


Abstract

Robust Parametric Functional Component Estimation Using a Divergence Family

by

Justin Silver

The classical parametric estimation approach, maximum likelihood, while pro-

viding maximally efficient estimators at the correct model, lacks robustness. As a

modification of maximum likelihood, Huber (1964) introduced M-estimators, which

are very general but often ad hoc. Basu et al. (1998) developed a family of density-

based divergences, many of which exhibit robustness. It turns out that maximum

likelihood is a special case of this general class of divergence functions, which are

indexed by a parameter α. Basu noted that only values of α in the [0, 1] range were

of interest – with α = 0 giving the maximum likelihood solution and α = 1 the L2E

solution (Scott, 2001). As α increases, there is a clear tradeoff between increasing

robustness and decreasing efficiency. This thesis develops a family of robust loca-

tion and scale estimators by applying Basu’s α-divergence function to a multivariate

partial density component model (Scott, 2004). The usefulness of α values greater

than 1 will be explored, and the new estimator will be applied to simulated cases and

applications in parametric density estimation and regression.
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Chapter 1

Introduction and Background

The detection and management of outliers remains a fundamental problem in statis-

tics; robust methods yield parameter estimates that are unaffected by outlying points

or clusters. Obtaining a robust estimator of the covariance matrix is challenging, par-

ticularly as the number of covariates increases, since most existing robust approaches

such as the minimum volume ellipse (MVE) are combinatorial solutions requiring

extensive computing power. Novel robust methods that can remain computationally

efficient even as dimension increases, while providing consistent solutions, are needed.

This thesis provides one such approach.

The classical parametric estimation approach, Maximum Likelihood Estimation,

while providing maximally efficient estimators at the correct model, lacks robustness.

It turns out that the MLE is a special case (α = 0) of a general class of divergence

functions indexed by a parameter α. Basu et al. (1998) explored these “density-based

divergences” that, unlike nonparametric density estimation methods based on mini-

mum distance, estimate parameters by minimizing a data-based estimate of a function

1
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which measures the divergence between the assumed model density, f , and the true

density, g. Basu notes that only values of α in the [0, 1] range are of interest – with

α = 0 giving the MLE solution and α = 1 the L2E solution (Scott, 2001). When

α = 1, the α-divergence criterion is both a minimum divergence and a minimum dis-

tance criterion. As α increases, there is a clear tradeoff between decreasing efficiency

and increasing robustness.

This thesis develops the MPDC-α divergence estimator, which combines Basu’s

α-divergence function with a multivariate partial density component (MPDC) model

(Scott, 2004). The usefulness of α values greater than 1 will be explored, and the

MPDC-α estimator will be applied to simulated cases and applications in parametric

estimation and regression.

1.1 Motivation for Current Robust Methodology

We begin by examining the usefulness of robust statistics, presenting a set of moti-

vating examples and exploring how existing methods perform in those situations. We

will also explore the amount of contamination that particular estimators can tolerate

before yielding aberrant solutions. In particular, we consider the “breakdown point”

of these estimators in supporting the benefit of using the MPDC-α estimator.

1.1.1 Parametric Estimation

To motivate our method in the context of parametric estimation, we begin with an

example. We wish to generate a bivariate random sample of size n = 100 with the
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primary data centered at µ1 ≡ (0, 0)′ with covariance Σ1 ≡ I2 and 10% contamination

centered at µ2 ≡ (6, 0)′ with covariance Σ2 ≡ I2 . Thus, we simulate from the mixture

distribution:

9

10
N


0

0

 , I2

+
1

10
N


6

0

 , I2

 .

