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Novel Modulators of Endogenous H2S Production
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Abstract

The current study was designed to evaluate the pharmacologic effects of three novel cysteine-containing com-
pounds: S-propyl-l-cysteine (SPC), S-allyl-l-cysteine (SAC), and S-propargyl-l-cysteine (SPRC) on H2S pro-
duction and antioxidant defenses in an acute myocardial infarction (MI) rat model. The enzymatic activities of
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as glutathione redox
status and malonaldehyde (MDA) content, also were determined. All three compounds were found to preserve
SOD and GPx activities and also tissue GSH levels while reducing the formation of the lipid peroxidation
product MDA in ventricular tissues. With immunfluorescence assays, we observed the expression of CSE and
Mn-SOD. The morphologic changes of the cardiac cells are seen with both light and electron microscopy. The
corresponding pathologic alterations were characterized mainly as loss of adherence between cardiac myocytes
and swollen or ruptured mitochondria at the ultrastructural level. Propargylglycine, a selective inhibitor of CSE,
abolished the protective effects of each compound used in the current model. Our study provides novel evidence
that SPC, SAC, and SPRC have cardioprotective effects in MI by reducing the deleterious effects of oxidative
stress by modulating the endogenous levels of H2S and preserving the activities of antioxidant defensive en-
zymes like SOD. Antioxid. Redox Signal. 12, 1155–1165.

Introduction

Acute myocardial infarction (MI) is one of the most
serious health issues in both developed and developing

countries (12). Therefore, pharmacologic strategies to reduce
the mortality rate and to prevent MI are of great importance.
One potential avenue of intervention is to target key cellular
pathways known to function in the preservation of cardiac
tissues and cells from the deleterious effects of oxidative
stress. Interestingly, during the onset of MI, a decrease is
observed in the expression levels and activities of antioxidant
defensive enzymes such as superoxide dismutase (SOD),
glutathione peroxidase (GPx), and catalase (CAT), as well as
endogenous antioxidants like glutathione (18, 26). In contrast,
oxidative stress increases. Elevated ROS levels and impaired
antioxidant defenses are known to promote significant
changes in membrane permeability, to disrupt membrane
lipid bilayers, and to mediate functional modifications of
cellular proteins that promote cardiac tissue damage. There-
fore, the identification of pharmacologic agents that can pre-
vent these changes is of biomedical importance.

Garlic (Allium sativum) has been prescribed for the treat-
ment of several human diseases for centuries. Recent interest
has focused on the role of garlic and its chemical constituents
in the prevention of cardiovascular disease and cancer (14,
15). The mechanisms ascribed to garlic’s biologic activities are
believed to be partly due to its antioxidant action, although
additional mechanisms also are likely to contribute (4). Recent
work has shown that the cardioprotective effects of garlic may
be attributed to its ability to modulate the endogenous levels
of hydrogen sulfide (H2S). Interestingly, H2S was recently
identified as a novel gaseous signaling molecule having
a similar function to that of nitric oxide and carbon monoxide
in the cardiovascular system of mammals (1, 25). Wei et al.
(22) reported that H2S acts as an antioxidant by attenuating
oxidative stress in hypoxic pulmonary hypertension. Geng
et al. (7) also proposed that H2S protects the heart from
isoproterenol-induced ischemic injury, at least in part by
scavenging oxygen-free radicals and attenuating lipid per-
oxidation. Similarly, H2S has been shown to protect primary
rat cortical neurons from oxidative injury by stimulating the
synthesis of the antioxidant glutathione (9). In the heart, H2S
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is produced by the pyridoxal-5-phosphate–dependent en-
zyme, cystathionine-g-lyase (CSE) with l-cysteine as a sub-
strate. Interestingly, several chemical constituents have been
characterized in extracts and preparations made from garlic
that are structurally similar to cysteine, such as S-propyl-l-
cysteine (SPC), S-propargyl-l-cysteine (SPRC), and S-allyl-l-
cysteine (SAC). In the current study, we tested whether SPC,
SAC, and SPRC also are used by mammalian metabolic
pathways for the generation of the cardioprotective entity H2S
in vivo. In addition, we examined whether each compound
was capable of preserving tissue antioxidant defensives in a
rodent model of MI.

