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Abstract 

In the endeavour of avoiding presence of biodegradable waste in landfills and increasing 

recycling, mechanical-biological treatment (MBT) plants have seen a significant 

increase in number and capacity in the last two decades. The aim of these plants is 

separating and stabilizing the quickly biodegradable fraction of the waste as well as 

recovering recyclables from mixed waste streams. In this study the environmental 

performance of eight MBT-based waste management scenarios in Spain was assessed 

by means of life cycle assessment. The focus was on the technical and environmental 

performance of the MBT plants. These widely differed in type of biological treatment 

and recovery efficiencies. The results indicated that the performance is strongly 

connected with energy and materials recovery efficiency. The recommendation for 

upgrading and/or commissioning of future plants is to optimize materials recovery 

through increased automation of the selection and to prioritize biogas-electricity 

production from the organic fraction over direct composting. The optimal strategy for 

refuse derived fuel (RDF) management depends upon the environmental compartment 

to be prioritized and the type of marginal electricity source in the system. It was 

estimated that, overall, up to ca. 180-190 kt CO2-eq. y
-1 

may be saved by optimizing the 

MBT plants under assessment. 

 

Keywords: MBT, LCA, waste composition, biological treatment, material recovery, 

RDF 
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Glossary:  

AC: Acidification 

ECS: Eddy current system 

ETs: Ecotoxicity in soil 

ETwc: Ecotoxicity in water (chronic) 

GHG: Greenhouse gas 

GW: Global warming 

HDPE: High density polyethylene 

HTa: Human toxicity via air 

HTs: Human toxicity via soil 

HTw: Human toxicity via water  

HRT: Hydraulic retention time 

LCA: Life cycle assessment 

LDPE: Low density polyethylene 

MBP: Mechanical-biological pretreatment 

MBS: Mechanical-biological stabilization 

MBT: Mechanical-biological treatment 

MBTP: Mechanical-biological treatment plant 

MSW: Municipal solid waste 

NE: Nutrient enrichment 

OFMSW: Organic fraction of municipal solid waste 

PET: Polyethylene terephthalate. 

POF: Photochemical ozone formation 

RDF: Refuse derived fuel 

rMSW: Residual municipal solid waste 

SGR: Spoiled groundwater resources 

SOD: Stratospheric ozone depletion 

VOCs: Volatile organic compounds 

VS: Volatile solids 

WEEE: Waste electrical and electronic equipment 

ww: wet waste  
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1. Introduction 

From 1990 to 2010, about 180 MBT plants have been installed in Europe (ECN, 2009) 

with the aim of avoiding the presence of biodegradable waste in landfills, according to 

the European Directive 1999/31/CE (CEC, 1999). These plants combine mechanical 

separation of different fractions contained in household waste with stabilization of 

organic matter by means of biological processes such as anaerobic digestion or 

composting. According to Bilitewski et al. (2011), two main types of MBT technology 

exist: A) mechanical-biological pretreatment (MBP), where the organic fraction is 

separated and biologically stabilized prior to landfilling and recyclables as well as RDF 

are recovered from the residual coarse fraction, and B) mechanical-biological 

stabilization (MBS) or biodrying, which first composts the waste for drying prior to 

extraction of a larger RDF fraction. MBP aims at stabilizing the organic to minimize gas 

as well as leachate emissions in landfill while MBS maximizes the RDF and materials 

recovery. Within this general classification, multiple variations can be found and it can 

be stated that probably there are no two identical plants.  

The proliferation of these facilities was particularly remarkable in Spain where 

the waste treatment capacity was increased by 5 million tonne by installation of 50 new 

MBT plants (MMA, 2006). Particularly, in the region of Castilla y León (Spain), where 

more than 1.2 million tonne of waste are generated annually, 11 MBT plants have been 

built serving a population of 2.5 million of inhabitants within 94,223 km
2
. It should be 

noticed that selective source-segregation (separate collection of metals and plastic 

containers along with glass and paper) corresponds to only 12% (as for 2009) of the 

total collected waste (MMA, 2010), the remaining 88% being residual MSW. All the 

residual MSW generated in this region is sent to MBT prior to landfilling.   

Over the last ten years these plants have been in service, no specific assessments 

on their environmental performances have been performed. To this respect life cycle 

assessment (LCA) is a useful tool allowing for a holistic and systematic assessment of 

both direct and indirect environmental impacts of a selected system. LCA includes 

impact categories ranging from climate change (greenhouse gas (GHG) emissions) to 

human health impacts associated with the release of toxic substances, and to 

environmental impacts caused by physical changes of the land. In the literature a few 
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LCA studies specifically focusing on MBT plants exist: for example Abeliotis et al. 

(2012) assessed the environmental profile of a MBT plant located in Athens; a MBTP 

sited in Liossia (Greece) was included in the study of Papageorgiou et al. (2009); Bovea 

et al. (2010) considered this option as one of the MSW management scenarios in their 

Spanish case study and Juniper (2005) reviewed a number of MBT plants in Europe and 

reported associated environmental performances. In these studies, however, the input 

waste as well as the RDF composition was not experimentally determined and in the 

case of Juniper (2005) the focus was specifically on the UK waste management system. 

What was generally missing was an assessment taking into account plant-specific (and 

experimentally investigated) waste compositions as well as local conditions including 

actual plants efficiencies (i.e. materials and energy recovery) and type of marginal 

energy source replaced. These may significantly affect the LCA results as was reported 

by De Feo and Malvano (2009) when several waste management scenarios were 

analyzed and MBT plant was one of them.  

Bearing in mind these grey areas of the research, the objective of the present is 

to provide an insight into the impacts that the current operation of these waste treatment 

plants has on the environment. LCA results can be used as technical support for 

decision-making processes since, frequently, appropriate modifications in the 

management strategy can induce significant environmental savings. Therefore, the aims 

of this study were: i) to assess the current environmental performance of eight selected 

MBT plants with different operational system and waste input in order to illustrate the 

processes contributing with significant environmental burdens or benefits; ii) to 

compare the environmental performances of the eight MBT plants provided they treated 

the same waste input and to illustrate the role played by the waste composition and the 

technical performance of the individual plants (i.e. disregarding the effects of the 

different waste compositions); iii) to highlight potential environmental improvements 

which could be induced by changes in the management system (including both the MBT 

technology and the associated downstream processes, e.g. RDF landfilling). 
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2. Methodology 

2.1 The geographical region assessed: Castilla y León 

The region of Castilla y León (Spain) covers an area of 94,223 km
2 

and has a population 

of 2.5 million of inhabitants. More than 1.2 million tonne of waste are generated 

annually. In the last decade 11 MBT plants have been built to treat source-segregated 

and residual MSW (the second being 88% of the generated as mentioned earlier). Eight 

out of these 11 plants were operating at full capacity when this research was conducted 

and, therefore, were included in this study representing at least 80% of the residual 

waste treatment capacity of the region. These plants can generally be classified as MBP: 

the organic fraction is biologically stabilized after recovery of recyclables and RDF. 

Two types of waste are received and independently treated in these facilities: i) a mix of 

plastic and metal containers collected in separate bins (i.e. derived from household 

source-segregation) are manually divided into a number of fractions such as ferrous 

metals, aluminium containers, beverage cartons, LDPE (low density polyethylene), 

HDPE (high density polyethylene) and PET (polyethylene terephthalate). ii) Residual 

waste from households, hereinafter called ‘residual MSW’ (rMSW), is screened in 

rotary sieves (trommels); the fine fraction from trommels mostly consists of organic 

matter and is sent either to anaerobic digestion or to composting; selected recyclable 

materials are recovered from the coarse fraction after separation of the organic. The 

remaining fraction (RDF), representing about 40% by weight of the input rMSW, is 

currently baled and sent to landfill. The focus of this study is on the treatment of the 

rMSW only. 

 

2.2 MBT plants in Castilla y León: general description 

In Castilla y León the rMSW is collected and transported by collection trucks to the 

local MBT plant. Here a first manual selection station removes bulky items to avoid 

possible subsequent blockages. The waste stream is then conveyed to the trommel 

where a size separation is performed. The coarse fraction is conveyed to the second 

manual selection station where recyclable materials such as beverage cartons, LDPE, 
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HDPE and PET are separated and recovered. The residual (or RDF) is baled and sent to 

landfill after removal and recovery of ferrous and aluminium metals by magnets and 

eddy current systems (ECS). The fine fraction from the trommel (hereinafter named 

organic fraction of MSW, i.e. OFMSW) is conveyed to biological treatment after 

removal of ferrous and aluminium metals similarly to RDF. The biological treatment 

may be of two types: I) combined anaerobic digestion and post-composting and II) 

direct composting. Since the main difference among the plants is the biological 

treatment, the eight MBT plants under assessment can be classified according to two 

groups: i) MBT type I, where the OFMSW from the trommels is anaerobically digested 

(hydraulic retention time, i.e. HRT, of about 20 days) and the produced biogas 

combusted in gas motors to generate electricity and (in two cases) partly used for 

heating the process, and ii) MBT type II, where the OFMSW is composted in tunnels 

(about 20 days) and further sent to maturation windrows. In plants type I the digestate is 

also further introduced into composting tunnels for about 15 days in order to stabilize 

the undegraded organic matter and to later dry the product in maturation windrows.  

