slope, A the number of moles and n the order of reaction.  

Equation 15 was derived from Equation 16.10

 

Equation 16 
 

dq

dt
= kHA

n

 

 

 

This theory can only be applied to experimental data based on two assumptions, 

firstly, the reaction is first order (confirmed by the linearity of the resultant 

logarithmic graph) and secondly the total power output is a true reflection of the 

total enthalpy change. 

 

Graphs were plotted using Microcal Origin 7.0.  

1. Data was imported from Digitam™ which is connected to the calorimeter.  

2. The data is imported as a single ASCII file into Microcal origin. 

3. Columns A and B were copied into a new spreadsheet. 

4. Column values were set (A) col(A) + (time s). It is important to note that the 

equilibration time plus time of mixing was included. The time it took to mix 
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the solutions and lower them into the calorimeter was recorded and added to 

the equilibration time. 

5. Column values were set for (B), ln (col(B)) (first order) or 1/(col(B)) 

(second order) 

6. Columns A and B were highlighted and a line graph was plotted. Data was 

selected after 3600s. This is the time taken for the calorimeter to settle. 

When ampoules are lowered the initial thermal disruption interferes with the 

calorimetric signal and this time interference is not included in the analysis. 

7. The double arrow option was selected to highlight the area of analysis. 

  

Error values were calculated using the T- test statistics analytical method. The 

table below is used to calculate errors using the T-test. 

 

 T Value Confidence Interval 

Degrees of freedom 

(n-1) 

90 % 95% 

1 6.314 12.706 

2 2.920 4.303 

3 2.353 3.182 

4 2.132 2.776 

5 2.015 2.571 

10 1.812 2.228 

15 1.753 2.132 

20 1.725 2.086 

30 1.697 2.042 

60 1.671 2.000 

Infinite 1.645 1.960 

 

Table 3: T-test method 

 

The t-table value depends on the sample size you have used to estimate the 

standard deviation. n-1 refers to the degrees of freedom.9 A 95% confidence 

limit was used in this thesis. 
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Results and Discussion 

  

3.3 Test and reference reaction: Imidazole catalysed hydrolysis of triacetin. 

The imidazole catalysed hydrolysis of triacetin is a test reaction for isothermal 

heat conduction calorimeters. Calorimetric data was obtained and analysed 

using MicroCal origin. The following method was used to analyse the data. The 

data was imported and a line graph plotted, using power (μW) against time (s). 

A non linear curved fit was plotted. 

 

dq

dt
- ΔHVk 

[A0]

1 + kt( )2
=

[A0]

dq

dt
- ΔHVk 

[A0]

1 + kt( )2
=

[A0]  

Equation 17 

  

 

dq

dt  = thermal power 

k = reaction rate constant 

ΔH = reaction enthalpy change 

A0  = initial concentration of triacetin 

t = time 

V = volume of solution placed into ampoule 

2 = in the fitting procedure the order is fixed as two. 

 

The equation is part of the MicoCal origin data software package. A typical 

calorimetric output is shown in Figure 35.  
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Figure 35: An example of a typical calorimetric output for the imidazole 

catalysed hydrolysis of triacetin (see structure above) at 298K . 

 

The imidazole catalysed hydrolysis of triacetin is second order. Figure 35 

shows a calorimetric output where Equation 17 was fitted too. All parameters 

derived from the Microcal Origin package are in line with those results 

published.2 For example S. Gaisford, R.A. Lane and G. Buckton (London 

School of pharmacy) published the following results. 
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 A0  
(mol dm-3) 

V (dm3) ΔH° 

(kJ mol-1) 

k (dm3 mol-1 s-1) 

London 

School of 

Pharmacy 

0.245 

0.245 

0.245 

0.0030 

0.0030 

0.0030 

-89.39 

-96.20 

-91.40 

2.98 x 10-6 

2.61 x 10-6 

2.83 x 10-6

University 

of 

Greenwich 

(Summia) 

0.245 0.0030 -91.23 2.80 x 10-6

 

Table 4: Imidazole catalysed hydrolysis of triacetin compared to results 

obtained at the London School of Pharmacy. 

 

3.3.1 Solid state studies at 298K, 310K and 323K, for β-sultams A-D. 

Solid state experiments were conducted at 298K, 310K and 323K; rate 

constants and enthalpies are reported in Table 5 and Table 6. Results were 

inconclusive for compound C and D at 298K, D at 310K and B, C and D at 

323K, which will be discussed later.  

 

Data were analysed after 5000 seconds, the data before this reflects the 

disruption caused to the power output upon lowering the ampoules. Data 

analysis ceased after the reaction had reached completion, the calorimetric 

output had reached zero or when the signal was too close to the base line. All 

experiments discussed in this section are first order degradation reactions. 
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298K solid state A B 

t ½ (s)  25600 8250 

Rate constant  

(s-1) 

2.64x10-5  8.20x10-5  

 2.53x10-5  8.88x10-5  

 2.97x10-5  8.36x10-5  

 2.73x10-5  8.01x10-5  

Average 2.7x10-5 (± 0.6x10-5) 8.4x10-5 (± 1.2x10-5) 

ΔH° (298K) (kJmol-1) -4.23 - 6.19 

 -4.02 - 8.33 

 -3.78 - 8.97 

 -3.56 - 9.81 

Average -3.9 (± 0.9) - 8.3  (± 4.9) 

 

Table 5: A summary of the data obtained for compounds A and B at 298K. 

 
310K solid state A B C 

t ½ (s)  40760 4330 5330 

Rate constant  

(s-1) 

1.76x10-5  

 

1.75x10-4  

 

1.25x10-4  

 1.68x10-5  1.53x10-4  1.29x10-4  

 1.70x10-5  1.50x10-4  1.28x10-4  

 1.55x10-5  1.43x10-4  1.29x10-4  

Average 1.7x10-5  

(± 0.3 x10-5)       

1.6x10-4  

(± 0.4x10-4)   

 1.3x10-4  

(± 0.06x10-4)   

ΔH°(310K)(kJmol-1) - 1.91 - 11.44 - 4.38 

 - 2.60 - 12.69 - 4.56 

 - 1.93 - 12.56 - 5.19 

 - 3.47 - 14.51 - 6.03 

Average - 2.5 (± 2.3) - 12.8 (± 4.0) - 5.0 (± 2.4) 

 

Table 6: A summary of the data obtained for compounds A, B, and C in 

their solid state at temperature 310K. 

 

β-sultam A was investigated at a third temperature see Table 7.  
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323K solid state A 

t ½ (s)  17770 

Rate constant (s-1) 4.06x10-5  

 3.86x10-5  

 3.61x10-5  

 3.89x10-5  

Average 3.9x10-5  (±  0.6x10-5) 

ΔH° (323K)(kJmol-1) - 24.63 

 - 21.63 

 - 27.88 

 - 21.41 

Average - 23.9 (± 9.6) 

 

Table 7: Compound A in the solid state at 323K. 

 

Example graphs will now follow for compound A at 298K, 310K and 323K. β-

sultam B at 298K and 310K and compound C at 310K, followed by a 

discussion of the data. Exothermic signals were observed and a typical example 

is shown in Figure 36 where the natural logarithm of the power output (μW) 

was plotted against time (s). 
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Slope = -2.97 x 10-5, intercept = 2.94, R2 = 0.994. 

Figure 36: An example of a typical calorimetric output at 298K for β-

sultam A in the solid state. 
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The data was analysed from 5000s – 40000s and over 1.5 half lives. For the 

best linear fit, the rate constant was 2.97 x 10-5s-1 and ΔH was -3.78 kJmol-1. β-

sultam A was also analysed at 310K, as shown in Figure 37. 

0 10000 20000 30000 40000 50000 60000 70000

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ln
 P

ow
er

Time (s)

 
Slope = -1.76 x 10-5, intercept = 1.75, R2 = 0.999. 

Figure 37: An example of a typical calorimetric output at 310K for β-

sultam A in the solid state. 

The data was analysed from 5000s – 63000s and over 1.5 half lives. The rate 

constant was 1.76 x 10-5s-1 and ΔH was -1.91 kJmol-1 for this experiment. β-

sultam A was also analysed at 323K, as shown in Figure 38. 
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Slope = -4.06 x 10-5, intercept = 5.15, R2 = 0.998. 

Figure 38: An example of a typical calorimetric output at 323K for β-

sultam A in the solid state. 
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The data was analysed from 5000s – 19000s over 1.5 half lives. The rate 

constant for this example was 4.06 x 10-5s-1 and ΔH was -24.63 kJmol-1. 

 

For β-sultam B at 298K and 310K exothermic signals were observed (Figures 

39 and 40) and the natural logarithm of power output (μW) was plotted against 

time (s) to determine the associated rate constant and enthalpy change. 
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Slope = -8.36 x 10-5, intercept = 4.14, R2 = 0.999. 

Figure 39: An example of a typical calorimetric output at 298K for β-

sultam B in the solid state. 

 

It can be seen from the example in Figure 39 that the relationship between the 

natural logarithm of the power output and time is linear. The data was analysed 

from 5000s – 17000s and over 2 half lives. The rate constant of hydrolysis was 

8.36 x 10-5s-1 and ΔH was -8.97 kJmol-1. As show in Figure 40 β-sultam B was 

also studied at 310K. 
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Slope = -1.75 x 10-4, intercept = 5.21, R2 = 0.999. 

Figure 40: An example of a typical calorimetric output at 310K for β-

sultam B in the solid state. 

The data at 310K (Figure 40) was analysed from 5000s – 11000s and over 2.5 

half life. The rate constant was 1.75 x 10-4s-1 and ΔH was -11.44 kJmol-1. For β-

sultam C at 310K an exothermic signal was observed (Figure 41). The natural 

logarithm of power (μW) was plotted against time (s).   

4000 6000 8000 10000 12000 14000 16000 18000
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

ln
 P

ow
er

Time (s)

 
Slope = -1.28 x 10-4, intercept = 3.95, R2 = 0.999. 

Figure 41: An example of a typical calorimetric output at 310K for β-

sultam C in the solid state. 

The data was analysed from 5000s – 16000s and over 3 half life. The rate 

constant of degradation was 1.28 x 10-4s-1 and ΔH was -5.19 kJmol-1. 
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3.3.2 Discussion of solid state studies at 298K, 310K, and 323K. 

Table 5 and Table 6 demonstrate that a change in substituents affects the rate 

constant and enthalpy. Although full solid state data sets are not reported, rates 

of hydrolysis were observed in the solid state. At 298K β-sultam A hydrolysed 

slower than β-sultam B. At 310K the general trend in rate of reaction witnessed 

is as follows; A> C > B. β-Sultam C has a chlorine substituent attached to the 

phenyl ring which has an electron withdrawing effect, removing electron 

density from the aromatic system. β-Sultam B rates of hydrolysis were 

compared to β-sultam C and were similar. The unsubstituted  β-sultam A 

hydrolysed the slowest when compared to the substituted β-sultams B and C, 

the stability of β-sultam A allowed further experiments to be conducted at 

323K. No calorimetric outputs were observed when β-sultam D was subjected 

to these experiments. 