Materials and Methods

All animal care and experimental protocols complied with
the Animal Management Rules of local authorities and Care
and Use of the Laboratory Animals of the Experimental Animal
Center of Fudan University.

Materials

SAC (99%) was supplied by Wakunaga Pharmaceutical Co.
(Hiroshima, Japan); cysteine (99.5%) was purchased from
Hengbai Chemical Co. (Shanghai, China). Propyl bromide
and propargyl bromide were purchased from Yancheng Ke-
lida Chemical Co. (Zhejiang, China). PrimeScript 1st Strand
cDNA Synthesis Kits were from TaKaRa (Dalian, China).

Synthesis of SPC and SPRC

SPC was synthesized from l-cysteine hydrochloride
(1.58 g, 0.01 mol) and propyl bromide (1.29 g, 0.01 mol). The
desired product was then precipitated on acidification with
acetic acid. SPRC (also named as ZYZ-802) was synthesized
from the reaction of l-cysteine with propargyl bromide and
purified by recrystallization from an ethanol-water mixture
(96.1%). The final product was verified with 1H nuclear
magnetic resonance spectroscopy. The structures of each re-
spective cysteine analogue used in the current study are
shown in Fig. 1.

Treatment protocols

Adult male Sprague–Dawley rats (200 to 250 g) were ran-
domly assigned into five treatment groups: sham vehicle
(saline) (n¼ 6), MI treated with vehicle (n¼ 10), MI treated
with SPC (50 mg=kg=day) (n¼ 10), MI treated with SAC
(50 mg=kg=day) (n¼ 10), and MI treated with SPRC (50 mg=
kg=day) (n¼ 10). In addition, five separate groups (n¼ 6) re-
presenting each treatment group as described earlier were
treated with the cystathionine-g-lyase (CSE) inhibitor, pro-
pargylglycine (PAG, 10 mg=kg=day).

Experimental induction of acute myocardial infarction

Rats were injected intraperitoneally on a daily basis for
7 days before occlusion of the coronary artery to induce MI.
The MI model was induced on day 7 by ligating the coronary
artery, as previously described (27). After the surgery, all
treatment regimens were continued for an additional 2 days
until the animals were killed 48 h after surgery. Hearts were
also excised, washed in ice-cold saline, and stored at �808C
for subsequent experimental assays.

Glutathione levels and antioxidant enzyme analysis

Oxidized glutathione (GSSG) and reduced glutathione
(GSH) levels were measured by using a commercially avail-
able kit according to the manufacturer’s instructions (Beytime
Institute of Biotechnology, Nantong, China). For the deter-
mination of antioxidant enzyme activities, 0.05 g LV tissues
were homogenized in 50 mM ice-cold potassium phosphate
buffer (pH 6.8). Superoxide dismutase (SOD) activity was
measured as described by Dieterich et al. (6). In brief, total
SOD activity was determined by monitoring the inhibition of
pyrogallol autooxidation at 420 nm. To measure Mn-SOD
activity, Cu Zn-SOD was inhibited by using diethyldithio-
carbamic acid. SOD activity is expressed as units per milli-
gram protein, where 1 U is the amount required to inhibit
pyrogallol oxidation by 50%. GPx and catalase (CAT) activi-
ties were determined by the modified method of Alvarez (2).
Lipid peroxidation was measured in terms of tissue MDA
contents by using the thiobarbituric acid (TBA) assay, with
1,1,3,3-tetramethoxypropane as an external standard for the
construction of standard curves. MDA levels are expressed as
nanomoles MDA per milligram protein (24). Protein content
was determined by using a BCA protein assay kit (Beytime
Institute of Biotechnology).