 

2.3 Waste characterization 

Eight MBT plants operating at full-capacity were investigated for a period of two years. 

Several technical visits were conducted in different seasons, main technical features 

inspected and samples of inputs and outputs collected and analyzed. As a result, global 

material balances were developed for each individual MBT plant and recovery 

efficiencies, i.e. distribution of the selected waste material fractions among the output 

streams (i.e. transfer coefficients) were calculated.  

The first step was to characterize the rMSW input to each plant so to define the 

eight individual waste compositions (in terms of waste material fractions). For each 

individual MBT plant, 16 samples (each of about 1000 kg rMSW) were taken from the 

reception ditch. The samples were divided into quarters and two opposite sectors were 

taken; the subsample was mixed and divided again into quarters, two of which selected 

to compose the final sample (ca. 250 kg). This was manually sorted into 19 waste 

material fractions according to MODECOM procedure (ADEME, 1998) and weighted 

in situ.   
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In order to define an overall mass balance for the MBT plants the RDF and the 

OFMSW were also characterized. The RDF composition was determined using the 

same approach as for the input rMSW (16 samples were collected; 19 waste material 

fractions were sorted and weighted from the final sample of 250 kg).  For the OFMSW, 

due to the smaller size, (smaller than 90 cm), 16 samples of 50 kg were collected. Once 

all these streams were analyzed, the amount of recyclable materials recovered in the 

mechanical processes can be calculated by means of a global mass balance. Similarly, 

transfer coefficients (i.e. distribution of the waste material fractions among the output 

streams) for selected waste materials were calculated for each individual MBT plant. 

 

2.4 Functional unit definition 

The functional unit of the LCA was the treatment of 1 tonne of wet rMSW (i.e. residual 

MSW left-over after source-segregation at the household) with the purpose of 

stabilizing the organic matter in order to achieve a final stabilized compost material 

(BOE, 2005; Hogg et al., 2002). The geographical scope was Spain (Castilla y Leon). 

The temporal scope can be approximated with ‘2013-2015’ as technologies efficiencies, 

waste composition and amount, transport distances and marginal energy sources ies 

refer to current knowledge and practices (in other words, no forecasting has been made). 

The environmental impacts were assessed for a time horizon of 100 years, from the 

moment when the rMSW was collected. The ‘zero burden’ approach was applied: all 

upstream emissions associated with generating the waste were omitted from the LCA. 

The chemical composition of each waste material fraction was assumed from Riber et 

al. (2009). The boundary of the system was set at the point of rMSW collection; further 

impacts and savings associated with downstream utilization of produced electricity (e.g. 

from biogas or RDF combustion) and landfilling of residuals (e.g. rejects, RDF, 

eventual incineration residuals, etc.) was accounted for by system expansion following 

the principles of consequential LCA (Finnveden et al., 2009; ISO 2006a, ISO 2006b). 

This implied that the products generated by the system (e.g. electricity and recycled 

materials) substituted the relative marginal products in the market. In the particular case 

of electricity, the marginal technology was assumed to be natural gas-fired power plants 

based on MITYC (2011) and IDAE (2010). These indicate a trend on increasing the 
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energy provision by expanding the capacity of natural gas-based power production 

while keeping coal and fuel oil steady. This assumption is also in accordance with other 

recent LCA studies having Spain as geographical scope (e.g. Meneses et al., 2012). The 

influence of this choice was tested by assessing the LCA results also for the case of coal 

as marginal fuel source for electricity production. For landfilling, the system was 

credited with the savings associated with carbon sequestration over the considered 100 

years horizon. 

 

2.5 Impact assessment 

The assessment was carried out according to the LCA method EDIP 1997 (Wenzel et 

al., 1997). The assessment included several impact categories covering potential 

burdens to air, soil, surface and groundwater and potential hazards to humans. These 

categories were divided into three main groups: non-toxic environmental impact 

categories (global warming – GW, photochemical ozone formation – POF, stratospheric 

ozone depletion – SOD, acidification – AC and nutrient enrichment – NE) and toxic 

environmental impact categories (ecotoxicity in soil – ETs and in water (chronic) – 

ETwc, human toxicity via soil – HTs, via water – HTw and via air – HTa).  To these, 

another specific category (spoiled groundwater resources –SGR) was added in order to 

include in the assessment the potential impacts associated with contamination of 

groundwater. The SGR is calculated based on the amount of groundwater that may be 

contaminated from an input of leachate by diluting the leachate to the drinking water 

standards, as described by the guidelines provided by WHO (2006). This assumes that 

groundwater is used as drinking water resource in the region under assessment. 

In the LCA-modelling it was assumed that emissions of biogenic carbon dioxide 

are neutral with respect to GW (i.e. global warming emission factor equals 0). With 

respect to landfilling, this dictates that biogenic carbon left in the landfill after the LCA 

time horizon considered (100 years) is considered as an avoided emission of carbon 

dioxide and therefore a negative contribution (i.e. a saving) was assigned (Christensen 

et al., 2009).  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
10 

The assessment was facilitated with the waste management-dedicated LCA 

software EASEWASTE (Kirkeby et al., 2006). The results were expressed as 

characterized values (e.g. kg CO2-eq. tonne
-1

 ww).  

 

 

2.6 LCA scenarios 

For each type of MBT (I and II), four corresponding waste management scenarios 

(based on the eight MBT plants investigated) were assessed: MBTP I-1, MBTP I-2, 

MBTP I-3 and MBTP I-4 corresponding to type I and MBTP II-1, MBTP II-2, MBTP 

II-3 and MBTP II-4 corresponding to type II. The LCA included two sets of scenarios: 

the first set (a) consisted of the selected eight waste management scenarios (i.e. MBTP 

I-1, MBTP I-2, MBTP I-3, MBTP I-4, MBTP II-1, MBTP II-2, MBTP II-3, MBTP II-4) 

where the waste composition was specific for each individual plant (as investigated). 

The second (b) consisted of the same eight waste management scenarios with the 

difference that the waste input to the individual MBT plants was the same (average 

waste composition for the region, see section 3). The latter allows for comparing the 

technical performance of the individual MBT plants (including further treatments) 

disregarding the effects of different waste compositions. The system boundary is 

exemplified in Figure 1 for the case of scenario MBTP I-3 (a). A total of 16 scenarios 

were therefore assessed: 8 (scenarios, i.e. I-1 to II-4) x 2 waste compositions (i.e. a and 

b) = 16. 

 In addition, the potentials for optimizing the environmental performance of the 

assessed waste management scenarios were evaluated by analyzing the following 

changes in the management system: i) RDF incineration instead of landfilling. ii) 

Optimization of the biological treatment: this consisted on modelling the biological 

treatment in all the scenarios conformingly with the best performing digestion process 

(that is, MBTP I-2, see Table 1). iii) Optimization of materials recovery: the potentials 

for GHG savings associated with improved materials recovery at the MBT plants were 

quantified. It was assumed that the MBT plants were upgraded with additional 

installation of the following automatic selection units: optical separator for hard plastic 

(4.7 kWh tonne
-1

 ww), PET (1.5 kWh tonne
-1

 ww), soft plastic (assumed as for hard 
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plastic), glass (glass breaker and optical glass sorting, 20 kWh tonne
-1

 ww), aluminium 

(ECS, 0.88 kWh tonne
-1

 ww) and ferrous metals (magnet, 2.4 kWh tonne
-1

 ww). Data 

were based on Combs (2012). Paper and cardboard were included in the analysis 

(manual separation was assumed). However, improved recovery of these may be limited 

by the contamination with organic and the results have to be regarded only as upper 

potentials. 

Notice that in the present study no sensitivity analysis-dedicated section is 

presented as the main scenario uncertainties associated with choices about type of 

marginal energy source, carbon sequestration in landfills, variation of the waste 

composition and changes in the management systems were tested and integrated within 

the results section (3.1-3.3 and related Figures). 

 

*Figure 1* 

 

2.7 Waste treatment technologies 

2.7.1 MBT plants 

Each individual MBT plant was modelled as a combination of mechanical separation 

and biological treatment. The recovery efficiencies of the selected waste material 

fractions were calculated based on the experimental data. The consumption of energy of 

each machine and operation occurring at the plant under assessment was based on 

Combs (2012). The average electricity consumption of the assessed plants for the 

mechanical and manual operations was estimated to 15 kWh tonne
-1

 ww. The biological 

treatments for both types of MBT plants were modelled according to Boldrin et al. 

(2011) with respect to N2O, CH4 and NH3 emissions. The purpose of the biological 

treatment is the stabilization (aerobic or anaerobic or in combination) of the degradable 

organic matter in order to achieve a final composted material having low methane 

potential (typically < 20 Nm
3
 tonne

-1
 ww) which allows sustainable landfilling with 

decreased environmental impacts especially with respect to gas and leachate generation 

(Stegmann, 2010; Cossu et al., 2003). The residual methane potential of the stabilized 

organic matter was assumed 15 Nm
3
 tonne

-1
 ww according to previous studies 
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(Manfredi et al., 2010a). The corresponding CH4 emissions occurring in the landfill 

were accounted for in the LCA. 