 

The rate constants for both the benzoyl and chlorobenzoyl compounds (B and 

C) display a ten-fold increase when compared to the unsubstituted β-sultam 

(compound A). For the methoxybenzoyl substituent (D), it was not possible to 

establish reproducible data. With respect to the associated change in enthalpy, 

β-sultam A provided the smallest enthalpy change, followed by a two-fold 

increase for β-sultam C and a more significant increase of approximately 10 

kJmol-1 for β-sultam B. Again, β-sultam D did not provide reproducible data 

thus no enthalpic results can be reported. Although full data sets are not 

reported hydrolysis was observed. There was no real correlation between rates 

of hydrolysis and the electronic effect of the substituent. The solid state 

experiments provided a platform for further calorimetric studies, which are 

discussed later in this chapter. 

 

The β-sultams are heat and moisture sensitive, during synthesis they were kept 

dry under nitrogen, and after synthesis they were stored under nitrogen at 273K 

to prevent hydrolysis. The conditions the β-sultams were exposed to in the 

calorimeter were atmospheric conditions, under which they are known to 

degrade.  
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The calorimetric outputs for β-sultam D and C at 298K, D at 310K and B, C 

and D at 323K were too complex to analyse. The relationship between the 

natural logarithm of the power output and time did not give a linear fit and the 

signal observed was endothermic followed by exothermic. Figure 42 shows a 

typical complex calorimetric example output.   
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Figure 42: An example of a typical calorimetric output for β-sultam D at 

310K in the solid state. 

 

Solid state calorimetry, as discussed previously, can be extremely useful within 

the pharmaceutical industry, for example, to determine physical and chemical 

stability. However, there are advantages and disadvantages associated with 

solid state isothermal microcalorimetry (IMC). The typical calorimetric outputs 

that can be seen for β-sultam C and D at 298K involve more than one step, and 

there are several different reasons why more than one process was occurring. 

This may seem to be a disadvantage but is in fact one of the advantages of using 

IMC in that it is sensitive enough to monitor more than one process.  The 

possible processes and advantages using this technique have been highlighted 

previously. 

 

Previous IMC solid state studies conducted have shown that more than one 

process may be occurring with several factors contributing to the complex 

calorimetric outputs observed. For example, during the oxidation of ascorbic 
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acid by Angberg et al., a mechanistic change was observed after only 1.5 

hours.11 Although the mechanism was considered to be first order, the rate 

constant changed by almost two orders of magnitude. The rate change would 

have been missed using conventional methods; however the sensitivity of the 

calorimeter observed this.  

Other previous research reported observing similar phenomena during the 

pharmaceutical processing of crystalline drugs. The ability to detect and 

quantify the amount of amorphous material within a highly crystalline drug is 

important when considering a solid dosage form. Processing operations such as 

milling,12 spray drying,13 mixing14 and lypophilization15 can cause disruption or 

activation to the crystal structure, leading to various degrees of disorder. 

Briggner et al.16 used isothermal microcalorimetry to study changes in the 

crystallinity of spray dried and micronized lactose monohydrate. This study 

used a humidity chamber, where the sample was placed in an ampoule under 

conditions that allow the transition to the thermodynamically stable crystalline 

state to occur. Saturated salt solutions were used to generate humidities between 

53% and 85% RH. The absorbed water behaved as a plasticizer to lower the 

glass transition temperature of the amorphous lactose below the experimental 

temperature (298K), at which point recrystallisation occurred. The response is 

shown in Figure 43. 

 
Figure 43: Typical microcalorimetric output for spray-dried lactose (20 mg 

powder, 85% RH, 25°C).17 

 

The initial response is thought to be caused by a slight imbalance in the 

generation of water vapour or the amorphous material undergoing structural 

collapse followed by absorption of water (endothermic). At hour two there is a 
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sharp response from the recrystallisation process or sorption of water vapour 

onto the powder (exothermic).17 The calorimetric output for the compounds that 

were too complex to analyse may have been a result of a combination of these 

factors as well as hydrolysis. 

 

3.3.3 1H NMR of solid state study 

In order to verify that the calorimetric observations were a reflection of 

hydrolysis, samples were analysed prior to and immediately after TAM 

experimentation. Thin Layer Chromatography (TLC) was conducted throughout 

the synthesis, before and after calorimetric studies. Samples analysed prior to 

calorimetric investigations provided evidence for intact β-sultam and after 

experimentation showed the classic β-amino sulfonic product of hydrolysis.  

 

To further validate hydrolysis, 1H NMR experiments were conducted. The β-

sultam structure used for 1H NMR analysis is shown in Figure 44. Examples of 
1H NMR spectra for β-sultam B are shown before and after hydrolysis in the 

solid state. Figures 45 and 46 show 1H NMR for the intact β-sultam and 

hydrolysed β-sultam. 
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Figure 44: β-sultam structure used for 1HNMR analysis. 
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Figure 45: 1H NMR spectrum before hydrolysis experiment at 298K for β-

sultam B. 

Chemical shift ppm 

 

 

Intensity 

Chemical shift ppm  

Figure 46: 1H NMR spectrum after hydrolysis experiment at 298K for β-

sultam B. 

 

The 1H NMR for intact β-sultam B shows that the Ha/Hb hydrogens resonate as 

triplets at CH2-SO2 3.90 ppm and CH2-NR 4.30 ppm. The Hc/Hd hydrogens 

resonate further down field, and the Hc hydrogens are closest to the 
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electronegative carbonyl group which moves the chemical shift for these 

hydrogens furthest down field.  

 

A broad N-H peak for the hydrolysed β-sultam was also seen at 8.20 ppm, 

indicating hydrolysis. In addition there are multiple peaks within the phenyl 

region corresponding to the phenyl hydrogens in the hydrolysed β-sultam 

spectra. The CH2 peaks for the intact β-sultam, shown in Figure 46, resonate at 

3.80 ppm and 4.40 ppm and move to 3.00 ppm and 3.70 ppm in the hydrolysed 

β-sultam.  

 

The TAM does not provide specific molecular information and therefore 1H 

NMR was a useful way of determining specific products of hydrolysis or to 

show if hydrolysis has even occurred. Although the TAM results for β-sultam 

D at 298K and  310K and C at 298K were not analysable the post TAM 1H 

NMR clearly showed hydrolysis had occurred. 1H NMR spectroscopy was used 

routinely to confirm that hydrolysis events were being observed. 

  

The data provided from the 1H NMR can also be used to determine whether 

hydrolysis occurs via S-N fission or via C-N fission (Figure 47). It has been 

established previously that S-N fission is the preferred mode of reaction, and 

this is related in the results shown which show no evidence for the formation of 

the ethane β-sultam C-N fission product. 
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Figure 47: Hydroxide ion attack via S-N fission and C-N fission. 
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3.3.4 Relative humidity experiments 

Up to this point the conditions used were atmospheric. To understand further 

the possible various processes occurring, experiments were conducted under 

controlled humidities. Several relative humidity (RH) experiments were 

conducted using the hygrostat method. Hygrostats are small glass inserts; they 

were filled with saturated solutions of NaCl (sodium chloride) and NaOH 

(sodium hydroxide) with water.  

 

The results were not reproducible, possibly caused by the non uniformity of the 

solid state particles. Although hydrolysis was observed within the solid state, 

the results observed varying the RH were difficult and too complex to analyse.  

 

Solution state IMC has proved to be useful and less complex with regards to 

studying hydrolysis, and in light of the difficulties observed with solid state 

studies it was decided to pursue solution phase studies. 

 

Preliminary solution state experiments were conducted in water and solvent at 

pH 7, varying the volumes of water, solvent and compound mass. Gratifyingly, 

hydrolysis was observed. The method was then modified to control the ionic 

strength and pH. It is important to note although the imidazole catalysed 

hydrolysis of triacetin was conducted as a test reference reaction these tests 

were created in addition in order to find a method suitable for the β-sultams and 

TAM. 

 

Initial experiments were carried out using a 0.02M solution of β-sultam 

followed by a concentration of 0.008M. Smaller amounts of compound were 

used for the lower concentration and thus more time was dedicated to the 

calorimetric experiments rather than to re-synthesise. 

 

3.4 Solution state studies at 298K, 0.02M, pH 4, β-sultams A-D 

Data was analysed after 10000s, the data before this reflects the disruption 

caused to the power output upon lowering the ampoules. Data analysis ceased 

after the reaction had reached completion, the calorimetric output had reached 
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zero or when the signal was too close to the base line. All experiments 

discussed were first order hydrolysis reactions. An example of each compound 

is shown in the following graphs (Figures 48 – 51) and results are summarised 

in Table 8. The results are discussed in later sections of the thesis. A summary 

of the results obtained at 298K, pH 4 and 0.02M is shown below. 

 
298K 0.02M A B C D 

t ½ (s) 7700 63000 23900 115500 

Rate constant  

(s-1) 

1.03x10-4 

 

1.15x10-5  3.00x10-5  6.18x10-6   

 8.67x10-5  1.15 x10-5  3.06x10-5  6.26x10-6  

 8.84x10-5  1.11x10-5  3.09x10-5  5.49x10-6  

 8.59x10-5  1.12x10-5  2.62x10-5  5.44x10-6  

 8.57x10-5  1.04x10-5  2.60x10-5  6.90x10-6  

Average 9.0x10-5  

(±9.5x10-5 ) 

1.1x10-5  

(± 0.1x10-5) 

 2.9x10-5  

(± 0.6x10-5) 

 6.0x10-6  

(± 1.6x10-6) 

ΔH°(298K) 

(kJmol-1) 

- 40.29 - 25.35 - 39.56 - 14.86 

 - 39.62 - 25.86 - 35.43  - 15.59 

 - 38.85 - 26.07 - 34.31 - 16.39 

 - 39.56 - 25.57 - 35.65 - 16.57 

 - 39.27 - 24.67 - 35.82  - 14.40 

Average - 39.5 (± 1.4) -  25.5 (± 1.5) - 36.2 (± 5.5) - 15.7 (± 2.6) 

 

Table 8: Results for the hydrolysis of β-sultams A-D at 298K, 0.02M, pH 4. 
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Slope = -8.43 x 10-5, intercept = 5.87, R2 = - 0.999. 

Figure 48: An example of a typical calorimetric output for β-sultam A in 

solution at 298K, 0.02M and pH 4. 
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The data was analysed from 10000s – 66000s and over 8 half lives. The rate 

constant was 8.43 x 10-5s-1 and ΔH was -22.70 kJmol-1. 
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Slope = -1.14 x 10-5, intercept = 3.30, R2 = - 0.998. 

Figure 49: An example of a typical calorimetric output for β-sultam B in 

solution at 298K, 0.02M and pH 4. 

 

The data was analysed from 10000s – 120000s and over 2 half lives. The rate 

constant was 1.14 x 10-5s-1 and ΔH was -25.33 kJmol-1. 
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Slope = -3.03 x 10-5, intercept = 4.56, R2 = - 0.996. 

Figure 50: An example of a typical calorimetric output for β-sultam C in 

solution at 298K, 0.02M and pH 4. 
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The data was analysed from 10000s – 65000s and over 3 half lives. The rate 

constant was 3.03 x 10-5s-1 and ΔH was -38.66 kJmol-1. 
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Slope = -6.10 x 10-6, intercept = 2.79, R2 = - 0.997. 

Figure 51: An example of a typical calorimetric output for β-sultam D in 

solution at 298K, 0.02M, and pH 4. 

