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Abstract 

The location of atherosclerotic lesions around arterial branches changes with age in 

rabbits; this is thought to reflect a change in the pattern of haemodynamic shear stress 

(frictional force per unit area) exerted by the flow of blood on the arterial wall. Lesions 

around branches in mice do not change location significantly with age and have a more 

uniform distribution around the branch ostium. The discrepancy may reflect the 

presence of different flow patterns from those in the rabbit. Endothelial cells (EC) and 

their nuclei (ECn) elongate with increased shear stress and align with mean flow 

direction. They were used to assess flow patterns in mice and rabbits of different ages. 

Techniques were developed to a) image EC and ECn, without imaging nuclei from 

underlying tissue, using confocal microscopy, and through the development of a 

modified Hautchen ("EStAR") technique, b) analyse the morphology of the cells and 

nuclei, and c) produce spatially accurate maps of cell and nuclear dimension and 

alignment for regions around intercostal branch ostia. Significant differences were 

found in the elongation of EC and ECn around branches, and significant changes 

occurred with age, in the rabbit. In mice, however, there were fewer differences around 

ostia and no significant change with age. A triangular arterial cushion surrounded the 

upstream part of most ostia in mice, and nuclear orientations suggested blood flow was 

being diverted around this cushion and the ostium. Orientations in rabbits were 

consistent with blood being drawn into the ostium from surrounding regions. They were 

also consistent with helical flow down the aorta. Our data suggest that shear stress 

patterns around branch ostia differ between species, and that in rabbits they reverse with 

age. These findings correlate with changes in lesion distribution between ages and 

species, but contradict current theories about lesion development and shear stress. 
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1.1 Why study atherosclerosis?  
Heart disease is the world's biggest killer, causing one in three deaths, and affecting 

both men and women (World Heart Organisation, 2000). Cardiovascular disease (CVD) 

is the broad term used to describe coronary heart disease (CHD, i.e. myocardial 

infarction), strokes (cerebral infarction and haemorrhages) and all other disease of the 

circulatory system (i.e. peripheral arterial disease). In the UK alone in 2004, CVD was 

the cause of 216,000 deaths (37%), 60,000 of which were premature (deaths before the 

age of 75). Overall it is estimated to cost the UK economy approximately £26 billion 

(British Heart Foundation, 2004). The underlying cause of much CVD is 

atherosclerosis. 

1.2 What is atherosclerosis?  

Atherosclerosis is a chronic inflammatory disease that affects medium and large 

systemic arteries (Cai et al., 2002), and is thought to be the main contributor to the 

pathogenesis of myocardial and cerebral infarction, gangrene and loss of function of the 

extremities (Ross, 1993). In healthy arteries, blood flows around the body supplying the 

organs with oxygenated blood, thus maintaining a fully functional system. However, in 

atherosclerosis the flow of blood can be seriously compromised. This is predominantly 

due to the thickening of the intima of the arterial walls, caused by the build up of fatty 

deposits and other components within the wall. A number of pathogenetic processes can 

all be involved in the initiation and progression of atherosclerotic lesions and shall be 

discussed in detail later. These include macrophage foam cell formation and death, 

accumulation of extracellular lipid, chronic inflammation, and formation and 

transformation of haematoma and thrombus to fibromuscular tissue (Stary, 2000). 

1.3 Why should we be concerned about atherosclerosis?  
Atherosclerosis itself does not always cause death. In the earlier stages, the blood vessel 

can remodel to maintain its lumen diameter and counteract the intimal thickening (Ward 

et al., 2000). If the lumen does get smaller, the flow of oxygenated blood to the organs 

gets restricted leading to e.g. angina (heart pain). However, more significant problems 

occur if the atherosclerotic lesion develops a fibrous plaque (advanced lesion) that 

ruptures. This exposes the blood to components of the wall and may lead to thrombus 
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(blood clot) formation which may further impinge on the flow of blood. It has been 

suggested that a thrombus over an atherosclerotic plaque in the carotid arteries can 

reduce blood flow downstream of the thrombus to less than 10% of its normal volume 

(Levick, 2003). In the worst case scenario, the thrombus may embolise and become 

lodged in the smaller arteries completely occluding flow. If this occurs in the carotid 

arteries it can trigger strokes or even death, and if it occurs in the coronary arteries it can 

lead to a myocardial infarction. 

1.4 Types of lesions  

Current theory suggests there are two broad lesion groups, early and advanced (or 

raised) lesions. Using current technology it is not possible to track arterial disease 

accurately within the same patients, so it is unknown whether later lesion types are a 

development of early lesions, or whether they are actually a totally new disease. Early 

lesions are present in everyday life, even without the influence of external risk factors, 

and are thought to be a protective response to potential damage to the endothelium and 

underlying smooth muscle cells (SMC) of the arteries, by the migration of monocytes 

and T-lymphocytes between the endothelial cells (EC). This takes place under the 

influence of growth-regulatory molecules and chemo-attractants (Ross, 1993). The 

American Heart Association (AHA) (Stary et al., 1994, Stary et al., 1995) has further 

classified lesion types depending on their histological characteristics. Lesions are 

designated by Roman numerals (I-VI), which give an indication of the usual sequence of 

lesion development and progression. Lesion types I and II are the early lesions and 

generally are the only types found in children and infants, although they can also occur 

in adults, type III are intermediate lesions (preatheroma) and evolve soon after puberty, 

and lesion types IV, V and VI are advanced lesions. Type Ito III lesions are thought of 

as clinically silent and are always relatively small (Stary, 2000). 

1.4.1 Type I lesions  
Type I lesions, or initial lesions, contain atherogenic lipoproteins in large enough 

quantities to cause an increase in macrophages and formation of scattered macrophage 

foam cells. They are the first microscopically detectable lesion type, however they may 

still be undetectable to the naked eye (Stary et al., 1994). 
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1.4.2 Type II lesions  

Type II lesions consist primarily of macrophage foam cells, as in type I lesions, but also 

contain lipid-laden SMC, and due to this they are also named 'fatty streaks'. 

Historically the fatty streak was named and identified by its gross appearance. T-

lymphocytes have also been observed in these lesions although they are not as numerous 

as macrophages (Stary et al., 1994, Stary et al., 1995). Virmani et al (2000) proposed 

the term "intimal xanthoma" instead of fatty streak, as xanthoma is a general 

pathological term that describes focal accumulations of fat-laden macrophages. 

1.4.3 Type III lesions  
Type III lesions apply solely to lesions that form the bridging gap between clinically 

silent early lesions and advanced lesions, both morphologically and chemically. They 

contain in addition to the lipid-laden cells of type II, scattered collections of extracellular 

lipid droplets and particles that separate and disrupt the layers of intimal SMC (Stein and 

Stein, 2001). 

1.4.4 Type IV lesions  
Type IV lesions, or atheroma, are the first lesion type considered to be advanced by 

histological criteria because of their dense lipid core. Lipid cores thicken the artery wall 

and are generally large enough to be visible to the naked eye when the cut surface is 

examined. Between the lipid core and the endothelial surface, the intima contains 

macrophages and SMC with and without lipid droplet inclusions, lymphocytes and mast 

cells (Stary et al., 1995). 

1.4.5 Type V lesions  

If a lesion progresses to a type V lesion then it can be termed atherosclerosis, or an 

atherosclerotic plaque. These lesions are recognised when prominent new fibrous 

connective tissue has formed, referred to as a fibroatheroma, which may cause arteries to 

become narrower, generally to a greater extent than with type IV lesions, and develop 

fissures, hematoma, and or thrombus, and are therefore clinically significant. 
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1.4.6 Type VI lesions  
The final types of lesions are referred to as complicated lesions as they contain one or 

more of either disruptions to the lesion surface, hematoma or hemorrhage, and 

thrombotic deposits (Stary et al., 1995). 

1.5 Risk Factors for atherosclerosis  

The exact mechanism(s) behind the formation of atherosclerotic lesions are unknown, 

hence the reason for the large amount of ongoing research in this field. Numerous risk 

factors for the disease have been identified, many of which are common to most CVD. 

These include modifiable factors such as hypercholesterolemia, hypertension, diabetes 

mellitus, obesity, smoking, physical inactivity, and blood viscosity (Levick, 2003). 

However, there is also a group of non-modifiable risk factors that include age, male 

gender, a family history of CHD, and the menopause (Eriksson, 2002). 

1.6 Methods for detecting sites susceptible to lesion formation  
Sites susceptible to the formation of atherosclerotic lesions can be determined by 

looking at the permeability of the endothelium, and infiltration of fatty deposits into the 

arterial wall. A method commonly used to detect sites of altered permeability is to use 

Evans Blue Albumin (EBA) as a circulatory tracer, since once transported across the 

wall it permanently stains sites of uptake blue. Quantifying the concentration of EBA in 

the wall when viewed using digital imaging fluorescence microscopy can determine the 

rate of uptake (Chuang et al., 1990, Lin et al., 1990, Patterson et al., 1992, Lin, 1996). 

Rhodamine-labelled albumin (Staughton et al., 2001), radio-labelled low density 

lipoprotein (125I-LDL) (Truskey et al., 1992) and labelled horseradish peroxidase 

(HRP) (Chuang et al., 1990) are also used in permeability studies as they too can be 

detected, quantified and mapped. Techniques available for detecting lesions are 

intravascular ultrasound (in vivo) (Frimerman et al., 1999, Chandran et al., 2003), and oil 

red 0 to detect lipid within lesions in ex vivo tissue (Barnes and Weinberg, 1998, Kratky 

et al., 1993). 
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1.7 The Location of Lesions 
Lesions do not occur randomly in the vasculature, but are localized at bends, 

bifurcations and T-junctions (Asakura and Karino, 1990). Using the methods previously 

mentioned, the location of atherosclerotic lesions has been further elucidated. One 

important feature of atherosclerosis is that it occurs in systemic arteries but not in veins 

or pulmonary arteries. This suggests that hemodynamic factors, wall properties and 

pressure play a pivotal role in lesion formation as both vessel types are exposed to blood 

with comparable chemical constituents (e.g. plasma, white and red blood cells), lipid 

composition, and viscosity, although gaseous concentrations will vary. In 1969, Caro 

(Caro et al., 1969) predicted that fatty streaking would occur at areas with relatively 

thick fluid dynamic boundary layers (the region of fluid near the wall that is affected by 

viscous interaction with the wall) i.e. the outer walls of daughter vessels, and that a new 

boundary layer would develop in the parent vessel downstream of the flow divider and 

be expected to inhibit atheroma development. Caro's results for post-mortem human 

tissue showed that the inner wall of the vessel (a, Fig. 1.1), where shear stress (which 

shall be discussed later) is greater, is much less affected than the other walls, particularly 

the outer. 

Fig. 1.1. Schematic geometry of a large branch, showing nomenclature. Arrow 

indicates direction of flow (Caro et al., 1969). 
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Work carried out by Anitschkow and colleagues ((Anitschkow, 1933), cited in 

(Weinberg, 2004)) was the first to draw attention to the non-uniform distribution of lipid 

deposition in the cholesterol fed-rabbit aorta. They showed that lesions occur 

downstream and to the sides of aortic branch ostia in an arrowhead pattern with the tip 

being oriented downstream, whilst regions upstream of the ostia were spared. In the 

1960's, examination of lipid deposition in human autopsy tissue (Mitchell and Schwartz, 

1965) suggested that the cholesterol-fed rabbit model of atherosclerosis was flawed 

since a totally different pattern of deposition was observed in which the downstream 

triangle region was highly resistant to disease. 

The discrepancy could be partly accounted for following the observation that young 

humans (foetuses, neonates and infants) develop disease in the characteristic 

downstream arrowhead pattern (Fig. 1.2) (Sinzinger et al., 1980) previously observed by 

Anitschkow; the size of lesion increasing as age increases. This led to the suggestion 

that age was a crucial factor in the location of lesions, and that if rabbits and humans of 

comparable ages were compared a similar pattern would be observed. 

Spontaneous lipid deposition, detected by staining with oil red 0 in New Zealand White 

(NZW) rabbits was observed in a triangular pattern downstream of the intercostal branch 

ostia at weanling age; in mature rabbits the downstream triangle had the lowest 

distribution of disease - lesions generally occurred along axes either side of the triangle 

and at lateral and upstream margins of the ostium (Fig. 1.3) (Barnes and Weinberg, 

1998). The same study also showed that surrounding the ostia of celiac branches, 

disease occurred downstream of branches in young rabbits (although the prevalence was 

low), but occasionally was found on the upstream lip of the flow divider. The young 

disease pattern was accentuated in old rabbits, but additionally there was a greater 

incidence of disease upstream of the branch. 

As already reported by Anitschkow, a downstream triangle pattern of lipid deposition 

was seen in young cholesterol-fed rabbits by Ivey et al (Ivey et al., 1995), with the tip of 

the triangle extending further downstream up to 6 months old. However, in mature 
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cholesterol-fed rabbits, lesions have been observed in different locations, with the 

downstream region being spared (Barnes and Weinberg, 1999). 

To determine what causes the switch in disease pattern with age, studies looking at the 

transport properties of the aortic wall around branch points have been carried out. 

Albumin labelled with a fluorescent dye was introduced into the circulation of young 

and old rabbits fed a standard diet. Initial studies allowed the albumin to circulate for 

three hours (Sebkhi and Weinberg, 1994) to enable a quasi-steady state uptake to be 

reached, where the level of albumin in the arterial wall will be similar to that of native 

macromolecules. The aorta was fixed in situ and sections taken through the tissue and 

the fluorescence measured and quantified around the ostia. In young rabbits the net 

uptake by the intima-media was higher downstream of ostia than upstream, but as 

animals aged this difference decreased and then reversed. The average uptake of the 

tracer by upstream and downstream regions was higher shortly after the rabbits were 

weaned, than at later ages. 

Later studies allowed fluorescent labelled albumin to circulate for only 10 minutes 

before fixing the tissue (Ewins et al., 2002). This enables the influx alone to be 

measured as there is not enough time for efflux out of the wall to be significant, and 

shows how easily the macromolecule can travel into the wall. Again, following 

quantification of the fluorescence, it was shown that in young rabbits influx was greatest 

in a triangular region downstream of ostium, in a small patch displaced laterally from the 

ostium, and upstream of the branch along its longitudinal midline. Old rabbits had low 

influx downstream of the branch, except on the flow divider lip, and high influx 

upstream of the branch (away from the midline) and in a continuous streak at the lateral 

regions of the ostia. The mature pattern of influx was generally more uniform than for 

immature rabbits. 

Four distinct patterns have been observed in various species around intercostal branch 

ostia that seem to show the progression of lesions with age (reviewed in Weinberg, 

2002). A downstream arrowhead pattern seen in infancy (human, Fig. 1.2 (Sinzinger et 
al., 1980) and rabbit, Fig 1.3 (Barnes and Weinberg, 1998)) develops, via a lateral 
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pattern (human, Fig. 1.4a (Sloop et al., 1998), spontaneous (Barnes and Weinberg, 1998) 

and cholesterol-induced rabbits (Barnes and Weinberg, 1999)), into an upstream streak 

in adulthood (humans, Fig. 1.4b (Sloop et al., 1998) and mature cholesterol-fed minipigs 

(Cornhill et al., 1985)), before finally becoming a raised lesion (resembling a volcano) 

in old age (humans, Fig. 1.4c) (Mitchell and Schwartz, 1965)). A similar "volcano" 

distribution is also seen in low density lipoprotein (LDL) receptor/apolipoprotein E 

double knockout mice, which are known to develop fibroproliferative lesions. The 

lesion distribution changes with age, although in a non-significant manner. The raised 

volcano-like distribution becomes slightly larger and more upstream as the animals 

mature (Fig. 1.5 and 1.6) (McGillicuddy et al., 2001). 

The location of lesions has also been shown to change with age in White Carneau 

pigeons (Fig. 1.7). In hatchlings, lesions occurred at the right hand side of the celiac 

branch ostium, but they also occurred at the left side by five months old. As the birds 

aged, disease became more prevalent in these areas, and also spread to the upstream 

regions. However, there was not a definite switch from the downstream to upstream 

regions as seen in other species (Richards and Weinberg, 2000). 

It is important when looking at lesion location to take note of strain of animal being 

observed as there are notable differences. Fluorescent labelled albumin transport studies 

have shown that the strain of animal has important repercussions on the age at which 

permeability switches from the upstream to downstream pattern. In NZW rabbits, the 

pattern changed at 6, 21 and 42 months in Interfauna, Murex and Highgate strains 

respectively (Staughton and Weinberg, 2004). 
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Fig. 1.2. Average lesion size around intercostal branch ostia (white circle) in young 

humans. Blood flow is from top to bottom. Blue = Fetus, Green = Neonate, Red = 

Infant. Adapted from (Sinzinger et al., 1980). 
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Fig. 1.3. Frequency of spontaneous disease in 6 normally-fed weanling young rabbits 

(left) and 10 aged (right) rabbits. Darker shading indicates higher frequency. (Barnes 

and Weinberg, 1998). 

Fig. 1.4. a) Lateral disease pattern in a young adult, b) upstream streak disease pattern 

in an older human, c) volcano distribution in aged human. a) and b) (Sloop et al., 1998), 

c) (Mitchell and Schwartz, 1965). In a) and b) the disease has darker staining. In c) the 

disease has lighter staining. 
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Fig. 1.5. Frequency of lipid staining around intercostal branch ostia in a) 5 young mice 

(9-15wks) and b) 6 aged mice (16-20wks). The maps represent a 0.7mm x 1.7mm area 

of aortic wall, viewed en face, with mean blood flow from top to bottom. The ostial 

centre is marked with a cross and the typical perimeter is approximated by an ellipse. 

Unshaded areas indicate a staining frequency <25%, and the 3 increasing levels of 

shading indicate frequencies of 25% to 49%, 50% to 74%, and 75% to 100% 

(McGillicuddy et al., 2001). 

Fig. 1.6. Lipid deposition (red) around mouse aortic intercostal branch ostia stained 

with oil red 0, viewed en face. Mean blood flow is indicated by the arrow and ostial 

perimeters are defined by an ellipse (McGillicuddy et al., 2001). 
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Fig. 1.7. Maps showing the frequency of disease affecting the aortic wall near the 

branch ostium (black ellipse) of the celiac artery in White Carneau pigeons. Darker 

shading indicates increased disease prevalence. Mean blood flow is from top to bottom. 

Bar = 2mm (Richards and Weinberg, 2000). 

1.8 Haemodynamics  

Haemodynamics is the study of the relationship between pressure, viscous resistance to 

flow, and the volumetric flow rate in the cardiovascular system (Badeer, 2001). It is 

thought that the work of Rindfleisch, in 1872 (in Caro, 1982) first showed that there was 

a link between the distribution of atherosclerosis in arteries and "sites that experience the 

full stress and impact of the blood". It has been postulated that stresses associated with 

bends, bifurcations and T-junctions of arteries (Fig. 1.8) are responsible for the initiation 

and localization of atherosclerosis (Asakura and Karino, 1990). The flows near these 

structures, and in areas of non-planar curvature (e.g. in the aortic arch), are particularly 

difficult to measure accurately. 
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Fig. 1.8. Schematic drawings (two-dimensional representation) of an arterial bifurcation 

and arterial bends showing approximate anatomical locations of the inner (medial) and 

outer (lateral) walls used to describe locations of atherosclerotic lesions. Flow is from 

top to bottom of the bifurcation, and left to right of bends (Asakura and Karino, 1990). 

Three different patterns of blood flow are found in blood vessels; laminar, turbulent and 

single-file flow. Laminar flow is found widely in arteries and in arterioles, venules and 

veins, and is considered further below. Turbulent flow occurs in the ventricles of the 

heart, in stenosed arteries and in the aortas of large species during diastole (since flow is 

less stable during deceleration). In contrast to laminar flow, which is smooth with 
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regular streamlines, turbulent flow has local, random fluctuations in the direction and 

magnitude of the velocity so that the streamlines are irregular and highly unsteady 

(Parker and Gibson, 2005). It requires more energy than streamline flow, and occurs in 

straight pipes when the Reynolds' number exceeds approximately 2000 (Badeer, 2001). 

The Reynolds' number (Re) is calculated as follows (eFunda, 2003): 

Reynolds' number = 

p = fluid density 

V = free stream fluid velocity 

D = pipe diameter 

= fluid viscosity (dynamic) 

and can be considered as the ratio of inertial to viscous forces. Turbulent flow is not of 

importance at Reynolds numbers appropriate for the species studied in this thesis. 

Single-file flow is confined to the capillaries and shall not be discussed further (Levick, 

2003). 

Steady, laminar (or streamline) flow, in which an incompressible fluid moves as a series 

of layers, in a straight rigid tube of circular cross-section, will have a velocity profile 

that is parabolic when fully developed (so-called Poiseuille flow). Molecules 

immediately adjacent to the wall do not move at all (the no-slip condition) and those in 

the centre move fastest (Fig. 1.9). Once this state is reached, there will be no further 

change in the flow profile down a uniform unbranched tube. 

pVD 
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Fig. 1.9. Two-dimensional, steady parabolic flow down a straight rigid tube with a 

circular cross-section. Flow is from left to right. Arrows represent fluid velocity vectors 

(Adapted from Caro et al (1985)). 

In the arterial system it is rare to find a uniformly straight, unbranched section of artery. 

At every bifurcation in the circulatory system the velocity profile of the blood is 

temporarily altered. For blood to change direction and enter a daughter branch there 

must be an acceleration of the fluid in the direction of curvature. For there to be 

acceleration, there must be a pressure gradient acting on the fluid in the direction of 

acceleration. As the fast-moving blood in the centre of the artery approaches the flow 

divider, a pressure gradient must be set up to deflect the blood into the branch. It has 

been postulated that the slower-moving fluid will be drawn into the branch near the wall 

and a new boundary layer will develop on the flow divider (Fig. 1.10) (Caro et al., 

1985). 
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Fig. 1.10. Two-dimensional, steady parabolic flow down a branching tube (blood 

vessel). Faster moving fluid impinges on the flow divider while the slower moving fluid 

occurs on the opposite walls. Flow is from left to right. Arrows represent blood 

velocity vectors (Caro et al., 1985). 

Thus at branch points in large vessels i.e. the aorta and iliac arteries, the consensus view 

is that the medial sides (inner walls) (Fig. 1.8) of the daughter vessels will experience 

higher velocities and the lateral (outer) wall will experience lower velocities than those 

seen in the parent vessel. This has been shown in post-mortem human arteries made 

transparent, mounted at in vivo dimensions and perfused with microspheres to visualise 

the flow (Asakura and Karino, 1990). It has also been shown in studies that measure the 

elongation of EC (discussed later) in regions of higher shear stresses (Okano and 

Yoshida, 1993). The work presented later in this thesis will show that this is not always 

correct. 

If the fluid velocity is large enough, an adverse pressure gradient may be established that 

can cause a region of flow separation and recirculation at the outer wall of the 

bifurcation (Caro et al., 1985, Dewey, 2002) (Fig. 1.11). 
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SEPARATION ZONE 

Fig. 1.11. Two-dimensional steady parabolic flow down a branching tube (blood 

vessel). If the fluid velocity is large enough, a region of flow separation may occur on 

the outer wall of the bifurcation. Flow is from left to right. Arrows represent blood 

velocity vectors (Caro et al., 1985). 

Even under these conditions, there would still be slower flow on the outer wall, than on 

the flow-divider. 

If the flow were to be reversed in Fig. 1.8 and the blood from the daughter vessels were 

to flow into the parent vessel, as in the venous system, then higher velocities would 

initially occur nearer the walls and lower velocities in the centre of vessels, which is in 

effect the reverse of Poiseuille flow (LaBarbera, 1990). 
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1.9 What is shear stress?  
Fluid shear stress (t), measured in Pascals (Pa) or dynes/cm2  (dyn/cm2  = Pa x 10), is 

defined as the tractive force produced by a moving viscous fluid (blood) on a solid body 

(vessel wall, in particular the endothelium) constraining its motion (Dewey et al., 1981). 

The magnitude of shear stress increases as the velocity and viscosity increase. It can be 

calculated using the equation: 

Shear stress = 
az 

8v 8z  is the velocity gradient (s ) 

1.1 = fluid viscosity (gm/cm-s) 

Reported values for shear stress vary greatly, depending on location e.g. arteries or 

veins, sampling method e.g. ultrasound, in vivo/vitro measurements, phase of cardiac 

cycle, or species. Values found in the literature show a large amount of variation, and 

perhaps it is this variation that is the underlying cause of the patchy nature of 

atherosclerosis. Average values in large human arteries have been reported as 2-20 

dynes/cm2, although it has been suggested that 30-100 dynes/cm2  might be the average 

amount around branches in the vasculature ((Dewey Jr, 1979) cited in Eskin et al., 

1984). Stanton (1999) suggested a baseline value of 15-20 dynes/cm2  which differs to 

Levesque & Nerem (1985) who suggest values range up to 100-200 dynes/cm2  (although 

it is unclear which species this range refers to). Nerem & Seed (1983) suggest an 

average shear stress of 15 dynes/cm2  for humans at rest. Exercise could account for the 

differences in shear stress, as when exercising the blood flows faster, thus increasing 

shear (Taylor et al., 2002), therefore the overall activity of the subject may be a very 

important atherosclerotic factor. Other values reported are 18.7 ± 4.1 dynes/cm2  (peak 

value in human carotid arteries) (Gnasso et al., 1997), 8.0 ± 4.1 dynes/cm2  (mean 

average WSS in human carotid arteries) (Oshinski et al., 2006), and approximately 1.2 

dynes/cm2  (mean shear stress in the human abdominal aorta at the level of the 

diaphragm, predicted using finite element modelling) (Taylor et al., 1998). Using an 

excised pressure fixed aorta made transparent and perfused with microspheres, Okano & 

Yoshida (1993) calculated shear stresses from velocity profiles. They found that the 

ov 
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shear stress on the leading edge of the flow divider was 132-237 dynes/cm2  and those in 

the hips of the flow dividers were much lower (4-62 dynes/cm2). 

1.10 Effects of shear stress  

Anomalies in plasma lipid concentration and lipid metabolism, such as those found in 

hypercholesterolaemia, have been seen to initiate, and help the progression of lesion 

formation, however this does not account for the distribution of lesions in the 

vasculature (Asakura and Karino, 1990). There must be another mechanism involved. 

Over 100 years ago it was recognised that when blood flows fast, blood vessels enlarge, 

and when it flows slower, they narrow (Thoma (1893) cited in (Masuda et al., 2003)). It 

has been postulated that shear stress plays a key role in the initiation, formation and 

regression of atherosclerotic lesions, although the mechanisms for this are not yet fully 

known. 

Many investigators predict that low shear stress regions have increased lipid deposition 

and/or develop atherosclerotic lesions (e.g. Asakura and Karino, 1990, Caro et al., 1971, 

Gnasso et al., 1997, Zarins et al., 1983), however fewer implicate high shear regions 

(Fry, 1969). One theory is that in regions of lower shear stress blood is flowing slower 

over the arterial wall, and in particular the endothelium. This allows increased time for 

atherosclerosis causing particles i.e. LDL, to permeate across the endothelium and travel 

into the intima of the artery. Once in the intima, LDL can be oxidised and taken up by 

SMC and macrophages, which in turn become foam cells, one of the precursors for 

lesion development. It has been suggested that increased shear stress is actually 

atheroprotective as it activates the release of nitric oxide (NO) from the endothelium, 

having been converted from L-arginine through the action of endothelial nitric oxide 

synthase (eNOS). This has been shown in the carotid arteries of an eNOS-GFP 

(endothelial nitric oxide synthase - green fluorescent protein) transgenic mouse model 

having applied a shear stress modifying cast around the arteries (Cheng et al., 2005). 

Application of the cast allows eNOS expression to be quantified in regions of increasing 

shear stresses (caused by decreasing the diameter of the cast). It was shown that as the 

shear stress increased, the fluorescence (caused by increased eNOS protein expression) 

also increased. Further evidence for the atheroprotective effects of NO is in smokers, 
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who have impaired eNOS production, and as such are more prone to developing 

atherosclerosis (Su et al., 1998). Excessively high shear stress levels found in 

individuals with hypertension, atherosclerosis or Marfan's syndrome, are thought to lead 

to tears in the endothelium that can lead to potentially fatal conditions such as dissecting 

aortic aneurysms. However, it has been suggested that in healthy endothelium the 

stresses required to cause physical damage are beyond physiological levels (Levick, 

2003). 

In cholesterol-fed rabbits, early lesions develop at the flow divider of branching vessels, 

areas of high laminar shear stress (Cornhill and Roach, 1976). On the other hand, post-

mortem studies of human subjects show a preferential development of lesions at areas of 

low shear stress, such as at the hips of bifurcations (Asakura and Karino, 1990, Caro et 
al., 1969). This variation could be explained by age, because it is likely that animals 

used in the studies were young, whereas post-mortem tissue is likely to be from older 

humans. 

Kratky and Roach (1987) reached the conclusion that shear stress around branch orifices 

of intercostal and lumbar arteries is very stable due to small amounts of flow, with few 

fluctuations over a 24 hour period. They suggested that flow into the celiac and 

mesenteric arteries is known to increase dramatically post-prandially, suggesting a less 

stable variation in shear stress. This again addresses the need for caution when studying 

the mechanisms behind lesion formation. 

1.11 Methods for measuring blood flow and shear stress 
It is very difficult to measure shear stresses in vivo under physiological conditions due to 

difficulties determining flow, and in particular boundary conditions, close to the arterial 

wall. Models can be used which give an accurate prediction of how flow develops 

around branches and flow dividers. The major problem that arises is how to maintain in 
vivo parameters and model distensible walls accurately. Therefore further work needs to 

be done to accurately determine the geometries of vessels so models can be developed, 

or methods need to be developed that view flow without having to remove the tissue 

from the body, indeed without having to open the body cavity at all. Models have been 
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developed that make the pressure fixed arterial wall transparent, allowing the flow to be 

observed directly either by injecting very small (0.08-0.3mm diameter) polystyrene 

microspheres (Asakura and Karino, 1990, Fukushima et al., 1985), coloured dyes, 

bubbles of hydrogen, or aluminium particles (cited in Levesque et al., 1986). However, 

it is not known how the procedure for making arteries transparent (alcohol dehydration 

followed by immersion in methyl salicylate (oil of wintergreen) containing ethanol) 

affects wall properties such as distensibility, and how this will change flow profiles. 

Intravascular Doppler velocimeters which use ultrasound to determine the time it takes 

the blood to travel a certain distance can be used to determine near-wall aortic velocity 

profiles (Uematsu et al., 1991, Lee et al., 2001). 

Computational fluid dynamics (CFD) methods, which involve simulations within 

appropriate models (idealised or more-realistic), are frequently in use today for studying 

and analysing the flow in vessels. In very simple terms, CFD methods generally involve 

3 stages: pre-processing, processing, and post-processing. In the pre-processing stage, a 

CFD mesh is generated over the domain of the geometry, i.e. the domain is discretized 

(divided) into smaller sub-domains, suitable for numerical evaluation. In the processing 

stage, assumptions are applied to the model (e.g. inflow, outflow, wall boundary 

conditions) and the blood flow field is computed by solving the Navier-Stokes 

equations. During post-processing, utilities are used for evaluating the wall shear stress 

and other flow parameters. CFD is playing an increasing role in furthering our 

understanding of flow in the arteries as it enables the study of different and separate flow 

parameters (e.g. Reynolds number, flow ratio, steady and unsteady flow, and 

compliance). CFD has until recently been constrained to only simple geometrical 

models, however with the development of medical modalities (e.g. ultrasound, magnetic 

resonance imaging (MRI), computed tomography (CT)) imaging of the arteries is now 

possible without the need for surgery. Algorithms are being developed to reconstruct 

and create appropriate CFD models of 3-dimensional anatomically correct arterial 

geometries (Xu et al., 1999, Starmans-Kool et al., 2002, Stone et al., 2003). This 

enables an improved evaluation of flow and wall shear stress within the vasculature. 
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All of the above techniques involve non-invasive imaging of the vessels and blood flow, 

making it possible to maintain in vivo geometries, but none of the techniques can look at 

the exact interface between the blood and the arterial wall. The endothelium is in 

constant contact with the blood from the day the blood vessels develop, and EC, their 

nuclei (ECn) and microfilaments (MFs) are all influenced by the flow of blood over their 

surface and can be used as biological flow sensors as they provide a time-averaged view 

of the near-wall flow fields. 

1.12 Blood vessels and the endothelium 

As discussed previously, atherosclerotic lesions are located predominantly within the 

large arteries of the vasculature, and as such the structure of the vessels may play an 

important role in whether a vessel is lesion resistant or susceptible. All blood vessels 

within the body, except capillaries, are made up of three main layers: the intima (inner 

layer), media (middle layer) and adventitia (outer layer) (Fig. 1.12). 

Fig. 1.12. Major features of large blood vessels (Williams et al., 1989). 
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All vessels, including the capillaries, contain a lining made up of a single layer of EC 

resting on a thin layer of connective tissue. Other components e.g. smooth muscle, 

elastin, collagen will vary within the vessel wall depending on their location and 

whether they are an elastic (largest arteries), conduit (medium to small arteries), 

resistance (arterioles), exchange (capillaries) or capacitance (venules and veins) vessel 

(Table 1.1) (Levick, 2003). Blood vessels have been shown to adapt to their location 

and resulting shear stresses, presumably detected by EC, for example during saphenous 

vein grafts where a section of vein is removed and grafted in the place of an artery. 

Once exposed to the arterial flow and pressure the vein `arterialises' (i.e. the wall 

thickens), atherosclerosis can develop and is the main pathology that can lead to stenosis 

and occlusion of the graft (Schachner et al., 2006). This problem is severe enough to 

warrant research into gene therapy, developing grafts resistant to atherosclerosis (Mann 

et al., 1995). 

Table 1.1. Composition of the blood vessel wall (%). (Adapted from Levick, 2003) 

Vessel Class Vessel Type Endothelium Smooth 
Muscle 

Elastic 
Tissue 

Collagenous 
Tissue 

Elastic / 
Conduit 

Arteries 5 25 40 27 

Resistance Arterioles 10 60 10 20 
Exchange Capillaries 95 0 0 5 

Capacitance Venules / 
Veins 

20 20 0 60 

Although EC are often thought of as the barrier between the arterial wall and the flowing 

blood, this is actually untrue. On the luminal side of the EC is a thin layer of negatively 

charged biopolymers (Levick, 2003), approximately 500nm thick (Weinbaum et al., 

2007), composed of glycoproteins, proteoglycans and glycosaminoglycans, known as 

the glycocalyx (Van Teeffelen et al., 2007). The glycocalyx was traditionally thought of 

simply as a selective barrier between ECs and the blood, which retains plasma proteins 

within the circulation whilst allowing the passage of water and smaller solutes into the 

intercellular clefts (Levick, 2003). Its importance in atherosclerosis is now also 

becoming clear; if sites have a diminished glycocalyx they are more sensitive to further 

attack by atherogenic stimuli (Gouverneur et al., 2006a), and the thickness of the 

glycocalyx has been shown to be less in athero-susceptible, lower shear stress sites, than 
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in regions of higher shear stress ((Wang et al., 1991) cited in Gouverneur et al., 2006a). 

This may be due to the ability of shear stress to stimulate the incorporation of 

hyaluronan in the glycocalyx (Gouverneur et al., 2006b). 

1.13 Effects of shear stress on endothelial cells  
One of the most important concepts in lesion development and progression is the effect 

shear stress has on EC lining the artery walls. Shear stress is not just important during 

disease however. It is just as relevant during normal EC physiology, and without it the 

system would dysfunction (Dewey et al., 1981). 

In vivo, ECs are either ellipsoidal or polygonal in shape, depending on their location, and 

align themselves with their longitudinal axis in the direction of the time-averaged blood 

flow (Langille and Adamson, 1981, Nerem et al., 1981), and after imposing a stenosis 

on a section of dog aorta have been shown in vivo to elongate in regions of higher shear 

stress (Levesque et al., 1986). They are very dynamic and if misaligned experimentally 

will realign to the flow within a week (Flaherty et al., 1972). Bovine aortic endothelial 

cells (BAEC) are commonly used for in vitro study, and have been shown to have a 

polygonal, 'cobblestone-like' shape in static culture. Steady laminar shear stress can be 

applied to a confluent monolayer of BAEC using equipment such as cone-and-plate 

viscometers, Couette flow devices (Dewey et al., 1981), or parallel plate flow chambers 

(Levesque and Nerem, 1985). When these types of procedure are undertaken the EC 

start to elongate after four hours (Levesque and Nerem, 1985), before aligning 

themselves longitudinally to the flow, the effect being dependent on the level of shear 

stress and the time of exposure to the flow (Helmlinger et al., 1991). McCue (McCue et 

al., 2004) suggested that the species of origin of cultured endothelium, cell passage 

number, the type of substrate the cells are grown on, the media and sera used, and the 

state of confluence of the cultures (most important in their opinion), are all possible 

causes for variations in the time it takes for the endothelium to reorganise itself. In vitro 

cell culture would be a useful model except the nature of flow is different to that in vivo. 

In the body, the flow is pulsatile due to the pumping of the heart, and at times can be 

reversed (although the net flow is unidirectional). This has great importance to EC 

studies as, again in BAEC, it has been shown that when exposed to pulsatile, non- 
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reversing flow, 'cobblestone-like' cells elongate less rapidly than their steady flow 

controls, however, long-term they took on a more elongated shape (Helmlinger et al., 
1991, Zhao et al., 1995). Exposing BAEC to low shear stress (approximately 3 

dynes/cm2) under pulsatile flow conditions for two-week periods resulted in hyperplasia 

and hypertrophy of the cells (Eskin et al., 1984). Traub & Berk (Traub and Berk, 1998) 

suggested that there is a strong correlation between EC dysfunction, and areas of low 

mean shear stress and oscillatory flow with flow reversal (such as at branch points of the 

arterial tree). They suggested that steady laminar flow conditions (such as those found 

in straight sections of arteries) promote EC survival by preventing the migration of 

monocytes through the endothelium, and leading to anti-thrombotic effects through the 

production of thrombomodulin and NO. It also leads to the inhibition of SMC growth 

through the production of NO and transforming growth factor-0 (TGF-(3). Areas of flow 

reversal promote EC apoptosis leading to pro-thrombotic and pro-migratory effects, 

through the production of monocyte chemoattractant protein-1 (MCP-1) and vascular 

cell adhesion molecule-1 (VCAM-1), and pro-SMC growth through the production of 

angiotensin-II, platelet-derived growth factor and endothelin-1. Flow reversal could 

therefore also be seen as pro-atherosclerotic. This has also been suggested by Berceli 

(Berceli et al., 1990) who reported increased uptake of lipoproteins at the lateral regions 

of the rabbit aorta-iliac bifurcation; sites that experience flow reversal. The 

accumulation of free lipids and esterified cholesterol soon follows (Traub and Berk, 

1998). 

It is thought that EC become more elongated under increased shear stress conditions so 

the least total force is experienced across their surface, by minimizing the width of the 

obstacle encountered by the fluid, and therefore reducing the pressure exerted on the cell 

(Hazel and Pedley, 2000). Cyclic circumferential strain also needs to be accounted for 

as it has been shown that in vitro, BAEC exposed to both shear stress and cyclic 

circumferential strain (hoop stretch) show significantly enhanced elongation and 

alignment along the direction of flow and perpendicular to the direction of strain, 

respectively (Zhao et al., 1995). This effect was more enhanced when the stretch was 2-

4%, although at mean shear stress levels greater than 3 dynes/cm2, strain had little effect, 

suggesting that shear stress dominates strain. 
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When ECs are subjected to shear stress, responses are triggered that encompasses all 

aspects of cellular biochemistry ranging from electrophysiological modulation of 

membrane proteins and ion channels to activation of transcription factors within the 

nucleus, leading to activation of corresponding target genes or to changes in cellular 

morphology (Braddock et al., 1998). Knowledge of the molecular mechanisms involved 

in the response of ECs to shear stress are very important in our understanding of the 

processes involved in the pathogenesis of arterial disease. Activation of various 

mechanosensors within the endothelium transduce physical stimuli into biochemical 

signals, that can lead to i.e. cell proliferation, apoptosis, migration, permeability or 

alignment (Li et al., 2005). The transduction of shear stress is thought to be due to a 

combination of force transmission via elements of the cytoskeleton and transduction of 

the physical forces to biochemical signals at mechanosensor sites (Berk et al., 1995). 

Integrins, vascular endothelial growth factor (VEGF) receptor-2 (Flk-1), ion channels, 

G-protein-coupled receptors (GPCRs) and trimeric G proteins, and adhesion molecules 

have all been suggested as being important mechanosensors that trigger phosphorylation 

cascades when flow is sensed. Activation of these, ultimately lead to the activation of 

mitogen-activated protein kinases (MAPK) (Li et al., 2005) that are important for 

chemoattraction of monocytes, by monocyte chemotactic protein-1 (MCP-1), and the 

modulation of LDL permeability by changes in cell turnover (Chien, 2003). Integrins 

are transmembrane receptors on the abluminal side of ECs that link intracellular 

cytoskeletal proteins with the proteins in the extracellular matrix (ECM) (Schwartz, 

2001), and are capable of transducing mechanical stimuli into biochemical signals 

(Ingber, 1998) bringing about the activation of the VEGF-receptor, Flk-1 (Wang et al., 

2002). Application of shear stress causes activation, and phosphorylation of Flk-1, 

which is a tyrosine kinase receptor on the luminal surface of ECs, enabling it to bind to 

adaptor molecules e.g. Shc that in turn activates Ras and its downstream molecules 

leading to the transcription activation of MCP-1 (Chien, 2003). The endothelial cell 

membrane permeability to K+  ions (Alevriadou et al., 1993), and also the influx of Ca2+  

(Kanai et al., 1995, Yamamoto et al., 2000), have been shown to increase upon exposure 

to shear stress, and a sodium channel has been identified that mediates the activation of 
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extracellular signal-regulated kinase-1/2 (ERK-1/2) (Traub et al., 1999). Through the 

activation of ion channels, cellular signalling and EC functions can be regulated. 

1.14 Effect of shear stress on endothelial cell nuclei  
An alternative method of visualizing flow is to look at the EC nuclei instead of the cells 

themselves. The advantage of this is that there are a lot of commercially available stains 

and dyes that stain nucleic acids within the ECn. The nuclei tend to align themselves, as 

with the cells, in the direction of flow. This has been shown by removing a section of 

dog aorta, reorienting it by 90 degrees, and then replacing it. When viewed 10 days 

later, the major axis of the nuclei completely realigned along the longitudinal axis of the 

blood flow (Flaherty et al., 1972). It has been concluded that nuclei in low flow, and 

therefore low shear stress, areas have more rounded nuclei, and in high flow areas have 

more elliptical shapes, as with EC (Flaherty et al., 1972, Malinauskas et al., 1998). 

However, the nuclei only occupy 10% of the total endothelial surface (Cornhill et al., 

1980) therefore it is important to study the cells themselves as well in case shear stress 

has a different response in their nuclei. 

Al-Musawi et al (Al-Musawi et al., 2004) recently carried out a rabbit study to 

determine whether the change in lesion pattern is a function of age and reflects a change 

in the dependence of disease to flow, or whether it reflects a change in the flow pattern 

itself. Staining ECn enabled regions where the nuclei were elongated (regions of higher 

shear stress) to be observed The data provided evidence that highest shear stresses occur 

downstream of ostia in immature rabbits, but not at later ages, suggesting either that the 

ECn respond differently to the blood flow at later ages, or the blood flow itself actually 

changes with age. 

1.15 Effects of shear stress on microfilaments  
Changes in EC and nuclear alignment are accompanied by a change in cytoskeleton 

structure. The cytoskeleton is the "scaffolding" of the cell, found within the cytoplasm, 

which helps to maintain the cells shape. It is made up of three main types of filaments; 

actin microfilaments (MFs) or stress fibres, intermediate filaments, and microtubules. 

The function of the endothelial cytoskeleton is to act as a passive barrier to atherogenic 
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particles, enable migration of cells during wound repair, to maintain cell-cell and cell-

substratum adhesion, and to enable cell signalling (Lee and Gotlieb, 2003). F-actin, 

within MFs, is found colocalizing with myosin, tropomyosin, a-actinin, and vinculin 

which suggests it has contractile properties (Colangelo et al., 1994) which could be 

important in some of the aforementioned processes. In the thoracic aorta, away from 

branch ostia, actin MFs were localised in two regions of the EC; a prominent continuous 

band around the cell and in microfilament bundles, or 'stress fibres' in the central 

portion of cells (Kim et al., 1989b). To demonstrate the role of the EC cytoskeleton in 

endothelial permeability, cytochalasins, enzymes that disturb microfilament structure by 

preventing the addition of G-actin to nucleation sites, can be added to a perfusate of 

isolated rabbit lung, causing a high permeability lung edema (Shasby et al., 1982). 

It has been suggested that MFs are formed and altered predominantly by blood flow 

(shear stress) triggering biochemical processes, due to the fact that they are not generally 

found in venous endothelium. Stress fibre-containing EC within the vascular system 

tend to be located at sites of higher shear stress, and experiments on cultured cells have 

been carried out to determine the effect of altered levels of shear stress (Franke et al., 

1984). Using rhodamine-labelled phalloidin, and antibodies to calf thymus myosin and 

chicken gizzard and pectoral muscle a-actinin, Franke et al observed the effects of 

applying a shear stress to the microfilaments within the endothelium. Phalloidin is part 

of the phallotoxin group, from the death cap mushroom (Amanita phalloides), that binds 

between F-actin subunits, locking adjacent subunits together, preventing their 

depolymerisation and subsequently poisoning the cell. After a 3-hour exposure to low 

shear stress (approximately 2 dynes/cm2) the quantity and staining intensity of stress 

fibres had increased dramatically. Reorientation of the EC accompanied reorientation of 

the stress fibres. It should be noted that it has since been observed (Kim et al., 1989b) 

that the orientation of stress fibres and the longitudinal axis of ECs does not always 

correspond; deviations of up to 30° have been seen. A possible explanation put forward 

to explain this were that the actin fibres can be oriented by extracellular proteins in the 

substratum in the presence of blood flow, whereas the endothelial cells have only been 

seen to be reoriented by substratum in the absence of flow. Another possible 

explanation is that only a small number of ECs (10 per rabbit) were measured by hand, 
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possibly not giving an accurate account of the cell length, and the method for measuring 

fibres was not described. It has been shown that there is a good correlation between 

angle of cell orientation and angle of stress fibre orientation (r>0.9) after 20min, lhour 

and 6hours exposure to flow, and that the distribution of the angle of stress fibres 

becomes smaller with increasing exposure time (Sato and Ohashi, 2005). Texas Red-

conjugated phalloidin has also been used as a fluorescent stain for actin filaments and 

enables good visualization of stress fibres (Birukov et al., 2002). 

In vivo findings (Langille et al., 1991, Uematsu et al., 1991) suggest that introducing a 

coarctation (narrowing) into rabbit aortas, causing an approximately two-fold increase in 

shear stress downstream of the coarctation, leads to an increase in microfilament size 

(after 48 hours), to what are now known as 'giant' stress fibres. This reversible process 

occurs through a series of interrelated events. Firstly, an increase in blood flow and 

shear causes the loss of many of the short stress fibres around the cell periphery. Two 

distinct bands of F-actin, possibly associated with adjacent cells, were seen to appear, 

either caused by physical separation of actin from the cell-cell junction, or simply due to 

a decreased staining intensity allowing two bands in a fixed position to be resolved. 

Following on from this is the formation of the giant stress fibres that are newly formed 

as opposed to being an extension of pre-existing microfilament bundles. The formation 

of giant stress fibres generally occurs near flow dividers where flow is fastest, 

suggesting a role in cell adhesion (Kim et al., 1989b, Uematsu et al., 1991). It has also 

been suggested that decreased shear stress in normo- and hyper-cholesterolemic beagles 

might attenuate the formation of bundles, regardless of the presence of plaques 

(Uematsu et al., 1991). 

Further evidence for the importance of flow on stress fibre formation was presented by 

(Yoshida and Sugimoto, 1996) who grafted a vein in a rabbit femoral artery and 

observed MF development and endothelial alignment. After transplantation the EC 

maintained a shape index that was intermediate between those of control arteries and 

veins for the 16 weeks of study, whereas the MFs increased in frequency and thickness 

from the start until they reached a point after 16 weeks where they were similar to 

controls. 
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1.16 Possible mechanisms for change in lesion location with age 
Various mechanisms have been postulated for the variation with age in the pattern of 

macromolecule transport across the artery wall into the intima. It has been decided that 

acutely, the interaction of blood cells with the wall and the composition of the blood, are 

not entirely responsible for age-related variations in transport, as the same patterns are 

seen when a steady flow of physiological buffer is perfused through the vessels. The 

role of NO release was made evident when inhibitors were added to vessel perfusate, 

and the mature, but not immature, pattern is abolished suggesting that the change with 

age reflects an alteration in NO synthesis and function (Forster and Weinberg, 1997). 

Occlusion of intercostal arteries has shown that in mature rabbits, the uptake pattern of 

rhodamine-labeled albumin is also thought to be flow-dependent, whereas in immature 

rabbits, occlusion had no significant effect on uptake (Staughton et al., 2001). Other 

possible reasons for a change with age are the increasing stiffness (compliance) of the 

arteries related to the inversion of the elastin to collagen ratio (Orlandi et al., 2000), 

causing decreased reversal of flow during late systole/early diastole of the cardiac cycle, 

or the increased blood flow down the side branch that corresponds with an increase in 

body weight, without a corresponding increase in ostial diameter, as an animal ages (Al-

Musawi et al., 2004). A factor that should not be overlooked is blood pressure as both 

systolic and diastolic increase throughout (Pearson et al., 1997), possibly linked with the 

increased compliance already mentioned. 

We are going to investigate whether differences in blood flow can account for the age-

and species-dependent differences in lesion/permeability patterns by using EC 

morphology to determine flow patterns around intercostal branch ostia. 
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Chapter 2: Development of methods for endothelial nuclear 
staining 
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2.1 Introduction  

The endothelium is the interface between the blood and the vessel wall, and is affected 

by the flow of blood over its luminal surface. As has been discussed previously, ECs 

and their nuclei align with the predominant direction of flow (Langille and Adamson, 

1981, Nerem et al., 1981) and elongate in regions of higher haemodynamic wall shear 

stress (Levesque et al., 1986). To observe whether flow varies around branch points and 

between other locations in arteries, a method was developed to enable high-definition 

imaging of the elongation and orientation of ECn. Its development posed the following 

problems: 1) how to flatten the artery wall, 2) how to stain the endothelium without 

staining underlying SMCs, 3) how to observe the large numbers of cells within the 

endothelium, and 4) how to carry out image analysis of large numbers of cells. 

2.1.1 Flattening the arterial wall 
The initial problem encountered was that in vivo the artery is a curved tube and once 

removed from the body, after fixation at physiological pressure, retains this curved 

configuration. When cut longitudinally and opened for en face visualisation, the artery 

does not naturally lie flat. Previous investigators have tried to flatten the artery by 

cutting it open and pinning the tissue onto boards (cork or wax) (Kim et al., 1989b, 

Bugelski et al., 2000) or compressing it between glass slides (Truskey et al., 1992), 

before fixing the tissue. However, these methods do not maintain in vivo arterial 

geometries because fixation is carried out at un-pressurised dimensions. An approach 

we attempted in preliminary experiments was to apply weights to a glass coverslip on 

top of the tissue, after fixation at pressure, to try and force it to lie flat. However, it was 

discovered that the pressure required exceeded that exerted by weights of practicable 

size. A method previously employed in our laboratory (Al-Musawi et al., 2004) was to 

mount the tissue en face and place a cover slip over the tissue. Pressure was then 

applied by wrapping a piece of adhesive tape around the slide and coverslip. A 

`window' (a small square) was then cut in the tape to enable the tissue to be visualised. 

Again, this did not generate enough downward pressure to flatten the tissue fully. 

Further problems visualising the endothelium were encountered due to the wall 

morphology. It has been shown that the intima itself is not a completely smooth surface 

and longitudinal and helical ridges are found along its length; they are thought to be 
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associated with fatty streaks (Back et al., 1976). Furthermore, at branch points (the 

areas we were predominantly interested in), the remaining daughter branches, if not cut 

close to the parent vessel can push onto the wall affecting how flat the surface is. It was 

also very difficult to remove all adventitial fat from the outside of arteries causing an 

uneven surface when viewed en face. 

Another method that has been used to visualise the endothelium of rats (Levesque et al., 

1979) and rabbits (Cornhill et al., 1980) is vascular casting. This process involves 

perfusing vessels with a silver nitrate (AgNO3) solution followed by liquid methacrylate 

resin at pressure. When the resin polymerises it solidifies, it was claimed, with minimal 

shrinkage (<1%); a review of quantitative measurements (Kratky et al., 1989) showed 

that casting materials can shrink from 0.2 — 20% from the original vessel luminal 

diameter. The surrounding tissue can then be removed by immersion in sodium 

hydroxide and the cast viewed using scanning electron microscopy (Reidy and 

Levesque, 1977). The main benefit of this technique is that the blood vessels need not 

be opened, fixed or dehydrated; thus in vivo geometries are maintained provided the 

resin is maintained at pressure as it sets (Levesque et al., 1979). This is difficult to 

arrange. Furthermore, we wanted a light rather than electron microscopy technique, to 

enable larger areas to be observed. 

2.1.2 Staining nuclei of endothelial cells without underlying smooth muscle 

cells 
Due to the curvature of the wall, when microscopy techniques are used, the endothelium 

is not always in one focal plane, but multiple planes. This causes problems when trying 

to image the endothelium, as part of the image will contain the cells of interest whilst 

other parts will contain underlying tissue. The problems of wall curvature would not be 

such an issue if it were possible to stain the endothelium without interference from the 

underlying SMCs. Commercial nuclear stains are highly specific for nucleic acids 

(DNA and RNA) but are not specific to particular cell types. They stain nucleic acids 

within the nuclei of both EC and SMC making it very difficult to visualise the 

endothelium without interference from the nuclei of underlying SMC (Fig 2.1). To 

enable analysis of millions of cells it was necessary to develop image analysis 
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techniques that automatically measured parameters of the endothelial cells alone. SMC 

nuclei (SMCn) captured in the images would lead to inaccurate results. 

Fig. 2.1. Four optical slices taken from a confocal scan through a mouse arterial wall 

stained with propidium iodide. Note the occurrence and disappearance of endothelial 

cell nuclei (oriented from top to bottom) and underlying smooth muscle cell nuclei 

(oriented perpendicular to ECn). Scale Bars = 50µm. 

In previous work from our group (Al-Musawi et al., 2004), ECn were stained with 

Harris hematoxylin, a commonly used Alum Hematoxylin solution. Visualisation of 

underlying SMCn was largely prevented by making the tissue highly autofluorescent (by 

fixing with glutaraldehyde) and viewing it en face with an epifluorescence microscope; 

ECn were seen because the staining of their nuclei blocked autofluorescence from the 

underlying medial tissue, in which the SMC are present. Although this produced clear 

images of the ECn, there was a very uneven grey background where components of wall 

were stained (or autofluoresced) differently. This prevented automated image analysis, 

so ECn had to be measured manually; a very time consuming process not without its 

own problems such as the potential for different investigators to interpret edges of cells 

differently, errors due to repetitiveness of task etc. It was also possible to see some 

underlying SMC, presumably those nearer the inner layers of the media, in some areas, 

which had to be excluded. 
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2.1.3 Arterial Fixation 
One of the complications that arises when studying arteries in relation to atherosclerosis 

is that in order to examine arterial cells it is normally necessary to remove the vessel 

from the body. This disrupts vessel geometry as physiological pressure, and tethering to 

other tissues, are removed. When elastic arteries are excised they contract by 

approximately one third (Stary et al., 1992), potentially affecting observations of cells, 

and a further problem is that the cells are particularly susceptible to deterioration after 

death. Conditions such as temperature and fluid balance can modify the rate at which 

these alterations occur (Stary et al., 1992). To try to overcome these problems, in situ 

fixation at physiological pressure was used. The following fixation methods were 

employed for all experiments described in this thesis unless otherwise stated. 

2.2 Methods  

2.2.1 Arterial fixation methods  
All animal procedures were carried out in accordance with the Animals (Scientific 

Procedures) Act 1986, at either the University of Reading, UK, or Central Biomedical 

Services, Imperial College, UK. Male New Zealand White (NZW) rabbits (Interfauna 

strain, Harlan) and CD lxWild type mice (University of Reading strain) were maintained 

on standard laboratory diets. 

2.2.2 Rabbit surgical procedures  
Rabbits were injected with heparin (Sigma, -2000 USP Units in 1.5m1 Ringers, i.v.) 

which was allowed to circulate for 2 minutes, before euthanasia by injection of 

pentobarbitone (approximately 160mg/kg i.v.). Following thoracotomy and laparotomy 

along the ventral line, a retrograde cannula was inserted into the thoracic aorta at the 

level of the diaphragm and tied in place using surgical thread. The aorta was flushed 

with 50m1 Ringers solution (9.0g NaCI, 0.2g CaC12, 0.2g KC1, 0.1g NaHCO3  per litre) 

containing 1.5m1 heparin (Sigma, -2000 USP units), followed by perfusion with 

Karnovsky's fixative (4% glutaraldehyde plus 5% formaldehyde v/v) or 10% neutral 

buffered formalin (containing -4% formaldehyde) (Sigma) for 30 minutes. To help 

maintain the vessel at physiological pressure and therefore maintain in vivo geometries, 

all solutions were released from a reservoir 100-120cm above the animal and the aortic 
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arch was clamped after one minute. Following fixation the thoracic aorta was excised 

and post-fixed in the same fixative for a minimum of 16 hours. 

2.2.3 Mouse surgical procedures  
Mice were euthanized by carbon dioxide inhalation. Following thoracotomy and 

laparatomy, and elevation of the ventral half of the ribcage, a cannula was inserted into 

the left ventricle and glued in place with cyanoacrylate (3M Vetbond, no.1469C). 1.5m1 

of a heparin solution (Sigma, -2000 USP Units) was added to 5m1 Ringers solution, and 

used to flush the arterial system of blood. This was followed by perfusion of either 

Karnovsky's fixative (n=7) or 10% neutral buffered formalin (n=2) (Sigma) for 30 

minutes. As with rabbit fixations, all solutions were released from a reservoir 100-

120cm above the animal, and thoracic aortas were excised before being post fixed for at 

least 16hours. 

2.2.4 Nuclear staining development 
The first task was to try to improve the rabbit hematoxylin staining method to produce 

high definition of the ECn without the underlying SMC, and with a more uniform 

background intensity. 

2.2.4.1 In vitro hematoxylin staining 

All haematoxylin staining procedures were carried out on a number of whole mount 

tissue preparations. For all the following methods, aortic rings were cut open 

longitudinally, opposite branch sites if these were present, and placed on glass slides 

with the endothelium facing upwards. A coverslip was placed over the surface and 

taped in place. The tissue was then examined en face under an epifluorescence 

microscope using filters for fluorescein. Images were taken using a low light CCD 

camera coupled to a software package, Maxim DL (Diffraction Limited, Canada) 

2.2.4.1.1 Method One 

The method of Al-Musawi et al was attempted first to confirm that the same level of 

ECn staining could be achieved. Their method involved submerging aortic rings (fixed 
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in Karnovsky's solution to increase autofluoresence) in Triton X-100 (Sigma, 0.2%, 

lmin), washing in phosphate buffered saline (PBS) (Sigma, 10.0 mmol/L phosphate 

buffer, 2.7 mmol/L KCI, 137.0 mmol/L NaC1, 15s), staining in Harris Hematoxylin 

(Sigma, 0.75%, 15s), de-staining in PBS (30s) and then repeating these steps. 

2.2.4.1.2 Method Two 

The previous method was repeated four times but using distilled water or, later, tap 

water after the first cycle to increase acidity. 

2.2.4.1.3 Method Three 

Method two was modified by the addition of ribonuclease (RNase) (Sigma, 0.01%, 

10min, 37°C) followed by rinsing in PBS (15s) to the first cycle of staining. RNase was 

used to remove any RNA within the cytoplasm of the cells that may have been stained 

and therefore reduced contrast between cytoplasm and nuclei. 

2.2.4.1.4 Method Four 

Method two was adapted to include glacial acetic acid (5%), in the Harris hematoxylin. 

The stain and acid were mixed for 2 min prior to use. 

2.2.4.1.5 Method Five 

Method two was adapted by substituting Harris Hematoxylin with Gills hematoxylin 

no.1 (Sigma). 

2.2.4.2 In vitro Acridine Orange  
Aortic rings were placed in Triton X-100 (Sigma. 0.2%, 1 minute) to increase the 

permeability of the membranes, followed by rinsing in PBS (15 seconds), before being 

incubated in RNase (0.01%, 10 minutes, 37°C). Although it is suggested that Acridine 
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Orange (AO) is a cell permeable dye (Molecular Probes, 2004), Triton X-100 led to 

improved images. RNase was used to remove RNA from the cell, as above; when it was 

omitted, nuclei were still visible but "tails" were also visible on either side of the nuclei, 

thought to be due to the presence of RNA within the cytoplasm of the ECs. The aortic 

rings were then rinsed of RNase by placing in PBS (5 seconds) before being immersed 

in AO (Sigma; 6mg/m1 (a saturated solution)) for 2.5 minutes, followed by a rinse in 

PBS to remove excess stain, and further destaining in PBS (1 hour). The aorta was then 

cut along its longitudinal axis opposite the branch sites before being mounted 

endothelium down in glass bottomed petri dishes for confocal microscopy. 

2.2.4.3 In vivo Acridine Orange  
lml of AO (6mg/ml) was injected, via the marginal ear vein, into a conscious NZW 

rabbit and allowed to circulate for 10 minutes, followed by 1.5m1 Heparin. The animal 

was then euthanized with lml pentobarbitone, and formalin fixation carried out for 30 

minutes, as described previously. Following fixation the aorta was equilibrated with 

PBS (1 hour), defatted, incubated with RNase (10 minutes) and mounted, as before, for 

confocal microscopy. 

2.2.4.4 In vitro Propidium Iodide  
Aortic staining was carried out in the same manner as in vitro staining with acridine 

orange, the only difference being that the aortic ring was dipped in Propidium Iodide 

(PI) (Molecular Probes, 1.0mg/m1 solution in water) as opposed to AO. 

2.2.4.5 Perfusion with Propidium Iodide  
An attempt was made to expose the vessel wall to stain for very brief periods, so that 

staining reached the endothelial cells but not the media. Following perfusion with 50m1 

Ringers solution, the aorta was fixed with formalin (30min), excised and then immersed 

in PBS (lhour). The aorta was placed in Triton X-100 (30 seconds) followed by PBS 

(15 seconds) and then cannulated at both ends (Fig 2.2). The system was initially 

flushed through with PBS to determine the flow rate (3.2ml/sec with clamp open — see 

diagram). 0.3ml PI was then introduced into the perfusion system via a syringe (to stain 

for approximately 1 millisecond) and 'pushed' through with PBS released from the 
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reservoir — see diagram. Aortic rings were then cut, placed in PBS (10mins) followed by 

RNase (10 minutes, 37°C) and finally in PBS (10mins) before being mounted as 

previously described for AO stained tissue. 
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Silicone Rubber Tubing 
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Fig. 2.2. Equipment used for ex vivo perfusion with propidium iodide (PI) for staining 

of rabbit aorta. 