 

 

 

MBT type I 

Biological treatment in MBT type I was modelled as a combination of anaerobic 

digestion and post-composting. The OFMSW screened from the trommels, after a 

pretreatment based on water addition, was fed to the anaerobic reactor in a continuous 

flow process. The biogas net electricity production was based on specific data from the 

plants operators (Table 1). The methane content in the biogas was 65% per volume. The 

fugitive methane emissions from the reactor were set to 1% of the produced CH4 based 

on recent LCA studies (Böriesson and Berglund, 2006; Jungbluth et al., 2007; Hamelin 

et al., 2011.). Unburned methane in the gas engine was assumed 434 g CH4/MJ 

combusted based on Nielsen et al. (2010). After ca. 20 days, the digestate was sent to 

post-composting. The post-composting phase consisted of about 20 days in composting 

tunnels (see section MBT type II) followed by a maturation period of about 2 months in 

order to achieve a final stabilized quality. The carbon degradation during post-

composting was estimated based on mass balances (see supporting information, SI). 

Emissions of CH4, N2O and NH3 were considered the main products of degradation (see 

section MBT type II). According to current practices, the final product (compost, 

currently used as daily cover in the adjacent landfills) was landfilled despite the 

refinement was carried out. Similarly, the reject of this refining process was also 

landfilled. 

 

*Table 1* 

 

MBT type II 

Biological treatment in MBT type II was modelled as composting tunnels based on a 

full-scale operating plant located in Italy (Boldrin et al., 2011). The degradation of each 

material fraction was modelled as a percentage of the VS content in the incoming waste; 
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this corresponded to about 70% VS degradation for organic waste such as animal and 

vegetable food waste, 60% for yard waste, 10-20% for paper and cardboard fractions 

and 5% for beverage cartons and textiles. OFMSW and electricity consumption (about 

20-25 kWh tonne
-1

 ww depending on the plant) were the main inputs to the composting 

process whereas compost, rejects from refining processes and emissions of CH4, N2O 

and NH3 were the main outputs. According to Boldrin et al. (2011), the fugitive CH4 

emissions were set to 0.2% of the degraded carbon, N2O emissions to 1.4% of the 

degraded nitrogen. About 98.5% of the degraded nitrogen was in the form of NH3 of 

which 99% was assumed oxidized in biofilters (Boldrin et al. 2011) which are the 

current air treatment system at the assessed plants. The compost and the rejects were 

assumed landfilled according to current practices. 

 

2.7.2. Associated waste treatment technologies 

The remaining waste treatment technologies associated to the MBT plants (collection 

and transport, landfilling, recycling and incineration) are thoroughly detailed in the 

supporting information (SI). 

 

3. Results and discussion 

The composition of the rMSW as well as RDF of the individual MBT plants is shown in 

Table 2 along with the average rMSW composition for the region. This included two 

additional MBT plants located in Castilla y León (which are not addressed in this 

study). The recovery efficiencies (i.e. percent of each individual waste material 

recovered) calculated for each individual MBT plant is detailed in Table 3. 

On a wet basis, the rMSW was composed by about 50% organic matter, 14% 

paper and cardboard and 11% plastics. Based on trommel separation, the recovery 

efficiencies for organic matter (i.e. share sent to biological treatment) were above 80% 

for all plants. However, these ‘organic’ streams contained high percentages of improper 

materials as highlighted in previous studies (Montejo et al., 2010). Paper, cardboard, 

glass, beverage cartons and the different types of plastic are recovered manually in these 

MBT plants hence recovery efficiencies varied widely. Ferrous and aluminium metals 

were mechanically separated, therefore the relative recovery efficiencies were generally 
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higher compared with the remaining waste materials. The residual (named RDF) was 

mainly composed of organic matter (about 25%), paper and cardboard (about 30%) and 

plastic (about 25%). This fraction is currently landfilled (Montejo et al., 2011) despite 

its high calorific value (up to 18 MJ kg
-1

 ww). For the scenarios under assessment a 

biogenic carbon balance is also reported (Table S1). 

 

*Table 2* 

*Table 3* 

 

The LCA results for the eight scenarios are shown in Figure 2-3. These included the a) 

‘waste-specific’ results (i.e. environmental impacts associated with the individual 

scenarios provided the waste input is specific for each individual MBT plant) and b) 

‘waste-average’ results (where the waste input is the average for ‘Castilla y León’ for all 

the scenarios). The latter allows for comparing the technical performance of the 

individual MBT plants disregarding the effects associated with differences in the waste 

compositions. The impacts of the principal processes involved have been detailed in the 

charts. The processes were grouped into: i) Transportation (waste collection and 

transport of recovered materials and rejects), ii) Mechanical treatment (mechanical 

material recovery), iii) Biological processes (composting or combined process with 

anaerobic digestion and post-composting), iv) Recycling (facilities where recovered 

materials are reprocessed) and v) Landfilling (of all the compost, rejects and RDF 

generated). Impacts/savings for the individual waste management scenarios were 

obtained by subtracting the avoided impacts (negative values in the figures) from the 

induced impacts (positive values). Any net value below the zero axes thus indicates an 

environmental improvement as compared with the fossil fuel reference (in which 

electricity is provided by natural gas and materials are produced from virgin resources; 

no environmental burden is assumed embedded in the waste input). In addition, the 

overall LCA results in the case of coal being the marginal source for electricity 

production are also displayed (‘cross indicator’). Notice that the discussion in section 

3.1-3.3 (e.g. numerical LCA results reported) focuses on the case where natural gas is 
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the marginal energy source, unless otherwise specified. Normalized LCA results were 

also calculated and can be found in the SI. 

 

*Figure 2* 

*Figure 3* 

 

3.1 ‘Waste-specific’ results (current performance) 

3.1.1 Non-toxic impact categories 

On GW all the scenarios contributed with environmental savings. This was expected as 

a zero-burden approach is assumed. However, the magnitude of the savings varied 

depending on the scenario (which relates to the type of MBT plant, i.e. I or II) and on 

the type of marginal energy source considered, that is, natural gas or coal. The choice of 

natural gas determines that the energy recovery processes are less beneficial on GW 

compared with choosing coal. This is also expected as coal has a significantly higher 

GHG emission factor than natural gas (in this study: 1.1 vs. 0.49 kg CO2-eq. kWh
-1

). 

This finally implicates that, when natural gas is the marginal energy source, most GHG 

savings are provided by other processes than energy recovery’s, for example recycling 

or carbon sequestration in the landfill. The overall GW savings ranged from -340 for 

MBTP II-1 (type II) to -120 kg CO2-eq. tonne
-1

 ww for MBTP II-2 (type II). There was 

no clear evidence that scenarios with type I were better than II or vice versa. In fact, as 

opposed to previous studies on similar subjects (e.g. Manfredi et al., 2011; Boldrin et 

al., 2011) where anaerobic digestion of the organic matter was concluded to be 

favourable over direct composting, in the present this was not the case. The primary 

reason for this was the wide variation of energy and materials recovery efficiencies 

across the eight scenarios. For example, MBTP I-1 and MBTP I-2 had high electricity 

recovery but scarce materials recovery efficiencies. In addition, methane production was 

lower than in the other MBT type II. Second, in the aforementioned studies coal was 

generally assumed as marginal energy source; this determined significantly higher 

benefits associated with the energy recovery processes. 

For all the scenarios the environmental savings were primarily associated with 

(Figure 2a): (1) recycling, (2) landfilling (carbon sequestration) and (3) biological 
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processes (substitution of fossil fuel through energy produced during anaerobic 

digestion). (1) Recycling determined significant savings in all scenarios; these were 

largely dependent on the total amount of recovered materials (i.e. product of plant 

separation efficiency and input material amount) particularly with respect to i) paper, ii) 

plastic and iii) metals. The greatest savings were found for MBTP II-1, MBTP II-2 and 

MBTP II-4 (-250, -240 and -230 kg CO2-eq. tonne
-1

 ww, respectively) which also 

showed the highest recovery efficiencies for these recyclables (Table 3). These results 

are in agreement with previous studies focused on recycling of different materials 

(Damgaard et al., 2009; Manfredi et al., 2011; Merrild et al., 2009; Merrild et al., 2012; 

Tonini and Astrupet al. (2012a)). (2) Landfilling of compost (that is, stabilized organic) 

and RDF resulted in significant GW benefits for all the scenarios (ranging between -200 

(MBTP II-4) and -140 (MBTP I-4) kg CO2-eq. tonne
-1

 ww); these savings were 

completely associated with carbon sequestration whereas minor impacts (about 15-25 

kg CO2-eq. tonne
-1

 ww) were a consequence of residual methane emissions and energy 

consumption for the operations. Between 84% and 91% of the total biogenic carbon 

sequestered was associated with the RDF and between 9% and 16% with compost and 

rejects from the biological treatment (see Table S1). These results are in agreement with 

the findings of previous studies (e.g. Manfredi et al., 2009, Manfredi et al., 2010b, and 

Manfredi et al., 2011) where potential savings associated with carbon sequestration 

were illustrated for different waste types. (3) Biological processes resulted in GW 

savings only for MBTP I-2 when natural gas was the marginal energy source thanks to 

the significant electricity recovery. When coal was the marginal energy source also 

MBTP I-1 achieved net GHG savings. For all the scenarios, the GHG emissions (CO2-

eq. tonne
-1

 ww) ranged from -7 to 48 in the case of natural gas and -48 to 75 kg in the 

case of coal. As shown by the results for MBTP I-3 and MBTP I-4, a gross electricity 

efficiency of 13-14% was not sufficient to assure ‘GHG-neutrality’ to the biological 

treatment itself (i.e. to compensate the impacts due to the emissions and consumptions) 

neither in the case of natural gas nor coal as marginal energiesenergy sources. However, 

an optimized use of the biogas-energy through, for example, maximization of the 

electricity production and later use of the waste heat from the gas engine to heat the 

digestion process may drastically increase the associated GHG savings. Additional 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
17 

environmental impacts were caused by mechanical treatment to separate organic matter 

and recyclables (ca. 8.5 kg CO2-eq. tonne
-1

 ww
 
due to energy consumption) and 

transportation (between 17 and 40 kg CO2-eq. tonne
-1

 ww depending on the amount of 

recyclables transported). 