Suppose we seek to estimate µ1 and Σ1. Maximum likelihood estimation fails to

properly account for outlying points or clusters, as seen in Figure 1.1. The green line

represents the 2-sigma ellipse of the MLE fit, and it contains many of the blue points,

which are outliers. If we remove the outliers and recompute the MLE, we see that

our estimate (dashed red 2-sigma ellipse) closely matches the true center and shape

(dashed black 2-sigma ellipse). It is clear that we are in need of a robust data-based

estimate of µ1 and Σ1, the mean vector and covariance matrix of the targeted density

component, which we denote henceforth as µ and Σ, respectively.
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Figure 1.1: MLE estimate of mean (green point) and covariance (green 2-sigma ellipse)

of targeted density component for sample of size n = 100 from Normal mixture

distribution with parameters: w = 0.9;µ1 = (0, 0)′;µ2 = (6, 0)′; Σ1 = Σ2 = I2. The

2-sigma ellipse for MLE estimate including only uncontaminated data is in red, and

the true density’s 2-sigma ellipse is in black.
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Figure 1.2: L2E estimate of mean (purple point) and covariance (2-sigma ellipse, in

purple) of targeted density component for sample of size n = 100 from Normal mixture

distribution with parameters: w = 0.9;µ1 = (0, 0)′;µ2 = (6, 0)′; Σ1 = Σ2 = I2. The

2-sigma ellipse for MLE estimate including only uncontaminated data is in red, and

the true density’s 2-sigma ellipse is in black.
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The L2E solution using all the data, shown in Figure 1.2 with the purple line

representing its 2-sigma ellipse , is more robust to the contamination and thus provides

an estimate closer to the true solution. However, the variance of the first component

for the L2E solution is somewhat inflated compared to those of the uncontaminated

MLE and true solution, as we can see in Figure 1.2 with the purple ellipse (L2E)

having a wider minor axis than the red (MLE on just the uncontaminated data)

and black (true value) ellipses. Thus, while the L2E robustly estimates the center

of the uncontaminated data, there are methods that can more robustly estimate

the covariance of the uncontaminated sample. Two such methods are the minimum

volume ellipsoid (MVE) and the minimum covariance determinant (MCD), which we

now discuss.

Minimum Volume Ellipsoid (MVE)

Rousseeuw’s minimum volume ellipsoid (MVE) is the smallest ellipsoid to cover h of

the n observations, where n
2
≤ h < n (Rousseeuw, 1984). Outliers are identified by

points on the boundary of this minimum volume ellipsoid. MVE provides a robust

estimate of location and scatter and can be computed using a resampling algorithm.

Estimating the MVE requires considerable computing power, presenting a problem

which is NP-incomplete.

Minimum Covariance Determinant (MCD) and FAST-MCD

A similar approach, also developed in part by Rousseeuw, is the minimum covari-

ance determinant. Rousseeuw’s minimum covariance determinant (MCD) method
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provides robust estimates of location and scatter (Rousseeuw, 1984). The MCD seeks

the set of h out of n points whose covariance matrix has the lowest determinant.

The location estimate is then given by the mean of those h points, and the scatter

estimate is the covariance matrix of those h points. This method also requires non-

trivial computation, as it requires the exploration of all possible subsets of size h

out of n. To remedy this, Rousseeuw and Van Driessen developed the FAST-MCD

algorithm, which randomly draws many p + 1 observations from the data and then

constructs subsets of size h via C-steps (Rousseeuw, 1999). Although this provides a

significant improvement to the computational efficiency of the MCD method, there

is no improvement compared to the MCD in terms of breakdown point, which is the

minimum amount of contamination needed for an estimator to “blow up.”
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Figure 1.3: MVE and MCD estimates of mean (brown and beige points, respectively)

and covariance (2-sigma ellipses, in brown and beige, respectively) of targeted density

component for sample of size n = 100 from Normal mixture distribution with parame-

ters: w = 0.9;µ1 = (0, 0)′;µ2 = (6, 0)′; Σ1 = Σ2 = I2. Also shown are 2-sigma ellipses

for L2E estimate (purple), MLE estimate including only uncontaminated data (red),

and true density (black).
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Method µ̂ Σ̂

MLE ( 0.594
0.065 )

(
4.581 −0.217
−0.217 1.181

)
MLE (uncontaminated) ( −0.0280.113 )

(
1.108 0.047
0.047 1.219

)
L2E ( −0.1400.129 )

(
1.434 0.110
0.110 1.138

)
MVE ( −0.0440.145 )

(
1.054 −0.027
−0.027 0.957

)
MCD ( −0.0440.145 )

(
1.054 −0.027
−0.027 0.957

)
Table 1.1: Estimates of mean vector and covariance matrix of targeted density compo-

nent using various methods for a sample of size n = 100 simulated from a Normal mix-

ture distribution with parameters: w = 0.9;µ1 = (0, 0)′;µ2 = (6, 0)′; Σ1 = Σ2 = I2.