 

The data was analysed from 10000s – 164000s and over 2.2 half lives. The rate 

constant was 6.10 x 10-6s-1 and ΔH was -14.40 kJmol-1.  

 

3.5 Solution state studies at 298K, 0.008M, pH 4, β-sultams A-D 

To improve the quality of results and determine the validity, a full set of 

experiments at 0.008M were conducted. The experiments were conducted at 

three different temperatures (also see sections 3.5.1 and 3.5.2).  

 

Data was analysed after 5000s, the data before this reflects the disruption 

caused to the power output upon lowering the ampoules. Data analysis stopped 

after the reaction had reached completion, the calorimetric output had reached 

zero or when the signal was close to the base line. All experiments discussed 

are first order degradation. An example of each compound is shown in the 

graphs that follow (Figures 52 – 55) and results are summarised in Table 9. 
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298K 0.008M A B C D 

t ½  (s) 8550 63000 21000 117460 

Rate constant  

(s-1) 

8.07x10-5  

 

1.11x10-5  

 

3.35x10-5  

 

6.23x10-6   

 

 7.90x10-5  1.11x10-5  3.47x10-5   6.20x10-6  

 8.36x10-5  1.14x10-5  3.28x10-5  6.29x10-6  

 8.01x10-5  1.05x10-5  3.22x10-5  5.51x10-6  

 8.08x10-5  1.09x10-5  3.27x10-5  5.45x10-6  

Average 8.1x10-5  

(± 0.5x10-5) 

1.1x10-5  

(± 0.09x10-5) 

 3.3x10-5  

(± 0.26x10-5) 

 5.9x10-6  

(± 1.1x10-6) 

ΔH°  (298K) 

(kJmol-1) 

- 13.88 - 23.65 - 28.57 - 32.06 

 - 14.33 - 21.61 - 28.11 - 29.72 

 - 14.37 - 21.28 - 29.51 - 31.07 

 - 15.29 - 21.55 - 29.66 - 33.02 

 - 15.02 - 20.76 - 28.35 - 33.15 

Average - 14.6 (± 1.5) -  21.8 (± 3.1) -  28.9 (± 1.9) - 31.8 (± 3.9) 

 

Table 9: Results for the hydrolysis of β-sultams A-D at 298K, 0.008M and 

pH4. 
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Slope = -8.08 x 10-5, intercept = 4.73, R2 = - 0.999. 

Figure 52: An example of a typical calorimetric output for β-sultam A in 

solution at 298K, 0.008M and pH 4.  

The data was analysed from 5000s – 70000s and over 8 half lives. The rate 

constant was 8.08 x 10-5s-1 and ΔH was -15.02 kJmol-1. 

 111



Chapter 3: Calorimetric studies of β-sultams 
 

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

ln
 P

ow
er

Time (s)

 
Slope = -1.08 x 10-5, intercept = 2.36, R2 = - 0.999. 

Figure 53: An example of a typical calorimetric output for β-sultam B in 

solution at 298K, 0.008M and pH 4.  

 

The data was analysed from 5000s – 160000s and over 2.5 half lives. The rate 

constant was 1.08 x 10-5s-1 and ΔH was - 20.76 kJmol-1. 
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Slope = -3.28 x 10-5, intercept = 3.67, R2 = - 0.999. 

Figure 54: An example of a typical calorimetric output for β-sultam C in 

solution at 298K, 0.008M and pH4.  

The data was analysed from 5000s – 80000s and over 3.5 half lives. The rate 

constant was 3.28 x 10-5s-1 and ΔH was - 29.51 kJmol-1. 
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Slope = -5.45 x 10-6, intercept = 2.01, R2 = - 0.999. 

Figure 55: An example of a typical calorimetric output for β-sultam D in 

solution at 298K, 0.008M and pH4.  

The data was analysed from 5000s – 160000s and over 1.5 half lives. The rate 

constant was 5.45 x 10-6s-1 and ΔH was - 33.15 kJmol-1. 

 

3.5.1 Solution state studies at 310K, 0.008M, pH 4, β-sultams A-D 

 
310K 0.008M A B C D 

t ½ (s) 3465 34650 14140 69300 

Rate constant  

(s-1) 

2.00x10-4  

 

1.95x10-5  

 

4.87x10-5  

 

1.10x10-5  

 

 2.07x10-4  1.96x10-5  5.10x10-5  1.03x10-5  

 2.07x10-4  1.94x10-5  5.00x10-5  1.09x10-5  

 1.96x10-4  1.94x10-5  4.79x10-5  1.09x10-5

 2.03x10-4  1.99x10-5  4.83x10-5  1.09x10-5  

Average 2.0x10-4  

(± 0.1x10-4) 

2.0x10-5  

(± 0.05x10-5) 

4.9x10-5  

(± 4.5x10-5) 

1.0x10-5  

(± 0.08x10-5) 

ΔH° (310K) 

(kJmol-1) 

- 14.83 - 21.13 - 29.86 - 25.97 

 - 15.64 - 23.70 - 30.80 - 28.59 

 - 15.64 - 23.24 - 31.40 - 27.53 

 - 17.34 - 21.46 - 27.99 - 25.94 

 - 17.12 - 20.71 - 27.43 - 27.00 

Average - 16.1 (± 2.9) -  22.0 (± 3.7) -  29.5 (± 4.8) - 27.0 (± 3.1) 

 

Table 10: Results to show the hydrolysis of β-sultams A-D at 310K, 0.008M 

and pH 4. 
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Slope = -2.00 x 10-4, intercept = 5.62, R2 = - 0.999. 

Figure 56 An example of a typical calorimetric output for β-sultam A in 

solution at 310K, 0.008M and pH 4. 

 

The data was analysed from 5000s – 27000s and over 8 half lives. The rate 

constant was 2.00 x 10-4s-1 and ΔH was - 14.83 kJmol-1. 
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Slope = -1.95 x 10-5, intercept = 2.97, R2 = - 0.999. 

Figure 57: An example of a typical calorimetric output for β-sultam B in 

solution at 310K, 0.008M and pH 4. 

 

The data was analysed from 5000s – 85000s and over 2.5 half lives. The rate 

constant was 1.95 x 10-5s-1 and ΔH was - 21.13 kJmol-1. 
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Slope = -4.79 x 10-5, intercept = 4.00, R2 = - 0.998. 

Figure 58: An example of a typical calorimetric output for β-sultam C in 

solution at 310K, 0.008M and pH 4. 

 

The data was analysed from 5000s – 50000s and over 3.5 half lives. The rate 

constant was 4.79 x 10-5s-1 and ΔH was - 27.99 kJmol-1. 
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Slope = -1.09 x 10-5, intercept = 2.46, R2 = - 0.999. 

Figure 59: An example of a typical calorimetric output for β-sultam D in 

solution at 310K, 0.008M and pH 4. 

The data was analysed from 5000s – 100000s and over 1.5 half lives. The rate 

constant was 1.09 x 10-5s-1 and ΔH was - 25.94 kJmol-1. 
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3.5.2 Solution state studies at 323K, 0.008M, pH 4, β-sultams A-D 

 
323K  0.008M A B C D 

t ½  (s) 1820 14400 5330 16500 

Rate constant  

(s-1) 

3.54x10-4  

 

4.81x10-5  

 

1.16x10-4  

 

4.51x10-5  

 

 3.56x10-4  4.75x10-5  1.11x10-4  4.18x10-5  

 3.70x10-4  4.92x10-5  1.52x10-4  4.07x10-5  

 4.02x10-4  4.71x10-5  1.51x10-4  4.12x10-5  

 4.00x10-4  4.66x10-5  1.34x10-4  4.13x10-5  

Average 3.8x10-4  

(± 0.6x10-4) 

4.8x10-5  

(± 0.8x10-5) 

1.3x10-4  

(± 0.5x10-4) 

4.2x10-5  

(± 0.5x10-5) 

ΔH° (323K) 

(kJmol-1) 

- 19.75 - 22.20 - 29.84 - 30.24 

 - 17.41 - 21.83 - 30.92 - 32.52 

 - 19.27 - 22.60 - 30.73 - 32.49 

 - 18.64 - 21.16 - 30.93 - 33.75 

 - 20.30 - 20.72 - 30.04 - 32.43 

Average - 19.1 (± 3.1) -  21.7 (± 2.1) -  30.5 (± 1.4) - 32.3 (± 3.5) 

 

Table 11: Results to show the hydrolysis of β-sultams A-D at 323K, 0.008M 

and pH 4. 
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Slope = -3.54 x 10-4, intercept = 6.48, R2 = - 0.999. 

Figure 60: An example of a typical calorimetric output for β-sultam A in 

solution at 323K, 0.008M and pH4. 

The data was analysed from 5000s – 13000s and over 7 half lives. The rate 

constant was 3.54 x 10-4s-1 and ΔH was - 19.75 kJmol-1. 
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Slope = -4.71 x 10-5, intercept = 3.85, R2 = - 0.999. 

Figure 61: An example of a typical calorimetric output for β-sultam B in 

solution at 323K, 0.008M and pH4. 

 

The data was analysed from 5000s – 30000s and over 2 half lives. The rate 

constant was 4.71 x 10-5s-1 and ΔH was - 21.16 kJmol-1. 
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Slope = -1.52 x 10-4, intercept = 5.25, R2 = - 0.999. 

Figure 62: An example of a typical calorimetric output for β-sultam C in 

solution at 323K, 0.008M and pH 4. 

The data was analysed from 5000s – 16000s and over 3 half lives. The rate 

constant was 1.52 x 10-4s-1 and ΔH was - 30.73 kJmol-1. 
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Slope = -4.51 x 10-5, intercept = 4.03, R2 = - 0.999. 

Figure 63: An example of a typical calorimetric output for β-sultam D in 

solution at 323K, 0.008M and pH 4. 

 

The data was analysed from 5000s – 35000s and over 2 half lives. The rate 

constant was 4.51 x 10-5s-1 and ΔH was - 30.24 kJmol-1. 

 

3.6 Discussion of results at pH 4 

Initial solution state hydrolysis experiments were conducted at pH 4 using a 

buffer and a solvent, namely acetonitrile. For N-aroylated β-sultams the TAM 

results (see Tables 8, 9, 10 and 11) show a common trend with respect to 

substituent effect and show similar trends when compared to previous kinetic 

results obtained by other means.18 It is apparent that substituents greatly affect 

the stability of the β-sultams. The proposed mechanism for the hydrolytic 

degradation is shown in Figure 64.  
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Figure 64: Hydrolysis mechanism of N-aroylated β-sultams. 

 

As suggested in the mechanism a fifth compound was synthesised. 

Unfortunately the attempted synthesis for the N-substituted β-sultam containing 

the nitro group was unsuccessful. When considering β-sultams A-D in all cases 

(see Tables 8, 9, 10 and 11) it can be seen that under these conditions the 

unsubstituted β-sultam (A) is the most susceptible to hydrolyse in solution 

followed by C (X=Cl), B (X=H) and D (X=OMe). 

 

When considering the mechanism for β-sultams A-D it is proposed that the β-

sultam ring undergoes S-N bond fission (see Figure 64). The intermediate (ii) 

is formed as a result. The difference in stability arises from the effect the 

substituents (X) have on the stability of the nitrogen leaving group and phenyl 
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ring. Certain atoms or groups can add or withdraw electron density to a system. 