Measurement of CSE activity

CSE activity was assayed as described (26). In brief, 0.1 g of
left ventricular myocardial tissue was thawed on ice and
homogenized in 2 ml of 100 mM ice-cold potassium phos-
phate buffer (pH 7.4). Tissue homogenates were centrifuged
at 24,000 g for 5 min at 48C, and the supernatant was used for
the assay. The reaction mixture contained 20ml of 10 mM l-
cysteine, 20ml of 2 mM pyridoxal-5-phosphate, 30 ml of saline,
and 430ml tissue homogenate. The catalytic reaction was ini-
tiated by transferring the reaction mixture contained in mi-
crotubes from ice to a 378C water bath for 30 min. Then 250ml
of 1% zinc acetate was added to the tubes by using a syringe to
trap any evolved H2S. Then 250ml of 10% trichloroacetic acid
(TCA) was added to quench the enzymatic reaction. Finally,
133 ml N, N-dimethyl-p-phenylenediamine sulfate (NNDPD)FIG. 1. The chemical structures of SPC, SAC, and SPRC.
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in 7.2 M HCl and 133ml of FeCl3 in 1.2 M HCl were added. The
absorbance of the final reaction mixture was measured at
670 nm by using a 96-well microplate reader (Tecan Systems
Inc., Oberdiessbach, Switzerland). All samples were assayed
in duplicate, and the H2S concentrations for each sample were
calculated against a calibration curve made by using NaHS
(3.125 to 250mM). Results are expressed as micromoles per
gram of protein per hour. Protein content was determined by
using a BCA assay kit (Beytime).

Real-time PCR assay

Total RNA from either the left ventricle (n¼ 4 each group)
or cultured cardiomyocytes was isolated by using Trizol
reagent (Invitrogen, Carlsbad, CA). RNA was quantified
spectrophotometrically by measuring the optical density
of samples at 260=280 nm. Two micrograms of RNA were
reverse-transcribed to cDNA with the PrimeScript 1st Strand
cDNA Synthesis Kit (TaKaRa). Gene expression was per-
formed by using real-time PCR with the SYBR Green PCR
Master Mix (Bio-Rad) on a BIO-RAD IQ5 system. Expressions
of SOD1, SOD2, CSE, GPx, and CAT mRNA were determined.
Results were normalized to b-actin. Three duplicates were
performed. The primers used for real-time PCR are shown in
Table 1.

Western blot analysis

Frozen tissues (n¼ 4 per group) were cut into small pieces,
homogenized in 0.5 ml of RIPA buffer (150 mM NaCl, 1%
NP-40, 0.5% deoxycholate, 0.1% sodium dodecylsulfate,
50 mM Tris-hydrochloric acid, 2 mM phenylmethylsulfonyl
fluoride, pH 7.4), and incubated at 48C overnight. The dis-
solved proteins were collected after centrifugation at 10,000 g
for 30 min, and the supernatant was then collected. Protein
concentrations were determined by using the enhanced BCA
protein assay kit (Beytime Biotechnology). To detect CSE,
CuZn-SOD, and Mn-SOD protein expression levels, cell ly-
sates were subjected to SDS-PAGE analysis on a 12% (wt=vol)
acrylamide gel and then electrotransferred onto a PVDF
membrane (Millipore Corporation). Membranes were then
incubated with the appropriate secondary horseradish per-
oxidase–conjugated anti-rabbit IgG antibodies at a 1:10,000
dilution ( Jackson ImmunoResearch Laboratories Inc., West

Grove, PA). Immunoreactive proteins were visualized by
using the ECL Western blotting detection kit (Alpha Innotech,
San Leandro, CA).

Histologic analysis and immunofluorescence assays

Heart tissues (2 mm) were embedded in OCT medium
immediately. Frozen sections (6mm thick) were used for
hematoxylin-eosin staining and immunofluorescence assays.