Both methods provide robust estimates of location and scatter, as seen in Fig-

ure 1.3.

We compare the estimates from all methods in Table 1.1. The MLE is affected

considerably by the outlying cluster, having an inflated first component of its mean

and variance. L2E yields an improved estimate of the mean, but its covariance

matrix estimate still differs somewhat from the true covariance, particularly in the

first variance element. MVE and MCD yield the same estimates in this example,

providing the best robust estimates of both location and scatter.
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M-Estimators

Another robust estimation procedure is the use of M-estimators (Huber, 1964), which

are defined by solving the equation:

∑
i

ψ (Xi, t) = 0

for some real function ψ. We describe these further as well as their parallel to our

method in Section 2.2.

1.1.2 Breakdown Point

The breakdown point is the minimum proportion of observations in the data that

need to be replaced to push an estimate an arbitrary distance away. This measure

directly corresponds to an estimator’s robustness. For example, the sample mean x̄

has a breakdown point of 1/n since the presence of one outlying point can make x̄

arbitrarily larger or smaller than it would be without that outlier. Thus, even for

large n, the breakdown point of the sample mean is 0%, confirming that x̄ is not a

robust estimator. The median, on the other hand, has a breakdown point of 50%,

tolerating up to 50% outliers in the data. Thus, the median is a much more robust

estimator than the sample mean.

The breakdown point of an M-estimator is 1
p+1

, where p is the number of param-

eters (Maronna, 1976). Thus, as the dimension of the data increases, the breakdown

point decreases.

The MVE and MCD have a breakdown point of (n − h + 1)/n. Thus, as h

approaches n, the breakdown point approaches 1/n, which is the breakdown point of



11

the sample mean. As h approaches n/2, the breakdown point approaches 1/2, which

is the breakdown point of the median, for a large sample size n.

Detecting and managing outliers for the p = 1 and p = 2 cases is simplified by the

ability to visually inspect the data. While the Mahalanobis distance provides a means

to identify outliers in higher dimensions, it can be computationally expensive as it

requires computing the inverse of the covariance matrix, potentially multiple times.

As already noted, the minimum volume ellipsoid (MVE) and minimum covariance

determinant (MCD) methods provide robust estimates of location and scatter. How-

ever, because the problems are combinatorial, they require extensive computing time,

particularly as the dimension of the problem increases. The FAST-MCD provides an

improvement in computing time, even for a large sample size n, but the algorithm’s

efficiency is still highly dependent on p, and it will only find solutions that cover at

least of 50% of the data.

Our new MPDC-α divergence estimator essentially dispels the notion of a break-

down point, allowing us to locate solutions comprising less than 50% of the data.

1.1.3 Regression

We will also seek to apply our method in the context of regression. Robust regression

allows us to account for contamination in the data as well as to capture a mixture

of regression models. The upside to using our method for this problem is that it is

always one-dimensional since we apply our algorithm to the estimated residuals, εi.

To illustrate the role of robustness in regression, we will explore several simulated
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examples, leading up to situations that the MPDC-α divergence estimator is capable

of handling.

Example 1.1: We simulate a sample of size n = 100. Let x1, x2, ..., x99 ∼

iid U(−5, 5) and yi = 2xi − 5 + ei for 1 ≤ i ≤ 99, where e1, e2, ..., e99 ∼ iid N(0, 1).

Then, let x100 ∼ U(−5,−2) and y100 ∼ U(10, 20).