The results for AC and NE followed a similar trend among the assessed 

scenarios. On both categories recycling was the most important contributor to the 

savings. All the other processes determined environmental impacts, primarily related to 

(the order reflecting the relevance): NH3 emissions from composting (biological 

processes), NH3 and PO4
3-

 from landfilling (leachate) and NOx (transportation). On NE 

NOx and NH3 emissions exceeded the avoided N-emissions associated with recycling 

determining an overall impact on this category in all the addressed scenarios. This was 

not the case for AC where only one scenario performed with a net impact (MBTP II-2) 

due to scarce materials recovery efficiencies at the MBT. This could be avoided by, for 

example, optimizing metals (particularly aluminium) recovery. 

Regarding the remaining non-toxic categories, no remarkable differences among 

the scenarios were found in the categories SOD and SGR (Table S3). Here the impact 

was totally caused by landfilling (due to CFCs and ammonia emissions to groundwater 

through leachate). On POF impacts were primarily caused by transportation (VOCs) 

and to a minor extent by landfilling and biological processes (fugitive CH4 emissions). 

 

3.1.2 Toxic impact categories 

As illustrated in Figure 3a, the results on the toxic categories ETwc, HTw and HTs 

highlighted the benefits associated with recycling to which all the environmental 

savings were connected across the different scenarios. As a consequence, the scenarios 

with highly efficient recovery of recyclables at the MBT plant achieved the greatest 

performances. Particularly, the recovery efficiency of aluminium determined the 

performances on ETwc, HTs and, to a minor extent, also on HTw: the higher the overall 

recovery at the MBT (see Table 3) the better the results; the impacts were mostly due to 

transportation and landfilling as a consequence of metals emissions (through leachate) 

and uncombusted hydrocarbons (transportation). On ETwc only the scenarios with 

aluminium recovery efficiency at the MBT above 60% achieved environmental savings 
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(that is, MBTP I-1, MBTP I-2, MBTP I-4 and MBTP II-4); the impacts from transport 

and landfilling were comparable for all scenarios. On HTw the performance was mainly 

related to energy and aluminium recovery (and consequent avoided emissions from 

fossil fuel combustion and virgin material production): the scenarios with direct 

composting and scarce recovery efficiencies (that is, MBTP II-2, MBTP II-3 and MBTP 

I-4) performed therefore worst. All the assessed scenarios performed with impacts on 

HTa (Table S3); this was principally attributed to VOCs emissions from transportation. 

The impacts on ETs (not shown) were negligible compared with the remaining 

categories. 

 

3.2 ‘Waste-average’ results (current performance) 

Figure 2b-3b allows for comparing the scenarios disregarding the effects associated 

with the differences in the waste composition thus gaining insight into the technical 

performances of the MBT plants investigated. The results for GW highlighted that, 

generally, the performance of the scenarios with MBT type I was better than type II 

provided high electricity recovery (e.g. MBTP I-1 and MBTP I-2). It should be noted 

how the overall magnitude of the GW performance was affected by the changes in the 

waste composition. The paramount average variation of GHG savings between case a 

and b (i.e. absolute average GHG variation of the eight scenarios) corresponded to about 

22%. The largest variation was seen for MBTP II-2 (40% net increase of GHG savings) 

as a consequence of the increased content of ferrous metals, paper and cardboard in the 

input waste composition. 

The results for AC and NE reflected the overall materials recovery (and 

consequent recycling) efficiency: MBTP II-4 performed best thanks to higher recovery 

for aluminium, plastic, cartons and paper compared with the remaining scenarios. 

However, as opposed to AC, on NE all the scenarios contributed with environmental 

impacts as a consequence of higher N-emissions from composting and landfills in 

comparison with the avoided N-emissions connected to recycling. Yet, efficient material 

recovery at MBT has the potential to mitigate the overall NE impact (e.g. see MBTP II-

4). The impacts on the remaining non-toxic categories (POF, SOD and SGR) were 
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primarily due to landfilling and transportation as earlier described; the magnitude was 

comparable for all the scenarios (Table S3).  

On ETwc and HTs the results were mainly affected by the amount of recovered 

aluminium (which determines the most significant savings on these categories as earlier 

described): the scenarios having the lowest recovery efficiency at the MBT (MBTP I-3, 

MBTP II-1 and MBTP II-2, see Table 3) were the worst. It can be noticed that the 

overall performance of MBTP I-1 and MBTP II-4 decreased in (b) compared with (a) as 

a result of the diminished share of aluminium in the average ‘Castilla y León’ waste 

composition compared with the specific waste input to these plants (Table 2). In HTw 

the major savings were associated with recycling of paper and aluminium and also, to a 

minor extent (when natural gas is the marginal onesource) energy recovery, as earlier 

described. The combination of no-energy as well as low materials recovery determined 

net impacts in the case of MBTP II-2. This also applied to MBTP I-4 and to all 

scenarios with MBT type II when coal was the marginal energy source. All the 

addressed scenarios contributed with comparable impacts (see Table S3) on HTa; these 

were primarily attributed to transportation as earlier described. 

 

3.3 Potentials for optimizing the environmental performance 

Figure 4-5 shows the environmental consequences in terms of benefits and/or impacts 

associated with potentially improved waste management scenarios (i, ii and iii). The 

bars in Figure 4 indicate the net difference in the environmental impact or saving 

between the improved and the baseline scenario that is set to zero and used as reference 

(i.e. ∆saving or ∆impact = improved value – baseline value): a bar pointing towards 

negative values indicates that the improved scenario achieved increased environmental 

savings compared with the baseline (and viceversa). The waste-specific scenarios were 

used as baseline. Figure 4(i) shows the variation in the environmental performance in 

the case that RDF was incinerated instead of landfilled. Figure 4(ii) shows the variation 

when the organic matter is anaerobically digested with optimized energy recovery (see 

section 2.6) instead of ‘directly’ composted.  

Figure 5 shows the paramount average GHG emissions (i.e. average of the eight 

scenarios) associated with 100% material recovery at the MBT or, alternatively, 100% 
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material incineration, relative to the baseline LCA results. These were set to zero and 

used as reference. Thus, any value below zero represents a saving compared with the 

baseline (and viceversa). Table S4 reports the detailed results for the individual 

scenarios. This analysis was performed to illustrate the potentials for GHG savings 

associated with the management of the individual waste materials.  

The results (Figure 4-5) showed that from a GHG perspective significant 

environmental improvements may be achieved by a combination of the following (the 

order reflecting the relevance): 1) increased materials recovery (primarily metals and 

plastic) and 2) optimized biological treatment of OFMSW. Incineration of RDF (instead 

of landfilling) was beneficial only if coal was the marginal energy source. These results 

are in agreement with Arena et al. (2003) where one MBT plant was considered as one 

of the waste management scenarios. Overall, optimization of metals and plastic 

recovery should be prioritized. This would enhance the environmental performance on 

all environmental categories (exemplified in Figure 5 for GW). The associated savings 

varied across the scenarios depending upon the waste composition. In the case of paper 

and cardboard, additional savings from improved recovery are dramatically dependent 

upon the assumptions regarding C sequestration and therefore the considered time 

horizon. If C sequestered was not accounted, the additional savings from paper 

recycling compared with landfilling would be much more significant (Figure 5 and 

Table S4).  

Optimization of the biological treatment also induced additional GW savings 

(between -8 and -93 kg CO2-eq. tonne
-1

 ww). Note that biogas may also provide 

additional benefits in relation to storability and flexibility of use in the perspective of 

future energy systems with increased penetration of wind and other fluctuating 

renewables such as photovoltaic and tides (among the others: Lund, 2007; Mathiesen et 

al., 2011a; Mathiesen et al., 2011b; Tonini and Astrup, 2012b).  

As aforementioned RDF incineration decreased the GW performances compared 

with landfilling when C sequestration was accounted for along with natural gas as 

marginal energy source. The reason for this was that the CO2 savings from avoided 

natural gas combustion were largely compensated by waste-specific CO2 emissions 

(from plastic). As opposite to this, the GHG performance was instead improved 
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compared with the baseline (landfilling) when coal was the marginal energy source  

(Figure 4). This indicates that RDF should be used to substitute for fossil fuels with 

higher emission factor than that of coal (see also 3.3.1). Additionally, RDF incineration 

strongly mitigated the impact potential on all the remaining categories, particularly on 

SGR. The latter was on average reduced down to ca. 1/3 of the current impact potential.  