Electron withdrawing groups and electron donating groups affect the stability of 

the intermediate. For example, the methoxy group is electron donating and 

would destabilise and disfavour the intermediate (ii) and hence contribute to the 

slower rate of hydrolysis of β-sultam D. This destabilisation is a result of the 

carbonyl group being less available to stabilise the N- leaving group in such a 

system. 

 

β-Sultam C has a chlorine attached to the phenyl ring which has an electron 

withdrawing effect. Electron density is removed from the aromatic system by 

the inductive effect, allowing the charge on the nitrogen to delocalise onto the 

carbonyl and hence stabilise the hydrolysis intermediate and therefore increase 

the rate of hydrolysis of C.  

 

Comparisons can also be made between β-sultam B and β-sultam C. β-sultam B 

appears to be slightly more stable than β-sultam C when considering the half 

life and rate constants. β-Sultam B has no substituents on the phenyl ring, 

meaning that its rate of hydrolysis lies between that of the electron donating D 

and the electron deficient C. 

 

It is relevant to note that the nitro N-aroylated β-sultam could not be prepared 

because it underwent rapid hydrolysis. Presumably the very electron 

withdrawing NO2 group allows such high stabilisation of the intermediate (ii) 

that hydrolysis is facile and prevents isolation of the intact β-sultam. 

 

Hydrolysis experiments conducted using IMC (TAM), provided data that gave 

key kinetic information. To obtain molecular information and clarify the nature 

of the process being observed, 1H NMR studies were conducted and a selection 

of results for each β-sultam studied is shown. The conditions that were used for 

the 1H NMR experiments were those used for the calorimetric studies, i.e. 

buffer (potassium chloride and potassium acetate) at pH 4 and the β-sultam 

dissolved in acetonitrile. The water peak was suppressed to allow a clear and 

true representation of the β-sultam; most of the peaks that represent the β-
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sultam are clearly identified. It can be noted that in some of the spectra the 

CH2-SO2, CH2-NH/R peaks are very close to the signal-noise ratio and the CH2-

SO2 peak for the hydrolysed sultam is embedded in the acetonitrile peak but can 

be seen for the intact sultam. However the 1H NMR spectra show clear 

hydrolysis for β-sultams A-D and hence confirm this as the process under 

observation. Figure 65 shows the substituted β-sultam used for NMR analysis. 

The NMR results are discussed. 

 

N-Aroylated β-sultams

S NO
O Substituent

Substituent = H (A)

a
b

c
d

1

2 X X = H       (B)
X = Cl      (C)
X = OMe  (D)Substituent = 

 

Figure 65: β-sultam structures used for 1H NMR analysis. 

 

β-Sultam A 

During the first hour of analysis (Figure 66) there are peaks at 3.60 ppm and 

2.98 ppm for the two β-sultam CH2s. Hour 3 (Figure 67) shows the same peaks 

starting to disappear together with the appearance of hydrolysis products. The 

appearance of a CH2 for the hydrolysed β-sultam (at 3.3 ppm) can be seen 

progressing from hour 1 and 3. At hour 20 (Figure 68) the peak for the 

hydrolysed β-sultam (3.3 ppm) is more prevalent. The CH2-SO2 and CH2-NH 

peaks of the sultam have reduced significantly, showing significant hydrolysis.  

 

The fact that after 20 hours significant hydrolysis has occurred corresponds 

well with the TAM data, where analysis was stopped after 18-19 hours. An 

important point to note is that there is a general shift of peaks to the right for the 

hydrolysed β-sultams, with relief of ring strain contributing to this general shift. 
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Figure 66: Hydrolysis 1H NMR for β-sultam A at hour 1, 298K. 
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Figure 67: Hydrolysis 1H NMR for β-sultam A at hour 3, 298K. 
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Figure 68: Hydrolysis 1H NMR for β-sultam A at hour 20, 298K. 

 

β-Sultam B 

During the first hour (Figure 69) of analysis it is clear from the presence of two 

sets of peaks in the phenyl region that there is already a combination of intact 

and hydrolysed β-sultam. At hour 20 the distinct CH2-NR peak at 3.30 ppm for 

the hydrolysed β-sultam can be seen. In addition when looking at the phenyl 

region and comparing hour 1 and hour 20 it can clearly be seen that the peaks 

corresponding to the intact β-sultam have been reduced. An important point to 

note is the appearance of the N-H peak which is a clear indication of hydrolysis. 
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Figure 69: Hydrolysis 1H NMR for β-sultam B at hour 1, 298K. 
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Figure 70: Hydrolysis 1H NMR for β-sultam B at hour 18, 298K. 
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Figure 71: Hydrolysis 1H NMR for β-sultam B at hour 20, 298K. 

 

Sultam C 

Sultam C at hour 1 (Figure 72) shows a small amount of hydrolysis. There are 

two distinct sets of peaks in the phenyl region with Ha/c at 8.25 ppm and Hb/d 

at 7.80 ppm with the corresponding peaks for the hydrolysed sultam shifted 

slightly to the right. At hour 3 (Figure 73) the N-H peak is very clear and more 

hydrolysed product is apparent. At hour 20 (Figure 74) further hydrolysis can 

be seen. The two peaks that correspond to the Ha/c and Hb/d region for the 

intact sultam are smaller and the same peaks for the hydrolysed sultam are now 
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more significant. The N-H peak at hour 20 is more distinct, and a new CH2 

signal has appeared at 3.31 ppm. 
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Figure 72: Hydrolysis 1H NMR for β-sultam C at hour 1, 298K. 
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Figure 73: Hydrolysis 1H NMR for β-sultam C at hour 3, 298K. 
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Figure 74: Hydrolysis 1H NMR for β-sultam C at hour 20, 298K. 
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β-Sultam D 

The TAM studies conducted showed that β-sultam D appears to be the most 

stable. NMR experimental analysis for this β-sultam was conducted over a 

longer period of time, indicating greater stability, a fact reflected already in the 

TAM studies. The 1H NMR spectra at hour 1 (Figure 75) showed complete 

intact sultam with Ha/c at 8.10 ppm and Hb/d at 7.30 ppm. At hour 3 (Figure 

76) there is little change with only a small amount of hydrolysis apparent. 

However at hour 20 (Figure 77) it is apparent that the β-sultam has undergone 

noticeable hydrolysis. When looking at the phenyl region there are the 

characteristic Ha/c and Hb/d peaks for the hydrolysed β-sultam, together with a 

small NH peak at 8.50 ppm. 

 

When considering the TAM and 1H NMR data, the TAM analysis showed that 

it took 44-45 hours for β-sultam D to hydrolyse and the 1H NMR shows that 

after 20 hours, less than half the compound had hydrolysed. The 1H NMR data 

thus reinforces that seen in the TAM measurements.  
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Figure 75: Hydrolysis 1H NMR for β-sultam D at hour 1, 298K. 
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Figure 76: Hydrolysis 1H NMR for β-sultam D at hour 3, 298K. 
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Figure 77: Hydrolysis 1H NMR for β-sultam D at hour 20, 298K. 

 

When comparing all four sets of 1H NMR spectra it is apparent that the same 

trend is observed using either NMR or IMC. β-sultam A appears to be the least 

stable, β-sultam D appears to be the most stable and β-sultams B and C appear 

to be similar with respect to stability, with β-sultam B slightly more stable than 

C. This also correlates well when looking at the role of the different substituents 

and how they affect the stability of the intermediates during the hydrolysis 

process as discussed previously. 
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For the solid state results, it can also be seen that the nature of the substituents 

present affects both the rate constant and the change in enthalpy for the 

hydrolytic process. As expected, there is a steady increase in rate constant for 

all four compounds with an increase in temperature across the three 

temperatures (298K, 310K and 323K) studied.  

 

Applying the Arrhenius equation to the kinetic data permits calculation of the 

activation energy (Ea) for the hydrolysis of the four compounds. For each 

compound a plot of lnk against 1/T provided a linear relationship (R2 ranged 

from 0.81 to 0.99). All experiments for each reaction were exothermic. For 

exothermic reactions the lower the activation energy the faster the reaction.  

 

The Ea values for A is +42.2 kJmol-1, +38.5 kJmol-1 for B, +34.9 kJmol-1 for  C 

and 49.9 kJmol-1 respectively. There was not much difference in the activation 

energies calculated.  

 
 

 

Arrhenius plot (beta sultam A)

y = -5078.6x + 7.8207
R2 = 0.9919

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0

0.00305 0.0031 0.00315 0.0032 0.00325 0.0033 0.00335 0.0034 0.00345

1/T

ln
k

 
Slope = -Ea/R = -(-5078.6)*8.314/1000  = +42.2 kJmol-1 

 

Figure 78: β-sultam A Arrhenius plot  
 

 
Arrhenius plot (beta sultam B)
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 Slope = -Ea/R = -(4628.6)*8.314/1000  = +38.5 kJmol-1  

 

Figure 79: β-sultam B Arrhenius plot 
 
 

Arrhenius plot (beta sultam C)
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Slope = -Ea/R = -(4192.9)*8.314/1000  = +34.9 kJmol-1   

 
Figure 80: β-sultam C Arrhenius plot 
 
 

Arrhenius plot (beta sultam D)
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Slope = -Ea/R = -(6007.1)*8.314/1000  = +49.9 kJmol-1   

 
Figure 81: β-sultam D Arrhenius plot 
 
 
 
Enthalpic data presented confirmed that for each of the four compounds there is 

no significant change in enthalpy over the temperature range.  

 

At 0.008M the substituted β-sultams (B, C and D) compared to the 

unsubstituted β-sultam (A) displayed more negative changes in enthalpy at all 

temperatures. This is believed to be a reflection of the stabilising effect exerted 

by the substituents on the S-N bond thus resulting in a more negative change in 

enthalpy associated with the hydrolytic process. 
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The enthalpy for β-sultam A and D at 0.02M were inconsistent. This 

inconsistency could have been related to the different batches used. 

 

Calorimetric studies were also conducted at 0.008M at pH8 to investigate the 

hydrolysis further and compare how a change in pH and concentration affects 

the reaction. 

 

3.7 Solution state studies of β-sultams A-D at 298K, pH 8, 0.008M 

The following experiments were conducted at pH 8. Data was analysed after 

3600s. The data before this reflects the disruption caused to the power output 

upon lowering the ampoules. Data analysis ceased after the reaction had 

reached completion, the calorimetric output had reached zero or when the signal 

was close to the base line. All experiments discussed were first order 

degradation. An example of each β-sultam is shown in the graphs that follow 

(Figures 82 – 84) and results are summarised in Table 12. 

 

 

 

 

 

 

 

 

 
298K 0.008M A B C  D 

t ½ (s) 8482 435 - 525  

Rate constant (s-¹) 4.32x10-5  0.00156  - 0.00135  

 7.14x10-5  0.0016  - 0.00139  

 8.25x10-5  0.0016  - 0.00128   

 1.30x10-4  0.00163  - 0.00129  

Average 8.2x10-5  

(± 9.8x10-5) 

1.6x10-3  

(± 0.09x10-3) 

- 1.3x10-3  

(± 0.2x10-3) 

ΔH° (298K) - 1.22  - 47.40  - - 78.90  
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(kJmol-1) 

 - 0.68 - 55.95  - - 80.49 

 - 0.47 - 57.65  - - 62.90 

 - 0.57 - 45.43  - - 61.08 

Average - 0.7 (± 1.04) - 51.6 (± 19.3) - - 70.8 (± 32.6) 

 

Table 12: Results for the hydrolysis of β-sultams A-D at 298K, 0.008M and 

pH 8. 
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Slope = -8.25 x 10-5, intercept = 1.29, R2 = - 0.994. 