The simulated data for Example 1.1 can be seen in Figure 1.4. We see that

the least-squares regression line (LS, in green) is slightly affected by the single outlier

(blue point), while the L2E regression line (purple) matches up with the least-squares

line that is computed with the outliers having been removed (Uncontaminated LS,

in black). When we introduce additional outliers, least-squares breaks down even

further.
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Figure 1.4: Example 1.1 - Single Outlier (1% contamination, in blue). Least-squares

(LS) estimate is shown (in green) along with L2E estimate (in purple) and least-

squares estimate for only the uncontaminated data (in black).

Example 1.2: We simulate a sample of size n = 100. Let x1, x2, ..., x80 ∼

iid U(−5, 5) and yi = 2xi − 5 + ei for 1 ≤ i ≤ 80, where e1, e2, ..., e80 ∼ iid N(0, 1).
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Then, let x81, x82, ..., x100 ∼ iid U(−5,−2) and y81, y82, ..., y100 ∼ iid U(10, 20).

The simulated data for Example 1.2 can be seen in Figure 1.5. The LS line is

affected considerably by the outlying cluster, while the L2E remains robust. However,

we will see that L2E is a nonconvex criterion, so multiple solutions are possible, and

our resulting solution will depend on the initial values we use for our regression

coefficients in the optimization routine. In this case, we initialize the L2 optimization

routine with the least-squares coefficients as starting values. The next example will

illustrate how L2E can yield multiple solutions, some more robust than others.
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Figure 1.5: Example 1.2 - Outlying Cluster (20% contamination, in blue). Least-

squares (LS) estimate is shown (in green) along with L2E estimate (in purple) and

least-squares estimate for only the uncontaminated data (in black).

Example 1.3: We simulate a sample of size n = 100. Let x1, x2, ..., x80 ∼

iid U(−5, 5) and yi = 2xi − 5 + ei for 1 ≤ i ≤ 80, where e1, e2, ..., e80 ∼ iid N(0, 1).
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Then, let x81, x82, ..., x100 ∼ iid U(−5,−2) and y81, y82, ..., y100 ∼ iid U(20, 30). Note

that this is almost the same setup as in Example 2, except that the y components of

the 20 contaminated points have been drawn from a U(20, 30) distribution.

The simulated data for Example 1.3 can be seen in Figure 1.6. The LS line is

still affected greatly by the outliers, and now the L2E line is no longer robust to

the outliers for the particular choice of starting values. Our approach, MPDC-α

divergence regression (shown in red), is able to remain robust to the contamination

and closely approximate the uncontaminated least-squares line for α = 1.5.

We will develop the framework for this method and explore its practical applica-

tions.
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Figure 1.6: Example 1.3 - Farther Outlying Cluster (20% contamination, in blue).

Least-squares (LS) estimate is shown (in green) along with L2E estimate (in purple)

and least-squares estimate for only the uncontaminated data (in black). Estimate

using the MPDC-α criterion for α = 1.5 shown in red.
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1.2 α-Divergence Function

The foundation for the MPDC-α divergence method is Basu’s α-divergence function.

This method provides a parametric density-based divergence estimation procedure,

and the parameter α allows us to control the level of robustness. We first define the

general setting for the α-divergence function, and we will then derive its criterion for

the particular case of the multivariate partial density component (MPDC) model.

Let {Ft} be a parametric family of models indexed by unknown parameter t ∈

Ω ⊂ RS. {Ft} contains a set of densities {ft} with respect to the Lebesgue measure,

and G is the class of all distributions G having densities g with respect to the Lebesgue

measure. The density power divergence (Basu, 1998) between g and f is defined as:

dα(g, f) =

∫ {
f(z)1+α −

(
1 +

1

α

)
g(z)f(z)α +

1

α
g(z)1+α

}
dz (α > 0). (1.1)

The integrand in (1.1) is undefined when α = 0, so the divergence d0(g, f) is defined

as:

d0(g, f) = lim
α→0

dα(g, f) =

∫
g(z) log {g(z)/f(z)} dz. (1.2)

Now d0(g, f) is the Kullback-Leibler divergence function; in other words, the mini-

mizer of the data-based version of (1.2) is the MLE. Also note:

d1(g, f) =

∫ {
f(z)2 − 2g(z)f(z) + g(z)2

}
dz

=

∫
{f(z)− g(z)}2 dz. (1.3)

Minimizing an estimate of (1.3), which is the integrated squared error (L2 distance),

yields the L2E solution.
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Our estimation procedure will be to select parameter values that minimize an

estimate of the divergence dα(g, f). In order to do this, an appropriate parametric

model, f , must first be chosen.