By using antibodies for CSE and Mn-SOD, we performed
immunofluorescence assays to measure the relation with the
endogenous H2S production and the expression of the anti-
oxidant enzyme Mn-SOD. For immunofluorescence assays,
sections were washed (0.1 M Tris, pH 7.6, 15 min), denatured
(2N HCl, 378C, 30 min), rinsed (0.1 M PBS, 10 min), incubated
with 1% H2O2 in 0.1 M Tris for 30 min, rinsed, blocked (10%
normal goat serum, 378C, 30 min), and incubated with anti-
CSE antibody and anti-MnSOD antibody (48C overnight).
Sections were rinsed (0.1 M PBS, 10 min), incubated with
tetraethyl rhodamine isothiocyanate (TRITC)-conjugated
goat anti-rabbit IgG and fluorescein isothiocyanate (FITC)-
conjugated anti-mouse IgM (room temperature, 2 h), and
rinsed, mounted, dried, and coverslipped by using DAPI.

Light-microscopy and electron-microscopy observation

For transmission electron microscopic study, specimens were
prefixed in 2.5% glutaraldehyde solution, diced into 1 mm3,
followed by three 15-min rinses with 0.1 M phosphate buffer
(pH 7.4). Postfixation was in cold 1% aqueous osmium tetroxide
for 1 h. After a rinse with phosphate buffer again, the specimens
were dehydrated in a graded ethanol series of 50 to 100% and
then embedded in Epon 812. Ultra-thin sections were sliced
with glass knives on a LKB-V ultramicrotome (Nova, Trelle-
borg, Sweden), stained with uranyl acetate and lead citrate, and
examined under a Hitachi H-600 electron microscope.

Statistical analysis

All values are presented as mean and standard deviations.
One-way analysis of variance (ANOVA) was used to examine
statistical comparisons between groups. The statistical sig-
nificance of differences between two groups was determined
by using a two-tailed Student’s t test. A w2 (chi-square) test
was used for calculating the significance of the mortality data.
A probability value of <0.05 was taken to indicate statistical
significance. All analyses were performed by using SPSS 12.0.

Results

GSH and GSSG levels

The GSH content of left ventricular tissues of rats in the MI
vehicle group were lower than those of the sham group
(9.5� 0.7 mM=mg protein vs. 24.3� 1.6 mM=mg protein,
p< 0.01). In rats treated with the three cysteine derivatives,
GSH levels were preserved. In the SPC-, SAC-, and SPRC-
treated animals, GSH levels were increased by 67%, 77%, and
80%, as compared with the MI vehicle group ( p< 0.05). In-
terestingly, in the MIþPAG group, the GSH level was re-
duced to 7.8� 0.7 mM=mg protein. PAG also was found
to abolish the observed increases in GSH levels in the SPC-,
SAC-, and SPRC-treated groups (Fig. 2A). In addition, GSSG

Table 1. Primer Sequence of Six Genes

Used for Real-time PCR

Gene
name Primer sequence

SOD1 Forward: 5’-TGCAGGGCGTCATTCACTTC-3’
Reverse: 5’-ACCCATGCTCGCCTTCAGTT-3’

SOD2 Forward: 5’-TTGCCGCCTGCTCTAATCAG-3’
Reverse: 5’-GTAAGCGTGCTCCCACACATC-3’

CSE Forward: 5’-GAGGGAAGTCTTGGAAATGGC-3’
Reverse: 5’-CGCAACATTTCATTTCCCG-3’

GPx Forward: 5’-GCGAGGTGAATGGTGAGAAGG-3’
Reverse: 5’-GCATTCCGCAGGAAGGTAAA-3’

CAT Forward: 5’-ACTCAGGTGCGGACATTCTATACG-3’
Reverse: 5’-AGCATCTTTCAGGTGGTTGGC-3’

b-
Actin

Forward: 5’-TTCAACGGCACAGTCAAGG-3’
Reverse: 5’-CGGCATGTCAGATCCACAA-3’
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FIG. 2. SPC, SAC, and SPRC modulate antioxidant defenses in rats. (A) Tissue GSH levels. (B) Tissue GSSG concentra-
tions. (C) CuZn-SOD activity. (D) Mn-SOD activity. (E) CSE activity in the left ventricular tissues in all MI and sham-operated
rats. In (A–D), n¼ 6 for each group; in (E), n¼ 4 for each group. *p< 0.05 when compared with the sham group. {p< 0.05 as
compared with the MI vehicle group. {p< 0.05 comparing PAG (�) pretreatment groups.
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levels in the MI vehicle rats were higher than those in
the sham-treated animals ( p< 0.05), and all three cysteine
analogues tested in the current study were found to decrease
GSSG levels in MI animals ( p< 0.05). The decrease in GSSG
levels in the cysteine analogues–treated animals is suggestive
of a reduction in oxidative stress.