Figure 82: An example of a typical calorimetric output for β-sultam A in 

solution at 298K, 0.008M and pH 8. 

 

The data was analysed from 5000s – 11000s and over 1.5 half lives. The rate 

constant was 8.25 x 10-5s-1 and ΔH was -0.47 kJmol-1. 
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Slope = -0.0016, intercept = 8.35, R2 = - 0.999. 

Figure 83: An example of a typical calorimetric output for β-sultam B in 

solution at 298K, 0.008M and pH8. 

 

The data was analysed from 3600s – 5000s and over 1 half life. The rate 

constant was 0.0016 s-1 and ΔH was -55.95 kJmol-1. 
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Slope = -0.0012, intercept = 8.11, R2 = - 0.997. 

Figure 84: An example of a typical calorimetric output for β-sultam D in 

solution at 298K, 0.008M and pH8.  

The data was analysed from 3600s – 6500s and over 1 half life. The rate 

constant was 0.0012 s-1 and ΔH was -62.90 kJmol-1. 
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3.7.1 Discussion, β-sultams at 298K, pH 8 in solution at 0.008M 

It can be noted that experiments were also attempted at 310K and 323K 

however under these conditions the β-sultam underwent complete hydrolysis at 

the higher temperatures. 

 

To obtain molecular information and confirm the hydrolysis of the β-sultams 

over the calorimetric study time frame 1H NMR studies were conducted. The 

same conditions that were used for the 1H NMR experiments were used for the 

calorimetric studies i.e. a buffer (potassium chloride and sodium hydrogen 

phosphate) at pH 8. The compound was dissolved in acetonitrile when 

conducting the calorimetric experiments; the same was repeated for the 1H 

NMR experiments. For the 1H NMR experiments the water peak was 

suppressed to allow a clear and true representation of the β-sultam, most peaks 

that represent the β-sultam are clear. The 1H NMR spectra showed clear 

hydrolysis for each of the β-sultams A, B and D. In addition and more 

importantly, the hydrolysis experiments conducted were extremely quick in 

comparison with previous experiments discussed, reflecting the calorimetric 

measurements shown in Table 12. 

 

The 1H NMR of β-sultam D, for example, shows the progress of hydrolysis 

which can be analysed by looking within the phenyl region. At 20 minutes 

(Figure 85), there are clearly two species present in the aromatic region, there 

appears to be a mixture of hydrolysed and non hydrolysed material. By 40 

minutes (Figure 86) the reaction is essentially complete with only minor 

amounts of non-hydrolysed product present. Figure 87 (one hour into the 

reaction) confirms the reaction to be complete by 1H NMR.  
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Figure 85: Hydrolysis 1H NMR for β-sultam D at 20 minutes, 298K. 
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Figure 86: Hydrolysis 1H NMR for β-sultam D at 40 minutes, 298K. 
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Figure 87: Hydrolysis 1H NMR for β-sultam D at hour 1, 298K. 

 134



Chapter 3: Calorimetric studies of β-sultams 
 

It is noteworthy that compound C underwent hydrolysis too quickly to allow 

measurement using the TAM. Experiments conducted at pH 4 and pH 8 showed 

similar trends with respect to the effect of substituents on hydrolysis, with 

compound C being more reactive than B and D, where D was the least reactive. 

The substituted β-sultams are more reactive to hydrolysis at pH 8 than at pH 4. 

β-Sultam A showed the same reactivity at both pHs, hence becoming the least 

reactive towards hydrolysis at pH 8 but most reactive at pH 4, the rate for A 

remained the same at both pHs whereas the rate changed for the substituted β-

sultams at the different pHs. The change in enthalpy for β-Sultam A at pH 8 is 

close to zero indicating a slower rate of hydrolysis. The small change in 

enthalpy could be a result of fewer bonds breaking and as a result less heat 

released. 

 

3.8 Solution state studies of β-sultam F at 298K, pH 4 and pH 8, 0.008M 

As part of a collaborative programme of work, the N-acyl β-sultam (Figure 88) 

was synthesised by Arnaud Pitard at the University of Huddersfield as an anti-

inflammatory agent with potential activity as a taurine pro-drug for the 

development of new drugs active against Alzheimer’s disease. The lack of a 

chromophore made this compound unsuitable for U.V. detector kinetic studies, 

but ideal for the TAM method developed in this thesis. With an electron 

donating methyl group on the carbonyl, it was predicted that this new β-sultam 

(F) should have a similar reactivity to that of the electron donating methoxy 

substituted β-sultam (D) and be less reactive than the electron withdrawing  

chlorobenzoyl β-sultam (C). 

 

S NO

O
O  

Figure 88: β-sultam F 

  

Solution state hydrolysis experiments were conducted at pH 4 and pH 8 (Figure 

89 and 90). Data was analysed after 5000s, the data before this reflects the 
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disruption caused to the power output upon lowering the ampoules. Data 

analysis ceased after the reaction had reached completion, the calorimetric 

output had reached zero or when the signal was close to the base line. All 

experiments discussed were first order degradation. Results are summarised in 

Table 13 and the hydrolytic mechanism can be seen in Figure 91. 

 
298K 0.008M pH4 pH8 

t ½ (s) 191000 3107 

Rate constant (s-¹) 
 

3.64 x10-6   2.04x10-4  

 3.55x10-6   1.78x10-4  

 3.71x10-6   2.49x10-4  

 3.58x10-6   2.64x10-4  

Average  3.6x10-6  (± 0.2x10-6)  2.2x10-4   (± 1.2x10-4) 

ΔH° (298K) (kJmol-1) - 23.31 - 0.30 

 - 18.82 - 0.30 

 - 18.22 - 0.20 

 - 22.79 - 0.21 

Average - 20.8  (± 8.4) - 0.3  (± 0.2 ) 

 

Table 13: Results for the hydrolysis of β-sultam F at 298K, 0.008M, pH4 

and pH8. 
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Slope = -3.58 x 10-6, intercept = 1.70, R2 = - 0.992. 

Figure 89: An example of a typical calorimetric output for β-sultam F in 

solution at 298K, 0.008M and pH 4. 
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The data was analysed from 5000s – 300000s and over 1.5 half lives. The rate 

constant was 3.58 x 10-6s-1 and ΔH was -22.79 kJmol-1. 
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Slope = -1.78 x 10-4, intercept = 1.20, R2 = - 0.981. 

Figure 90: An example of a typical calorimetric output for β-sultam F in 

solution at 298K, 0.008M and pH 8. 

 

The data was analysed from 5000s – 8000s and over 2.5 half lives. The rate 

constant was 1.78 x 10-4s-1 and ΔH was -0.30 kJmol-1. 

 

3.8.1 Discussion, β-sultam F at 298K, pH 4 and pH 8 in solution at 0.008M 

The hydrolytic experiments conducted on β-sultam F confirmed the ability of 

the TAM to monitor compounds without a chromophore with low reactivity. At 

both pHs the N-acyl compound F was shown to be the least reactive species 

when comparing rates of hydrolysis to all other substituted β-sultams discussed. 

In particular when comparing reactivity to β-sultam D at pH 4 and pH 8 β-

sultam F is lower in reactivity. However at pH 8 β-sultam A is the least reactive 

when comparing β-sultams A-F. 

 
1H NMR studies confirmed that hydrolysis was observed. The intact N-acyl β-

sultam CH2 peaks resonate at 4.23 ppm and 3.71 ppm and Me at 2.27 ppm. The 
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hydrolysed β-sultam showed the corresponding peaks at 4.00 ppm and 3.72 

ppm respectively.  
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Figure 91: Mechanism to show hydrolysis for β-sultam F. 

 

Figure 91 shows the mechanism of hydrolysis. The mechanistic nature is the 

same as those β-sultams discussed previously. However it is the effect the 

substituent has on stabilising or destabilising the intermediate. In all cases β-

sultam F appeared to be the most stable. 

 

3.9 Discussion (overall) 

The hydrolytic degradation was investigated using Isothermal microcalorimetry 

to determine kinetic and enthalpic data. 

 

Solid state studies were conducted on compounds A-D, there was a significant 

substituent stabilising and destabilising effect observed.  All four compounds 

were analysed for hydrolytic degradation in the solution phase. Experiments 

were conducted at pH 4 and pH 8 at varying temperatures, 298K, 310K and 

323K. The substituents affected the change in enthalpy and rate constants. 

There was a steady increase in the rate constant for all four compounds with an 

increase in temperature. 19
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First order calorimetric outputs were observed for all calorimetric experiments. 

Rates of hydrolysis for the β-sultams at pH 4, 0.02M and 0.008M at the three 

different temperatures, 298K, 310K and 323K were consistent (Table 14 and 

15). 

 
 Rates of hydrolysis – Rate constant (s-1) 
Temperature 
and 
concentration  

A B C D 

298K 0.02M 9.0x10-5  
(±9.5x10-5 ) 

1.1x10-5  
(± 0.1x10-5) 

 2.9x10-5  
(± 0.7x10-5) 

 6.0x10-6  
(± 1.6x10-6) 

 

Table 14: Table to show β-sultam rates of hydrolysis at temperature 298K 

and 0.02M 

 

 Rates of hydrolysis – Rate constant (s-1) 
Temperature 
and 
concentration  

A B C D 

298K 0.008M 8.1x10-5  
(± 0.5x10-5) 

1.1x10-5  
(± 0.09x10-5) 

 3.3x10-5  
(± 0.3x10-5) 

 5.9x10-6  
(± 1.1x10-6) 

310K 0.008M 2.0x10-4  
(± 0.1x10-4) 

2.0x10-5  
(± 0.06x10-5) 

4.9x10-5  
(± 4.5x10-5) 

1.0x10-5  
(± 0.08x10-5) 

323K 0.008M 3.8x10-4  
(± 0.6x10-4) 

4.8x10-5  
(± 0.8x10-5) 

1.3x10-4  
(± 0.5x10-4) 

4.2x10-5  
(± 0.5x10-5) 

 

Table 15: Table to show β-sultam rates of hydrolysis at temperature 298K, 

310K, 323K and 0.008M 

 

When comparing the change in enthalpy, at 0.008M and 0.02M the results are 

consistent and lie within the error range (Table 16 and 17) 

. 

 Change in Enthalpy - ΔH° (298K) (kJmol-1) 
Temperature 
and 
concentration  

A B C D 

298K 0.02M - 39.5 (± 1.4) -  25.5 (± 1.5) - 36.2 (± 5.5) - 15.7 (± 2.6) 
 

Table 16: Table to show β-sultam change enthalpy values at temperature 

298K and 0.02M 
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 Change in Enthalpy - ΔH (kJmol-1) 
Temperature 
and 
concentration  

A B C D 

298K 0.008M - 14.6 (± 1.6) -  21.8 (± 3.1) -  28.9 (± 1.9) - 31.8 (± 3.9) 
310K 0.008M - 16.1 (± 2.9) -  22.0 (± 3.7) -  29.5 (± 4.8) - 27.0 (± 3.1) 
323K 0.008M - 19.1 (± 3.1) -  21.7 (± 2.1) -  30.5 (± 1.4) - 32.3 (± 3.5) 
 

Table 17: Table to show β-sultam change in enthalpy values at 

temperature 298K, 310K and 323K and 0.008M 

 

The change in enthalpy for A and D is inconsistent with all other data shown. 