2.2.4.6 In vivo Propidium Iodide  
1.5m1 of PI (Molecular Probes, FluoroPure grade, 5mg/m1 Ringers) was injected, as with 

in vivo AO staining, via the marginal ear vein and allowed to circulate for 10 minutes. 

Euthanization and the steps following this were the same as with AO staining and 

fixation. 

2.2.5 Confocal microscopy  
En face preparations were viewed with a Leica TCS NT inverted confocal microscope 

(Leica Microsystems, UK) using either a 20x or 63x immersion objective lens, with 

glycerol as an immersion fluid, in a temperature controlled unit (37°C, the temperature 

required to obtain the refractive index of glycerol for which the lens is designed), and at 
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a resolution of 2048pixels x 2048 pixels to allow changes in nuclear dimensions to be 

recorded accurately. 

Acridine orange stained sections were excited at a wavelength of 488nm, and emission 

detected at 500-540nm using photo-multiplier tube 3 (PMTS), with the pinhole set to 

one Airy unit, and the beam expander set to 6. 

Propidium iodide stained sections were excited at a wavelength of 543nm, and emission 

detected at 600-640nm using PMT 3 , also with the pinhole set at Airy 1, and the beam 

expander set to 6. 

2.3 Results  

2.3.1 Determining optimal staining techniques for light microscopy  

2.3.1.1 In vitro hematoxylin staining 

2.3.1.1.1 Method One  
Stained ECn blocked the autofluorescence from underlying tissue, induced by the 

glutaraldehyde within Karnovsky's fixative, and appeared black. However, in all the 

sections stained there was an uneven background that prevented automated image 

analysis and smooth muscle cells were still visible underlying the EC. 

2.3.1.1.2 Method Two  
When method one was repeated four times, the outlines of the nuclei became clearer 

(Fig. 2.3). When PBS was replaced with distilled water after the first cycle of staining, 

the contrast of the nuclear outlines against the arterial wall was further improved and the 

background was more uniform (Fig. 2.4). This was improved still further when normal 

tap water was used (Fig. 2.5). In the majority of stained tissue the presence of SMCn 

was minimal, however where the endothelium was damaged and the SMCs were 

exposed to the stain, nuclei were still visible. 
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Fig. 2.3. Rabbit endothelium stained with Harris Hematoxylin. Method one repeated 

four times. Bar = 100um. 
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Fig. 2.4. Rabbit endothelium stained with Harris Hematoxylin and rinsed with distilled 

water. Bar = 1001.tm 
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Fig. 2.5. Rabbit endothelium stained with Harris Hematoxylin and rinsed with tap 

water. Bar = 100Rm 

2.3.1.1.3 Method Three  
Following the addition of RNase to the tissue, the background became much more 

uniform, however the endothelial nuclear staining was much fainter (Fig. 2.6). This 

could be because the time the tissue spent in RNase solution (10min) caused some of the 

hematoxylin to be removed from the nuclei. A few SMC nuclei were still visible in 

some regions of stained artery. 
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Fig. 2.6. Rabbit endothelium stained with Harris hematoxylin incubated with RNase. 

Bar = 100[tm. 

2.3.1.1.4 Method Four 

The improvement seen after the addition of tap water (seen in method two) was thought 

to be caused by the acidity of the water. This led us to add glacial acetic acid. There 

was increased contrast between the stained ECn and background, but faint "tails" were 

visible at the edges of the nuclei (Fig. 2.7). The addition of acid also caused striations to 

be visible across the arterial wall, perhaps caused by staining of underlying SMC, or 

damage occurring to the endothelium itself. 
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Fig. 2.7. Rabbit endothelium stained with Harris hematoxylin diluted in 5% Glacial 

acetic acid. Arrows indicate "tails" of nuclei. Bar = 100Rm 

2.3.1.1.5 Method Five  
When Harris hematoxylin was substituted with Gills hematoxylin, staining was very 

similar to that found after addition of acetic acid (Fig. 2.8). EC nuclei were clearly 

visible along with nuclear "tails" again; however the background was more uniform than 

before, and as with the other methods, SMC nuclei were sparse. 
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Fig. 2.8. Rabbit endothelium stained with Gill's hematoxylin. Bar = 100[im. 

With all the hematoxylin techniques attempted, backgrounds remain too dark and 

variable to allow automated analysis of the images. 

2.3.2 Determining optimal staining techniques for confocal images  

2.3.2.1 Acridine orange  

2.3.2.1.1 In vitro Acridine Orange  

A major problem encountered when using AO in vitro was the amount of background 

fluorescence in the images (Fig. 2.9). This was caused by autofluorescence of the 

arterial wall, staining of RNA in the EC and SMC, and DNA staining in SMC nuclei. 

This was improved slightly by the use of RNase (Fig. 2.10) which reduced the amount of 

stain taken up by the endothelial cytoplasm. However, despite producing clearer images 

there was still too much background fluorescence for automated image analysis. 
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2.3.2.1.2 In vivo Acridine Orange  
Using AO in vivo did not seem to improve the images, despite the addition of RNase 

before mounting the tissue (Fig. 2.11). This may have been due to the stain being 

diluted by the plasma before it had a chance to cross the EC membrane and diffuse into 

the nuclei. 

2.3.2.2 Propidium iodide  

2.3.2.2.1 In vitro Propidium Iodide  
Early attempts at in vitro PI staining involved leaving the aortic ring in the stain for 30 

seconds (as opposed to dipping) and not using RNase (Fig. 2.12). This produced a lot of 

background noise and the underlying SMC were visible, although not as clearly as with 

AO staining. The next step was to add RNase as it was thought that this would digest 

RNA in the cytoplasm (as mentioned previously). This appeared to 'clean-up' and 

improve the images. Nuclei had very sharp edges without excessive background noise 

(Fig. 2.13). However, SMCn were still visible underlying ECn. 

2.3.2.2.2 Perfused Propidium Iodide  
Vessels fixed in vivo, but stained ex vivo, by perfusing with PI produced very clear 

images (Fig. 2.14) but a number of SMC nuclei were visible, although their number 

varied across the tissue. 

2.3.2.2.3 In vivo Propidium Iodide  
In vivo staining with PI (Fig. 2.15) produced good definition of EC nuclei but also 

stained underlying SMC nuclei, therefore there was no advantage over the simpler in 

vitro procedure. 

2.3.2 Staining Results - Images  
The following images show the development of the staining technique. The direction of 

blood flow is unknown as at this time it was only necessary to determine whether the 

staining technique was working. All figures are single images and no image editing has 

been carried out. 
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Fig. 2.9. Acridine orange staining of the endothelium of rabbit aorta. k-xcita,,,,, 488nm, 

Xemission 500-540nm. Bar = 50µm. 

Fig. 2.10. Acridine orange staining of the endothelium of rabbit aorta treated with 

RNase before staining. X —excitation 488nm, Xemission  500-540nm Bar = 50µm. 
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Figure 2.11. In vivo acridine orange staining of the endothelium of rabbit aorta treated 

post-staining with RNase. k—xcitation  488nm, ?emission  500-540nm Bar = 501..tm. 

Figure 2.12. Propidium iodide staining of the endothelium of rabbit aorta. A. -excitation 

543nm, 2emission  600-640nm. Bar = 50um. 
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Figure 2.13. Propidium iodide staining of the endothelium of rabbit aorta treated with 

RNase before staining. Xexcitation  543nm,  ,remission  600-640nm. Bar = 50µm. 

Figure 2.14. Perfused propidium iodide staining of the endothelium of rabbit aorta 

treated post-staining with RNase. —excitation 543nm, Remission 600-640nm. Bar = 50[tm. 
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Figure 2.15. In vivo propidium iodide staining of the endothelium of rabbit aorta treated 

post-staining with RNase. 2,excitation 543nm, kemission 600-640nm. Bar = 50[tm. 

2.4 Discussion 

Hematoxylin staining was improved by the addition of acid to Harris hematoxylin as it is 

a regressive stain and is differentiated by acids to remove excess dye (Sigma-Aldrich, 

2003). Gills No.1 hematoxylin formulation is a progressive stain and selectively stains 

nuclear chromatin, and perhaps it is this selectivity that led to better definition nuclei. 

However, it was not possible to refine staining with hematoxylin to the point where 

automated image analysis could be undertaken. 

Staining with acridine orange did enable visualisation of endothelial cell nuclei. 

Incubating the tissue with RNase prior to staining improved the definition of ECn, 

compared to not using RNAse, or to staining in vivo followed by RNase treatment. 

Treatment post-staining slightly alleviated the problems of SMCn being stained, 

however the amount of autofluorescence within the arterial wall increased, leading to 

images with a grainy appearance. Images would again only have enabled manual, not 

automated, measurement of ECn. 
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When viewing whole mount tissue by conventional epifluorescence or confocal 

microscopy, the use of propidium iodide in conjunction with prior ribonuclease 

incubation produced images of endothelial cell nuclei with sharply defined edges, 

without the presence of shadows or tails from the endothelial cells, and with minimal 

background staining. It was therefore concluded that images taken after such treatment 

could be thresholded and analysed semi-automatically as described elsewhere. 

It was found that the in vitro PI staining method could be carried out on tissue viewed on 

either a confocal microscope or a standard fluorescent microscope system using filters 

for rhodamine. The benefits of using the confocal microscope system were that the 

wavelengths of emission could be finely adjusted to produce the clearest images with 

minimal background noise, and the depth the microscope viewed into the wall could be 

adjusted to focus on ECn rather than SMCn (if the section of tissue was flat). The 

benefits of the standard fluorescent microscope system were that photobleaching did not 

occur as rapidly, and they are less expensive to run. 

In summary, staining with hematoxylin could be used as a rapid test to determine 

whether the endothelium is intact and that no cells are missing, but without manual 

measurements could not be used to determine parameters of nuclei. Staining the artery 

in vitro with propidium iodide, having first made the cells more permeable using Triton 

X-100 and treating the tissue in RNase, proved to be the most consistent method for 

staining EC nuclei with minimal background noise, and the sharpest definition of 

nuclear edges. This technique was therefore used for all subsequent endothelial cell 

nuclear staining. We have shown that it is very difficult to prevent staining of 

underlying SMC nuclei, due the curvature of the wall, so alternative methods (confocal 

microscope optical stacks, and the Endothelial Stick and Rip (EStAR) technique as 

discussed later) had to be developed to remove these from the image analysis. 
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Chapter 3: Changes in nuclear shape around intercostal branch 
ostia in mice, determined by confocal microscopy  
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3.1 Introduction  

3.1.1 Mouse models of atherosclerosis  
In the wild, mice tend to consume a low-fat diet and they have relatively high levels of 

high density lipoprotein (HDL) and relatively low levels of very low density lipoprotein 

(VLDL) and LDL (Getz and Reardon, 2006). Perhaps for the latter reason, they are 

highly resistant to the development of experimental atherosclerosis; lesions can only be 

induced by feeding a high fat diet with toxic additives (Lichtman et al., 1999), or by 

inducing plasma cholesterol concentrations >300mg/dL (Getz and Reardon, 2006). 

Alternative murine models of atherosclerosis have been obtained by gene knockouts: 

low density lipoprotein receptor (LDLR-/-), apolipoprotein E (ApoE4") and LDLR4-

/ApoE4-  double knockout mice are now commonly used models of hypercholesterolemia 

and atherosclerotic lesion development (Johnson and Jackson, 2001). LDL receptors are 

located on cell surfaces, and are responsible for the internalisation of lipoproteins. This 

enables cholesterol to be supplied to the cells, but also removes cholesterol-rich 

lipoprotein particles from the circulation, predominantly in the liver (Alberts et al., 

1994). Hence a deficiency in LDL-receptors causes an increase in circulating 

cholesterol. ApoE is a high affinity ligand for the chylomicron-remnant receptor that 

enables uptake by the liver of cholesterol-rich apo-E containing particles. Removing 

ApoE leads to the accumulation of atherogenic cholesterol-rich remnants in the 

circulation (Zhang et al., 1992). 

In LDLIZ4-/ApoE-/-  mice, using a frequency mapping method, lipid deposits have been 

shown to completely surround the intercostal branch ostia (although deposits had twice 

the frequency upstream than downstream); there was no significant change in pattern 

with age (McGillicuddy et al., 2001). Thus these double knockout mice develop raised 

lesions at these sites which are similar to the raised "volcano" lesions that are found 

surrounding equivalent ostia of aged humans ((Mitchell and Schwartz, 1965), cited in 

Weinberg, 2002). Interestingly, the same authors also discovered a chevron pattern of 

lipid deposition upstream of some ostia, but no explanation was provided for their 

presence. 
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Until recently, little was known about how shear stress values vary throughout the 

vasculature of mice, or how the endothelium responds to the applied shear. The 

widespread and increasing use of knockout mice as models of atherosclerosis makes this 

an important consideration. It has been shown in vivo that endothelial cell nuclei align 

with the predominant flow direction (Flaherty et al., 1972) and elongate in response to 

increased shear stress levels in mice (Langille and Adamson, 1981), rabbits (Nerem et 

al., 1981) and dogs (Levesque et al., 1986). Recently, preliminary data have become 

available concerning overall shear levels (Weinberg and Ethier, 2007) predicting, using 

allometric arguments, that mice have a 20-fold-higher aortic wall shear stress than 

people. Other studies have used micro-CT and ultrasound methods (Suo et al., 2007) 

combined with numerical modelling (Feintuch et al., 2007) to develop CFD models of 

the mouse aorta, and these also found wall shear stress values in mice to be higher than 

those found in humans. 

3.2 Mouse Hypothesis  
We predict from the relatively uniform pattern of atherosclerosis around branches in 

knockout mice, that in wild-type mice there will be little spatial variation in shear stress 

surrounding the intercostal branch ostia. It is also predicted that there will be an age-

related change in shear stress values caused by the stiffening of arteries that is seen in 

mice (Reddy et al., 2003), rats (Cox, 1977), pigs (Greenwald et al., 1982) and monkeys 

(Pissinatti et al., 2000). The increase in aortic stiffness may also cause changes to the 

blood flow into and around intercostal branch ostia. It is also predicted that flow 

patterns will correlate with the chevron shaped pattern of disease seen in ApoE knockout 

mice by McGillicuddy (McGillicuddy et al., 2001). 
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3.3 Methods  

3.3.1 Animal Procedures  

All animal procedures complied with the Animal (Scientific Procedures) Act 1986. 

Endothelial nuclei were examined in normal mice (University of Reading strain) aged 6-

10 weeks (n=4) or 18-20 weeks (n=5) (i.e. 1.5-2.5, and 4.5-5 months). For comparison, 

and to check whether the new technique employed gives previously observed age-related 

changes in nuclear morphology of rabbit endothelium, male New Zealand White rabbits 

(Harlan Interfauna strain) aged 6 weeks (n=3), 17 weeks (n=3), 38 weeks (n=3) or >112 

weeks (n=2) (i.e. approximately 1.5, 4, 9 and >24 months) were also examined. All 

animals were fed a standard laboratory diet without added fat. 

3.3.2 Tissue Preparation  
Aortas were fixed in either formalin or Karnovksy's fixative as previously described. 

Having remained in fixative for at least 16 hours, aortas were equilibrated in PBS for 

one hour. The adventitia of fixed aortas was removed by dissection and side branches 

were cut as close to their origin as possible so that the remaining stubs did not distort the 

main vessel when it was mounted for en face viewing. Mouse aortas were examined 

whole whereas the larger rabbit aortas were cut perpendicular to the longitudinal axis to 

produce rings each containing a pair of intercostal branches. 

3.3.3 Nuclear Staining 
Aortas and aortic rings were permeabilised with Triton X-100 (Sigma, 0.2%, 30 s), 

incubated in ribonuclease A (RNase) (Sigma, 0.01%, 10 min at 37 °C) to remove RNA 

but not DNA, and stained with propidium iodide (Molecular Probes, 1 mg/mL, —0.5 s). 

They were then cut along the longitudinal axis opposite the branch sites before being 

mounted in PBS, luminal surface down, in cover-slip bottomed petri dishes. 

The luminal surface around intercostal branch ostia was viewed en face with an inverted 

confocal microscope (TCS NT, Leica Microsystems) using a 20x immersion objective. 

Propidium iodide fluorescence was imaged using 543 nm excitation and 600-640 nm 

emission wavelengths. For most samples, wall autofluorescence was also imaged, using 

488 nm excitation and 500-580 nm emission wavelengths. A stack of optical slices were 
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obtained, each 750pm x 750µm in area. This field of view allowed the whole mouse 

branch to be visualised. Control regions at least one branch diameter away from the 

ostia were also imaged. For the larger rabbit branches, regions 750µm x 750µm in areas 

upstream and downstream of the ostium were imaged separately. 

3.3.4 Image processing and analysis  

Images were initially processed using Photoshop (Version 7.0, Adobe Systems 

Incorporated). Individual slices from each stack were converted to grayscale images, 

and noise was reduced with a median filter (one-pixel radius). They were then binarised 

using a grey level of 70 (grey level range 0-255), and endothelial cell (EC) nuclei were 

selected manually. EC nuclei from every slice in a stack were copied onto a blank 

canvas to produce a montage of the endothelial surface in a single image, despite the 

irregular surface height in the original 3-dimensional data set (Fig. 3.1). 

For quantitative analysis of nuclei around mouse ostia, montages were divided into eight 

regions of 200[tm x 200µm (Fig. 3.1 inset). The region upstream of the branch 

frequently contained an arterial cushion (AC) (Fig. 3.2); nuclei covering this cushion 

were analysed separately. For the rabbits, analysis was restricted to single 600 x 600 pm 

areas upstream and downstream of the ostia, each offset approximately 75µm from the 

ostial lip to avoid regions of high curvature. 
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Fig. 3.2. En face view of confocal image stack showing tissue autofluorescence around 

the origin of a mouse aortic branch. A raised arterial cushion resembling the prow of a 

boat is present upstream of the ostium. Arrow indicates direction of mean aortic blood 

flow. Scale bar = 100pm. 

All images were analysed in ImageTool (Version 3.00, UTHSCSA) using the "Analyze" 

command to obtain the length of the major axis ("length") and minor axis ("width"), the 

length-to-width (LW) ratio, and angle of orientation of each object in the image. Results 

tables were saved as text files to be transferred into the software package, Excel (2003, 

Microsoft Office). A large number of equations had to be written, columns 

added/removed etc. to enable analysis. These were automated using Macro codes 

developed using Excel's script language, Visual Basic (see Appendix C for Macro 

codes). ImageTool measured the angle of each object from the horizontal axis of the 

image to the major axis of the object (length of the nucleus) i.e. if a nucleus was aligned 

along the horizontal axis it would be assigned a value of zero degrees. Since we were 

interested in the angle of the nuclei with respect to the longitudinal axis of the aorta 

(which is from top to bottom of images), it was necessary to convert the data so that if a 
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nucleus were aligned along the longitudinal axis rather than the horizontal axis it would 

be assigned a value of zero degrees. This was done using an equation stating that: 

IF (Angle>0) then (Angle*-1) +90 

IF (Angle<0) then (Angle*-1) -90 

Using these equations, nuclei with their upstream end leaning to the left of the 

longitudinal axis, as viewed on the screen, were assigned negative angles, and 

conversely, those with their upstream end leaning to the right were assigned positive 

angles (Fig. 3.3). 

Horizontal Axis 

Fig. 3.3. Diagram showing the sign (+ or -) of the angle of endothelial cell nuclei 

measured by ImageTool from the horizontal axis to the major axis of the nuclei (solid 

arrows) and after angles were adjusted to measure from the longitudinal axis of the 

artery to the major axis (dashed arrow). 

85 



Orientations were normalised by averaging values for all nuclei around a branch, and 

subtracting this mean from all individual values. This procedure removed biases that 

would otherwise have been caused by inaccuracies in cutting or mounting the tissue, but 

would remove any overall non-axial orientation, for example arising from helical flows 

down the aorta. 

When analysing images in ImageTool, the software could not distinguish between 

individual nuclei, pairs of nuclei very close together with their edges touching, or 

background noise. Thus, results contained data for these objects as well, which would 

produce inaccuracies. This was overcome by excluding objects that were too small or 

too large to be nuclei. A search through the literature for previously published 

parameters for endothelial cell nuclei was carried out (Table 3.1). 

Table 3.1. Previously published parameters for endothelial cell nuclei. 

Investigator Nuclear 
Length (µm) 

Nuclear 
Width (gm) 

Species 

(Flaherty et al., 1972) 15 7 Dog 
(He, 1998) 25 6 Frog (32-39D vessel) 

16 12 Frog (48-53D vessel) 
13 8 Hamster 

(Hossler, 1998) 16 5 Duckling cast 
Average 17 8 

Average nuclear length = 17[tm = 46.42 pixels 

Average nuclear width = 8t.tm = 21.85 pixels 

By trial and error it was found that a 50% variation above and below the literature 

average encompassed changes in elongation caused by varying shear stresses but 

excluded most noise artefacts and multiple nuclei. 

So, 

A 50% variation above and below average nuclear length = 69.63 pixels and 23.21 

pixels respectively. 

A 50% variation above and below average nuclear width = 32.77 pixels and 10.92 pixels 

respectively. 
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Using these values it was then possible to calculate the area of an ellipse with a 50% 

variation around the average using an online ellipse calculator (Cleave Books, 2004) that 

used the equation: 

Area = 7C x ((0.5 x ellipse's major axis) x (0.5 x ellipse's minor axis)). 

Therefore, 

Maximum and minimum area of ellipse = 1195.5 pixels2  and 398.5 pixels2  

A macro code was written that filtered the data obtained in ImageTool to exclude any 

objects that had lengths, widths or areas outside this range, adjusted the angle of 

orientation to remove biases, and averaged each parameter for the regions of interest 

(Appendix C -Macro 1). 

3.3.5 Analysis of arterial cushions  
It was observed that immediately upstream of mice intercostal branches there was an 

arterial cushion (AC), raised above the luminal surface of the arterial wall, with a 

triangular shape resembling the bow of a boat, with the endothelial layer at the entrance 

to the branching intercostal artery representing the "deck" of the boat. The morphology 

of both the AC and its overlying endothelial cell nuclei were analysed. 

3.3.6 Measurement of arterial cushions and branch ostia 
Images of tissue autofluorescence, obtained using the confocal microscope by exciting 

tissue at 488nm and detecting emission at 500-580nm were opened in Photoshop and 

converted to grayscale images, and the Auto Levels function was applied. A median 

noise reduction filter (one pixel radius) was applied before the image was copied into a 

new blank canvas. The next image in the optical stack was then edited in the same way 

before being copied into the new canvas on top of the first. The top image was then 

made transparent (5%) so both layers could be seen. This process was repeated until 

every image in the stack had been added on top and made transparent enabling the whole 

artery wall including the branch and raised region to be visualised. All images were 

opened on the same computer, more importantly using the same size visual display unit 

(monitor), and the images were zoomed to 33.3% to enable the ostium and AC to fit 
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within the constraints of the display. Acetate transparencies were stuck over the screen 

and the outline of the ostium and raised region were traced. Acetates were photocopied 

without altering their size and photocopies were scanned, using a flatbed scanner. 

Scanned images were opened in Photoshop before being converted into grayscale 

images, and median noise reduction (1 pixel radius), dust and scratches (1 pixel radius, 

threshold 0) and despeckle filters applied. When drawing outlines of the AC and ostia, 

the lines did not always meet exactly. This would have prevented object area analysis 

being performed accurately so any line breaks were filled in manually. To determine the 

area of the AC and branch ostia, edited images were opened in ImageTool and the "Find 

Objects" function performed at an intensity in the range of 1-255, and 0-250 (AC and 

branch ostium separately, and AC and branch ostium combined respectively (Fig. 

3.4a,b). This enabled measurement of the area of the AC, branch ostium and the two 

combined. The AC entrance length (distance from the tip of the AC to the most 

proximal region of ostium), AC width, ostial length and ostial width were measured 

using the "measure tool" in Photoshop (Fig. 3.4c). All values were measured in pixels 

and therefore had to be converted into micrometers. 

Figure 3.4a) outline of the area of the branch ostia and the arterial cushion (AC) when 

measured separately, b) outline of the area of the branch ostia and the AC when 

measured together, c) dimensions measured manually of the branch ostia and the AC. 
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3.3.7 Analysis of endothelial nuclei overlying arterial cushions  
EC nuclei overlying the AC showed a great deal of variability in orientation compared to 

normal endothelium and were found in more focal planes due to the sloping of the AC 

into the intercostal ostium. This prevented the automated analysis of their shape that 

was possible in other regions. To determine nuclear morphology over the AC, images 

from optical stacks containing AC nuclei were opened on-screen. A transparency was 

placed over the screen, as when measuring AC dimensions, and nuclear outlines traced. 

The next image in the stack was opened and nuclei traced. This was continued until no 

more nuclei were visible. Using this method an accurate picture of the nuclei of the AC 

was produced. As with measurement of dimensions of AC, transparencies were scanned 

and images opened and edited in Photoshop. 

3.3.8 Image analysis software  
Initially V++ (Digital Optics) was used to measure nuclear morphology. However 

having analysed nuclei surrounding a large proportion of the branches, an inconsistency 

was discovered: having analysed two images twice by mistake, the output was slightly 

different the second time despite nothing having been changed within the image. 

Testing was carried out to determine where the fault lay. 

3.3.8.1 V-H- Validation - Test One  
The nuclear image was printed and the major and minor axis (longest axis of the object, 

and object's widest point at 90° to the major axis respectively) were measured for a 

sample of the nuclei. It was found that the measurements by hand were approximately 

double those analysed by V++. It was thought this could be caused by one or more of 

the following, 1) the edge of the analysed nuclei had a ruffled appearance (i.e. the edge 

was not smooth) and when measuring by hand the axes may therefore have been slightly 

different from those measured by the software. This ruffled appearance was initially 

thought to be an artefact formed during the process of thresholding nuclei before 

selecting them from the optical slices produced during confocal imaging. However, 

images of nuclei found in the literature also appear to have a ruffled surface (Masuda et 

al., 2003). 2) To derive the shape parameters, V++ takes measurements from the 2nd  

moment of inertia of a perfect ellipse that it tries to fit to each object. This will 
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introduce inaccuracies as nuclei are rarely a perfect ellipse. 3) V++ assumes edges are 

perfectly smooth. 

3.3.8.2 V++ Validation — Test Two  
The next step to determine where the fault lay was to draw shapes of a known LW ratio 

and orientation (using Microsoft PowerPoint) and then analyse them. Squares and 

rectangles, with or without rounded corners, circles and ellipses were drawn (Fig. 3.5) 

for analysis with V++. Each image was analysed twice, and again, gave slightly 

differing results each time. The LW ratios were also wrong for some of the objects and 

the orientations were not accurate. 

3.3.8.3 V++ Validation — Test Three  
The images drawn in test 2 were used again, but this time were analysed after having 

been rotated (using Photoshop) by 5° and 90° (Fig. 3.5). As they were the same objects, 

only rotated, the LW ratio should have been the same; however they were different. 

Having decided V++ had produced inaccurate results a new software analysis tool was 

selected (ImageTool, UTHSCA) and validated. 
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Fig. 3.5. Images used in V++ validation — Test 2 and 3. The original image was rotated 

by 5 and then 90 degrees clockwise before being analysed. 

3.3.8.4 ImageTool Validation  
Test three was carried out again on the images in Fig. 3.5 using ImageTool, and the 

results produced were much more accurate (with a few degrees error for orientation). 

Another image was drawn in PowerPoint containing replicates of the same size ellipse 

rotated by known angles (Fig 3.6), and the image was analysed in ImageTool. The 

results were accurate (again within a few degrees error). Finally, ellipses of known LW 

ratio and angle were drawn and analysed. Again, the results were accurate. It was found 

that inaccuracies occurred when analysing a circle, however that is reasonable as a circle 

does not have a definite major or minor axis, and it is highly unlikely that a nuclei will 

ever be a perfect circle. 
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Fig. 3.6. Image used in ImageTool validation. Ellipse has a LW ratio of 2.0 and has 
been rotated by known angles. 

3.3.9 Statistical Analysis  

Data structure: two age groups were considered — 6-10 weeks and 18-20 weeks. In the 

young age group there were 4 mice and in the mature group there were 5 mice. Between 

7-15 intercostal branches from the aorta of each mouse were examined (8-14 in young, 

42 in total; 7-15 in mature, 57 in total). The branches were randomly selected from the 

16 present in each animal. Eight main anatomical regions were examined around each 

branch (three upstream, three downstream and one at each lateral margin); for some 

analyses, a region corresponding to the intimal cushion and a control region (away from 

the branch) were also included. Within each of these anatomical regions, the 

morphology of around 30 nuclei were examined (except that numbers were sometimes 

smaller for the arterial cushion — see below). Morphological parameters included 

nuclear length-to-width ratio and the angle between the nuclear long axis and the 

longitudinal axis of the aortic segment. Because of the large sample size within each 

region, results for each parameter were aggregated before statistical analyses were 
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conducted: only the mean value (e.g. of length-to-width ratio or angle) for each region 

was used. Statistical tests were conducted to determine whether there was a significant 

effect on each parameter of age or region, and whether there was a significant interaction 

between effects of age and region (which would imply an effect of age on the anatomical 

pattern of that parameter). 

The statistical test used was a general linear model univariate analysis of variance (SPSS 

Version 14.0) incorporating a nested design whereby mice were nested within age, and 

branches were in turn nested within mice. If this showed an overall significant result, 

the significance of differences between individual regions was determined using a post-

hoc Tukey test, having first split the data by age. Effects of age on the dimensions of the 

branch and arterial cushion and effects of species were assessed using a Student's 

unpaired t-test. Data are presented as mean ± SEM. Results were deemed significant if 

p<0.05. 
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3.4 Results  

3.4.1 Nuclear length:width ratios in mice  
Mean nuclear LW ratios are shown for immature and mature mice in table 3.2 and figure 

3.7. There were no overall significant changes in mean LW ratio with age (P=0.462), 

although there was a trend for mature mice to have more elongated nuclei in each of the 

8 regions defined in figure 3.1. The mean nuclear LW ratios for immature (n = 297 

regions), and mature (n = 426 regions) were 2.33 ± 0.02 and 2.49 ± 0.02 respectively 

(mature nuclei 6.9% more elongated) for the 8 regions. There was a highly significant 

effect of region (P<0.0005). The interaction between age and region approached 

significance (P=0.053) possibly providing evidence for a change in pattern of LW ratios 

with age. 

When nuclei in non-branch regions were included in the analysis, the effect of age 

remained insignificant (P=0.418), the effect of region remained highly significant 

(P<0.0005), and the interaction between age and region remained insignificant 

(P=0.055). The mean nuclear LW ratios for immature and mature mice were 2.33 ± 0.02 

and 2.49 ± 0.02 respectively (6.9% difference, n = 308 and 434 regions respectively) for 

the 8 regions and the nuclei in non-branch regions. 

When nuclei over the arterial cushion were included in the analysis, the effect of age 

remained insignificant (P=0.442), the effect of region remained highly significant 

(P<0.0005), but the interaction between age and region became significant (P=0.030). 

The mean nuclear LW ratios for immature and mature mice were 2.27 ± 0.02 and 2.43 ± 

0.02 respectively (a 7.0% difference, n = 333 and 475 regions respectively) for the 8 

regions, including the nuclei overlying the AC. 

When nuclei in both non-branch regions and over the AC were included, the effect of 

age remained insignificant (P=0.393), effect of region remained highly significant 

(P<0.0005) and the interaction between age and region was significant (P=0.026). The 

mean nuclear LW ratios for immature and mature mice were 2.27 ± 0.02 and 2.43 ± 0.02 
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respectively (7.0% difference, n = 344 and 483 regions respectively) for the 8 regions 

and the nuclei in non-branch regions and overlying the AC. 

Nuclei in non-branch regions were 3.0% less elongated than nuclei in branch regions in 

immature mice. This was reversed in mature mice, where there was a 12.0% increase in 

LW ratio in non-branch regions when compared to branch regions. 

The data were split by age to determine differences in nuclear parameters in immature 

and mature mice separately. 

3.4.1.1 Immature nuclear length:width ratios  
The effect of region was highly significant (P<0.0005) for immature mice, and including 

or excluding the nuclei over the AC and/or non-branch regions did not affect this. Mean 

values ranged from 2.23 ± 0.04 ("U", n = 38 branches) to 2.54 ± 0.04 ("R", n = 37 

branches) for the 8 main regions (13.9% difference). 

Nuclei in the lateral regions ("L" and "R") were significantly more elongated 

(P<0.0005) than nuclei in all other regions but were not different from each other 

(P=1.000). Nuclei overlying the AC were significantly less elongated than nuclei in all 

other regions (P<0.0005). 

3.4.1.2 Mature nuclear length:width ratios  
The effect of region was highly significant (P<0.0005) for mature mice, and including or 

excluding the nuclei over the AC and/or non-branch regions did not affect this. Mean 

values ranged from 2.31 ± 0.05 ("D", n = 55 branches) to 2.64 ± 0.06 ("L", n = 56 

branches) for the 8 main regions (14.3% difference). 

Nuclei in the lateral regions ("L" and "R") were significantly more elongated 

(P<0.0005) than nuclei in all other regions except nuclei in the upstream left ("UL") and 

non-branch regions (P>0.1). The LW ratio of nuclei in the region downstream ("D") of 

the branch ostia was significantly higher than nuclei overlying the AC (P<0.0005), but 

lower than all other regions (P<0.05), with the exception of the upstream ("U") region 
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(P>0.05). Nuclei overlying the arterial cushion were significantly less elongated than 

nuclei in all other regions (P<0.0005), whilst nuclei in the non-branch region were 

significantly more elongated (P<0.05) than all other regions, with the exception of 

lateral regions as previously mentioned. 

Table 3.2. Mice nuclear length:width ratios where n equals the number of branches 

Region Immature Mature 
Mean SEM Mean SEM 

UR 2.28 0.05 2.46 0.06 
U 2.23 0.04 2.42 0.06 

UL 2.29 0.04 2.52 0.05 
R 2.54 0.04 2.62 0.06 
L 2.52 0.04 2.64 0.06 

DR 2.25 0.04 2.45 0.06 
D 2.26 0.04 2.31 0.05 
DL 2.25 0.04 2.48 0.05 

Arterial cushion 1.78 0.04 1.88 0.02 
Non-branch 2.26 0.06 2.79 0.12 

Total (excl. AC + non-branch) 2.33 0.02 2.49 0.02 
Total (incl. AC) 2.27 0.02 2.43 0.02 

Total (incl. non-branch) 2.33 0.02 2.49 0.02 
Total (incl.AC + non-branch) 2.27 0.02 2.43 0.02 

Region 

Fig. 3.7. Mice nuclear LW ratios in the 8 regions defined in Fig. 3.1, over the arterial 
cushion and in non-branch regions. Bars show means ± SEM (n = number of branches). 
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3.4.2 Nuclear orientations in mice 
Normalised mean nuclear orientations are shown for immature and mature mice in Table 

3.3 and Fig. 3.8. When the 8 main regions were analysed it was found that there was no 

overall significant change in mean orientation with age (P=0.345), however there was a 

highly significant effect of region (P<0.0005). There was no significant interaction 

between age and region (P=0.096) suggesting there was no change in the pattern of 

nuclear orientation with age. When nuclei overlying the AC were included in the 

analysis, the effect of region remained significant (P<0.0005) and the effect of age and 

the age*region interaction remained non-significant (P=0.552 and 0.145 respectively). 

Lines illustrating the angle of orientation of nuclei in each of the 8 main regions 

surrounding the branch ostia (excluding the nuclei on the AC) are shown for immature 

and mature mice in Fig. 3.9. Each line is orientated by the angle of the mean for the 

nuclei within each region. It is presumed that the blood flow is from top to bottom over 

each region that surrounds the branch ostia, but this is only an assumption, hence the 

lack of direction to the lines. The nuclei deviate from the longitudinal axis by very small 

amounts. 

Nuclei in non-branch regions were not included in the analysis; since they were 

normalised to give an average value of zero degrees, nothing could be gained from such 

an analysis. 

The mean nuclear orientation for all mice was 0 degrees, as the values had been 

normalised. The minimum and maximum orientations for the main 8 regions in 

immature mice were -3.01 ± 1.21° ("D", n = 33 branches) and 5.09 ± 1.27° ("UR", n = 

38 branches) respectively. The minimum and maximum orientations for mature mice 

were -2.48 ± 1.02° ("DR", n = 51 branches) and 2.27 ± 0.84° ("R", n = 51 branches) 

respectively. The orientations of nuclei over the AC were 6.89 ± 1.69° (n = 36 

branches) and 4.50 ± 1.67° (n = 49 branches) for immature and mature mice 

respectively. 
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3.4.2.1 Immature nuclear orientation 
The effect of region on nuclear orientations in immature mice was highly significant 

(P<0.0005) when looking at the 8 main regions with or without nuclei over the AC, 

although as mentioned previously, deviations away from the longitudinal axis were 

small. 

Nuclei in region "UR" were oriented to the anatomical left of the longitudinal axis to a 

greater extent (P<0.05) than regions "UL", "D" and "DR", and the orientation of nuclei 

overlying the AC were significantly different to those in regions "UL", "D", "DR", 

"DL", "R" and "L". 

3.4.2.2 Mature nuclear orientation 
The effect of region on nuclear orientations in mature mice was highly significant 

(P<0.005) when looking at the 8 main regions with or without nuclei over the AC. 

Nuclear orientations in region "R" were significantly different (P<0.05) to those found 

in regions "UL" and "DR", and nuclei over the AC were significantly different (P<0.05) 

to those in regions "U", "UL", "D", "DR" and "L". 
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Table 3.3. Mice nuclear orientation (degrees) (normalised by a constant so the mean 
equals 0°) where n equals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

UR 5.09 1.27 2.19 0.97 
U 1.57 1.11 -0.36 0.97 
UL -1.60 1.27 -2.42 0.84 
R -0.53 0.87 2.27 0.84 
L 0.49 0.89 -0.26 0.86 

DR -2.80 1.60 -2.48 1.02 
D -3.01 1.21 -0.35 0.87 

DL 0.15 1.38 1.54 0.84 
AC 6.89 1.69 4.50 1.67 

Total (excl. AC + non-branch) 0.00 0.45 0.00 0.33 
Total (incl. AC) 0.74 0.45 0.46 0.34 

UR 	U 	UL 	R 	L 	DR 	D 	DL 
	

AC 
Region 

Fig. 3.8. Mice nuclear orientations in the 8 regions defined in figure 3.1, and over the 

arterial cushion. An angle of zero degrees indicates nucleus is aligned along the 

longitudinal axis of the artery. Bars show means ± SEM (n = number of branches). 
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Fig. 3.9. Lines representing the nuclear angle of orientation surrounding branch ostia of 

immature and mature mice. Time-averaged blood flow is from top to bottom. The 

ostium is located in the central square in each image. Each square equates to a region 

measuring 2001.tm*2001_1m. 

3.4.3 Nuclear lengths in mice  
Mean nuclear lengths are shown for immature and mature mice in Table 4 and Fig. 3.10. 

There were no overall significant changes in mean length with age (P=0.269), although 

there was a trend for mature mice to have longer nuclei in each of the 8 regions defined 

in Fig. 3.1. There was a highly significant effect of region (P<0.0005) but there was no 

significant interaction between age and region (P=0.752). Data for nuclear lengths in 

non-branch regions or nuclei over the AC are not available. 

The mean nuclear lengths for immature and mature mice were 17.03 ± 0.10 [tm and 

18.08 ± 0.08 gm respectively (nuclei in mature rabbits were 6.2% longer, n = 297 and 

426 regions respectively) for the 8 regions in Fig. 3.1(inset). 
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3.4.3.1 Immature nuclear length  
The effect of region was highly significant (P<0.0005) for immature mice. Values 

ranged from 16.30 ± 0.27 p.m ("U", n = 38 branches) to 18.01 ± 0.26 ("L", n = 38 

branches), a 10.5% increase. 

Nuclei in the "R" region were significantly longer than those in regions "U", "UR", 

"DR" and "DL" (P<0.05), and nuclei in the "L" region were significantly longer than in 

all other regions (P<0.005) (except "R"). Nuclei in "U" were significantly shorter than 

nuclei in "UL" (P<0.05). 

3.4.3.2 Mature nuclear length  
The effect of region was also highly significant (P<0.0005) for mature mice. Values 

ranged from 17.45 ± 0.21 [tm ("U", n = 52 branches) to 19.08 ± 0.19 ("1:', n = 56 

branches), a 9.3% increase in length. 

Nuclei in "R" region were significantly longer (P<0.01) than those in all regions except 

"L" and "UL", however the difference was approaching significance for "UL" 

(P=0.062). Nuclei in "L" were significantly longer (P<0.005) than those in all other 

regions except "R". Nuclei in "D" were significantly shorter than nuclei in the "UL" 

regions (P<0.05). 

Table 3.4. Mice nuclear length (µm), where n equals the number of branches. 
Region Immature Mature 

Mean SEM Mean SEM 
UR 16.68 0.30 17.87 0.23 
U 16.30 0.27 17.45 0.21 
UL 17.05 0.29 18.11 0.22 
R 17.65 0.28 18.65 0.22 
L 18.01 0.26 19.08 0.19 

DR 16.78 0.28 17.90 0.21 
D 16.92 0.22 17.54 0.18 
DL 16.84 0.25 17.98 0.21 

Total 17.03 0.10 18.08 0.08 
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Fig. 3.10. Mice nuclear lengths (pm) in the 8 regions defined in Fig. 3.1. Bars show 

means ± SEM (n = number of branches). 

3.4.4 Nuclear widths in mice  
Mean nuclear widths are shown for immature and mature mice in Table 3.5 and Fig. 

3.11. There were no overall significant changes in mean width with age (P=0.919), but 

there was a highly significant effect of region (P<0.0005) and interaction between age 

and region (P<0.05) possibly providing evidence for a change in pattern with age. Data 

for nuclear widths in non-branch regions or nuclei over the AC are not available 

Mean nuclear widths for immature and mature mice were 7.54 ± 0.03 and 7.59 ± 0.03 

respectively (a difference of 0.7%, n = 297 and 426 regions respectively) for the 8 

regions in Fig. 3.1(inset). 

3.4.4.1 Immature nuclear width 
The effect of region on nuclear width was highly significant (P<0.0005) in immature 

mice. Widths ranged from 7.17 ± 0.08 gm ("R", n = 37 branches) to 7.71 ± 0.10 pm 

("DL", n = 39 branches), an increase of 7.5%. 
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Nuclei in region "R" were significantly thinner (P<0.05) than any other region except 

"L" (P=0.533). There were no significant differences between any other regions. 

3.4.4.2 Mature nuclear width  

The effect of region on nuclear width was highly significant (P<0.0005) in mature mice. 

Values ranged from 7.43 ± 0.10 gm ("R", n = 51 branches) to 7.90 ± 0.09 ("D", n = 55 

branches), an increase of 6.3%. 

Nuclei downstream of the branch ("D") were significantly wider than nuclei in any other 

region (P<0.05). 

Table 3.5. Mice nuclear widths (gm) for the 8 regions defined in Fig.3.1 where n equals 
the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

UR 7.54 0.09 7.59 0.10 
U 7.52 0.09 7.56 0.11 
UL 7.67 0.11 7.49 0.09 
R 7.17 0.08 7.43 0.10 
L 7.38 0.10 7.57 0.10 

DR 7.66 0.08 7.62 0.10 
D 7.70 0.11 7.90 0.09 
DL 7.71 0.10 7.55 0.08 

Total 7.54 0.03 7.59 0.03 
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Fig. 3.11 Mice nuclear widths in the 8 regions defined in Fig. 3.1. Bars show means ± 

SEM (n = number of branches). 

3.4.5 Dimensions of ostia and arterial cushions  
Average lengths, widths and areas of branch ostia and arterial cushions in immature and 

mature mice are shown in Table 3.6. The arterial cushion resembled the bow of a boat 

extending upstream from the ostium (Fig. 3.2). The shape of the AC and branch ostia 

could be analysed for 74% of the branches (n = 29 immature, n = 45 mature) studied. 

The dimensions of the arterial cushion were unaffected by age (entrance length, P>0.5; 

width, P>0.6; area, P>0.8). The branch length was 9.6% more elongated in mature mice 

(196.11 ± 5.74µm) than in immature mice (178.93 ± 4.57[tm; P<0.05). The branch 

width was 1.4% wider in immature (117.75 ± 4.65ttm) than mature (119.44 ± 7.23µm) 

mice. The branch area in immature mice was 197x103  ± 10x103  pixels2  and was larger 

in mature mice (217x103  ± 17x103 pixels2) (a 10.2% difference). Neither the width or 

the area were significantly different between ages (P>0.8, and >0.3 respectively). 
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Table 3.6. Dimensions of mouse arterial cushions and branch ostia where n equals the 
number of mice. 

Immature Mature 

Mean SEM Mean SEM 

Arterial 

cushion 

Entrance Length (gm) 88.09 8.62 81.89 5.71 

Width (i_tm) 138.45 5.72 142.81 5.97 

Area (pixels2) 137 x 103  13 x 103  140 x 103  10 x 103  

Branch 

Ostium 

Length (mn) 178.93 4.57 196.11 5.74 

Width (mn) 117.75 4.65 119.44 7.23 

Area (pixels2) 197 x 103  10 x 103  217 x 103  17 x 103  

3.4.6 Summary of main mouse results  

• There were no significant differences between immature and mature mice for 

endothelial nuclear LW ratio, length, width or nuclear orientation 

• There was a significant effect of region for all nuclear parameters analysed 

• There was no significant interaction between age and region for nuclear LW 

ratio, length or nuclear orientation (suggesting no change in pattern with age) 

when looking at the 8 main regions surrounding branch ostia 

• There was a significant interaction between age and region for nuclear widths 

• Nuclei overlying the arterial cushion were less elongated than those found in 

other regions 

• Nuclei in regions located to the sides of branch ostia were more elongated than 

those up- and downstream of the branch 

• In immature mice, there was a trend for nuclei upstream of the branch to be less 

elongated than in all other regions 

• In mature mice, there was a trend for nuclei downstream of the branch to be less 

elongated than in all other regions 

• Dimensions of the arterial cushion were unaffected by age 

• The area of the branch ostia were unaffected by age 
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3.4.7 Nuclear length:width ratios in rabbits 
Nuclear length:width ratios are shown in Table 3.7 for immature (n=6) and mature (n=5) 

rabbits. LW ratios were greater downstream of the branch than upstream in immature 

rabbits: the ratio of the mean upstream value to the mean downstream value was 0.87 for 

the youngest age group (Fig. 3.12) (values <1 indicate greater nuclear elongation 

downstream and values >1 indicate greater elongation upstream). This difference 

increased in the second age group (ratio = 0.90), disappeared in the third (ratio = 1.00) 

and reversed in the oldest group (ratio = 1.03). (Statistical analyses were not carried out 

due to small number of branches studied). Nuclei in control regions showed a consistent 

elongation with age. 

The ratios of the mean upstream LW ratio to the mean downstream values, for immature 

and mature rabbits plotted by their weights are shown in Fig. 3.13. As before, values <1 

indicate greater nuclear elongation downstream and values >1 indicate greater 

elongation upstream. At a weight of approximately 3.3kg the ratio was approaching 1, 

suggesting there was no change between the upstream and downstream nuclear LW 

ratios. 

Table 3.7. Rabbit nuclear LW ratio data for validation of mouse confocal technique 
where n equals the number of branches. 

Region Immature Mature 
1.5 months 4.3 months 9.5 months a.24 months 

Mean SEM Mean SEM Mean SEM Mean SEM 
Upstream 2.32 0.06 2.38 0.07 3.10 0.08 3.28 0.11 

Downstream 2.68 0.08 2.65 0.04 3.09 0.06 3.19 0.10 
Control 2.60 0.06 2.96 0.11 3.14 0.09 3.25 0.17 

LW Upstream / 
LW Downstream 

0.87 0.90 1.00 1.03 
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Figure 3.12. Changes with age in the pattern of endothelial nuclear length-to-width 

(LW) ratios upstream and downstream of rabbit aortic intercostal branch ostia. The 

upstream LW ratio has been divided by the downstream LW ratio so values <1 indicate 

greater nuclear elongation downstream and values >1 indicate greater elongation 

upstream. Each point indicates the data for a single rabbit (24 branches in total, 5-8 in 

each age group). 
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Figure 3.13. Changes with body weight in the pattern of endothelial nuclear length-to-

width (LW) ratios upstream and downstream of rabbit aortic intercostal branch ostia. 

The upstream LW ratio has been divided by the downstream LW ratio so values <1 

indicate greater nuclear elongation downstream and values >1 indicate greater 

elongation upstream. Each point indicates the data for a single rabbit. The trend line is 

linear. 

When all branch values for each species were averaged, LW ratios for mice (2.42 ± 

0.01) were lower than those for rabbits (2.87 ± 0.06). 

3.5 Discussion 

3.5.1 Mouse nuclear morphology  
A previous study of rabbit endothelial cell nuclei morphology by our group (Al-Musawi 

et al., 2004) found greater nuclear elongation downstream than upstream of branch ostia 

in immature aortas (< 4months), but observed the opposite trend in animals aged 

10-11months. The small study of rabbits here, conducted to determine whether our 

confocal technique for measuring endothelial cell elongation gave comparable results, 
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showed the same trend (Fig. 3.12). As the age of animal increased, nuclei went from 

being more elongated downstream, to being more elongated upstream, the change 

occurring after 4 months. This shows that any changes in nuclear patterns in mice can 

be attributed to genuine differences around the branch mouth, rather than problems with 

the technique. 

If the age of rabbit is substituted by its body weight and a linear trend line added (Fig. 

3.13), then it appears that there is greater nuclear elongation downstream of the branch 

up to a weight of approximately 4kg, and then the pattern reverses as weight increases 

further. Growth charts for various breeds of rabbits (not including NZW) (Larzul and de 

Rochambeau, 2004) show that rabbits reach a weight of 4kg by 13 - 26weeks (3.3 - 6.5 

months) depending on the strain, therefore the ratio of LW ratios plotted against age or 

weight are showing roughly the same result. 

The pattern of nuclear elongation, used as an indicator of shear stress, observed in 

immature mice (and in mature mice with the exception of nuclei within the "UL" 

regions) appears to be consistent with what we would expect if blood near the aortic wall 

is diverted away from the longitudinal axis of the artery, around the branch ostium. This 

would cause the streamlines to become closer together as they reach the lateral regions 

("L" and "R"), causing the increased shear stress values we have seen. The cause for 

this deflection of blood is thought to be the AC, as microscopical techniques show that it 

protrudes slightly from the artery wall at its proximal margin (Gorgas and Bock, 1975). 

Wagenvoort (1954) devised a model that included a structure similar to an AC and 

showed that blood was diverted around the cushion and branch ostia. This streamline 

theory is reflected in the nuclear orientation: opposite regions ("UR" vs. "UL", "R" vs. 

"L", "DR" vs. "DL") have opposite sign angles (i.e. positive vs. negative) (See Fig. 3.9). 

It should be noted that although there are significant differences between orientations, 

the largest mean deviation from the longitudinal axis was only 5.09° ("UR") in 

immature mice and -2.48° in mature (nuclei over the AC excluded). This is very 

different to the values previously found in rabbits where mean orientations in lateral 

regions were in the range of 10-20° (Al-Musawi et al., 2004). The alignment of the 

nuclei near the branch mouth is very different as well. In rabbits, the long axis of the 
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nuclei deviates from the aortic axis towards the ostium, whereas in mice the long axis 

deviates away from the ostium. Other work in our group (Kazakidi et al., 2006) 

suggests that this difference may reflect the lower Reynolds number (ratio of inertia to 

viscosity) for flow in the mouse aorta. 

There was a trend for nuclei in the upstream region in immature mice to be less 

elongated than nuclei in all other regions, however nuclei in the downstream region of 

mature mice were significantly less elongated. This pattern is similar to that seen in 

rabbits, whereby nuclei are more elongated downstream in young, and less elongated in 

mature. Nuclei were 1.3% more elongated downstream than upstream in immature 

mice, and 4.5% more elongated upstream than downstream in mature. However, our 

data for rabbits showed that nuclei were 13.6% more elongated downstream than 

upstream in immature, but only 1.6% more elongated upstream than downstream in 

mature. 

Nuclei within the non-branch (control) regions of immature mice did not differ in the 

amount of elongation, when compared to the branch regions (except for those in the 

lateral regions that were significantly more elongated). This was opposite to the nuclear 

elongation in mature mice; nuclei in non-branch regions were significantly more 

elongated than nuclei in all other regions, except for those lateral to the ostia. The fact 

that mature mice have increased LW ratios (shear stresses) away from the branch could 

explain why the nuclear orientation near the branch changed to a lesser extent than in 

immature mice: the faster flowing blood may reduce the amount it is diverted around 

the AC, thus decreasing the changes in the angle of nuclear orientation. 

The mean length of nuclei differed between ages by 6.3%, whereas the width only 

varied by 0.7%. The small degree of variation in nuclear widths perhaps suggests that 

the LW ratio mainly reflects changes in nuclear length. 

Despite the mean LW ratios being lower in mice than those previously reported (Al-

Musawi et al., 2004), comparison of the overall difference in LW ratios within each 

species shows very little difference. Mean rabbit LW ratios for branch regions ranged 
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from 2.51 to 2.85 in immature, and 2.67 to 3.05 in mature; a 13.5% and 14.2% 

difference respectively. Our data for branch regions show that LW ratios range from 

2.23 to 2.54 in immature mice and from 2.31 to 2.64 in mature mice; a 13.9% and 14.3% 

difference. Nuclear data from rabbits (Al-Musawi et al., 2004) suggests that immature 

rabbits develop lesions in regions of relatively higher shear stress (regions of greater 

nuclear elongation), and that a change to lower nuclear elongation with age lowers the 

prevalence of disease. Our mice data appears to show the opposite pattern. Although 

not significant, McGillicuddy et al (2001) showed that there was a greater prevalence of 

disease upstream of the branch at earlier ages, but this trend decreases with age. 

Immature mice have LW ratios downstream that are higher than those upstream of the 

branch, whereas in mature mice there is greater nuclear elongation upstream than 

downstream, and the prevalence of disease decreases. Lesions have also been shown to 

cover a larger area around the branch ostia in mature mice than in immature 

(McGillicuddy et al., 2001). This may be caused by the change in shear stress gradients 

between non-branch regions and branch regions. In immature mice, LW ratios did not 

change very much between non-branch and branch regions (3% difference), however in 

mature mice, nuclei in non-branch regions were 12% higher than in the periostial 

regions. 

3.5.2 Nuclei of arterial cushions  
From the lower LW ratios it can be inferred that the shear stress affecting the nuclei 

within the AC appears to much lower than that affecting the rest of the branch or the 

arterial wall. This again could be due to the AC being raised up from the arterial wall at 

its proximal margin, perhaps causing a region of flow separation over the AC, thus 

resulting in lower shear stress values. However, the lower LW ratios could potentially 

be due to foreshortening of the nuclei. At regions of arterial wall curvature, and in 

particular over the AC that slopes into the branch ostia, nuclei are not being viewed 

directly en face to their local orientation, but at an angle. This might lead to errors in 

nuclear analysis due to the nuclei appearing shorter than they actually are. A way to 

avoid this would have been to adjust the angle of the microscope stage, or the tissue on 

the slide, so it corresponded to the angle of the slope but this would not be the most 

practical solution. An alternative method would have been to produce a 3-dimensional 
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(3D) image of the arterial wall, and develop image analysis techniques that measure the 

3D nuclear morphology. 

We have seen that the surface of the AC is covered in a layer of ECs which extend into 

the endothelial layer of the rest of the aorta, and at the entrance to the "boat" the ECs are 

packed tightly together, and are orientated as though being channelled into the ostia. 

Both features have been seen previously (Gorgas and Bock, 1975). This "channelling" 

could have led to the results for the orientation of nuclei on the AC being flawed. 

Nuclei on the AC appear to be aligned in various directions, some leaning to the left and 

some to the right. When analysed, the sign of the angles would tend to cancel each other 

out making the mean orientation approximately zero. This does not appear to be the 

case. Arterial cushion nuclei were oriented at 6.89 ± 1.69 ° and 4.50 ± 1.67 ° in 

immature and mature mice respectively. This suggests either that the AC is itself 

orientated to the anatomical left of the longitudinal axis or that the nuclei are being 

affected by a spiralling of blood flow down the aorta. Without analysis of whole aortas 

to remove the need to normalise the angles, it is unclear which of these theories is 

correct. 

Although no rigorous analysis was been carried out, it was observed that over the AC 

the intensity of the propidium iodide stain was much brighter than within the 

surrounding nuclei (Fig. 3.14). This was also seen in EStAR preparations of whole mice 

aortas stained with PI (Fig. 4.9) (discussed later). Since the tissue had been incubated in 

RNase the stain was only picking up DNA within the nuclei. The increase in intensity 

could be due to an increase in the amount of DNA present, as regions of disturbed flow 

have been shown to cause increased cell replication and more rapid cell turnover 

(Chuang et al., 1990, Lin et al., 1990). 
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Fig. 3.14. Resulting image from a compressed confocal stack of propidium iodide 

stained images of a mouse ostium. Brightly stained region in upstream region of branch, 

possibly suggesting increased cell turnover. Scale bar = 100vim. Blood flow is from top 

to bottom (arrow). 

3.5.3 Morphology of arterial cushions  
Initially it was thought that the AC we were seeing was an area where the remainder of 

the intercostal artery was impinging onto the ostium from below; an artefact from the 

mounting procedure. Due to the uniformity of the raised region, and the fact that it has 

been seen previously using different types of microscopy and sectioning techniques 

(Gorgas and Bock, 1975, Hesse and Bock, 1980, Heidger et al., 1983), and that they 

have also been seen during our EStAR preparation, it is felt that this can be discarded. 

Furthermore, histology has shown that the cushion has a distinct histological structure, 

linked to the normal aortic intima and media (Gorgas and Bock, 1975). It is not known 

how far the AC protrudes into the lumen, and as such it is unknown how much influence 

it will have on the flow of blood into the branches. Using image analysis software that 

enables reconstruction of the confocal stacks in 3D would allow the AC to be measured, 
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however in this study there was too much reflectance from the coverslip used to mount 

the tissue, preventing any measurements from being taken. 

The shape of the arterial cushion may be related to a disease pattern observed by 

McGillicuddy et al (2001) in LDLIZ-/-/ApoE-/-  double knockout mice (Fig. 3.15). In this 

paper it was reported that "a crescentic or triangular region of apparent sparing occurred 

immediately upstream from the ostium and was surrounded by a line or larger patch of 

stain". This correlates very well with the shape of AC we have seen using confocal 

microscopy. It is not certain whether the pattern they saw was due to increased lipid 

deposition caused by flow being disturbed at the edge of the AC, or whether the lipid 

stain located at this region was masked by the presence of the AC overlying it. 

Fig. 3.15. En face image of the aortic wall from a mouse stained with oil red 0 showing 

the chevron pattern of lipid deposition upstream from two intercostal ostia. Blood flow 

is from top to bottom. 

There seem to be various theories put forward for the presence of the cushion. During 

sectioning of the AC, Gorgas and Bock (Gorgas and Bock, 1975) discovered a cavity 

formed within the aortic wall, from which the intercostal artery originates. They suggest 

that the initial course of intercostal arteries is a retrograde one when compared to the 

direction of aortic blood flow. Grooves found within the AC were predicted to channel 
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the blood stream into the cavity so it is able to "turn around" the flow into the initial 

segment of the intercostal artery in the reverse direction. 

Studies looking at mice (Gorgas and Bock, 1975) and rats (Hesse and Bock, 1980) have 

provided evidence that ACs change shape depending on the amount of distension of the 

arteries. During our studies, fixation was carried out at physiological pressure and for 

the same time period for each mouse, however, each mouse may have been slightly over 

or under their exact physiological pressure, causing changes to the size of AC. 

Increased pressure would cause the artery to distend more leading to a flattened AC 

profile, whereas decreasing pressure may enable it to rise up. If the pressure does affect 

the size of the AC, as previously suggested (Gorgas and Bock, 1975), then it is highly 

likely that during the phases of the cardiac cycle the AC will change its shape. This 

would tie in with another theory in which the AC are thought to act as sphincters. In 

systole, when the heart is contracting, blood pressure will be raised and blood will be 

flowing in a forward direction, the AC will be flattened and oxygenated blood can flow 

freely into the intercostal branches. During diastole, when the heart is relaxing the 

pressure will decrease and the AC will increase in size, closing the "valve" over the 

ostia. This will prevent blood flowing back out of the branches whilst the parent vessels 

may be experiencing reversal of flow. 

The Wagenvoort model that has previously been mentioned also showed that blood was 

drawn into the side branch from central portions of the aortic blood stream, and Fourman 

& Moffat (1961) have provided an explanation as to why this might occur. When blood 

flows through a small artery, red blood cells (RBC) are found in the central (axial) 

stream where the blood is moving fastest. They suggested that the increased velocity 

blood causes a region of lower pressure at the peripheral regions reducing the number of 

RBCs. If a branch left the artery at right-angles it is thought that it would sample blood 

predominantly from the cell-poor peripheral zones, so-called "plasma skimming" 

(Fourman and Moffat, 1961). It is thought that the consequences of this are that blood 

within the side branches have about 25 percent lower haematocrit than that in the larger 

vessels (Ezeilo, 2005). Fourman and Moffat (1961) suggest that the AC are acting to 

reduce plasma-skimming, and are in fact encouraging blood sampling from the 
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oxygenated RBC-enriched axial stream. A process they termed "cell-skimming". They 

carried out experiments on immature and mature female, and mature male rats to 

determine whether the size of AC increased the haemoglobin (Hb) concentration in the 

blood in the branches of mesenteric (male rats) and uterine (female) arteries. Their 

results showed that in mesenteric arteries, the Hb concentration was lower in the branch 

than in the main trunk, and this was attributed to plasma-skimming. In female rats, 

where uterine arteries were studied, young animals had a greater concentration of Hb in 

the trunk than in the branch (plasma-skimming) whereas the adult animals had greater 

Hb in the branch (cell-skimming). They attributed this difference to the size of the AC. 

In young rats, ACs were very flat and did not project far into the lumen, whereas in older 

animals the AC projected towards the centre of the lumen to sample the axial stream. It 

should be noted that in their study, animals were not fixed at pressure therefore results 

they obtained for size differences may not be wholly accurate. A consequence of cell-

skimming and thus increasing the haematocrit content in the side branches is that the 

viscosity of blood will be increased (or at least maintained at levels similar to the parent 

artery). This may cause an increase in shear stress, determined using the equation for 

calculating shear stress (viscosity x velocity gradient). 