Antioxidant enzyme activities and MDA formation
in MI tissues

The activities of tissue antioxidant enzymes are shown in
Table 2. In our study, all three cysteine derivatives were found
to increase the enzymatic activities of GPx as compared with

the MI vehicle group. Similarly, the free radical–scavenging
enzymes CuZn-SOD and Mn-SOD also were preserved. In the
SPC group, CuZn-SOD activity was increased to 45.7�
3.4 U=mg protein, as compared with the MI vehicle group of
34.4� 2.6 U=mg protein (Fig. 2C). However, no noticeable
changes were observed for Mn-SOD. In contrast, SAC in-
creased both the Cu-Zn SOD activity to 40.3� 2.8 U=mg
protein and the Mn-SOD activity to 10.32� 1.12 U=mg protein
as compared with the MI vehicle group of 34.4� 2.6 and
7.21� 0.68 U=mg protein, respectively ( p< 0.05). Interest-
ingly, in the SPRC-treated group, only Mn-SOD was induced
to 12.45� 1.20 U=mg protein and was significantly different
from the MI vehicle group ( p< 0.01; Fig. 2D).

Table 2. GPx and CAT Activities and MDA Concentrations in Left Ventricular Tissues

as Determined in Each Study Group

GPx (mmol=min=mg protein) CAT (U=mg protein) MDA (nmol=mg protein)

Sham 3.45� 0.23 9.92� 0.71 1.29� 0.15
MIþvehicle 3.03� 0.31a 6.64� 0.52a 2.47� 0.14a

MIþPAG 3.00� 0.24 6.44� 0.41 2.61� 0.12c

MIþ SPC 3.36� 0.21b 7.28� 0.69 1.83� 0.16b

MIþ SPCþPAG 3.32� 0.33 7.25� 0.52 2.02� 0.12
MIþ SAC 3.37� 0.42 7.36� 0.70 1.62� 0.18b

MIþ SACþPAG 3.49� 0.30 6.92� 0.94 1.98� 0.09c

MIþ SPRC 3.54� 0.26b 7.47� 0.64 1.56� 0.10b

MIþ SPRCþPAG 3.47� 0.23 7.01� 0.77 1.98� 0.17c

Data are shown as mean values� SD of five animals per group.
ap< 0.05 when compared with the sham group.
bp< 0.05 when compared with the MI group.
cp< 0.05 when compared with the PAG (-) group.

FIG. 3. Immunofluorescence assay of CSE and Mn-SOD expression (�400). CSE protein appears red, and Mn-SOD
protein appears green. Myocardial chromatin was stained by using DAPI to show the location of nuclei and is shown in blue.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article at
www.liebertonline.com=ars).
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In the PAG-treatment groups, Mn-SOD activity was signif-
icantly decreased to 7.68� 0.52 U=mg protein (SPCþPAG),
7.89� 0.73 U=mg protein (SACþPAG), and 7.18� 0.9 U=mg
protein in the SPRCþPAG group ( p< 0.05). No significant

changes in CuZn-SOD activity were observed for any of the
cysteine analogues treated with PAG.

As summarized in Table 2, the antioxidant enzyme activi-
ties of GPx and CAT in left ventricular homogenates were

FIG. 4. mRNA expression levels of antioxidant defensive enzymes in heart tissues of rats exposed to SPC, SAC, and
SPRC. (A) CuZn-SOD. (B) Mn-SOD. (C) CAT. (D) GPx. (E) CSE expression in all MI and sham-operated rats; n¼ 4 for each
group. *p< 0.05 when compared with the sham group. {p< 0.05 as compared with the MI vehicle group. {p< 0.05 compared
with the PAG (�) pretreatment groups.
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increased in the SPC- and SPRC-treated groups but not in the
SAC group. To support these findings, we determined the
tissue levels of MDA, an additional biomarker of oxidative
stress. In this study, MDA levels also were found to be in-
creased in the MI vehicle group as compared with the sham
group ( p< 0.01). However, treatment with SPC, SAC, and
SPRC reduced MDA levels.