This may have been a result of hydrolysis prior to experimentation or possibly 

the use of different batches.  

 

First order calorimetric outputs were observed for all the β-sultams and 

hydrolysis was confirmed by 1H NMR. The order for the rate of hydrolysis for 

the substituted β-sultams is as follows C6H4Cl > C6H5 > C6H7OMe > N-acyl. 

The rate for C is greater than B then D, and then F. Hydrolysis studies 

conducted on the unsubstituted β-sultam at pH 4 and pH 8 showed no rate 

change at 298K. It is noteworthy that the unsubstituted β-sultam is the least 

reactive of all at pH 8 but the most reactive of all at pH 4. This clearly implies 

that the N-aroyl and N-acyl β-sultams are reacting via different mechanisms at 

these two pHs, whilst the unsubstituted β-sultam seems to react in the same 

manner, suggested mechanisms are shown in Figure 92 a/b 
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Figure 92a: Unsubstituted β-sultam A hydrolysis mechanism. 
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Figure 92b: Unsubstituted β-sultam A hydrolysis mechanism. 

 

However for the N-acyl and N-aroyl β-sultams a significant change in rate is 

observed when comparing rates of hydrolysis at pH 4 and pH 8. Therefore 

implying a change in mechanism. Possible mechanisms for pH 4 are shown in 

Figures 93 and 94, but are linked by the common need for acid catalysis. 

Figure 93 shows an acid catalysed hydrolysis with a bimolecular rate 

determining step, with Figure 94 showing the unimolecular version. 
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Figure 93: Hydrolysis at pH4. 
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Figure 94: Hydrolysis at pH4. 

 

The mechanism at pH 8 changes in response to the non-availability of acid 

catalysis and a likely mechanism, to that used for the unsubstituted system 

shown in Figure 95. 
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igure 95: Hydrolysis at pH8. 

.10 Conclusion 

n β-sultams has never been conducted previously. The solid 

urther calorimetric experiments were conducted at different relative humidities 

F

 

3

Solid state IMC o

state calorimetric experiments in these studies show that substituents effect 

stability, revealing that electron donating aromatic rings stabilise N-aroyl 

systems. In addition calorimetric experiments provided information on rates and 

enthalpies for β-sultam A (ethane sultam) at three different temperatures, 298K, 

310K and 323K.  

 

F

and in solution at pH 7 (water/acetonitrile). The calorimetric outputs observed 

for the experiments conducted at different relative humidities showed variable 
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results too complex to analyse. The outputs were possibly a combination of 

different mechanisms: generation of water vapour, absorption of water, 

recrystallisation or sorption of water vapour onto the powder. The experiments 

conducted at pH 7 using different volumes of water, acetonitrile and β-sultam 

did not produce significant calorimetric outputs to allow analysis. 

 

The solution state experiments were first conducted at pH 4 using a 0.02M 

A

 the N-aroyl series, it was found that an electron donating group (OMe) 

alorimetric experiments were also conducted at pH 4 at 0.008M concentration 

he experiments conducted at pH 8 showed rapid hydrolysis for the substituted 

s

solution of β-sultam. The first significant point is that β-sultam A appears to be 

the least stable in comparison to the substituted β-sultams. The rate at which the 

β-sultams hydrolyse from most reactive to least reactive are as follows: 

>C>B>D. When comparing the substituted β-sultams the rate at which they 

hydrolyse relates classically to aromatic substituent effects. In addition the 

enthalpy correlates well with the different rates of hydrolysis. For example β-

sultam A appears to be the least stable, the rate constant shows a quicker rate of 

hydrolysis and the change in enthalpy is greater. 

 

In

increased the stability of the β-sultam ring towards hydrolysis whereas the 

electron withdrawing chlorine substituent decreased the stability of the β-sultam 

ring towards hydrolysis and rendered this molecule the most easily hydrolysed 

of the N-substituted systems. In all cases 1H NMR spectroscopy was used to 

verify that the process under observation was indeed hydrolysis. 

 

C

at three different temperatures, 298K, 310K and 323K. The results obtained 

showed the exact same trend and there was no real change in half life.  

 

T

β-sultams in comparison to experiments conducted at pH 4 and in the solid 

tate. A clear difference witnessed at pH 8 is that β-sultam A appears to be the 

most stable rather than the least. The N-aroyl substituted β-sultams show the 

same order of reactivity at both pHs with β-sultam C too reactive to analyse at 
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pH 8. Although the N-aroyl β-sultams were more reactive at pH 8 than pH 4, 

the unsubstituted β-sultam showed no such change in reactivity, implying 

different mechanisms for the N-aroyl systems at the two pHs. 

 

Another major advantage of the IMC (TAM) technique is that small amounts of 

compound can be used, with only 10 mg used for most experiments. This was 

advantageous in reducing the amount of time spent on synthesis.  

 

Finally it was found that N-acyl β-sultam F could be analysed using this 

technique, allowing kinetic data to be obtained without recourse to U.V. 

techniques. This is the first time IMC (TAM) has been used to study β-sultams 

and has been shown to be a reliable technique for obtaining kinetic and 

thermodynamic data for the hydrolysis of β-sultams. 
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4.0 Introduction 

β-Lactams are four membered cyclic amides.1 β-lactams are highly strained, 

whereby the reduced bond angle is responsible for angle strain and the rigid 

four membered ring is responsible for increased torsional strain. The β-lactam 

ring is part of the structure of several antibiotic families, for example, 

penicillins and cephalosporins. These antibiotics primarily work by inhibiting 

bacterial cell wall synthesis; however these antibiotics are no longer as effective 

due to the build up of resistance. The primary reason is the bacterial production 

of β-lactamases which bind to the β-lactam ring in an irreversible manner, 

rendering it ineffective, as discussed in the introduction. 

 

In order to provide a relevant comparison between the β-sultams studied 

previously in this thesis and a series of β-lactams, it was necessary to work with 

the identical series of N-aroyl analogues. 

 

The N-aroyl β-lactams used in this work contain both endocyclic and exocyclic 

centres which are potential sites for nucleophilic attack. Hydrolysis could occur 

via two potential routes, attack at the exocyclic carbonyl (route 1) and 

endocyclic carbonyl (route 2) to give a ring opened product (Figure 96). 

Further hydrolysis in each case could then lead to a β-amino acid and benzoic 

acid. 
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Figure 96: N-benzoyl β-lactam endocyclic and exocyclic hydrolysis. 
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Previous non-calorimetric kinetic studies have been conducted on the N-

benzoyl β-lactams. These studies showed that alkaline hydrolysis occurred via 

competing exocyclic (19%) and endocyclic (81%) C-N bond fission. The pH-

independent studies showed competing exocyclic (<3%) and endocyclic 

(>97%) C-N bond fission. The acid catalysed hydrolysis showed competing 

exocyclic (<4%) and endocyclic (96%) C-N bond fission.2 β-Lactams are also 

known to be much less susceptible to hydrolysis than the corresponding β-

sultams. 

 

In order to establish if isothermal microcalorimetry (IMC) could be used to 

detect reactivity at these relatively low levels, it was decided to examine the β-

lactams A-D and compare their reactivity to the β-sultams. Hydrolysis studies 

using the same calorimetric methods discussed in Chapter 3 were conducted at 

the University of Greenwich. β-Lactams (Figure 97) were synthesised at the 

University of Huddersfield from the unusubstitued β-lactam (A), which was 

purchased from Aldrich. 

N

O
O

N
O H

N

O
O

Cl

N

O
O

OMe

A B C

D  
Figure 97: β-lactams used to conduct hydrolysis experiments. 

 

4.1 TAM experimental 

Experiments were conducted at the University of Greenwich. TAM 2277 was 

the isothermal microcalorimeter (IMC) used to conduct the hydrolysis studies. 

MicroCal origin was used to analyse the TAM data and Equation 18 to 
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calculate the ΔH, where Φo (dq/dt) is the intercept, -k is the slope, A the number 

of moles and n the order of reaction. Equation 18 was derived from Equation 

19.3 

 

ΔH = Φo x10-6

Equation 18                      -k x An 

 

 

dq

dt
= kHA

n

 

Equation 19 

 

4.1.1 Hydrolysis of β-lactams A, B, C and D at 298K and 323K in aqueous 

solution (controlled ionic strength, pH 8 at 0.008M). 

 

Reactions were conducted at pH 8 and 323K. A buffer solution consisting of 

0.60 g sodium dihydrogen phosphate and 2.26 g potassium chloride was added 

to 50 mL distilled water and the mixture was shaken vigorously to ensure 

thorough mixing. HCl was added to obtain pH 8 using a pH meter. The β-

lactam was mixed with acetonitrile to make a 0.008M solution. The reference 

ampoule was filled with 2 mL buffer, 1 mL acetonitrile and hermetically crimp-

sealed. The reaction ampoule was filled with 2 mL buffer and 1 mL of the β-

lactam solution and hermetically crimp-sealed. Both ampoules were lowered 

into the calorimeter and left to thermally equilibrate for 40 minutes in the load 

position prior to being lowered over a one minute period to the measurement 

position, at which point data recording began. The same protocol was used for 

experiments at 298K. These experiments were repeated several times to ensure 

accuracy, validity and reliability was achieved. 

 

4.1.2 Hydrolysis of β-lactams A, B, C and D at 298K and 323K in aqueous 

solution (controlled ionic strength, pH 4 at 0.008M). 
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The reaction was conducted at pH 4. A buffer solution consisting of 0.49 g 

potassium acetate and 3.35 g potassium chloride was added to 50 mL distilled 

water and shaken vigorously to ensure thorough mixing. HCl was added to 

obtain pH 4.0 using a pH meter. The β-lactam was mixed with acetonitrile to 

make a 0.008M solution. The reference ampoule was filled with 2 mL buffer, 1 

mL solvent and hermetically crimp-sealed. The reaction ampoule was filled 

with 2 mL buffer, 1 mL of the β-lactam solution and hermetically crimp-sealed. 

Both ampoules were lowered into the calorimeter and left to thermally 

equilibrate for 40 minutes in the load position prior to being lowered over a one 

minute period to the measurement position, at which point data recording 

began. These experiments were repeated several times to ensure accuracy, 

validity and reliability was achieved. 