Work has also been carried out looking at AC in the uterine arterial bed of rats and pigs 

(Heidger et al., 1983). Utilizing scanning electron microscopy of vascular casts, the AC 

in rats was shown to vary in the amount of contraction or relaxation and this was 

dependent on the stage of estrous cycle, pregnancy and pharmacologic vasoconstriction. 

Interestingly, the number and size of cushions were consistently greater in non-pregnant 

sows compared to pregnant sows. 
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Chapter 4: Development of the EStAR technique for producing 
monolayers of endothelium 
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4.1 Introduction  
The method previously used to determine ECn morphology using confocal microscopy 

was deemed too time consuming to use further. A new technique was required that 

enabled imaging of the endothelium without the problems of uneven aortic wall surfaces 

and the associated problems with underlying SMC. Previous groups have shown that it 

is possible to prepare monolayers of endothelium (Hautchen preparations) from 

monkeys (Skantze et al., 1998), dogs (Smith et al., 1996), mice (Guzman et al., 2002), 

rats (Senis et al., 1996), rabbits (Hirsch et al., 1980) and humans (Lupinetti et al., 1993). 

Such monolayers can be examined using a normal microscope, without the problems 

occurring when using whole mounts and confocal microscopy. 

The most detailed method for producing Hautchens has been given by Hirsch et al, 

(Hirsch et al., 1980) and images from their papers show good endothelial layers (ELs); 

therefore an attempt was made to replicate this method. Using their method, the 

resulting ELs were found to be highly inconsistent, frequently containing areas with 

missing cells or with SMC that overlay ECs. Modifications were made to the technique 

(as detailed below), which was subsequently renamed the "EStAR" (Endothelial Stick 

and Rip) technique, resulting in the production of complete ELs from rabbit and mice 

thoracic aortas. Using rabbit tissue it was possible to produce ELs containing pairs of 

intercostal ostia, and in mouse tissue it was possible to produce ELs containing ostia in 

the thoracic aorta, and the aortic arch. To our knowledge we are the first to produce 

Hautchens containing multiple ostia. 

4.2 Methods  

4.2.1 Tissue preparation for Endothelial Stick and Rip technique 
Thoracic aortas from rabbits, mice, and pigs were removed from fixative and 

equilibrated in PBS for at least one hour to remove any fixative for safer handling. 

Under a dissecting microscope, fine forceps and ophthalmic scissors were used to 

physically remove adventitial fat from the aortas. Sketches were drawn of aortas to 

document the location of intercostal branches. The intercostal arteries were cut short so 

that only stubs remained attached to the thoracic aorta. 
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Segments of rabbit and pig aorta containing intercostal branch ostia were dehydrated by 

immersion in a graded series of ethanol (30%, 50%, 70%, 95% ethanol in water and 

twice at 100%) (Fisher Scientific, Analytical Reagent Grade) for 20 minutes each, 

before being placed into 100% ethanol for at least 16 hours. Whole aortas of mice were 

cut open longitudinally and pressed flat between two glass slides held together with a 

metal clip before being dehydrated in ethanol as described. Glass microscope slides 

(Menzel-Glaser, pre-cleaned) were prepared by wiping the surface with paper towel to 

remove any dust particles that could get trapped under the EL and lead to the surface 

being uneven. Strips of double-sided adhesive tape (3M, Scotch pressure sensitive), 

whilst still attached to backing paper, were pressed onto the slides and a finger nail was 

run over the paper to remove any trapped air bubbles. 

Aortas were removed from 100% ethanol and, before all the alcohol could evaporate, 

aortic rings containing pairs of intercostal branches (rabbits) or single branches (pigs) 

were cut perpendicular to the longitudinal axis. The rings were cut longitudinally along 

their ventral side, opened out and pressed, endothelial surface down, onto the tape (after 

the backing paper had been removed). Whole mouse aortas were pressed, endothelial 

surface down onto the tape. The backing paper was then used to press the tissue flat 

onto the tape, ensuring no air bubbles were present (particularly around ostia) as these 

prevent the endothelium adhering. Removed backing paper was used as opposed to any 

other form of paper as it does not stick to the tape; this would damage the tape and 

endothelium. Inverting the slide and pressing down onto paper towel enabled 

visualisation of any air bubbles, whilst also allowing any excess ethanol to be blotted 

away from edge of the EL before it had a chance to seep under the tape, decreasing 

adhesiveness. Downward pressure was maintained onto the slide for at least three 

minutes, either manually or with a weight, to ensure the endothelium was stuck, before 

the slide was placed correct side up and the backing paper removed. Sections were then 

left to dry in air for five minutes to enable any excess alcohol within the tissue to fully 

evaporate. The tissue was then completely immersed in glycerol (10% in water, Sigma), 

ensuring the edges were also immersed, for 8-10minutes to rehydrate the tissue. The 

intima and media were then peeled away using fine forceps, starting in one corner and 
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peeling across the tape. If resistance was met, another corner was tried. In rare cases 

where there was still resistance, tissue was left under glycerol for a further five minutes. 

On rare occasions, particularly around branch points, some SMC remained on the EL. 

These could easily be removed using fine forceps under a dissecting microscope. A 

more common problem was that of glycerol or air bubbles becoming trapped in the 

branch mouth leading to the tissue rising up slightly and causing problems with 

microscopic imaging. This was alleviated slightly by cutting the intercostal arteries as 

close as possible to the main thoracic aorta, without actually damaging the aortic wall 

itself. This also seemed to lessen the problem of SMC remaining on the EL. 

Before developing the EStAR technique, the method of Hirsch et al (1980) was used 

which, although it did sometimes produce good endothelium, was highly inconsistent 

and frequently left SMC on the tape. The two main differences were the omission of 

Hirsch's use of acetone and a freezing step that will be discussed in more detail. Hirsch 

et al suggested immersion in acetone for 5-10seconds after removal from ethanol, before 

sticking to tape. It is thought that this was to speed up the evaporation and enable better 

adhesion to the tape. With the tape we now have available it was felt that this step was 

not necessary as the ethanol evaporated on its own and enabled good adhesion. In fact, 

acetone was found if anything to decrease the ease of stripping of intima and media so 

this step was removed. Hirsch et al also suggested spraying the underside of the slide 

with dichlorodifluoromethane after immersion in glycerol, before peeling. They 

suggested that this increases cohesion of the tape adhesive and its adhesion to its plastic 

base. In early experiments, after glycerol immersion, we tried cooling the underside of 

the slide with 100% tetrafluoroethane (Cryospray 134, Bright) for a few seconds but this 

was a very irreproducible way of cooling and yielded inconsistent EStARs. It was more 

consistent to cool the slide by placing it (for 1.5min) on a metal block within a Cryostat 

cooled to -40°C. Once cooled the slide was left at room temperature (lmin) to start 

thawing. The intima and media were then peeled away as previously mentioned. As 

with the addition of acetone, this also led to inconsistent and irreproducible results, 

possibly due to inconsistent thawing of glycerol due, for example, to variable room 

temperature. Results were again more reproducible if this step was omitted. 
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Using our technique it was possible to produce rabbit EStARs up to lcm in length, 

encompassing the whole width of the arteries, completely devoid of SMCs, and 

containing pairs of intercostal branch ostia. Having produced EStARs of individual 

segments, the whole length of the artery could be joined together during image 

processing. EStARs of mice aortas including the aortic arch and the thoracic aorta, and 

small sections of pig thoracic aortas including individual branch ostia were also 

produced. 

4.2.2 EStAR nuclear staining and image analysis  
EStAR preparations were stained using the technique previously described for ECn. 

Briefly, glycerol was rinsed from the EL with water, followed by PBS. The ELs were 

immersed in 0.2% Triton X-100 (Sigma, 30s), followed by PBS (15s), before being 

incubated in RNase (Sigma, 10min, 37°C). Following the incubation period, ELs were 

rinsed in PBS, and a drop of PI was added before being rapidly rinsed away, again with 

PBS. The stained EL was then flooded with water, excess water was dabbed away and 

the EL was mounted under a coverslip in Fluorsave (Calbiochem) mounting medium. 

Slides were viewed using an Axioplan epifluorescence microscope (Zeiss) and PI was 

excited at a wavelength of 546nm, through a rhodamine filter. Images were taken using 

a low light CCD camera with a Kodak KF1600 chip, coupled to the software package 

Maxim DL (Diffraction Limited, Canada), at 200x magnification using a 20x objective 

lens (NA 0.45), using an exposure time of 3.0 seconds, and were saved in Tagged-Image 

File Format (TIFF). Since the area of the ELs was larger than the field of view, images 

of the endothelium were taken in a grid-like pattern, ensuring each image overlapped 

slightly with its neighbours, and their location was noted. 

Individual images were opened in Adobe Photoshop (Version 7.0, Adobe Systems 

Incorporated) and the pixel intensity levels were manually adjusted using the "levels" 

command so the range of pixel intensity values was 2 to 4. This converts all pixels with 

an intensity less than 2 to black (pixel value 0), and all pixels with an intensity greater 
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than 4 to white (pixel value 255). Any other pixels within the image are automatically 

adjusted proportionately to increase the tonal range. 

A median noise reduction filter (set to two pixel radius) was applied, and the image 

converted from 16-bit/channel to 8-bit/channel pixel depth. Each image was then copied 

to a new image destined to become the final montage, made semi-transparent so the 

previous image could be seen underneath, and the nuclei towards the edges aligned with 

the previous image. This process was continued until all the images for each pair of 

intercostal branches were aligned and in the final montage image. 

Any remaining SMCs or areas of damage were removed from the montage image 

manually using the eraser tool. Contrast in the images was improved (Fig. 4.1a, b), 

again using the "levels" command, by setting the range of pixels between the minimum 

and maximum value within the image so anything above or below this range was 

converted to white and black respectively. This was followed by a Sharpen filter 

(Sharpen More) (Fig. 4.1c) that increases the contrast of adjacent pixels, and a high-pass 

filter (10-pixel radius) (Fig. 4.1d) that retains details at edge of objects whilst 

suppressing the rest of image, thus effectively flattening the intensity profile. This was 

necessary because a variation in the brightness of the microscope's mercury bulb and 

other optical factors caused an uneven distribution of pixel intensities across the field of 

view. Another median noise filter (2 pixel radius) (Fig. 4.1e) was then applied. 
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Fig. 4.1a. Section of original propidium iodide stained montage image showing 
endothelial cell nuclei. The image is 100pm x 100pm. 

Fig. 4.1b. Figure 4.1a after contrast has been improved using the levels command. 
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Fig. 4.1c. Figure 4.1b after a "Sharpen more" filter has been applied. 

Fig. 4.1d. Figure 4.1c after a high pass filter (10 pixel radius) has been applied. 
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Fig. 4.1e. Figure 4.1d after a median noise reduction filter (2 pixel radius) has been 
applied. 

The canvas size (dimensions of the final image) was always adjusted so the height and 

width was a multiple of 1000ttm. This enabled the filtered montage images to then be 

subdivided into regions measuring 1000ttm x 1000ttm to be analysed in the image 

analysis software package, ImageTool (Version 3.0, The University of Texas Health 

Science Centre in San Antonio (UTHSCSA)). 

Cropped images were opened in ImageTool and thresholded to convert grayscale images 

into binary (black and white) ones using the "Find Objects" command. This was done 

by converting all pixels with an intensity within the range 135-255 (i.e. nuclei) to black, 

and everything else (non-nuclei) white. This level was determined by trial and error: it 

was the optimum threshold level at which nuclei were detected at their actual 

dimensions, without picking up too much background staining or eroding the edges of 

the nuclei (Fig. 4.2). Once thresholded, images were analysed using the "Analyze" 

command to produce tables containing parameters for every black object within each 

image. Objects included artefacts such as background image noise that had to be 

removed. These were filtered out as described below. Parameters included area, 
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Threshold=120 Threshold=130 Threshold=140 Threshold=15.0 

Threshold=135 

perimeter, major axis length (length), minor axis length (width), angle of orientation, 

elongation (length-to-width ratio) and coordinates for the centre of mass of each object. 

Fig. 4.2. Examples of various levels of image thresholding. Note the artefacts in 

threshold levels 120 and 130. Images with threshold levels 140 and 150 contain objects 

that have had their edges eroded and are therefore smaller than those in the original 

image. Images with threshold levels at 135 had few artefacts and the edges of objects 

were not eroded, and this level was therefore chosen. 

Results tables were saved as text files, transferred to Excel (2003, Microsoft Office) and 

analysed to filter out data for pairs of nuclei counted as a single object because their 

edges touched, and background noise. The method for filtering objects was the same as 

that used during analysis of mice confocal nuclear images, with the slight difference that 

EStAR image objects were filtered using their area and perimeter as opposed to their 

area, length and width. Using the average nuclear length and widths (17pim and 811m 

respectively) for ECn found in the literature (Table 3.1) it was possible to calculate the 
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average area and perimeter of an ellipse using an online ellipse calculator (Cleave 

Books, 2004). 

It calculated the area using the equation: 

Area = 7r x ((0.5 x ellipse's major axis) x (0.5 x ellipse's minor axis)). 

The perimeter of an ellipse cannot be found easily, so the online calculator uses an 

approximation formula by Ramanujan (1914). 

The "classification" function in ImageTool allows colour coding of objects according to 

dimensions entered by the user. Various percentage variations in area and perimeter 

were entered and the "yield" of nuclei observed. It was found that a 50% variation 

above and below the literature average encompassed changes in elongation caused by 

varying shear stresses but excluded most noise artefacts and multiple nuclei. Thus the 

area and perimeter were calculated (see below). 

Average nuclear length = 17 um = 37.74 image pixels 

Average nuclear width = 811m = 17.76 image pixels 

A 50% variation above and below average nuclear length = 56.61 pixels and 18.87 

pixels respectively. 

A 50% variation above and below average nuclear width = 26.64 pixels and 8.88 pixels 

respectively. 

(These values differ to mice confocal images due to a different microscope setup and 

therefore a different micrometer to pixel conversion). 

Therefore, 

Maximum and minimum area of ellipse = 1184.45 pixels2  and 131.61 pixels2  

respectively. 

Maximum and minimum perimeter of ellipse = 135.04 pixels and 45.01 pixels 

respectively. 
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These assumptions may not be perfect as nuclear size variations between animals and 

within an individual aorta could be greater than 50%. However, paired nuclei and 

background noise that would have interfered with the analysis were largely removed 

(Fig. 4.3). Again using the "classification" function and colour coding nuclei, it was 

possible to manually count the number of paired nuclei included in the analysis of 

regions of 1000 [tm x 1000 litn. Nuclei from 14 separate regions from EStARs produced 

from different rabbits and branches were counted and it was determined that only about 

3.6 ± 0.8 % (mean ± SEM) of objects analysed were paired nuclei. 
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Overlay 
Fig. 4.3. Images obtained using the "classification” function in ImageTool. Area 

image) red and purple objects indicate nuclei excluded from analysis due to their area 

not being within the range 131.61 - 1184.45 pixels2. Perimeter image) red and purple 

objects indicate nuclei excluded from analysis due to their perimeter not being within the 

range 45.01 — 135.04 pixels. Overlay image) the objects that will be included in the 

analysis. Objects were excluded due to their area and perimeter not being with the range 

specified. White arrows indicate paired nuclei that were not excluded. 
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The range of values for the perimeter and area were then included in the macro code 

(Appendix C - Macro 2) to exclude objects outside of these ranges. The equations 

below were also included in the macro code to convert the data so that if a nucleus were 

aligned along the longitudinal axis rather than the horizontal axis it would equal zero 

degrees (Fig. 3.3). 

IF (Angle>0) then (Angle*-1) +90 

IF (Angle<0) then (Angle*-1) -90 

Since it is unclear exactly how much variation in morphology there is from one nucleus 

to the next and, more importantly, how the nuclear morphology changes across regions 

of the arterial wall, the data from the 1000µm x 1000um images were further divided 

into regions measuring 100µm x 100[1m. This was to prevent local effects being 

removed by averaging results from too large an area. This was again included in the 

Macro code to enable replication across all worksheets. Nuclei were filtered by their 

Cartesian coordinates. Data were then averaged within each 1001.tm x 1001.tm region. 

Using the coordinates, results were presented in a grid formation, akin to the original 

1000µm x 1000µm image. The Excel cells that correspond to the 1000gm x 1000µm 

image were then manually pasted into a new worksheet for each parameter of interest, to 

produce maps that were spatially accurate and could therefore be overlaid onto the 

original montage image. 

4.2.3 Nuclear Counting 
To test whether there were variations in cell density, a macro was developed (Appendix 

C — Macro 3) to count the number of nuclei within the images. As before, there was a 

problem in that ImageTool could not distinguish single nuclei from groups of touching 

nuclei and would count the latter as one object. This was overcome by making the 

assumption that there is a linear increase in perimeters i.e. one nuclei equals lx 

perimeter (45-135 pixels), two nuclei equals 2x perimeter (135-225 pixels), three nuclei 

equals 3x perimeter (225-315 pixels) and four nuclei equals 4x perimeter (315-405 

pixels). The macro was then able to distinguish which objects contained one, two, three 

or four nuclei. Using the objects' Cartesian coordinates as before, images/results were 
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automatically divided into 250[tm x 250[tm regions (due to time constraints it was not 

possible to carry out nuclear counting for 100µm x 100µm regions) and arranged in their 

correct spatial location to be pasted into a new sheet containing data from the whole EL. 

Using the perimeters for 1, 2, 3 and 4 nuclei, combined with the classification function 

in ImageTool to colour code the nuclei within the different ranges, nuclei appeared to be 

counted accurately (Fig. 4.4). To further validate the technique, nuclei within 34 regions 

(10001.tm x 1000µm) from different branches were also analysed using the macro, but 

also counted manually; the automated technique under-counted by 6.6 ± 11.9 cells 

(mean ± SD). The average number of cells per image, determined by a manual count, 

was 145.8 ± 22.6 (mean ± SD). 

Fig. 4.4. Image showing how perimeter is used to determine the number of endothelial 

cell nuclei within an object. Nuclei are colour coded by the distance around their 

perimeter. Red = Excluded from analysis, Orange = 45-135 pixels = lx perimeter, 

Purple = 135-225 pixels = 2 x perimeter, Pink = 225-315 pixels = 3 x perimeter, Blue = 

315-405 pixels = 4 x perimeter. 
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4.2.4 Colouring of data within maps  
Data were displayed as colour maps i.e. the data contained within the spatially accurate 

Excel maps were coloured according to their values. The easiest, most reliable and 

replicable way to do this was to write a further macro (Appendix C- Macros 4-10) that 

automatically scans through the data and colours each Excel cell depending on its value. 

At first, conditional formatting in Excel was attempted; however the function only 

allows three ranges of values to be defined per worksheet. The parameters we are 

looking at vary greatly in their values e.g. nuclear LW ratio values are in the range of 1-

3, whereas nuclear area values are in the range 400-600. To enable spatial changes in 

parameters to be easily observed, eight ranges of values were defined for each 

parameter. This meant different Macro codes had to be written for each parameter to 

enable the colours to best represent the range of values presented (Fig. 4.5). The ranges 

of values assigned to each colour were usually determined by a trial and error approach. 
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A 0 to 2.4999 2.5 to 2.7499 2.75 to 2.9999 3 to 3.2499 3.25 to 3.4999 3.5 to 3.7499 3.75 to 4 :. 4 0 

. 	_ 

B -90 to -15 -14.999 to -10 -9.999 to -5 -4.999 to 0 0 to 4.999 5 to 9.999 10 to 14.999 15 to 90 

C 0 to 12.999 15 to 16.999 17 to 18.999 19 to 20.999 21 to 22.999 23 to 25 > 25 

D 0 to 4.999 5.5 to 5.999 6 to 6.499 6.5 to 6.999 7 to 7.499 7.5 to 8 :-, 	8 

E 0 to 400 400 to 425 425 to 450 450 to 475 475 to 500 500 to 525 525 to 550 . 550 

F 0 to 0.999 1 to 1.7499 1.75 to 2.4999 2.5 to 3.2499 3.25 to 3.9999 4 to 4.7499 4.75 to 5.25 _- 5.25 

G 0 to 100 kf. .... 	115 115 to 130 130 to 145 145 to 160 160 to 175 175 to 200 -- 200 

Fig. 4.5. Key to colour maps. Numbers show the range of values that will be coloured 

by each colour (in rabbits unless indicated otherwise). 

A = Nuclear length:width ratio; B = Nuclear orientation (°); C = Nuclear length (ilm); 

D = Nuclear width (1.tm); E = Nuclear area (pixels2); F = Nuclear length:width ratio in 

mice and pigs; G = Number of nuclei. 

4.2.5 Removing data from colour maps for nuclei at the edges of endothelial  

layers and branch ostia 

Having produced colour maps for individual branches containing data for nuclear L/W 

ratios, angle of orientation etc it was possible to see that in regions at the edge of the 

maps, next to areas where damage to the EStAR was found, and in regions immediately 

adjacent to branch ostia, there were results that appeared slightly erratic, and did not 

follow the general trend. It was thought that this was caused by nuclei whose shape had 

been distorted but still maintained the correct area and perimeter for a nucleus, and thus 

did not get filtered out. This distortion could have been due to a few factors. 1) During 
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the process of manually erasing regions containing damage (in photoshop) some nuclei 

were not erased fully i.e. the tip of some nuclei were erased causing a lower LW ratio, 2) 

again during the erasing process some nuclei that should have been erased due to 

damage were missed, 3) when the tissue was initially stuck to the tape to produce the 

EStAR there may have been some movement at the edge of the EL causing nuclei to 

become slightly stretched, or their orientation to be altered slightly. 

Distorted nuclei affected the average values in 1001.im x 100ium regions so it was 

decided that these regions bordering the edge of the EL or the borders of branch ostia 

should be removed from the colour maps and subsequent analysis. Due to the large 

number of sheets to be analysed, doing this manually would have been extremely time 

consuming so a macro (Appendix C — Macro 11) was produced to automate this process. 

The only way to do this was to write a formula containing an IF statement that 

multiplied the values in the region of interest by the value in each region surrounding it. 

If the region next to it was empty, then the value would be returned as zero and an "X" 

was placed in the region (Fig. 4.6). If the value was not returned as zero then the cell 

was left as it was e.g. IF RC x RC[-1] = 0, then "X", IF RC x RC[-1] not = 0, then 

RC*1. All regions containing "X" were then removed from the maps. 
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R[4]C[4] 

Region 2 

REM 

Region 3 

R[4]C[1] 

Region 4 

RC[-1] 

Region 1 Region 

RC 

Region of 

interest 

RC[1] 

5 

R[1]C[-1] 

Region 8 

R[1]C 

Region 7 

R[1]C[1] 

Region 6 

Fig. 4.6. Formulae used to determine the region of interest and the regions surrounding 

it. R and C denote row and column respectively. If any of the Excel cells next to the 

region of interest were blank then an X would be placed in the region for deletion. 

This method was repeated for LW, length, width, angle, and area data. Due to the nature 

of the EStAR technique it was impossible to align the longitudinal axis at exactly zero 

degrees for every EL. To overcome this potential spatial bias, all orientations were 

normalised. This was done by calculating the average angle of all the nuclei within the 

orientation map for each EL and producing a new, adjusted map with the mean angle 

being zero. 

4.2.6 Determining the centre of branch ostia  
The different colour maps had to be aligned so that averaging could be carried out across 

different animals. The ideal method would have been to align all the arteries by the first 

pair of ostia in each artery and somehow stretch the images so all further ostia from that 

point onwards were also aligned, enabling each artery to be analysed as a whole 

(Cornhill et al., 1985). However, the number of branches and the spacing and angle 

between pairs of branch ostia were different, ostia were different sizes, and on occasion 

ostia were damaged or missing. Instead it was decided that it would be more accurate to 
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find the centre of each ostium and use this as the centre point for the regions analysed 

around that ostium. All branches could then be superimposed using the centre as a point 

of reference. 

Montage images containing branch ostia were opened in Photoshop and were cropped to 

produce a region measuring 1000µm x 1000pm surrounding each ostia. Using the eraser 

tool, the region thought to be the branch ostium was carefully erased so it became white. 

The cropped region, containing the erased ostium, was then opened in ImageTool and 

using the "find objects" command and a pixel intensity range of 254-255 pixels, the 

white region of the ostium was selected. The objects within the image were then 

analysed and the resulting data produced coordinates for the centre of mass of each 

object. This value was noted down for each ostium. The cropped image was re-opened 

in Photoshop and slices made visible (slices divide an image into separate areas, and are 

usually used during the design of web pages). Using the X and Y coordinates noted 

down for the ostium it was possible to set the dimensions of the slices so the point where 

the slices met corresponded to the centre of the branch ostia. At this point a black mark, 

measuring 30 pixels diameter, was placed. The cropped region, now containing a black 

mark at the centre of the ostium, was pasted back into the original montage image. Two 

images were produced in Photoshop of an x-axis and y-axis, both containing letters 

corresponding to cell coordinates in an Excel spreadsheet, in 100ium x 1001.tm boxes. 

The axis images were superimposed over the montage image, and made opaque. The 

point where the black mark was found, and the corresponding Excel coordinates were 

noted down. 

4.2.7 Defining regions for analysis of results  
It was not possible to analyse every region in each EStAR image. Since the focus of our 

research is on changes in blood flow surrounding branch ostia we predominantly need to 

look at the results for these regions. Once coordinates for the Excel cell (Excell) at the 

centre of each ostium had been defined it was possible to start to define regions. In 

maps containing just an individual branch, a region of 65 x 65 Excells (6500pm x 

6500[tm) was defined centred on the Excell containing the ostium (Fig. 5.1). In maps 

containing pairs of ostia, a 65 x 65 Excell region centred on one branch would also 
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overlap the other, leading to partly duplicated data. To prevent this, the distance 

(number of Excells) between the centres of each pair of ostia in the horizontal direction 

(not accounting for angle between branches) was counted (Table 4.1) for every map. To 

enable the region sizes to be standardised across all rabbits, the smallest number of 

Excel cells between ostia was determined (=12), and this number was divided by two 

(=6). Thus, the data were analysed for a region measuring 39 x 65 Excells (3900[tm x 

6500µm) for each ostium within a pair (Fig. 5.2). This hopefully also reduced any 

effects of flow caused by the other branch. 
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Table 4.1. Horizontal distance (Excel cells and micrometers) between pairs of branch 

ostium and the average distance per rabbit. 11-4 and M1-4 are immature and mature 

rabbits respectively. Value in bold denotes the smallest horizontal distance between 

branch pairs. 

Rabbit Branches Horizontal distance Average distance per rabbit 
Excel Cells Micrometers Micrometers SEM 

11 

A+B 20 2000 

1950.0 209.4 

C+D 22 2200 
E+F 26 2600 
G+H 22 2200 
I+J 15 1500 

K+L 12 1 	1200 

12 

A+B 22 2200 

2020.0 251.8 
C+D 27 2700 
E+F 23 2300 
G+H 16 1600 
I+J 13 1300 

13 

B+C 22 2200 

2325.0 103.1 D+ E 25 2500 
F+ G 25 2500  
H+I 21 2100 

14 C+D 17 1700 1900.0 200.0 
E+F 21 2100 

M1 

C+D 18 1800 

2250.0 263.0 E+F 28 2800 
G+H 26 2600 
I+J 18 1800 

M2 

B+C 25 2500 

2114.3 151.9 

D+E 20 2000 
F+G 24 2400 
H+I 26 2600 
J+K 18 1800 
L+M 20 2000 
N+0 15 1500 

M3 

D+E 23 2300 

2300.0 248.3 F+G 30 3000 
H+I 20 2000 
J+K 19 1900 

M4 E+F 15 1500 1600.0 100.0 
G+H 17 1700 
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4.3 Results 

Using the EStAR technique, combined with propidium iodide staining, endothelial cell 

nuclei from the arterial walls of rabbits, mice and pigs could be viewed in very clear 

detail without the presence of underlying SMC nuclei (Fig. 4.7). We were able to 

produce EStARs of pairs of intercostal branch ostia in rabbits (Fig. 4.8), whole aortas in 

mice (Fig. 4.9), and single branch ostium in pigs (Fig. 4.10). 

Fig. 4.7. En face view of endothelial cell nuclei stained with propidium iodide on an 

endothelial stick and rip (EStAR) preparation. Blood flow is from top to bottom. Scale 

bar = 10011m. 
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Fig. 4.8. En face view of endothelial cell nuclei surrounding a pair of rabbit intercostal 

branch ostium stained with propidium iodide on an endothelial stick and rip (EStAR) 

preparation. Blood flow is from top to bottom. Scale bar = 5001.tm. 

139 



Fig. 4.9. En face view of endothelial cell nuclei in a mouse aorta stained with propidium 

iodide on an endothelial stick and rip (EStAR) preparation. Blood flow is from top to 

bottom. Arrow indicates an arterial cushion surrounding a branch ostium. Scale bar = 

200[Im. 
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Fig. 4.10. En face view of endothelial cell nuclei surrounding a pig intercostal branch 

ostium stained with propidium iodide on an endothelial stick and rip (EStAR) 

preparation. Blood flow is from top to bottom. Scale bar = 5001.tm 

Production of EStARs has enabled quantitative data to be collected for endothelial 

nuclear parameters, and subsequently colour maps have been produced mapping the 

changes in nuclear dimensions around intercostal branch ostia (see next chapter). 

4.4 Discussion 

The EStAR technique has proved to be a reliable and rapid method for the production of 

endothelial monolayers from the thoracic aortas of rabbits of different ages. It has also 

been possible to produce EStARs from the thoracic aortas of mice and pigs and there is 

the potential also to produce EStARs from human aortas. Of the three species looked at, 

EStARs of rabbit aortas proved the easiest to produce, whilst pigs proved most difficult. 

Rabbit aortas had a luminal diameter that was large enough to get one blade of the 

ophthalmic scissors inside the lumen to cut open the artery longitudinally, without 

damaging the endothelium on the opposite wall. Pig aortas also had a large lumen, 

however the thickness of the wall caused the biggest problem. Due to the wall 

thickness, during the dehydration step a lot of alcohol became absorbed into the tissue. 
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When attempting to stick the endothelium onto the tape by applying pressure to the 

artery, the alcohol kept leaking out rather than evaporating, preventing adhesion. With 

more time it is felt the timings could be adjusted to improve EStAR production in pig 

aortas. 

The main problem encountered with mice aortas was due to their small lumen diameter: 

it was very difficult to get a blade of the ophthalmic scissors into the lumen to cut down 

the wall to enable the artery to be opened longitudinally. This could also have caused 

damage to the endothelium as the point of the scissors may scrape along the wall. With 

practice, it is felt that mouse EStARs will be produced reliably, with little damage to the 

endothelium. 

One of the main purposes of developing the EStAR technique was to remove SMC 

nuclei from the analysis of ECn. Occasionally SMCn still remained on the endothelial 

surface and, if these were not noticed and peeled away with forceps, they could have 

affected the final results. Having produced montage images, these could be easily 

erased in Adobe Photoshop. However if they were not removed manually, the Macro 

codes were designed to exclude them from subsequent analysis, and hence the EStAR 

technique fulfilled our aim. 

Due to the size of montage images and the large number of pixels it was not possible to 

analyse whole montages in one go, hence the need to subdivide into smaller regions 

before analysis. With hindsight, it would have been more efficient to make the canvas 

for every image exactly the same dimensions. This would have made it possible to write 

an automated procedure that sub-divided the image, carried out all the filtering 

procedures, and finally saved the individual filtered images to enable analysis in 

ImageTool. Though this would have required enormous file sizes and the time taken to 

process each image would have been large, it may have been more efficient. Another 

benefit of identical canvas sizes would have been when it came to producing the colour 

maps, a further Macro code could have been written that enabled the maps to be 

produced without manual input. 
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Chapter 5: Assessing near wall blood-flow around intercostal  
branch ostia in the thoracic aorta from endothelial nuclear shape,  

as determined by fluorescence microscopy of EStAR preparations.  
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5.1 Introduction 
Previous work (Al-Musawi et al., 2004) has shown that there is a change in the pattern 

of endothelial nuclear elongation around intercostal branch ostia with age; immature 

rabbits have more elongated nuclei downstream than upstream of the ostia, whereas 

mature rabbits have more elongated nuclei upstream than downstream. Using the 

EStAR technique, the morphology of the nuclei surrounding branch ostia in immature 

and mature rabbits will be determined, and it is predicted that we will be able to confirm 

the change in the pattern of elongation previously seen. It will also be possible to 

determine the alignment of the nuclei with respect to the longitudinal axis of the arteries, 

and use this as an indicator of the direction of blood flow. Again, this has previously 

been done (Al-Musawi et al., 2004). However, since our technique is semi-automated, it 

will be possible to observe more rabbits and branches, and to look at nuclei within 

smaller areas, giving more detailed and accurate maps of nuclear morphology. 

It is predicted that there will be local changes in blood flow direction, due to blood being 

drawn into the intercostal branches from the regions immediately upstream and at the 

sides of the ostia, but there may be an overriding spiralling of the blood flow down the 

length of the arteries, indicating secondary flows. 

It is also predicted that changes in nuclear orientation will be greater in rabbits than in 

mice arteries. The ratio between branch and aortic diameters are approximately equal 

(-0.1 — 0.15) for dogs (Caro, 1978, Nichols and O'Rourke, 1998) and rabbits (Cornhill 

and Roach, 1976), and from this it is presumed the ratio in mice would be similar. 

Therefore such differences would probably not be caused by the size of branch, but are 

more likely to be due to the differences in Reynolds numbers between mice and rabbits. 

Blood flow in rabbit aortas has higher Reynolds numbers, suggesting increased inertia, 

than in mice aortas (cited in (Weinberg and Ethier, 2007). A CFD model of an 

intercostal artery branching off the thoracic aorta perpendicularly, with a diameters ratio 

of 0.1, has shown that under steady flow conditions increasing Reynolds number caused 

fluid to enter the branch from areas of slower velocities, closer to the aortic wall, thus 

affecting more strongly the wall shear stress around the ostium, decreasing it at the sides 

and increasing it upstream and downstream. Wall shear stress patterns found at higher 
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Reynolds values correlated well with lesion patterns observed in mature rabbits. For the 

lowest values of Reynolds number and flow division ratio the wall shear stress pattern 

correlated well with the lesion pattern seen in mice (Kazakidi et al., 2006). 

No previous data have been found concerning how nuclear lengths, widths and areas 

change in the periostial regions. Studies of human aortas (Repin et al., 1984) have 

shown that the mean cell density in young arteries is greater than in old, and this change 

should be evident in the rabbit aortas studied here. Nuclear lengths and widths are 

analysed to determine whether changes in one or both of them underlie the changes 

observed in LW ratios, and nuclear areas are also analysed in an exploratory fashion to 

determine whether they are also related to LW ratios. 

EStAR preparations of mice and pig aortas shall also be carried out to a) see whether it 

is possible using this technique to obtain nuclear shape data in these species, and b) if 

this is possible, to see whether the nuclear shape is different between species. 

5.2 Methods  

5.2.1 Rabbit aortas  
Thoracic aortas of male New Zealand White rabbits (Harlan Interfauna strain) were 

fixed at physiological pressure with 10% neutral buffered formalin (Sigma) as 

previously described. Rabbits were aged 6-7 weeks (n=4), 44 weeks (n=1), 50 weeks 

(n=2) and 88 weeks (n=1) (i.e. approximately 1.5, 11, 12.5 and 22 months). Based on 

the characteristics of semen, it has been shown that male NZW rabbits have reached 

sexual maturity by six months old (Macari and Machado, 1978). Rabbits were therefore 

classed as immature (I1-4) if less than 6 months old, and rabbits older than this were 

counted as mature (M1-4). The rabbits used in our experiments fell clearly within these 

groups, and did not include any period of transition between the two ages (Table 5.1). 

All rabbits were fed a standard laboratory diet without supplementary fat. 
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Table 5.1. Details of immature and mature rabbits used in EStAR technique 

experiments to determine patterns of endothelial cell nuclei around intercostal branch 

ostia. 

Age group Rabbit Age 
(weeks) 

Age 
(months) 

Body weight 
(kg) 

Number of 
branches used 

Immature 

Il 6 1.5 1.0 12 
12 6 1.5 1.4 11 
13 6 1.5 1.6 9 
14 7 1.5 1.4 4 

Mature 

M1 44 11 4.1 10 
M2 50 12.5 3.8 15 
M3 50 12.5 4.0 9 
M4 88 22 4.5 4 

All aortas underwent EStAR preparation, staining with propidium iodide, and imaging at 

200x magnification using a rhodamine filter, as previously described. 

5.2.2 Mouse aortas 
Thoracic aortas of three mice (one each of Wild-type (WT), eNOS-GFP, and Balb/c) 

were fixed at physiological pressure with 10% neutral buffered formalin before being 

excised and stored in formalin. The eNOS-GFP mouse is a transgenic mouse model in 

which an eNOS-GFP fusion protein is expressed that can be used to study vascular 

reactions in which eNOS is involved (van Haperen et al., 2003). Both WT and eNOS-

GFP mice were aged 29 weeks (7.25 months). The age of the Balb/c mouse was 

unknown but it weighed 24.2g at the time of fixation. 

All aortas underwent EStAR preparation, staining with PI, and imaging at 200x 

magnification using a rhodamine filter as previously described. 

5.2.3 Pig aortas  
Thoracic aortas from two Babraham pigs aged 3.5 months (reared at the University of 

Bristol, UK) were excised and flushed with PBS to remove any blood. Aortas were 

placed in 10% neutral buffered formalin but not fixed at physiological pressure due to 

the large volumes of fixative that would have been required. Whilst still in situ the 

aortas were measured as it was thought that once excised they could be stretched back to 
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their original length before fixation. This proved unsuccessful, but EStARs were still 

attempted to determine whether it would be possible in future to use the technique to 

determine ECn parameters in this species. 

EStARs were stained with PI and imaged at 200x magnification using a rhodamine filter 

as previously described. 

5.2.4 Data processing and statistical analysis  
Statistical tests were conducted on data from rabbits. Data structure: as with mice 

(Chapter 3), two age groups were considered — 6-7 weeks and 44-88 weeks. There were 

4 rabbits in each age group. Between 4-15 intercostal branches from the aorta of each 

rabbit were examined (4-12 in young, 36 in total; 4-15 in mature, 38 in total). The 

branches were randomly selected from the 16 present in each animal. The number and 

distribution of anatomical regions examined around each branch was more complex than 

in mice and is described below. Within each of these anatomical regions, the 

morphology of around 15 nuclei were examined. As with mice, the morphological 

parameters again included nuclear length-to-width ratio and the angle between the 

nuclear long axis and the longitudinal axis of the aortic segment. Because of the large 

sample size within each region, results for each parameter were aggregated before 

statistical analyses were conducted: only the mean value (e.g. of length-to-width ratio or 

angle) for each region was used. Statistical tests were conducted to determine whether 

there was a significant effect on each parameter of age or region, and whether there was 

a significant interaction between effects of age and region (which would imply an effect 

of age on the anatomical pattern of that parameter). 

The statistical test used was a general linear model univariate analysis of variance (SPSS 

Version 14.0) incorporating a nested design whereby rabbits were nested within age, and 

branches were in turn nested within rabbits. If this showed an overall significant result, 

the significance of differences between individual regions was determined using a post-

hoc Tukey test, having first split the data by age. Data are presented as mean ± SEM. 

Results were deemed significant if P<0.05. 

147 



Anatomical regions examined: Due to the large number of 100µm x 100µm regions 

("sub-regions") to be analysed (at least 2500 per branch), it was not possible to compare 

every one due to computer memory constraints. To overcome this, the sub-regions were 

averaged before analysis to give fewer 500µm x 500µm regions ("main regions") (Fig. 

5.1 & 5.2). However, to observe changes in ECn parameters close to the branch ostium 

at greater spatial resolution, the sub-regions in main regions "Ul", "U2", "Dl", "D2", 

"Rl", "Ll", "U1R1", "U1L1", "D1R1" and "DILI" were analysed without such 

averaging. These sub-regions are labelled "U2R1s", "U2s", "U2L1 s", "U 1 R 1 s", "Ul s", 

"UlLls", "Rls", "Lls", "DlRls", "Dls", "DlLls", "D2Rls", "D2s" and "D2Lls". 

("U", "D", "R", "L" and "s" denote upstream, downstream, right, left and sub-region, 

respectively). Main regions were also grouped into three "zones" (Zone A, Zone B and 

Zone C) according to their distance from the ostium (0-1mm, 1-2mm, and 2-3mm 

respectively — (see Fig. 5.1 and 5.2). 

Due to time constraints, fewer regions were analysed for cell density than for other 

nuclear parameters (Fig. 5.3). This allowed smaller regions to be analysed: each main 

region measured 250µm * 250µm, not 500µm * 500pm as for other parameters, but were 

not sub-divided into smaller sub-regions. Additionally, main-regions were grouped into 

two rather than three zones (Zone A* and Zone B*) depending on their distance 

(0-0.5mm and 0.5-0.75mm, respectively) from the ostium. 
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U2R2s U2R1s U. U2L1s U2L2s U2R2s U2R1s 2s U2L1s U2L2s 

U1R2s U1R1s 1s U1L1s U1L2s U1R2s U1R1s U1 U1L1s U1L2s 

R2s R1 s Cs Lis L2s R2s R1 s Cs L1 s L2s 

D1R2s D1R s als D1L1s D1L2s D1R2s D1R1s D1s w1L1s D1L2s 

D2R2s D2 • 1s D2s D2L1s D2L2s D2R2s D2R1s D2s D 	1s D2L2s 

U2R2s 2R1s U2s U2L1s U2L2s U2R2s U2R1s U2s U2L U2L2s 

U1R2 U1R1s U1s U1L1s U1L2s U1R2s U1R1s U1s U1L1s U1L2s 

Ms Cs Lis L2s R2s R1s Cs L1 s 2s 

D R2s 

ii

R2 

D1R1s Din D1L1s D1L2s D1R2s D1R1s Din D1L1s D1\ 2s 

2R2s D2R1s D2s D2L1s D2L2s D2R2s D2R1s D2s D2L1s D2L2 

U6R6 U6R5 U6R4 U6R3 U6R2 U6R1 U6 U6L1 U6L2 U6L3 U6L4 U6L5 U6L6 

U5R6 U5R5 U5R4 U5R3 U5R2 U5R1 U5 U5L1 U5L2 U5L3 U5L4 Ll5L5 U5L6 

U4R8 U4R5 U4R4 U4R3 U4R2 U4R1 U4 U4L1 U4L2 U4L3 U4L4 U4L5 U4L_6 

U3R6 U3R5 U3R4 U3R3 U3R2 U3R1 U3 U3L1 U3L2 U3L3 U3L4 U3L5 U3L6 

U2R6 U2R5 U2R4 U2R3 U2R2 U2R1 U2 U2L1 U2L2 U2L3 U2L4 U2L5 U2L6 

U1R8 UIR5 U1R4 U1R3 U1R2 U1R1 U1 U1L1 U1L2 U1L3 U1L4 U1L5 U1L6 

R6 R5 R4 R3 R2 R1 Ostium L1 L2 L3 L4 L5 L6 

D1R6 D1R5 D1R4 D1R3 D1R2 D1R1 D1 D1L1 D1L2 DIL3 D1L4 01L5 01L6 

D2R6 D2R5 D2R4 D2R3 D2R2 D2 	D2 D2L1 -\192Lc2 D2L3 D2L4 D2L5 D2L6 

D3R6 D3R5 D3R4 D3R3 D3R2 D3R1 	03 03L1 03L2\ D3L3 03L4 D3L5 D3L6 

D4R6 04R5 D4R4 D4R3.7A 04R11 	04 

1 1 

D4L1 
'\ 
\04L2 3 04L4 D4L5 041.6 

D5R6 05R5 D5R4 D5R D5R2 	05 1 	D5 D5L1 D L2 050 5L4 05L5 D5L6 

D6R6 DIRS D6R4 6R3 D6R2 	6R1 	DB D6L1 D6 0613 D6L D6LS D6L6 

= Zone A 

=Zone B 

= Zone C 

ALIIN REGIONS 

500pm 

500pm 

SITB-RE GIONS 

Fig. 5.1. Regions analysed surrounding branch ostium. "Zone A", "Zone B", and "Zone 

C" contain nuclei 0-10001.1m, 1-2mm, and 2-3mm away from branch ostia respectively. 

Each "main-region" square is 500um*5001.1m, and can be sub-divided into "sub-regions" 

measuring 1001.tm*1001.tm. "U", "D", "R", "L" and "s" denote upstream, downstream, 

right, left and sub-region, respectively. 
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RIGHT 	 LEFT 

U6R6 U8R5 116R4 U6R3 08R2 U6R1 U6 11611 UBRI 1_18 U6L1 UBL2 LIBL3 U6L4 U6L5 U8L6 

115R8 U5R5 U5R4 U5R3 U5R2 U5R1 U5 U5L1 U5R1 U5 U5L1 U5L2 U5L3 U5L4 U5L5 U5L6 

U4R13 LAIRS U4R4 U4R3 04)02 U4F21 U4 U4LI U4R1 U4 U4L1 U4L2 U4L3 114L4 U4L5 U4L6 

U3R8 U3R5 U3R4 U3R3 U3R2 U3R1 U3 U3L1 U3R1 U3 U3L1 U3L2 U3L3 U3L4 U3L5 U3L6 

1.12R6 U2R5 U2R4 U2R3 U2R2 U2R1 U2LI U2R1 U2 U2L1 U2L2 U2L3 U2L4 U2L5 U2L8 

U1R6 U1R5 U1R4 UIR3 U1R2 1.11R1 U1 UIL1 U1R1 U1 11111 U1L2 111L3 UIL4 Ul L5 U1LO 

R6 R5 R4 R3 R2 RI Ostium LI Ostium LI L2 L3 L4 15 LB 

D1R6 DI R5 D1R4 D1R3 D1R2 D1R1 01 01L1 01R1 DI D1L1 011.2 D1L3 01L4 01L5 01L6 

D2R6 ID2R5 D2R4 D2R3 D2R2 D2R1 D2L1 D2R1 132L1 02L2 0213 021.4 D2L5 D2L6 

D3R6 0385 D3R4 D3R3 D3R2 07 R \03L1 D3L2 03L3 D3L4 03L5 031.6 

D4R6 DORS D4R4 D4R3 ID4R/2/  04R1 /. 
0311_ 

D4L1\ 0412 D4L3 D4L4 D4L5 041.13 

D5R6 D5R5 05R4 D5R3 ,D5R2 

Dz/ 
05 LI  D5 SLi 055' 051_3 D5L4 D5L5 05L8 

0686 D6R5 DOR4 DO; D6R2 De 
?E'LT1  

DO D81 D81_2 UAW 081_4 06L5 06L6 

= Zone A 

= Zone B 

= Zone C 

REGIONS 

I500pm 

50011m 

U2R2s U2R1s U2s U2L1 s 

U1R2s U1 • s U1s U1L1s 

R2s R1s Cs L1s 

D1,s D1R1s DU D1L1s 

r R2s D2R1s D2s D2L1s 
/ 

- U2R1 s U2' ,,  U2L1s U2L2s 

- U1R1s U1s L1s U1L2s 

- R1s Cs L1s L2s 

D1R1s D1s D1L1s lL2s 

- D2R1s D2s D2L1s D2L 

SUB-REGIONS 

1100pm 

100pm 

Fig. 5.2. Regions analysed for left and right branches separately. "Zone A", "Zone B", 

and "Zone C" contain nuclei 0-1mm, 1-2mm and 2-3mm away from branch ostia 

respectively. Each "main-region" square is 500µm * 5001.1m, and can be sub-divided 

into "sub-regions" measuring 100µm * 100um. "U", "D", "R", "L" and "s" denote 

upstream, downstream, right, left and sub-region, respectively. 
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U4R4 U4R3 U4R2 U4R1 U4 U4L1 U4L2 U4L3 U4L4 

U3R4 U3R3 U3R2 U3R1 U3 U3L1 U3L2 U3L3 U3L4 

U2R4 U2R3 U2R2 U2R1 U2 U2L1 U2L2 U2L3 U2L4 

U1R4 U1R3 U1R2 

Ostium 

U1L2 U1L3 U1L4 

R4 R3 R2 L2 L3 L4 

D1R4 D1R3 D1R2 01L2 D1L3 D1L4 

D2R4 D2R3 D2R2 D2R1 D2 02L1 D2L2 D2L3 D2L4 

D3R4 D3R3 D3R2 D3R1 D3 D3L1 03L2 D3L3 D3L4 

D4R4 D4R3 D4R2 D4R1 D4 D4L1 D4L2 D4L3 D4L4 

= Zone B' 

= Zone A* 

1250pm 

250pm 

Fig. 5.3. Regions analysed surrounding branch ostia for nuclear density analysis. "Zone 

A*" and "Zone B*" contain nuclei 0-0.5mm and 0.5-0.75mm away from branch ostia 

respectively. "U", "D", "R", and "L" denote upstream, downstream, right and left, 

respectively. 

Additional tests not conducted on mice (Chapter 3) were carried out. To see whether 

different areas of the aortas experienced different flow patterns, branches were analysed 

depending on their location within the aorta; they were subdivided into branches within 

upper or lower portions of the descending thoracic aorta, and left hand or right hand 

branches. Upper and lower portions included regions around branches 1 to 6 and 7 to 12 

respectively, branch 1 being the first intercostal branch ostium after the aortic arch. 

Branches lower down the artery than number 12 were recovered in one mature rabbit 

(they were missing from other arteries due to being below the level of cannulation, or 

EStAR preparations were not carried out due to time constraints), but they were ignored 

in subsequent analysis. 

Differences between branches in different portions of the artery i.e. upper and lower, or 

left and right branch ostia were determined using a one-way ANOVA. To determine 

comparisons between individual regions within the area defined as "Zone A" in figure 
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5.1 and 5.2, Tukey post-hoc tests were performed after first splitting the data so that 

immature and mature rabbits were analysed separately. All data are presented as mean ± 

SEM. 

Statistical analysis was not carried out for mice or pig aortas due to the small number of 

EStARs produced. 

5.3 Results from rabbit aortas  
Results are displayed in colour maps, tables (to present mean values and standard errors, 

as SEMs cannot be shown in the maps) and graphs (to highlight important changes in 

morphology). All colour maps show the average data for endothelial cell nuclei from 

the regions described in Fig. 5.1 for immature (left) and mature (right) rabbits (unless 

otherwise marked). All maps are spatially accurate i.e. they could be overlaid onto the 

original images, and represent the data for endothelial cell nuclei in the thoracic aorta 

surrounding branch ostia (marked with a star), with mean aortic blood flow from top to 

bottom. The white square underneath the star equates to a region 500gm*500um. Data 

are not available for this region due to damage caused during the EStAR preparation, 

and slight inaccuracies determining the exact centre of the branch ostia when aligning 

images. Average values per region are indicated in each individual square, and 

correspond with the colour of the square (for key, see Fig. 4.5). "Low" resolution colour 

maps show data averaged per 50011m * 500um regions, and "high" resolution maps 

show data averaged per 100um * 100pm sub-region. 

5.3.1 Rabbit nuclear length:width ratios  
Nuclear LW ratios for 36 immature (I) and 38 mature (M) branches for the regions 

defined in Fig. 5.1 (zones A-C) are shown in Fig. 5.4. There were highly significant 

differences in mean LW ratio between ages and regions and a highly significant 

interaction between age and region (age*region) (all P<0.005). Mean LW ratios for 

individual rabbits are shown in Table 5.2. Nuclei of immature rabbits had mean LW 

ratios of 2.46 ± 0.00 (n = 3263 regions), whereas the nuclei of mature rabbits were 

34.6% more elongated, having an average LW ratio of 3.31 ± 0.01 (n = 3539 regions). 

LW ratios in rabbit M4, the oldest rabbit by a margin of at least 38 weeks, were 
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approximately 25% higher than the mean LW ratio for the nuclei of the other three 

mature rabbits. In subsequent analyses, to determine the changes in pattern of nuclear 

elongation surrounding branch ostia, exclusion of the data from this rabbit did not affect 

the statistical significance of differences: therefore the data were included in the 

analysis. 

Immature 
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Fig. 5.4. Length:width ratios of rabbit endothelial cell nuclei for all branch ostia. Each 

square represents the average data for a 500um * 500um region. Total area of each map 

is 42.25mm2. n = 4 immature rabbits, n = 4 mature rabbits. Data represent averages for 

all 36 immature and 38 mature branches. 

Table 5.2. Mean endothelial cell nuclear length:width ratios for all zones (see fig. 5.1) 

in individual rabbits, where n equals the number of regions. 

Age Group Rabbit LW ratio 
Mean SEM 

Immature 

Il 2.48 0.01 
12 2.43 0.01 
13 2.44 0.01 
14 2.67 0.01 

All immature 2.46 0.00 

Mature 

M1 3.50 0.01 
M2 3.03 0.01 
M3 3.32 0.01 
M4 4.11 0.02 

All mature 3.31 0.01 

153 



5.3.1.1 "Zone A" (500pm * 500m regions)  
LW ratios for "Zone A" regions (within 1000pm of branch ostia) are shown in Fig. 5.5. 

There was a significant effect of age (mean LW ratios 2.54 ± 0.01 and 3.32 ± 0.02 for 

immature (n = 677 regions) and mature (n = 741 regions) rabbits respectively, a 30.7% 

difference), region and the age*region interaction (all P<0.005). 

In immature rabbits, the mean LW ratios for nuclei upstream of the branch ostia were 

generally lower (2.43 ± 0.03, "Ul", n = 36 branches) than for those downstream, the 

greatest nuclear elongation being in regions "Dl" and "D2" (2.69 ± 0.04, n = 34 

branches, and 2.65 ± 0.03, n = 34 branches, respectively): the ratio of the mean upstream 

value ("Ul") to the mean downstream ("Dl") value was 0.90 (values <1 indicate greater 

nuclear elongation downstream and values >1 indicate greater elongation upstream). 

Nuclei at the lateral regions ("Rl" and "Ll") were lower than for all other regions in 

zone A, a result that differs from the findings of (Al-Musawi et al., 2004), who found 

the lowest LW ratios in the "UL" region. The LW ratios ranged from 2.36 ± 0.03 ("Rl", 

n = 36 branches) to 2.69 ± 0.04 ("Dl", n = 34 branches); a 14.0% difference. 

Mature rabbits had a different pattern of nuclear elongation, in Zone A, to immature 

rabbits. Nuclei had LW ratios in downstream and lateral regions, located next to the 

branch ostia ("Rl", "Ll", "Dl", "D1R1" and "DILI"), that were approximately equal to 

each other but were lower than all other zone A regions. Values ranged from 3.19 ± 

0.07 ("L 1" and "Dl", both n = 34 brances) to 3.45 ± 0.08 ("U2R2", n = 21 branches) 

and 3.45 ± 0.07 ("UM", n = 38 branches), a difference of 8.2%. The ratio of the mean 

upstream value ("Ul", 3.32 ± 0.07, n = 38 branches) to the mean downstream value 

("Dl", 3.19 ± 0.07, n = 38 branches) was 1.04. 

The significance of differences between individual regions within Zone A for immature 

and mature rabbits, obtained using the Tukey test, is shown in Fig. 5.6. 
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right of the black diagonal line indicate differences in immature rabbits. Squares to the 

left indicate differences in mature rabbits. 

5.3.1.2 "Zone A" (100nm * 100µm sub-regions)  

The data was split so the regions nearest the branch ostia ("U2R1", "U2", "U2L1", 

"U1R1", "Ul", "U1L1", "Rl", "Ll", "D1R1", "Dl", "DILI", "D2R1", "D2", "D2L1") 

were analysed individually, using nuclear morphologies averaged per 1001.im * 100um 

sub-region rather than 500[.un * 500tim (Fig. 5.7, Table 5.3a, b and 5.4a,b). Data were 

examined for effects of age or region, or any interaction between age and region. There 

was a significant effect of age (P<0.05) for all regions, and a significant effect of region 
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(P<0.01) for sub-regions within main regions "U1R1", "Ul", "U1L1", "Rl", "Ll", 

"D1R1", "Dl", and "DILA". There was a significant change with age in pattern 

(age*region interaction) for the regions "Ll", "D1R1", "Dl", "DIU" and "D2L1" 

(P<0.01). In immature rabbits, nuclei closest to the branch ostia were least elongated, 

and in a small region offset approximately 200um distal to the ostia, the nuclei were 

more elongated. In mature rabbits, there was a different pattern; the most rounded 

nuclei were found in a triangular region, extending approximately 800um downstream of 

the ostia, but nuclei were more elongated upstream and to the sides of the branch. 

The ratio of the mean LW ratio immediately upstream (sub-region "D2s" in main-region 

"Ul") to the mean LW ratio immediately downstream of the ostia (sub-region "U2s" in 

main-region "D1) was 0.89 in immature rabbits, and 0.95 in mature rabbits. In the 

regions 100um from the branch ostia, the ratio for the LW ratios upstream (sub-region 

"Dls" in main region "Ul") to downstream (sub-region "Uls" in main region "Dl"), 

was 0.88 in immature rabbits and 1.02 in mature rabbits. 

157 



3.35 3.27 3.34 3.37 3.29 3.28 3.28 3.31 3.30 3.28 3.32 3.29 3.35 3.33 134 

3.25 124 3.27 3.35 3.34 3.31 3.27 3.23 3.33 3.31 3.48 3.32 3.35 3.31 3.33 

2.65 2.52 252 2.57 2.. 3.34 3.33 3.36 3.31 3.31 3.21 125 3.20 3.31 3.24 3.28 135 3.33 3.29 3.22 

2.50 2.53 2.49 2.50 3.38 3.33 3.30 3.32 3.37 3.27 azo 3.29 3.29 3.28 3.31 134 3.33 3.33 128 

2.56 2.54 2.55 2.56 2. 3.30 3.31 3.33 3.39 3.35 3.32 3.30 3.27 3.34 3.39 3.33 3.34 3.43 141 3.38 

2.50.2 51 2.55 2.59 2 3.32 3.36 3.32 3.43 137 3.36 3.38 3.39 3.41 3.43 135 142 3.45 147 3.34 

2.462.482.572.562 147 3.40 3.39 3.42 3.36 3.41 3.41 142 3.39 3 421139 3.44 3.38 148 148 

2 52 2 51 2.57 2.62 2. 344 3.45 3.39 3.38 3.40 133 3.29 3.28 3.41 a41 3.41 3.42 3.46 3.49 3.48 

2.42 250 2.59 2.58 2. 3.40 3.44 3.39 3.31 3.30 3.27 3.32 3.27 3.29 3 31 3.42 3.42 3.41 3.42 3.54 

2.31 2 44 2.59 2.59 2. 3.38 3.48 3.33 3.27 3.15 108 3.05 3.04 3.08 3061108 3.26 133 3.46 3.47  

2.112372.512.582 3.31 3.32 3.34 3.14 2.82 3.06 3.27 3.35 3 31 

2.11 2.24 2.51 2.55 2.4 3.28 3.30 3.25 3.08 3.28 3.32 3.24 

2.85 2 29 241 2.43 2. 3.33 3.25 3.18 3.37 2.81 Mature Branch 
Ostia 

3.23 3.27 3.18 

2.28 73.4 2.33 2.43 2. 3.21 3.22 3.15 3.16 107 3.03 /25 3.27 320 

2.42 2.40 2.47 2.51 2 3.24 3.23 3.17 3.22 3.44 2.93 a23 3.18 3.20 3.09 

2.55 2.55 2 49 2.54 2. 333 3.21 3.23 3.09 3.03 3.13 3.12 121 2.92 al,  120 3.21 3.10 3.22 3.23.  

2.57 2,62 2.63 2.54 2, 3.30 327 3.32 3.27 3.23 3.08 108 3.22 3.14 3.23 3.20 3.23 3.26 3.25 3.22 

2.70 2.63 2.61 2.56 2. 3.39 /25 3.31 3.27 3.13 3.07 3.15 3.02 114 3.26 3.18 3.27 3.30 3.3o 3.30 

2.68 2.61 2.53 2.61 2. 3.37 3.24 3.30 3.28 3.18 3.14 3.18 3.10 3.13 3.22 3.21 3.27 3.31 3.34 3.26 

2.63 2.15 2.55 2.58 2. 3.40 3.29 3.35 3.27 3.27 3.20 3.16 3.14 3.16 3.27 3.35 3.20 3.37 3.34 3.35 

2,68 2.56 2.57 2.52 2.. 3.48 3.32 3.34 3.32 126 3.19 3.23 3.19 125 3.34 3.22 3.28 3.33 3.37 3.49 

2.65 2.50 2.61 2.49 2. 3.40 3.32 3.30 3.35 135 3.26 3.23 3.25 3.30 3.28 3.31 133 3.33 3.34 3.45 

2.56 2.61 2.53 2.52 2., 3.38 3.31 3.24 3.33 3.32 3.32 3.25 3.18 3.27 3.24 128 3.30 3.29 3.33 3.50 

2.60 2.59 2.59 2.50 2.4 3.42 128 3.28 3.38 3.36 3.36 3.32 3.30 3.26 3.28 3.29 3.32 3.24 3.36 3.44 

3.42 3.30 3.32 3.34 135 330 3.32 3.27 3.32 3.26 3.28 3.41 3.39 3.34 3.37 

/59 

2.62 

2.51 

2.61 

2.59 

/55 

2.61 

2.58 

2.50 

58 

2.58 

2.62 

/54 

2.54 2.57 2.53 /51 

2.52 2.56 248 2.42 

2.57.  2 47 248 2 50 

2.51 2.52 2.51 2.49 

2.51 2.52'248 2.45 

2.65 2.5612.46 2.28 

2.55 2.49 2.40 2.26 

7.47 2.39 237 2.17 

2.49 2.38 2.25 2.09 

2.49 2.47 2.35 2.28 

2.55 2.46 240 2 42 

2.52 2.52 2.57 2.54 

2.60 2.59 2.64 2.57 

2.60 2.54 2.59 285 

2.63 2.63 2.61 2.67 

2,60 2.56 2.58 2.62 

2.57 2.57 2.54 2.63 

2.54 2.56 2.56 2.62 

2.62 2.57 2.58 2.63 

2.46 

2.57 

2.69 

2.70 

2.71 

2.69 

2 69 

2.65 

2.63 

2.52 

2.53 

2.49 

2.28 

2.56  

2.56 

2.56 

2.54 

2._ 	: 	2: 

2.53 2.59 2.51 2.51 2.53 

2.54 2.56 2.53 2.57 2.58 

2.55 2.61 2.51 2.54 2.54 

247 2.46 2 56 2.46 2.54 

2.51 247 2 52 2.52 /47 

2.50 2.54 2 50 2.50 2 45 

2.42 2.42 2 39 2.36 234 

222 2.19 217 2.20 221 

Immature Branch 
Ostia 

2.48 2.54,243 2.46 2.48 

2.65 2.8011 2.67 2.62 

2 83 279 2 8,  276 2.70 

2.79 2.73 2.82 277 2.70 

2.72 2.58 2.72 2 77 2.71 

2.64 2,58 2.71 2.68 2.72 

Z72 2.70 2.87 2.63 2.63 

2.76 2.63 2.62 2.63 2.65 

2.67 2.65 2.58 2.64. 2.58 
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Table 5.3a. Immature rabbit endothelial cell nuclear LW ratios for sub-regions (10Ourn 
* 1001.tm) within upstream and lateral main-regions in "Zone A", where n equals the 
number of branches. 