Left ventricular CSE activity in rats after MI injury

Left ventricular CSE activity was analyzed in the tissue
homogenates from all treatment groups (n¼ 4). SPC, SAC,
and SPRC increased CSE activity by 1.1-fold, 1.4-fold, and 1.6-
fold, respectively, as compared with the MI vehicle group
(1.76� 0.12 mmol=g protein=h, 2.19� 0.22 mmol=g protein=h,
and 2.48� 0.12 mmol=g protein=h vs. 1.58� 0.17 mmol=g
protein=h; p< 0.01) (Fig. 2E). SPRC-treated animals had the
highest CSE activity of all three of the cysteine derivatives
tested. The PAG-treated group had the lowest CSE activity of
0.78� 0.05 mmol=g protein=h. In the SPCþPAG (0.89�

0.06 mmol=g protein=h), SACþPAG- (1.21� 0.09 mmol=g
protein=h), and SPRCþPAG (1.34� 0.09 mmol=g protein=h)-
treated groups, the CSE activities were significantly lower as
compared with those in the SPC-, SAC-, and SPRC-treated
groups alone ( p< 0.05) (Fig. 2E).

Immunohistochemical analysis of CSE and Mn-SOD
contents in heart tissues of rats

As shown in Fig. 3, the CSE protein is stained red, and Mn-
SOD protein is stained green. Myocardial nuclei are shown in
blue after staining with DAPI. The CSE protein content of the
MI vehicle group and PAG-intervened groups was lower than
that in the SPC, SAC, and SPRC groups. Similar findings also
were found for the tissue levels for the antioxidant defensive
enzyme, Mn-SOD.

Oxidative enzyme and CSE mRNA expression

SPC, SAC, and SPRC increased CuZn-SOD expression
as compared with the MI vehicle group (1.44-fold, 1.42-fold,

FIG. 5. Western blotting analysis of the relative protein contents of (A) protein bot of CSE, CuZn-SOD and Mn-SOD, (B)
CSE protein, (C) CuZn-SOD protein, and (D) Mn-SOD protein in all MI and sham-operated rats, n = 4 for each group.
*p< 0.05 when compared with the sham group. {p< 0.05 as compared with the MI vehicle group. {p< 0.05 comparing PAG
(�) pretreatment groups.
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and 1.31-fold of the MI vehicle group; p< 0.05; Fig. 4A).
No significant changes were found between the cysteine
analogues–treated groups with PAG and without PAG in
CuZn-SOD mRNA expression.

The mRNA ratios of Mn-SOD=b-actin were increased in
SPC-, SAC-, and SPRC-treated groups (1.81-fold, 2.93-fold,
and 5.7-fold of the MI vehicle group, respectively; p< 0.05;
Fig. 4B). After PAG was added, the groups also had a lower
Mn-SOD mRNA expression.

Similar changes in the expression of CSE mRNA were
found in MI rats that were treated with SPC, SAC, and SPRC
(1.1-fold, 1.5-fold, and 3.3-fold vs. MI vehicle rats; p< 0.01).
PAG inhibited mRNA expression of CSE by 0.63-fold versus
MI vehicle ( p< 0.01). In the SPCþPAG-, SACþPAG-, and
SPRCþPAG-treated groups CSE mRNA expression was
significantly reduced (0.66-fold, 0.7-fold, and 0.43-fold vs.
SPC, SAC, and SPRC; p< 0.05) (Fig. 4A and C).