 

4.2 Results for the hydrolysis of β-lactams A, B, C and D at 323K in 

aqueous solution (controlled ionic strength, pH 8 at 0.008M) 

 

Data were analysed after 5000s, the data before this reflects the disruption 

caused to the power output upon lowering the ampoules. Data analysis ceased 

after the reaction had reached completion, the calorimetric output had reached 

zero or when the signal was too close to the base line. All experiments 

discussed are first order hydrolysis reactions. Results are summarised in Table 

18, and some typical calorimetric outputs follow.  β-lactam A showed no 

significant calorimetric output under these conditions. 
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323K 0.008M A B C D 

t ½ (s) - 15503 11454 28285 

Rate constant 

(s-¹) 
-  4.23 x10-5  5.80 x10-5  2.07 x10-5  

 - 4.63 x10-5  5.00 x10-5 3.02 x10-5   

 - 4.77 x10-5  6.59 x10-5  2.36 x10-5  

 - 4.69 x10-5  6.86 x10-5  2.76 x10-5   

 - 4.04 x10-5   6.04 x10-5    2.06 x10-5  

Average - 4.5 x10-5  

(± 0.9 x10-5) 

6.0 x10-5   

(± 2.0 x10-5) 

2.5 x10-5  

(± 1.2 x10-5) 

ΔH°(323K) 

(kJmol-1) 

- -15.28  - 16.79  - 21.65  

 - - 16.36  - 19.62  - 15.59  

 - - 15.01  - 16.69  - 20.55  

 - - 14.25  - 18.24  - 14.85  

 - -16.00  - 19.10  - 21.53  

Average - - 15.4 (± 2.3) - 18.1 (± 3.7) -18.8 (± 9.3) 

 

Table 18: A summary of the data obtained for compounds A, B, C and D in 

solution at 323K. 
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Slope = -4.69 x 10-5, intercept = 3.45, R2 = - 0.998 

Figure 98: An example of a typical calorimetric output for β-lactam B at 

323K, 0.008M and pH 8.  
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The data was analysed from 5000s – 30000s and over 2 half lives. The rate 

constant was 4.69 x 10-5s-1 and ΔH was - 14.25 kJmol-1. 

5000 10000 15000 20000 25000 30000 35000

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6
ln

 P
ow

er

Time (s)

 
Slope = -5.80 x 10-5, intercept = 3.68, R2 = - 0.999 

Figure 99: An example of a typical calorimetric output for β-lactam C at 

323K, 0.008M and pH 8.  

 

The data was analysed from 5000s – 35000s and over 3 half lives. The rate 

constant was 5.80 x 10-5s-1 and ΔH was - 16.79 kJmol-1. 
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Slope = -3.02 x 10-5, intercept = 2.97, R2 = - 0.999 

Figure 100: An example of a typical calorimetric output for β-lactam D at 

323K, 0.008M and pH 8. 

 

The data was analysed from 5000s – 68000s and over 2.5 half lives. The rate 

constant was 3.02 x 10-5s-1 and ΔH was - 15.59 kJmol-1. 
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4.2.1 Results for the hydrolysis of β-lactams A, B, C and D at 298K in 

aqueous solution (controlled ionic strength, pH 8 at 0.008M) 

 

Data were analysed after 5000s, the data before this reflects the disruption 

caused to the power output upon lowering the ampoules. Data analysis ceased 

after the reaction had reached completion, the calorimetric output had reached 

zero or when the signal was too close to the base line. All experiments 

discussed were first order hydrolysis reactions. Results are summarised in 

Table 19, it should be noted that β-lactam A and D were unreactive under the 

experimental conditions. 

 
298K 0.008M A B C D 

t ½ (s) - 18,1800 15,7500 - 

Rate constant  

(s-¹) 

- 3.49 x10-6  5.45 x10-6  - 

 - 3.84 x10-6  3.86 x10-6  - 

 - 3.84 x10-6  4.06 x10-6  - 

 - 4.08 x10-6  4.24 x10-6  - 

Average - 3.8 x10-6  

(± 0.8 x10-6) 

4.4 x10-6  

(± 2.3 x10-6) 

- 

ΔH°(298K)  

(kJmol-1) 

- - 43.87 -50.63 - 

 - - 41.21 -53.05 - 

 - - 40.77 -54.66 - 

 - -38.85 -49.88 - 

Average - -41.2 (± 6.6) 52.1 (± 7.0) - 

 

Table 19: A summary of the data obtained for compounds B and C in 

solution at 298K at pH 8. 

 154



Chapter 4: Calorimetric studies of β-lactams 
   

0 50000 100000 150000 200000
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

ln
 P

ow
er

Time (s)

 
Slope = -3.84 x 10-6, intercept = 2.00, R2 = - 0.996 

Figure 101: An example of a typical calorimetric output for β-lactam B at 

298K, 0.008M and pH 8. 

 

The data was analysed from 5000s – 200000s and over 1 half life. The rate 

constant was 3.84 x 10-6s-1 and ΔH was – 40.77 kJmol-1. 
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Slope = 4.06 x 10-6, intercept = 2.20, R2 = - 0.995 

Figure 102: An example of a typical calorimetric output for β-lactam C at 

298K, 0.008M and pH 8. 

 

The data was analysed from 4000s – 240000s and over 1.5 half lives. The rate 

constant was 4.06 x 10-6s-1 and ΔH was - 54.66mol-1. 
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4.3 Discussion 

Initial experiments were conducted at 323K pH8. β-Lactams are more stable 

than β-sultams therefore the highest temperature was used to make initial 

comparisons and to see if the method was compatible with the TAM. No 

reaction was observed for any of the β-lactams studied at pH 4.  

 

No significant calorimetric output was observed for β-lactam A at temperatures 

323K, 298K, pH 4 and pH 8. Results for B and C at 298K and B, C and D at 

323K showed that a change in substituent affects the hydrolysis. The electron 

donating substituents have a stabilising effect whereas electron withdrawing 

substituents remove electron density from the system contributing to its 

instability. At 323K β-lactam C when compared to β-lactams B and D appears 

to be the most reactive. At 298K the rate of hydrolysis for β-lactam C is very 

close to that of β-lactam B. No significant calorimetric output was observed for 

β-lactam D at 298K. As discussed previously, the methoxy substituent has a 

stabilising effect therefore at 298K β-lactam D is not reactive. At 323K β-

lactam D showed a significant calorimetric output, but was still the least 

reactive of the three systems studied. 

 

To clarify hydrolysis had occurred 1H NMR studies were conducted at 323K for 

all four β-lactams. The results for β-lactam A, which IMC (TAM) indicated was 

not reactive, are shown in Figures 103, 104, 105, 106 and 107. The CH2-NR at 

3.40 ppm and CH2CO at 3.80 ppm peaks are clearly present. 
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Figure 103: Hydrolysis 1H NMR for β-lactam A at hour 1, 323K. 
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Figure 104: Hydrolysis 1H NMR for β-lactam A at hour 5, 323K. 
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Figure 105: Hydrolysis 1H NMR for β-lactam A at hour 10, 323K. 
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Figure 106: Hydrolysis 1H NMR for β-lactam A at hour 15, 323K. 
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Figure 107: Hydrolysis 1H NMR for β-lactam A at hour 20, 323K. 

 
1H NMR analysis confirmed that no reaction had taken place. Figures 103, 104, 

105, 106 and 107 display the intact β-lactam A, starting at hour one and ending 

at hour 20 (Figure 107). There are two clear peaks in all spectra corresponding 

to the intact β-lactam (CH2-NR at 3.40 ppm and CH2CO at 3.80 ppm). The 3 N-

aroyl β-lactams B, C and D were reactive at 323K and the 1H NMR results for 

these systems are discussed below. Figure 108 shows the atom labels that are 

used in the subsequent discussion for β-lactam B. 
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Figure 108: Atom labels used for 1H NMR analysis. 

 

β-Lactam B 

β-Lactam B hydrolysis was observable using the TAM (Table 18 and 19) but 

was also studied using 1H NMR in order to verify that a chemical process was 

being observed. There is no hydrolysis at hour one (see Figure 109) where the 

following peaks correspond to the intact β-lactam: Ha/Hc 8.01 ppm, He 7.80 
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ppm, Hb/Hd 7.45 ppm. The CH2NR peak is at 3.50 ppm and the CH2CO 

resonates at 2.95 ppm. Figure 110 shows there is hydrolysis at hour 5. The 

intact β-lactam peaks resonate at 8.01 ppm for Ha/Hc, 7.80 ppm for He and 

7.45 ppm for Hb/Hd. Peaks corresponding to the hydrolysed β-lactam B are 

slightly to the right of the intact β-lactam peaks at 8.00 ppm, 7.77 ppm and 7.44 

ppm. The original CH2NR and CH2CO peaks can still be seen in addition to the 

corresponding hydrolysed CH2NR and CH2CO peaks at 3.00 ppm and 2.70 ppm 

which have shifted slightly to the right. Figure 111 shows hydrolysis at hour 10 

and reveals the original signals to be significantly diminished whilst the new 

signals ascribed to the hydrolysis product are enhanced. 
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Figure 109: Hydrolysis 1H NMR for β-lactam B at hour 1, 323K 
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Figure 110: Hydrolysis 1H NMR for β-lactam B at hour 5, 323K. 
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Figure 111: Hydrolysis 1H NMR for β-lactam B at hour 10, 323K. 
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Figure 112: Atom labels used for 1H NMR analysis. 

 

Figure 112 was used to analyse the 1HNMR for β-lactam C. Figure 113 shows 

no hydrolysis for β-lactam C at hour 1. Within the aromatic region, 2 distinct 

peaks can be seen corresponding to Ha/Hc at 8.01 ppm and Hb/Hd at 7.70 ppm 

with the CH2CO peak just visible at 2.98 ppm. Figure 114 displays extra peaks 

due to the hydrolysis product within the aromatic region at hour 5. There are 

multiple peaks corresponding to possible competitive endocyclic and exocyclic 

C-N fission.  
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Figure 113: Hydrolysis 1H NMR for β-lactam C at hour 1, 323K 
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Figure 114: Hydrolysis 1H NMR for β-lactam C at hour 5, 323K. 
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Figure 115: Atom labels used for 1H NMR analysis. 

 

Figure 115 shows the atom labels used for 1H NMR analysis. Figure 116 

shows no hydrolysis for β-lactam D at hour 1. There are two peaks within the 

phenyl region corresponding to Ha/Hc resonating at 8.20 ppm and Hb/Hd at 

7.20 ppm. The methoxy peak (OCH3) cannot be seen and is embedded into the 

MeCN signal. The CH2N and CH2CO signals cannot be recognised and are 

embedded into the noise. Figure 117 shows hydrolysis of β-lactam D at hour 5 

and this is indicated by the presence of new peaks at 7.95 ppm and at 7.18 ppm. 
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By hour 10 (Figure 118) further peaks have appeared again indicating that 

competing endocyclic and exocyclic amide hydrolysis might be occurring. 
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Figure 116: Hydrolysis 1H NMR for β-lactam D at hour 1, 323K. 

 

10 8 6 4 2 0

0.000

0.002

0.004

In
te

ns
ity

Chemical shift (ppm)

  
Figure 117: Hydrolysis 1H NMR for β-lactam D at hour 5, 323K. 
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Figure 118: Hydrolysis 1H NMR for β-lactam D at hour 10, 323K. 

 

4.4 Conclusion 

β-Lactams were shown to have a lower reactivity than β-sultams as expected. 

Calorimetric studies were conducted to compare stability to hydrolysis with 

respect to benzene ring substituent effect and the results reflected those of the β-

sultams with para-OMe > H > para-Cl >.  Like the β-sultams pH 4 generated 

conditions in which the β-lactams were more stable, so much so that no thermal 

output was observed. Again it may be that different mechanisms are operating 

at the two pHs and at pH 4 the reaction is too slow to observe over the time 

frame used. 