 

*Figure 4* 

*Figure 5* 

 

3.3.1 Energy from RDF: effects of energy efficiency, plastic recovery and fuel 

substituted on GW 

As aforementioned RDF incineration resulted in worse GHG performance compared 

with the baseline (landfilling) when natural gas was the marginal energy source. This 

may change if: 1) the electricity efficiency of the combustion process increases, 2) 

sorting and recovery of plastic at the MBT is applied prior to RDF incineration, and 3) 

the substituted fuel has higher CO2 emission factor than that of natural gas. The first (1) 

was assessed by identifying the net electricity efficiency (ηpower plant) that should be 

achieved at the dedicated RDF incinerator (or a generic power plant) in order to equal 

the same GHG savings of the baseline (where plastic along with the remaining RDF is 

landfilled and carbon from paper and organic is sequestered). The calculation was 

performed according to Equation S1 (SI). Similarly, for the second (2), the plastic 

recovery efficiency (ηrec) that should be achieved at the individual MBT plants to equal 

the GHG performance of the baseline was evaluated. The calculation was performed 

according to Equation S2 (SI). The third (3) was earlier exemplified in the case of coal 

as marginal energy source (section 3.3). However, Equation S3 (SI) allows recalculating 

the specific CO2 emission factor that the ‘substituted fuel’ (EFfuel) should assume in the 

individual MBT scenarios to equal the GHG performance of the baseline. As reported in 

Table S5, a net electricity efficiency of 49-53% should be achieved to equal the GHG 

performance of the baseline. Alternatively, recovery efficiency at the MBTs greater than 

85-100% should be achieved for the considered recyclable plastic fractions (see SI). The 

CO2 emission factor of the ‘fuel substituted’ varied between 67 and 72 kg CO2-eq. MJ
-1
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depending on the scenario (Table S5). Thus, the substitution of any fuel having 

emission factor above this range would induce net GHG savings compared with the 

baseline (RDF landfilling). This might be the case, for example, of substitution of light 

oil, heavy fuel oil or coal (emission factors greater than 80 kg CO2-eq. MJ
-1

). 

 

3.4 Perspectives 

The results of this research suggest that the assessed MBT plants, even if recently 

commissioned, aim at a safe disposal (e.g. stabilization of the OFMSW prior to 

landfilling) rather than at maximizing energy and materials recovery. In this 

perspective, large potentials exist to optimize the environmental performance, thereby 

changing the perception on MSW from ‘waste to be disposed’ to ‘resource and energy 

carrier’. Table S6 presents an overview of the total annual GHG savings that could be 

achieved in each individual MBT plant by optimizing biogas-energy and materials 

recovery (RDF is assumed landfilled). A total was also estimated. Overall, the estimated 

potential for GHG emission savings equalled ca. 180,000-190,000 tonne CO2-eq. y-
1
 

depending on the assumption for the marginal electricity source.  

The fact that the biggest savings are associated with recovery/recycling along 

with the scarce GHG performance of RDF incineration (under the assumptions made 

about marginal electricity source and carbon sequestration) highlight that optimization 

of materials recovery is crucial, if the focus is mitigating GHG emissions. Future studies 

should thus focus on evaluating alternative options to maximize recycling: these should 

include source-segregation strategies to be integrated with optimized mechanical-

biological treatment. In addition, optimal strategies for energy recovery from RDF 

should also be further evaluated, likely including heat recovery (for example for 

industry or for district heating/cooling), co-firing in dedicated large scale power plants 

or in cement kilns, to maximize the total energy recovery. 

 

4. Conclusion 

From a GHG perspective the results documented that the environmental performance of 

the current waste management is primarily connected with material recovery, carbon 

sequestration in landfill and energy recovery through anaerobic digestion of the organic 
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matter. The waste composition principally affected the magnitude of the benefits 

associated with recycling. These varied widely across the assessed scenarios depending 

on both waste composition and recovery efficiencies at the MBT. On the remaining 

environmental categories the performance was primarily dictated by the amount of 

recovered materials.  

Overall, MBT plants with efficient energy recovery from the biogas performed 

better. High recovery efficiency for paper, plastic and metals determined significant 

environmental savings on the non-toxic categories whereas high recovery efficiency for 

aluminium induced considerable benefits on the toxic. 

The recommendation for upgrading and/or commissioning of future plants is therefore 

to optimize materials recovery through increased automation of the selection and to 

prioritize biogas-electricity production from the OFMSW (with further re-use of the 

waste heat within the digestion process) over direct composting. The optimal strategy 

for RDF management depends upon the environmental compartment to be prioritized 

and the type of marginal energy source in the system. To this respect, further 

investigations are needed. 

 

Supporting information 

Additional information on: life cycle inventory of waste treatment technologies, carbon 

balance and LCA results is available free of charge via the Internet at 

http://www.sciencedirect.com. 
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Figures captions 

 

Figure 1. Illustration of the LCA system boundary for the case of MBTP I-3 (a) (MBT 

type I). rMSW: Residual municipal solid waste. MBTP: Mechanical-biological 

treatment plant. OFMSW: organic fraction of MSW (i.e. fine fraction screened by 

trommels). RDF: refuse derived fuel. FE: Ferrous metals. NFE: Non-ferrous metals. C 

sequestered refers to the carbon stored in landfill after the considered 100 years horizon. 

Values rounded to 2 significant digits. Experimental data.  

 

Figure 2. Characterized environmental impacts on selected non-toxic categories: process 

contributions. a: waste-specific model results; b: waste-average model results  

 

Figure 3. Characterized environmental impacts on selected toxic categories: process 

contributions. a: waste-specific model results; b: waste-average model results 

 

Figure 4. Environmental consequences (selected non-toxic categories) associated with 

the potentially improved waste management scenarios (i and ii). The error bars indicate 

the net difference in the environmental impact or saving between the improved and the 

baseline scenario (i.e. ∆saving or ∆impact = improved value – baseline value). Model 

results.  

 

Figure 4(cont.). Environmental consequences (selected toxic categories) associated with 

the potentially improved waste management scenarios (i and ii). The error bars indicate 

the net difference in the environmental impact or saving between the improved and the 

baseline scenario (i.e. ∆saving or ∆impact = improved value – baseline value). Model 

results.  

 

Figure 5. Paramount average GHG savings (kg CO2-eq. tonne
-1

 ww) associated with 

100% waste material recovery at the MBT or, alternatively, 100% waste material 

incineration, relative to the baseline LCA results. REC: 100% recycling of the selected 

waste material; INC: 100% incineration of the selected waste material. The ‘square’ 

indicates the GHG saving in the case that C sequestration was not accounted for in the 

baseline. Model results 
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Figure 5



Figure 1_revised



Table 1. Net methane and electricity production at the MBT plants in the LCA scenarios with 

MBT type I. In MBTP I-3 and MBTP I-4 a share of the biogas is combusted in boiler to heat the 

reactor. MBTP I-1 and I-2 use waste heat from the gas engine. Values rounded to two 

significant digits. Data provided from plant operators.  

Scenario 
CH4 production 

(Nm
3
 tonne

-1
 DM) 

CH4 production 

(Nm
3 

tonne
-1

 ww) 

Electricity production  

(kWh Nm
-3

) 

ηel 

(%) 

MBTP I-1 110 43 2.4 37 

MBTP I-2 130 52 2.3 36 

MBTP I-3 140 58 0.91 14 

MBTP I-4 110 46 0.83 13 

 

  

Table



Table 2. Composition of: i) rMSW input to the assessed MBT scenarios and ii) produced RDF (percent in wet basis, kg kg
-1

 ww). Values rounded to two 

significant digits. (
*
= ·10

-2
). Experimental data. 