Western blotting

For all groups, the MI vehicle-treated rats had significantly
lower CSE protein and mRNA expression as compared with
the sham group. The SPC-, SAC-, and SPRC-treated groups
showed a significant increase in CSE protein expression when
compared with the MI vehicle group (1.57-fold, 1.76, and 2.14-
fold vs. MI vehicle group; p< 0.05). Furthermore, SPC-, SAC-,
and SPRC-treated groups were found to have a significant
upregulation of CuZn-SOD and Mn-SOD protein. In contrast,
PAG-only abolished the increase Mn-SOD protein expression
comparing those without PAG pretreatment groups, respec-
tively ( p< 0.05; Fig. 5A, C, and D). We also determined the
relative expression levels of the serine=threonine kinase Akt.

SPC, SAC, and SPRC increased the phosphor-Akt=total Akt as
compared with the MI vehicle group (1.41-fold, 1.36-fold, and
1.52-fold vs. the MI vehicle group; p< 0.05; Fig. 6). However,
PAG inhibited the increase in phosphor-Akt=total Akt in-
duced by three cysteine analogues.

Pathologic observations

Figures 7 and 8 present MI-induced pathologic changes in
rat myocardium. The architecture of the myocardium was
intact with regular myofiber arrangement in the sham-group
rats. In hearts of rats treated with MI, disorganizations of cell
structure and loss of adherence between cardiomyocytes were
pronounced. The myocardial damage included enlarged cells
with enlarged and often bizarre-shaped nuclei, occasional
cytoplasmic vacuolization and partial degenerative muscle
fibers. At the PAG-treated group, disarray of myocardial
fibers and the degenerative muscle fibers with myocytolysis
were the most prominent features. Cardiac ultrastructure was
normal with intact and abundant mitochondria in hearts of
the sham rats, whereas most mitochondria were seriously
swelling in the hearts of rats operated on with MI. Moreover,
the swelling of interstices among mitochondria and some
mitochondria with ruptured outer membrane were observed
as well. The SPC group showed a bubble in the nuclei, but the
structure of mitochondria looked more normal than those MI
vehicle group. The pathologic morphology of cardiac cells in
SPRC group was almost same as that in the sham group, and
the SAC-treated group were better than the MI group, espe-
cially in mitochondrial structure.

Discussion

Garlic (Allium sativum) is believed to be useful for disease
prevention. The beneficial effects of garlic have been ascribed
to its potent antioxidant action (16). SAC is one of the major
organosulfur compounds found in aged garlic extracts, and
the allyl moiety appears to be crucial for any biologic activity.
Similarly, SPC has been identified in extracts prepared
from Allium species such as garlic and onion (10, 19). Several
studies have indicated that SAC and SPC can inhibit TG and
cholesterol biosynthesis in cultured rat hepatocytes (8, 11).
SPRC, a chemical species containing a propargyl structure,
also was reported to have anticholesterolemic activity (13).
We recently showed that SPRC and SAC have cardioprotec-
tive effects in MI by reducing the mortality rate as well as by
reducing the infarct size in rats, and we proposed a role for the
H2S-associated pathway in mediating this protection (21). In
this article, the infarct size=total area of the myocardium also
was significantly reduced in rats subjected to SPC treatment,
as compared with the MI vehicle rats by 26.1� 1.6% vs.
36.2� 1.3%, respectively ( p< 0.05).

To expand on our previous studies, we evaluated the bio-
logic effects of three cysteine analogues in a rodent model of
MI. We also found that SPC, SAC, and SPRC displayed car-
dioprotective effects by reducing infarct size and by reducing
LDH and CK leakage from cells (markers of cell-membrane
integrity). H2S is a strong reducing agent and may readily
react with labile molecules, particularly those derived from
reactive oxygen and nitrogen species (7, 23). Interestingly, in
this study, all three compounds were found to preserve tissue
GSH levels and to reduce plasma MDA levels as compared
with the MI vehicle group. This observation correlated with

FIG. 6. Akt content and phosphorylation status in MI rats
treated with SPC, SAC, and SPRC, n = 4 for each group.
*p< 0.05 when compared with the sham group. {p< 0.05 as
compared with the MI vehicle group. {p< 0.05 compared
with PAG (�) pretreatment groups.
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FIG. 7. Pathologic alterations in heart of rats with H&E staining (�400). Myocytes after myocardial infarction: note the
nuclear loss in most myocytes and the persistence of nuclear shadows in a few myocytes. ! Damaged myocytes; the
degenerative muscle fibers. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article at www.liebertonline.com=ars).