 

At 323K and 298K no output for the unsubstituted β-lactam was observed. 1H 

NMR studies were conducted and showed no hydrolysis confirming that the 

system is indeed unreactive. No output was observed for β-lactam D at 298K, 

reflecting the stability of this system.  

 

4.5 Calorimetric β-sultam and β-lactam comparative study 

Synthesising and conducting calorimetric experiments to study the hydrolysis 

of N-aroyl-β-lactams and N-aroyl-β-sultams is of great importance. Previous 

research showed that the β-sultams are about 103 fold more reactive than the 

corresponding β-lactams.4 Calorimetric studies conducted also showed that β-

sultams were more reactive than the corresponding β-lactams in all cases. The 
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greater reactivity of the β-sultams can be explained by comparing the different 

intermediates involved during the hydrolysis. Figure 119 and 120 display the 

relevant hydrolysis mechanisms. 
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Figure 119: β-sultam mechanism. 
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Figure 120: β-lactam mechanism. 

 

When comparing step 1 of the initial hydrolysis for the β-sultams to step 1 of 

the β-lactam, step 1 for the β-sultams is more favoured as a result of greater 

relief in ring strain.  Figure 121 compares the intact β-sultam and β-lactam. 
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Figure 121: β-sultam (A) and β-lactam (B) structures. 

 

The β-sultam sulphur in A is sp3 tetrahedral. The ideal tetrahedral angle is 109°. 

The β-lactam C=O bond angle is sp2 planar, for which 120° is the ideal bond 

angle. After step 1 the intermediates formed shown in Figure 122 can be 

compared again and the effect bond angle has on ring strain can be seen. 
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Figure 122: β-sultam (A) and β-lactam (B) structures. 

 

Figure 122 shows the β-sultam intermediate (A) which is now sp3d trigonal 

bypyramidal and therefore there is increased relief of ring strain as such 

systems can easily accommodate bond angles of 90°. However for the β-lactam 

intermediate the bond angle is at 109° (tetrahedral) and is therefore still strained 

compared with the desired bond angle in a four membered ring (90°).  

 

Usually sulfonamides are less reactive than amides towards hydrolysis. In this 

case the β-sultam ring is unique and, as discussed more reactive than the β-

lactam ring. 
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5.0 Conclusions 

The aim of this research was to conduct calorimetric experiments on β-sultams 

and β-lactams. Solid and solution state hydrolysis studies were conducted using 

a Thermal Activity Monitor (TAM 2277) in the batch mode. Calorimetry is an 

analytical technique widely used to characterise new chemical entities.  

 

Previous studies conducted at the University of Huddersfield using β-sultams 

and β-lactams showed a relationship between hydrolysis and N-substituents. 

However, these results were limited to compounds in solution and compounds 

with a chromophore. Extensive β-sultam solid and solution state hydrolysis 

studies discussed in Chapter 3 were conducted varying pH, RH, concentration 

and temperature. To fully understand the hydrolytic process, calorimetric 

studies were conducted on β-lactams under some of the same conditions that 

the β-sultams were studied under. Table 20 shows a summary of some of the 

solution state results reported in this thesis for the β-sultams. Figure 123 shows 

the β-sultam structures. 
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Figure 123: β-sultam structures. 
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  Slow Hydrolysis ---------------------------------  Fast Hydrolysis 

β-sultam 

(pH4, 298K) 

Rate constant  

(s-1) 

F 

 
3.6x10-6  

D 

 
5.9x10-6

B 

 
1.1x10-5  

 

C 

 
3.3x10-5  

 

A 
 

8.1x10-5  

β-sultam 

(pH8, 298K) 
Rate constant  

(s-1) 

A 
 
 
8.2x10-5  
 

F 

 
2.2 x10-4    
 

D 
 
 
1.3 x10-3  
 

B 

 
1.6 x 10-3  
 

C 
 
 
Too fast to 
measure. 

 

Table 20: Summary of solution state hydrolysis results at 298K pH 4 and 

pH 8.  

 

With reference to Table 20 it was found that rates of hydrolysis were slower at 

pH 4 in comparison to rates at pH 8. The slower reacting β-sultams have 

electron donating substituents on the nitrogen carbonyl substituent. The para 

chloro benzoyl substituted β-sultam C is electron withdrawing and the least 

stable of the substituted systems in all cases. β-Sultam A appears to be the least 

stable at pH 4 but the most stable at pH 8 although the rate at which it 

hydrolyses does not change (discussed in Chapter 3). 

 

β-Sultam F was synthesised at the University of Huddersfield by Arnaud Pitard. 

β-Sultam F is an anti-inflammatory agent with potential activity as a taurine 

pro-drug for the development of a new drug active against Alzheimer’s disease. 

The lack of a chromophore made β-sultam F unsuitable for U.V. detector 

kinetic studies but ideal for the TAM method developed within this thesis. With 

an electron releasing methyl group it was predicted that the new β-sultam 

should have a similar reactivity to that of the methoxy benzoyl compound (D). 

Results showed that β-sultam F hydrolysed slower than all of the other 

substituted β-sultams discussed.  

 

A series of analogous β-lactams were also studied calorimetrically. As expected 

these β-lactams underwent hydrolysis at a slower rate than the analogous β-

sultams. The same trend was witnessed with respect to N-substituents. With 
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respect to the two unsubstituted systems, the β-sultam was reactive whereas the 

β-lactam was found to be stable to hydrolysis. 1H NMR studies were conducted 

to clarify that hydrolysis had occurred, and confirmed that hydrolytic processes 

were being observed, with the exception of the unsubstituted β-lactam A, which 

was shown to be stable. 

 

To summarise the results and findings of this work each research objective shall 

now be discussed separately. 

 

5.1 Achievement of research objectives 

 

1. To synthesise a series of β-sultams and β-lactams using conventional 

synthetic techniques. 

 

The first aim of this research was the synthesis of the β-sultams and β-lactams 

needed for the calorimetric experiments. Traditional organic synthetic 

techniques were used and are discussed in detail in Chapter 2. Once synthesis 

was complete, column chromatography (sometimes repeatedly) was used to 

purify the compounds. TLC was used to monitor the reactions and to confirm 

the purity of the final compounds. Traditional analytical techniques (IR and 1H 

NMR) were used to analyse the pure compounds. 

 

2. To conduct solid state calorimetric experiments to determine the 

stability of four β-sultams (A-D). 

 

Initial solid state experiments were conducted on β-sultams A-D. Experiments 

were conducted at three different temperatures 298K, 310K and 323K. IMC 

batch experiments were conducted using TAM 2277 under atmospheric 

conditions. 20 mg sample mass was sufficient to observe a significant 

calorimetric output. Several such experiments were inconclusive which was a 

result of various phenomena occurring at the same time.  
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3. To conduct calorimetric relative humidity experiments on the four β-

sultams investigated in objective 2. 

 

Calorimetric studies were conducted in the batch mode, solid state, 310K, under 

atmospheric conditions at varying RH, 7% RH (NaOH) and 75% RH (NaCl). 

RH was varied in order to control the atmospheric conditions in the calorimetric 

ampoules. Results proved to be inconclusive. 

 

4. To conduct solution state calorimetric experiments using the same four 

β-sultams investigated in objective 2 at both pH 4 and pH 8 at 298K, 

310K and 323K. 

 

Hydrolysis of β-sultams A, B, C and D was observed first at 298K in aqueous 

solution (controlled ionic strength, pH 4 at 0.02M). First order calorimetric 

outputs were observed. There was a good correlation with respect to substituent 

effect and hydrolysis, more importantly hydrolysis was observed for β-sultam 

A. The N-(methoxybenzoyl) substituted compound proved to be the least 

reactive N-substituted β-sultam, whereas the N-(chlorobenzoyl) substituted 

compound showed the highest rate of hydrolysis. The next sets of experiments 

were conducted at pH 4, 3 different temperatures and at a lower concentration 

of 0.008M. Small yields were obtained after synthesis and the lower 

concentration had the advantage of requiring a smaller mass of compound. 

Excellent first order calorimetric outputs were observed at all three 

temperatures. Results showed N-substituents affect the stability of the β-

sultams, when comparing rates of hydrolysis.  Change in enthalpy also showed 

the same trend at all three different temperatures. To clarify that hydrolysis had 

occurred 1H NMR experiments were conducted, and provided excellent 

correlation when compared to the TAM results. 

 

Further calorimetric studies were conducted at pH 8 to investigate how pH 

changes the rate of hydrolysis. Rates of hydrolysis for substituted β-sultams 

were significantly quicker when compared to hydrolysis at pH 4. The 

unsubstituted β-sultam A showed no rate change at these two pHs. 
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5. Using the information obtained from objectives 2-4 to predict and test 

the calorimetric method on a β-sultam without a chromophore (F). 

 

The N-acyl β-sultam has no chromophore and therefore was unsuitable for U.V. 

detector kinetic studies, but was shown to be ideally suited to the TAM method 

developed in this thesis. A good agreement was found between the theoretical 

prediction of the rate of hydrolysis for F and the experimental value 

 

6. To conduct solution state calorimetric experiments for a series of four 

β-lactams at both pH 4 and pH 8 at 298K and 323K. 

 

Initial studies were conducted at pH 8 and at the higher temperature of 323K 

due to β-lactams hydrolysing more slowly than β-sultams. β-Lactams were 

studied under the same conditions that were used for the β-sultams. Results 

showed that N-substituents affected the rate of hydrolysis in the same manner as 

for the β-sultams. Experiments were also conducted at 298K although the data 

set was not complete due to their low reactivity. 1H NMR experiments were 

conducted under the same conditions and at temperature 323K to clarify 

hydrolysis had occurred. Results at pH 4 were inconclusive. 

 

7. To compare and contrast β-sultam and β-lactam data with respect to 

hydrolysis and substituent effect based on the data obtained in 

objectives 2-6. 

 

Experimental results showed that β-sultams hydrolyse faster than β-lactams. 

The effect of the N-substituents upon hydrolysis was found to be the same in 

both series of compounds. The unsubstituted β-lactam A was unreactive under 

the conditions studied, whereas the unsubstituted β-sultam was to undergo 

hydrolysis at both pHs.  

 

 

 

 

 172



Chapter 5: Conclusions and future work 
 

5.2 Future work 

 
There are many avenues for potential future work, the main ones are: 

 

1) Continue to investigate the hydrolysis of N-acyl-β-sultams and N-acyl-β-

lactams calorimetrically  

 

2) The TAM 2277 also has an Isothermal Titration Calorimetry unit (ITC) 

which can be used to conduct enzyme inhibition studies using enzymes such 

as β-lactamase. Hydrolysis studies conducted in this research showed that 

water reacts with the ring system in the same way that the β-lactamase 

enzyme could potentially attack. 

 

3) To investigate and further characterise the β-sultams and β-lactams, 

dispersive Raman spectroscopy is to be conducted on the β-sultams and β-

lactams (A-D). Structural information which is based upon vibrational 

modes can be determined. In addition, ab initio calculations can be 

determined and compared to the experimental results. From these results 

potential energy distribution values can be determined and vibrational bands 

can be assigned. The experimental work and ab initio calculations are to be 

conducted by Saima Jabeen at the University of Greenwich. A LabRam 

Raman spectrometer shown in Figure 124 is to be used to conduct the 

experimental work. 
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Figure 124: LabRam Raman spectrometer at the University of 

Greenwich used to conduct Raman experiments. 
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