1.3 Multivariate Partial Density Component (MPDC)

As nonparametric methods for outlier detection are notoriously error-prone (Scott,

2004), we seek a reasonable parametric approach. The most commonly assumed

model is the multivariate normal, as data are often a transformation away from ap-

proximate normality. However, while it may be reasonable to impose an assumption

of normality on the uncontaminated part of the data, there is less valid support for

assuming the outliers or cluster(s) of outliers are normally distributed (Scott, 2004).

Thus, we employ a procedure that only estimates the primary parameters of interest:

an incomplete mixture model known as the multivariate partial density component

(MPDC). The simplest such model is given by:

f(x|θ) = wφ(x|µ,Σ), (1.4)

where θ = (w,µ,Σ) and φ is the Normal pdf. It is important to note that the model

f(x|θ) need not be a density function, and such is the case for (1.4). For justification

of this claim, see Scott (2004). We will apply the α-divergence function to this MPDC

model in order to obtain a robust estimate of θ, the MPDC-α divergence estimator

θ̂α.



Chapter 2

MPDC-α Divergence Estimator

This chapter explores the application of the α-divergence function to a multivariate

partial density component model. In particular, the α-divergence function will be

derived for the particular case of f(x|θ) = wφ(x|µ,Σ). By minimizing the criterion

which is an estimate of this divergence function, we obtain the MPDC-α divergence

estimator. We will also investigate three key mathematical properties of θ̂α, which

will allow us to understand the range of cases to which we can suitably apply this

robust estimator.

2.1 Derivation of MPDC-α Divergence Estimator

We begin by deriving the MPDC-α divergence estimator via plugging the density of

our MPDC model into Basu’s α-divergence function. We seek to estimate the true

parameter value, θ = (w,µ,Σ), from the parametric model

f(x|θ) = wφ(x|µ,Σ).

20
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θ̂α will be the value of θ that minimizes our estimate of the α-divergence function,

̂dα(g, f):

θ̂α = argmin
θ

̂dα(g, f)

=



argmin
θ

Est
[∫ {

f(z)1+α −
(
1 + 1

α

)
g(z)f(z)α + 1

α
g(z)1+α

}
dz
]

α > 0

θ̂MLE α = 0

=



argmin
θ

[∫
f 1+α −

(
1 + 1

α

)
1
n

∑n
i=1 f(xi)

α
]

α > 0

θ̂MLE α = 0

.

Since the MLE solution when α = 0 is well-known, we restrict our attention to the

α > 0 case:

θ̂α = argmin
θ

[∫
f 1+α −

(
1 +

1

α

)
1

n

n∑
i=1

f(xi)
α

]

= argmin
θ

[∫
[w(φ(xi|µ,Σ)]1+α −

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(xi|µ,Σ)]α

]

= argmin
θ

w1+α

∫ [
e−

1
2
(x−µ)′Σ−1(x−µ)

(2π)p/2|Σ|1/2

]1+α
dx

−
(

1 +
1

α

)
wα

n

n∑
i=1

[(φ(xi|µ,Σ)]α

]

= argmin
θ

[
w1+α

(2π)pα/2(1 + α)p/2|Σ|α/2

∫
e−

1
2
(x−µ)′[ Σ

1+α ]
−1

(x−µ)

(2π)p/2| Σ
1+α
|1/2

dx

−
(

1 +
1

α

)
wα

n

n∑
i=1

[(φ(xi|µ,Σ)]α

]

= argmin
w,µ,U

[
w1+α

[(2π)α(1 + α)]p/2
|U |α−

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(xi|µ,U)]α

]
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where U is the Cholesky decomposition of Σ−1, i.e. Σ−1 = U ′U . Therefore,

det(Σ)−1/2 = det(U). We will explore the purpose and consequences of this Cholesky

transformation in Chapter 3.