FIG. 8. Ultrastructural changes in hearts of rats after myocardial infarction with electron microscopy (�20,000). Well-
preserved nucleus with finely dispersed chromatin with a prominent nucleolus was shown in the sham group. (white)
showed normal mitochondrial; (black) indicated swelling mitochondria and some mitochondria with ruptured outer
membrane; the abnormal nuclei with fragments; (white) the bubble in the nucleus in the SPC-treated group.
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a committed upregulation of the enzyme CSE and with the
induction of the cardioprotective enzymes SOD and GPx in
myocardial tissues. Banerjee and colleagues (3) previously re-
ported that rats fed with raw garlic homogenates showed a
significant preservation of myocardial superoxide dismutase
(SOD) activity and an improvement in myocardial morphology
after MI induction with isoproterenol. In our study, we found
that SPC preserved the activity of cytosolic copper=zinc SOD
(CuZn-SOD); the predominant SOD in mammals. SPRC im-
proved manganese SOD (Mn-SOD) activities, and SAC was
found to increase both Cu-Zn SOD and Mn-SOD activities in MI
tissues. In addition, each compound was found to maintain
tissue GSH levels after the induction in MI. These findings
correlate with a reduction in the levels of MI injury. With the use
of immunofluorescence assays, we can see the positive corre-
lation of expression of CSE and Mn-SOD (Fig. 3). It suggested
the production of endogenous H2S might increase the protein
expression of the antioxidant enzyme Mn-SOD. SPRC involved
the CSE=H2S pathway may be a means of activating Mn-SOD.

In a separate set of experiments, we also evaluated whether
the cysteine analogues used in the current study activated the
Akt signaling pathway. Akt is a serine=threonine kinase, and
a number of studies have reported that the activity of this
protein can be regulated through redox stress (20). The Akt
protein, once activated, can phosphorylate a wide range of
intracellular substrates that regulate growth, metabolism, and
survival (5). The Akt pathway is activated not only by various
growth factors and cytokines but also by G protein–coupled
receptor agonists, such as bradykinin, through transactivation
of receptor tyrosine kinase or activation of nonreceptor tyro-
sine kinase, such as Src, in a ROS-dependent manner (17). In
our study, we found increased expression of phospho-Akt in
these cysteine-containing compounds–treated groups. But the
SPRC-treated group had the more significant Akt-signaling
pathway. PAG may abolish this redox-sensitive signaling in
all PAG-intervention groups.

In conclusion, we report that the novel cysteine analogues
SPC, SAC, and SPRC enhance cellular antioxidant defenses in
rats with MI. SPRC might have a higher selection for CSE. We
hypothesize that SPRC perhaps acts as an H2S donor and that
the H2S released might participate in activating signaling
cascades associated with the prevention of oxidative stress in
MI. Collectively, the ability of the CSE=H2S pathway to alter
the oxidative condition suggests that the modulation of CSE
expression and H2S production may provide a novel thera-
peutic avenue for the treatment of ischemic cardiac diseases.
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Abbreviations Used

AMI¼ acute myocardial infarction
CAT¼ catalase

CK¼ creatine kinase
CSE¼ cystathionine-g-lyase

CuZn-SOD¼ cytosolic copper=zinc SOD
GPx¼ glutathione peroxidase
GSH¼ reduced glutathione

GSSG¼ oxidized glutathione
H2S¼hydrogen sulfide

LCA¼ left anterior descending coronary artery
LDH¼ lactate dehydrogenase

MDA¼malonaldehyde
Mn-SOD¼manganese SOD

PAG¼dl-propargylglycine
SAC¼ S-allyl-l-cysteine
SOD¼ superoxide dismutase
SPC¼ S-propyl-l-cysteine

SPRC¼ S-propargyl-l-cysteine
TTC¼ 2,3,5-triphenyltetrazolium chloride
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