Waste material fraction 

    rMSW     RDF 

MBTP  

I-1 

MBTP  

I-2 

MBTP  

I-3 

MBTP  

I-4 

MBTP 

II-1 

MBTP 

II-2 

MBTP 

 II-3 

MBTP  

II-4 

CYL 

2010 

MBTP  

I-1 

MBTP  

I-2 

MBTP  

I-3 

MBTP  

I-4 

MBTP 

II-1 

MBTP 

II-2 

MBTP 

 II-3 

MBTP  

II-4 

Organic matter 61 59 51 55 50 67 55 51 56 14 23 21 28 19 30 24 33 

Paper and cardboard 12 7.9 19 10 23 8.9 15 16 14 31 28 30 28 24 27 30 27 

Hard plastic (HDPE) 0.6 1.2 0.9 0.9 0.5 0.6 0.6 1.0 0.7 1.7 0.9 0.8 1.4 0.6 1.5 0.1 1.0 

Plastic bottles (PET) 1.3 1.8 1.2 1.5 1.2 1.5 2.0 1.2 1.5 2.4 2.2 1.5 3.0 1.4 1.3 1.4 2.1 

Soft plastic (LDPE) 5.3 4.7 5.6 7.8 4.6 3.4 5.4 5.9 5.6 17 11 10 12 12 8.4 13 6.0 

Non-recyclable pl. 2.7 2.5 3.8 4.3 3.1 2.0 1.7 2.5 3.0 11 10 10 7.2 13 14 9.0 13 

Glass 2.5 4.0 3.0 3.1 3.1 2.5 5.2 3.9 3.3 0.2 0.8 0.5 1.0 0.3 0.0 0.1 1.0 

Ferrous metals 2.0 1.7 4.2 2.6 1.7 1.7 3.6 1.8 2.5 1.1 2.1 5.6 2.3 2.5 2.6 4.9 4.0 

Aluminium metals 0.9 0.6 0.5 0.6 0.5 0.3 0.2 0.9 0.5 0.7 0.8 0.8 0.6 1.2 0.6 0.2 0.2 

Diapers, sanitary towel 3.1 3.7 3.8 5.7 3.5 1.4 4.8 5.9 4.0 6.5 8.0 6.6 4.5 7.1 4.7 4.2 5.3 

Beverage cartons 1.1 0.9 1.2 1.6 0.9 0.9 1.3 1.7 1.2 3.4 1.3 1.4 2.3 1.3 1.1 1.4 2.1 

Textiles and leather 4.1 3.6 2.1 1.6 4.6 4.8 2.7 4.7 3.5 7.5 7.3 6.8 8.7 12 5.7 11 5.0 

Wood 1.1 1.3 2.0 0.7 2.1 0.3 0.6 1.3 1.1 3.5 3.7 2.7 0.8 3.4 1.8 1.6 0.3 

Disp. sanitary prod. 0.0 0.0 0.2 0.0 0.0 0.0 0.0 1.9 0.2 0.0 0.0 7.4
*
 0.0 0.0 0.0 0.2 0.0 

Batteries 0.0 0.0 2.1
*
 0.0 0.0 7.4

*
 2.8

*
 0.0 1.4

*
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Yard wastes 2.0 6.4 1.8 2.7 0.0 2.1 1.2 0.2 2.1 0.5 0.0 0.0 0.0 0.6 0.0 0.0 0.0 

Electronics (small WEEE) 0.4 5.7
*
 0.0 3.5

*
 4.6

*
 0.0 0.2 0.2 0.1 0.0 0.6 1.3 0.3 0.0 0.5 0.2 4.3

*
 

Non-combustible 0.4 0.5 0.0 1.2 1.1 2.7 0.0 0.5 0.7 0.0 0.0 0.2 0.0 1.5 0.4 0.0 0.0 

TOTAL 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 



Table 3. Recovery efficiencies (percent in wet basis, kg ww recovered kg
-1

 ww input): percent 

of individual waste materials (e.g. hard plastic, paper and cardboard, etc.) recovered at the 

assessed MBT plants. Values rounded to two significant digits. Experimental data.  

Waste material fraction 
MBTP 

I-1 

MBTP  

I-2 

MBTP  

I-3 

MBTP  

I-4 

MBTP  

II-1 

MBTP  

II-2 

MBTP  

II-3 

MBTP  

II-4 

Organic matter 93 90 87 85 89 90 87 81 

Paper and cardboard 1.1 0.2 17 1.0 39 0.5 2.2 32 

Hard plastic (HDPE) 0.7 24 34 2.7 8.7 1.5 4.6 36 

Plastic bottles (PET) 11 28 33 4.9 43 40 48 24 

Soft plastic (LDPE) 0.4 10 31 39 6.0 1.4 8.8 60 

Glass 12 12 4.7 4.6 49 5.0 8.0 9.3 

Ferrous metals 84 68 58 74 54 57 60 35 

Aluminium metals 77 61 47 72 33 42 72 95 

Beverage cartons 9.6 60 65 57 56 65 71 65 
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1. Life cycle inventory 

1.1 Collection and transport 

Collection was modelled by its diesel consumption per tonne of wet waste collected (3.27 L 

diesel tonne-1 ww) according to Larsen et al. (2009a). Each recyclable fraction mechanically 

recovered in the MBT plant was baled, stored separately, and sent to recycling facilities. The 

fuel consumption for transportation to the recycling plants was modelled based on Eisted et 

al. (2009). The fuel consumption ranged from 0.04 L diesel km-1 tonne-1 RDF to 0.2 L diesel 

km-1 tonne-1 plastic. Distances were based on current destination of the recovered products 

which are 200 km for glass, 250 km for paper, 300 km for metals, 700 km for transportation 

of both plastics and beverage cartons, and 2 km for transport of compost, rejects, and RDF to 

the landfill. 

 

1.2 Recycling 

Each individual waste material fraction recovered in the MBT plants was assigned a specific 

recycling technology. The recycling processes were modelled by implementing a 

combination of two parameters: technical substitution and market substitution. The 

percentage of technical substitution represents the material loss in the recycling process since 

losses occur during processing. The amount of recycled material is thus a percentage of the 

input waste material. The percentage of market substitution is related to the market 

acceptance of the recycled product. Recycled materials substitute similar products made with 

virgin material avoiding impacts generated by the original manufacturing; the market 

substitution is thus estimated as a percentage of the avoided production.  

Paper and aluminium recycling technologies were based on generic European data 

(EDIP database). The material loss during the processes was set to 18% and 21% respectively 

and market substitution was set to 100% for both materials according to Schmidt and 

Strömberg (2006). Technologies for plastic recycling were based on data from existing 

facilities in Denmark and Sweden. HDPE and LDPE substituted for similar materials 

produced from virgin resources with an efficiency of 90% and the material loss reached 10%. 

In the case of PET, recycled material avoided 100% virgin production and technical 

substitution was set to 97%, i.e. 3% of material was lost during the process. A glass recycling 

technology based on remelting of glass cullet to manufacture new bottles was selected. Both 

technical and market substitutions were assumed 100%. Ferrous materials recovered through 

magnets in MBT plants are shredded and new sheets are made from the scraps; process and 
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consumption were based on a Swedish facility. Steel losses were set to 13% and the market 

substitution to 100%. The data of these processes were taken from the EDIP database. 

Additionally, energy and GHG performances of these recycling processes can be found in: 

Merrild et al. (2009) for paper and cardboard, Astrup et al. (2009a) and Bernstad et al. (2011) 

for different plastic materials, Damgaard et al. (2009) for metals, Larsen et al. (2009b) for 

glass. 

With respect to beverage cartons, these were assumed composed of 74% paper, 22% 

polyethylene and 4% aluminium (Tetra Pak, 2004). The first step in recycling is to divide the 

recovered cartons into their individual components. To this purpose, a process similar to 

paper repulping is performed recovering the paper fraction by means of water addition. 

However, process efficiency is lower than original repulping because of the presence of 

polymer and aluminium layers. Beverage carton fiber has desirable properties and can be 

made into folding boxboard, corrugation fluting, and other products. The cardboard market 

substitution was set to 90%. The mixed stream of polyethylene and aluminium is subjected to 

pyrolysis processes recovering thus aluminium powder which market substitution was 

assumed 100%. The heat resulting from pyrolysis is used to dry the paper fibers. The overall 

material loss in the processes was 22% corresponding to the plastic content of beverage 

cartons. The energy consumption was set to 75 kWh tonne-1 of beverage cartons based on the 

life cycle inventory of containers systems for wine (Franklin, 2006).  

For example with respect to GHG emission savings the net (i.e. including the 

environmental burdens of the recycling process itself) CO2-eq. savings associated with 

recycling 1 tonne of, respectively, aluminium, ferrous metal, paper, hard and soft plastic, 

plastic bottles, glass, and beverage cartons equalled (assuming natural gas as marginal) 8200, 

5800, 720, 1200, 2400, 680, 260, and 1000 kg CO2-eq. tonne-1 ww. 

 

1.3 Landfilling 

Stabilized organic material (compost), RDF, and rejects from compost refinement were 

landfilled. The landfill was modelled as a conventional landfill (Manfredi and Christensen, 

2009). This technology involved suitable collection systems of leachate generated because of 

degradation, leachate treatment process, gas collection system, flaring and oxidizing compost 

layer on the top of the landfilled waste. The assessed 100-year horizon was divided in four 

time periods to better represent the different operational conditions of the landfill cells 

(Manfredi and Christensen, 2009). It was assumed that 80% of the landfill gas generated was 

collected during the second (duration: 8 years) and third period (duration: 35 years) whilst 



S6 
 

was not collected in the first (duration: 2 years) and last (duration: 55 years). 100% of the 

collected gas was assumed burnt in the flare as this is the current management scenario in the 

geographical region assessed. Composition of leachate and landfill gas was defined according 

to previous studies (Manfredi and Christensen, 2009). 

 

1.4 RDF incineration 

Although in the assessed reference scenarios RDF was landfilled (in accordance with the 

current waste management system in the assessed geographical region), potential changes in 

RDF management have been studied. This translated into dedicated incineration of RDF in 

place of the current landfilling. 