Immature U2R1 U2 U2L1 U1R1 U1 U1L1 R1 L1 

Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 2.59 0.06 2.55 0.05 2.53 0.04 2.54 0.05 2.47 0.04 2.50 0.05 2.65 0.10 2.11 0.13 

U2R1s 2.54 0.05 2.60 0.04 2.55 0.05 2.57 0.04 2.46 0.04 2.51 0.04 2.56 0.05 2.37 0.08 

U2s 2.58 0.06 2.58 0.04 2.55 0.05 2.53 0.04 2.56 0.04 2.55 0.06 2.46 0.05 2.51 0.07 

U2L1s 2.57 0.05 2.54 0.04 2.57 0.05 2.51 0.04 2.46 0.03 2.59 0.04 2.28 0.07 2.58 0.06 

U2L2s 2.61 0.04 2.53 0.05 2.44 0.06 2.54 0.04 2.54 0.05 2.55 0.07 2.15 0.07 2.52 0.08 

U1R2s 2.58 0.07 2.59 0.03 2.56 0.05 2.52 0.06 2.51 0.04 2.46 0.03 2.55 0.06 2.11 0.10 

U1R1s 2.58 0.04 2.60 0.03 2.56 0.04 2.56 0.04 2.47 0.04 2.48 0.04 2.49 0.06 2.24 0.12 

U1s 2.59 0.06 2.53 0.03 2.53 0.04 2.48 0.04 2.52 0.04 2.57 0.05 2.40 0.07 2.51 0.08 

1 	U1L1s 2.58 0.05 2.55 0.04 2.56 0.05 2.42 0.04 2.52 0.04 2.56 0.06 2.26 0.09 2.55 0.07 

1 	U1L2s 2.60 0.03 2.52 0.05 2.52 0.08 2.52 0.05 2.47 0.04 2.60 0.07 1.90 0.16 2.49 0.07 

R2s 2.59 0.06 2.53 0.04 2.65 0.06 2.55 0.07 2.50 0.06 2.52 0.05 2.47 0.06 2.85 0.46 

R1s 2.61 0.05 2.59 0.04 2.52 0.04 2.47 0.04 2.54 0.04 2.51 0.05 2.39 0.05 2.29 0.10 

Cs 2.61 0.05 2.51 0.03 2.52 0.04 2.48 0.04 2.50 0.04 2.57 0.06 2.37 0.07 2.41 0.07 

Lis 2.58 0.04 2.51 0.03 2.57 0.05 2.50 0.04 2.50 0.04 2.62 0.07 2.17 0.09 2.43 0.05 

L2s 2.56 0.03 2.53 0.04 2.46 0.07 2.53 0.04 2.45 0.04 2.64 0.08 2.01 0.16 2.53 0.07 

D1R2s 2.62 0.06 2.54 0.04 2.50 0.04 2.51 0.08 2.42 0.05 2.42 0.05 2.49 0.06 2.28 0.14 

D1R1s 2.59 0.04 2.56 0.05 2.53 0.05 2.52 0.04 2.42 0.04 2.50 0.05 2.38 0.04 2.34 0.08 

Dis 2.58 0.05 2.53 0.04 2.49 0.04 2.51 0.05 2.39 0.04 2.59 0.07 2.25 0.06 2.33 0.06 

D1L1s 2.62 0.05 2.57 0.03 2.50 0.05 2.49 0.05 2.36 0.05 2.58 0.07 2.09 0.06 2.43 0.05 

D1L2s 2.56 0.03 2.58 0.05 2.57 0.08 2.49 0.05 2.34 0.06 2.74 0.06 2.05 0.14 2.46 0.05 

D2R2s 2.51 0.06 2.55 0.04 2.56 0.04 2.51 0.09 2.22 0.06 2.31 0.07 2.49 0.05 2.42 0.08 

D2R1s 2.55 0.04 2.61 0.04 2.54 0.05 2.52 0.05 2.19 0.07 2.44 0.08 2.47 0.04 2.40 0.06 

D2s 2.50 0.04 2.51 0.04 2.55 0.04 2.48 0.05 2.17 0.06 2.59 0.06 2.35 0.06 2.47 0.05 

D2L1s 2.54 0.04 2.54 0.04 2.56 0.05 2.45 0.06 2.20 0.06 2.59 0.06 2.28 0.06 2.51 0.04 

D2L2s 2.56 0.05 2.54 0.04 2.57 0.05 2.28 0.05 2.21 0.06 2.62 0.06 2.30 0.09 2.50 0.05 
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Table 5.3b. Immature rabbit endothelial cell nuclear LW ratios for sub-regions (100urn 
* 100µm) within downstream main-regions in "Zone A", where n equals the number of 
branches. 

Immature D1R1 D1 D1L1 D2R1 D2 D2L1 

Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2s 255 0.05 2.48 0.09 2.55 0.07 2.60 0.06 2.64 0.06 2.68 0.05 
U2R1s 2.48 0.05 2.54 0.07 2.55 0.05 2.56 0.04 2.68 0.05 2.58 0.05 

U2s 2.40 0.04 2.43 0.07 2.49 0.05 2.58 0.05 2.71 0.04 2.57 0.04 
U2L1s 2.42 0.06 246 0.08 2.54 0.05 2.62 0.06 2.68 006 2.52 0.04 
U2L2s 2.46 0.07 2.48 0.06 2.52 0.05 2.69 0.06 2.72 0.06 2.52 0.06 
U1R2s 2.62 0.06 2.65 0.08 2.57 0.06 2.57 0.05 2.72 0.06 2.65 0.06 
U1R1s 2.52 0.05 2.80 0.08 2.62 0.05 2.57 0.04 2.70 0.05 2.60 0.04 

I-11s 2.57 0.06 2.71 0.07 2.63 0.04 2.54 0.05 2.67 0.05 2.61 004 
U1L1s 2.54 0.06 2.67 006 2.54 0.05 2.63 0.06 2.63 0.05 2.49 0.04 
U1L2s 2.57 0.06 2.62 0.07 2.53 0.05 2.69 0.06 2.63 0.05 245 0.07 
R2s 2.60 0.07 2.90 0.16 2.70 0.06 2.54 0.04 2.76 0.07 2.56 0.06 

R1s 2.59 0.05 2.79 0.07 2.63 004 2.56 0.03 2.63 0.05 2.61 0.05 
Cs 2.64 0.05 2.87 0.08 2.61 0.05 2.56 0.05 2.62 0.05 2.53 0.04 
L1 s 2.57 0.06 2.76 0.06 2.56 0.04 2.62 0.06 2.63 0.05 2.52 0.04 
L2s 2.69 0.07 2.70 0.07 2.59 0.05 2.65 0.05 2.65 0.05 245 0.06 

D1R2s 2.60 0.06 2.78 0.08 2.68 0.06 2.62 0.06 2.67 0.05 2.60 0.04 
D1R1s 2.54 0.05 2.73 0.07 2.61 0.04 2.57 003 2.66 0.05 2.59 0.03 

D1 s 2.59 0.05 2.82 0.06 2.53 0.04 2.58 0.04 2.58 0.04 2.59 0.05 
D1L1s 2.65 0.06 2.77 0.07 2.61 0.03 2.63 0.05 2.64 0.05 2.50 0.05 
D1L2s 2.70 0.07 2.70 0.05 2.49 0.09 2.63 0.05 2.58 0.04 2.41 0.06 
D2R2s 2.63 0.05 2.72 0.07 2.63 0.05 2.61 0.04 254 0.05 2.60 0.06 
D2R1s 2.60 0.04 2.68 0.05 2.56 0.05 2.57 0.04 255 0.04 2.53 0.04 

D2s 2.61 0.05 2.72 0.04 2.55 0.05 2.51 0.03 2.60 005 2.54 0.05 
D2L1s 2.67 0.05 2.77 0.05 258 003 2.62 0.04 2.63 0.04 2.50 0.04 
D2L2s 2.71 0.07 271 0.06 256 0.06 2.60 0.04 2.59 004 245 007 
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Table 5.4a. Mature rabbit endothelial cell nuclear LW ratios for sub-regions (100pm * 
100pm) within upstream and lateral main-regions in "Zone A", where n equals the 
number of branches. 

Mature U2R1 U2 U2L1 U1R1 U1 U1L1 R1 L1 

Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 3.35 0.11 3.28 0.08 3.32 0.07 3.32 0.07 3.36 0.09 3.35 0.10 3.31 0.09 2.68 0.16 

U2R1s 3.27 0.07 3.28 0.07 3.29 0.08 3.36 0.08 3.38 0.10 3.42 0.09 3.32 0.08 3.06 0.10 

U2s 3.34 0.08 3.31 0.07 3.35 0.08 3.32 0.08 3.39 0.09 3.45 0.09 3.34 0.11 3.27 0.08 

U2L1s 3.37 0.08 3.30 0.07 3.33 0.06 3.43 0.10 3.41 0.10 3.47 0.09 3.14 0.11 3.38 0.08 

U2L2s 3.29 0.09 3.28 0.07 3.34 0.12 3.37 0.08 3.43 0.11 3.34 0.09 2.82 0.10 3.31 0.08 

U1R2s 3.25 0.11 3.31 0.10 3.48 0.19 3.47 0.09 3.41 0.10 3.39 0.09 3.28 0.11 2.50 0.19 

U1R1s 3.24 0.07 3.27 0.08 3.32 0.07 3.40 0.09 3.41 0.09 3.44 0.09 3.30 0.07 2.79 0.17 

U1s 3.27 0.08 3.23 0.08 3.35 0.08 3.39 0.07 3.42 0.10 3.38 0.08 3.25 0.11 3.28 0.08 

U1L1s 3.36 0.09 3.33 0.08 3.31 0.06 3.42 0.08 3.39 0.10 3.48 0.09 3.08 0.14 3.32 0.07 

U1L2s 3.34 0.09 3.31 0.08 3.33 0.10 3.38 0.09 3.42 0.10 3.48 0.11 2.47 0.14 3.24 0.10 

R2s 3.34 0.10 3.21 0.08 3.28 0.09 3.44 0.09 3.33 0.08 3.41 0.09 3.33 0.11 2.67 0.41 

R1s 3.33 0.08 3.25 0.09 3.35 0.07 3.45 0.08 3.29 0.09 3.42 0.09 3.25 0.07 2.81 0.19 

Cs 3.36 0.10 3.20 0.08 3.33 0.07 3.39 0.08 3.28 0.09 3.46 0.08 3.18 0.12 3.23 0.08 

Lis 3.31 0.09 3.31 0.09 3.29 0.08 3.38 0.09 3.41 0.10 3.49 0.07 3.37 0.24 3.27 0.07 

L2s 3.31 0.09 3.24 0.07 3.22 0.08 3.40 0.08 3.41 0.10 3.48 0.11 2.81 0.15 3.18 0.10 

D1R2s 3.38 0.09 3.27 0.09 3.31 0.08 3.40 0.08 3.27 0.08 3.42 0.08 3.21 0.11 2.52 0.15 

D1R1s 3.33 0.08 3.26 0.09 3.34 0.08 3.44 0.07 3.32 0.09 3.42 0.08 3.22 0.08 3.03 0.13 

D1s 3.30 0.09 3.29 0.09 3.33 0.08 3.39 0.08 3.27 0.09 3.41 0.07 3.15 0.09 3.28 0.08 

D1L1s 3.32 0.09 3.29 0.08 3.33 0.09 3.31 0.07 3.29 0.10 3.42 0.07 3.18 0.10 3.27 0.09 

D1L2s 3.37 0.09 3.28 0.09 3.28 0.10 3.30 0.08 3.31 0.09 3.54 0.11 3.07 0.30 3.20 0.12 

D2R2s 3.30 0.08 3.32 0.09 3.33 0.10 3.38 0.09 3.08 0.10 3.08 0.09 3.24 0.13 2.93 0.14 

D2R1s 3.31 0.08 3.30 0.09 3.34 0.10 3.48 0.07 3.05 0.12 3.26 0.08 3.23 0.09 3.23 0.09 

D2s 3.33 0.10 3.27 0.08 3.43 0.10 3.33 0.09 3.04 0.14 3.33 0.07 3.17 0.09 3.18 0.08 

D2L1s 3.39 0.10 3.34 0.09 3.41 0.09 3.27 0.06 3.08 0.14 3.48 0.07 3.22 0.11 3.20 0.08 

D2L2s 3.35 0.08 3.39 0.10 3.38 0.10 3.15 0.08 3.06 0.11 3.47 0.11 3.44 0.23 3.09 0.11 
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Table 5.4b. Mature rabbit endothelial cell nuclear LW ratios for sub-regions (100um * 
100um) within downstream main-regions in "Zone A", where n equals the number of 
branches. 

Mature D1R1 D1 D1L1 D2R 1 D2 D2L1 

Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2s 3.33 0.12 3.13 0.12 3.20 0.12 348 0.13 3.19 0.08 3.22 0.08 
U2R1s 321 0.07 3.12 0.15 3.21 0.09 3.32 0.08 3.23 0.09 3.28 0.07 

U2s 3.23 0.08 3.21 0.20 3.19 0.07 3.34 0.08 3.19 0.08 333 0.07 
U2L1s 3.09 0.08 2.92 0.16 3.22 008 3.32 008 3.25 0.09 337 0.09 
U2L2s 3.03 0.10 3.17 0.09 3.23 0.09 3.26 008 334 0.10 3.49 0.16 
U1R2s 3.30 0.13 3.08 0.10 3.20 0.09 3.40 0.12 3.26 0.08 3.31 0.08 
U1R1s 327 0.08 3.08 0.10 3.23 0.09 3.32 0.08 3.23 0.08 3.33 0.08 

U1s 3.32 099 3.22 0.11 3.26 007 3.30 0.08 3.25 0.09 3.33 0.07 
U1L1s 3.27 0.08 3.14 0.10 3.25 0.07 3.35 0.09 3.30 0.09 3.34 097 
U1L2s 3.23 0.11 3.23 0.09 3.22 0.09 3.35 0.08 3.28 0.10 3.45 0.13 

R2s 3.39 0.12 3.07 0.09 3.18 0.10 338 0.11 3.32 0.07 3.28 0.08 
R1s 3.25 009 3.15 009 327 009 331 0.09 3.25 0.08 3.30 0.08 
Cs 3.31 0.08 3.02 0.08 3.30 0.07 3.24 0.08 3.18 0.09 3.29 098 
Lis 3.27 0.08 3.14 0.09 3.30 0.07 3.33 0.08 3.27 0.09 3.33 0.08 
L2s 3.13 0.09 3.26 0.09 3.30 009 3.32 007 3.24 0.08 3.50 0.12 

D1R2s 3.37 0.14 3.14 0.09 3.21 007 3.42 0.12 336 0.07 329 0.07 
D1R1s 3.24 0.09 3.18 008 3.27 0.07 3.28 009 332 0.08 332 0.07 
Die 3.30 0.08 3.10 0.09 3.31 0.09 3.28 0.08 3.30 0.09 3.24 0.07 

D1L1s 328 0.08 3.13 0.08 3.34 0.08 3.38 0.09 3.26 0.09 3.36 0.09 
D1L2s 3.18 0.08 3.22 0.08 3.26 0.10 3.36 0.07 3.28 0.07 3.44 0.11 
D2R2s 3.40 0.13 3.20 0.09 3.35 0.10 3.42 0.13 3.30 0.07 3.28 0.07 
D2R1s 3.29 0.09 3.16 0.09 3.20 0.07 3.30 0.09 3.32 0.07 3.41 0.09 

D2s 335 0.08 3.14 0.09 3.37 0.08 3.32 0.09 3.27 0.09 3.39 099 
D2L1s 3.27 0.07 3.16 0.08 3.34 0.08 334 0.09 3.32 0.09 3.34 0.09 
D2L2s 3.27 0.09 3.27 0.07 3.35 0.12 335 0.08 3.26 0.08 3.37 0.11 

Tukey tests were performed on nuclear morphologies in "Zone A" - that is, within 

500gm of the branch ostia (main regions "U1R1", "Ul", "U1L1", "Rl", "Ll", "D1R1", 

"Dl", "D1L1") - to observe where differences in nuclear elongation existed between the 

sub-regions within each of these main regions (Appendix B.la-h). 

5.3.1.3 "Zone B" (500iim * 500µm regions)  
LW ratios of nuclei within "Zone B" i.e. nuclei lmm-2mm from branch ostia, defined in 

Fig. 5.1, are shown in Table 5.5. There were highly significant effects of age and 

region, and the pattern of nuclear elongation changed with age (P<0.005). The mean 

LW ratio in immature rabbits was 2.48 ± 0.01 (n = 1163 regions), and in mature rabbits 

the nuclei were 35.5% more elongated (3.36 ± 0.01, n = 1355 regions). Values ranged 

from 2.29 ± 0.04 ("D4L4", n = 14 branches) to 2.59 ± 0.03 ("U3R1", n = 36 branches) 

in immature rabbits, a difference of 13.1%, and in mature rabbits, values ranged from 
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3.11 ± 0.07 ("D3L4", n = 18 branches) to 3.51 ± 0.09 ("U3R3", n = 21 branches) and 

3.51 ± 0.08 ("U1R3", n = 21 branches), a difference of 12.9%. 

Table 5.5. Rabbit endothelial cell nuclear LW ratios for "Zone B" regions, where n 
e uals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U4R4 2.47 0.05 3.42 0.10 
U4R3 2.53 0.05 3.44 0.09 
U4R2 2.54 0.04 3.41 0.09 
U4R1 2.57 0.03 3.36 0.06 

U4 2.58 0.03 3.33 0.06 
U4L1 2.55 0.03 3.36 0.07 
U4L2 2.46 0.04 3.35 0.08 
U4L3 2.36 0.04 3.37 0.07 
U4L4 2.32 0.05 3.20 0.08 
U3R4 2.47 0.05 3.44 0.09 
U3R3 2.50 0.04 3.51 0.09 
U3R2 2.57 0.04 3.41 0.10 
U3R1 2.59 0.03 3.30 0.06 

U3 2.58 0.03 3.32 0.07 
U3L1 2.54 0.03 3.34 0.07 
U3L2 2.45 0.05 3.36 0.07 
U3L3 2.39 0.04 3.36 0.07 
U3L4 2.34 0.04 3.26 0.07 
U2R4 2.47 0.05 3.42 0.09 
U2R3 2.54 0.04 3.48 0.09 
U2L3 2.39 0.05 3.41 0.08 
U2L4 2.35 0.05 3.27 0.08 
U1R4 2.46 0.05 3.49 0.08 
U1R3 2.54 0.05 3.51 0.08 
U1L3 2.43 0.04 3.42 0.09 
U1L4 2.34 0.05 3.26 0.08 
R4 2.42 0.05 3.48 0.08 
R3 2.54 0.05 3.45 0.10 
L3 2.39 0.04 3.36 0.10 
L4 2.34 0.06 3.24 0.08 

D1R4 2.41 0.06 3.44 0.08 
D1R3 2.52 0.04 3.40 0.10 
D1L3 2.39 0.04 3.34 0.09 
D1L4 2.37 0.06 3.15 0.06 
D2R4 2.40 0.05 3.43 0.08 
D2R3 2.50 0.05 3.44 0.09 
D2L3 2.39 0.04 3.34 0.09 
D2L4 2.34 0.06 3.12 0.07 
D3R4 2.41 0.04 3.46 0.08 
D3R3 2.50 0.05 3.45 0.10 
D3R2 2.55 0.04 3.42 0.10 
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D3R 1 2.55 0.02 3.36 0.08 
D3 2.57 0.03 3.33 0.07 

D3L1 2.58 0.03 3.36 0.07 
D3L2 2.43 0.05 3.37 0.08 
D3 L3 2.38 0.04 3.28 0.08 
D3 L4 2.31 0.05 3.11 0.07 
D4R4 2.43 0.05 3.41 0.10 
D4R3 2.50 0.06 3.44 0.09 
D4R2 2.58 0.04 3.42 0.11 
D4R1 2.54 0.03 3.36 0.08 

D4 2.57 0.03 3.34 0.06 
D4L1 2.53 0.03 3.38 0.06 
D4L2 2.45 0.06 3.34 0.07 
D4L3 2.32 0.04 3.25 0.07 
D4L4 2.29 0.04 3.13 0.06 

Total mean 2.48 0.01 3.36 0.01 

5.3.1.4 "Zone C" (500Rm * 5001.im regions)  

Nuclear LW ratios in the regions within "Zone C" (2-4mm from branch ostia) defined in 

Fig. 5.1 are shown in Table 5.6. There were highly significant effects of age and region, 

and the pattern of nuclear elongation changed with age (P<0.005). The mean LW ratios 

were 2.41 ± 0.01 and 3.26 ± 0.01 in immature (n = 1423 regions) and mature (n = 1443 

regions) rabbits respectively; LW ratios in mature rabbits were 35.3% more elongated. 

Values ranged from 2.22 ± 0.05 ("U6R6", n = 9 branches) to 2.56 ± 0.03 ("U5", n = 33 

branches) in immature rabbits, a difference of 15.3%, and in mature rabbits, values 

ranged from 2.95 ± 0.17 ("U6R6", n = 4 branches) to 3.44 ± 0.09 ("D2R5", n = 19 

branches), a difference of 16.6%. 
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Table 5.6. Rabbit endothelial cell nuclear LW ratios for immature and mature rabbits in 
"Zone C", where n equals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U6R6 2.22 0.05 2.95 0.17 
U6R5 2.27 0.06 3.02 0.11 
U6R4 2.35 0.07 3.07 0.12 
U6R3 2.39 0.06 3.06 0.12 
U6R2 2.44 0.06 3.11 0.13 
U6R1 2.49 0.04 3.26 0.10 

U6 2.50 0.04 3.21 0.10 
U6L1 2.50 0.04 3.23 0.10 
U6L2 2.43 0.05 3.37 0.11 
U6L3 2.36 0.04 3.33 0.10 
U6L4 2.30 0.04 3.25 0.13 
U6L5 2.28 0.04 3.27 0.12 
U6L6 2.32 0.03 3.09 0.14 
U5R6 2.31 0.04 3.31 0.10 
U5R5 2.32 0.03 3.35 0.11 
U5R4 2.41 0.04 3.28 0.08 
U5R3 2.51 0.05 3.28 0.08 
U5R2 2.51 0.05 3.29 0.08 
U5R1 2.53 0.04 3.29 0.06 

U5 2.56 0.03 3.25 0.06 
U5L1 2.54 0.04 3.29 0.06 
U5L2 2.46 0.04 3.32 0.08 
U5L3 2.39 0.04 3.35 0.08 
U5L4 2.31 0.04 3.26 0.08 
U5L5 2.36 0.05 3.20 0.07 
U5L6 2.36 0.05 3.20 0.10 
U4R6 2.36 0.04 3.32 0.13 
U4R5 2.37 0.04 3.35 0.09 
U4L5 2.35 0.04 3.20 0.08 
U4L6 2.42 0.06 3.07 0.09 
U3R6 2.37 0.04 3.32 0.09 
U3R5 2.36 0.03 3.36 0.07 
U3L5 2.30 0.04 3.15 0.08 
U3L6 2.40 0.05 3.09 0.10 
U2R6 2.35 0.04 3.27 0.07 
U2R5 2.34 0.04 3.35 0.07 
U2L5 2.30 0.03 3.14 0.08 
U2L6 2.38 0.05 3.07 0.10 
U1R6 2.35 0.04 3.34 0.09 
U1R5 2.36 0.04 3.41 0.07 
U1L5 2.34 0.03 3.16 0.07 
U1L6 2.39 0.03 3.09 0.10 

R6 2.34 0.03 3.30 0.09 
R5 2.34 0.03 3.37 0.07 
L5 2.32 0.04 3.13 0.07 
L6 2.38 0.03 3.07 0.10 
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D1R6 2.39 0.03 3.31 0.09 
D1R5 2.34 0.04 3.40 0.09 
D1L5 2.35 0.04 3.17 0.07 
D1L6 2.37 0.04 3.11 0.09 
D2R6 2.37 0.04 3.32 0.09 
D2R5 2.36 0.05 3.44 0.09 
D2L5 2.32 0.04 3.13 0.06 
D2L6 2.34 0.03 3.04 0.10 
D3R6 2.40 0.04 3.30 0.09 
D3R5 2.37 0.04 3.42 0.10 
D3L5 2.33 0.05 3.12 0.07 
D3L6 2.32 0.04 3.06 0.09 
D4R6 2.40 0.04 3.30 0.09 
D4R5 2.36 0.05 3.41 0.09 
D4L5 2.35 0.04 3.16 0.06_, 

0.09 D4L6 2.30 0.05 3.04 
D5R6 2.37 0.06 3.27 0.10 
D5R5 2.42 0.06 3.42 0.08 
D5R4 2.43 0.06 3.38 0.11 
D5R3 2.48 0.06 3.43 0.10 
D5R2 2.55 0.06 3.39 0.10 
D5R1 2.54 0.03 3.35 0.07 

D5 2.53 0.03 3.32 0.07 
D5L1 2.52 0.03 3.29 0.06 
D5L2 2.44 0.06 3.28 0.09 
D5L3 2.34 0.04 3.23 0.07 
D5L4 2.29 0.05 3.20 0.07 
D5L5 2.33 0.04 3.18 0.07 
D5L6 2.33 0.04 3.06 0.10 
D6R6 2.39 0.05 3.06 0.12 
D6R5 2.44 0.05 3.34 0.10 
D6R4 2.47 0.06 3.35 0.12 
D6R3 2.52 0.08 3.42 0.11 
D6R2 2.55 0.08 3.36 0.08 
D6R1 2.52 0.04 3.31 0.06 

D6 2.48 0.04 3.24 0.06 
D6L1 2.49 0.04 3.26 0.07 
D6L2 2.44 0.07 3.15 0.08 
D6L3 2.35 0.07 3.17 0.08 
D6L4 2.28 0.06 3.09 0.06 
D6L5 2.26 0.03 3.07 0.05 
D6L6 2.34 0.03 3.02 0.06 

Total mean 2.41 0.01 3.26 0.01 
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5.3.1.5 Nuclear LW ratios along the longitudinal midline through the  

branch ostium 
LW ratios of nuclei along the longitudinal midline, from upstream ("U6" to "Ul") to 

downstream ("Dl" to "D6") are shown in Fig. 5.8. Data for nuclei within "Ul", "U2", 

"Dl" and "D2" are shown split into their constitutive sub-regions along the midline, to 

show how the pattern of nuclear elongation changes close to the ostia 

Immature 

• Mature 

CO 
0.1 
a 

U6  U5  U4  U3  U2  U1  D1  D2  D3  D4  D5  D6 

J 

csi 
0 

Regions 

Fig. 5.8. Mean nuclear LW ratios along the longitudinal midline through the branch 

ostia from upstream to downstream, for immature and mature rabbits. The branch ostia 

falls between regions "Ul" and "Dl". Data for regions closest to the ostia have been 

sub-divided into their constitutive sub-regions to show changes over a small area 

(100m). Region names are described in Fig. 5.1. Bars show means ± SEM (n = 

number of branches). 

5.3.1.6 Nuclear LW ratios around ostia in different parts of the descending 

thoracic aorta (500µm * 500pm regions)  
When the morphology of the nuclei within Zones A-C was analysed as a function of the 

location of the branch ostium i.e. when branches within the upper or lower portion of the 

artery, and branch ostia on the left hand or right hand side of a branch pair, were 

analysed separately, the differences between immature and mature rabbits, regions and 
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the interaction between age and region were still significant (P<0.05). LW ratios for 

immature rabbits in the upper and lower portion of the artery were 2.51 ± 0.01 and 2.40 

± 0.00 respectively (4.4% difference, P<0.01, n = 1854 and 1409 regions respectively), 

and for mature rabbits were 3.47 ± 0.01 and 3.30 ± 0.01 respectively (4.9% difference, 

P<0.01, n = 1378 and 1755 regions respectively). Nuclear LW ratios for left and right 

branch ostia for immature rabbits were 2.48 ± 0.01 and 2.44 ± 0.01 respectively (1.6% 

difference, P<0.01, n = 1635 and 1460 respectively), and for mature rabbits were 3.33 ± 

0.01 and 3.24 ± 0.01 respectively (2.7% difference, P<0.01, n = 1535 and 1475 

respectively). Data for nuclei within individual regions in "Zone A" for the upper and 

lower portion of the artery and right and left portions of the artery are shown in Tables 

5.7 and 5.8 respectively. 

Nuclear LW ratios for immature and mature rabbits, in regions "Zone A", "Zone B", and 

"Zone C", separated into the means for ostia from the upper and lower portions of the 

artery, and branch ostia on the left and right hand side of artery, are shown in Table 5.9. 

Colour maps showing mean variations in LW ratio around the branch ostia at low 

resolution (averages per 500µm * 500µm regions) for different branch ostia locations are 

shown in Figures 5.9-5.12. 
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Fig. 5.9. Length:width ratios of rabbit endothelial cell nuclei in the upper descending 

thoracic aorta. Values are averages for branches 1 to 6 (branch 1 being the first branch 

downstream from the aortic arch). Each square represents the average data for a 

500pm*500um region. Total area of map is 42.25mm2. n = 4 immature rabbits, n = 4 

mature rabbits. Data represent averages for 21 immature and 14 mature branches. 
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Fig. 5.10. Length:width ratios of rabbit endothelial cell nuclei in the lower descending 

thoracic aorta. Values are averages for branches 7 to 12. Each square represents the 
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immature rabbits, n = 4 mature rabbits. Data represent averages for 15 immature and 20 
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Fig. 5.11. Length width ratios of rabbit endothelial cell nuclei for branches on the 

anatomical right hand side of the aorta. (The map has been truncated to avoid affects of 

flow around ostia on the left hand side). Each square represents the average data for a 

500pm*500vim region. Total area of map is 26.0mm2. n = 4 immature rabbits, n = 4 

mature rabbits. Data represent averages for 17 immature and 17 mature branches. 
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Fig. 5.12. Length:width ratios of rabbit endothelial cell nuclei for branches on the 
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500Rm * 500[tm region. Total area of map is 26.0mm2. n = 4 immature rabbits, n=4 

mature rabbits. Data represent averages for 18 immature and 17 mature branches. 
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Table 5.7. Nuclear LW ratio for branch ostia within upper and lower portions of the 
descending thoracic aorta, where n equals the number of branches. 

UPPER LOWER 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 2.64 0.04 3.54 0.12 2.49 0.05 3.45 0.13 
U2R1 2.66 0.04 3.53 0.11 2.46 0.04 3.28 0.10 

U2 2.60 0.03 3.51 0.12 2.49 0.03 3.21 0.09 
U2L1 2.59 0.04 3.59 0.09 2.49 0.04 3.28 0.10 
U2L2 2.48 0.07 3.48 0.08 2.50 0.08 3.36 0.09 
U1R2 2.73 0.06 3.52 0.11 2.45 0.06 3.45 0.10 
U1R1 2.57 0.03 3.57 0.11 2.41 0.04 3.34 0.06 

U1 2.47 0.03 3.50 0.13 2.37 0.04 3.27 0.10 
U1L1 2.62 0.04 3.66 0.10 2.44 0.05 3.37 0.11 
U1L2 2.50 0.07 3.60 0.12 2.52 0.07 3.40 0.11 

R2 2.69 0.06 3.48 0.12 2.41 0.06 3.35 0.12 
R1 2.43 0.04 3.44 0.10 2.27 0.05 3.14 0.06 
L1 2.52 0.05 3.40 0.08 2.34 0.04 3.13 0.10 
L2 2.49 0.06 3.59 0.16 2.45 0.06 3.34 0.08 

D1R2 2.66 0.05 3.50 0.17 2.46 0.04 3.35 0.11 
D1R1 2.65 0.05 3.48 0.12 2.43 0.04 3.20 0.08 

D1 2.76 0.05 3.48 0.13 2.59 0.06 3.07 0.07 
D1 L1 2.59 0.04 3.47 0.08 2.55 0.04 3.24 0.09 
D1L2 2.48 0.06 3.49 0.15 2.42 0.07 3.29 0.06 
D2R2 2.66 0.03 3.56 0.15 2.45 0.04 3.32 0.09 
D2R1 2.65 0.04 3.51 0.13 2.49 0.04 3.28 0.09 

D2 2.71 0.03 3.47 0.14 2.56 0.07 3.23 0.08 
D2L1 2.58 0.04 3.51 0.11 2.51 0.04 3.35 0.10 
D2L2 2.46 0.05 3.50 0.11 2.41 0.06 3.31 0.09 

Total mean 2.59 0.01 _3.51 0.02 2.45 0.01 3.27 0.02 
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Table 5.8. Nuclear LW ratio for branch ostia on the anatomical right and left of the 
descending thoracic aorta, where n equals the number of branches. 

RIGHT LEFT 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 -- - - 2.59 0.04 3.42 0.10 
U2R1 2.56 0.04 3.29 0.10 2.60 0.05 3.31 0.13 

U2 2.53 0.03 3.27 0.10 2.57 0.04 3.23 0.12 
U2L1 2.55 0.04 3.27 0.10 2.56 0.05 3.38 0.12 
U2L2 2.51 0.05 3.33 0.08 - - - - 
U1R2 -- - - 2.61 0.06 3.42 0.08 
U1R1 2.50 0.03 3.42 0.10 2.51 0.05 3.31 0.07 

U1 2.41 0.04 3.36 0.12 2.44 0.03 3.27 0.11 
U1L1 2.54 0.06 3.42 0.11 2.55 0.05 3.47 0.12 
U1L2 2.53 0.05 3.38 0.10 - - - - 
R2 -- - - 2.57 0.06 3.32 0.10 
R1 2.37 0.04 3.18 0.11 2.37 0.05 3.18 0.07 
L1 2.40 0.05 3.09 0.11 2.50 0.05 3.23 0.10 
L2 2.50 0.04 3.34 0.12 - - - - 

D1R2 -- - - 2.58 0.04 3.31 0.11 
D1R1 2.49 0.06 3.07 0.08 2.61 0.05 3.34 0.13 
Di 2.68 0.06 3.15 0.11 2.71 0.05 3.14 0.11 

D1L1 2.63 0.05 3.23 0.09 2.53 0.03 3.25 0.12 
D1L2 2.47 0.04 3.32 0.10 - - - - 
D2R2 -- - - 2.57 0.04 3.32 0.10 
D2R1 2.56 0.06 3.21 0.09 2.61 0.04 3.35 0.13 

D2 2.64 0.06 3.27 0.11 2.66 0.04 3.24 0.12 
D2L1 2.57 0.05 3.39 0.12 2.56 0.03 3.27 0.11 
D2L2 2.45 0.04 3.30 0.09 - - - - 

Total mean 2.52 0.01 3.28 0.02 2.56 0.01 3.30 0.02 

Table 5.9. Rabbit endothelial cell nuclear LW ratios for all regions, results separated by 
location of the branch ostia, where n equals the number of regions. 

Location of 
branch ostia Region Immature Mature 

Mean SEM Mean SEM 

Upper branch 
ostia 

Zone A-C 2.51 0.01 3.47 0.01 
Zone A 2.59 0.01 3.51 0.02 
Zone B 2.53 0.01 3.50 0.02 
Zone C 2.45 0.01 3.41 0.01 

Lower branch 
ostia 

Zone A-C 2.40 0.00 3.30 0.01 
Zone A 2.45 0.01 3.27 0.02 
Zone B 2.42 0.01 3.36 0.01 
Zone C 2.36 0.01 3.27 0.01 

Right branch 
ostia 

Zone A-C 2.44 0.01 3.24 0.01 
Zone A 2.52 0.01 3.28 0.02 
Zone B 2.45 0.01 3.28 0.02 
Zone C 2.40 0.01 3.17 0.01 

Left branch ostia 
Zone A-C 2.48 0.01 3.33 0.01 
Zone A 2.56 0.01 3.30 0.02 
Zone B 2.52 0.01 3.39 0.02 
Zone C 2.42 0.01 3.30 0.02 
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The overall mean ("Zones A-C") LW ratio for nuclei surrounding ostia in the upper 

portion of the artery was higher, for both immature (4.4% difference) and mature (4.9% 

difference) rabbits, than nuclei in the lower portion of the arteries (both P<0.01). Nuclei 

surrounding ostia on the left side of the artery were consistently more elongated than 

those on the right, in both immature (1.6% difference) and mature (2.8% difference) 

rabbits (both P<0.01). 

5.3.2 Rabbit normalised nuclear orientation  
A constant was subtracted from all endothelial cell nuclear orientations to make the 

mean angle zero for each EStAR preparation, as previously described, enabling changes 

in the pattern with age, but not changes in the mean angle (such as the helicity caused by 

spiral flows down the aorta) (Flaherty et al., 1972) to be determined. An angle of 0° 

indicates nuclei are aligned parallel to the longitudinal axis of the aorta, whereas positive 

and negative angles indicate the proximal tip of the nuclei is leaning to the anatomical 

left and right of the longitudinal axis respectively. 

Normalised nuclear orientations for 36 immature (I) and 38 mature (M) branches, for the 

regions defined in Fig. 5.1 (Zones A-C), are shown in Fig. 5.13. There was no 

significant effect of age on mean orientation (P=0.07), but there was a highly significant 

effect of region and the interaction between age and region (both P<0.005). 
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Fig. 5.13. Normalised angle of orientation of rabbit endothelial cell nuclei for all branch 

ostia. Each square represents the average data for a 500um * 500µm region. Total area 

of map is 42.25mm2. n = 4 immature rabbits, n = 4 mature rabbits. Data represent 

averages for 36 immature and 38 mature branches. 

5.3.2.1 "Zone A" (500rim * 5001.im regions)  

Normalised orientations for nuclei within "Zone A" are shown in Fig. 5.14. There was 

no significant effect of age (P<0.05) (mean orientations -0.96 ± 0.30° and -0.95 ± 0.27° 

for immature (n = 677 regions) and mature (n = 741 regions) rabbits respectively), 

however there were significant effects of region and for the age*region interaction (both 

P<0.005). 

In immature rabbits, nuclei in the regions immediately adjacent to the branch had 

positive angles in the upstream, upper left, left, and lower right regions. The opposite 

was true for nuclei in the upper right, right, lower left, and downstream regions in which 

the angles were negative. For the other regions in "Zone A", nuclei in general had 

positive angles if on the anatomical right, and negative angles on the anatomical left. 

Angles ranged from -10.23 ± 1.61° ("R 1", n = 36 branches) to 6.39 ± 1.34 ("D1R2", n = 

19 branches). In mature rabbits, regions immediately adjacent to the branch contained 

nuclei with positive angles in the upper left, left and lower right regions. Nuclei within 

upstream, upper right, right, downstream and lower left regions had negative angles. 
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Significant differences between individual regions for immature and mature rabbits are 

shown in Fig. 5.15. 
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Fig. 5.14. Normalised nuclear orientations for regions in "Zone A" surrounding branch 

ostia, defined in Fig. 5.1, in immature and mature rabbits. Positive angles indicate that 

the proximal tip of the nucleus is inclined towards the anatomical left, negative angles 

indicate inclination towards the anatomical right. Bars show means ± SEM (n = number 

of branches). 
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Fig. 5.15. Significant differences in normalised nuclear orientation between 500µm * 

500[Im regions within Zone A as determined by the Tukey test for multiple comparisons. 

Squares shaded in grey depict significant differences (P<0.05) between regions. Squares 

to the right of the black diagonal line indicate differences in immature rabbits. Squares 

to the left indicate differences in mature rabbits. 

5.3.2.2 "Zone A" (100um * 100um sub-regions)  

As with nuclear LW ratios, the normalised nuclear orientation data were split so that the 

100[im * 100m sub-regions in each of the 500[im * 5001.im main regions nearest the 

branch ostia ("U2R1", "U2", "U2L1", "U1R1", "Ul", "UlL1", "R1", "Ll", "D1R1", 

"Dl", "D11,1", "D2R1", "D2", "D2L1") were analysed individually rather than being 

combined (Fig. 5.16, Table 5.10a,b and 5.11a,b). Significant changes with age in 

orientation occurred within regions "U1R1", "RI", and "U2" (all P<0.05). There were 
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significant effects of sub-region for nuclei within main regions "U1R1", "R 1", "D1R1", 

"Ul", "Dl", "D2", "U1L1", "Ll", and "DIU" (all P<0.01). There was a significant 

interaction between age and region in "U1R1", "R 1", "Ul", "Dl" (all P<0.01), "L 1" and 

"DILI" (both P<0.05). 

Figs. 5.17 and 5.18 present the mean normalised nuclear orientations, for immature and 

mature rabbits, in each 100µm * 100µm region as lines surrounding the branch ostium. 

Each line is parallel to the orientation of endothelial cell nuclei in that sub-region. 

However, unlike a vector, no arrowhead is placed on the line; since flows near the 

ostium may be complex, it is unsafe to make an assumption about the direction of the 

mean flow. 

For both immature and mature rabbits, it can be seen that in the more upstream lateral 

regions, close to the branch ostium, nuclei are aligned with their distal ends oriented 

towards the branch, the angle increasing as the distance from the branch decreases. In 

the lateral regions, the angles seem greater in mature than immature rabbits, especially 

on the anatomical right of the branch (also seen in Fig. 5.19). In the downstream lateral 

regions, angles are smaller and are almost aligned with the (normalised) aortic axis. On 

the anatomical right of the colour maps, the nuclei tend to have positive angles; whereas 

the opposite is true for the anatomical left (nuclei largely have negative angles). The 

change in normalised orientation in the upper lateral regions appears to be greater than 

those found by Al-Musawi (2004); this could reflect the different sampling sizes used. 

In upstream regions, nuclei are also aligned with their distal ends oriented towards the 

centre of the ostium, and nuclei closest to the longitudinal axis angles approaching 0°. 

The size of the area with largely reoriented nuclei appears to extend further upstream in 

mature rabbits than in immature. 
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Fig. 5.16. Normalised angle of orientation of rabbit endothelial cell nuclei averaged for 

all branch ostia. Each square represents the average data for a 100µm * 100µm region. 

Total area of map is 3.75mm2. n = 4 immature rabbits, n = 4 mature rabbits. Data 

represent averages for 36 immature and 38 mature branches. 
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Fig. 5.17. Direction indicators depicting mean normalised angle of orientation of nuclei 

in 100[Im * 1001.1m regions (individual squares) surrounding branch ostia (central 

square) of immature rabbits (n = 36 branches, 4 rabbits). Total area of map = 2.25mm2. 

Mean aortic blood flow is from top to bottom. 
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Fig. 5.18. Direction indicators depicting mean normalised angle of orientation of nuclei 

in 1001.tm * 1001.tm regions (individual squares) surrounding branch ostia (central 

square) of mature rabbits (n = 38 branches, 4 rabbits). Total area of map = 2.25mm2. 

Mean aortic blood flow is from top to bottom. 
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Table 5.10a. Immature rabbit endothelial cell nuclear normalised orientations for sub-
regions (100µm * 100µm) within upstream and lateral main-regions in "Zone A", where 
n equals the number of branches. 

Immature U2R1 U2 U2L 1 U1R1 U1 U1L1 R1 L1 

' Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 3.78 1.58 0.44 1.65 -2.61 1.57 -1.52 1.58 -0.32 1.70 -3.23 1.69 -7.96 2.54 28.44 5.18 

U2R1s 1.65 1.78 0.29 1.57 -3.26 1.73 0.52 1.55 -0.15 1.86 -2.54 1.63 -12.20 1.83 18.59 2.63 

U2s 0.82 1.95 -0.97 1.61 -3.43 1.67 2.33 1.79 -2.09 1.63 -2.90 1.56 -15.80 2.18 12.37 2.35 

U2L1s 0.23 1.66 -1.78 1.52 -2.42 1.93 0.30 1.73 -3.13 1.65 -0.41 1.38 -21.36 2.69 6.91 1.32 

U2L2s 0.91 1.54 -1.83 1.62 -1.96 2.54 -0.61 1.73 -3.55 1.79 -0.09 2.07 -17.97 3.76 1.97 1.81 

U1R2s 228 1.52 -0.02 1.33 -2.62 1.68 -1.35 1.94 -0.83 1.73 -2.24 1.60 -5.60 1.93 22.15 13.73 

U1R1s 1.53 1.49 -0.41 1.31 -3.57 159 -0.09 1.74 048 1.76 -1.69 1.90 -13.25 1.99 15.99 4.59 

U1s 0.89 1.68 -1.51 1.40 -2.52 1.43 2.23 2.53 -0.49 1.47 -0.76 2.05 -21.41 2.83 10.35 2.22 

U1L1s -1.58 1.62 -3.00 1.52 -3.88 1.26 -1.41 1.83 -1.10 1.56 1.38 2.08 -19.21 6.01 5.53 1.64 

U1L2s -0.47 1.34 -3.15 1.64 -4.76 2.35 -2.29 1.87 -1.98 1.81 0.60 2.88 -8.92 11.83 -1.34 1.43 

R2s 3.60 1.90 -1.00 1.38 -2.35 1.58 -1.51 2.05 -1.47 1.95 1.36 1.77 -1.59 2.50 5A4 17.82 

R 1s 1.38 1.84 -2.47 1.25 -3.28 1.57 -2.99 1.64 -2.34 1.63 128 1.77 -9.00 2.23 6.27 5.57 

Cs -0.62 1.79 -2.01 1.34 -3.42 1.58 -3.38 1.69 -0.81 1.77 4.18 1.63 -18.32 2.31 4.39 2.08 

L 1 s -0.54 1.58 -2.36 1.30 -2.86 1.32 -0.87 1.80 -0.12 1.54 4.48 1.67 -21.12 4.31 0.83 2.21 

L2s -1.75 1.49 -3.17 1.66 -3.49 1.73 -1.26 2.08 1.01 1.66 1.64 2.48 0.40 13/7 -1.63 220 

D1R2s 1.51 2.12 -2.44 1.43 -3.62 1.31 -5.62 2.16 -5.39 2.24 6.57 1.71 2.36 1.82 14.46 6.88 

D1R1s 0.66 141 -2.29 1.13 -4.56 1.47 -3.59 1.46 -2.68 1.75 6.32 2.42 -3.18 2.16 2.97 3.90 

D1 s -0.15 1.39 -2.43 1.47 -1.90 1.24 -4.09 1.85 -0.79 1.50 685 161 -10.43 2.71 -1.39 248 

D1L1s -0.23 1.54 -2.69 1.48 -2.27 1.26 -5.94 2.61 3.14 1.66 6.15 1.48 -5.04 4.28 -1.96 2.21 

D1L2s -0.20 1.38 -2.78 1.42 -0.82 1.52 -7.61 2.20 7.73 2.22 254 1.50 -1020 10.71 -5.19 /68 

D2R2s 3.23 1.71 0.11 1.54 -2.92 1.34 -7.06 2.03 -12.91 2.63 16.78 2.75 6.31 1.73 -0.91 209 

D2R1s 0.46 1.38 -2.36 1.53 -3.50 1.54 -8.58 1.50 -3.30 2.97 12.99 1.78 -1.53 2.05 -1.01 1.98 

D2s 0.77 1.60 -3.19 1.61 -2.45 1.37 -9.86 2.44 5.97 3.12 13.92 1.88 -0.13 2.25 -4.13 2.06 

D2L1s 021 1.41 -4.01 1.82 -2.71 1.37 -13.03 3.24 18/8 3.62 9.08 1.36 -1.01 3.32 -2.74 1.94 

D2L25 0.36 1.60 -4.86 1.43 0.46 1.74 -17.85 3.46 20.92 3.07 4.43 1.50 -2.36 2.61 -5.02 2.33 
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Table 5.10b. Immature rabbit endothelial cell nuclear normalised orientations for sub-
regions (100µm * 100µm) within downstream main-regions in "Zone A", where n 
equals the number of branches. 

Immature D1R1 D1 D1L1 D2R1 D2 D2L1 

Sub-Region Mean SEM Mean SEM , Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2s 7.84 1.64 051 2.59 -2.37 1.82 8.35 2.15 -120 1.57 -2.76 1.34 
U2R1s 0.70 1.97 -3.08 1.85 -3.54 1.72 1.88 1.91 -1.19 1.77 -3.78 1.12 

U2s 1.12 1.82 -0.23 2.19 -4.50 1.73 0.50 2.05 -0.74 1.40 -4.75 1.21 
U2L 1s 2.93 2.05 0.37 2.01 -2.31 2.08 0.18 1.72 -1.00 1.58 -2.19 1.35 
U2L2s 4.39 2.34 -1.07 1.88 -4.54 2.02 0.27 1.70 -3.46 1.62 -3.98 2.02 
U1R2s 7.23 1.56 -3.39 1.75 -3.76 1.63 6.77 2.62 -0.95 150 -2.81 1.52 
U1R1s 0.84 1.59 -3.42 1.40 -5.33 125 055 2.12 -1.48 1.48 -4.07 1.24 

U1s 159 143 -2.07 1.73 -4.52 1.48 1.52 1.89 -2.01 1.47 ADS 1.31 
U1L1s 1.99 1.65 -2.31 1.60 -3.73 1.58 0.57 1.70 -2.64 1.34 -3.53 1.44 
U1L2s 0.68 1.80 -0.64 2.10 -3.57 1.21 -0.17 1.61 -1.95 145 -6.39 1.65 
R2s 8.49 1.33 0.62 1.55 -1.55 1.41 5.33 1.99 -1.75 1.60 -1.72 1.37 
R1s 1.88 1.60 -108 1.24 -2.64 1.57 _-0.42 1.98 -2.02 1.52 -3.16 1.42 
Cs 2.02 1.65 -2.66 1.45 -1.13 1.37 -0.76 2.03 -1.82 1.50 -4.17 1.38 
L1 s 1.64 152 -1.70 1.59 -0.21 1.25 -0.02 1.98 -2.85 1.35 -5.00 147 
L2s 1.66 1.62 -1.75 1.37 -3.90 1.42 -1.91 1.49 -2.48 1.45 -6.26 1.76 

D1R2s 8.40 1.68 -027 1.80 -2.73 1.32 5.99 1.67 -1.43 146 -3.37 1.46 
D1R1s 2.05 1.78 -1.36 1.34 -2.56 1.38 0.23 1.57 -3.18 1.41 -3.43 1.65 

D1 s 2.39 1.59 -2.59 1.48 -3.50 1.36 0.39 1.71 -3.72 1.62 -2.81 1.34 
D1L1s 0.91 1.47 -2.87 1.52 -2.46 1.51 1.03 1.73 -2.71 1.74 -3.51 1.54 
D1L2s 0.78 1.55 -2.13 1.62 -2.05 1.70 -0.50 1.67 -4.39 1.38 -6.04 192 
D2R2s 7.24 1.79 -0.46 1.54 -3.33 1.32 5.46 1.69 -0.92 1.52 -4.12 1.65 
D2R1s 0.87 1.88 -0.46 1.50 -3.30 1.12 0.43 1.59 -2.46 1.55 -4.50 1.61 

D2s 0.54 1.74 -1.54 1.22 -3.14 1.56 1.12 1.64 -2.69 1.45 -3.48 1.48 
D2L1s -0.80 1.86 -2.42 1.36 -1.96 1.55 -0.74 1.49 -3.68 1.41 -4.34 1.45 
D2L2s -1.85 1.89 -3.24 1.40 A.12 2.08 -1.23 1.52 -3.93 1.47 -4.27 1.70 
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Table 5.11a. Mature rabbit endothelial cell nuclear normalised orientations for sub-
regions (100µm * 100µm) within upstream and lateral main-regions in "Zone A", where 
n equals the number of branches. 

Mature U2R1 U2 U2L1 U1R1 U1 U1L1 R1 L1 
!Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 1.85 1.25 -0.31 1.03 -1.56 1.12 -0.21 1.34 -2.49 1.17 0.50 1.00 -6.48 2.14 31.05 5.10 
U2R1s 1.76 1.00 0.62 0.89 -1.83 1.03 -2.02 1.03 -1.93 1.08 0.63 1.03 -14.17 1.94 27.30 2.41 

U2s 0.80 0.90 -0.24 0.95 -2.26 1.01 -2.18 1.16 -1.51 0.96 0.37 1.03 -20.16 3.86 17.08 2.32 
U2L 1s 0.33 0.90 -0.90 1.00 -1.17 0.88 -1.78 1.05 -0.36 1.00 0.03 0.91 -35.33 3.11 8.99 1.98 
U2L2s 0.18 1.01 -1.78 0.95 -2.30 146 -1.92 1.07 -0.41 1.00 0.13 1.47 -42.32 3.79 4.85 2.60 
U1R2s 1.80 1.00 -0.43 0.98 0.34 1.31 -2.66 0.92 -5.20 1.39 2.40 1.09 -3.31 2.15 22.14 16.10 
U1R15 0.99 1.05 -0.62 1.02 -1.18 1.04 -4.06 1.10 -4.38 1.18 2.21 1.06 -10.11 2.07 26.85 3.59 

U1s 1.13 0.89 -0.56 1.10 -1.98 1.21 -5.30 1.21 -2.00 1.10 3.29 1.05 -21.19 4.15 16.08 2.61 
U1L1s 0.87 1.09 -0.49 1.09 -1.84 0.97 -6.51 1.42 1.07 1.17 2.00 1.04 -31.87 5.82 8.13 1.80 
U1L2s -0.15 1.04 -0.49 0.89 -1.76 1.29 -5.62 1.27 0.53 1.14 1.51 1.52 -47.26 6.61 2.48 2.44 
R2s 0.73 1.33 -0.94 0.91 -2.09 1.06 -5.44 1.35 -8.92 1.40 5.30 1.45 -0.92 1.98 -0.37 26.35 
R1s 1.34 1.04 -0.72 1.03 -0.76 103 -8.63 1.33 -5.90 1.25 6.56 1.23 -5.63 1.77 13.22 5.71 
Cs 2.40 1.99 -1.24 0.99 -1.24 1.03 -10.53 1.41 -1.87 1.48 5.09 1.24 -12.13 3.53 12.48 2.60 
L1s 0.49 0.87 -0.51 1.07 -1.67 1.00 -12.11 1.61 1.57 1.37 4.05 1.21 -23.83 5.31 4.56 1.57 
L2s 0.08 0.95 -0.74 0.96 -1.09 1.65 -11.76 1.30 3.64 1.25 2.88 1.79 -15.84 8.75 -0.46 2.09 

D1R2s 0.85 1.22 -0.69 1.01 -1.74 1.15 -9.11 1.46 -16.71 2.04 11.96 1.49 1.33 1.92 -10.62 21.43 
D1R 1s 0.00 1.00 -1.28 1.06 -1.16 0.93 -11.75 1.67 -12.16 2.05 11.93 1.46 -1.88 1.40 13.70 3.86 

D1 s 047 0.90 -0.18 0.93 -1.40 1.07 -15.89 1.85 -3.49 1.54 10.83 1.47 -6.85 2.51 4.66 1.73 
D1L1s -0.52 0.90 -0.46 1.08 -1.43 1.17 -19.68 1.99 3.74 1.49 7.96 125 -8.79 3.40 1.60 1.88 
D1L2s -0.98 1.04 -0.89 1.14 -0.54 149 -19.01 1.79 9.64 1.51 4.86 1.29 -15.19 16.14 -3.25 2.22 
D2R2s 0.49 1.00 -0.56 1.07 -0.62 1.15 -8.70 1.96 -20.73 1.92 19.97 2.08 4.42 1.84 -7.78 6.98 
D2R1s -1.45 1.01 -0.77 1.07 -2.14 1.45 -14.02 1.63 -14.51 1.63 20.65 1.72 1.76 1.26 0.91 2.22 

D2s -1.68 0.87 -1.54 1.02 1.49 2.38 -19.07 2.41 0.98 3.51 16.80 1.43 1.20 1.40 -0.93 1.52 
D2L 1s -1.02 1.09 -0.19 0.96 -1.97 1.07 -27.34 2.64 11.91 2.97 10.67 1.30 0.79 144 -2.01 1.77 
D2L2s -1.35 1.15 -0.56 0.92 -0.55 1,49 -28.50 3.42 16.13 2.23 6.25 1.64 -5.57 7.49 -4.15 2.48 
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Table 5.11b. Mature rabbit endothelial cell nuclear normalised orientations for sub-
regions (100µm * 100µm) within downstream main-regions in "Zone A", where n 
equals the number of branches. 

Mature D1R1 D1 D1L1 D2R1 D2 D2L1 
Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 421 1.66 244 1.69 -6.10 1.39 4.96 1.17 -0.31 1.01 -3.65 0.90 
U2R1s 2.74 1.03 -1,76 2.10 -3.28 1.01 1.64 1.01 0.67 0.91 -4.31 0.75 

U2s 4.12 1.07 -423 1.81 -1.77 1.37 1.08 1.12 -1.29 0.88 -4.29 1.01 
U2L1s 3.21 1.17 -5.51 2.30 -3.05 1.45 1.29 0.90 -2.47 0.81 -4.05 0.92 
U2L2s 2.88 1.36 -6.25 123 -5.08 1.23 -0.12 1.04 -1.92 1.02 -335 141 
U1R2s 3.17 1.81 1.55 1.23 -2.93 0.95 4.85 1.13 0.00 0.90 -3.13 0.90 
U1R1s 3.75 096 -0.22 127 -328 123 227 125 -121 0.90 -4.16 0.84 

U1s 3.49 0.98 -2.14 156 -323 1.09 1.88 1.00 -1.01 0.79 -2.87 0.89 
U1L1s 3.37 0.97 -3.50 1.11 -2.66 0.93 1.22 025 -1.81 0.78 -3.17 0.86 
U1L2s 3.94 1.06 -3.44 1.07 -3.85 1.58 0.06 0.91 -2.98 0.85 -3.61 1.35 

R2s 520 1.41 1.02 1.22 -3.06 0.88 5.43 1.15 -0.37 0.84 -4.06 0.80 
R1s 327 1.01 -0.56 1.28 -3.67 0.98 1.88 1.08 -1.59 0.88 -3.52 0.73 
Cs 2.59 0.86 -1.38 1.11 -3.77 0.86 2.25 0.97 -2.05 0.72 -2.99 0.77 
L1s 2.32 0.96 -1.02 1.08 -2.72 0.87 1.38 0.86 -2.36 0.64 -3.59 0.77 
L2s 2.78 1.14 -1.14 1.16 -3.04 1.23 0.06 0.82 -2.78 0.67 -421 1.19 

D1R2s 4.79 1.16 0.75 1.12 -2.83 021 4.46 1.22 0.05 0.79 -3.81 0.98 
D1R1s 2.53 0.90 0.58 1.22 -4.98 0.78 2.19 0.88 -1.40 0.83 -2.90 0.85 

D1 s 2.38 0.75 0.33 1.22 -3.89 0.89 2.94 0.92 -1.09 0.64 -3.46 0.82 
D1L1s 1.59 0.81 -1.50 1.10 -2.67 0.90 0.81 0.70 -2.52 0.74 -4.05 090 
D1L2s 1.06 0.85 -2.29 1.05 -2.38 1.05 -0.70 0.91 -2.73 0.75 -4.69 1.31 
D2R2s 4.48 1.14 -0.03 0.89 -3.36 0.79 328 1.17 0.04 0.88 -3.33 0.84 
D2R1s 2.72 0.95 0.09 0.96 -5.23 1.55 2.01 0.95 -1.50 0.88 -3.12 0.97 

D2s 2.11 0.94 -1.52 0.98 -4.41 0.94 2.09 0.87 -025 0.92 -3.29 024 
D2L1s 1.22 024 -1.85 0.90 -3.87 0.92 1.06 0.84 -3.14 0.84 -3.51 022 
D2L2s -0.10 1.09 -3.33 0.86 -1.73 1.15 0.06 029 -2.28 0.86 -4.90 1.25 

Tukey tests were performed on normalised nuclear orientations for sub-regions in "Zone 

A" (main regions "U1R1", "Ul", "U1L1", "Rl", "Ll", "D1R1", "Dl", "DILI") to 

observe where changes in normalised nuclear orientation existed between the sub-

regions within each of these main regions (Appendix B.2a-g). 

5.3.2.3 "Zone B" (500tim * 500gm regions)  
The orientations of nuclei within "Zone B" are shown in Table 5.12. There was a highly 

significant effect of region (P<0.005), but no significant effect of age (P=0.24) or 

interaction between age and region (P=0.88). The mean angles of orientation were 0.19 

± 0.22° and -0.24 ± 0.16° for immature and mature rabbits respectively (n = 1163 and 

1355 regions respectively). Nuclear angles ranged from -6.80 ± 1.72° ("D4L2", n = 17 

branches) to 6.01 ± 1.02° ("D2R3", n = 19 branches) in immature rabbits, and from 

184 



-5.49 ± 1.62° ("D4L4", n = 18 branches) to 5.63 ± 1.17° ("D4R4", n = 20 branches) in 

mature rabbits. 

Table 5.12. Rabbit endothelial cell nuclear normalised orientations for regions in "Zone 
B", where n equals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U4R4 2.92 1.33 1.12 1.32 
U4R3 2.29 1.54 0.67 1.26 
U4R2 1.13 1.65 -0.58 1.31 
U4R1 0.57 1.31 -0.80 0.68 

U4 0.13 1.20 -1.14 0.70 
U4L1 0.40 1.13 -0.71 0.73 
U4L2 -2.95 1.42 -2.27 1.02 
U4L3 -2.23 1.33 -2.96 1.28 
U4L4 -1.87 2.10 -3.48 1.46 
U3R4 3.08 1.09 1.28 1.12 
U3R3 3.72 1.21 2.40 1.09 
U3R2 2.79 1.53 1.75 1.10 
U3R1 -0.06 1.46 0.47 0.71 

U3 -0.75 1.40 -0.05 0.60 
U3L1 -1.63 1.33 -0.46 0.74 
U3L2 -3.35 1.55 -1.64 1.33 
U3L3 -4.29 1.64 -2.03 1.16 
U3L4 -4.60 1.71 -1.47 1.26 
U2R4 3.59 1.23 2.62 1.18 
U2R3 3.03 1.22 2.02 1.11 
U2L3 -1.52 1.40 -0.77 1.29 
U2L4 -1.86 1.58 0.46 1.00 
U1R4 3.51 1.22 2.10 1.39 
Ul R3 3.08 1.02 1.35 1.30 
U1L3 -2.22 1.37 -1.75 1.21 
U1L4 -2.81 1.83 -1.28 1.21 

R4 4.90 1.37 2.75 1.36 
R3 4.88 1.36 1.80 1.34 
L3 -2.83 1.53 -3.16 1.22 
L4 -2.26 2.38 -3.23 1.43 

D1R4 5.44 1.48 3.92 1.40 
D1R3 5.31 1.35 3.28 1.23 
D1L3 -2.32 1.62 -4.35 1.18 
D1L4 -1.95 1.99 -4.81 1.29 
D2 R4 5.58 1.01 4.03 1.35 
D2 R3 6.01 1.02 5.20 1.27 
D2 L3 -5.45 1.92 -4.71 1.28 
D2L4 -2.45 2.56 -4.25 1.57 
D3 R4 3.73 1.47 4.39 1.74 
D3 R3 4.38 1.22 3.63 1.56 
D3 R2 4.68 1.27 4.11 1.24 
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D3R1 0.96 1.24 1.16 0.78 
D3 -1.21 1.27 -0.95 0.66 

D3L1 -2.94 1.34 -2.77 0.72 
D3L2 -4.12 1.58 -4.15 1.09 
D3L3 -2.76 1.93 -4.56 1.44 
D3L4 -0.54 2.26 -3.96 1.55 
D4R4 3.70 1.71 5.63 1.17 
D4R3 5.24 1.58 4.32 1.23 
D4R2 5.10 1.43 3.67 1.25 
D4R1 1.35 1.42 0.45 0.80 

D4 -1.80 1.27 -0.68 0.82 
D4L1 -3.12 1.30 -1.39 0.87 
D4L2 -6.80 1.72 -3.83 1.37 
D4L3 -5.58 2.05 -4.59 1.52 
D4L4 -3.25 2.39 -5.49 1.62 

Total mean 0.19 0.22 -0.24 0.16 

5.3.2.4 "Zone C" (500iun * 5004m regions)  
The normalised orientations of nuclei within "Zone C" are shown in Table 5.13. 