Thus,

θ̂α =



argmin
w,µ,U

[
w1+α

[(2π)α(1+α)]p/2
|U |α−

(
1 + 1

α

)
wα

n

∑n
i=1[(φ(xi|µ,U)]α

]
α > 0

θ̂MLE α = 0

.

2.2 Parallel to M-Estimators

The properties of the MPDC-α divergence estimator are clear upon realizing that all

minimum divergence estimators are a particular case of M-estimators, i.e. they solve

∑
i

ψ(Xi, t) = 0

for some function ψ. For the MPDC-α divergence estimator

ψ(x, t) = ut(x)fαt (x)−
∫
ut(z)f 1+α

t (z)dz,

where ut(z) = ∂logft(z)/∂t is the maximum likelihood score function.

Immediately following from this parallel are the consistency and asymptotic nor-

mality of the MPDC-α divergence estimator.
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2.3 Properties of MPDC-α Divergence Estimator

Basu (1998) verifies the consistency and asymptotic normality of the α-divergence

estimator. We will show that the consistency and asymptotic normality of θ̂α follow

directly from those results. We will also establish that θ̂α is invariant under linear

transformations.

2.3.1 Consistency and Asymptotic Normality of ŵα

Lemma 2.1. Let X1,X2, ...,Xn be a random sample from the mixture

wN(µ,Σ) + (1− w)F ∗,

where contamination distribution F ∗ is far away from the primary component. Let ŵα

be the weight component of the MPDC-α divergence estimator, θ̂α ≡ (ŵα, µ̂α, Σ̂α).

Then as n→∞:

√
n(ŵα − w)→d N

(
0,

1

w

[
(1 + α)p

(1 + 2α)p/2
− 1

])
. (2.1)

Proof.

We define the model: fθ = wφ(x|µ,Σ) =
we−

1
2
(x−µ)TΣ−1(x−µ)

(2π)p/2|Σ|1/2
.

Then we obtain an estimate of the divergence function by plugging the model into

(1.1):

d̂α = w1+α

∫
e−

1+α
2

(x−µ)TΣ−1(x−µ)

(2π)p(1+α)/2|Σ| 1+α2
−
(

1 +
1

α

)
wα

n

n∑
i=1

[
e−

α
2
(xi−µ)TΣ−1(xi−µ)

(2π)pα/2|Σ|α2

]
.

Letting γ1 ≡
∫
e−

1+α
2

(x−µ)TΣ−1(x−µ)

(2π)p(1+α)/2|Σ| 1+α2
= (2π)pα/2(1 + α)p/2|Σ|α/2
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and γ2 ≡
e−

α
2
(xi−µ)TΣ−1(xi−µ)

(2π)pα/2|Σ|α2
,

we get E[γ2] =

∫
w
e−

1+α
2

(x−µ)TΣ−1(x−µ)

(2π)p(1+α)/2|Σ| 1+α2
= wγ1 ≡ γ3.

Thus, d̂α = w1+αγ1 −
(

1 +
1

α

)
w1+α

wn

n∑
i=1

[(γ2 − γ3) + γ3]

= w1+αγ1 −
(

1 +
1

α

)
wαγ3 −

(1 + 1
α

)w1+α

√
wn

Z
√

Σ(θ),

where Σ(θ) ≡ V ar(γ2).

To find ŵ we differentiate with respect to w:

∂d̂α
∂w

= (1 + α)wαγ1 − (1 + α)wα−1γ3 −
1 + α√
wn

wα−1Z
√

Σ(θ) = 0

⇐⇒ ŵγ1 = γ3 +
1√
wn

√
Σ(θ)Z.

Therefore,
√
n

(
ŵ − γ3

γ1

)
→d N

(
0,

Σ(θ)

wγ21

)
as n→∞

→d N
(
0, w−1[(2π)pα(1 + α)p|Σ|α]Σ(θ)

)
→d N

(
0,

1

w

[
(1 + α)p

(1 + 2α)p/2
− 1

])
.