The incinerator was modelled based on the technology described in Tonini and Astrup 

(2012). The incinerator was assumed being a grate-fired incinerator equipped with wet flue 

gas cleaning, selective non-catalytic reduction (SNCR) of NOx, Hg and dioxin removal by 

activated carbon. The gross electricity efficiency of the incinerator was assumed 30%, 

relative to the lower heating value (LHV) of the waste input, representing state-of-the-art 

incinerators combusting high-energy content materials and provided with flue-gas 

condensation (DEA, 2012, ISWA, 2006). Internal electricity consumption at the plant was 65 

kWh tonne-1 ww plus an additional 0.42 L tonne-1 ww of oil as auxiliary fuel, and 0.66 kg 

NaOH tonne-1 ww and 7.9 kg CaCO3 tonne-1 ww for flue gas cleaning (Astrup et al., 2009b; 

Fruergaard and Astrup, 2011). The air emissions were divided into process-specific 

(independent on waste composition, e.g. NOx, SO2, CO) and waste-specific (determined by 

output transfer coefficients). Selected air emissions can be found in Tonini and Astrup 

(2012). Bottom ashes were assumed utilized as construction material substituting natural 

gravel following the approach of Birgisdottir et al. (2007). Air pollution control (APC) 

residues were assumed to be utilized in the backfilling of old salt mines following the 

approach of Fruergaard et al. (2010). 
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2. Results 

2.1 Biogenic carbon balance 

Table S1 details the biogenic carbon balance for the scenarios under assessment. 
 
Table S1. Biogenic carbon balance from model results (kg C); rMSW: residual MSW input to the 
MBT plant; RDF: refuse derived fuel; CP: composted material (including rejects); Loss: biogenic C 
degraded (or found in recycled materials); a: waste-specific results; b: waste-average results. 

MBTP 
rMSW 

Outputs of MBT Sequestration in landfill 
Loss 

RDF CP RDF CP 
a b a b a b a b a b a b 

I-1 183 183 71 77 39 37 53 58 9 8 121 117 
I-2 176 183 68 87 37 33 50 63 9 8 117 112 
I-3 190 183 75 68 36 37 54 50 8 8 128 125 
I-4 169 183 72 84 33 34 50 60 8 8 111 116 
II-1 206 183 73 62 35 35 55 47 8 8 143 128 
II-2 176 183 65 87 38 33 46 62 9 8 121 113 
II-3 181 183 69 70 38 39 49 51 9 9 123 123 
II-4 190 183 88 74 29 32 65 51 7 7 112 125 
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2.2 Normalized LCA results 

The normalized LCA results (for both waste-specific and waste-average scenarios) are 

reported in Table S3. Table S2 reports the EU-15 normalization references used to calculate 

the normalized LCA results (expressed in the unit: mPE tonne-1 ww). One PE corresponds to 

the environmental load caused by one average EU-15 citizen in one year covering all 

activities in life. 

 
Table S2. Normalization references in the LCA method EDIP97 (Stranddorf et al., 2005). 

Category Acronym 
Physical 

basis 

Normalization 

reference EU-15 
Unit 

Global warming GW Global 8,700 kg CO2-eq. person-1 y-1 

Photochemical ozone formation POF Regional 25 kg C2H4-eq. person-1 y-1 

Stratospheric ozone depletion SOD Global 0.103 kg CFC-11-eq. person-1 y-1 

Acidification AC Regional 74 kg SO2-eq. person-1 y-1 

Nutrient enrichment NE Regional 119 kg NO3
 -eq. person-1 y-1 

Ecotoxicity in soil ETs Regional 964,000 m3 soil person-1 y-1 

Ecotoxicity in water chronic ETwc Regional 352,000 m3 water person-1 y-1 

Human toxicity via soil HTs Regional 127 m3 soil person-1 y-1 

Human toxicity via water HTw Regional 50,000 m3 water person-1 y-1 

Human toxicity via air HTa Regional 60,900,000,000 m3 air person-1 y-1 

Spoiled groundwater resources SGR Regional 130 m3 groundwater person-1 y-1 
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Table S3. Normalized LCA result (mPE tonne-1 ww) for all the assessed non-toxic and toxic environmental categories. Values rounded to two significant 
digits. NG/Coal: natural gas/coal as marginal fuel for electricity production. Values rounded to two significant digits. 

  GW AC NE POF SOD SGR ETwc HTa HTs HTw 
  a b a b a b a b a b a b a b a b a b a b 

MBTP I-1 
NG -27 -33 -1.6 -1.7 4.6 4.7 1.2 0.9 2.3 1.2 3,000 3,100 -57 -23 2.0 2.1 -20 -12 -1.7 -1.6 

CO -33 -35 -1.5 -0.9 5.1 5.1 0.7 0.7 1.4 1.3 3,000 3,100 -58 -22 2.0 2.2 -21 -10 -2.3 -1.8 

MBTP I-2 
NG -24 -34 -3.4 -4.0 4.5 3.9 1.7 1.2 2.4 1.5 3,000 3,100 -16 -16 2.5 2.5 -8.6 -10 -0.88 -1.3 

CO -30 -36 -3.1 -2.8 4.5 4.5 1.1 1.1 1.4 1.7 3,000 3,100 -17 -15 2.4 2.5 -9.0 -8.2 -1.5 -1.6 

MBTP I-3 
NG -36 -27 -5.6 -5.4 3.3 3.6 1.7 1.6 2.6 1.2 3,100 3,000 0.6 -0.6 3.0 2.9 -5.7 -7.4 -2.2 -0.76 

CO -30 -24 -5.6 -4.9 4.6 4.3 2.1 1.7 1.6 1.4 3,100 3,000 12 2.1 4.2 3.1 -6.1 -5.8 -0.74 -0.12 

MBTP I-4 
NG -23 -27 -3.1 -1.9 4.5 4.8 2.0 1.5 2.5 1.6 3,100 3,100 -24 -19 2.9 2.7 -12 -11 -0.31 -0.29 

CO -22 -24 -3.5 -1.8 4.7 5.3 1.7 1.6 1.6 1.8 3,100 3,100 -22 -17 3.1 2.9 -12 -9.2 0.32 0.34 

MBTP II-1 
NG -39 -23 -4.3 -4.5 2.1 3.1 1.3 1.3 1.9 1.0 2,400 2,300 7.8 5.7 2.3 2.6 -3.3 -4.8 -3.1 -0.52 

CO -21 -17 -6.2 -4.6 2.6 3.3 1.7 1.4 1.2 1.1 2,400 2,300 11 7.1 2.8 2.7 -4.8 -4.6 0.19 0.39 

MBTP II-2 
NG -14 -25 1.2 -0.3 5.5 5.1 1.6 1.3 2.1 1.6 2,300 2,600 4.6 -5.9 2.5 2.5 -0.2 -4.6 0.65 0.31 

CO -12 -20 0.7 -0.2 5.5 5.2 1.3 1.4 1.4 1.7 2,300 2,600 5.6 -5.0 2.6 2.6 -0.9 -4.3 1.2 0.86 

MBTP II-3 
NG -24 -23 -3.5 -2.9 3.7 4.2 1.4 1.1 2.3 1.2 2,600 2,600 5.9 -23 2.7 2.6 -1.7 -11 -0.23 -0.21 

CO -22 -19 -4.3 -3.1 3.7 4.3 1.2 1.2 1.4 1.4 2,600 2,600 7.1 -22 2.8 2.6 -2.4 -11 0.46 0.45 

MBTP II-4 
NG -38 -25 -9.2 -7.9 1.4 2.1 1.9 2.0 2.2 1.4 2,600 2,400 -69 -22 3.1 3.3 -28 -15 -2.4 -0.41 

CO -24 -18 -11 -8.6 1.7 2.2 2.2 2.1 1.6 1.5 2,600 2,400 -65 -20 3.5 3.5 -30 -16 0.06 0.69 
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2.3 Potential GHG savings from recovery/recycling 

Table S4 details the potential GHG savings (kg CO2-eq. tonne-1 ww) associated with 100% waste material recovery or, alternatively, 100% 

waste material incineration at the individual MBT scenarios relative to the baseline LCA results. The average GHG savings are displayed in 

Figure 5 of the main manuscript. 

 
Table S4. Potential for GHG savings (kg CO2-eq. tonne-1 ww) associated with 100% waste material recovery or, alternatively, 100% waste material 
incineration at the individual MBT scenarios relative to the baseline LCA results. The values are reported for the case of natural gas as marginal electricity 
source. The results for the case of coal as marginal electricity source are provided only as average of the 8 MBT scenarios (line “Average (CO)”). REC: 100% 
recycling of the selected waste material; INC: 100% incineration of the selected waste material. PC: paper and cardboard; HP: hard plastic (HDPE); SP: soft 
plastic (LDPE); PET: polyethylene terephthalate; GL: glass; AL: aluminium; FE: ferrous metals. NG: natural gas as marginal electricity source; CO: coal as 
marginal electricity source. Values rounded to two significant digits. Model results.  