Nuclear orientations were just significantly different between ages (P=0.05), and there 

were highly significant differences between regions, and a significant interaction 

between age and region (both P<0.005). The mean orientations were 0.33 ± 0.21° (n = 

1423 regions) and 0.31 ± 0.16° (n = 1443 regions) for immature and mature rabbits 

respectively. Angles were between -5.80 ± 2.50° ("D6L2", n = 11 branches) and 7.39 ± 

1.86° ("U6R4", n = 11 branches) in immature rabbits, and between -6.27 ± 1.42° 

("D6L4", n = 11 branches) and 7.35 ± 1.51° ("D6R5", n = 15 branches) in mature 

rabbits. 
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Table 5.13. Rabbit endothelial cell nuclear normalised orientations for regions in "Zone 
C", where n equals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U6R6 6.62 2.56 -1.96 1.53 
U6R5 6.66 2.25 -0.51 1.45 
U6R4 7.39 1.86 1.35 1.46 
U6R3 4.45 1.77 2.08 1.79 
U6R2 0.98 1.20 1.45 1.96 
U6R1 -1.91 1.25 -0.18 1.05 

U6 -2.12 1.41 -0.53 0.86 
U6L1 -1.91 1.36 -1.44 0.98 
U6L2 -0.86 1.43 -1.84 0.82 
U6L3 -0.21 1.89 -2.23 1.28 
U6L4 -0.87 1.79 -3.95 1.50 
U6L5 -1.70 2.41 -3.53 1.46 
U6L6 -0.80 3.51 -2.03 1.88 
U5R6 2.06 1.37 1.16 1.85 
U5R5 4.89 1.08 0.71 1.08 
U5R4 4.47 1.22 1.17 1.01 
U5R3 3.51 1.17 1.32 1.07 
U5R2 1.39 1.33 0.61 1.05 
U5R1 -0.45 1.23 -0.86 0.83 

U5 -1.60 1.13 -2.03 0.61 
U5L1 -1.95 1.05 -1.82 0.69 
U5L2 -1.84 1.46 -2.09 1.12 
U5L3 -1.37 1.64 -1.83 1.39 
U5L4 -2.30 1.87 -2.14 1.68 
U5L5 -1.30 2.38 -2.27 1.37 
U5L6 -0.58 3.39 -1.21 1.77 
U4 R6 1.96 1.52 2.52 2.29 
U4 R5 2.70 1.12 0.61 1.44 
U4L5 -2.30 2.11 -3.29 1.61 
U4L6 -2.45 2.82 -2.26 2.00 
U3R6 0.99 1.56 2.35 1.56 
U3R5 2.95 1.01 0.94 1.44 
U3L5 -2.99 1.82 -0.91 1.24 
U3L6 -0.41 2.65 -0.35 1.59 
U2R6 2.25 1.36 2.94 1.54 
U2R5 3.21 1.15 2.36 1.10 
U2L5 -0.91 2.28 0.55 1.10 
U2L6 -1.54 3.01 0.58 1.29 
U1R6 1.61 1.57 2.90 1.40 
U1R5 3.33 1.30 1.40 1.24 
U1L5 -0.66 2.10 -1.50 1.40 
U1L6 0.78 2.74 -0.11 1.28 

R6 2.76 1.56 3.37 1.39 
R5 3.88 1.48 2.81 1.38 
L5 -1.50 2.63 -2.83 1.66 
L6 -0.02 3.12 -0.54 1.68 
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D1R6 3.44 1.57 2.75 1.59 
D1R5 4.59 1.42 3.25 1.39 
D1L5 0.36 2.15 -3.73 1.44 
D1L6 -0.43 2.54 -2.30 1.55 
D2R6 2.50 1.58 4.87 1.46 
D2R5 3.94 1.36 4.97 1.36 
D2L5 -0.37 2.79 -3.26 1.55 
D2L6 0.76 3.41 -0.72 1.43 
D3 R6 1.62 1.58 5.18 1.62 
D3 R5 2.58 1.71 5.35 1.46 
D3 L5 2.01 2.87 -2.68 1.48 
D3L6 -1.82 2.94 -1.76 1.60 
D4R6 2.44 1.82 5.49 1.40 
D4R5 2.83 1.63 5.27 1.22 
D4L5 -0.83 2.83 -5.69 1.87 
D4L6 1.38 2.90 -3.53 2.11 
D5R6 2.13 1.72 6.51 1.80 
D5R5 4.96 1.98 4.11 1.46 
D5R4 4.88 1.69 4.76 1.41 
D5R3 4.56 1.51 5.34 1.43 
D5 R2 2.01 1.73 4.07 1.07 
D5R1 -0.89 1.51 0.89 0.89 

D5 -3.30 1.32 -0.35 0.94 
D5L1 -4.76 1.31 -1.30 0.90 
D5 L2 -5.75 1.29 -4.70 1.06 
D5L3 -3.55 2.05 -4.21 1.11 
D5L4 -0.42 2.44 -4.69 1.34 
D5L5 0.40 2.63 -3.13 1.57 
D5L6 1.71 3.37 -5.43 2.44 
D6 R6 1.26 2.51 5.31 1.99 
D6R5 1.80 2.04 7.35 1.51 
D6R4 0.74 1.66 6.24 1.43 
D6R3 1.44 1.74 5.95 1.24 
D6R2 2.50 1.50 4.80 1.16 
D6R1 -1.70 1.65 2.12 1.10 

D6 -3.15 1.73 0.83 0.99 
D6L1 -3.68 1.58 -0.96 1.08 
D6L2 -5.80 2.50 -5.32 1.57 
D6L3 -3.84 3.20 -5.57 1.22 
D6L4 -2.13 2.94 -6.27 1.42 
D6L5 0.79 3.61 -5.86 1.84 
D6L6 3.00 5.50 -4.49 2.29 

Total mean 0.33 0.21 0.31 0.16 
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5.3.2.5 Normalised nuclear orientations along the lateral centreline through 

the branch ostium 

Normalised nuclear orientations along the lateral centreline through the branch ostia 

from the anatomical right ("R6" to "R1") to the anatomical left ("Ll" to "L6") of the 

aorta are shown in Fig. 5.19. Data for nuclei in "R1" and "Ll" are shown split into their 

constitutive sub-regions along the midline, but offset proximally by 100µm to try and 

remove variation caused by the population of nuclei immediately upstream of the flow 

divider (as described in Al-Musawi et al, 2004). 

Region 

Fig. 5.19. Normalised angle of nuclear orientation along the lateral centreline through 

the branch ostia from the anatomical right to the anatomical left, for immature and 

mature rabbits. The branch ostia falls between regions "Rl" and "Ll". Data for main 

regions closest to the ostia have been shown sub-divided into the constitutive sub-

regions found along the centreline (but offset proximally by 100tim) to show changes at 

higher resolution. Region names are as described in Fig. 5.1. Bars show means ± SEM 

(n = number of branches). 
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5.3.2.6 Normalised nuclear orientations around ostia in different parts of the 

descending thoracic aorta (500µm * 500tun regions)  
Mean normalised nuclear orientations for ostia within the upper portion and lower 

portion of the descending thoracic aorta, and ostia from the left and right hand side of 

the vessel are shown in Table 5.14. Data are further subdivided according to Zone. 

Data for nuclei within individual regions in "Zone A" for the upper and lower portion of 

the artery and right and left portions of the descending thoracic aorta are shown in 

Tables 5.15 and 5.16 respectively. Colour maps showing mean variations in nuclear 

orientation around the branch ostia at low resolution (averages per 500µm * 500µm 

regions) for different branch ostial locations are shown in Figs 5.20-5.23. 

Table 5.14. Rabbit endothelial cell nuclear normalised orientations for all regions, 
results separated by location of the branch ostia, where n equals the number of regions. 

Location of 
branch ostia Region Immature Mature 

Mean SEM Mean SEM 

Upper branch 
ostia 

Zone A-C 0.31 0.17 0.03 0.17 
Zone A 0.74 0.35 -1.84 0.39 
Zone B 0.76 0.29 -0.32 0.24 
Zone C -0.32 0.26 1.38 0.28 

Lower branch 
ostia 

Zone A-C -0.37 0.22 -0.23 0.15 
Zone A -3.46 0.49 -0.41 0.39 
Zone B -0.61 0.34 0.04 0.22 
Zone C 1.11 0.32 -0.38 0.21 

Right branch 
ostia 

Zone A-C -2.23 0.20 -2.60 0.15 
Zone A -3.46 0.41 -2.31 0.39 
Zone B -2.59 0.30 -2.73 0.24 
Zone C -1.29 0.34 -2.63 0.22 

Left branch ostia 

Zone A-C 2.15 0.17 2.25 0.16 
Zone A 1.38 0.42 0.82 0.42 
Zone B 3.09 0.27 2.41 0.24 
Zone C 1.75 0.24 2.82 0.23 
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5.3.2.6.1 Nuclear orientation for branch ostia within the upper and lower 

portion of artery 

Normalised nuclear orientations averaged for all zones for immature rabbits were 0.31 ± 

0.17° and -0.37 ± 0.22° (n = 1854 and 1409 regions respectively) for ostia in the upper 

and lower portion of the artery, respectively (P<0.005), and for mature rabbits were 0.03 

± 0.17° and -0.23 ± 0.15 (n = 1378 and 1755 regions) respectively (P = 0.25). 

Normalised orientations in regions surrounding branch ostia in the upper portion of the 

aorta (Fig. 5.20) were not significantly affected by age (P=0.66). However, there was an 

effect of region and a significant interaction between age and region (both P<0.005). In 

regions surrounding branch ostia in the lower portion (Fig. 5.21) there was a significant 

effect of age (P<0.05) and region and interaction between age and region (both 

P<0.005). 

5.3.2.6.2 Normalised nuclear orientations for branch ostia from the left hand 

and right hand side of the artery  
Normalised nuclear orientations for left and right branch ostia for immature rabbits were 

2.15 ± 0.17° and -2.23 ± 0.20° (n = 1635 and 1460 regions) respectively (P<0.005), and 

for mature rabbits were 2.25 ± 0.16° and -2.60 ± 0.15° (n = 1535 and 1475 regions) 

respectively (P<0.005). 
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Fig. 5.20. Normalised angle of orientation of rabbit endothelial cell nuclei in the upper 

descending thoracic aorta. Values are averages for branches 1 to 6 (branch 1 being the 

first branch downstream from the aortic arch). Each square represents the average data 

for a 500pm*500pm region. Total area of map is 42.25mm2. n = 4 immature rabbits, n 

= 4 mature rabbits. Data represent averages for 21 immature and 14 mature branches. 
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Fig. 5.21. Normalised angle of orientation of rabbit endothelial cell nuclei in the lower 

descending thoracic aorta. Values are averages for branches 7 to 12. Each square 

represents the average data for a 500pm * 500pm region. Total area of map is 

42.25mm2. n = 4 immature rabbits, n = 4 mature rabbits. Data represent averages for 15 

immature and 20 mature branches. 
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Fig. 5.22. Normalised angle of orientation of rabbit endothelial cell nuclei for branches 

on the anatomical right hand side of the aorta. (The map has been truncated to avoid 

affects of flow around ostia on the left hand side). Each square represents the average 

data for a 500µrn*500ium region. Total area of map is 26.0mm2. n = 4 immature 

rabbits, n = 4 mature rabbits. Data represent averages for 17 immature and 17 mature 

branches. 
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Fig. 5.23. Normalised angle of orientation of rabbit endothelial cell nuclei for branches 

on the anatomical left hand side of the aorta. (The map has been truncated to avoid 

affects of flow around ostia on the right hand side). Each square represents the average 

data for a 500µm * 500µm region. Total area of map is 26.0mm2. n = 4 immature 

rabbits, n = 4 mature rabbits. Data represent averages for 18 immature and 17 mature 

branches. 
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Table 5.15. Normalised nuclear orientation for branch ostia within upper and lower 
ortion of the descending thoracic aorta, where n equals the number of branches. 

UPPER LOWER 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 3.47 1.53 0.20 1.58 2.53 2.05 1.98 1.83 
U2R1 2.05 1.22 -1.14 0.82 -1.39 1.60 0.99 1.35 

U2 -0.58 1.05 -1.06 0.33 -4.05 1.29 -0.82 1.32 
U2L1 -1.13 1.10 -1.23 1.16 -5.46 1.64 -1.48 1.38 
U2L2 0.71 1.49 -0.50 1.27 -4.29 2.23 -1.18 2.38 
U1R2 1.23 1.58 -1.60 1.73 -0.93 2.08 -1.97 1.85 
U1R1 -2.66 2.04 -11.07 1.86 -4.48 1.78 -10.38 1.60 

U1 1.84 1.35 -4.48 1.54 -2.53 1.52 -1.19 1.28 
U1L1 4.33 1.39 3.50 0.94 2.50 1.98 6.99 1.47 
U1L2 -1.27 1.51 1.03 1.28 -1.67 2.32 1.03 1.96 

R2 3.93 1.52 0.56 1.54 -1.01 2.44 0.83 2.07 
R1 -7.50 2.04 -11.04 2.60 -14.06 2.34 -9.60 2.04 
L1 7.09 1.74 6.59 3.10 -3.12 2.50 8.81 2.66 
L2 -1.12 1.48 -1.43 1.36 -4.53 1.59 -1.41 2.28 

D1R2 7.51 1.17 2.93 1.32 4.84 2.77 2.89 2.02 
D1R1 3.45 1.55 0.54 1.13 -1.52 2.48 3.19 1.03 

D1 0.72 1.19 -4.10 1.38 -5.66 1.81 -0.01 1.01 
D1 L1 -0.06 1.14 -4.39 1.15 -8.37 1.65 -2.44 1.11 
D1L2 -1.05 1.50 -4.78 1.03 -6.21 3.28 -2.70 1.79 
D2R2 5.95 1.84 3.89 1.12 5.56 2.63 4.86 1.77 
D2R1 1.81 1.62 -0.11 1.19 -1.05 2.68 1.49 1.09 

D2 -0.27 1.44 -3.16 0.90 -5.73 1.54 -1.29 0.81 
D2L1 -1.81 1.33 -3.82 0.91 -7.94 1.68 -3.07 0.98 
D2L2 -5.96 1.58 -4.50 1.09 -6.00 2.93 -2.21 1.54 

Total Mean 0.74 0.35 -1.84 0.39 -3.46 0.49 -0.41 0.39 
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Table 5.16. Normalised nuclear orientation for branch ostia within anatomical right and 
left of the descending thoracic aorta, where n equals the number of branches. 

RIGHT LEFT 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 - - - - 3.15 1.27 2.01 1.29 
U2R1 0.05 1.44 -0.03 1.25 1.28 1.49 0.59 1.26 

U2 -2.54 1.30 -0.42 1.13 -1.58 1.22 -0.92 1.19 
U2L1 -4.13 1.63 -1.41 1.45 -1.70 1.22 -1.39 1.13 
U2L2 -1.08 1.43 -1.72 1.52 -- - - 
U 1 R2 - - - - 0.52 1.31 -0.47 1.28 
U1R1 -2.11 2.29 -10.22 1.03 -4.88 1.74 -10.50 2.12 

U1 0.84 1.61 -1.53 1.57 -1.10 1.44 -2.64 1.27 
U1L1 3.07 1.57 5.73 1.63 4.00 1.80 7.00 1.29 
Ul L2 -1.41 1.32 0.47 1.23 -- - - 
R2 - -- - 1.77 1.51 2.38 1.26 
R1 -15.21 1.80 -8.84 2.05 -4.99 2.13 -8.78 2.48 
L1 -0.37 2.28 3.46 3.19 6.79 2.25 11.24 2.11 
L2 -2.29 1.20 -2.62 1.63 -- - - 

D1R2 - - - - 6.35 1.41 4.53 1.33 
D1R1 -5.25 1.50 0.25 1.01 7.49 1.24 5.11 1.03 

D1 -4.97 1.19 -4.45 1.20 1.32 1.68 1.77 1.06 
D1 L1 -4.76 1.36 -4.58 1.16 -1.80 1.93 -2.04 1.16 
D1L2 -3.07 1.73 -4.15 1.33 -- - - 
D2R2 -- - - 5.43 1.54 5.87 1.22 
D2R1 -5.62 1.44 -1.44 1.01 5.89 1.64 3.98 1.12 

D2 -5.59 1.18 -3.37 0.94 0.65 1.74 -0.07 0.82 
D2L1 -6.14 1.16 -5.30 1.07 -2.43 1.96 -1.99 0.84 
D2L2 -5.63 1.44 -3.76 1.17 -- - - 

Total Mean -3.46 0.41 -2.31 0.39 1.38 0.42 0.82 0.42 

5.3.3 Rabbit endothelial nuclear length 

Endothelial nuclear lengths for immature and mature rabbits for the 500µm * 500pm 

regions defined in Fig.5.1 (Zones A-C) are shown in Fig. 5.24. There were highly 

significant differences in mean length between ages and regions and a highly significant 

interaction between age and region (age*region) (all P<0.005). Mean lengths for 

individual rabbits are shown in Table 5.17. The mean lengths of nuclei were 16.68 ± 

0.02pm (n = 3263 regions) and 19.06 ± 0.02µm (n = 3539 regions) in immature and 

mature rabbits respectively; a difference of 14.3%. 
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Fig. 5.24. Length (i.tm) of rabbit endothelial cell nuclei for all the branch ostia. Each 

square represents the average data for a 5001.un * 500pm region. Total area of the map 

is 42.25mm2. n = 4 immature rabbits, n = 4 mature rabbits. Data represent average for 

36 immature and 38 mature branches. 

Table 5.17. Mean rabbit endothelial nuclear length (µm), where n equals the number of 
regions. 

Age Group Rabbit Length (pm)  Mean SEM 

Immature 

Il 16.94 0.02 
12 15.90 0.02 
13 17.16 0.04 
14 16.91 0.05 

All immature 16.68 0.02 

Mature 

M1 19.38 0.03 
M2 18.49 0.02 
M3 19.20 0.03 
M4 20.49 0.06 

All mature 19.06 0.02 

5.3.3.1 "Zone A" (5001.im * 500µm regions)  
Mean lengths for nuclei in "Zone A" are shown in Fig. 5.25. There was a highly 

significant effect of age and region and a highly significant interaction between age and 

region (all P<0.005). 
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In immature rabbits, the maximum mean length of nuclei (17.38 ± 0.13µm, "D2", n = 34 

branches) was lower than the minimum length of nuclei (18.55 ± 0.14, "Ll", n = 38 

branches) in mature rabbits. In immature rabbits, nuclei were generally longer 

downstream of the branch ostia than upstream: the ratio of the mean length upstream 

(16.92 ± 0.15µm, "Ur, n = 36 branches) to the mean length downstream (17.33 ± 0.14, 

"Dr, n = 34 branches) was 0.98. Nuclei in the lateral regions ("Rl" and "Ll") and 

immediately upstream of the ostia ("Ur) were the shortest. Nuclei in mature rabbits 

were generally lower in the immediate branch vicinity, with very little variation between 

upstream and downstream regions: the ratio of the mean length upstream (18.94 ± 

0.151.tm, "Ur, n = 38 branches) to the mean length downstream (18.70 ± 0.15, "Dl", n 

= 38 branches) was 1.01. The shortest nuclei were found in the lateral regions ("Rl" 

and "Ll") and in the region immediately downstream of the ostia ("Dl"). The 

significance of differences between individual regions for immature and mature rabbits, 

obtained using the Tukey test, are shown in Fig 5.26. 
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Fig. 5.25. Endothelial nuclear lengths (µm) for regions surrounding branch ostia, 

defined in Fig. 5.1, in immature and mature rabbits. Bars show means ± SEM (n = 

number of branches). 
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Fig. 5.26. Significant differences in nuclear length between 500Rm * 500µm regions 

within Zone A, determined by the Tukey test for multiple comparisons. Squares shaded 

in grey depict significant differences (P<0.05). Squares to the right of the black 

diagonal line indicate differences in immature rabbits. Squares to the left indicate 

differences in mature rabbits. 

5.3.3.2 "Zone A" (100um * 1001.1m sub-regions)  

Nuclear lengths in the main regions nearest the branch ostia ("U2R1", "U2", "U2L1", 

"U1R1", "Ul", "UlL1", "Rl", "Ll", "D1R1", "Dl", 	"D2R1", "D2", "D2L1") 

were also analysed at higher resolution, using data for individual 100µ,m * 100µm sub-

regions (Fig. 5.27, Tables 5.18a,b and 5.19a,b). There were significant changes with age 

within all regions analysed (P<0.05), and significant effects of sub-region for nuclei 

within "U1R1", "Rl", "D1R1", "Ul", "Dl", "U1L1", "Ll", "DILI" (all P<0.005) and 
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"D2L1" (P<0.05). There was a significant change with age in pattern (age*region 

interaction) for the main regions "DIR1", "Ul", "Dl", "LI" (all P<0.005), "D2R1", 

"DILI" and "D2L1" (all P<0.01). In immature and mature rabbits, the shortest nuclei 

were located in a strip running along the lateral axis at the level of the branch ostia, but 

in addition, nuclei in mature rabbits were also shorter than the average in a region 

extending slightly downstream of the ostia. 

16.9 17.1 17.2 17.4 17.4 17.2 17.3 17.1 17.1 17.3 17.1 	17.1 17.2 17.1 16.7 

17.7 17.3 17.2 17.1 17.3 17.3 17.1 	17.1 17.2 17.2 17.0 17.3 16.9 17.0 16.9 

17.3 17.4 17.2 17.3 17.3 17.4 17.2 17.2 17.4 17.4 17.5 	17.1 17.0 17.2 16.8 

17.2 17.4 17.2 17.2 17.3 17.2 17.2 17.2 17.3 17.1 17.2 17.2 17.0 17.0 17.0 

16 17.2 17.0 17.2 17.3 17.2 17.4 17.1 17.1 17.3 17.3 17.1 17.1 17.0 16.9 

17.5 17.2 171 17.2 17.1 17.3 17.3 173 17.1 17.1 17.1 	17.3 17.1 17.1 17.0 

17.2 17.4 17.3 16.9 17.2 17.2 17.2 17.3 17.1 16.9 16.9 17.2 17.2 17.3 17.1 

17.2 17,0 172 16.9 16.8 17.0 17.2 	17.1 17.4 17.0 17.0 172 17.2 17.1 17.1 

17.1 17.3 17 1 16.9 16.7 16.6 16.6 16.8 166 16.7 16.6 16.9 17.3 17.1 17.3 

17.0 17.0 16 9 16.7 16.3 16.1 15.7 16.0 159 16.0 183 16.6 17.2 17.1 16.9 

17.7 16.8 16.9 16.3 15.2 15.9 166 16.8 16.9 16.6 

16.8 16.8 16.9 15.8 15.4 181 16.7 18.5 16.3 

16.6 16.5 16.9 16.2 Immature Branch 16.8 165 16.4 18.5 16.5 
081iU M 

16.7 16.5 16.2 15.6 15;0 15.9 16.1 16.3 18.5 16.2 

16.8 16.8 165 16.1 15.7 16.2 16.2 15.7 16.9 16.7 

17.0 16.8 16.8 16.6 16.5 1011.01111116.5 16.9 16.9 17.0 16.9 16.9 

17.0 17.1 	17.2 17.0 16.8 17.2 17.5 17.5 17 4 17.2 17.2 	17.3 17.3 17.0 16.4 

17.2 17.1 17.5 17.3 17.5 17.4 17.6 17.9 17.5 17.5 17.4 17.4 17.2 17.1 16.8 

17.2 17.2 17.3 17.2 17.4 17.8 17.6 17.7 17.7 17.4 17.4 17.3 17.2 17.3 16.8 

17.1 17.3 17.3 17.4 17.7 17.6 17.7 17.9 17.5 17.6 17.3 17.1 17.2 	17.1 15.8 

17.0 17.2 17.3 17.4 17.4 17.3 17.5 17.6 17.3 17.6 17.3 17.3 17.4 17.0 15.7 

17.1 17.1 17.1 	17.2 17.5 17.3 17.4 17.5 17.3 17.2 17.2 17.2 17.2 17.0 15.4 

16.8 17.2 17.0 17.1 17.1 17.3 17.3 17.4 17.4 17.3 17.2 17.2 17.1 	17.0 16.6 

17.0 17.2 17.2 	17.1 17.1 17.3 17.4 17.2 17.3 17.2 17.3 17.3 17.1 	16.9 16.6 

16.9 17.3 17.0 17.0 17.3 17.4 17.4 17.4 17.4 17.2 17.2 17.0 17.2 	17.f' 

18.8 190 19.3 19.3 19.0 19.0 19.2 19.2 19.2 19.1 19.1 19.1 19.4 19.2 19.1 

18.8 19.0 19.1 19.2 19.0 19.1 19.2 19.2 19.3 19.2 19.1 19.2 19.3 19.3 19.1 

19.0 19.1 19.1 19.0 19.0 18.9 19.2 19.2 19.4 19.2 19.1 19.3 19.3 19.2 19.0 

18.9 15.1 19.0 19.0 19.1 19.0 19.2 19.4 19.3 19.2 191 19.0 19.0 19.2 18.9 

19.0 19.1 19.1 19.1 19.1 19.1 19.2 19.3 19.4 19.3 19.1 18.9 19.3 19.4 19.2 

18.8 19.2 19.2 19.2 19.1 19.2 19.4 19.6 19.6 19.6 19.4 19.2 19.2 19.4 19.1 

19.0 19.3 19.1 19.2 19.0 19.3 19.4 19.5 19.6 las 15.4 19.3 19.0 19.3 193 

186 19.2 19.0 18.9 18.9 18.6 18.6 18.9 19.3 19.3 15.1 19.0 19.1 19.2 19.2 

las 19.0 18.8 18.4 18.3 19.2 18.4 18.4 18.5 18.6 15.6 18.7 18.9 19.0 19 4 

18.8 19.0 18.9 18.4 18.3 182 17.8 17.9 18.0 180 16.0 18_4 18.7 19.0 18.9 

18.8 15.0 188 18.4 17.6 16.8 17.7 18.3 18.8 18.8 

19.0 19.0 19.0 17.911 18.1 16.9 18.5 18.9 18.7 

19.2 19 18.5 18.2 17.2 
Mature Branch.0 16.5 18.8 18.4 19.0 18.6 

050L101 
18.7 18.9 18.6 18.6 17.8 16.7 17.7 18.7 18.7 18.7 

19.1 19.1 18.9 19.1 18.5 15.3 18.6 18.5 18.7 18.6 

19.2 19.1 19.2 18.7 18.3 18.2 18.1 17.5 18.0 18.9 18.7 18.7 18.7 18.8 18.9 

19.1 19.3 19.3 19.1 18.6 17.9 18.2 18.3 18.3 18.6 18.5 18.8 18.9 19.1 18.9 

19.4 19.4 19.5 19.1 18.6 18.2 18.4 18.3 187 18.8 18.7 19.0 19.1 19.2 19.0 

19.4 19.4 19.5 19.1 19.0 18.7 18.7 18.8 18.9 19.2 19.1 19.2 19.1 19.3 19.1 

19.4 19.5 19.6 19.3 19.2 19.0 19.7 19.0 19.0 15.2 19.4 19.0 19.3 19.2 19.1 

19.6 19.3 19.5 19.3 19.1 18.8 19.1 19.1 	19.2 19.3 19.2 19.1 19.2 19.2 19.0 

19.4 19.2 19.3 19.3 19.2 19.1 19.1 19.1 19.1 19.3 19.2 19.2 19.2 19.1 19.0 

19.4 19.4 19.3 19.4 19.2 19.3 19.1 19.0 19.1 192 19.1 19.2 19.2 19.0 19.2 

19.5 19.3 19.5 19.5 19.2 19.3 19.2 19.2 19.1 19.3 19.2 19.2 19.0 19.4 19.4 

19.4 19.3 19.3 19.3 19.1 19.1 19.1 19.0 19.1 19.1 19.3 19.2 19.3 19.1 

Fig. 5.27. Length (lam) of endothelial cell nuclei for all the branch ostia. Each square 

represents the data for a 1001.trn * 100[tm region. The total area of the map is 3.75mm2. 

n = 4 immature rabbits, n = 4 mature rabbits. Data are averages for 36 immature and 38 

mature branches. 

199 



Table 5.18a. Immature rabbit endothelial cell nuclear lengths (gm) for sub-regions 
(100um * 100µm) within upstream and lateral main-regions in "Zone A", where n 
equals the number of branches. 

Immature U2R1 U2 U2L1 U1R1 U1 U1L1 R1 L1 
Sub-Region Mean SEM Mean SEM ,  Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 16.95 0.24 17/4 0.22 17.11 0.21 17.47 0.27 17.27 0.16 17.13 020 16.99 0.20 15.93 0.32 
U2R1s 17.12 0.15 17.31 0.18 17.06 0.22 17.23 0.16 17.29 0.20 17.31 0.23 16.85 0.16 16.64 0.25 

U2s 17.22 0.26 17.06 0.17 17.15 0.23 17.11 0.17 17.27 0.24 17.06 0.25 16.95 0.24 16.80 0.22 
U2L1s 17.40 0.23 17.08 0.20 17.06 0.21 17.17 0.20 17.08 0.20 17.14 0.21 16.28 0.28 16.90 0.22 
U2L2s 17.38 0.16 17.29 0.24 16.73 0.33 17.07 0.15 17.09 0.19 1698 0.36 15.23 0.29 16.57 0.18 
U1R2s 17.27 0.17 17.29 0.18 17.01 0.22 17.23 0.31 17.22 0.16 16.93 0.18 16.79 0.25 15.39 0.61 
U1R1s 17.29 0.14 17.11 0.12 17.26 0.20 17.35 0.17 17.20 0.21 17.24 0.21 1630 0.22 16.10 0.40 

U1s 17.16 0.20 17.15 0.15 16.87 0.20 17.32 0.20 17.30 0.25 17.23 0.22 16.87 0.31 16.70 0.25 
U1L1s 17.15 0.16 17.18 0.21 17.00 0.25 16.93 0.22 17.12 0.17 17.28 0.19 15.84 0.37 16.50 0.19 
U1L2s 17.31 0.20 17.17 0.28 16.92 0.30 17.20 0.16 16.93 0.17 17.13 0.27 14.17 0.53 16.35 0.21 
R2s 17.28 0.25 17.37 0.21 17.48 0.25 17.19 0.25 16.96 0.20 17.01 0.17 16.64 0.27 16.81 0.88 
R1s 17.38 0.20 17.20 0.17 17.09 0.19 16.98 0.16 17.20 0.19 17.19 0.16 16.55 0.20 16.47 0.24 
Cs 17.25 0.22 17.20 0.21 17.01 0.19 17.20 0.15 17.13 0.21 17.21 0.21 1637 0.31 16.40 0.24 
Lis 17.26 0.18 17.42 0.26 17.16 0.25 16.93 0.17 17.36 0.24 17.08 0.19 16.15 0.48 16.47 0.17 
L2s 17.28 0.20 17.37 0.25 16.76 0.29 16.81 0.16 17.01 0.20 17.15 0.39 14.57 0.44 16.55 0.32 

D1R2s 17.22 0.23 17.24 0.21 17.15 0.19 17.13 0.27 16.55 0.20 16.65 0.21 16.70 0.24 1592 0.61 
D1R1s 17.37 0.17 17.21 0.19 17.18 0.18 17.27 0.16 16.64 0.17 16.91 0.24 16.50 0.17 16.06 0.26 
DU 17.17 0.19 17.23 0.21 16.97 0.21 17.13 0.19 16.76 0.23 17.31 0.24 16.25 0.25 16.26 0.20 

D1L1s 17.21 0.17 17.29 0.27 1702 022 16.91 0.18 16.64 0.20 17.07 0.20 15.56 0.32 16.54 0.17 
D1L2s 17.27 0.19 17.12 0.21 1698 0.36 16.72 0.19 16.73 0.24 1731 0.47 15.04 0.62 16.24 0.21 
D2R2s 1694 0.24 1721 0.18 17.29 0.22 16.97 0.24 16.08 0.28 1634 0.19 16.78 0.28 16.16 0.26 
D2R1s 17.23 0.22 17.38 0.20 17.07 0.22 16.96 0.18 15.65 0.29 16.65 0.26 16.76 0.21 16.21 0.24 

D2s 17.02 0.17 17.11 0.24 17.06 0.21 16.95 0.18 16.00 026 17.15 0.23 16.49 0.21 16.73 023 
D2L1s 17.24 0.17 17.12 0.23 17.02 0.20 16.67 0.18 15.93 0.26 17.10 0.19 16.10 0.18 16.88 0.21 
D2L2s 17.31 0.20 17.27 0.25 16.88 0.34 16.29 0.19 16.00 0.22 16.85 0.25 15.73 0.32 16.65 0.28 
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Table 5.18b. Immature rabbit endothelial cell nuclear lengths (gm) for sub-regions 
(1001.tm * 100m) within downstream main-regions in "Zone A", where n equals the 
number of branches. 

Immature D1R1 D1 DILI D2R 1 D2 D2L1 

Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean  SEM 
U2R2s 16.99 0.21 16.14 0.26 16.87 0.29 17.04 0.22 17.31 0.13 17.33 0.19 
U2R1s 16.77 0.18 16.15 0.28 16.93 0.33 17.17 0.21 17.60 0.18 17.26 0.19 

U2s 16.80 0.19 16.11 0.28 16.96 0.24 17.30 0.22 17.59 0.14 17.38 0.19 
U2L1s 16.65 0.25 16.42 0.28 16.86 0.18 17.39 0.18 17.27 0.22 16.98 0.16 
U2L2s 16.51 0.24 16.51 0.27 16.87 0.21 17.36 0.17 17.63 0.20 16.67 0.22 
U1R2s 16.98 0.21 17.20 0.30 17.22 030 17.06 0.24 17.30 0.21 17.20 0.18 
U1R1s 17.14 0.20 1748 0.22 17.27 0.27 17.06 0.15 17.42 0.16 17.21 0.20 
Uls 17.19 0.19 17.48 0.21 17.31 0.25 17.15 0.16 17.50 0.23 17.20 0.23 

U1L1s 17.03 0.20 17.36 0.21 16.95 0.18 17.18 0.19 17.29 0.17 17.00 0.18 
U1L2s 16.82 0.23 17.23 0.22 16.41 0.25 17.49 0.21 17.18 0.22 16.37 0.27 

R2s 17.19 024 17.44 0.34 17.36 0.27 16.85 0.25 17.32 0.19 17.15 0.16 
R1s 17.14 0.15 17.64 0.19 17.37 0.26 17.21 0.19 17.31 0.18 17.21 0.19 
Cs 17.46 0.20 17.92 0.16 17.22 024 16.97 0.19 17.39 0.17 17.06 0.21 
L1 s 17.27 0.19 17.53 0.19 17.12 021 17.08 0.18 17.36 0.13 16.98 0.21 
L2s 17.55 0.21 17.49 0.25 16.80 0.21 17.11 0.20 17.34 0.19 16.60 0.27 

D1R2s 17.20 0.23 17.83 0.19 17.43 0.24 17.04 0.30 17.29 0.18 17.35 0.19 
D1R1s 17.17 0.14 17.59 0.19 17.34 0.21 17.24 0.15 17.39 0.20 17.35 0.21 
DU 17.29 0.19 17.72 0.18 17.22 0.21 17.17 0.19 17.21 0.18 17.11 0.19 

D1L1s 17.23 0.19 17.71 0.21 17.26 0.18 17.08 0.17 17.31 0.18 16.88 0.19 
D1L2s 17.35 0.21 17.43 0.17 16.84 0.21 17.15 0.20 17.20 0.13 16.61 0.32 
D2R2s 17.08 0.23 17.56 0.16 17.33 0.19 16.92 0.25 17.43 0.26 17.24 0.21 
D2R1s 17.32 0.21 17.69 0.19 17.10 0.18 17.03 0.17 17.39 0.18 16.98 0.19 

D2s 17.26 0.20 17.85 0.17 17.24 0.22 16.97 0.18 17.38 0.16 17.17 0.27 
D2L1s 17.36 0.19 17.49 0.18 17.08 0.21 17.02 0.19 17.37 0.17 16.96 0.18 
D2L2s 17.66 0.25 17.62 0.20 16.82 0.25 17.32 0.22 17.18 0.19 16.36 0.31 
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Table 5.19a. Mature rabbit endothelial cell nuclear lengths (m) for sub-regions (1001.1m 
* 100i.tm) within upstream and lateral main-regions in "Zone A", where n equals the 
number of branches. 

Mature U2R1 U2 U2L1 U1R1 U1 U1L1 R1 L1 
. Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 18.76 0.18 19.03 0.19 19.11 0.17 18.80 0.17 19.22 0.19 19.35 0.20 18.77 0.23 1685 0.32 
U2R1s 19.01 0.15 19.18 0.14 19.10 0.19 19.21 0.16 19.38 0.21 19.23 0.21 19.02 0.22 17.70 0.24 

U2s 19.34 0.19 19.18 0.17 19.36 0.19 19.19 0.18 19.58 0.21 19.19 0.22 18.80 0.30 18.35 0.20 
U2L1s 19.31 0.17 19.20 0.17 19.16 0.19 19.16 0.16 19.56 0.22 19.42 0.20 18.37 041 18.79 0.29 
U2L2s 18.97 0.18 19.13 0.16 19.10 020 19.05 0.17 19.55 0.20 19.10 0.19 17.65 0.33 18.80 0.28 
U1R2s 18.83 0.25 19.05 0.22 19.06 0.16 19.00 0.22 19.26 022 19.35 0.19 19.00 0.20 16.14 0.62 
U1R1s 19.03 0.13 19.20 0.18 19.18 0.16 19.26 0.17 19.39 0.19 19.30 0.19 18.97 0.16 16.94 0.35 
U1s 19.11 0.14 19.22 0.20 19.29 0.18 19.11 0.14 19.53 0.23 19.04 0.20 18.97 0.40 18.49 0.24 

U1L1s 19.16 0.18 19.29 0.17 19.29 0.15 19.18 0.16 19.59 0.22 19.34 0.18 17.94 0.44 18.89 0.20 
U1L2s . 19.05 0.21 19.18 0.15 19.08 0.22 19.03 0.19 19.54 0.21 19.35 0.20 16.27 0.32 18.71 0.27 
R2s 19.03 0.20 18.88 0.21 19.06 0.16 18.82 0.26 18.79 0.19 19.14 0.20 19.23 0.22 16.47 0.83 
R1s 19.15 0.14 19.18 0.19 19.28 0.17 19.24 0.13 18.55 0.26 19.01 0.18 19.00 0.16 16.78 0.38 
Cs 19.09 0.20 19.20 0.18 1925 0.17 19.01 0.21 18.85 0.24 19.10 0.17 18.50 030 18.41 0.21 
Us 19.03 0.18 19.41 0.19 19.25 0.20 18.89 0.23 19.25 0.20 19.25 0.16 18.22 0.42 19.04 0.18 
L2s 19.03 0.20 19.16 0.16 18.97 0.25 18.86 0.21 19.32 0.23 19.19 0.22 17.23 058 18.62 0.22 

D1R2s 18.94 0.20 19.04 0.20 19.14 0.15 18.64 0.17 18.23 0.25 18.65 0.16 18.69 0.21 16.73 0.26 
D1R1s 19.06 0.18 19.23 0.20 19.03 020 19.03 0.16 18.38 0.25 18.72 0.15 18.86 0.16 17.71 0.31 

01s 18.99 0.19 19.42 0.22 18.97 0.20 18.83 0.20 18.35 0.25 18.86 0.13 18.59 0.24 18.71 0.24 
D1L1s 18.99 0.17 19.25 0.16 19.24 0.24 18.44 0.21 18.50 022 18.96 0.18 18.62 0.26 18.75 0.18 
D1L2s 19.11 0.18 19.18 0.17 18.88 0.24 18.28 0.21 18.59 0.20 19.42 0.22 17.85 0.52 18.74 0.18 
D2R2s 19.00 0.23 19.12 0.18 19.12 0.20 18.76 022 18.18 0.31 18.02 0.24 19.10 0.23 18.32 0.30 
D2R1s 19.06 0.15 19.20 0.18 18.91 0.25 18.99 0.14 17.79 0.37 18.42 0.17 19.13 0.18 18.60 0.21 
D2s 19.09 0.18 19.26 0.20 19.34 0.20 18.87 0.25 17.88 0.37 18.66 0.15 18.95 0.18 18.64 0.20 

D2L1s 19.07 0.17 19.41 0.23 19.41 0.20 18.40 0.17 17.96 0.28 18.95 0.18 19.06 0.25 18.73 0.19 
D2L2s 19.05 0.15 19.33 0.18 19.22 0.20 18.27 0.27 18.04 0.27 18.93 0.23 18.49 0.40 18.64 0.16 

202 



Table 5.19b. Mature rabbit endothelial cell nuclear lengths (µm) for sub-regions 
(100µm * 100µm) within downstream main-regions in "Zone A", where n equals the 
number of branches. 

Mature D1R1 D1 DILI D2R1 D2 D2L1 
Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 19.22 0.26 16.22 031 18.67 0.30 19.62 0.31 18.83 0.23 19.20 0.16 
U2R1s 19.12 0.20 18.11 0.44 16.68 0.23 1927 0.17 19.11 0.25 19.11 0.16 

U2s 19.18 0.19 17.94 0.22 18.71 0.15 19.46 0.19 19.12 0.21 19.16 0.21 
U2L1s 18.73 0.17 17.97 0.29 18.84 0.17 19.32 0.16 19.22 021 19.15 0.20 
U2L2s 18.28 0.20 18.87 0.21 18.90 0.13 19.09 0.20 19.33 0.18 19.04 0.31 
U1R2s 19.11 0.32 17.95 0.27 18.52 0.20 19.36 0.23 19.11 0.22 19.18 0.19 
U1R1s 19.30 0.20 18.24 0.25 18.79 0.20 19.22 0.19 19.12 0.21 19.25 0.18 

U1s 19.32 0.17 18.33 0.26 18.92 0.18 19.34 0.17 19.10 0.23 19.18 0.16 
U1L1s 19.09 0.14 18.30 0.26 19.06 0.20 19.32 0.17 19.09 0.19 19.06 0.16 
U1L2s 18.59 0.21 18.64 0.19 18.86 0.25 19.15 0.19 19.27 0.22 19.02 029 
R2s 1944 0.30 18.23 0.27 18.71 0.21 19.43 0.24 19.30 0.20 19.07 0.17 
Ris 19.36 0.24 18.43 0.23 18.99 0.18 19.36 0.19 19.06 0.22 1921 0.19 
Cs 1948 0.19 18.30 0.16 19.05 021 19.33 0.18 19.03 0.24 19.17 0.19 
L1 s 19.11 0.12 18.69 0.19 19.16 0.21 19.41 0.17 19.10 0.23 19.04 0.15 
L2s 18.60 0.17 18.84 0.20 19.00 0.20 19.18 0.20 19.24 0.20 19.20 0.28 

D1R2s 19.44 0.36 18.73 0.22 19.10 0.16 19.52 027 19.29 0.18 19.16 0.16 
D1R1s 19.39 0.22 18.73 0.22 19.21 0.18 19.32 0.19 19.19 0.23 19.21 0.16 

D1 s 19.50 0.17 18.76 0.25 19.11 0.23 19.46 0.20 19.18 0.25 19.00 0.18 
D1L1s 19.10 0.16 18.90 0.19 19.27 0.19 19.48 0.19 19.15 0.24 19.38 0.19 
D1L2s 19.00 0.19 19.17 0.21 19.08 021 19.24 0.20 19.31 0.18 1945 0.30 
D2R2s 1944 0.28 18.96 023 19.38 0.19 19.42 0.31 19.11 0.22 19.07 0.17 
D2R1s 19.48 021 19.04 0.23 18.99 0.19 19.35 0.20 19.10 0.25 1927 0.22 

D2s 19.60 0.18 18.98 0.20 1930 0.20 19.34 0.19 18.97 025 19.21 0.20 
D2L1s 19.26 0.15 19.00 0.19 19.23 0.18 19.31 0.19 19.04 0.27 19.30 0.22 
D2L2s 19.16 0.20 19.18 0.17 19.09 0.27 19.14 022 19.09 0.25 19.12 0.28 

Tukey tests were performed on data for nuclear lengths for sub-regions in "Zone A" 

(Appendix B.3a-h). 

5.3.3.3 "Zone B" (500 JIM * 5001.tm regions)  
The lengths of the nuclei within Zone B are shown in Table 5.20. There were highly 

significant effects of age and region and an interaction between age and region (all 

P<0.005). Mean nuclear lengths were 16.72 ± 0.03µm (n = 1163 regions) and 19.13 ± 

0.031im (n = 1355 regions) for immature and mature rabbits respectively (a difference of 

14.4%). Lengths ranged from 16.03 ± 0.23 ("U4L4", n = 16 branches) to 17.27 ± 0.14 

("U4R1", n = 34 branches) (7.7% difference) in immature rabbits, and from 18.47 ± 0.20 

("D3L4", n = 18 branches) to 19.39 ± 0.27 ("D4R2", n = 21 branches) (a 5.0% 

difference) in mature rabbits. 
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Table 5.20. Rabbit endothelial cell lengths (gm) for regions in "Zone B", where n 
equals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U4R4 16.59 0.25 19.11 0.25 
U4R3 16.83 0.21 19.09 0.24 
U4R2 17.05 0.19 19.08 0.24 
U4R1 17.27 0.14 19.35 0.13 

U4 17.23 0.17 19.31 0.13 
U4L1 17.07 0.18 19.31 0.15 
U4L2 16.49 0.26 19.12 0.19 
U4 L3 16.22 0.26 19.19 0.18 
U4L4 16.03 0.23 18.71 0.23 
U3R4 16.58 0.25 19.14 0.21 
U3R3 16.65 0.22 19.19 0.24 
U3R2 17.07 0.18 19.01 0.26 
U3R1 17.20 0.13 19.12 0.13 

U3 17.16 0.16 19.23 0.12 
U3L1 17.05 0.17 19.29 0.15 
U3L2 16.58 0.25 19.14 0.17 
U3L3 16.23 0.26 19.07 0.16 
U3L4 16.10 0.24 18.73 0.19 
U2R4 16.60 0.23 19.09 0.17 
U2R3 16.74 0.19 19.16 0.21 
U2L3 16.32 0.24 19.14 0.21 
U2L4 16.16 0.28 18.77 0.21 
U1R4 16.65 0.27 19.29 0.18 
U1R3 16.84 0.22 19.24 0.21 
U1L3 16.45 0.30 19.07 0.21 

. 	U1L4 16.12 0.27 18.68 0.24 
R4 16.53 0.26 19.31 0.18 
R3 16.84 0.25 19.16 0.24 
L3 16.40 0.27 18.95 0.21 
L4 16.08 0.28 18.67 0.24 

D1R4 16.52 0.25 19.21 0.22 
D1R3 16.81 0.21 19.19 0.31 
D1L3 16.37 0.28 18.91 0.22 
D1L4 16.19 0.33 18.58 0.23 
D2 R4 16.47 0.28 19.23 0.23 
D2 R3 16.75 0.21 19.25 0.25 
D2 L3 16.40 0.27 19.03 0.24 
D2 L4 16.21 0.37 18.48 0.20 
D3R4 16.47 0.26 19.31 0.21 
D3R3 16.66 0.21 19.25 0.23 
D3R2 16.91 0.18 19.36 0.24 
D3R1 17.05 0.13 19.34 0.16 

D3 17.14 0.13 19.19 0.15 
D3L1 17.04 0.13 19.27 0.14 
D3L2 16.56 0.25 19.06 0.20 
D3L3 16.32 0.26 18.91 0.22 
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D3L4 16.09 0.33 18.47 0.20 
D4R4 16.43 0.25 19.26 0.24 
D4R3 16.56 0.21 19.34 0.24 
D4R2 16.86 0.17 19.39 0.27 
D4R1 17.03 0.14 19.37 0.17 

D4 17.12 0.14 19.27 0.16 
D4L1 17.02 0.14 19.36 0.14 
D4 L2 16.48 0.21 19.03 0.20 
D4L3 15.99 0.25 18.97 0.23 
D4L4 16.10 0.35 18.52 0.21 

Total mean 16.72 0.03 19.13 0.03 

5.3.3.4 "Zone C" (500Rm * 5001.1m regions)  
The lengths of the nuclei within Zone C are shown in Table 5.21. There were highly 

significant effects of age and region and an interaction between age and region (all 

P<0.005). The mean lengths of nuclei in immature and mature rabbits were 16.50 ± 

0.03µm (n = 1423 regions) and 19.01 ± 0.03µm (n = 1443 regions) respectively; a 

difference of 15.2%. Nuclear lengths were between 15.82 ± 0.32 ("U6L5", n = 12 

branches) and 17.21 ± 0.17 ("U5R1", n = 33 branches) (8.8% difference) in immature 

rabbits, and ranged from 18.13 ± 0.41 ("D6L5", n = 5 branches) to 19.48 ± 0.23 

("U6R1", n = 20 branches) and 19.48 ± 0.21 ("D5R3", n = 20 branches) (7.4% 

difference). 
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Table 5.21. Rabbit nuclear length (gm) for regions in "Zone C", where n equals the 
number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U6R6 16.09 0.37 19.06 0.29 
U6R5 16.34 0.35 18.55 0.44 
U6R4 16.41 0.37 18.88 0.36 
U6R3 16.41 0.28 18.93 0.25 
U6R2 16.52 0.22 18.92 0.22 
U6R1 16.89 0.18 19.48 0.23 

U6 16.85 0.20 19.28 0.22 
U6L1 16.88 0.20 19.26 0.21 
U6L2 16.49 0.33 19.47 0.33 
U6L3 16.25 0.27 19.38 0.24 
U6L4 16.18 0.36 19.25 0.25 
U6L5 15.82 0.32 19.19 0.27 
U6L6 16.28 0.34 19.04 0.33 
U5R6 16.12 0.24 18.90 0.31 
U5R5 16.14 0.25 18.93 0.25 
U5R4 16.43 0.23 19.09 0.24 
U5R3 16.64 0.20 18.94 0.22 
U5R2 16.87 0.19 19.11 0.24 
U5R1 17.21 0.17 19.22 0.17 

U5 17.16 0.16 19.28 0.17 
U5L1 17.09 0.18 19.24 0.16 
U5 L2 16.50 0.28 19.17 0.20 
U5L3 16.37 0.27 19.32 0.21 
U5L4 16.18 0.27 19.05 0.20 
U5L5 16.26 0.29 18.91 0.25 
U5L6 16.43 0.36 19.01 0.37 
U4R6 16.22 0.28 18.92 0.27 
U4R5 16.27 0.26 18.96 0.23 
U4L5 16.15 0.27 18.70 0.19 
U4L6 16.47 0.35 18.67 0.31 
U3R6 16.40 0.25 19.06 0.20 
U3R5 16.26 0.25 19.06 0.22 
U3L5 16.08 0.28 18.70 0.20 
U3L6 16.60 0.32 18.42 0.29 
U2 R6 16.33 0.22 18.67 0.23 
U2R5 16.36 0.26 18.92 0.19 
U2L5 16.12 0.29 18.45 0.17 
U2L6 16.44 0.34 18.35 0.25 
U1R6 16.24 0.24 18.92 0.21 
U1R5 16.33 0.24 19.13 0.20 
U1L5 16.37 0.36 18.68 0.17 
U1L6 16.47 0.35 18.32 0.25 

R6 16.29 0.24 18.91 0.20 
R5 16.26 0.23 19.11 0.21 
L5 16.24 0.31 18.53 0.18 
L6 16.43 0.35 18.27 0.30 
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D1R6 16.31 0.25 18.85 0.22 
D1R5 16.23 0.24 19.05 0.26 
D1L5 16.33 0.32 18.65 0.21 
D1L6 16.32 0.30 18.38 0.25 
D2R6 16.30 0.26 18.89 0.20 
D2R5 16.27 0.26 19.19 0.28 
D2 L5 16.22 0.33 18.48 0.18 
D2L6 16.12 0.31 18.20 0.29 
D3R6 16.43 0.30 18.89 0.20 
D3R5 16.31 0.24 19.15 0.23 
D3L5 16.38 0.37 18.49 0.24 
D3L6 16.12 0.36 18.32 0.30 
D4 R6 16.30 0.25 19.07 0.24 
D4 R5 16.37 0.27 19.21 0.22 
D4 L5 16.40 0.40 18.59 0.25 
D4L6 16.01 0.45 18.18 0.25 
D5R6 16.17 0.31 19.05 0.27 
D5R5 16.37 0.30 19.30 0.19 
D5R4 16.44 0.29 19.41 0.29 
D5 R3 16.46 0.22 19.48 0.21 
D5 R2 16.80 0.21 19.40 0.22 
D5R1 16.96 0.17 19.41 0.16 

D5 17.07 0.14 19.31 0.16 
D5L1 17.05 0.15 19.18 0.14 
D5L2 16.54 0.26 19.04 0.27 
D5L3 16.25 0.27 18.86 0.25 
D5 L4 16.15 0.29 18.64 0.22 
D5L5 16.21 0.29 18.45 0.27 
D5L6 16.19 0.39 18.25 0.24 
D6R6 16.24 0.31 18.75 0.22 
D6 R5 16.45 0.30 19.31 0.24 
D6R4 16.43 0.25 19.30 0.29 
D6R3 16.59 0.28 19.46 0.26 
D6R2 16.65 0.27 19.35 0.20 
D6R1 16.92 0.18 19.46 0.16 

D6 16.91 0.18 19.27 0.18 
D6L1 16.98 0.18 19.29 0.17 
D6L2 16.69 0.29 18.97 0.24 
D6L3 16.28 0.29 18.98 0.30 
D6L4 16.02 0.27 18.88 0.30 
D6L5 16.13 0.37 18.13 0.41 
D6L6 16.10 0.52 18.18 0.40 

Total mean 16.50 0.03 19.01 0.03 
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5.3.3.5 Nuclear lengths around ostia in different parts of the descending 

thoracic aorta (500µ,m * 50011m regions)  

Mean lengths for nuclei surrounding ostia within the upper portion and lower portion of 

the descending thoracic aorta, and ostia from the left and right hand side of this vessel 

are shown in Table 5.22. Data are further subdivided by the different zones around the 

ostia. 

Data for nuclear lengths within individual regions in "Zone A" for the upper and lower 

portion and right and left portions of the descending thoracic aorta are shown in Table 

5.23 and 5.24 respectively. Colour maps showing mean variations in nuclear length 

around the branch ostia at low resolution (averages per 500gm * 500gm regions) for 

different branch locations are shown in Figs 5.28-5.31. 

Table 5.22. Rabbit endothelial cell lengths (gm) for all regions, separated by location of 
the branch, where n equals the number of regions. 

Location of 
branch ostia Region Immature Mature 

Mean SEM Mean SEM 

Upper branch 
ostia 

Zone A-C 16.53 0.02 18.70 0.03 
Zone A 16.87 0.05 18.73 0.06 
Zone B 16.57 0.04 18.76 0.04 
Zone C 16.32 0.04 18.63 0.04 

Lower branch 
ostia 

. 

Zone A-C 16.87 0.03 19.46 0.02 
Zone A 17.15 0.05 19.33 0.04 
Zone B 16.92 0.04 19.53 0.03 
Zone C 16.71 0.04 19.46 0.03 

Right branch 
ostia 

Zone A-C 16.62 0.03 19.04 0.02 
Zone A 16.90 0.05 19.06 0.05 
Zone B 16.58 0.05 19.11 0.04 
Zone C 16.51 0.05 18.95 0.04 

Left branch ostia 
Zone A-C 16.75 0.03 19.31 0.02 
Zone A 17.11 0.05 19.16 0.05 
Zone B 16.87 0.04 19.41 0.04 
Zone C 16.49 0.04 19.31 0.03 
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Immature 

16.71 1691 1543 16.42 16.57 1656 16.45 16.40 16.10 1E84 15.88 1549 1569 

15.93 1599 16.36 16.76 17.66 17.15 17.01 16.79 16.09 1684 15.73 1581 15.79 

1E01 16.12 16.56 1E93 17.16 17.18 17.10 16.74 16.08 15.80 15.68 15.81 15.93 

1521 16.22 16.55 16.58 17.09 17.19 17.06 1581 16.17 1693 15.88 15.93 15.29 

16.22 16.31 16.64 16.79 1797 17.32 17.17 1988 16.11 16.03 16.90 15.83 1E18 

16.22 16.26 16.78 16.94 17.06 17.10 16.85 1E93 1E15 16.12 15.81 15.88 16.09 

1625 1628 16.54 16.93 16.93 16.35 * 16.43 16.25 15.93 1580 15 79 1E16 

15.18 16.15 16.60 16.85 16.99 17.18 17.22 16.84 16.12 16.04 1591 15.96 16.19 

16.37 1527 16.44 16.74 16.% 17 10 17 27 16.89 16.27 16.10 15.86 15.97 16.03 

16.51 16.23 16.39 16.63 16.96 1627 17 07 1691 16.24 16.06 15.74 15.93 16.05 

16.35 1E41 16.54 16.59 15 63 16.93 16.94 16.87 16.17 15.65 15.52 15.69 15.135 

'16.43 16.51 16.73 16.42 16.77 16.76 16.95 16.94 16.03 15.90 1578 1569 15.79 

16.21i 1111.1111Miall  15.83 15.72  

Mature 

16.48 17.24 17.87 17.84 18.97 18.64 1914 19.64 19.13 19.91 19.64 18.97 

18.16 16.61 18 37 18.30 18.39 113.83 18.62 18.71 18.83 19.10 1826 18.87 19.00 

18.43 18 44 18.61 18.43 18.45 18.82 18.87 18.93 18.68 18.76 1853 18.49 18.30 

78.71 18.52 16.66 18.54 18.37 18.83 18.98 18.98 18.79 18.75 18.51 18.47 18.17 

18.33 18.61 18.81 18.76 18.62 18.81 19.03 19.01 18.84 18.82 18.60 18.38 18.17 

18.69 18.75 18.99 18.73 18.61 18 51 18.52 18.99 18.89 18.79 18.52 18.29 18.12 

18.53 18.93 1829 18.71 18 47 18 51 18.04 18.67 18.75 18.50 18.21 18.16 

18.48 18.87 18.76 18.93 18.65 18.97 18.71 18.66 18.55 18.54 18.10 18.04 1896 

18.63 18.83 18.64 18.73 18.81 19.01 18.81 18.85 18.86 16.75 18.15 17.99 17.88 

18.69 18.88 18.78 mem 19.19 19.27 16.86 18.99 18.82 18.53 18.14 17.92 17.92 

18.93 18.72 18.72 18.84 19.07 19.20 19.10 19.14 1970 1865 18 02 17.93 18.13 

18.91 19.00 18.74 19.25 19.23 19.20 19.13 18.96 18.95 18.43 18.25 18.14 18.45 

18.10 18.72 18.63 18.91 19.03 19.14 18.95 19.05 18.58 18.57 18.55 17.54 

Fig. 5 28 Length (pm) of rabbit endothelial cell nuclei in the upper descending thoracic 

aorta. Values are averages for branches 1 to 6 (branch 1 being the first branch 

downstream from the aortic arch). Each square represents the average data for a 

500µm*500pm region. The total area of map is 42.25mm2. n = 4 immature rabbits, n = 

4 mature rabbits. Data represent averages for 21 immature and 14 mature branches. 

15.93 16.93 16.40 16.39 16.47 17.15 17.32 17.39 17.04 16.77 16.53 16.26 17.02 

1637 1630 1651 16.51 16.67 17.36 17.34 17.46 17.10 17 05 16E8 1E87 17.22 

16.45 16 43 1663 16.74 16.93 17.36 17.39 17.49 17.09 1E77 16.46 16.93 17.42 

16.61 15.31 16.61 16.74 17.04 17.20 17.30 17.36 17.15 16.78 16.37 1645 17.03 

16.46 16.42 16.55 15.93 17.05 1711 17.35 17.43 17.31 16.74 16.51 16.51 16.81 

16.28 16.40 16.50 1E71 16E6 1E92 17.03 1732 17.37 16.93 16.52 17 01 16.93 

16.35 1E25 1E53 16.72 16.78 16.50 * 16.66 17.12 17 07 16.56 1585 16.80 

16.45 16.32 16.41 1677 1693 17.16 17.51 17.64 17.17 16.66 16.77 1683 16.49 

16.23 16.27 16.51 16.76 16.84 17.17 17.65 17.48 17.22 16.87 1E74 16.55 16.24 

16.32 16.34 16.56 16 70 16.134 17.16 17.25 17.25 17.14 1679 16E2 1E% 1521 

16.24 16.32 1E31 16.52 16.92 17.18 17.43 17.30 1706 16.56 16.69 17 23 16.45 

1584 16.23 16.16 16.50 16.85 1728 17.27 17.22 17 22 16.67 16.52 16.73 16.70 

16.33 16.42 16.611116E2 1796 17.04 1798 16.  

18.85 18.93 19.05 18.99 19.14 19.87 19.61 19.59 19.89 19.62 19.22 19.35 19.67 

19.74 19.41 19.57 19.33 19.68 19.67 19.76 19.64 19.68 19.62 19.36 19.09 19.54 

19.46 19.67 19.60 19.67 19.73 19.81 19.73 19.76 19.61 19.65 18.92 19.04 19.58 

19.39 19.51 19.61 19.76 19.56 19.42 19.43 19.65 19.53 19.49 19.10 19.03 19.26 

18.96 19.15 19.35 19.50 19.33 19,34 19.42 19.44 19.45 19.59 19,09 18.71 18.97 

19.15 19.48 19.54 19.62 19.43 19.24 19.26 19.26 19.45 19.46 18.99 19.12 19.10 

19.29 19.31 19.57 19.58 1927 19.01 19.01 19.30 19.30 19.16 18.94 19.18 

1913 19.19 19.59 19.70 19.51 19.40 18.85 1939 19.35 19.38 19.05 19.37 19.34 

19.21 19.56 19.72 19.70 19.61 19.54 19.42 19.64 19.51 19.48 18.83 1996 19.19 

19.25 19.55 19.83 19.68 19.63 19.53 19.50 19.59 19.51 19.39 1887 19.16 19.50 

19.56 19.78 20.04 19.80 19.87 19.70 19.52 1988 19.57 19.46 19.06 19.28 18.94 

19.51 19.76 20.19 19 65 19.74 19.78 19.64 19.52 19.41 19.35 1911 18.83 18.77 

19.05 19.79 19.80 19.90 19.64 19.78 19.54 19.61 19.23 19.11 19.05 18.31 18.53 

Fig. 5.29. Length (pm) of rabbit endothelial cell nuclei in the lower descending thoracic 

aorta. Values are averages for branches 7 to 12. Each square represents the average 

data for a 500µm * 500µm region. The total area of map is 42.25mm2. n = 4 immature 

rabbits, n = 4 mature rabbits. Data represent averages for 15 immature and 20 mature 

branches. 
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16.01 16.25 16.34 16.34 16.46 16.69 16.71 1690 19.06 18.96 19.16 19.11 19.10 19.17 19.24 19.14 

16 10 16.07 16.38 16.59 16.84 17.29 17.31 17.25 19.26 19.20 19,34 19.15 19.33 19.28 19.38 19.21 

16.19 16.23 16% 16.713 17.01 17.31 17.43 17.30 19.20 19.22 19.33 19.36 19.33 19 42 19.52 19.50 

16 39 16.21 16 55 1661 17.05 17.39 17.31 17.19 1930 19.26 19.32 19.45 19.30 19.31 19.29 19.56 

16.34 16.33 16.58 1673 17 07 17 31 17 34 17 25 18.87 19.03 19.19 19.35 19.14 19.11 19.16 19.42 

16.21 16.29 16 62 16.62 16.96 17 05 1699 17 22 19.11 19.32 19.40 19.40 19.19 18.85 18.99 19.34 

16 24 16.22 16 49 16 82 16.88 16 49 16. 1920 19.31 19.43 19.29 19.00 18.83 18.72 

16 26 16.20 16 47 16.79 16 94 17.11 17.41 17.39 19.013 19.31 19.39 19.36 19.26 19.42 18.88 19.20 

16.21 16.19 1633 16 70 16.89 17 11 17.58 17.37 19.10 19.42 19 42 19.34 19.36 19.48 19.35 19.27 

16.37 16.25 16 39 15.63 16.90 17.04 17.26 17.24 19.13 19.38 19.50 19.39 19.41 1940 19.44 19.35 

16.24 15.30 16.36 1662 16.65 17.02 17.29 17 30 19.11 19.45 19.51 19.47 19.47 19.46 19.50 19.56 

16.07 16.30 16.39 16.42 1620 16.94 17.12 17.12 19.13 19.42 19.66 19.51 19.33 19.46 19.55 19.40 

.41610.221.16.33 16.51 16.611S:034 17.12 17.09 18.75 19.31 19.46 19.50 19.38 19.55 19.46 19.50 

Fig. 5.30. Length (p.m) of rabbit endothelial cell nuclei for branches on the anatomical 

right hand side of the aorta. (The map has been truncated to avoid affects of flow 

around ostia on the left hand side). Each square represents the average data for a 

500grn*500[1m region. The total area of map is 26.0mm2. n = 4 immature rabbits, n = 4 

mature rabbits. Data represent averages for 17 immature and 17 mature branches. 

17.03 16.99 16.94 15.49 16.26 16.19 15.76 16.26 

17.15 17137 17.01 1E52 16.38 16.17 16.24 1E44 

17.22 17.09 16.94 16.54 16.22 16.03 16.14 16.51 

17.00 17.03 17.00 16.62 1626 16.11 16.09 16 61 

17 17 17.15 17.02 16.67 1E35 16.18 16.13 16.46 

A 16 70 1649 16.16 16.41 16.50 d17 

* 16.67 16.45 1E10 16.33 16.45 

17 23 17.28 16.93 16.72 16.46 16.24 1233 16.35 

17.17 17.22 1694 1669 1647 16 26 16.26 1612 

17.07 17.03 1E92 15.96 16.39 16.16 16 43 16.15 

17.05 16.95 16.63 1663 16.0E 16.18 1661 1809 

1696 17 04 17 01 	1E55 16.33 16.28 16.36 16.33 

17.02 16.14111168 16.38 16.16 8.251 

19.72 19.43 19.44 19.59 19.51 19.23 13.13 19.04 

19.% 19.43 19.43 19.29 19.45 19.09 18.97 19.09 

19.51 19.36 19.36 19.31 19.37 18.84 18.85 18.73 

19.013 19.31 19.20 1929 19.23 18.86 18.79 18.51 

19.19 19.33 19.13 19.23 19.33 113.90 18.58 18.431  

1920 19.11 19.10 19.20 19.26 18.84 18.74 18.40 

18.88 18.54 19.02 19.13 18.80 18.60 18.32 

19.09 18.57 18.86 19.15 19.14 18.67 18.79 18.53 

19.20 19.02 19.26 19.23 19.25 18.57 18.56 18.35 

19.26 1916 19.23 19.06 19.06 18.55 18.60 18.43 

19.34 19.18 19.24 19.13 1901 18.63 18.67 1E231 

19.41 19.18 18.90 18.92 18.84 18.72 18.46 111 18.15 

19.33 18.98 19.00 18.98 18.97 18.95 1827 18.181 

Fig. 5.31. Length (1.1m) of rabbit endothelial cell nuclei for branches on the anatomical 

left hand side of the aorta. (The map has been truncated to avoid affects of flow around 

ostia on the right hand side). Each square represents the average data for a 500iim * 

500iim region. The total area of the map is 26.0mm2. n = 4 immature rabbits, n = 4 

mature rabbits. Data represent averages for 18 immature and 17 mature branches. 
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Table 5.23. Nuclear lengths (µm) for branch ostia within regions in the upper and lower 
portion of the descending thoracic aorta in "Zone A", where n equals the number of 
branches. 

UPPER AORTA LOWER AORTA 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 17.07 0.20 18.62 0.29 17.05 0.29 19.33 0.27 
U2R1 17.32 0.18 18.81 0.22 17.11 0.19 19.34 0.18 

U2 17.17 0.23 19.03 0.27 17.35 0.24 19.42 0.19 
U2L1 16.88 0.24 19.01 0.26 17.43 0.19 19.44 0.17 
U2L2 16.11 0.33 18.84 0.31 17.31 0.23 19.45 0.17 
U1R2 17.06 0.23 18.61 0.27 16.86 0.36 19.43 0.24 
U1R1 17.10 0.14 18.51 0.23 16.92 0.19 19.24 0.11 

U1 16.85 0.20 18.52 0.31 17.03 0.23 19.26 0.14 
U1L1 16.93 0.23 18.99 0.29 17.32 0.17 19.26 0.19 
U1L2 16.15 0.31 18.89 0.34 17.37 0.28 19.45 0.18 
R2 16.98 0.24 18.47 0.32 16.78 0.35 19.27 0.28 
R1 16.35 0.22 18.51 0.30 16.50 0.21 19.01 0.15 
L1 16.43 0.19 18.04 0.14 16.68 0.12 19.01 0.19 
L2 16.25 0.28 18.67 0.34 17.12 0.27 19.30 0.19 

D1R2 16.99 0.25 18.65 0.44 16.88 0.34 19.51 0.30 
D1R1 17.18 0.20 18.97 0.25 17.16 0.18 19.40 0.16 

D1 17.22 0.18 18.71 0.29 17.51 0.21 18.85 0.19 
D1 L1 16.84 0.21 18.66 0.18 17.64 0.22 19.39 0.19 
D1L2 16.32 0.29 18.55 0.38 17.17 0.43 19.35 0.17 
D2 R2 16.96 0.27 18.81 0.38 16.84 0.34 19.61 0.26 
D2R1 17.10 0.19 19.01 0.32 17.17 0.21 19.54 0.16 

D2 17.27 0.15 18.81 0.36 17.55 0.22 19.42 0.20 
D2L1 16.89 0.19 18.85 0.28 17.48 0.22 19.64 0.16 
D2L2 16.27 0.26 18.86 0.36 17.22 0.45 19.51 0.19 

Total Mean 16.87 0.05 18.73 0.06 17.15 0.05 19.33 0.04 
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Table 5.24. Nuclear lengths (pm) for the branch ostia on the anatomical right and left of 
the descending thoracic aorta, where n equals the number of branches. 

ANATOMICAL RIGHT ANATOMICAL LEFT 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 - - - 17.07 0.17 19.14 0.21 
U2R1 17.17 0.20 19.19 0.18 17.31 0.19 19.11 0.22 

U2 17.15 0.24 19.33 0.20 17.34 0.25 19.16 0.24 
U2L1 17.02 0.25 19.13 0.19 17.25 0.24 19.42 0.22 
U2L2 16.67 0.26 19.23 0.19 -- - - 
U1R2 - -- - 16.96 0.21 19.19 0.19 
U1 R1 17.00 0.17 19.20 0.16 17.05 0.16 18.85 0.15 

U1 16.88 0.24 19.11 0.23 16.99 0.20 18.99 0.20 
U1L1 16.98 0.24 19.10 0.22 17.22 0.21 19.34 0.23 
U1L2 16.70 0.26 19.20 0.22 -- - - 

R2 - -- - 16.88 0.21 19.00 0.23 
R1 16.37 0.24 18.88 0.23 16.49 0.21 18.83 0.16 
L1 16.27 0.16 18.54 0.21 16.85 0.18 18.72 0.20 
L2 16.67 0.22 19.02 0.23 -- - - 

D1R2 - -- - 16.94 0.21 19.26 0.27 
D1R1 17.23 0.21 19.00 0.18 17.11 0.19 19.42 0.22 

D1 17.28 0.21 18.57 0.19 17.41 0.19 18.88 0.24 
D1 L1 16.93 0.27 18.86 0.19 17.39 0.20 19.20 0.25 
D1L2 16.72 0.26 19.15 0.21 -- - - 
D2R2 - -- - 16.89 0.22 19.36 0.24 
D2R1 17.17 0.19 19.20 0.19 17.11 0.22 19.48 0.28 

D2 17.22 0.16 19.02 0.28 17.58 0.19 19.35 0.27 
D2L1 16.94 0.22 19.26 0.27 17.37 0.20 19.27 0.21 
D2L2 16.69 0.25 19.23 0.24 -- - - 

Total Mean 16.90 0.05 19.06 0.05 17.11 0.05 19.16 0.05 

5.3.3.5.1 Length of nuclei surrounding branch ostia within the upper and 

lower portion of the aorta  

Mean nuclear lengths for immature rabbits, for ostia in the upper and lower portion of 

the descending thoracic aorta were 16.53 ± 0.02gm (n = 1854 regions) and 16.87 ± 0.03 

(n = 1409 regions) respectively (2.1% difference) (P<0.005), and for mature rabbits 

were 18.70 ± 0.03pm (n = 1535 regions) and 19.46 ± 0.02µm (n = 1475 regions) 

respectively (4.1% difference) (P<0.005). 

Nuclear lengths in regions within Zones A-C combined, in the upper portion of the 

descending thoracic aorta were significantly different between ages and regions and 
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there was a significant interaction between age and region (all P<0.005). This was the 

same for nuclei in the lower portion of the descending thoracic aorta (all P<0.005). 

5.3.3.5.2 Length of nuclei surrounding branch ostia within the left hand and 

right hand side of the artery  
Mean nuclear lengths surrounding ostia from the right and left side of the descending 

thoracic aorta, for immature rabbits, were 16.62 ± 0.03 (n = 1635 regions) and 16.75 ± 

0.03 (n = 1460 regions) respectively (0.8% difference) (P<0.005), and for mature rabbits 

were 19.04 ± 0.02 (n = 1535 regions) and 19.31 ± 0.02 (n = 1475 regions) respectively 

(1.4% difference) (P<0.005). 

Nuclear lengths in regions within Zones A-C combined, for ostia on the left hand side of 

the descending thoracic aorta were significantly different between ages and regions and 

there was a significant interaction between age and region (all P<0.005). This was the 

same for nuclei around ostia on the right hand side (all P<0.005). 

5.3.4 Rabbit nuclear width  
The mean nuclear widths for immature and mature rabbits for 500µm * 500µm regions 

in Zones A-C are shown in Fig. 5.32. There were highly significant differences in mean 

width between ages and regions and a highly significant interaction between age and 

region (age*region) (all P<0.005). Mean widths for individual rabbits are shown in 

Table 5.25. The mean nuclear widths were 7.02 ± 0.01µrn (n = 3263 regions) and 5.95 ± 

0.01µm (n = 3539 regions) for immature and mature rabbits respectively; a difference of 

15.2%. 
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Immature 
7.48 7.45 7.24 7.17 7.01 7.01 6.98 7.02 7.07 7.15 7.26 7.19 7.27 

7.23 7.18 7.07 6.91 6.98 7.04 6.94 6.98 7.00 7.09 7.22 7.11 7.20 

7.10 718 6.99 6613 6.95 6.96 6.91 6.92 695 7.09 7.17 7.08 7E6 

7.14 7.11 6.97 6.139 625 6.89 6.69 6.95 703 7.02 7.11 7.22 7.15 

7.19 7.22 6.97 6.82 6.83 622 6.96 695 6.93 7.06 7.13 7.24 7.15 

7.14 7.15 6.99 6.87 6.74 7.133 7.21 6.98 6.89 7.02 7.11 7.21 7.14 

7.19 7.18 7.07 6.87 682 726 * 7.07 694 7.10 7.15 723 7.14 

7.03 7.16 7.10 6.92 6.77 6.96 6.74 6.88 7.00 7.10 7.09 7.18 7.14 

7.10 7.14 7.10 6.96 6.79 6.85 6.80 6.93 7.04 7.07 7.17 722 _ 7.12 

7.06 7.12 7.07 6.91 6.86 6.89 6.90 6.85 7.07 7.10 7.22 7.27 720 

7.02 7.18 7.02 6.87 6.78 6.93 6.88 6.98 7.00 7.13 7.76 7.20 7.18 

7.07 7.02 7.01 6.91 6.85 6.91 6.98 7.01 7.07 7.23 7.30 7.22 7.17 

629 6.95 6.813 6.87 281 6.99  .41111.111111111k. 

Mature 
6.66 6.31 6.34 6.36 E26 6.15 6.21 6.16 5.96 5.98 6.12 6.05 6.35 

5.93 5.85 6.00 5.96 5.99 6.01 6.12 E02 5.95 5.93 6.05 6.06 6.14 

5.93 5.65 5.78 5.73 5.78 5.94 5.98 5.92 5.67 5.86 605 6.04 6.27 

5.92 5.86 5.77 5.65 5.76 5.97 5.99 5.96 525 5.64 294 6.12 6.14 

5.89 5.82 5.78 5.69 5.70 5.95 6.135 295 5.25 5.80 5.96 6.07 6.16 

5.86 5.79 5.71 5.67 5.71 5.78 5.94 5.75 5.76 5.77 5.94 6.07 6.12 

5.94 284 5.73 5.75 5.81 6.11 * 6.10 5.81 5.86 5.96 6.08 6.12 

5.139 5.83 5.77 5.84 5.93 6.12 6.13 603 5.86 5.88 6.07 6.05 6.10 

5.86 5.78 5.79 278 5.89 6.02 5.03 5.95 5.90 569 6.12 6.07 615 

5.94 5.79 575 5.79 5.67 5.95 295 5.93 5.84 5.96 6.12 6.12 617 

599 583 5.84 5.81 5.86 5.96 5.94 5.90 5.66 6.02 6.09 6.03 6.16 

6.02 5.81 5.93 5.87 5.92 5.98 5.99 6.01 5.97 6.00 5.99 5.97 6.15 

5.36 9. 	1 5.93 6.05 6.11 6.03 6.17 6.15 6.24 6.13 6.20 

Fig. 5.32. Width (ttm) of rabbit endothelial cell nuclei all branch ostia. Each square 

represents a 5001.im * 500µm region. The total area of the map is 42.25mm2. n = 4 

immature rabbits, n = 4 mature rabbits. Data represent averages for 36 immature and 38 

mature branches. 

Table 5.25. Mean rabbit endothelial cell width (pm). n equals the number of regions. 

Age Group Rabbit Width (pm)  Mean SEM 

Immature 

Il 7.08 0.02 
12 6.80 0.01 
13 7.30 0.02 
14 6.49 0.02 

All immature 7.02 0.01 

Mature 

Ml 5.69 0.01 
M2 6.27 0.02 
M3 5.96 0.01 
M4 5.14 0.02 

All mature 5.95 0.01 

5.3.4.1 "Zone A" (500kim 500µm regions)  

The mean widths of nuclei in "Zone A" are shown in Fig. 5.33. There was a highly 

significant effect of age and region and a highly significant interaction between age and 

region (all P<0.005). 
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The minimum mean width of the nuclei in immature rabbits (6.74 ± 0.13gm, "U1 R2", n 

= 19 branches, and 6.74 ± 0.11gm, "Dl", n = 34 branches) was greater than the 

maximum mean width of the nuclei in mature rabbits (6.13 ± 0.11gm, "Dl", n = 38 

branches). The ratio of the mean nuclear width upstream (7.21 ± 0.09gm, "Ul", n = 36 

branches) to the mean width downstream (6.74 ± 0.11µm, "Dl", n = 34 branches) was 

1.07 in immature rabbits, but in mature rabbits, the ratio was 0.97 ("Ul": 5.94 ± 0.10gm; 

"DP: 6.13 ± 0.11gm — both n = 38 branches). Within Zone A, nuclear widths were 

generally greater immediately upstream and in the lateral regions, in immature rabbits. 

In mature rabbits, nuclei were wider at the lateral regions and immediately downstream 

of the ostia. 

The significance of differences in nuclear width between individual regions for 

immature and mature rabbits, obtained using the Tukey test, are shown in Fig. 5.34. 

ckl• <t=` 	es̀i- es\ 	e,(1' c.t• .> 	Rsel' 	<5\ \> 9' 	'67/  
\)1' 	NS1' 	\)\ \S\ 	 ,c)\ 	.0\ 	.01' 61' 	01' 01' 

Region 

Fig. 5.33. Nuclear widths (gm) for regions within Zone A (defined in figure 5.1), in 

immature and mature rabbits. Bars show means ± SEM (n = number of branches). 
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Fig. 5.34. Significance of differences in nuclear width between 500µm * 500µm regions 

within Zone A, determined by the Tukey test for multiple comparisons. Squares shaded 

in grey depict significant differences (P<0.05). Squares to the right of the black 

diagonal line indicate differences in immature rabbits. Squares to the left indicate 

differences in mature rabbits. 

5.3.4.2 "Zone A" (100um * 100µm sub-regions)  

Data for the width of nuclei were split so that the 100µm * 100pm sub-regions in each of 

the 500gm * 500µrn main regions nearest the branch ostia ("U2R1", "U2", "U2L1", 

"U1R1", "Ul", "U1L1", "Rl", "Ll", "D1R1", "Dl", "DILI", "D2R1", "D2", "D2L1") 

were analysed individually rather than being combined (Fig. 5.35, Tables 5.26a,b and 

5.27a,b). There were significant changes in nuclear width with age within all regions 

analysed (P<0.05), and significant effects of region for nuclei within main regions 
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"U1R1", "Rl", "UI", "U1L1", "Ll" (all P<0.005), "D1R1", "D2R1", and "D1" 

(P<0.05). There were significant interactions between age and region for main regions 

"Rl", "Ll" (both P<0.01), "Dl" and "DILI" (both P<0.05). In immature rabbits, in 

broad terms nuclei were wider upstream and at the sides of the ostia, whereas in mature 

rabbits they were wider downstream of the ostia, and in a region offset 500µm upstream 

of the branch. 
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Fig. 5.35. Mean width (um) of endothelial cell nuclei at high resolution for all branch 

ostia. Each square represents a 100µm * 100µm region. The total area of the map is 

3.75mm2. n = 4 immature rabbits, n = 4 mature rabbits. Data represent averages for 36 

immature and 38 mature branches. 
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Table 5.26a. Immature rabbit endothelial cell nuclear widths (gm) for sub-regions 
(100µm * 100µm) within upstream and lateral main-regions in "Zone A", where n 
equals the number of branches. 

Immature U2R1 U2 U2L1 U1R1 U1 U1L1 R1 L1 
Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 6.77 0.16 6.97 0.14 6.94 0.13 7.11 0.15 7.25 0.13 7.07 0.13 6.87 0.20 8.02 0.51 
U2R1s 6.96 0.13 6.87 0.13 6.93 0.13 6.91 0.13 7.27 0.13 7.13 0.11 6.81 0.13 7.36 0.25 

U2s 6.91 0.15 6.79 0.11 6.95 0.14 6.95 0.10 6.94 0.09 6.95 0.15 7.17 0.17 7.02 0.18 
U2L1s 7.00 0.13 6.93 0.11 6.87 0.11 7.04 0.12 7.16 0.09 6.80 0.13 7.53 0.21 6.90 0.19 
U2L2s 6.85 0.13 7.13 0.15 7.19 0.26 6.90 0.12 6.92 0.12 6.93 0.24 7.37 0.21 6.86 0.23 
U1R2s 6.95 0.17 6.91 0.11 6.87 0.15 7.04 0.19 7.04 0.11 7.01 0.09 6.89 0.20 7.44 0.25 
U1R1s 6.92 0.11 6.79 0.10 7.01 0.12 7.00 0.12 7.14 0.12 7.18 0.12 7.11 0.17 7.68 0.31 

U1s 6.84 0.14 6.94 0.11 6.89 0.10 7.19 0.13 7.01 0.10 6.93 0.14 7.34 0.15 7.00 0.19 
U1L1s 6.88 0.13 6.93 0.12 6.85 0.11 7.20 0.12 7.04 0.11 7.08 0.18 7.43 0.26 6.76 0.13 
U1L2s 6.81 0.12 6.95 0.09 6.97 0.24 7.10 0.14 7.05 0.12 6.79 0.19 8.12 0.69 6.86 0.17 
R2s 6.93 0.19 7.09 0.13 6.88 0.14 6.99 0.25 6.97 0.14 6.98 0.13 6.99 0.13 6.82 0.21 
R1s 6.98 0.15 6.86 0.13 7.02 0.14 7.09 0.13 6.92 0.12 7.08 0.15 7.22 0.16 7.73 0.33 
Cs 6.87 0.12 7.06 0.11 6.96 0.11 7.14 0.11 7.02 0.13 6.95 0.15 7.52 0.19 7.12 0.17 
Lis 6.88 0.12 7.11 0.11 6.87 0.10 7.00 0.12 7.13 0.13 6.80 0.17 7.77 0.23 7.09 0.16 
L2s 6.93 0.13 7.09 0.10 7.04 0.19 6.84 0.09 7.18 0.11 6.79 0.22 8.03 045 6.79 0.20 

D1R2s 6.89 020 7.00 0.13 7.14 0.15 7.12 0.24 7.09 0.15 7.08 0.12 6.90 0.16 7.21 0.23 
D1R1s 6.96 0.12 6.93 0.12 7.08 0.17 7.08 0.13 7.04 0.11 7.02 0.15 7.14 0.12 7.21 0.21 
Din 6.86 0.12 7.01 0.11 7.06 0.13 7.05 0.14 7.26 0.18 7.07 0.17 7.59 0.17 7.32 0.18 

D1L1s 6.77 0.11 6.86 0.08 7.02 0.15 7.06 0.13 7.30 0.15 6.94 0.19 7.78 0.24 7.09 0.19 
D1L2s 6.97 0.10 6.86 0.11 6.82 0.19 6.89 0.12 7.48 0.28 6.55 0.20 7.90 0.61 6.79 0.17 
D2R2s 6.97 0.17 6.93 0.11 6.91 0.12 7.09 0.22 7.56 0.25 7.48 0.26 6.94 0.14 7.01 0.20 
D2R1s 6.98 0.16 6.86 0.11 6.99 0.15 6.98 0.15 7.48 0.21 7.18 0.26 6.99 0.12 7.04 0.17 

D2s 7.07 0.14 7.03 0.11 6.91 0.13 7.12 0.14 7.70 0.22 6.92 0.17 7.26 0.12 7.00 0.12 
D2L1s 7.03 0.12 6.93 0.12 6.92 0.16 7.10 0.13 7.52 0.19 6.88 0.14 7.37 0.20 6.96 0.13 
D2L2s 6.99 0.14 7.01 0.14 678 0.16 7.43 0.19 7.52 0.16 6.68 0.17 7.18 0.29 6.89 0.15 
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Table 5.26b. Immature rabbit endothelial cell nuclear widths (gm) for sub-regions 
(100gm * 100µm) within downstream main-regions in "Zone A", where n equals the 
number of branches. 

Immature 01R1 D1 Dill D2R1 D2 D2L1 
Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

• U2R2s 6.89 0.17 6.90 0.23 6.92 0.16 6.77 0.14 6.85 0.15 6.69 0.13 
U2R1s 7.01 0.13 6.67 0.14 6.84 0.16 6.86 0.11 6.83 0.15 6.92 0.14 

U2s 725 0.14 6.94 0.16 7.08 0.17 6.91 0.11 6.72 0.13 7.01 0.11 
U2L1s 7.23 0.16 7.04 0.19 6.82 0.14 6.93 0.18 6.68 0.16 6.96 0.13 
U2L2s 7.00 0.14 7.01 0.15 6.88 0.19 6.72 0.14 672 0.14 6.84 0.17 
U1R2s 6.66 0.14 6.83 0.17 6.99 0.17 6.81 0.15 6.64 0.13 6.75 0.16 
U1R1s 7.03 0.13 659 0.15 6.84 0.13 6.81 0.09 6.73 0.12 663 0.10 

U1s 6.93 0.14 6.72 0.16 6.75 0.09 7.02 0.13 6.78 0.14 6.82 0.13 
U1L1s 7.00 0.14 6.77 0.17 6.89 0.12 6.80 0.13 6.75 0.12 7.06 0.13 
U1L2s 6.89 0.14 6.89 0.16 6.71 0.16 6.78 0.13 6.76 0.14 6.97 0.21 
R2s 6.81 0.14 6.59 0.26 6.67 0.14 6.81 0.14 6.56 0.15 7.00 0.16 
R1s 6.79 0.11 6.54 0.14 6.79 0.11 6.93 0.11 6.83 0.14 6.83 0.12 
Cs 6.85 0.13 652 0.16 6.84 0.13 6.82 0.11 668 0.14 6.99 0.13 

L 1 s 6.98 0.15 6.59 0.13 6.88 0.12 6.80 0.15 6.86 0.16 6.91 0.12 
L2s 6.81 0.15 6.74 0.14 6.67 0.14 6.66 0.11 6.82 0.14 7.00 0.22 

D1R2s 6.76 0.14 6.73 0.17 6.73 0.13 6.76 0.11 6.75 0.15 6.94 0.12 
D1R1s 6.98 0.13 6.70 0.16 6.82 0.11 6.92 0.11 6.80 0.14 6.89 0.11 

D1s 6.89 0.13 6.52 0.12 7.00 0.14 6.88 0.10 6.90 0.15 6.85 0.14 
D1L1s 6.77 0.12 6.65 0.14 6.77 0.11 6.74 0.11 6.80 0.12 6.97 0.15 
D1L2s 632 0.14 6.67 0.11 7.10 0.29 6.76 0.14 6.90 0.13 7.14 0.20 
D2R2s 6.71 0.18 6.71 0.16 6.84 0.14 6.64 0.13 6.86 0.15 6.93 0.14 
D2R1s 6.84 0.09 6.84 0.15 6.89 0.12 6.79 0.12 7.06 0.14 6.94 0.13 

D2s 6.87 0.13 6.79 0.11 6.95 0.17 6.95 0.10 6.91 0.14 698 0.13 
D2L1s 6.78 0.12 6.55 0.12 6.80 0.12 6.73 0.10 6.76 0.12 701 0.13 
D2L2s 6.78 0.18 6.78 0.15 6.80 0.17 6.91 0.15 6.81 0.13 6.87 0.20 
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Table 5.27a. Mature rabbit endothelial cell nuclear widths (11m) for sub-regions (100µm 
* 100µm) within upstream and lateral main-regions in "Zone A", where n equals the 
number of branches. 

Mature U2R1 U2 U2L1 U1R1 U1 U1L1 R1 L1 
Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 5.79 0.15 6.01 0.13 5.95 0.12 5.81 0.12 5.95 0.12 6.00 0.13 5.90 0.18 6.75 020 
U2R1s 5.98 0.10 6.02 0.10 6.00 0.12 5.90 0.13 5.95 0.12 5.83 0.12 5.96 0.16 6.07 0.17 

U2s 5.99 0.11 5.97 0.10 5.98 0.11 6.00 0.11 5.96 0.11 5.75 0.10 5.91 0.13 5.80 0.12 
U2L1s 5.93 0.11 6.00 0.11 5.88 0.09 5.81 0.13 5.96 0.13 5.78 0.11 6.15 0.16 5.74 0.11 
U2L2s 5.99 0.13 6.03 0.11 5.94 0.16 524 0.12 5.92 0.14 5.89 0.14 6.59 0.22 5.82 0.13 
U1R2s 6.00 0.17 5.98 0.13 5.87 0.16 5.61 0.13 5.85 0.11 5.92 0.12 6.00 0.19 6.83 0.36 
U1R1s 6.03 0.10 6.06 0.12 5.99 0.11 5.86 0.12 5.91 0.12 5.81 0.12 5.93 0.12 6.62 022 

U1s 6.03 0.11 6.13 0.10 5.94 0.10 5.82 0.11 5.94 0.13 5.83 0.11 6.07 0.14 5.89 0.12 
U1L1s 5.89 0.11 6.01 0.10 5.99 0.09 5.79 0.12 5.99 0.12 5.75 0.11 6.13 0.19 5.87 0.11 
U1L2s 5.91 0.12 5.99 0.12 5.91 0.14 5.82 0.12 5.94 0.13 5.77 0.16 6.91 0.30 5.98 0.19 
R2s 5.92 0.15 6.08 0.12 6.05 0.14 5.63 0.12 5.83 0.12 5.82 0.13 5.99 0.20 6.63 0.77 
R1s 5.97 0.11 6.14 0.12 5.95 0.11 5.77 0.12 5.84 0.13 5.79 0.13 6.05 0.12 6.43 0.34 
Cs 5.98 0.13 6.18 0.12 5.97 0.10 5.78 0.11 5.96 0.11 5.71 0.13 6.16 0.20 5.96 0.14 
Lis 5.93 0.12 6.08 0.12 6.02 0.10 5.77 0.11 5.88 0.13 5.68 0.10 6.07 0.25 5.99 0.12 
L2s 5.97 0.13 6.11 0.11 6.06 0.14 5.75 0.12 5.90 0.14 5.71 0.16 6.53 0.37 6.02 0.17 

D1R2s 5.79 0.12 6.02 0.12 5.99 0.13 5.65 0.12 5.79 0.11 5.66 0.13 6.04 0.20 6.98 0.43 
D1R1s 523 0.12 6.09 0.12 5.89 0.11 5.71 0.11 5.83 0.13 5.70 0.13 6.08 0.13 6.18 0.26 
DU 5.96 0.13 6.09 0.12 5.89 0.11 5.76 0.13 5.87 0.13 5.71 0.13 6.16 0.14 5.88 0.11 

D1L1s 5.94 0.12 6.07 0.12 5.98 0.12 5.76 0.11 5.88 0.13 5.71 0.10 6.04 0.19 5.95 0.15 
D1L2s 527 0.12 6.08 0.14 5.95 0.16 5.73 0.11 5.89 0.13 5.71 0.15 6.32 0.69 6.08 0.20 
D2R2s 5.95 0.13 5.94 0.12 5.98 0.13 574 0.16 6.22 0.20 6.12 0.14 6.12 0.19 6.54 0.35 
D2R1s 5.96 0.13 622 0.12 5.91 0.14 5.63 0.11 6.19 0.18 593 0.13 6.15 0.13 5.99 0.16 

D2s 524 0.13 6.11 0.12 5.87 0.12 520 0.14 6.24 021 5.79 0.13 6.18 0.13 625 0.12 
D2L1s 5.85 0.13 621 0.13 5.90 0.12 5.82 0.14 6.15 0.22 5.66 0.11 6.18 0.15 6.06 0.13 
D2L2s 5.87 0.12 5.94 0.14 5.87 0.16 6.08 0.18 6.18 0.18 5.61 0.13 5.55 0.36 6.32 0.27 
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Table 5.27b. Mature rabbit endothelial cell nuclear widths for sub-regions (100[tm * 
100[tm) within downstream main-regions in "Zone A", where n equals the number of 
branches. 

Mature D1R1 D1 D1L1 D2R1 D2 D2L 1 

Sub-Region Mean SEM Mean SEM Mean SEM Mean ...SEM Mean SEM Mean SEM 
U2R2s 5.99 0.18 6.15 0.21 6.09 0.17 5.81 0.16 6.10 0.12 6.16 0.12 
U2R1s 6.13 0.11 6.15 0.20 6.06 0.14 6.01 0.13 6.13 0.12 6.00 0.12 

U2s 6.13 0.12 5.99 0.26 6.06 0.12 6.02 0.12 6.19 0.12 5.96 0.10 
U2L1s 6.30 0.14 6.50 0.28 6.07 0.14 6.07 0.12 6.13 0.12 5.91 0.11 
U2L2s 6.30 0.17 624 0.18 6.06 0.17 6.09 0.13 6.04 0.14 5.70 0.17 
U1R2s 6.05 0.18 6.14 0.17 6.04 0.14 5.90 0.16 6.06 0.10 6.00 0.11 
U1R1s • 6.12 0.12 6.18 0.15 6.05 0.14 5.97 0.12 6.12 0.12 5.98 0.12 

U1s 6.04 0.12 6.00 0.16 6.02 0.12 6.06 0.13 6.09 0.11 5.93 0.10 
U1L1s 6.04 0.13 6.13 0.15 6.06 0.13 5.98 0.11 6.00 0.12 5.89 0.11 
U1L2s 6.06 0.16 6.03 0.13 6.03 0.14 5.90 0.10 6.06 0.11 5.76 0.15 

R2s 5.97 0.18 6.17 0.12 6.16 0.14 5.95 0.18 6.00 0.10 5.99 0.11 
R1s 6.16 0.13 6.12 0.13 6.04 0.13 6.06 0.12 6.09 0.13 6.01 0.10 
Cs 6.08 0.12 6.31 0.14 5.97 0.11 6.15 0.11 6.17 0.12 6.03 0.11 
L1 s 6.04 0.12 6.20 0.14 5.98 0.11 6.00 0.10 6.03 0.12 5.93 0.12 
L2s 6.19 0.14 6.02 0.14 5.94 0.15 5.94 0.10 6.14 0.12 5.71 0.15 

D1R2s 5.98 0.19 6.19 0.13 6.17 0.12 5.94 0.18 5.90 0.10 5.99 0.11 
D1R1s 6.17 0.13 6.09 0.13 6.07 0.11 6.10 0.13 5.97 0.11 5.98 0.10 

Cris 6.10 0.13 6.30 0.14 5.99 0.13 6.11 0.11 6.00 0.11 6.07 0.12 
D1L1s 6.03 0.13 6.31 0,13 5.96 0.12 5.96 0.11 6.06 0.11 5.98 0.13 
D1L2s 6.17 0.13 6.20 0.12 6.03 0.16 5.89 0.10 6.04 0.10 5.86 0.14 
D2R25 5.93 0.17 6.12 0.12 5.99 0.13 5.87 0.16 5.96 0.09 6.00 0.10 
D2R1s 6.13 0.13 6.24 0.13 6.11 0.11 607 0.13 5.92 0.10 5.84 0.11 

D2s 6.04 0.12 6.26 0.13 5.93 0.11 602 0.11 6.04 0.13 5.89 0.12 
D2L 1s 6.09 0.12 6.22 0.13 5.92 0.11 5.99 0.11 5.96 0.12 6.00 0.12 
D2L2s 6.08 0.14 6.08 0.12 5.91 0.17 5.90 0.10 6.07 0.11 5.86 0.14 

Tukey tests were performed on data for nuclear widths for sub-regions in "zone A". A 

matrix of the significant interactions between sub-regions, for each main region is shown 

in the Appendices (Appendix B.4a-f). 

5.3.4.3 "Zone B" (500iim * 500[Em regions)  
The width of the nuclei within Zone B are shown in Table 5.28. Effects of age, region 

and the interaction between age and region were highly significant (all P<0.005). Mean 

values for immature and mature rabbits were 6.98 ± 0.021trn (n = 1163 regions) and 5.88 

± 0.01µm (n = 1355 regions) respectively; a 15.8% difference. Widths ranged from 6.82 

± 0.10i.tm  ("U2R3", n = 19 branches) to 7.26 ± 0.15[tm ("D4L4", n = 14 branches) (a 

6.5% difference) in immature rabbits, and from 5.65 ± 0.124.tm ("U3R3", n = 21 

branches) to 6.12 ± 0.121.tm ("D3L4", n = 18 branches) (an 8.3% difference) in mature. 
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Table 5.28. Rabbit endothelial cell nuclear widths (m) for regions in "Zone B", where 
n equals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U4R4 6.98 0.15 5.78 0.13 
U4R3 6.88 0.13 5.73 0.13 
U4R2 6.95 0.14 5.78 0.13 
U4R1 6.96 0.10 5.94 0.09 

U4 6.91 0.09 5.98 0.09 
U4L1 6.92 0.10 5.92 0.09 
U4L2 6.95 0.13 5.87 0.12 
U4L3 7.09 0.15 5.86 0.11 
U4L4 7.17 0.17 6.05 0.14 
U3R4 6.97 0.13 5.77 0.13 
U3R3 6.89 0.12 5.65 0.12 
U3R2 6.85 0.12 5.76 0.13 
U3R1 6.89 0.09 5.97 0.09 

U3 6.89 0.09 5.99 0.09 
U3L1 6.95 0.10 5.96 0.09 
U3L2 7.03 0.17 5.85 0.12 
U3L3 7.02 0.15 5.84 0.11 
U3L4 7.11 0.17 5.94 0.11 
U2R4 6.97 0.13 5.78 0.13 
U2R3 6.82 0.10 5.69 0.11 
U2L3 7.06 0.14 5.80 0.12 
U2L4 7.13 0.16 5.96 0.12 
U1R4 6.99 0.14 5.71 0.12 
U1R3 6.87 0.13 5.67 0.12 
U1L3 7.02 0.11 5.77 0.12 
U1L4 7.11 0.18 5.94 0.12 

R4 7.07 0.12 5.73 0.12 
R3 6.87 0.12 5.75 0.14 
L3 7.10 0.16 5.86 0.13 
L4 7.15 0.22 5.96 0.11 

D1R4 7.10 0.14 5.77 0.11 
D1R3 6.92 0.12 5.84 0.13 
D1L3 7.10 0.15 5.88 0.13 
D1L4 7.09 0.20 6.07 0.10 
D2R4 7.10 0.14 5.79 0.11 
D2R3 6.96 0.13 5.78 0.13 
D2L3 7.07 0.14 5.89 0.11 
D2L4 7.17 0.15 6.12 0.12 
D3R4 7.07 0.13 5.75 0.10 
D3R3 6.91 0.12 5.79 0.13 
D3R2 6.86 0.13 5.87 0.14 
D3R1 6.89 0.09 5.95 0.10 

D3 6.90 0.10 5.95 0.09 
D3L1 6.85 0.10 5.93 0.10 
D3L2 7.07 0.17 5.84 0.12 
D3L3 7.10 0.16 5.96 0.11 
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D3L4 7.22 0.18 6.12 0.12 
D4R4 7.02 0.14 5.84 0.13 
D4R3 6.87 0.14 5.81 0.13 
D4R2 6.78 0.13 5.86 0.13 
D4R 1 6.93 0.09 5.96 0.09 

D4 6.88 0.09 5.94 0.08 
D4L1 6.98 0.10 5.90 0.08 
D4L2 7.00 0.17 5.86 0.09 
D4L3 7.13 0.15 6.02 0.10 
D4L4 7.26 0.15 6.09 0.11 

Total mean 6.98 0.02 5.88 0.01 

5.3.4.4 "Zone C" (500jim * 500i_un regions)  
The width of the nuclei within Zone C are shown in Table 5.29. Effects of age, region 

and the interaction between age and region were highly significant (all P<0.005). Mean 

values for immature and mature rabbits were 7.10 ± 0.02µm (n = 1423 regions) and 6.01 

± 0.01µm (n = 1443 regions) respectively; a 15.4% difference. Nuclear widths in 

immature rabbits were between 6.81 ± 0.18µm ("D6R2", n = 13 branches) and 7.48 ± 

0.21µm ("U6R6", n = 9 branches) (a 9.8% difference), and between 5.76 ± 0.11µm 

("D2R5", n = 19 branches) and 6.66 ± 0.32µm ("U6R6", n = 4 branches) (a 15.7% 

difference) in mature. 
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Table 5.29. Rabbit endothelial cell nuclear widths (um) for regions in "Zone C", where 
n e uals the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U6R6 7.48 0.21 6.66 0.32 
U6R5 7.45 0.22 6.31 0.26 
U6R4 7.24 0.19 6.34 0.25 
U6R3 7.17 0.17 6.36 0.24 
U6R2 7.01 0.12 6.26 0.24 
U6R1 7.01 0.09 6.15 0.13 

U6 6.98 0.10 6.21 0.14 
U6L1 7.02 0.11 6.16 0.14 
U6L2 7.07 0.14 5.96 0.14 
U6L3 7.15 0.14 5.98 0.13 
U6L4 7.26 0.14 6.12 0.17 
U6L5 7.19 0.17 6.05 0.13 
U6L6 7.27 0.19 6.35 0.20 
U5R6 7.23 0.13 5.90 0.21 
U5R5 7.18 0.14 5.85 0.18 
U5R4 7.07 0.16 6.00 0.13 
U5R3 6.91 0.15 5.96 0.14 
U5R2 6.98 0.14 5.99 0.13 
U5R1 7.04 0.09 6.04 0.09 

U5 6.94 0.09 6.12 0.09 
U5L1 6.98 0.11 6.02 0.09 
U5L2 7.00 0.12 5.95 0.11 
U5L3 7.09 0.14 5.93 0.11 
U5L4 7.22 0.17 6.05 0.13 
U5L5 7.11 0.15 6.06 0.11 
U5L6 7.20 0.19 6.14 0.16 
U4R6 7.10 0.15 5.93 0.21 
U4R5 7.09 0.14 5.85 0.15 
U4L5 7.08 0.15 6.04 0.14 
U4L6 7.06 0.25 6.27 0.17 
U3R6 7.14 0.12 5.92 0.17 
U3R5 7.11 0.12 5.86 0.13 
U3L5 7.22 0.19 6.12 0.14 
U3L6 7.15 0.23 6.14 0.17 
U2R6 7.19 0.13 5.89 0.14 
U2R5 7.22 0.13 5.82 0.13 
U2L5 7.24 0.17 6.07 0.14 
U2L6 7.15 0.19 6.16 0.18 
U1R6 7.14 0.14 5.86 0.18 
U1R5 7.15 0.14 5.79 0.12 
U1L5 7.21 0.16 6.07 0.13 
U1L6 7.14 0.19 6.12 0.17 

R6 7.19 0.14 5.94 0.17 
R5 7.18 0.11 5.84 0.12 
L5 7.23 0.18 6.08 0.11 
L6 7.14 0.20 6.12 0.16 
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D1R6 7.03 0.12 5.89 0.15 
D1R5 7.16 0.13 5.80 0.12 
D1L5 7.18 0.18 6.05 0.11 
D1L6 7.14 0.21 6.10 0.19 
D2R6 7.10 0.12 5.88 0.16 
D2R5 7.14 0.13 5.76 0.11 
D2L5 7.22 0.16 6.07 0.11 
D2L6 7.12 0.21 6.18 0.18 
D3R6 7.08 0.13 5.94 0.16 
D3R5 7.12 0.12 5.79 0.11 
D3L5 7.27 0.17 6.12 0.13 
D3L6 7.20 0.23 6.17 0.17 
D4R6 7.02 0.11 5.99 0.14 
D4R5 7.18 0.15 5.83 0.12 
D4L5 7.20 0.18 6.03 0.11 
D4L6 7.18 0.19 6.16 0.16 
D5R6 7.07 0.14 6.02 0.14 
D5R5 7.02 0.16 5.81 0.11 
D5R4 7.01 0.15 5.93 0.13 
D5R3 6.91 0.15 5.87 0.14 
D5R2 6.85 0.16 5.92 0.14 
D5R1 6.91 0.09 5.98 0.09 

D5 6.98 0.10 5.99 0.09 
D5L1 7.01 0.10 6.01 0.08 
D5L2 7.07 0.21 5.97 0.11 
D5L3 7.23 0.17 6.00 0.11 
D5L4 7.30 0.19 5.99 0.11 
D5L5 7.22 0.18 5.97 0.14 
D5L6 7.17 0.22 6.15 0.19 
D6R6 6.99 0.12 6.36 0.28 
D6R5 6.95 0.17 5.97 0.14 
D6R4 6.88 0.15 5.96 0.15 
D6R3 6.87 0.20 5.91 0.15 
D6R2 6.81 0.18 5.93 0.13 
D6R1 6.99 0.14 6.05 0.08 

D6 7.08 0.13 6.11 0.09 
D6L1 7.11 0.13 6.08 0.08 
D6L2 7.19 0.26 6.17 0.10 
D6L3 7.24 0.23 6.15 0.13 
D6L4 7.31 0.22 6.24 0.11 
D6L5 7.41 0.21 6.13 0.14 
D6L6 7.19 0.21 6.20 0.16 

Total mean 7.10 0.02 6.01 0.01 
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5.3.4.5 Nuclear widths for different locations of branch ostia 

Mean widths for nuclei surrounding ostia within the upper portion and lower portion of 

the descending thoracic aorta, and ostia from the left and right hand side of the vessel are 

shown in Table 5.30. Data are further subdivided according to the different zones 

around the ostia. 

Data for nuclear widths within individual main regions in "Zone A" for the upper and 

lower portion and right and left portions of the descending thoracic aorta are shown in 

Table 5.31 and 5.32 respectively. Colour maps showing mean variations in nuclear 

width around the branch ostia at low resolution (averages per 500gm * 500gm regions) 

for different branch ostial locations are shown in Fig. 5.36-5.39. 

Table 5.30. Rabbit endothelial cell nuclear widths (gm) for all regions, results separated 
by location of the branch ostia, where n equals the number of regions. 

Location of 
branch ostia Region Immature Mature 

Mean SEM Mean SEM 

Upper branch 
ostia 

Zone A-C 6.82 0.01 5.56 0.01 
Zone A 6.73 0.03 5.51 0.03 
Zone B 6.78 0.02 5.53 0.02 
Zone C 6.91 0.02 5.62 0.02 

Lower branch 
ostia 

Zone A-C 7.28 0.01 6.08 0.01 
Zone A 7.26 0.03 6.11 0.03 
Zone B 7.25 0.02 6.01 0.02 
Zone C 7.32 0.02 6.13 0.02 

Right branch 
ostia 

Zone A-C 7.06 0.02 6.07 0.01 
Zone A 6.96 0.03 6.02 0.03 
Zone B 7.02 0.03 6.02 0.02 
Zone C 7.14 0.03 6.16 0.02 

Left branch ostia 
Zone A-C 6.99 0.01 6.00 0.02 
Zone A 6.93 0.03 6.03 0.04 
Zone B 6.93 0.02 5.92 0.02 
Zone C 7.06 0.02 6.05 0.02 
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6.66 6.92 6.89 6.67 6.59 6.68 6.60 6.76 6.82 6.69 6.98 7.09 7E1 

6.83 6.91 6.88 6.66 6.69 6.70 6.72 6.64 6.81 6.87 6.98 7.12 7.02 

6.77 6.92 6.73 6.59 6.58 6.76 6.70 6.74 6.76 6.92 7.05 6.97 7.14 

6.76 663 6.68 668 6.59 6.75 6.79 6.75 6.72 6.94 7.07 7.01 7.06 

6.79 6.72 6.62 674 6.66 6.67 6.77 6.91 6.80 6.77 7.03 7.25 6.92 

557 5.60 5.55 563 5.86 5.53 5.52 5.51 5.55 557 5.70 6.43 

535 5.50 562 5.53 6.69 575 572 5.61 5E8 5.61 561 585 6.04 

.46 5.46 5.40 53E1 5.44 5.57 5.56 553 555 5.55 573 587 6.09 

.47 5.43 5.33 5.34 541 5.56 5.52 6.54 551 5.56 5.68 5.80 5.90 

5 49 5.33 5.39 5.35 541 5.48 5.58 548 554 5.51 6.65 5.67 5.85 

5.39 5.30 531 5.44 5.36 551 535 639 5.51 5.66 5.58 5.90 

5.43 536 535 5.47 5.133 561 640 6.56 5.73 5.79 5.80 .. 	.35 

1.31 

.33 5.35 5.41 5.48 5.50 5.63 5.59 5.55 6.50 5.59 5.90 5.79 554 

.38 5.46 5.46 5.41 5.44 5.59 562 5.55 5.54 569 5E0 5.83 5.65 

5.42 5.53 544 5.45 5.45 5.51 5.55 5.49 5.52 5.75 5.134 584 5.72 

5.52 547 5.56 5.45 5.46 5.54 5.55 5.46 5.50 5.76 5.66 5.71 5.76 

5E1 5.41 5.64 5.46 5.46 5.59 5.56 5.65 5.54 5.64 5.76 5.59 5.813 

5.66 5.58 5.74 559 5.50 5.74 .621..5.79 6.92 603 6.31 6.01 

Fig. 5.36. Width (µm) of rabbit endothelial cell nuclei for branches within the upper 

portion of the descending thoracic aorta (branches 1 to 6, branch 1 being the first branch 

downstream from the aortic arch). Each square represents a 500µm * 500p.m region. 

The total area of the map is 42.25mm2. n = 4 immature rabbits, n = 4 mature rabbits. 

Data represent averages for 21 immature and 14 mature branches. 
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17.17 7.20 7.16 6.98 7.10 721 7.17 721 7.24 7.28 7.42 7.21 722 

'  7.21 7.22 7.11 6.98 7.10 7.13 7.10 7.26 7.43 7.23 7.41 7.58 743 
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7.33 7.30 7.16 7E7 7.13 7
,
.27 7.49 7.40 7.21 7.20 7.28 7.39 7.25 

7.39 7.32 7.30 7.07 7.17 

...a.  

fl"t 7.50 7.26 7.50 7.54 7.48 7.29 

.19 7.39 7.33 7.11 7.06 7.31 7.05 7.14 7.31 7.35 7.93 7.40 7.30 

.38 7.38 7.33 7.35 7.07 7.09 7.12 7.22 7.43 7.34 7.46 7.41 7.28 

.40 7.36 7.28 7.23 7.03 7.18 7.21 7.22 7.56 7.51 759 7.48 7.45 

.35 7.44 7.32 7.26 7.10 7.20 720 7.38 7 44 7 49 754 7.47 7.23 

.46 7.41 7.35 7.21 7.22 7.15 7.29 7.39 7.55 757 754 7.43 7.30 

7.31 7.26 7.19 7.01 6.98 7.31 7.39 7.32 751 76 7.40 

6.64 6.22 631 6.35 6.11 6.01 6.11 6.11 5.95 5.98 6.14 6.03 6.20 

6.24 6.91 6.10 6.09 6.01 6.03 6.18 6.08 5.59 6.00 6.08 6.09 6.16 

6.25 6E0 5.88 5130 5.86 6.04 6.12 6.01 556 5.95 6.20 6.07 6.30 

6.30 6.04 5.87 5.73 5.93 512 6.16 6.06 598 5.95 6.08 6.34 6.26 

6.22 5.99 5.88 5.64 5.813 6.10 6.25 6.13 596 6.88 6.12 6.34 6.28 

6.32 6.03 588 581 5.83 5.93 513 5.93 5.90 5.80 6.07 6.25 6.15 

6.41 6.11 5.87 5.91 5.97 6.30 * 6.37 5.94 5.93 6.03 6.16 6.28 

6.34 6.07 5.93 5.98 6.04 6.26 6.37 6.18 6.02 5.96 6.10 6.18 6.613 

6.35 5.89 559 5.93 6139 6.14 517 6.06 6.06 5.92 6.20 6.15 6.65 

6.38 5.90 5.86 5.91 6.05 6.10 6.12 6.06 5.96 596 6.20 6.20 6.54 

6.36 558 5.92 5.99 6.00 6.07 6.11 6.08 6.10 6.12 6.20 6.21 6.55 

6.24 6.03 5.98 6.03 6.07 6.04 6.12 6.18 6.17 6.72 6.10 629 6.39 

6.26 us 5.96 5.95 6.00 6.06 6.18 6.11 6.19 6.18 6.21 6.21 6.27 

Fig. 5.37. Width (pm) of rabbit endothelial cell nuclei for branches within the lower 

portion of the descending thoracic aorta (branches 7 to 12). Each square represents a 

500pm * 500pm region. The total area of the map is 42.25mm2. n = 4 immature rabbits, 

n = 4 mature rabbits. Data represent the means for 15 immature and 20 mature 

branches. 
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7.09 7.15 7.07 6.93 6.86 6.90 6.96 6.94 
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7.11 7.03 7.04 6.94 6.88 6.79 6.95 6.93 

61012 6.97 6.91 6.88 6.81 6.82 6.95 ■ 

666 6.46 6.46 6.48 6.37 6.43 6.61 6.58 

6.08 602 6.05 6.05 6.06 6.19 6.25 6.15 

6.08 E96 5.86 5.92 5.88 6.02 6.09 5.99 

6.09 5.97 5.85 5.74 584 603 6.09 5.99 

6.08 5.95 5.66 5.70 5.79 6.01 6.16 5.98 

6.07 5.92 6E12 5.77 5.80 5.93 6.126 5.79 

6 16 596 5.83 538 5.95 6.18 * 607 

:6.11 E93 5.88 5.94 6.05 6.06 6/7 6.15 

6.13 5.134 E97 591 604 6.03 6.17 6.11 

6.18 5.133 5.B1 591 6.00 5.97 6.06 6.08 

6.14 5.91 5.91 5.91 5.00 6.01 6.03 6.00 

6.13 5.68 5.94 5.95 6.03 6.01 6.02 6.01 

6.94 .488...6.92 5.97 ■6.36 6.01 6.05 

Fig. 5.38. Width (gm) of rabbit endothelial cell nuclei for branches in the anatomical 

right hand side of the descending thoracic aorta. (The maps are truncated to avoid 

effects of flow around ostia on the left hand side). Each square represents a 500pm * 

500µm region. The total area of the map is 26.0mm2. n = 4 immature rabbits, n = 4 

mature rabbits. Data represent averages for 17 immature and 17 mature branches. 

6.98 6.91 6.96 7.03 7.10 7.26 7.18 7.23 
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7.15 6.76 6.69 6.99 7.12 7.13 7.18 7.16 

6.93 6.78 6.85 7.04 7.07 7.20 7/4 7.15 

6.90 6.83 676 7.09 7.13 7.24 ./.30 7.25 

7.00 6.91 6.99 7.00 7.14 7.27 7.24 7.19 

7.05 7.06 7.07 7.08 7.26 7.35 7.23 7.16 

7.2 %10638.  7.15  7.261 7.32 , iiiiiL 7.22 

6.07 6.10 6.01 6.00 6.02 6.12 6.05 6.35 

5.96 6.07 5.99 6.01 6.0D 6.12 6.16 6.21 

597 5.98 5.98 5.97 5.97 6.16 6.19 6.36 

6.01 6.03 6.06 5.97 5.94 6.08 6.25 6.33 

6.01 6.39 6.04 5.95 5.90 6.09 6.21 6.33 

IPSO 5.92 5.80 5.87 5.65 6.08 6.23 6.28 

6.17 * 6.31 5.91 5.97 6.07 6.20 6.28 

6.37 6.15 6.04 5.96 5.98 6.13 6.16 6.35 

6.15 6.00 E90 5 Cl 5.98 620 6.18 6.42 

6.07 5.95 5.89 5.95 5.06 6.19 6.23 6.36 

606 600 5.93 5.96 6.12 6.17 6.13 6.33 

606 6.07 6.12 6.07 6.12 6.06 6.07 6.28 

6.19 6.29 6.30 6.20 6.20 6.30 6.17 6.20 

Fig. 5.39. Width (pm) of rabbit endothelial cell nuclei for branches in the anatomical 

left hand side of the descending thoracic aorta. (Maps are truncated to avoid affects of 

flow around ostia on the right hand side). Each square represents a 500µm * 500µm 

region. Total area of map is 26.0mm2. n = 4 immature rabbits, n = 4 mature rabbits. 

Data represent averages for 18 immature and 17 mature branches. 
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Table 5.31. Nuclear widths (iirn) for branch ostia within the upper and lower portion of 
the descending thoracic aorta in "Zone A", where n equals the number of branches. 

UPPER AORTA LOWER AORTA 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 6.66 0.14 5.41 0.15 7.07 0.15 5.80 0.13 
U2R1 6.71 0.10 5.48 0.12 7.21 0.13 6.10 0.11 

U2 6.78 0.08 5.58 0.12 7.21 0.12 6.25 0.12 
U2L1 6.72 0.09 5.48 0.11 7.29 0.15 6.13 0.12 
U2L2 6.73 0.17 5.54 0.12 7.23 0.25 5.95 0.12 
U1R2 6.47 0.17 5.44 0.15 7.13 0.14 5.83 0.13 
U1R1 6.86 0.11 5.38 0.12 7.27 0.14 5.93 0.10 

U1 7.02 0.10 5.51 0.13 7.49 0.15 6.13 0.13 
U1L1 6.68 0.11 5.35 0.12 7.40 0.15 5.93 0.13 
U1L2 6.68 0.17 5.39 0.12 7.21 0.24 5.90 0.15 
R2 6.56 0.19 5.47 0.17 7.17 0.15 5.97 0.16 
R1 7.03 0.11 5.60 0.12 7.58 0.16 6.30 0.10 
L1 6.79 0.14 5.51 0.12 7.50 0.14 6.37 0.23 
L2 6.74 0.15 5.40 0.16 7.26 0.19 5.94 0.10 

D1R2 6.56 0.13 5.50 0.18 7.06 0.09 6.04 0.12 
D1R1 6.71 0.11 5.63 0.15 7.31 0.14 6.26 0.12 

D1 6.54 0.11 5.59 0.16 7.05 0.18 6.37 0.11 
D1 L1 6.72 0.12 5.55 0.10 7.14 0.13 6.18 0.13 
D1L2 6.80 0.15 5.50 0.13 7.31 0.20 6.02 0.11 
D2R2 6.59 0.14 5.44 0.15 7.07 0.15 6.09 0.13 
D2R1 6.68 0.10 5.59 0.11 7.09 0.13 6.14 0.11 

D2 6.60 0.10 5.62 0.13 7.12 0.17 6.17 0.10 
D2L1 6.76 0.10 5.55 0.11 7.22 0.14 6.06 0.12 
D2L2 6.82 0.15 5.54 0.12 7.43 0.23 6.06 0.15 

Total Mean 6.73 0.03 5.51 0.03 7.26 0.03 6.11 0.03 
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Table 5.32. Nuclear widths (um) for branch ostia within the anatomical right and left of 
the descending thoracic aorta, where n equals the number of branches. 

ANATOMICAL RIGHT ANATOMICAL LEFT 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 - - - - 6.82 0.11 5.79 0.13 
U2R1 6.92 0.12 6.01 0.13 6.91 0.14 6.01 0.17 

U2 6.96 0.12 6.09 0.14 6.95 0.11 6.16 0.16 
U2L1 6.94 0.15 6.04 0.14 6.95 0.12 5.98 0.16 
U2L2 6.91 0.16 5.95 0.11 -- - - 
U1R2 - -- - 6.75 0.14 5.80 0.12 
U1R1 7.01 0.12 5.80 0.14 7.05 0.14 5.90 0.12 
Ul 7.24 0.15 5.92 0.14 7.20 0.13 6.06 0.16 

U1L1 6.96 0.18 5.80 0.15 7.00 0.14 5.79 0.15 
U1L2 6.86 0.15 5.87 0.14 -- - - 
R2 - -- - 6.83 0.15 5.95 0.15 
R1 7.16 0.13 6.17 0.15 7.34 0.17 6.18 0.15 
L1 7.14 0.18 6.31 0.29 7.03 0.16 6.07 0.17 
L2 6.91 0.13 5.91 0.15 -- - - 

D1R2 - -- - 6.78 0.11 6.05 0.15 
D1R1 7.15 0.14 6.37 0.14 6.81 0.13 6.06 0.17 

D1 6.76 0.17 6.15 0.16 6.72 0.14 6.27 0.16 
D1 L1 6.69 0.15 6.04 0.14 7.06 0.11 6.15 0.19 
D1L2 6.99 0.14 5.96 0.14 -- - - 
D2R2 - -- - 6.80 0.12 6.04 0.15 
D2R1 6.93 0.15 6.15 0.13 6.79 0.10 6.03 0.16 

D2 6.78 0.17 6.00 0.12 6.83 0.12 6.17 0.15 
D2L1 6.85 0.16 5.90 0.13 6.98 0.10 6.11 0.17 
D2L2 7.04 0.15 6.01 0.13 -- - - 

Total Mean 6.96 0.03 6.02 0.03 6.93 0.03 6.03 0.04 

5.3.4.5.1 Width of nuclei surrounding branch ostia within the upper and 

lower portion of the descending thoracic aorta 
Mean nuclear widths within Zones A-C combined, for immature rabbits and for ostia in 

the upper and lower portion of the descending thoracic aorta were 6.82 ± 0.011.1m (n = 

1854 regions) and 7.28 ± 0.01µIn (n = 1409 regions) respectively (6.7% difference) 

(P<0.005), and for mature rabbits were 5.56 ± 0.01um (n = 1378 regions) and 6.08 ± 

0.01um (n = 1755 regions) respectively (9.4% difference) (P<0.005). 

Nuclear widths in the regions within Zones A-C combined, in the upper portion of the 

descending thoracic aorta were significantly different between ages and regions (both 

P<0.005) and there was a significant interaction between age and region (P<0.01). In 
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the lower descending thoracic aorta, there were also significant differences between ages 

(P<0.01) and regions (P<0.005) and a significant interaction between age and region 

(P<0.005). 

5.3.4.5.2 Width of nuclei surrounding branch ostia in the left hand and right 

hand sides of the descending thoracic aorta 

Mean nuclear widths around ostium from the right and left side of the aorta, for 

immature rabbits, were 7.06 ± 0.02 (n = 1635 regions) and 6.99 ± 0.01 (n = 1460 

regions) respectively (1.0% difference) (P<0.005), and for mature rabbits were 6.07 ± 

0.01 (n = 1535 regions) and 6.00 ± 0.02 (n = 1475 regions) respectively (1.2% 

difference) (P<0.005). 

Nuclear widths in regions within Zones A-C combined, for ostia on the left hand side of 

the aorta were significantly different between ages and regions and there was a 

significant interaction between age and region (all P<0.005). There were also significant 

differences between ages (P<0.01) and regions (P<0.005) and a significant interaction 

between age and region (P<0.005) for ostia on the right hand side of the aorta. 