 MBTP PC PCa HP SP PET GL AL FE 

REC INC REC INC REC INC REC INC REC INC REC INC REC INC REC INC 

MBTP I-1 (NG) -17 -3.6 -85 -72 -4.9 8.5 -61 -24 -27 20 4.0 2.9 -17 58 -17 99 

MBTP I-2 (NG) -1.1 7.9 -57 -48 -8.7 20 -48 -16 -30 35 0.5 4.7 -19 31 -30 69 

MBTP I-3 (NG) -34 -13 -110 -92 -4.8 16 -44 -4.7 -19 25 2.3 3.0 -21 20 -100 150 

MBTP I-4 (NG) -10 1.7 -71 -60 -8.2 13 -55 1.0 -33 21 2.0 3.1 -13 36 -38 110 

MBTP II-1 (NG) -42 -15 -100 -75 -3.2 7.5 -50 -18 -16 27 5.6 6.6 -27 14 -44 55 

MBTP II-2 (NG) -3.3 6.9 -64 -54 -4.8 8.5 -38 -15 -21 33 3.5 2.5 -14 11 -41 58 

MBTP II-3 (NG) -42 -25 -110 -89 -4.6 8.7 -57 -19 -24 48 -3.0 5.6 -4.2 12 -82 130 

MBTP II-4 (NG) -18 0.4 -78 -60 -5.4 18 -26 16 -21 22 0.5 4.3 -3.3 71 -67 38 

Average (NG) -25 -7 -89 -72 -5.0 12 -45 -7 -22 29 2.2 4.2 -14 27 -62 90 

Average (CO) -1.0 -130 -65 -200 1.0 -3.3 -22 -14 -20 5.3 17 4 -9.2 18 -56 84 
a Without accounting for carbon sequestration from paper/cardboard in landfill in the baseline LCA results. 
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2.4 Energy from RDF (break-even points): mathematical approach 

Follows the list of the equations used to calculate the break-even points for: 

 The net electricity efficiency (ηpower plant) that should be achieved at the dedicated RDF 

incinerator (or a generic power plant) in order to equal the same GHG savings of the 

baseline (where plastic along with the remaining RDF is landfilled and carbon from 

paper and organic is sequestered). This was done according to Eq. S1. 

 The plastic recovery efficiency (ηrec) that should be achieved at the individual MBT 

plants to equal the GHG performance of the baseline (where plastic along with the 

remaining RDF is landfilled and carbon from paper and organic is sequestered; only 

sorting of PET, soft, and hard plastic were considered). This was done according to 

Eq. S2. 

 The specific CO2 emission factor that the ‘substituted fuel’ (EFfuel) should have in the 

individual MBT scenarios to equal the GHG performance of the baseline (where 

plastic along with the remaining RDF is landfilled and carbon from paper and organic 

is sequestered). This was done according to Eq. S3. 

The solutions for Eq. S1-S3 (i.e. break-even points) are summarized in Table S6. 
 

/ 3.6 44 /12baseline RDF power plant NG fossGHG LHV RDF EF C RDFη= − ⋅ ⋅ ⋅ + ⋅ ⋅   

Eq. S1 
Where: 

GHGbaseline: GHG savings achieved in the baseline (landfilling RDF) (kg CO2) 

RDF: amount of RDF combusted (kg ww) 

LHVRDF: LHV of the RDF (MJ kg-1 ww) 

ηpower plant: electricity efficiency of the power plant (%) (unknown) 

EFNG: assumed GHG emission factor for natural gas (0.49 kg CO2-eq. kWh-1) 

Cfoss: C fossil content in the RDF (kg C kg-1 ww) 

 

Notice that the only unknown is ηpower plant. The ‘minus’ is used to maintain consistency with 

the results discussion (manuscript) where environmental savings are reported as negative 

values. The Cfoss content of the material fractions constituting the RDF was assumed 

according to Riber et al. (2009) as reported in section 2.4 of the manuscript. The terms 3.6 

and 44/12 are conversion factors (MJ to kWh and C to CO2). 
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* * / 3.6 * 44 /12

( )
baseline RDF inc NG foss

rec PET recycl SP recycl HP recycl

GHG LHV RDF EF C RDF

Pot Pot Pot

η

η

= − ⋅ ⋅ ⋅ + ⋅ ⋅

− ⋅ + +
  

Eq. S2 
Where: 

GHGbaseline: GHG savings achieved in the baseline (landfilling RDF) (kg CO2) 

RDF*: amount of RDF recalculated without the plastic sorted (kg ww) 

LHVRDF*: LHV of the RDF* recalculated without the plastic sorted (MJ kg-1 ww) 

η inc: electricity efficiency of the incinerator (30%, see section 1.4 of this document) 

EFNG: assumed GHG emission factor for natural gas (0.49 kg CO2-eq. kWh-1) 

Cfoss: C fossil content in the RDF* (kg C kg-1 ww) 

ηrec: recovery efficiency for the plastic material fractions (%) (unknown) 

PotPET recycl: potential GHG saving associated with 100% recovery of PET (kg CO2 tonne-1 ww) 

PotSP recycl: potential GHG saving associated with 100% recovery of soft plastic (kg CO2 tonne-1 ww) 

PotHP recycl: potential GHG saving associated with 100% recovery of hard plastic (kg CO2 tonne-1 ww) 

PotPET recycl, PotSP recycl, PotHP recycl can be found in Table S5 (recalculated from Table S4, where the 

potential GHG savings from recovery/recycling are reported relative to the GHG baseline results, i.e. 

as net ∆CO2-eq.).  

The only unknown in Equation S2 is ηrec. The ‘minus’ is used to maintain consistency with 

the text where savings are reported as negative values and impacts as positive. 

 

44 /12
1000

fuel
baseline RDF foss

EF
GHG LHV RDF C RDF= − ⋅ ⋅ + ⋅ ⋅  

Eq. S3 
Where: 

GHGbaseline: GHG savings achieved in the baseline (landfilling RDF) (kg CO2) 

RDF: amount of RDF combusted (kg ww) 

LHVRDF: LHV of the RDF (MJ kg-1 ww) 

EFfuel: emission factor of the fuel substituted (g CO2-eq. MJ-1) (unknown) 

Cfoss: C fossil content in the RDF (kg C kg-1 ww) 
 
The only unknown in Equation S3 is EFfuel. 1000 is a conversion factor (g CO2 to kg CO2). 
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Table S5. Potential for GHG savings (kg CO2-eq. tonne-1 ww) associated with 100% material 
recovery of the “recyclable” plastic fractions (i.e. 100% of the “recyclable share” of each plastic 
fraction) at the individual MBT scenarios (absolute values, recalculated from Table S4). The values 
are reported for the case of natural gas as marginal electricity source. HP: hard plastic (HDPE); SP: 
soft plastic (LDPE); PET: polyethylene terephthalate. Values rounded to two significant digits. Model 
results.  
MBTP HP SP PET 
MBTP I-1 -4.9 -61 -30 
MBTP I-2 -12 -54 -42 
MBTP I-3 -8.5 -65 -28 
MBTP I-4 -8.5 -91 -35 
MBTP II-1 -3.7 -53 -28 
MBTP II-2 -4.9 -39 -35 
MBTP II-3 -4.9 -63 -47 
MBTP II-4 -9.7 -69 -28 
 
 
Table S6. Solutions for Eqs. S1-S3 (break-even points). EFfuel: CO2 emission factor of the fuel 
substituted (g CO2-eq. MJ-1). ηpower plant: electricity efficiency (% relative to LHV); ηrec: efficiency of 
plastic separation (% input). Note that for ηrec a value >100% means that the separation of recyclable 
plastic is not sufficient to equal the GHG savings of the baseline, and additional recovery of non-
recyclable plastic would be needed.  
MBTP ηpower plant (Eq. S1) ηrec (Eq. S2) EFfuel (Eq. S3) 
MBTP I-1 52% >100% (>67%)b 70 
MBTP I-2 51% 95% (78%)b 70 
MBTP I-3 50% >100% (>67%)b 69 
MBTP I-4 50% 90% (65%)b 68 
MBTP II-1 53% >100% (>70%)b 72 
MBTP II-2 49% 95% (67%)b 67 
MBTP II-3 49% 85% (65%)b 67 
MBTP II-4 50% >100% (>72%)b 68 
b Overall plastic recovery efficiency (in brackets) calculated on the total plastic input (that is the sum of 
recyclable and non-recyclable plastic fractions). 
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2.5 Estimation of overall potential for GHG savings by optimizing MBT plants 

Table S7 details the total annual GHG savings that could be achieved in each individual MBT 

plant under assessment by optimizing biogas-energy and materials recovery (RDF is assumed 

landfilled). The GHG savings reported for material recovery and biological treatment build 

on previous results (section 3.3 and Figure 4-5 of the main manuscript). 

 
Table S7. Overall potential for GHG savings in the 8 MBT plants under assessment. NG/CO: natural 
gas/coal as marginal for electricity production. Values are rounded to two significant digits. Model 
results.  

MBTP 
Material 
recovery 

Biological 
treatment 

rMSW 
treated 

Potential GHG savings 
(tonne CO2-eq. y-1) 

NG CO NG CO tonne y-1 CO NG 
I-1 -140 -74 -8 -46 310,000 -47,000 -37,000 
I-2 -140 -78 0 0 86,000 -12,000 -6,700 
I-3 -220 -150 -26 -74 84,000 -21,000 -19,000 
I-4 -160 -92 -33 -100 280,000 -53,000 -53,000 
II-1 -180 -110 -93 -120 28,000 -7,600 -6,400 
II-2 -120 -67 -54 -150 106,000 -19,000 -23,000 
II-3 -210 -140 -45 -130 47,000 -12,000 -13,000 
II-4 -140 -89 -38 -120 95,000 -17,000 -19,000 
TOTAL   1,000,000 -190,000 -180,000 
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