5.3.5 Rabbit nuclear area 
Endothelial nuclear areas are shown in pixels2  as these are the units given by ImageTool. 

It measures the area as the number of pixels within an object, but it is not known 

whether pixels2  can simply be converted into gm2. For this reason, pixels2  are used so 

comparisons can be made within our own data, however it may not be possible to 

compare our results with data from other researchers. 

The area of endothelial nuclei within Zones A-C for immature and mature rabbits are 

shown in Fig. 5.40. There was no significant difference in mean area between ages 

(P=0.88) but there was a highly significant effect of region, and a significant interaction 

between age and region (both P<0.005). Mean nuclear areas are shown for individual 

rabbits in Table 5.33. Nuclei of immature rabbits had mean areas of 490.9 ± 1.01 pixels2  

(n = 3263) and mature rabbits had mean areas of 486.8 ± 0.77pixels2  (n = 3539) (0.8% 

difference). 
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500.9 505.7 492.1 487.8 484.7 498 495.3 497 486.3 482.5 489.6 472.8 491.7 

484 482.7 485.6 482.5 494.1 510.4 502.7 502.5 4833 485.2 188.1 482.6 493.3 

481.2 4816 486.3 487.1 497.1 508.1 500.2 498.3 479.2 480.6 478.8 478.6 485 

409.2 484/ 484.7 4811 4931 9332 4993 499.9 486.2 476.3 478.3 482.7 495.2 

4E5.9 4914 485.8 4807 492,4 503.5 938.5 501.9 481.8 480.6 4794 486 489.6 

486.5 488 488.7 486.7 4812 5134 5137 501.8 479.8 481.2 478.6 492.1 4909 

468.3 487.6 489.3 485.6 485.8 493 485.8 482.2 4E16.3 479.1 488.6 4917 

481.1 485.6 4915 493.8 485.1 503.8 491.9 498.7 488.3 484.6 477.8 483.4 485 

484.2 486.2 4894 489.6 484.8 495.1 500.4 50115 4882 483.2 4815 486.6 478.4 

485.9 485.4 487.5 484 487.8 498.4 5003 492.6 488.6 481.9 483.1 495.1 484.2 

478.7 490.4 4818 478.7 482 497.6 498.7 499.7 480.8 473.9 485 491 476.3 

476.2 479 8 481.5 475.7 484.2 4914 503.9 503.4 486.9 485.7 4885 486.1 482.4 

475.5 479 474.9 476.1 47E1 496.9 504.7 506.5 497.2 487.6 484.1 492.2 478.3 

Mature 

498.2 509.4 514.4 9381 515.9 515.2 510.7 soas 500.9 506.6 499.1 514.1 

479.6 475.7 492.1 485.7 489.7 497.9 508.4 5002 491.2 492.9 492.6 4913 4913 

4834 476 474.1 471.1 474.8 494.7 498.5 4941 485 485.3 482.5 484.7 501.3 

483 4713.8 474.8 467.2 470.4 4904 495.7 496.3 484.2 4795 476.9 4891 484.1 

470.2 472.5 472.4 4816 465.8 488.4 903.1 492.9 481.6 478.3 478.4 480.4 484.5 

475 474 473.4 469.9 467.3 471.4 482.7 474.1 474.3 4742 475.6 488.8 4912 

481.9 476 474.7 474 470.6 487.3 * 480.4 471.9 476 476.8 484.4 478.9 

4719 471.9 474.7 479.9 182.9 L03.2 466.9 491.9 479 476.3 184 484.3 482.6 

474.3 473.6 478.2 477.3 488.6 499.8 495 492.2 485 481 484.5 479 479.5 

476.7 473.9 477.4 478.5 487.4 496.4 492.5 493.2 4912 484.8 485.7 484.9 483.8 

484.2 478 481.6 482.6 487.7 497.3 494.3 493.1 481.3 491.9 484.6 452.6 480.3 

4917 479.6 491.8 489.5 492.7 499.5 498.2 496.3 490.7 488.4 480.5 472.4 479 

111492.5  491.3 492.7 492.7 507.4 505.4 535.3 502.5 5032 504.6 471.7 483.4 

Fig. 5.40. Area (pixels2) of rabbit endothelial cell nuclei all branch ostia imaged. Each 

square represents a 500µm * 5001.tm region. The total area of the map is 42.25mm2. n = 

4 immature rabbits, n = 4 mature rabbits. Data represent averages for 36 immature and 

38 mature branches. 

Table 5.33. Mean rabbit endothelial cell nuclear area (pixels2), where n equals the 
number of regions. 

Age Group Rabbit Area (Pixe12)  Mean SEM 

Immature 

II 503.6 1.34 
12 453.1 0.68 
13 521.1 2.38 
14 467.5 2.53 

All immature 490.9 1.01 

Mature 

M1 476.3 1.23 
M2 496.2 1.40 
M3 493.2 1.27 
M4 454.1 1.49 

All mature 486.8 0.77 
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5.3.5.1 "Zone A" (500µm * 5004m regions)  
The areas of nuclei within Zone A are shown in and Fig. 5.41. There was no significant 

effect of age (P=0.56) (mean nuclear areas were 496.24 ± 1.65pixels2  (n = 677) and 

485.50 ± 1.77pixels2  (n = 741) for immature and mature rabbits respectively; a 2.2% 

difference), but there was a significant effect of region and a significant interaction 

between age and region (both P<0.005). 

In immature rabbits, nuclei were larger upstream of the branch than downstream; the 

ratio of upstream ("Ul") to downstream ("Dl") was 1.04. Nuclei in the lateral regions 

("Rl" and "Ll") were smaller than those immediately upstream of the ostia. In mature 

rabbits, there was little change between upstream and downstream regions (ratio = 0.99). 

Lateral regions had nuclei of a very similar size to both immediate upstream and 

downstream regions. Values ranged from 479.93 ± 14.95pixels2  ("U1L2", n = 18 

branches) to 513.68 ± 9.38pixels2  ("Ul", n = 36 branches) (7.0% difference) in 

immature rabbits, and 465.84 ± 9.72pixels2  ("U2R2", n = 21 branches) to 503.20 ± 

7.85pixels2  ("D1R1", n = 38 branches) (8.0% difference) in mature rabbits. 

The significance of differences between individual regions for immature and mature 

rabbits, obtained using the Tukey test, are shown in Fig. 5.42. 
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Fig. 5.41. Nuclear area (pixels2) for regions within Zone A (defined in figure 5.1), in 

immature and mature rabbits. Bars show means ± SEM (n = number of branches). 
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Fig. 5.42. Significance of differences in area of nuclei between 500iim * 500um regions 

within Zone A, determined by the Tukey test for multiple comparisons. Squares shaded 

in grey depict significant differences (P<0.05) between regions. Squares to the right of 

the black diagonal line indicate differences in immature rabbits. Squares to the left 

indicate differences in mature rabbits. 

5.3.5.2 "Zone A" (10011M * 100µm sub-regions)  
Nuclear areas in the main regions nearest the branch ostia ("U2R1", "U2", "U2L1", 

"U1R1", "Ul", "U1L1", "Rl", "Ll", "D1R1", "Dl", "DILI", "D2R1", "D2", "D2L1") 

were analysed at higher resolution, using data for individual 100um * 100um sub-

regions (Fig.5.43, Table 5.34a, b and 5.35a,b). Data were examined for effects of age or 

region, or any interaction between age and region. There were no significant effects of 

age (P>0.05), but there were significant effects of region (P<0.005) for sub-regions 
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within main regions "U1R1", "Rl", "D1R1", "D2R1", "U2", "Ul", "Dl", "U1L1" and 

"Ll". There was a significant change with age in pattern (age*region interaction) for the 

regions "Rl", "Ul", "U1L1" and "Ll" (all P<0.005). In general, nuclei upstream of the 

branch ostia in immature rabbits were larger than those downstream and in the lateral 

regions. In mature rabbits, the nuclear areas were much more uniform, with only small 

patches of larger nuclei upstream and downstream of the ostia. 
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Fig. 5.43. Mean area (pixels2) of endothelial cell nuclei for all the branch ostia. Each 

square represents a 100jim * 1001.tm region. The total area of the map is 3.75mm2. n = 

4 immature rabbits, n = 4 mature rabbits. Data represent averages for 36 immature and 

38 mature branches. 
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Table 5.34a. Immature rabbit endothelial cell nuclear area (pixels2) for sub-regions 
(100m * 1001.tm) within upstream and lateral main-regions in "Zone A", where n 
equals the number of branches. 

Immature U2R1 U2 U2L1 U1R1 U1 U1L1 RI L1 
: Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 486.06 14.72 507.40 11.78 501.50 11.84 519.73 15.27 526.24 11.94 509.93 11.10 486.27 13.98 518.00 29.16 
U2R1s 502.84 9.96 502.64 11.91 498.70 11.77 502.74 1050 527.38 12.02 520.02 12.72 482.85 10.12 50855 17.83 

U2s 502.96 1194 493.91 1033 501.70 1286 506.53 9.31 509.92 10.90 50127 13.90 503.72 12.92 490.67 12.40 
U2L1s 51244 12.35 501.21 11.23 493.03 10.54 511.48 11.88 516.86 10.17 493.90 12.80 504.29 14.99 485.75 13.43 
U2L2s 50430 11.22 518.85 1428 499.22 22.56 502.55 10.28 503.41 11.29 492.69 21.82 464.55 14.62 474.17 16.72 
U1R2s 504.22 11.25 505.44 10.20 494.46 12.97 512.17 19.67 512.82 8.89 503.67 9.68 482.45 13.93 477.81 23.75 
U1R1s 504.79 8.77 495.58 8.28 508.28 10.93 510.97 10.15 519.55 12.45 517.72 11.52 493.72 12.97 502.79 13.92 

U1s 498.42 12.30 504.60 10.01 487.87 9.26 521.49 11.14 517.92 11.28 505.97 13.42 506.69 11.22 482.89 1139 
U1L1s 499.33 10.85 505.22 11.73 490.96 1021 512.84 11.01 510.75 9.75 51341 14.58 477.68 20.11 465.43 9.10 
U1L2s 501.76 12.50 503.67 11.75 494.35 16.89 514.36 10.17 504.05 11.34 486.90 15.91 463.83 40.66 465.17 13.48 
R2s 502.34 14.41 518.52 12.27 508.60 1380 510.17 20.35 500.80 11.64 502.15 10.82 486.80 10.54 466.10 28.06 
R1s 510.75 12.90 501.84 10.63 507.05 1278 506.36 10.05 507.97 12.12 512.78 11.63 495.66 10.89 523.72 20.47 
Cs 501.99 12.22 514.78 11.62 497.11 10.39 519.11 9.26 512.64 12.54 506.62 13.69 515.74 14.66 485.82 11.33 
Lis 501.35 10.05 525.51 13.67 499.67 11.29 498.99 8.87 525.25 12.61 492.79 14.22 497.54 19.46 484.31 11.48 
L2s 506.78 12.63 51999 1267 496.14 15.72 489.20 8.62 516.31 9.77 485.18 19.23 467.21 35.59 469.84 17.31 

D1R2s 49888 15.38 509.41 12.77 515.64 12.90 510.97 17.86 492.23 11.18 498.49 11.24 486.73 12.79 476.76 18.07 
D1R1s 509.71 11.30 504.64 10.99 510.66 14.60 514.47 10.20 495.05 9.65 500.48 12.85 493.86 9.85 480.89 13.86 
DU 501.46 10.12 508.98 11.05 504.79 12.90 508.62 10.06 513.16 14.28 514.55 13.64 505.73 12.18 490.80 11.62 

D1L1s 49547 8.76 506.43 12.06 503.19 12.72 499.53 9.69 513.00 11.49 496.95 14.44 492.20 20.76 49052 15.25 
D1L2s 507.92 10.51 500.32 10.13 488.52 16.68 486.83 9.34 522.09 20.25 474.53 21.31 474.53 40.52 463.28 15.23 
D2R2s 497.48 14.05 506.68 10.87 507.08 11.79 500.84 1356 503.54 20.02 507.13 16.86 490A6 1355 472.57 15.95 
D2R1s 505.10 14.78 505.90 11.04 504.67 1341 496.97 10.98 484.48 15.41 497.58 17.65 492.97 9.85 479.36 13.22 

D2s 505.18 11.75 507.91 12.22 499.27 13.34 505.74 11.18 507.87 1725 493.83 13.50 498.48 9.71 493.43 11.22 
D2L1s 507.66 10.68 504.49 12.74 496.48 13.55 492.32 9.32 497.90 13.21 487.64 10.83 494.75 13.23 495.56 12.68 
D2L2s 511.21 12.40 513.75 14.92 484.29 18.19 499.91 12.75 495.06 10.63 472.48 14.61 470.87 23.02 479.64 15.59 
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Table 5.34b. Immature rabbit endothelial cell nuclear area (pixels2) for sub-regions 
(100µm * 100µm) within downstream main-regions in "Zone A", where n equals the 
number of branches. 

Immature D1R1 DI D1L1 D2R1 D2 D2L 1 
• Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 493.46 14.78 461.88 1528 488.05 15.61 488.17 1135 497.72 10.24 493.58 11.93 
U2R1s 495.48 9.47 454.44 11.83 491.78 18.36 499.97 10.10 508.54 12.79 503.71 11.81 

U2s 510.09 12.24 463.53 12.51 502.92 15.04 502.40 10.60 501.75 9.59 513.88 10.99 
U2L1s 501.61 13.26 479.20 13.14 486.43 12.57 503.70 12.79 491.05 1420 498.75 11.99 
U2L2s 483.78 10.95 48438 14.50 491.67 1742 490.84 1032 50047 12.71 481.48 15.64 
U1R2s 482.61 1123 489.97 14.68 506.58 16.56 493.47 14.75 488.18 11.75 490.05 1222 
U1R1s 509.65 11.41 48437 10.15 498.10 13.76 492.80 7.76 497.22 9.97 497.53 10.75 

U1s 502.87 10.94 49352 12.38 494.90 11.59 505.01 999 505.42 12.71 495.32 13.10 
U1L1s 499.17 1024 498.68 15.09 49141 10.14 493.51 11.05 493.70 10.42 502.84 10.95 
U1L2s 487.77 12.17 499.02 12.90 465.48 16.18 497.98 11.23 49220 12.56 476.81 16.46 
R2s 495.85 11.99 489.09 17.75 490.66 13.77 488.24 13.42 485.70 12.27 501.97 11.20 
R1s 49505 942 488.96 9.42 498.10 13.07 506.95 11.16 501.96 1240 498.69 11.15 
Cs 502.69 10.64 494.31 10.57 497.00 13.34 490.07 10.48 507.14 10.80 502.25 12.23 
Lis 506.69 11.01 487.59 1125 498.87 11.78 488.54 11.94 502/2 11.59 49526 11.20 
L2s 505.83 11.86 497.51 1223 475.01 12.18 481.74 991 49932 1232 486.73 1723 

D1R2s 494.04 11.98 50622 11.28 498.10 12.21 484.46 12.27 494.24 12.69 50424 11.08 
D1R1s 505.90 9.24 498.40 12.16 502.75 11.41 504.61 10.27 501.20 12.29 50320 11.82 
DU 503.82 11.18 493.59 1015 50925 14.01 499.39 929 501.65 12.49 49739 12.49 

D1L1s 495.54 959 49999 11.03 494.98 10.60 484.82 9.81 500.33 10.90 495.26 11.80 
D1L2s 490.70 11.51 493.25 9.39 503.03 19.92 490.80 12.60 500.87 10.79 494.73 18.10 
D2R2s 485.58 14 87 499 96 12.37 499.69 11.66 473.78 12.31 504.97 14.78 502.45 12.12 
D2R15 500.99 9.65 513.10 12.76 49627 10.32 491.04 10.28 518.15 1296 497.06 12.60 

D2s 498.63 11.14 510.90 10.55 508.26 15.58 496.78 9.95 507.01 11.05 502.83 12.76 
D2L1s 496.68 10.03 488.12 1092 495.18 14.01 484.54 10.58 497.12 1022 499.97 11.36 
D2L2s 504.52 14.39 504.01 13.00 477.26 14.19 501.36 13.65 496.27 1228 472.83 18.14 
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Table 5.35a. Mature rabbit endothelial cell nuclear area (pixels2) for sub-regions 
(10011m * 100ttm) within upstream and lateral main-regions in "Zone A", where n 
equals the number of branches. 

Mature U2R1 U2 U2L1 U1R1 U1 U1L1 RI L1 
Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 467.11 10.07 491.35 9.47 48944 9.65 467.68 9.76 492.12 9.02 500.55 8.90 476.40 15.23 469.45 22.13 
U2R1s 491.29 7.47 496.21 7.12 495.82 10.13 491.27 1032 498.49 8.95 485.65 9.72 483.45 13.79 449.10 1249 

U2s 497.21 7.41 495.48 6.46 499.83 8.86 496.33 10.03 504.28 8.51 478.95 7.90 472.98 10.72 449.86 10.11 
U2L1s 493.28 8.01 49735 7.23 490.67 8.24 482.06 10.35 50420 9.78 486.27 7.87 469.56 11.29 459.73 11.28 
U2L2s 488.60 934 49623 8.33 488.00 10.34 481.88 10.12 499.81 9.20 487.23 11.33 482.72 17.62 472.01 13.96 
U1R2s 482.84 11.69 490.79 8.37 485.02 12.76 461.70 10.76 487.06 9.12 493.54 8.60 487.71 14.66 453.11 26.21 
U1R1s 491.84 7.38 499.74 8.39 495.09 8.59 488.59 10.85 494.04 9.33 484.39 8.88 484.39 10.99 455.42 14.15 

U1s 496.90 8.21 505.52 6.57 49401 7.77 483.15 9.75 501.22 9.87 478.13 8.30 484.37 12.98 461.92 995 
U1L15 486.21 8.52 500.07 7.22 50093 7.28 481.35 10.33 504.21 8.43 48145 7.59 460.71 14.58 474.39 10.38 
U1L2s 484.14 8.82 494.62 8.20 490.42 9.67 479.66 10.57 500.66 9.29 484.93 11.42 463.42 2044 481.86 18.02 
R2s 482.19 11.51 491.53 9.11 496.91 9.62 455.95 10.76 470.68 9.74 482.53 9.12 495.31 15.21 451.05 26.95 
R1s 490.10 9.30 505.95 7.94 495.65 8.67 477.20 897 467.68 10.41 474.04 1028 493.25 9.40 440.61 17.10 
Cs 488.73 10.92 510.75 8.86 496.40 7.47 475.40 9.69 48263 9.69 469.69 9.88 482.71 12.81 465.77 10.38 
Lis 486.37 9.45 50756 7.30 500.92 7.56 471.97 10.09 487.42 9.21 473.38 8.20 457.87 17.77 489.68 10.43 
L2s 487.97 955 502.27 8.03 495.69 12.86 470.42 10.18 490.89 10.61 47394 1194 456.60 29.66 482.75 15.44 

D1R2s 46900 10.93 493.68 9.03 495.27 8.77 452.18 9.37 450.87 9.57 455,81 10.84 482.76 13.90 472.23 23.29 
D1R1s 486.53 10.02 503.41 8.91 484.22 8.96 466.86 8.78 457.13 9.27 457.01 10.33 491.89 9.30 459.90 15.21 
Din 488.34 9.57 509.52 8.83 483.07 8.71 464.67 10.36 461.20 10.56 46424 10.84 488.12 11.34 472.93 8.33 

D1L1s 483.83 9.50 502.35 8.36 49539 8.91 45750 9.84 464.77 9.38 466.44 8.08 481.32 16.74 480.83 1107 
D1L2s 48435 8.75 499.76 8.63 48509 12.07 451.33 9.97 468.95 1031 476.98 1144 464.48 34.15 491.17 15.43 
D2R2s 478.67 9.70 490.66 9.47 493.10 8.67 463.16 14.38 477.80 18.74 465.20 9.29 502.02 1324 506.45 2563 
D2R1s 490.08 10.31 500.68 9.26 478.45 943 459.41 9.10 463.30 12.50 461.99 9.78 503.41 8.70 477.25 11.04 

D2s 490.22 10.91 507.28 8.59 485.16 9.61 471.47 10.60 467,43 1402 459.24 9.86 501.44 8.17 485.40 9.19 
D2L1s 482.70 9.77 505.87 967 494.69 7.94 456.72 12.06 466.40 11.55 461.88 10.08 503.40 8.96 487.45 9.82 
D2L2s 481.16 10.06 495,03 9.24 488.51 12.98 470.11 15.15 46962 10.16 459.72 10.62 440.93 20.06 500.87 19.80 
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Table 5.35b. Mature rabbit endothelial cell nuclear area (pixels2) for sub-regions 
(1001.tm * 100µm) within downstream main-regions in "Zone A", where n equals the 
number of branches. 

Mature D1R1 D1 DILI D2R1 D2 D2L 1 
Sub-Region Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM 

U2R2s 49350 14.21 473.70 15.73 485.15 11.92 490.82 1326 493.15 10.33 505.72 8.46 
U2R1s 503.84 9.31 467.30 11.71 484.08 9.92 499.84 9.47 502.73 10.47 494.86 9.82 

U2s 504.00 8.35 455.40 17.77 486.07 8.37 50420 10.01 504.76 9.44 489.03 9.17 
U2L1s 506.50 10.05 492.60 15.83 490.66 9.50 504.59 10.28 503.07 8.34 488.25 7.70 
U2L2s 490.44 10.37 501.48 12.54 490.85 1335 499.19 9.64 501.88 9.86 468.44 11.41 
U1R2s 492.59 12.84 46690 10.79 477.13 1055 487.91 11.94 494.76 8.56 495.48 7.93 
U1R1s 507.33 9.35 477.37 11.03 48821 10.85 495.66 8.93 501.21 909 496.64 8.76 

U1s 500.31 956 466.76 1071 488.90 9.00 504.92 9.66 49850 7.89 489.26 7.47 
U1L1s 497.02 9.36 472.96 10.86 497.14 10.36 498.53 845 491.09 7.66 485.25 8.63 
U1L2s 479.53 1124 478.12 897 492.11 1342 486.79 8.56 501.32 757 46976 9.62 

R2s 494.86 12.94 477.00 10.39 491.63 9.85 49722 14.89 497.98 8.73 494.75 7.67 
R1s 512.40 9.66 476.72 9.53 492.10 1004 503.85 8.90 499.05 10.23 496.09 7.28 
Cs 50790 9.55 488.84 9.39 490.13 8.47 51038 7.79 503.33 957 496.72 8.49 
Lis 495.74 8.96 492.50 9.54 492.61 8.97 50341 8.08 495.00 8.53 486.45 9.04 
L2s 49046 9.67 48555 9.40 486.17 1350 491.85 8.17 508.46 8.66 47251 10.22 

D1R2s 496.65 13.56 491.77 9.11 501.92 876 500.03 15.50 492.03 847 497.45 8.95 
D1R15 514.82 9.68 48691 9.80 501.12 826 505.93 9.34 493.72 10.10 494.61 7.53 
Ms 513.55 10.75 502.09 10.00 49298 10.15 510.91 8.51 496.15 997 496.03 9.51 

D1L1s 496.97 10.33 50898 9.93 49358 8.70 501.52 8.35 499.78 880 498.69 8.20 
D1L2s 501.43 9.98 507.15 9.11 492.05 12.26 490.23 9.04 503.71 8.39 487.38 8.92 
D2R2s 496.19 13.38 497.09 9.09 50005 8.20 490.84 14.48 489.92 9.07 49328 9.04 
D2R15 516.24 999 505.75 9.69 497.61 9.24 505.22 10.40 48658 10.17 487.79 8.76 

D2s 508.65 1025 507.78 10.23 493.00 8.13 502.16 8.89 491.23 11.79 488.14 9.68 
D2L1s 50445 10.16 506.05 8.69 490.09 7.87 498.43 8.50 490.52 11.65 49746 920 
D2L2s 499.05 1050 499.25 8.69 485.23 1343 48828 9.21 498.87 10.36 48158 11.24 

Tukey tests were performed for nuclear areas in "Zone A" (in main regions "U1R1", 

"Ul", "U1L1", "Rl", "Ll", "D1R1", "Dl", "DILI") to determine where significant 

differences existed between the sub-regions within each of these main regions 

(Appendix B.5a-g). 

5.3.5.3 "Zone B" (5004m * 5001.im regions)  
The mean areas of nuclei within Zone B are shown in Table 5.36. There was no 

significant effect of age (P=0.81) but there was a highly significant effect of region 

(P<0.005) and a significant interaction between age and region (P<0.01). The mean 

nuclear area in immature rabbits was 489.59 ± 1.6pixels2  (n = 1163) and in mature 

rabbits was 483.90 ± 1.21pixels2  (n = 1355) (a difference of 1.2%). Areas ranged from 

473.90 ± 15.02pixels2  ("D4L3", n = 16 branches) to 508.12 ± 9.30pixels2  ("U4R1", n = 

34 branches) (7.2% difference) in immature rabbits, and from 468.59 ± 9.39pixels2  
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("U2R3", n = 21 branches) to 498.51 ± 7.03pixels2  ("U4", n = 38 branches) (a 6.4% 

difference) in mature. 

Table 5.36. Rabbit endothelial cell nuclear area for "Zone B" regions, where n equals 
the number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U4R4 486.27 14.15 474.06 10.39 
U4R3 487.06 12.31 471.09 11.03 
U4 R2 497.14 13.21 474.76 11.21 
U4R1 508.12 9.30 494.67 7.00 

U4 503.15 9.20 498.51 7.03 
U4L1 498.27 10.73 494.28 7.28 
U4L2 479.25 13.44 484.99 9.52 
U4L3 480.62 15.53 485.31 9.44 
U4L4 478.79 15.05 482.54 10.50 
U3R4 484.74 12.65 474.81 10.61 
U3R3 482.07 12.29 467.16 10.57 
U3R2 493.26 11.74 470.40 11.41 
U3R1 500.91 7.76 490.36 6.86 

U3 499.28 8.93 495.71 6.73 
U3L1 499.89 10.20 496.31 6.94 
U3L2 486.24 15.69 484.15 9.63 
U3L3 476.29 15.62 479.47 9.23 
U3L4 478.29 16.29 476.94 8.97 
U2R4 485.82 12.89 472.38 9.41 
U2R3 480.71 9.96 468.59 9.39 
U2L3 480.59 13.57 478.27 9.38 
U2L4 479.38 14.98 478.37 10.31 
U1R4 488.67 13.91 473.44 9.73 
U1R3 486.72 11.89 469.95 11.19 
U1L3 481.20 13.40 474.15 9.34 
U1L4 478.57 16.73 475.61 10.05 

R4 489.28 11.89 474.69 9.27 
R3 485.65 11.14 473.98 12.23 
L3 486.27 16.57 476.00 9.71 
L4 479.11 19.29 476.85 9.66 

D1R4 490.46 12.80 474.73 9.90 
D1R3 489.75 11.52 479.88 11.76 
D1L3 484.56 15.72 476.31 10.91 
D1L4 477.81 18.71 483.96 10.31 
D2 R4 489.37 13.74 478.24 10.38 
D2R3 489.60 11.29 477.28 11.12 
D2L3 483.15 15.15 480.96 8.81 
D2 L4 480.50 16.85 484.46 10.43 
D3R4 487.49 13.43 477.44 9.11 
D3R3 483.95 10.24 478.52 10.91 
D3R2 487.81 11.10 487.38 9.95 
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D3R1 498.38 9.33 496.43 6.56 
D3 500.76 9.83 492.51 6.79 

D3L1 492.59 9.58 493.24 7.80 
D3L2 488.59 16.07 480.24 9.24 
D3L3 481.91 15.64 484.81 9.67 
D3L4 483.06 18.85 485.69 10.18 
D4R4 481.76 13.16 481.58 9.97 
D4 R3 478.73 11.13 482.64 10.76 
D4R2 482.00 11.72 487.72 9.75 
D4R1 497.58 9.05 497.33 6.16 

D4 498.70 9.56 494.34 6.27 
D4L1 499.69 9.73 493.05 6.84 
D4L2 480.76 14.30 481.29 8.58 
D4L3 473.90 15.02 491.95 8.68 
D4L4 485.03 18.46 484.62 10.82 

Total mean 489.59 1.60 483.90 1.21 

5.3.5.4 "Zone C" (500µm * 5001.1m regions)  
The mean nuclear areas for the regions within "Zone C" (2-4mm from branch ostia) 

defined in Fig. 5.1 are shown in Table 5.37. There was no significant effect of age 

(P=1.00) however there was a highly significant effect of region (P<0.005) and a 

significant interaction between age and region (P<0.05). The mean nuclear areas were 

489.44 ± 1.01pixels2  (n = 1423) and 490.18 ± 1.18pixels2  (n = 1443) for immature and 

mature rabbits respectively. Values ranged from 472.80 ± 18.42pixels2  ("U6L5", n = 12 

branches) to 510.43 ± 9.18pixels2  ("U5R1", n = 33 branches) in immature rabbits, and 

from 470.17 ± 13.56pixels2  ("U2R6", n = 15 branches) to 538.30 ± 18.14pixels2  

("U6R6", n = 4 branches) in mature; differences of 8.0% and 14.5% respectively. 
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Table 5.37. Rabbit endothelial cell area (pixels2) for "Zone C", where n equals the 
number of branches. 

Region Immature Mature 
Mean SEM Mean SEM 

U6R6 500.94 21.70 538.30 18.14 
U6R5 505.66 21.46 498.24 25.40 
U6R4 492.09 17.72 509.44 19.88 
U6R3 487.76 15.80 514.38 18.70 
U6R2 484.73 10.26 508.26 20.07 
U6R1 498.04 9.39 515.88 7.32 

U6 495.35 10.96 515.20 9.38 
U6L1 497.04 11.50 510.71 8.23 
U6L2 486.28 16.21 500.54 9.80 
U6L3 482.46 14.44 500.89 9.18 
U6L4 489.56 17.98 506.60 10.88 
U6L5 472.80 18.42 499.09 7.65 
U6L6 491.68 22.10 514.11 13.53 
U5R6 484.03 14.16 479.64 20.92 
U5R5 482.74 14.47 475.74 14.84 
U5R4 486.62 15.37 492.13 12.14 
U5R3 482.48 12.99 485.67 12.18 
U5R2 494.08 11.41 489.74 11.70 
U5R1 510.43 9.18 497.95 6.86 

U5 502.66 9.23 508.44 7.89 
U5L1 502.47 10.97 500.17 7.45 
U5L2 483.29 13.64 491.17 8.17 
U5L3 485.17 15.35 492.85 8.76 
U5L4 488.13 16.32 492.64 9.40 
U5L5 482.61 15.74 490.29 10.53 
U5L6 493.34 21.46 498.28 15.35 
U4R6 481.22 16.60 480.37 17.30 
U4R5 482.65 14.96 475.99 12.13 
U4 L5 478.61 16.32 484.74 11.13 
U4L6 484.96 24.42 501.28 16.82 
U3R6 489.24 14.14 482.97 15.08 
U3R5 484.19 14.09 478.79 12.23 
U3L5 482.70 18.77 489.68 11.34 
U3L6 495.21 23.46 484.06 15.47 
U2R6 489.90 12.63 470.17 13.56 
U2R5 493.38 14.52 472.49 11.43 
U2L5 486.03 18.09 480.40 12.14 
U2L6 489.63 20.02 484.45 13.73 
U1R6 486.52 14.16 474.99 15.61 
U1R5 488.00 13.56 474.04 11.37 
U1L5 492.08 20.12 488.78 10.83 
U1L6 490.88 22.19 480.22 13.74 

R6 488.29 14.96 481.88 15.12 
R5 487.63 12.62 478.00 10.74 
L5 488.62 19.56 484.36 9.00 
L6  490.66 22.17 478.92 13.65 
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D1R6 481.12 14.76 472.92 13.26 
D1 R5 485.64 12.81 471.90 11.34 
D1 L5 488.36 18.97 484.29 10.71 
D1L6 484.95 21.36 482.59 15.53 
D2 R6 484.21 13.21 474.33 13.36 
D2R5 486.21 13.46 473.62 9.98 
D2L5 486.62 19.39 479.02 10.19 
D2L6 478.39 22.56 479.55 15.47 
D3R6 485.87 15.12 476.74 12.54 
D3R5 485.36 12.23 473.87 7.67 
D3L5 495.14 19.52 484.89 11.05 
D3L6 484.22 24.74 483.75 15.44 
D4R6 478.66 12.25 484.21 11.60 
D4 R5 490.38 14.68 478.01 9.55 
D4L5 491.03 21.80 482.58 12.58 
D4L6 476.33 24.53 480.29 12.84 
D5R6 476.19 11.99 488.70 10.12 
D5R5 479.80 14.80 479.55 9.03 
D5 R4 481.53 14.11 491.77 10.39 
D5R3 475.73 11.51 489.49 9.93 
D5 R2 484.20 12.71 492.65 9.23 
D5R1 494.37 10.30 499.55 5.94 

D5 503.91 9.69 498.23 6.20 
D5L1 503.37 10.21 496.34 6.39 
D5L2 486.87 18.73 490.69 9.47 
D5L3 485.71 18.14 488.40 10.57 
D5L4 488.50 18.84 480.54 10.93 
D5 L5 486.14 18.47 472.36 14.04 
D5L6 482.36 23.52 479.00 14.37 
D6R6 475.50 13.74 502.89 17.76 
D6R5 479.02 16.95 492.47 9.78 
D6R4 474.91 14.32 491.27 9.73 
D6R3 476.12 15.18 492.73 10.84 
D6R2 475.06 15.34 492.67 9.72 
D6R1 496.91 12.28 507.42 5.77 

D6 504.73 12.81 505.38 6.40 
D6L1 506.54 12.56 505.35 5.40 
D6L2 497.24 23.06 502.51 8.77 
D6L3 487.61 19.82 503.31 13.74 
D6L4 484.09 18.83 504.58 13.72 
D6L5 492.23 23.00 471.69 21.31 
D6L6 478.26 27.55 483.36 22.69 

Total mean 489.44 1.01 490.18 1.18 
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5.3.5.5 Nuclear area for different locations of branch ostia (5001.tm * 5001m 

regions)  

Mean nuclear areas for ostia within the upper portion and lower portion of the 

descending thoracic aorta, and ostia from the left and right hand side of the vessel are 

shown in Table 5.38. Data are further subdivided by region i.e. Zones A-C. 

The mean areas of nuclei within individual regions in "Zone A" for the upper and lower 

portion and right and left portions of the descending thoracic aorta are shown in Table 

5.39 and 5.40 respectively. Colour maps showing variations in the mean nuclear areas 

around the branch ostium at low resolution (averages for 500µm * 500i_tm regions) for 

different locations of branch ostia are shown in Fig. 5.44-5.47. 

Table 5.38. Rabbit endothelial cell nuclear area averaged across all regions, results 
separated by location of the branch ostia, where n equals the number of regions. 
Location of branch 

ostia Region Immature Mature 
Mean SEM Mean SEM 

Upper branch ostia 
Zone A-C 474.15 1.30 448.11 0.90 
Zone A 479.3 2.53 444.93 1.99 
Zone B 473.04 2.09 447.4 1.37 
Zone C 472.43 2.15 450.52 1.49 

Lower branch ostia 
Zone A-C 512.96 1.38 507.92 0.79 
Zone A 521.16 2.92 506.57 1.89 
Zone B 512.73 2.28 504.49 1.24 
Zone C 509.67 2.12 511.85 1.18 

Right branch ostia 
Zone A-C 490.83 1.65 496.69 1.02 
Zone A 494.07 3.24 493.36 2.43 
Zone B 487.6 2.68 494.26 1.6 
Zone C 491.97 2.71 500.79 1.53 

Left branch ostia 
Zone A-C 491.57 1.34 496.06 1.12 
Zone A 499.6 2.82 494.39 2.63 
Zone B 492.08 2.18 493.33 1.83 
Zone C 487.43 2.10 499.37 1.68 
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5.3.5.5.1 Area of nuclei surrounding the branch ostia within the upper and 

lower portions of the descending thoracic aorta 
The mean nuclear area for immature rabbits were 474.15 ± 1.3pixels2  (n = 1854) and 

512.96 ± 1.38pixels2  (n = 1409) for ostia in the upper and lower portion of the vessel, 

respectively (P<0.005) (a difference of 8.2%), and for mature rabbits were 448.11 ± 

0.90pixels2  (n = 1378) and 507.92 ± 0.79pixels2  (n = 1755) respectively (P<0.005) (a 

13.3% difference). 

The area of nuclei in the upper aorta were not significantly affected by age (P=0.20). 

However, there was an effect of region and a significant interaction between age and 

region (both P<0.005). In the lower portion, there was no significant difference between 

ages (P=0.67) and no interaction between age and region (P=0.34). There was, however, 

a significant effect of region (P<0.005). 

5.3.5.5.2 The area of nuclei surrounding branch ostia within the left hand  

and right hand sides of the descending thoracic aorta 
The mean areas of nuclei around ostium on the right and left side of the descending 

thoracic aorta in immature rabbits were 490.83 ± 1.65pixels2  (n = 1460) and 491.57 ± 

1.34pixels2  (n = 1635) respectively (P=0.73) (a 0.2% difference), and for mature rabbits 

were 496.69 ± 1.02pixels2  (n = 1475) and 496.06 ± 1.12 (n = 1535) respectively 

(P<0.005) (a 0.1% difference). 
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Fig. 5.44. Area (pixels2) of rabbit endothelial cell nuclei for branches within the upper 

portion of the descending thoracic aorta (branches 1 to 6, branch 1 being the first branch 

downstream from the aortic arch). Each square represents a 500i_tm * 500pm region. 

The total area of the map is 42.25mm2. n = 4 immature rabbits, n = 4 mature rabbits. 

Data represent averages for 21 immature and 14 mature branches. 
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Fig. 5.45. Area (pixels2) of rabbit endothelial cell nuclei for branches within the lower 

portion of the descending thoracic aorta (branches 7 to 12). Each square represents a 

5001.tm * 500pm region. The total area of the map is 42.25mm2. n = 4 immature rabbits, 

n = 4 mature rabbits. Data represent the means for 15 immature and 20 mature 

branches. 
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Fig. 5.46. Area (pixels2) of rabbit endothelial cell nuclei for branches within the 

anatomical right hand side of the descending thoracic aorta. (Maps are truncated to 

avoid affects of flow around ostia on the left hand side). Each square represents a 

5001.tm * 500[Im region. The total area of the map is 26.0mm2. n = 4 immature rabbits, 

n = 4 mature rabbits. Data represent averages for 17 immature and 17 mature branches. 
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Fig. 5.47. Area (pixels2) of rabbit endothelial cell nuclei for branches within the 

anatomical left hand side of the descending thoracic aorta. (Maps are truncated to avoid 

affects of flow around ostia on the right hand side). Each square represents a 5001.tm * 

500µm region. The total area of the map is 26.0mm2. n = 4 immature rabbits, n = 4 

mature rabbits. Data represent averages for 18 immature and 17 mature branches. 
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Table 5.39. Area (pixels2) of nuclei within Zone A, for branch ostia within upper and 
lower portion of the descending thoracic aorta, where n equals the number of branches. 

UPPER LOWER 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 482.20 13.63 433.73 11.53 506.42 15.87 480.92 8.68 
U2R1 493.10 10.94 446.09 8.67 518.04 13.01 506.53 6.46 

U2 494.74 11.23 459.29 7.55 527.83 14.06 520.83 5.94 
U2L1 479.57 10.44 453.07 10.20 533.23 14.31 512.57 6.55 
U2L2 453.69 15.80 452.24 13.17 521.94 19.18 500.25 10.04 
U 1 R2 469.00 16.35 435.91 12.96 502.64 16.49 484.18 11.03 
U1R1 495.74 9.80 430.26 10.62 515.62 11.54 491.52 8.03 

U1 499.89 11.88 439.64 9.19 532.99 14.13 505.37 7.44 
U1L1 478.85 12.70 440.14 9.78 533.93 12.56 490.62 7.57 
U1L2 452.49 16.49 440.66 10.09 522.80 20.33 496.25 12.21 
R2 471.78 17.56 434.99 13.75 504.97 16.38 491.18 13.83 
R1 476.00 11.27 442.43 9.30 516.78 12.69 508.93 7.08 
L1 466.83 10.99 425.40 8.00 516.79 10.28 512.09 16.51 
L2 459.15 14.64 433.15 9.43 518.55 17.14 494.68 7.57 

D1R2 474.17 13.95 441.78 12.62 500.01 14.02 502.36 9.90 
D1R1 487.56 10.27 460.32 10.30 526.44 12.64 520.51 7.03 

D1 475.66 10.90 447.47 10.13 518.19 14.29 509.86 7.99 
D1 Ll 479.23 12.96 447.63 7.08 530.19 13.10 513.71 8.94 
D1L2 464.80 14.38 439.31 9.33 525.19 22.08 502.08 11.24 
D2R2 472.67 14.85 441.43 10.43 501.43 18.20 510.28 9.72 
D2R1 483.02 10.30 459.36 7.86 513.15 12.60 516.65 6.52 

D2 484.15 10.72 455.21 7.97 526.75 13.65 515.17 7.22 
D2L1 481.95 10.84 452.11 7.12 530.57 13.79 513.19 7.60 
D2L2 464.57 15.35 450.57 9.82 531.59 24.26 510.95 12.63 

Total Mean 479.30 2.53 444.93 1.99 521.16 2.92 506.57 1.89 
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Table 5.40. Area (pixels2) of nuclei within Zone A, for branch ostia within the 
anatomical right and left of the descending thoracic aorta, where n equals the number of 
branches. 

RIGHT LEFT 
Region Immature Mature Immature Mature 

Mean SEM Mean SEM Mean SEM Mean SEM 
U2R2 - 491.62 11.00 475.30 10.51 
U2R1 502.66 12.38 497.42 9.47 504.37 12.73 491.90 11.60 

U2 505.44 13.89 508.65 9.18 511.28 12.93 505.65 9.16 
U2L1 496.61 15.25 499.03 8.86 507.85 12.70 500.87 11.50 
U2L2 482.32 15.41 493.73 8.93 
U1R2 - 482.46 12.75 477.36 10.70 
U1R1 503.15 11.42 481.67 9.78 505.12 10.88 477.51 11.04 

U1 513.34 14.09 485.99 9.36 515.64 13.52 493.51 11.91 
U1L1 496.23 16.48 476.61 9.71 508.18 13.03 482.26 10.56 
U1L2 480.46 15.85 485.99 9.85 
R2 - 485.72 13.29 483.00 12.85 
R1 488.63 13.47 498.01 9.12 498.35 12.92 492.52 12.17 
L1 480.44 12.61 494.90 21.37 496.17 12.57 482.39 11.87 
L2 482.93 13.68 483.17 9.43 

D1R2 - 485.04 10.77 496.93 12.20 
D1R1 519.24 12.87 519.99 9.37 490.51 11.17 502.25 12.04 

D1 491.24 14.71 484.40 11.48 494.05 12.66 502.52 9.71 
D1L1 477.48 15.60 487.45 10.39 519.86 12.80 506.66 12.94 
D1L2 490.15 14.57 491.01 10.86 
D2R2 - 485.18 12.34 499.61 12.48 
D2R1 502.89 13.49 510.50 8.60 489.58 10.73 503.02 11.36 

D2 493.73 13.97 490.20 9.87 509.30 12.29 512.42 10.23 
D2L1 487.26 14.60 487.97 8.50 514.16 12.21 507.10 12.06 
D2L2 491.23 15.62 497.18 9.62 

Total Mean 494.07 3.24 493.36 2.43 499.60 2.82 494.39 2.63 

5.3.6 Endothelial cell density  
Within the regions outlined in Fig. 5.3, there was no significant change in the number of 

nuclei with age (P=0.77), but there was a highly significant effect of region and a 

significant interaction between age and region (both P<0.005). 

Within Zone A* there was no significant change in the number of cells with age 

(P=0.34) but there was significant difference between regions, and a significant 

interaction between age and region (both P<0.005) (Fig. 5.48, Table 5.41). The mean 

number of nuclei per region ranged from 119.7 ± 4.9 ("U3L1", n = 34 branches) to 

146.7 ± 2.7 ("U1L3", n = 32 branches), a 22.6% difference, in immature rabbits, and 
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between 117.1 ± 3.0 ("D2R3", n = 32 branches) and 157.3 ± 4.4 ("U2", n = 32 branches) 

in mature rabbits (a 34.3% difference). The ratio of the number of nuclei upstream of 

the ostia (region "U2") to the number of nuclei downstream (region "D2"), was 1.00 and 

1.19 in immature and mature rabbits respectively. The significance of differences in cell 

density between regions in Zone A are shown in Fig. 5.49. 

The number of cells in Zone B* were also not significantly different between ages 

(P=0.54), but there was a difference between regions (P<0.005) (Fig. 5.48, Table 5.42). 

There was no significant interaction between age and region (P=0.09). The number of 

nuclei within regions in Zone B* ranged from 123.4 ± 4.7 ("U4", n = 34 branches) to 

146.4 ± 2.7 ("UlL4", n = 27 branches), a difference of 18.6% in immature rabbits, and 

in mature rabbits the number of cells ranged from 121.4 ± 3.3 ("D3R4", n = 28 

branches) to 146.6 ± 3.6 ("U1L4", n = 30 branches); a 20.8% difference. 

In immature rabbits the mean number of cell nuclei within Zone A* (133.0 ± 0.6 nuclei, 

n = 1320 regions) was significantly lower than the mean number in Zone B* (134.9 ± 

0.7 nuclei, n = 976 regions) (a 1.4 % difference) (P<0.05). In mature rabbits, there was 

a higher nuclear density in Zone A* (135.4 ± 0.7 nuclei, n = 1320 regions) than in Zone 

B* (131.1 ± 0.6 nuclei, n = 992 regions) (3.3% difference) (P<0.005). 

133.7 136.4 131.6 128.4 123.4 129.6 128.7 134.8 138.6 

140.4 135.4 124.5 122.3 124.1 4 132.2 135.1 138.9 

141.9 137.8 127.8 124.3 130.3 129.1 133.5 137 144.5 

139.4 145.6 135.4 139 146.7 146.4 

144.1 139.6 131.9 130.3 139.1 145 

133.1 138.1 129.8 139.2 139.1 134.3 

127.7 130.2 127.9 129.7 130.9 133.8 1328 137.9 134.5 

135.5 132.6 127.8 128.7 132.7 139.5 135.7 137.7 134.1 

134.2 127.9 127.8 127.9 137 134.9 140.1 133.6 139.3 

139.5 133.3 128.6 126.5 125.2 132.1 136.4 134.4 136.9 

135.4 137.2 132.7 135.7 130.9 139.8 14112 137.7 137.4 

137.2 146.9 148.5 154 157.3 156.6 .151:4 147.4 142.9 

136.5 146.8 136.8 1._ 146.6 

130.3 131.3 131.3 148.6 140.5 142.4 

125.9 123.4 126.6 132.4 130.7 137.1 

123.9 117.1 121.9 131.4 131.9 124.9 123.2 127.1 127.9 

121.4 123.1 120.8 123.4 126.9 123.2 123.9 126.4 127 

125.2 124.1 125.5 123.8 129 125.6 125.1 128.4 128.3 

Fig. 5.48. The number of endothelial cell nuclei for all branch ostia. Each square 

represents the data for a 250pm*2501.1m region. Total area of map is 6.25mm2. n = 4 

immature rabbits, n = 4 mature rabbits. Data represent average for 36 immature and 38 

mature branches. 
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Table 5.41. Mean number of endothelial cell nuclei within each region in Zone A*, 
where n equals the number of branches. 

Immature Mature 
Zone A* Mean SEM Mean SEM 

U3R3 135.4 2.3 137.2 3.9 
U3R2 124.5 4.1 132.7 3.9 
U3R1 122.3 4.6 135.7 4.1 

U3 124.1 3.7 130.9 4.5 
U3L1 119.7 4.9 139.8 3.3 
U3 L2 132.2 4.1 140.2 3.7 
U3L3 135.1 3.8 137.7 3.1 
U2R3 137.8 2.5 146.9 3.4 
U2R2 127.8 2.5 148.5 4.8 
U2R1 124.3 5.0 154.0 4.7 

U2 130.3 3.6 157.3 4.4 
U2L1 129.1 4.5 156.6 4.5 
U2L2 133.5 5.0 151.4 5.2 
U2L3 137.0 4.7 147.4 3.3 
U1R3 145.6 2.2 146.8 3.1 
U1R2 135.4 5.0 136.8 7.7 
U1L2 139.0 4.2 153.3 6.6 
U1L3 146.7 2.7 152.7 3.3 

R3 139.6 2.4 131.3 4.1 
R2 131.9 3.2 131.3 6.3 
L2 130.3 5.7 148.6 4.5 
L3 139.1 4.6 140.5 4.2 

D1R3 138.1 2.3 123.4 3.4 
D1R2 129.8 3.0 126.6 3.9 
D1L2 139.2 3.1 132.4 4.0 
D1L3 139.1 3.0 130.7 3.6 
D2R3 130.2 2.7 117.1 3.0 
D2R2 127.9 3.4 121.9 4.3 
D2R1 129.7 5.7 131.4 5.2 

D2 130.9 5.3 131.9 4.9 
D2L1 133.8 4.2 124.9 4.0 
D2L2 132.8 3.5 123.2 3.1 
D2L3 137.9 3.7 127.1 3.6 
D3R3 132.6 2.8 123.1 3.2 
D3R2 127.8 4.7 120.8 3.5 
D3R1 128.7 4.8 123.4 4.2 

D3 132.7 4.6 126.9 4.3 
D3L1 139.5 2.6 123.2 3.5 
D3L2 135.7 2.7 123.9 2.9 
D3L3 137.7 2.9 126.4 3.3 

Total mean 133.0 0.6 135.4 0.7 
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Table 5.42. Mean number of endothelial cell nuclei within each region in Zone B*, 
where n equals the number of branches. 

Zone B* Immature Mature 
Mean SEM Mean SEM 

U4R4 133.7 4.8 139.5 3.3 
U4R3 136.4 2.6 133.3 2.4 
U4R2 131.6 3.0 128.6 2.6 
U4R1 128.4 4.0 126.5 3.1 

U4 123.4 4.7 125.2 3.1 
U4L1 129.6 2.7 132.1 3.2 
U4 L2 128.7 4.9 136.4 3.0 
U4L3 134.8 3.3 134.4 2.7 
U4L4 138.6 5.6 136.9 3.4 
U3R4 140.4 2.1 135.4 3.6 
U3L4 138.9 4.7 137.4 3.5 
U2R4 141.9 2.8 137.2 5.7 
U2 L4 144.5 3.7 142.9 3.2 
U1R4 139.4 3.4 136.5 5.9 
U1L4 146.4 2.7 146.6 3.6 
R4 144.1 2.6 130.3 4.9 
L4 145.0 2.2 142.4 4.1 

D1R4 133.1 4.7 125.9 3.7 
D1L4 134.3 5.2 137.1 3.5 
D2 R4 127.7 4.7 123.9 3.2 
D2 L4 134.5 5.5 127.9 3.4 
D3R4 135.5 3.2 121.4 3.3 
D3L4 134.1 3.4 127.0 3.6 
D4R4 134.2 2.9 125.2 2.7 
D4R3 127.9 4.6 124.1 2.6 
D4R2 127.8 3.3 125.5 2.7 
D4R1 127.9 4.2 123.8 3.7 

D4 137.0 3.3 129.0 3.4 
D4L1 134.9 2.9 125.6 3.2 
D4L2 140.1 2.1 125.1 2.8 
D4L3 133.6 4.4 128.4 2.9 
D4 L4 139.3 2.6 128.3 3.0 

Total mean 134.9 0.7 131.1 0.6 

253 



Con re 	re 	re 	,, 
335c'Eg 

000NNN cc 	w 	re 	ce `8 3g 
cc 	ce 

S 
c., 	rc cc 	re NN01.-e- ,-.- 

Ix Fig233g2DD 
re 	re re re m N N 

°°S 
0 1-1 	=I 	= =I 

g32335 
D , 

1  
`11 

5 2 3 
3 
3 

`2, 	L .- ' 	, , 
g 3 ' 

S.' 
E 

2 '3 
g El 

U3R3 
U2R3 

U1R3 
R3 

D1R3 
D2R3 
D3R3 
U3R2 
U2R2 

U1R2 
R2 

D1R2 
D2R2 
D3R2 
U3R1 
U2R1 
D2R1 
D3R1 

U3 
V2 
D2 
D3 

U3L1 
U2L1 

D2L1 
03L1 
U3L2 
U2L2 
Ul L2 

L2 
D1 L2 

D2L2 
D3L2 

U3L3 
U2L3 

U1 L3 
1_3 

D1 L3 
D2L3 
D3L3 

Fig. 5.49. Significant differences in number of endothelial cell nuclei within 250[tm * 

2501.1m regions in Zone A* (see Fig 5.1). Squares shaded in grey depict where there are 

significant differences (P<0.05) between regions. Squares to the right of the black 

diagonal line indicate where differences lie, in immature rabbits. Squares to the left 

indicate differences in mature rabbits. 

5.3.7 Summary of main rabbit results  

• There were significant differences between immature and mature rabbits for 

endothelial nuclear LW ratio, length and width, but no significant change for 

nuclear orientation, nuclear area or cell density 

• There was a significant effect of region for all nuclear parameters analysed 

• There was a significant interaction between age and region (suggesting a change 

in pattern) for all nuclear parameters analysed 
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• Nuclei were more elongated in mature rabbits than in immature 

• In immature rabbits nuclei were in general more elongated downstream than 

upstream of branch ostia. This pattern reversed in mature rabbits; nuclei were 

more elongated upstream than downstream 

• Change in pattern of nuclear length resembled the change in pattern of LW ratio, 

but nuclear width showed the opposite change 

• Nuclei became less elongated as the distance from the aortic arch increased in 

both age groups 

• Nuclear orientations in lateral regions of branch ostia had their distal ends angled 

sharply towards the ostium, the sharpest angles being level with the proximal 

edge of the ostium 

• Downstream of the flow divider, orientations almost align parallel to the aortic 

axis 

• In general, away from ostia, on the anatomical right of the aorta, nuclei lean to 

the anatomical left and vice versa 

5.3.8 Results from Mouse aortas 
Results are presented as colour maps to show the mean nuclear LW ratios, angle of 

orientation and area for a Balb/c mouse (Fig. 5.50), an eNOS-GFP mouse (Fig. 5.51), 

and a Wild-type (WT) mouse (Fig. 5.52). Statistical analyses were not carried out due to 

the small number of aortas examined. The mean LW ratios for the Balb/c, eNOS-GFP, 

and WT mice were 2.62 (range 1.55 to 5.84), 1.92 (range 1.23 to 3.71) and 1.98 (range 

1.10 to 3.65) respectively. For all mice, there appeared to be strips of high and low 

nuclear LW ratios and large or small nuclear areas running diagonally down the aortas. 

This diagonal pattern was not visible in maps of nuclear orientations as the angles were 

normalised so that the mean was zero for each mouse. The mean nuclear area was 

477pixels2  (range 148 to 636pixels2), 425pixels2  (range 159 to 644pixels2) and 

431pixels2  (range 199 to 679pixels2) for Balb/c, eNOS-GFP and WT mice respectively. 

Nuclei just distal to the aortic arch appeared to have much lower nuclear areas than those 

elsewhere. 
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Fig. 5.50. Colour maps produced of nuclear morphologies from an EStAR preparation 

of the descending thoracic aorta of one Balb/c mouse. Each coloured square represents 

the nuclear LW ratio (left), angle of orientation (centre), and area (pixels2) (right) for 

100pm * 1001.tm regions. The length of the section of aorta is approximately 11.4mm. 

Mean blood flow is from top to bottom of the image. 
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Fig. 5.51. Colour maps produced of nuclear morphologies from an EStAR preparation 

of the descending thoracic aorta of one eNOS-GFP mouse. Each coloured square 

represents the nuclear LW ratio (left), angle of orientation (centre), and area (pixels2) 

(right) for 100µm * 1001m regions. The length of the section of aorta is approximately 

16.0mm and includes the aortic arch at the top of the image. Mean blood flow is from 

top to bottom of the image. 
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Fig. 5.52. Colour maps produced of nuclear morphologies from an EStAR preparation 

of the descending thoracic aorta of one wild-type mouse. Each coloured square 

represents the nuclear LW ratio (left), angle of orientation (centre), and area (pixels2) 

(right) for 1001am * 100µm regions. The length of the section of aorta is approximately 

15.5mm and includes the aortic arch at the top of the image. Mean blood flow is from 

top to bottom of the image. 

5.3.9 Results for pig aortas  
The mean LW ratio, angle of orientation, and area of endothelial cell nuclei in regions 

near a branch of one pig aorta (Fig. 5.53) are shown in Fig. 5.54. The mean LW ratio 

was 1.60 ± 0.01, and values ranged from 1.38 to 2.15. The mean angle of orientation 

was normalised as has been described previously and was therefore zero degrees; values 

ranged from -29.81 to 23.43°. The mean area was 297.4 ± 2.16pixels2  and values ranged 

from 226.0 pixels2  to 453.1 pixels2. 
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Fig. 5.53. En face, EStAR, preparation of propidium iodide stained nuclei in the region 

analysed around a pig aortic branch. The branch ostium is located at the bottom right of 

the image. Mean blood flow is from top to bottom. Bar = 200um. 
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Fig. 5.54. Colour maps showing average nuclear LW ratio (top), angle of orientation (0) 

(middle) and area (pixels2) (bottom) in 100um*100Rm regions in an area upstream of a 

pig aortic branch (see Fig. 5.53). The total area of the map is 2mm2. 
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5.4 Discussion 
This study has shown that it is possible to produce detailed maps of the shape of 

endothelial cell nuclei surrounding intercostal branch ostia in the thoracic aortas of 

rabbits and pigs, and it is possible to produce maps of the whole descending aorta, 

including the aortic arch, in mice. The maps produced have enabled us to observe 

changes in nuclear shape over small areas of the aortic wall (0.01mm2) in considerable 

detail. As described previously, changes in shape and orientation of endothelial cells 

and their nuclei have been shown to be dependent on blood flowing across the 

endothelium, cells and nuclei elongating in regions of higher flow rates, and aligning 

with the time averaged flow direction. 

5.4.1 Nuclear elongation in rabbits  
Mature rabbits had more elongated nuclei than immature rabbits in all regions. The 

pattern of nuclear elongation also changed with age. Between 1.5 and 11 months (or 1.6 

and 3.8kg), nuclei become relatively more elongated in regions upstream of the branch; 

the ratio of LW values upstream to those downstream changed from <1 to >1 when 

looking at regions measuring 0.25mm2. In immature rabbits this difference was 

significant. When nuclei within the sub-regions immediately upstream and downstream 

of the branch ostia (within 100µm of the branch) were examined, in both age groups, the 

ratio was <1, the nuclei being more elongated downstream than upstream. This may be 

due to faster flowing blood from the centre of the aorta impinging on the flow divider as 

postulated by Caro et al (1985) (Fig. 1.10). In the region 100-200ttm upstream and 

downstream of the ostia, the ratio changed from <1 to >1 with age. Figure 5.8 shows the 

nuclear LW ratios along a longitudinal line through the centre of the branch ostium. 

Although LW ratios are higher in mature rabbits, upstream of the branch the pattern of 

elongation is very similar; LW ratios remain fairly constant up to approximately 500pm 

upstream, and then the nuclei become less elongated the closer they are to the branch. In 

both immature and mature rabbits, within approximately 200pm downstream of the 

branch, the nuclei are more elongated than those in the regions on the proximal ostial lip, 

but at this point the patterns change. In immature rabbits the nuclei become more 

elongated within the next 100µm, before gradually becoming less elongated the further 

away they are from the branch ostia. In mature rabbits, approximately 300µm 
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downstream of the branch, the nuclei become less elongated before gradually becoming 

more elongated further away from the branch. 

Our data for nuclear elongation are in agreement with those of Al-Musawi et al (2004). 

However, they contradict earlier theories concerning atherogensis and flow. As 

described previously in this thesis, the consensus is that lipid deposition and 

atherosclerosis develop in regions of low shear stress (Caro et al., 1971, Zarins et al., 

1983, Asakura and Karino, 1990, Gnasso et al., 1997). Previous work has shown that 

lipid deposition and atherosclerosis are greatest downstream of branch ostia in immature 

rabbits (Ivey et al., 1995, Barnes and Weinberg, 1998) and humans (Sinzinger et al., 

1980), and greatest upstream and laterally in mature rabbits (Barnes and Weinberg, 

1998, 1999) and humans (Sloop et al., 1998), the downstream region being free of 

disease. If the low shear stress theories of disease development are true we would 

expect to see more rounded nuclei downstream than upstream in young, and more 

rounded upstream than downstream in old; this is the reverse of what our data show. 

Our data imply that atherosclerosis develops in regions of higher shear stresses as 

previously proposed by Fry (1969). However, a more recent theory is that 

atherosclerosis develops in regions of oscillatory flow, where the shear fluctuates in 

magnitude over the period of the cardiac cycle, yielding time-averaged shear values 

close to zero. This occurs primarily downstream of stenoses, at the lateral walls of 

bifurcations, and in the vicinity of branch points (reviewed by Chatzizisis et al., 2007). 

It could be that with age the oscillatory nature of flow changes in the vasculature, 

causing changes in shear stress values around branches. 

The change in pattern of nuclear length resembled the change in LW ratio, in that the 

ratio of length upstream to downstream (within 0.25mm2  regions) changed with age 

from <1 to >1. Nuclear width showed the opposite pattern, changing from >1 to <1 with 

age. Nuclei within 100011m of the branch ostia (Zone A) were 14% longer and 15% 

narrower in mature rabbits than in immature. These data suggest that LW ratio, at least 

in these regions, is the most sensitive indicator, combining the effects of opposite trends 

in length and width. Changes in nuclear morphology are relatively small. In immature 

rabbits, the differences between minimum and maximum values were only 5% and 8% 
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for length and width respectively, and in mature rabbits the differences were only 4% 

and 8% for length and width. Hence the advantage gained from combining both trends, 

by using LW ratios, is significant. 

High resolution colour maps produced for nuclear lengths (Fig.5.27) do appear to 

correlate with the disease patterns seen in the different age groups (if small regions at the 

branch lip are ignored), and maps produced for nuclear widths (Fig. 5.35) inversely 

correlate with disease. Shorter and wider nuclei were located upstream of the branch 

ostia in immature rabbits, a region of lower lipid deposition, and in the mature rabbits 

the shorter and wider nuclei are downstream of the branch, in a triangular pattern that 

correlates with the region spared of disease at that age (see Fig. 1.3). 

Nuclei in regions further away from the branch (2000-3000gm) had lower LW ratios 

than those in regions nearer to the branch (when looking at branch ostia from the whole 

aorta). This could be due to these regions being beyond the influence of altered 

haemodynamics caused by the flow divider and branch ostium. 

Nuclei in the regions surrounding ostia from the lower portion of the descending 

thoracic aorta were significantly more elongated than nuclei in the upper portion for both 

age groups. This could be due to an increase in shear stress caused by the decreasing 

diameter of the aorta (Fig. 5.55). As a vessel becomes narrower, such as during a 

stenosis, the shear stress increases (Levesque et al., 1986). If branch ostia in the 

abdominal aorta had also been studied here, it is thought that the ECn would have 

become even more elongated due to the increased shear stress. This has previously been 

shown using vascular casts to look at EC shape in rabbits (Cornhill et al., 1980); the 

postulate flow patterns perhaps provide an explanation for the increased disease 

prevalence in this region (compared to the thoracic aorta) in humans (Glagov et al., 

1961). 

262 



S1 S2 S3 S4 S5 	S6 
Segment 

S7 S8 S9 S10 

4 

3.5 - 

3 - 

0 
E 1.5 - 
0 
< 

1 

0.5 - 

0 

Fig. 5.55. Adult New Zealand White rabbit aortic diameters (mm). Segments 1 to 5 are 

from the thoracic aorta, 6 to 10 are from the abdominal aorta (Segment 1 - within 

ascending aortic arch, 10 = level of the caudal mesenteric artery). Graph produced from 

data in Dabanoglu, 2000). 

Nuclei surrounding ostia on the anatomical left side were significantly longer than those 

surrounding ostia from the right of the aorta, in both age groups. Out of the 35 pairs of 

branch ostia analysed, the anatomical left hand ostia was situated further upstream than 

the right in only four of the pairs. This may have caused the flow patterns impinging on 

the left hand ostia to have been affected by those flowing over the right. 

5.4.2 Nuclear orientation in rabbits  
Our study has shown that it is important to look at the changes in nuclear morphology at 

high resolution. An example of this arose when examining nuclear orientation. Data for 

nuclear orientation within 0.25mm2  regions enable us to see general changes, such as 

that the majority of nuclei on the anatomical right of the branch ostia have nuclei leaning 

to the anatomical left, and vice versa. However, it was possible to see other changes 

around the branch ostia when looking at 0.01mm2  regions. Nuclear orientations around 

the branch ostia in 0.25mm2  regions within Zone A did not change significantly with age 
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but when examining 0.01mm2  regions (Fig. 5.16-5.18) there were substantial changes 

between regions. 

In both age groups, the nuclei in the lateral regions had their distal ends angled sharply 

towards the ostium, the sharpest angles being level with the proximal edge of the ostium. 

Directly upstream of the ostia, nuclei to the anatomical right and left of the longitudinal 

midline again had negative and positive angles respectively. These results suggest that 

blood is entering the branch from its sides as well as from upstream. In line with the 

distal edge of the ostium, the angles suddenly change from being positive to negative, or 

vice versa. It is thought that this line corresponds approximately to where the flow 

divider extends out from the distal lip of the ostia. Although no measurements were 

made, and no previous data have been found, the impression was gained that the flow 

divider was more pronounced (wider and deeper) in mature rabbits. If the flow divider 

were larger, the blood may get drawn into the ostium from a larger region, hence causing 

a change in nuclear orientation. The colour maps appear to show that this is the case; 

the distance upstream from the ostium where the nuclei are oriented away from the 

longitudinal axis by more than 5° is larger in mature rabbits (400µm) than in immature 

ones (200µm). Another explanation for this may be the presence of an intimal cushion 

on the upstream margin of branches, previously seen in mature, but not immature rabbits 

(Staughton & Weinberg, unpublished data, 2000). A cushion may cause the flow of 

blood to be diverted away from the longitudinal axis of the aorta, further upstream, more 

than if no cushion were present. It is surprising that nuclear elongation did not also 

change visibly at the level of the flow divider. It may have been that, within the 100ttm 

* 100[1m regions observed, changes in the LW ratios upstream and downstream of the 

flow divider averaged each other out. Measuring nuclei within even smaller regions 

(e.g. 50µm * 501.1m) would allow this to be confirmed or ruled out. 

The mean orientation of nuclei within a sub-region was never exactly aligned with the 

longitudinal axis of the aorta (0°), suggesting that blood flow is rarely axial. Within the 

regions surrounding the branch ostium, we did not observe a double spiral pattern that 

would provide evidence of counter-rotating Dean vortices within the aorta (Fig. 5.56), as 

has been suggested by other investigators (Flaherty et al., 1972, Chien, 2003), but this 
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may reflect the fact that the ostia we examined do not lie on the dorsal or ventral midline 

of the aorta. Dean vortices are established within the aortic arch when the faster moving 

blood in the centre of the flow stream has too much inertia to turn and follow the curve 

of the arch. The velocity profile becomes skewed towards the outer wall causing the 

faster moving blood to impinge on the wall itself. This results in secondary flows in 

which the blood moves in opposite directions, forming the vortices shown. If present, it 

is thought that the nuclei in one half of the aorta would have predominantly positive 

angles, whilst those in the other half would have negative angles. 

Fig. 5.56. Simplified diagram of Dean vortices in cross-section through a curved pipe. 

Arrows indicate direction of blood flow in the plane of the section. The vortices rotate 

in opposite directions. 

Individual colour maps of nuclear orientation were pieced together to reconstruct the 

majority of the aorta (Figs. 5.57 and 5.58). Longitudinal stripes of oppositely aligned 

nuclei (positive vs. negative angles) were visible next to each other, and could have been 

caused by such Dean vortices. The patterns differ from those seen in mice (Figs. 5.50-

5.52). 3-D modelling of the aorta showing the alignment of the nuclei would enable the 

helical arrangement to be visualised. 
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Fig. 5.57. Colour maps depicting the nuclear orientation within the aorta of an immature 

rabbit (I1). The orientation within each separate EStAR preparation was normalised by 

a constant that made the mean angle zero. Blood flow is from the top to bottom of the 

image. Branch ostia (n = 12) are marked with squares. The length of the aorta analysed 

is approximately 40mm. Nuclei with their upstream end leaning to the left of the 

longitudinal axis, as viewed on the screen, have negative angles (coloured blue, pink and 

yellow), and conversely, those with their upstream end leaning to the right were assigned 

positive angles (coloured red and orange) — See Fig. 4.5 for key. 
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Fig. 5.58. Colour map depicting the nuclear orientation within the aorta of a mature 

rabbit (M2). The orientation within each separate EStAR preparation was normalised by 

a constant that made the mean angle zero. Blood flow is from the top to bottom of the 

image. Branch ostia (n = 15) are marked with a square. The length of the aorta analysed 

is approximately 56mm. Colour coding is the same as in Fig. 5.57. 
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5.4.3 Nuclear Area in rabbits  
Our study has shown that there is no significant change in nuclear area with age in 

regions surrounding the branch ostia (Zone A) or further away from the branch (Zones B 

and C). In immature rabbits the nuclei were larger upstream of the branch than at the 

lateral regions or downstream. In mature rabbits the nuclei were smaller at the lateral 

regions, upstream of the approximate level of the flow divider, and upstream of the 

branch. Eskin (1984) suggested that cells undergo hypertrophy in regions of low shear 

stress under pulsatile conditions, so it would be expected that larger nuclei would be 

found upstream of the branch in immature rabbits, and downstream in old (due to shear 

stresses predicted from our ECn LW ratio data). In immature rabbits this is true, but in 

mature rabbits immediately downstream the nuclei were smaller than upstream of the 

branch, although there was a region of larger nuclei 400µm downstream of the ostia. In 

both immature and mature rabbits, nuclei surrounding ostia in the upper aorta were 

smaller than nuclei in the lower aorta, again suggesting that nuclei become larger in 

areas of increased shear stress. 

5.4.4 Cell density in rabbits  
The number of ECn can be used as a measure of the number of endothelial cells, as 

every cell has one nucleus. It was thought that the cell density would be greater in 

immature rabbits than mature rabbits, as this pattern has previously been shown in 

young and old humans (Repin et al., 1984). However, our study found no significant 

change in the mean number of nuclei per region with age. This could be due to genuine 

differences between rabbits and humans, the presence of atherosclerotic lesions in the 

adult human vessels, or to different methods of counting cells (measured by hand vs. 

measured automatically by image analysis software). In immature rabbits the ratio of 

the number of cells upstream to downstream was 1.00 suggesting that the number of 

cells did not change in regions of higher shear stresses. However, in mature rabbits the 

ratio was 1.19, demonstrating that there were more cells upstream of the ostia than 

downstream. 

268 



5.4.5 Nuclear shape and orientation in mouse aortas  
In all three mice studied, there appeared to be large variations in nuclear elongation, 

orientation and size. This may reflect lack of practice making EStAR preparations of 

whole aortas, which led to regions where the endothelium was missing or damaged, 

particularly in the aortic arch (where present). It is felt that with practice this problem 

could be alleviated and the EStAR technique will be a valuable tool in studying the 

endothelium of mice. 

The nuclear LW ratios of the Balb/c mouse were approximately 30% higher than those 

in the other mice. Unfortunately, due to the small number of mice studied it is unclear 

whether this is a genuine difference or a statistical fluctuation. In all mice there was a 

spiral pattern running down the length of the aorta where nuclei are more elongated, 

implying a region of higher shear stress. However, despite deviations away from the 

longitudinal axis, nuclear orientations do not give the impression of spiralling flow (Fig. 

5.51 and 5.52). Blood flow in mice is less inertial than in rabbits, having peak Reynolds 

numbers of —250, and in mice secondary flows are fewer (Feintuch et al., 2007) and less 

significant than in e.g. humans (Suo et al., 2007). 

The area of the nuclei did not appear to change much between mice. However, within 

the region of the aortic arch, the nuclei were much smaller than in the rest of the aorta. 

Our work with rabbits appeared to suggest that nuclear area increases in regions of 

higher shear stress. It could therefore be suggested that in mice the aortic arch is a 

region of lower shear stress. Again, interpretation of these results requires caution due 

to the small numbers of aortas observed, and possible damage to the endothelium. 

5.4.6 Nuclear shape and orientation in a pig aorta 
Endothelial cell nuclei in the aorta of a pig were more rounded, and had a smaller area, 

than those in mice or rabbits. The aorta was not fixed at pressure before excision so 

when removed it is likely to have contracted and may have caused the nuclei to have an 

inaccurate shape. Due to the small region of endothelium observe, it is unclear how 

accurate the data for orientation of the nuclei are. Again due to the lack of pressure 

fixation, the results may be inaccurate. It is felt that this technique will be valid for 
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observation of endothelial changes within the porcine vasculature once a method for in 

vivo fixation at physiological pressure has been determined. 
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Chapter 6: Development of staining techniques for endothelial cell 
borders  
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6.1 Introduction 

As described elsewhere, it has been shown that EC nuclei align with the predominant 

direction of blood flow and elongate in regions of higher shear stress. Endothelial cells 

have also previously been shown to align and elongate in the same manner as their 

nuclei in the presence of blood flow (Dewey et al., 1981, Langille and Adamson, 1981), 

so methods for staining EC borders using the EStAR technique were developed to try to 

confirm this. 

As with the staining techniques for EC nuclei, the resulting images should ideally be 

analysable automatically using image analysis software. Staining therefore had to be 

very distinct, if possible with a uniform expression of stain to prevent gaps in the EC 

borders. Immunohistochemical staining was attempted as it is highly specific and 

should enable cell borders to be clearly observed. The ideal protein targets are those 

found within intercellular junctions, such as occludin, claudin, junctional adhesion 

molecule (JAM), zonula occludens-1 (Z0-1), catenins, platelet endothelial cell adhesion 

molecules (PECAM), or cadherins (Levick, 2003). Images of antibodies to PECAM-1 

(Scholz and Schaper, 1997) and pan-Cadherin conjugated to fluorescent secondary 

antibodies (Abeam plc, 2006), revealed distinct EC borders with minimal background 

noise so these targets were attempted in the present study. 

As with all prior staining procedures, problems were encountered with the curvature of 

the arterial wall and to alleviate this we carried out antibody staining on EStAR 

preparations. This also prevented staining becoming masked by autofluorescence from 

underlying tissue not associated with the endothelium. 

There are standard protocols for antibody staining of animal tissue, however these 

generally seem to involve either cells in culture or thin (urn) sections taken from paraffin 

embedded or frozen tissue, as opposed to tissue fixed and stored ex vivo in fixatives such 

as formalin and Karnovsky's fixative. The protocols were used as a guideline and the 

staining techniques modified. 
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Immunohistochemistry procedures contain the same general steps for different species, 

preparations (i.e. whole mount, cell culture), and antibodies. A typical procedure is as 

follows: 

1) Permeabilise cell membranes with detergent 

2) Incubate in blocking buffer 

3) Incubate with primary antibody 

4) Wash in buffer 

5) Incubate with secondary antibody (conjugated to fluorescence protein) 

6) Rinse in buffer 

Each of the above steps involves a great deal of variability (e.g. concentration/dilution, 

duration, temperature) and has to be adjusted until the optimum staining procedure is 

discovered. 

6.2 Methods  

6.2.1 Cadherin Staining 
An antibody to the vascular endothelial (VE) cadherin, pan-cadherin was obtained that 

was claimed (Abeam plc, 2006) to react with rabbit tissue. After numerous attempts at 

finding the optimum concentration, staining time, and temperature of the antibody, and 

trying different detergents (Triton X-100 (Sigma), Digitonin (Sigma)) to increase 

membrane permeability, no staining was observed. It was concluded that the antibody 

either did not react with rabbit tissue, or that the EStAR technique was somehow 

preventing binding of the antibody to the antigen. 

6.2.2 PECAM-1 Staining 
Platelet endothelial cell adhesion molecule-1 (PECAM-1) (CD31) is a member of the 

immunoglobulin superfamily (Jackson, 2003), and spans the junctions between 

endothelial cells. It is expressed at high density at the lateral borders of EC (Newman, 

1997). Antibodies to PECAM-1 have previously been used to visualise endothelial cells 

of mice (Nakashima et al., 1998), rabbits (Sho et al., 2003) and in HUVECs (Dusserre et 

al., 2004). 
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Two approaches to PECAM-1 antibody staining were attempted; pre- and post-EStAR 

preparation. 

6.2.2.1 Staining pre-EStAR 
During the initial fixation process antigens become masked by protein cross-linking and 

thus are not accessible to the antibody binding sites. To overcome this, antigen retrieval 

treatment with Target Retrieval Solution (TRS) (Dakocytomation) was necessary. 

Manufacturer's recommendations suggest boiling the tissue in TRS however this was 

not possible as it caused severe damage to the tissue that prevented the production of 

EStARs. Instead, before staining could commence, aortic rings were placed in 

eppendorf tubes containing TRS, and placed in an incubator (45 min, 37°C). The tissue 

was then permeabilised with the detergent Triton X-100 (Sigma, 1% in PBS, 1 min), as 

detergents enable target proteins located intracellularly to be exposed to antigens by 

making the cell membranes 'leaky'. Tissue was then incubated in blocking buffer (1% 

Bovine Serum Albumin (BSA) in PBST (PBS + Tween-20) + 0.01% Sodium Azide, 10 

min), before being incubated in PECAM-1 primary antibody (Clone JC70A, 

DakoCytomation, 1:5, 37°C, 30 min), diluted in blocking buffer. During the stages 

leading up to antibody staining i.e. antigen retrieval treatment, making the tissue 

permeable, blocking and washing, aortic rings were placed into solutions in lml 

eppendorf tubes. For the actual antibody staining (primary and secondary), this would 

have required large volumes that would have proved costly. To overcome this, a lOul 

drop of antibody was placed onto a glass slide and the aortic ring was cut longitudinally 

and placed endothelium side down onto the drop. Another glass slide was placed on top 

of this to maintain antibody-endothelium contact, and both were placed into a 

humidified chamber in an incubator. The tissue was then rinsed in PBS (15 min) to 

remove all unbound antibody before being incubated in TRITC-conjugated rabbit anti-

mouse IgG secondary antibody (Abeam plc, 1:40, 37°C, 30 min). Tissue then 

underwent a final PBS (15 min) rinse to remove unbound secondary antibody. The 

stained tissue was then dehydrated in a graded ethanol series and the EStAR technique 

carried out as previously described. 
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6.2.2.2 Staining post-EStAR  
Having carried out the EStAR technique, tissue was rinsed in PBS (Sigma, 2 min) to 

remove remaining glycerol from the endothelial layer (EL) before undergoing the same 

antigen retrieval (TRS, 45 min, 37°C) and staining protocol as for the pre-EStAR 

technique. Post-EStAR, it was not possible to boil the tissue in TRS as the tape melted, 

and consequently wrinkled, causing damage to the tissue. Solutions were applied as a 

drop (sufficient quantity to cover surface) to the EStAR preparation before being placed 

in a humid chamber in an incubator to prevent evaporation. 7u1 of antibody was added 

as a drop to the surface as this was deemed the optimum amount necessary to bind, 

whilst preventing excess cost. When tissue underwent any washing or rinsing, no 

running solutions were used. Instead a large drop of solution was added as shall be 

discussed later. 

For both pre-and post-EStAR staining approaches, before microscopy, the endothelium 

was rinsed in distilled water and the region surrounding the EL was dabbed dry, care 

being taken not to touch the endothelium, before being mounted in FluorSave 

(Calbiochem) under glass coverslips. 

The luminal surface of the tissue was viewed en face using an epifluorescence 

microscope and a filter for rhodamine. Images were captured with a low light CCD 

camera coupled to a software package, Maxim DL (Diffraction Limited, Canada) at 

100x or 200x magnification. Images were taken in a grid-like formation surrounding 

branch ostia, as previously described, to enable montage images to be produced. 

6.3 Results and Discussion  
Both approaches had drawbacks. Pre-EStAR staining did enable visualisation of 

PECAM-1 location and hence outlines of EC were visible (Fig. 6.1). However, to 

produce EStARs, tissue had to be dehydrated in alcohol overnight. This led to the 

intensity of the stain dropping drastically, making it virtually impossible to produce 

montages of the intercostal branch ostia (in the absence of an automated stage) as the 

cells could not be seen by eye. 
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Fig. 6.1. Pre-EStAR staining with an antibody to PECAM-1. Blood flow is from top to 

bottom of image. Scale bar = 1001m. 

Post-EStAR staining produced much brighter staining (Fig. 6.2) and, on rare occasions, 

enabled imaging of the EL in one focal plane. However, due to the long period of time 

spent in solution (>2 hours), the endothelial layer usually started to unstick from the tape 

(a problem not seen when staining EC nuclei, due to the shorter incubation times 

(<30mins)). At best, this led to difficulties imaging ELs due to an increased number of 

focal planes. At worst, after lifting up, the endothelial layer would fold slightly, giving a 

wrinkled appearance (Fig. 6.3). Initial attempts resulted in endothelium being lost 

entirely due to washing the EL by spraying or running solutions over the surface, so to 

try to alleviate this, a stationary drop was added. This prevented total loss of EL, but did 

not stop sections lifting up and wrinkling. To reduce this wrinkling effect, all incubation 

times were minimised as far as possible to reduce immersion time. This also caused its 

own problems. ELs were not washed as fully as necessary and bright spots were often 

visible (Fig. 6.4), possibly caused by either remaining unbound TRITC-labelled 

secondary antibody, or TRITC-labelled secondary antibody bound to unbound primary 

antibody. 
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Fig. 6.2. Post-EStAR staining with an antibody to PECAM-1. Blood flow is from top to 

bottom of image. Scale bar = 10011m. 

Fig. 6.3. Post-EStAR staining with an antibody to PECAM-1 demonstrating wrinkles 

that appear in tissue due to long period of time endothelial layer spends in solution. 

Blood flow is from top to bottom. Scale bar = 100[im. 
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Fig. 6.4. Post-EStAR staining with an antibody to PECAM-1 demonstrating bright spots 

that occur if endothelial layer not rinsed properly after staining. Blood flow is from top 

to bottom. Scale bar = 100µrn. 

As a final attempt to prevent this problem, mechanical solutions were sought. Rings 

were cut from acetate sheets and stuck onto the tape so as to impinge on the corners of 

the tissue without masking too much of the endothelium. This did not work as, despite 

best efforts to produce a perfect seal, solutions simply leaked out from under the rings, 

causing the ELs to dry out, damaging them. Instead, drops of cyanoacrylate glue (3M 

Vetbond) were used as rivets at the tissue corners. This would have worked had the 

tissue not had to be kept moist, as this allowed the glue to run over the EL damaging it, 

or preventing it from being imaged. 

On the few occasions when, following post-EStAR staining, the EL did not become 

unstuck from the tape it was possible to see very clear cell boundaries in the peri-ostial 

regions, usually within the branch mouth, suggesting that the staining technique had 

worked very well (Fig. 6.5). 
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Fig. 6.5. EStAR preparation of endothelium stained with an anti-PECAM-1 antibody 

labelled with rhodamine to show endothelial cell boundaries. Cell definition appears to 

be improved upstream of, and within the branch ostia. Scale bar = 2001.1m. Blood flow 

is from top to bottom. 

Despite clear antibody staining in some regions i.e. within the branch ostia, the intensity 

was not very uniform throughout all regions observed. The lack of uniformity of 

staining could be due to the tissue lifting off the adhesive tape, and causing regions of 

the EL to be out of focus, giving the impression cells were not stained as well. Perhaps 

a more likely explanation is that PECAM-1 is being expressed at different levels around 
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the branch ostium. Although only two branches, both from immature rabbits, were 

stained well enough to image, by eye staining appeared to be stronger upstream and 

within the branch ostia. A study in which a shear stress modifier was applied to the 

carotid artery of eNOS-GFP mice, and regions exposed to varying shear stresses were 

quantified for PECAM-1 expression, showed that expression was increased in regions of 

higher shear stress (Cheng et al., 2005). Our data for endothelial cell nuclear elongation 

suggest that in immature rabbits, shear stresses are higher downstream of the branch, not 

upstream, so the pattern of PECAM-1 staining appears to be the reverse of that expected. 

Despite cell boundaries being visible by eye it still would not have been possible to carry 

out automated image analysis. It would have been possible to measure cells by hand, as 

has previously been done for EC nuclei (Al-Musawi et al., 2004). The optimum staining 

technique developed was as follows (unless stated, steps were carried out at room 

temperature): 

1) EStAR produced 

2) PBS rinse (2 min) 

3) Antigen retrieval treatment - TRS (45min at 37°C) 

4) Triton X-100 (1% in PBS, lmin) 

5) Blocking buffer (1% BSA, 10min) 

6) Primary antibody against PECAM-1 — (7p1, 1:5, 30min at 37°C) 

7) PBS rinse (15min) 

8) Secondary antibody (7til, 1:40, 30min at 37°C) 

9) PBS rinse (15min) 

With further time, the problem of ELs becoming unstuck may have been overcome, 

either by decreasing the time the EL was immersed in solutions, or by developing ways 

of keeping the EL stuck to the tape. 
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Chapter 7: Changes in endothelial cell shape around intercostal 
branch ostia in rabbits, determined by silver staining 
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7.1 Introduction  
Although antibodies to PECAM-1 did enable imaging of EC borders, it was not possible 

automatically to obtain cell dimensions. A method that has previously been used for 

visualisation of EC borders is to stain with a silver nitrate (AgNO3) solution (e.g. Florey 

et al., 1959, Reidy and Levesque, 1977, He and Adamson, 1995, Hirata et al., 1995). It 

has previously been shown that AgNO3  stains EC borders sufficiently well that their 

shape and size can be quantified computationally (Dyck et al., 2001). It is not known 

exactly what AgNO3  stains, but it is thought to stain an element of the intercellular 

junction at the abluminal surface of the EC (Hirata et al., 1995) which subsequently 

shows up as a network of dark brown lines, allowing visualisation of the cell boundaries, 

and therefore the orientation and elongation of the cells. Early work by Florey et al 

(1959) suggested that staining depends on the presence of chloride, iodide or bromide 

ions, and it was thought that the silver is deposited at the "cement" between EC. They 

thought that the silver was deposited to some extent on all surfaces of EC, but 

predominantly along cell junctions. A general build up of the stain at the cell edges, and 

some degree of overlap between cells, perhaps caused the visible lines. Techniques 

found in the literature involve "developing" the stain, to make lines appear darker, 

varying from exposure to light (Hirata et al., 1995), to the addition of chemicals such as 

ammonium sulphide (Nakatsu et al., 1988) or solutions of cobalt and ammonium 

bromide (Florey et al., 1959). 

7.2 Methods 
All animal procedures complied with the Animal (Scientific Procedures) Act 1986. 

Endothelial cells were examined in male New Zealand White rabbits (Harlan Interfauna 

strain) aged 2.3 months (n=4) or 4-1 lmonths (n=4). 

Fixation methods were developed from those previously described. Rabbits were 

injected with heparin (Sigma, —2000 USP Units in 1.5m1 Ringers i.v) which was allowed 

to circulate for 2 minutes, before euthanasia by intravenous injection of pentobarbitone. 

Following thoracotomy and laparotomy along the ventral midline, a retrograde cannula 

was inserted into the thoracic aorta at the level of the diaphragm and tied in place using 

silk suture. The aorta was flushed at physiological pressure with 50m1 Ringers solution 
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(n=6) or PBS (n=1) containing 1.5m1 heparin followed by perfusion at the same pressure 

with 10% neutral buffered formalin for 1.5mins. Pressure fixation was then 

discontinued and 20m1 of a AgNO3  solution (2.5mg/ml, Sigma) was introduced through 

the cannula before pressure formalin perfusion was restarted and continued for 30mins. 

After one minute the aortic arch was clamped. Aortas were excised and stored in 

formalin for a minimum of 16 hours to allow complete fixation. 

Prior to staining multiple aortas, a pilot experiment was carried out to test that the 

staining technique described above was viable. A section of stained aorta was removed 

from fixative and placed in PBS for an hour, before being cut open longitudinally and 

mounted en face on the microscope to check whether the staining survived storage in 

formalin. Dark lines were visible using transmitted light on the microscope (Fig. 7.1) 

but as previously discussed (and visible in Fig, 7.1), the problem of wall curvature 

would have prevented rapid imaging; EStAR preparations were required. A section of 

aorta was placed into 100% ethanol for 30mins on a suspension mixer, to gently agitate 

the tissue, to determine whether staining would withstand alcohol dehydration, which is 

necessary for EStAR preparations. The section was again placed as a whole mount onto 

the microscope and brown lines were visible, suggesting alcohol does not remove or 

fade the stain. 
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Fig. 7.1. En face view of whole mount preparation of silver stained tissue. Endothelial 

cell borders are visible as dark lines. Scale bar = 501.ttn. 

Having determined that staining was still present in the test aorta, all stained aortas were 

dehydrated in a graded alcohol series and EStAR preparations made as described 

previously. Once the EStARs had been produced it was observed that at first the stain 

was very faint. However, the longer the stain was exposed to light the darker the EC 

borders became, although the exact time required was not quantified. The lines became 

darker over time even after the EL had been mounted under a coverslip with Fluorsave. 

EStARs were viewed using an Axioplan epifluorescence microscope (Zeiss) and images 

obtained using a low light CCD camera with a Kodak KF1600 chip, coupled to the 

software package Maxim DL (Diffraction Limited, Canada), at 200x magnification 

using a 20x objective lens (NA 0.45). Although the silver lines, in most cases, were 

clearly visible by eye, various methods were attempted to improve the images obtained 

with the camera, to enable easier analysis. Images were taken using 1) transmitted light 

through the EL, 2) epifluorescence illumination using a fluorescein filter (usually used 

for detection of autofluorescence), 3 and 4) same methods as 1) and 2) respectively, but 

with a piece of white paper underneath the slide (see Figs. 7.2a-d). 
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a)  b) 

d) 

Fig. 7.2. En face view of silver stained EStAR preparations of thoracic aorta taken using 

a) transmitted light, b) epifluorescence with a fluoroscein filter, c) transmitted light with 

a piece of white paper underneath slide, d) epifluorescence with a fluorescein filter and 

piece of white paper underneath slide. Scale bar = 50µm. 

Despite producing EStARs of the AgNO3  stained tissue, the problem of the arterial wall 

not being flat, particularly around branch ostia, was still encountered, causing areas of 

the images to be out of focus. To overcome this, an optical stack of images was taken so 

that all the focal planes were included in each region viewed i.e. an image was taken 

with an area being in-focus, the distance between the slide and the lens was manually 

adjusted so another area was in-focus and another image taken. This process was 

repeated until all areas within a region had been imaged. The images within the optical 

stack were then opened in Adobe Photoshop, placed on top of each other and out-of 

focus regions in each layer were erased. The stack was made semi-transparent so all in-

focus regions were visible, and the stack merged to form one in-focus image (Fig. 7.3). 

285 



I- 
1 

   

   

ir 

  

Merged 
Image 

    

    

   

Optical 
Stack 

   

Fig. 7.3. Separate images were taken to produce an optical stack, with each image 

containing areas of in-focus (black) and out-of-focus (white) regions. Out-of-focus 

regions were deleted from each image before merging the optical stack to produce a 

final image containing in-focus regions only. 

Images of the endothelium were taken in a grid-like pattern over the aortic region of 

interest, ensuring each image overlapped slightly with its neighbours, and their location 

was noted. Individual images could then be copied to a new blank canvas in Photoshop, 

destined to become a final montage, made semi-transparent so the previous image could 

be seen underneath, and the silver stained EC borders towards the edges aligned with the 

previous image. This process was continued until all the images for each branch/pair of 

intercostal branches were aligned and in the final montage image. 

7.2.1 Measurement of endothelial cells  
When images of silver-stained tissue were captured it was not possible to perform 

automated object analysis as the staining intensity was inconsistent around the cell 

borders. In particular, there were small gaps in the lines (perhaps representing real 

breaks in junctional structures) so that when object analysis was attempted in 

ImageTool, the software could not always distinguish between neighbouring cells. 
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a) 

h) 

However, the borders were clear enough to see by eye. Therefore, to allow subsequent 

automatic analysis, the outlines were traced manually. Montage images of branch ostia 

were opened and overlaid with a transparent blank layer, in Adobe Photoshop. Using a 

graphics tablet and pen (Volito2, Wacom Co. Ltd.), cell borders were traced onto the 

new layer using the pencil tool set at a width of 1-2 pixels (Fig. 7.4). 

Fig. 7.4. a) EStAR preparation of rabbit endothelium stained with silver nitrate, and b) 

same image with outlines of endothelial cells drawn for image analysis. Bars = 5011m. 
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Once the borders were complete, a region measuring 6001.tm * 600pm was selected 

upstream and downstream of each branch, with the lower and upper edge of the region 

respectively aligned with the upper and lower edge of the ostium (Fig. 7.5). The 

selected regions were opened in ImageTool and thresholded to produce a binary image 

that could be analysed using the "Analyze" tool. Tables containing the parameters for 

each object in the image were produced and were saved as text files to be transferred to 

Microsoft Excel. 
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Fig. 7.5. Location of upstream and downstream region in which silver stained 

endothelial cells were analysed. Mean aortic blood flow is from top to bottom. 

When drawing the outlines of cells, the lines did not always meet, or lines were missed 

due to the silver stain being too faint to discern by eye. When this happened, objects 

analysed in ImageTool would be measured as two or more adjacent cells, producing 

inaccurate results. To avoid this problem, as with the previous analysis of endothelial 
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cell nuclei, the data were filtered by the objects area and perimeter. The literature was 

searched for previously published parameters for endothelial cells (Table 7.1). 

Table 7.1. Previously published dimensions of endothelial cells. 

Investigator Endothelial cell length 
(pm) 

Endothelial cell width 
(pm) 

(Cornhill et al., 1980) 63 19 
(Nerem et al., 1981) 66.2 14.0 
(Levesque and Nerem, 1985) 42.7 20.5 
Average 57.3 17.8 

By trial and error it was determined that a 60% increase in average area and perimeter 

encompassed changes in elongation upstream and downstream of branch ostia, but 

excluded pairs of cells where lines were not connected. The minimum area was 

determined by the results of our previous endothelial cell nuclei experiments. We found 

that the average area of a nucleus was 488.9 pixels, and cells must be larger than their 

nuclei. The average length and width of our nuclei were 39.7 pixels and 14.4 pixels 

respectively, and from these values the average perimeter was calculated as being 90 

pixels. These values are summarised below: 

Average endothelial cell length (literature values) = 57.3tn = 127.2 pixels 

Average endothelial cell width (literature values) = 17.8µm = 39.6 pixels 

A 60% variation above the average nuclear length and width = 203.5 pixels and 63.3 

pixels respectively. 

Therefore, a 60% increase in area and perimeter = 10,100 pixels and 633 pixels 

respectively. 

Average endothelial cell nuclear area (our data) = 488.9 pixels 

Average endothelial cell nuclear length (our data) = 39.7 pixels 

Average endothelial cell nuclear width (our data) = 14.4 pixels 

Therefore, the average endothelial cell nuclei perimeter (calculated) = 90 pixels 
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Thus, 

minimum and maximum area of ellipse = 489 pixels2  and 10,100 pixels2  respectively. 

minimum and maximum perimeter of ellipse = 90 pixels and 633 pixels respectively. 

The range of values for the perimeter and area were then included in a macro code 

(Appendix C - Macro 12) to exclude objects outside these ranges. Other than a different 

range of values, the macro used was identical to that used in the analysis of EStARs 

stained for endothelial cell nuclei. Angles were adjusted to convert the data so that if a 

cell were aligned along the longitudinal axis rather than the horizontal axis it would be 

assigned an angle of zero degrees, and results were averaged over 100µm * 100gm 

regions, as previously described. 

7.2.2 Propidium iodide and silver staining combined 

In 3 rabbits, having produced EStARs from tissue stained in situ with silver, the EStARs 

were also stained with propidium iodide, following protocols described above. This 

enabled the cells and their nuclei to be observed in the same EL (but imaged separately), 

and correlations in their respective dimensions to be studied. ELs were imaged at 200x 

magnification using transmitted light (3 seconds exposure) (with a sheet of white paper 

under the slide) for silver-stained EC borders, and with epifluorescence illumination and 

rhodamine filters (3 seconds exposure) (without paper under the slide) for PI stained 

nuclei. The silver stained images could then be made semi-transparent and overlaid onto 

the PI stained images, using Adobe Photoshop, to see both images at once. The 

technique of simultaneously recording silver stain and a nuclear stain has previously 

been demonstrated in frog and hamster microvessels, using confocal reflectance for the 

silver stain, and fluorescence imaging for the nuclei (He and Adamson, 1995). 

Two upstream, and two downstream regions were selected per branch, each measuring 

250µm * 500um, and containing silver stained ECs and PI stained nuclei. The first 

upstream and downstream regions were aligned so their lower (upstream region) and 

upper (downstream region) edges were aligned with the proximal and distal edge of the 

branch ostia respectively. The second upstream and downstream regions were offset 
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250ttm proximally and distally, respectively, from the first regions. The outlines of 

approximately 20 silver stained cells were drawn as previously described, using the "pen 

tool" in Adobe Photoshop, with a graphics tablet and pen, and were pasted into a new 

image. Cells were selected if their nuclei were not touching neighbouring nuclei 

because this would have caused problems during the analysis. Having drawn the 

outlines of the cells, a high-pass filter (10 pixel radius) was applied to the layer 

containing nuclei, and the nucleus of each cell was selected using the "polygonal lasso" 

tool to cut them from the original image and paste them next to their respective cell (see 

Fig. 7.6 for an example). The images containing EC and ECn were thresholded in 

ImageTool and analysed to produce a results table containing parameters for each object 

in the image. 

0 0/  
000 

0 400. 

t'r 
Fig. 7.6. Propidium iodide stained endothelial cell nuclei next to their respective 

endothelial cell outline, drawn from silver stained images. 

The results tables were opened in Microsoft Excel and each cell with its corresponding 

nucleus was assigned an individual number to enable statistical analysis to be performed. 

The angle of the major axis for each object was adjusted using the following equation 

for the reasons previously explained: 

IF (Angle>0) then (Angle*-1) +90 

IF (Angle<0) then (Angle*-1) -90 

O 
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7.2.3 Statistical Analysis  

The significance of differences between silver stained cells in the upstream and 

downstream regions was determined using an independent samples t-test (SPSS version 

14.0) (where n equals the number of branches). The correlation between the parameters 

of EC and ECn was determined using a Pearson correlation test (SPSS version 14.0). 

All data are represented as mean ± SEM. 

7.3 Results  

7.3.1 Morphology of endothelial cells  
The LW ratios, angle of orientation, length, width and area of silver stained endothelial 

cells, averaged within 6001.im * 600[tm regions upstream and downstream of the branch 

ostia, are shown in Table 7.2. 

Table 7.2. Endothelial cell shape in regions upstream and downstream of branch ostia in 

immature and mature rabbits, where n equals the number of branches. 

Immature Mature 
Mean SEM Mean SEM 

LW 
Upstream 7.16 0.31 9.22 0.58 

Downstream 7.75 0.16 8.72 0.67 

Angle (°) 
Upstream -1.85 2.48 1.26 2.46 

Downstream -0.31 1.85 -0.95 1.53 

Length 
(11m) 

Upstream 59.56 2.57 64.92 3.03 

Downstream 63.61 1.28 76.42 2.76 

Width 
(11m) 

Upstream 8.81 0.25 7.63 0.41 

Downstream 8.75 0.10 9.71 0.72 

Area 
(pixels2) 

Upstream 1681.7 93.8 1521.6 90.6 

Downstream 1793.5 38.3 2265.1 157.8 
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The LW ratios of ECs in immature rabbits were 7.16 ± 0.31 and 7.75 ± 0.16 in upstream 

and downstream regions respectively (8% difference; P=0.12), and the ratio of the LW 

ratio upstream to the LW ratio downstream was 0.92. In mature rabbits the LW ratios 

were 9.22 ± 0.58 and 8.72 ± 0.67 (6% difference; P=0.59) in upstream and downstream 

regions, and the ratio of the LW ratio upstream to the LW ratio downstream was 1.06. 

The normalised nuclear orientations in immature rabbits were -1.85 ± 2.48° upstream, 

and -0.31 ± 1.85° downstream (P=0.63), and in mature rabbits they were 1.26 ± 2.46° 

and -0.95 ± 1.53° (P=0.46) in upstream and downstream regions respectively. 

Nuclear lengths were 59.56 ± 2.571.tm and 63.61 ± 1.28[Im (7% difference; P=0.19) in 

upstream and downstream regions respectively in immature rabbits. In mature rabbits, 

the lengths were 64.92 ± 3.031.tm and 76.42 ± 2.74tm (18% difference; P<0.05) in 

upstream and downstream regions. The ratio of the nuclear length upstream to the 

length downstream was 0.94 and 0.85 in immature and mature rabbits respectively. 

Nuclear widths in immature rabbits were 8.81 ± 0.251.tm and 8.75 ± 0.10[tm (1% 

difference; P=0.84) in upstream and downstream regions respectively; the ratio of the 

width upstream to the width downstream was 1.01. In mature rabbits, the nuclear widths 

were 7.63 ± 0.411.1m and 9.71 ± 0.721.tm (27% difference; P<0.05) upstream and 

downstream respectively and the ratio of widths upstream to downstream was 0.79. 

The area of the nuclei in immature rabbits was 1681.7 ± 93.8pixels2  and 1793.5 ± 

38.3pixels2  (7% difference; P=0.30) upstream and downstream respectively, and the 

ratio between areas upstream to downstream was 0.94. In mature rabbits the nuclear 

area upstream of branch ostia was 1521.6 ± 90.6pixels2  and downstream was 2265.1 ± 

157.8pixels2  (49% difference; P<0.005). The ratio of upstream to downstream widths 

was 0.67. 
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7.3.2 Correlation between the morphology of endothelial cells and their 

nuclei  

In total, 350 ECs were compared with their nuclei to determine whether the cell shape 

correlated with the shape of the nucleus. Data were not split into age groups due to the 

small sample size. When looking at all nuclei, for all parameters there was a significant 

(P<0.005) positive correlation between the endothelial cells and their nuclei (Fig. 
7.7a-e). The r2  values for cells versus their nuclei were 0.38, 0.88, 0.52, 0.33 and 0.52 

for the LW ratio, angle of orientation, length, width, and area respectively. 
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Fig. 7.7a. Correlation between the LW ratios of endothelial cells and their nuclei. R2  = 
0.38. 
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Fig. 7.7b. Correlation between the orientation (0) of endothelial cells and their nuclei. 

R2  = 0.88. 
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Fig. 7.7d. Correlation between the width (gm) of endothelial cells and their nuclei. R2  = 

0.33. 

100 - 

0 
0 	500 	1000 	1500 	2000 	2500 	3000 

	
3500 
	

4000 
	

4500 
Endothelial cell area (pixels2) 

Fig. 7.7e. Correlation between the area (pixels2) of endothelial cells and their nuclei. R2  

= 0.52. 

Cells and nuclei within the first upstream region (0-250iim upstream of the ostia) were 

significantly (P<0.01) positively correlated for LW ratio (r2=0.29), orientation (r2=0.92), 
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length (r2=0.48) and area (r2=0.34). The width of nuclei were not significantly 

correlated with the width of the cells (r2=0.06, P=0.60). 

In the second upstream region (250-5001.tm upstream of the branch), there was a positive 

significant (P<0.001) correlation between cells and their nuclei for all parameters. R2  

values were 0.48, 0.91, 0.39, 0.54 and 0.25 for LW ratio, orientation, length, width and 

area respectively. 

In the first downstream region (0-25011m downstream of branch ostia) there were 

significant (P<0.05) positive correlations between cells and their nuclei for all 

parameters. R2  values were 0.45, 0.66, 0.66, 0.31 and 0.61 for the LW ratio, orientation, 

length, width and area respectively. 

In the second downstream region (250-500µm downstream of branch ostia), there were 

positive significant correlations between the cells and nuclei for orientation (r2=0.76), 
length (r2=0.44), width (r2=0.38) and area (r2=0.72). The LW ratio of the nuclei were 

very weakly correlated with the LW ratio of the cells (r2=0.18, P=0.01). 

The differences in p values between these four regions may reflect the smaller sample 

sizes. 

7.4 Discussion 

Our study has shown that it is possible to utilise the EStAR preparation, in conjunction 

with silver nitrate, to stain the borders of ECs in regions surrounding branch ostia of 

immature and mature rabbits. In a number of EStAR preparations of both ages, cell 

borders were not visible in the region immediately downstream of the branch ostium, 

despite ECn being visible (in sections also stained with PI) suggesting the endothelium 

was intact. This finding has also been observed previously (Reidy and Bowyer, 1977), 

the authors stating that "it was consistently observed that the distal lip of the branch and 

the tissue immediately below it stained poorly with silver". Other work however has 

shown that silver stained cell boundaries cannot be visualised upstream of branch ostia 

in young rabbits (Sebkhi and Weinberg, 1996). This perhaps suggests that in regions 
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surrounding branches, the intercellular junctions have unusual properties that prevent 

consistent silver staining. Despite the small size of study, our data have shown that there 

is a change in the pattern of EC elongation upstream and downstream of the branch 

ostia. The ratio of LW values upstream of the branch to those downstream changed 

from <1 to >1 with age. This change was not significant, presumably due to the small 

sample size. The change in pattern of elongation was similar to that seen in ECn by Al-

Musawi et a/ (2004) and in our study looking at ECn in rabbits using the confocal 

technique. There were significant changes in cell length and width from upstream to 

downstream regions in mature rabbits, but not in immature, but the ratio of cell length 

upstream to downstream was <1 in both ages groups. The ratio of the cell width 

upstream to downstream showed an inverse pattern to the LW ratio, changing from >1 to 

<1 with age. In immature rabbits there was a larger percentage difference in cell length 

(7 %) from upstream to downstream, than there was for cell width (1%) suggesting the 

length of the cell has the dominant effect on LW ratios. In mature rabbits, the opposite 

occurred and there was a larger percentage difference in cell width (27%) than length 

(18%) from upstream to downstream regions, suggesting that the width is the cause for 

the change in LW ratios. The area of the cells did not differ significantly between the 

upstream and downstream regions in immature rabbits, although there was a trend for 

the cells downstream to be larger than upstream. In mature rabbits, there was a highly 

significant difference between upstream to downstream regions, the cells downstream 

being nearly 50% larger than those upstream. The mature pattern is the same as that 

seen in ECn, albeit larger. The immature pattern of EC area is the opposite of that seen 

in ECn. 

No previous evidence has been found for how the shape and orientation of ECs 

correlates with the shape and orientation of their nuclei. For all of the parameters 

studied, there were positive correlations between cell and nuclei i.e. as the cell 

size/shape changed, the nuclei also changed in the same direction. A single exception to 

this was the correlation between cell and nuclear widths 0-250µm upstream of the 

branch ostia, where there was no significant correlation. The strongest correlation was 

for the angle of orientation. Despite the close correlation between the angle of the cells 

and their nuclei, there was still a mean difference of approximately 5°, the minimum and 
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maximum differences being 0.1° and 29° respectively. The mean differences between 

EC and ECn were 4.5, 47.4m, 3.1Rm and 1466 pixels2  for LW ratio, length, width and 

area respectively. The differences between orientation and LW ratio may suggest that 

the nuclei are experiencing different shear stresses over their surface causing them to 

align differently to the cells. Hazel & Pedley (2000) described how cells align 

themselves to the blood flow in such a way as to minimize the total force on their nuclei 

i.e. they make themselves streamlined to the flow. The nuclei are elevated slightly 

above the basal membrane and are thicker than the junctions between the cells (Masuda 

et al., 2003) and so are more likely to be affected by the flow of blood over their surface 

than the remainder of the cell. 

Parenthetically it was observed that when imaging PI stained nuclei in EStAR 

preparations, it was usually possible to get good images from one focal plane, whereas 

both PECAM-1 and silver stained EC borders frequently required imaging in multiple 

planes. Other than the problems of ELs lifting up, this could have been due to the 

thickness of the nuclei. This means that if the EL was slightly undulating, some part of 

the nucleus might always be in the focal plane whereas this would be less likely for the 

thinner cell borders. 

Silver staining in the rabbit vasculature has proved a reliable method for staining the 

borders of endothelial cells, and double staining of cell borders and nuclei in conjunction 

with a nuclear stain, in regions surrounding branch ostia. The method developed is 

rather time consuming as it requires a large amount of manual input when drawing the 

cell outlines, but without this input it would not be possible to analyse the morphology 

of the cells due to the uneven intensity of the stain, and the variable wall background. 

The ability to double stain both cells and nuclei in the same section of arterial wall will 

prove invaluable in further elucidating the mechanisms behind changes in shear stress 

over the endothelial surface. 
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Chapter 8: General Discussion 
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8.1 Technique Development 
During the course of this project, new techniques have been developed with the aim of 

furthering our understanding of local blood flow near the endothelium, and how these 

flows can be correlated with the location of atherosclerosis. Initially it was hoped that a 

technique could be developed to visualise ECn in the aorta without staining the nuclei of 

underlying SMC, thus enabling automated analysis of large regions of endothelium. 

Staining with propidium iodide, having first treated the tissue with detergents and 

RNase, did allow clear visualisation of the ECn but did not totally eliminate SMCn 

staining. A technique was then developed to study patterns of ECn shape in the 

descending thoracic aortas of mice and rabbits, using confocal microscopy and manually 

selecting ECn from optical stacks through the arterial wall. Although this allowed the 

removal of SMCn, the technique proved extremely time consuming so alternative 

methods were sought. The development of a modified Hautchen technique, 

subsequently named the EStAR technique, enabled visualisation of large sheets of 

endothelium devoid of SMCs from the aortas of immature and mature rabbits. These 

permitted automated analysis of millions of nuclei, to produce detailed maps of the 

patterns of nuclear shape and orientation around intercostal branch ostia, areas that have 

a predilection for developing atherosclerotic lesions (Cornhill and Roach, 1976). 

Having produced maps for ECn, attempts were made to develop techniques for 

visualisation and automatic analysis of the ECs themselves. First, antibodies to 

PECAM-1 were used in immunofluorescence studies of EStAR preparations. These did 

enable cell borders to be visualised, but the staining intensity was very variable and 

would not have permitted automated analysis. The fact that staining EStAR preparations 

with antibodies worked at all suggests that there is great potential for this technique in 

staining e.g. mechanosensors, and determining regions where these are up- or down-

regulated, and whether these correlate with high or low shear stress regions. However, 

the issues involved in staining antigens that are on the luminal surface of the ECs, and 

hence in contact with the tape, needs to be resolved. Having not been able to produce 

data of sufficient quality for ECs using antibodies, staining ELs with silver nitrate was 

attempted instead. This proved more successful than PECAM-1 and produced very 

clearly defined borders. However the staining still was not quite uniform enough to 

enable automated analysis. This was overcome by manually completing the cell outlines 
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in regions of interest (i.e. upstream and downstream regions around branch ostia) and 

then analysing these semi-automatically using image analysis techniques previously 

developed. As with ECn it was then possible to observe whether the patterns of cell 

elongation changed with age. 

8.2 Changes in blood flow patterns with age 

The evidence accumulated in this study points to an age-related change in the pattern of 

elongation around rabbit intercostal branch ostia. Increased cellular and nuclear 

elongation downstream of the branch ostia changes to increased elongation upstream, 

after the age of sexual maturity. There are a number of possible haemodynamic 

explanations for this change with age. 1) It has been shown that arteries generally 

become stiffer with age (even in the absence of atherosclerosis) in mice (Reddy et al., 

2003), pigs (Greenwald et al., 1982), and humans (Vaitkevicius et al., 1993). (Aortic 

stiffness has been shown to decrease sharply with age in humans until the age of 

approximately 10, and then shows a progressive increase with age (Laogun and Gosling, 

1982)). Sloop et al (1998) suggested that greater arterial elasticity allows increased 

volume and duration of retrograde blood flow during late systole/early diastole, thus 

allowing the propagation of retrograde flow through the entire length of the aortic 

branch and moving the location of the region of lower shear stress away from the branch 

ostium. 2) The branch diameter in rabbits does not appear to change substantially with 

age (Al-Musawi et al., 2004). Therefore increasing the flow into the branch, as would 

be expected with age due to increased body weight, would cause a region of higher shear 

stress upstream of the ostium relative to that downstream (Cheer et al., 1998). 3) Intimal 

cushions are regions of the intima that protrude into the lumen of the artery, and may 

alter blood flow patterns. Work in our group has suggested that they are present 

upstream of branches in mature but not immature rabbits (Staughton & Weinberg, 

unpublished data, 2000). 4) Although no measurements were taken, the flow dividers 

observed in the present study appeared more pronounced in mature rabbits than 

immature ones, even after the arterial wall was flattened during the EStAR preparation. 

A larger flow divider would enable blood from a larger region upstream and laterally 

around the ostia to be drawn into the branch. There would also be a larger affect on 

blood flow downstream of the flow divider. 
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It is unclear which of the above, if any, are responsible for age-related changes in blood 

flow. It may be that the change in lesion location is partly due to properties of the 

arterial wall changing with age, perhaps making some parts of the intima more 

susceptible to atherogenic stimuli. It has been shown that components at the cellular 

level change with age e.g. age causes decreased intracellular free magnesium levels 

(Resnick et al., 1997), decreased release of nitric oxide (Haendeler, 2005), decreased 

responsiveness of arterial wall to endothelin (a vasoconstrictor synthesised by the 

endothelium), and increased oxygen-derived free radicals due to decreased natural 

antioxidant defences (reviewed by Marin, 1995). The carotid arterial wall has been 

shown to adapt to chronic changes in blood flow differently in young and old rabbits 

(Langille et al., 1989). In young, decreased blood flow (imposed by stenosing the 

artery) caused an inhibition of wall tissue growth that involved cellular and elastic but 

not collagenous elements. In old, decreased flow did not cause any inhibition of wall 

growth, elastin or collagen. A study looking at the endothelium in rabbits has shown 

that the planar cell polarity (PCP) is age and blood vessel specific (McCue et al., 2006). 

PCP occurs when cell organelles, cytoskeleton, and/or adhesion complexes align along a 

unidirectional axis that lies in the plane of a cell monolayer, and is thought to have 

implications in the repair of damaged endothelium. In adult rabbits, microtubule 

organising centres (MTOCs) were downstream of nuclei in the vena cava, upstream in 

the carotid artery, reversed polarity with age in the abdominal aorta, but were 

unpolarized in the thoracic aorta. However, it is unlikely that the regions examined were 

around branch ostia. If cells around intercostal branches are polarized, as in the 

abdominal aorta, then this could play a role in the change in disease pattern with age in 

these regions. 

As already mentioned, the release of nitric oxide (NO) decreases with age (Haendeler, 

2005). NO is a free radical gas with a half-life of several seconds (Napoli et al., 2006) 

that plays an important role in regulating the functional integrity of the endothelium. It 

is synthesised from L-arginine via the action of nitric oxide synthases of which there are 

3 isoforms; only endothelial nitric oxide synthase (eNOS) is of relevance here. NO has 

been found to have a role in inhibiting platelet adherence, leuckocyte chemotaxis, SMC 
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proliferation and migration, promoting endothelial regrowth and vasorelaxation (Barbato 

and Tzeng, 2004), all of which are atheroprotective. Forster & Weinberg (1997) have 

shown that administering the NO-synthase inhibitor N'-monomethyl-L-arginine (L-

NMMA), to the thoracic aorta causes a change to the pattern of albumin uptake around 

branch ostia in mature rabbits. The usual pattern of uptake upstream of the branch was 

reversed, uptake becoming greater downstream (as in immature rabbits). In immature 

rabbits, the pattern of uptake was not changed by L-NMMA. The fact that the vessels 

were perfused at a constant rate and pressure throughout this procedure, and that side-

branch flow did not change significantly, suggests that the mature pattern, but not the 

immature, depends on direct effects of NO on the arterial wall. A study that followed on 

from this (Staughton et al., 2001) tested whether the mature pattern was also flow 

dependent, as NO synthesis is thought to be influenced by blood flow. Intercostal 

arteries of rabbits were occluded to stop the flow into the branch, and uptake of 

rhodamine-labelled albumin around the branch was measured. As with administering L-

NMMA, reducing side-branch flow caused the mature pattern of uptake to reverse 

(uptake became greater downstream than upstream of ostia). 

As described elsewhere, a transgenic eNOS-GFP mouse has been developed to observe 

how the expression of eNOS changes throughout the vasculature, in regions of differing 

shear stresses (Cheng et al., 2005). In eNOS-GFP mice, regions expressing eNOS 

fluoresce when viewed through filter sets for fluorescein. Cheng et al showed that 

eNOS is mainly located at a perinuclear site that coincides with the location of the Golgi 

complex, and the plasma membrane. Application of a shear modifying cuff showed that 

in regions of high shear stress, levels of eNOS increase in the Golgi complex and cell 

membrane when compared with undisturbed shear stress or low shear stress. 

Using the EStAR technique it was possible to produce an EL containing a branch ostium 

from one of these mice (Fig. 8.1). 

304 



Fig. 8.1. EStAR preparation of endothelium in the region surrounding an intercostal 

branch ostium (centre of the image) of an eNOS-GFP mouse. eNOS shows up as bright 

spots. Blood flow is from top to bottom of image. Scale bar = 50µm. 

In our images, eNOS appears to be located uniformly around the ostium and to be 

present in all of the cells. The brighter fluorescence in "spots" corresponds well with the 

appearance of eNOS in low shear stress regions seen by Cheng et al (2005) in the 

carotid artery of eNOS-GFP mice. The uniform distribution of eNOS around the ostium 

suggest a relatively uniform and low level of wall shear stress, and could provide clues 

as to why the pattern of lesion development in mice is different to that of rabbits and 

humans. Further studies using the EStAR technique would be a useful method of 

mapping the location and intensities of eNOS in the transgenic mouse to determine 

whether the location corresponds with the location of lesions in LDLR47ApoE4-  double 

knockout mice. 
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8.3 Differences in blood flow patterns between species  

It is clear that there is a difference in blood flow patterns around intercostal ostia 

between mice and rabbits, and these differences may partly explain the different pattern 

of lesion prevalence. In mice aortas, lesions are located relatively uniformly around 

branch ostia, and this pattern does not change significantly with age (McGillicuddy et 

al., 2001). This is partly reflected in the pattern of nuclear elongation; there was no 

significant change in pattern between age groups (although nuclei in mature mice were 

generally more elongated than in immature). There were, however, differences between 

regions around the ostia, namely nuclei at the lateral regions were more elongated than 

in all other regions. Lipid deposition occurs downstream of the branch in immature 

rabbits (Ivey et al., 1995), and upstream and at the lateral regions in mature rabbits 

(Barnes and Weinberg, 1999). These distributions were also reflected in the pattern of 

nuclear elongation. ECn were more elongated downstream than upstream of the ostia in 

immature rabbits, and this pattern reversed with age. These differences may provide an 

explanation as to why mice and rabbits have different lesion locations. A geometrical 

difference between species was the presence of a large arterial cushion upstream of the 

mice ostia in all ages; no such feature was observed in rabbits (although smaller 

upstream cushions have been seen in mature rabbits by Staughton and Weinberg. 

Explanations for differences between nuclear orientations are given elsewhere. 

The mean nuclear LW ratios determined by the different techniques used in this project 

are shown in Fig. 8.2. The two techniques gave similar results in immature and mature 

rabbits. In mice the LW ratios were about 10% lower for the EStAR technique. The 

most likely explanation for this is that the confocal technique in mice only looked at 

regions surrounding branch ostia, whereas the EStAR technique produced data for the 

whole aortas of mice, including the aortic arch. Genuine differences between techniques 

(for example that the aortas in the confocal technique were only partially flattened 

before microscopy and were not dehydrated at any point, whereas in the EStAR 

technique they were flattened fully having first been dehydrated in alcohol) leading to 

variable data are made unlikely by the fact that rabbit data is comparable between 

techniques. The nuclear LW ratios in pigs were much lower than for all other species 
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but this is almost certainly due to the lack of pressure fixation causing the arterial wall to 

contract, shortening the nuclei with it. 
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Fig. 8.2. Comparison of total mean nuclear LW ratios determined by the confocal 

microscopy technique and the EStAR technique, in mice, rabbits, and pigs. SEMs are 

not shown due to variable sample sizes. 

8.4 Future Studies  
This project has enabled endothelial cell nuclear morphology to be mapped in significant 

detail in the thoracic aortas of rabbits and mice of different ages. Rabbits have 

previously been shown to be a good model for the location of atherosclerotic lesions in 

humans. Mapping the changes in nuclear shape in human aortas, especially around 

intercostal branch ostia, using the EStAR technique would prove extremely useful in 

further validating the rabbit model, although there would be difficulties in obtaining 

vessels fixed at in vivo dimensions, as with the pig. 

Despite there being evidence that nuclei elongate in regions of higher shear stress, it is 

currently unknown by how much cells of different ages elongate at different levels of 

shear stress and under different flow waveforms. Using cultured endothelial cells and 

parallel plate flow chambers to apply a known shear stress over the cell surface, it would 
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be possible to use the image analysis techniques developed for this project to produce 

accurate data to show how the cell and nuclear shape changes. Using cultured cells from 

immature and mature animals would then be useful to see if their responses to increased 

shear stress differed. It has previously been argued (Al-Musawi et al, 2004) that EC and 

ECn must elongate with increased shear at both ages, since cell culture experiments 

reporting such behaviour have used cells from immature and mature animals. However, 

there may be quantitative differences in the response. 

The problem of how to automate the analysis of images of endothelial cells might at first 

sight appear to be a trivial one. However, this turns out not to be the case. S. Iftikhar 

and A. Bharath, at Imperial College London, are attempting to automate the analysis of 

our images with modern techniques, but several problems have still not been overcome. 

They have used the images of endothelium double stained with PI and AgNO3. Using 

the nuclei as central points of reference, radial lines were drawn to enable ellipses to be 

drawn to fit to the cell borders (Fig. 8.3). The ellipses could then be analysed to 

determine the shape and alignment of the ECs, and these could be correlated with the 

shape and alignment of ECn. 

Fig. 8.3. Ellipses (green) drawn using an automated technique to represent endothelial 

cell borders. The white lines are the edges of the silver stained cells after thresholding. 

The technique currently cannot accurately fit ellipses to the borders of all the cells, and 

would not give results that are as good as those we obtained by manually drawing the 

outline of cells. However, it is a good example of how staining endothelial layers 
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prepared using the EStAR technique might be utilised in the future to determine cell 

shapes. 

Attempts were made to stain the endothelial cytoskeleton with rhodamine-phalloidin, as 

the distribution of microfilaments changes under altered flow conditions (Kim et al., 

1989a). Other studies have shown this to be a reliable technique both in vitro (Cucina et 

al., 1995) and in vivo (Kim et al., 1989b, Colangelo et al., 1994, Kiosses et al., 1997), 

but our experiments were unsuccessful. This could be due to the EStAR technique 

damaging the cytoskeleton, either during the removal of the underlying SMCs or during 

alcohol deydration. It seems unlikely that removing underlying SMCs would prevent 

staining as MFs are found within the cell itself, and through PI staining and silver 

staining it has been shown that the endothelial layer is still present. A study by Small 

(1981) examined the influence of dehydration on MFs in cultured cells. Their findings 

suggested that dehydration leads to a thickening or distortion of MFs, but not total 

removal, so some staining should have been seen in our preparations. Further studies 

are required to improve the staining procedure (possibly staining in situ, or prior to 

dehydration steps), and to observe whether the cytoskeleton is altered in regions around 

branches in the thoracic aorta and whether there is a change in pattern between immature 

and mature aortas. 

Using the EStAR technique it was possible to stain PECAM-1 within the endothelium. 

This suggests it would also be possible to use antibody staining for other proteins within 

the wall, in particular ones that are up- or down-regulated in changing shear stress such 

as Kruppel-like factor-2 (Wang et al., 2006). 

In conclusion, the work that has been carried out in this project furthers our 

understanding of blood flow patterns around intercostal branch ostia. There appear to be 

distinct differences in flow patterns between mice and rabbits, and around rabbit 

intercostal branch ostia there are definite changes with age. These differences could 

help explain the patchy nature of atherosclerotic lesions within the vasculature. 
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Appendices 

Appendix A — Results Tables  

See supplementary CD. 

Appendix B - Tukey matrices 

See supplementary CD. 

Appendix C — Macro Codes  

See supplementary CD. 

Macro-1 - Editing data from confocal images of propidium iodide stained nuclei, from 

mice 

Macro-2 - Editing propidium iodide stained EStAR images, at 20x (magnification) - 

dividing results into 100um regions 

Macro-3 - Counting nuclei 

Macro-4 - Colour coding Excells in LW ratio maps for rabbits 

Macro-5 - Colour coding Excells in angle of orientation maps for rabbits, mice and pigs 

Macro-6 - Colour coding Excells in length maps for rabbits (values in microns) 

Macro-7 - Colour coding Excells in width maps for rabbits (values in microns) 

Macro-8 - Colour coding Excells in area maps for rabbits, mice and pigs 

Macro-9 - Colour coding Excells in LW ratio maps for mice and pigs 

Macro-10 - Colour coding Excells in nuclear density maps for mice and pigs 

Macro-11 - Removing Excells from maps when neighbouring Excell contains no value 

Macro-12 - Editing data from images of silver stained EStARs, at 20x (magnification) - 

dividing results into 100um regions. 
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