Thus,

√
n(ŵα − w)→d N

(
0,

1

w

[
(1 + α)p

(1 + 2α)p/2
− 1

])
.

Lemma 2.1 says that ŵα is asymptotically unbiased for w. That result is only

guaranteed to hold when there is considerable separation between the targeted density

component and the remaining data. When there is overlap between the target and

contamination, ŵα will be biased upward.
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2.3.2 Consistency and Asymptotic Normality of µ̂α and Σ̂α

Lemma 2.2. Let Q1,Q2, ...,Qn be an iid sequence of random vectors from a N(µ,Σ)

distribution. Let τ̂α(Q) ≡ (µ̂α, Σ̂α) be Basu’s α-divergence estimator for τ ≡ (µ,Σ).

Note that τ̂α and τ are each comprised of a p-dimensional mean vector and the

vectorization of the p(p+1)
2

elements above and including the diagonal of the covariance

matrix. Then, under certain regularity conditions, there exists τ̂α such that, as n→

∞,
√
n(τ̂α − τ ) is asymptotically multivariate normal with vector mean zero and

covariance matrix J−1KJ−1, where J = J(τ ) and K = K(τ ) are given by

J =

∫
uτ (z)uTτ (z)f 1+α

τ (z)dz +

∫ [
iτ (z)− αuτ (z)uTτ (z)

]
[g(z)− fτ (z)] fατ (z)dz,

(2.2)

K =

∫
uτ (z)uTτ (z)f 2α

τ (z)g(z)dz − ξξT (2.3)

with ξ =
∫
uτ (z)fατ (z)g(z)dz.

Proof. See Basu (1998), p. 553.

2.3.3 Consistency and Asymptotic Normality of θ̂α

Lemma 2.3. Let X1,X2, ...,Xn be a random sample from the mixture

wN(µ,Σ) + (1− w)F ∗,

where F ∗ is the contamination distribution, and let τ̂α ≡ (1, µ̂α, Σ̂α) be Basu’s α-

divergence estimator for θ ≡ (w,µ,Σ). Let θ̂α ≡ (ŵα, µ̂α, Σ̂α) be the MPDC-α

divergence estimator for θ ≡ (w,µ,Σ). Then, as n → ∞,
√
n(θ̂α − θ) is asymptot-
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ically multivariate normal with vector mean zero and covariance matrix 1
w
J−1KJ−1,

where J = J(τ ) and K = K(τ ) are as defined in Lemma 2.2.

Proof. By Lemma 2.1, as n→∞:

√
n(ŵα − w)→d N

(
0,

1

w

[
(1 + α)p

(1 + 2α)p/2
− 1

])
.

Thus, ŵα is consistent for w, asymptotically normal, and asymptotically independent

of µ and Σ. By Lemma 2.2, µ̂α and the elements of Σ̂α are asymptotically normal

and consistent as the effective sample size wn → ∞ for µ and the elements of Σ,

respectively. Therefore, as wn → ∞,
√
wn(θ̂α − θ) is asymptotically multivariate

normal with vector mean zero and covariance matrix J−1KJ−1 ⇐⇒ as n → ∞,

√
n(θ̂α− θ) is asymptotically multivariate normal with vector mean zero and covari-

ance matrix 1
w
J−1KJ−1, where J = J(τ ) and K = K(τ ) are as defined in Lemma

2.2.

2.3.4 Invariance Under Linear Transformation

Lemma 2.4. The MPDC-α divergence estimator, θ̂α, is invariant under linear trans-

formation.

Proof. Let X be a random vector from the mixture

wN(µ,Σ) + (1− w)F ∗,

where F ∗ is the contamination distribution, and let Y be the random vector obtained

by multiplying X by the eigenvectors of Σ, which are the columns of matrix Γ. Thus,
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Σ = ΓΛΓ′, where Λ = diag(eigenvalues(Σ)). Since Y = ΓX, we can directly define

the distribution of Y :

µY = ΓµX = Γµ

cov(Y ) = cov(ΓX)

= Γ′cov(X)Γ

= Γ′ΣΓ

= Γ′(ΓΛΓ′)Γ

= (Γ′Γ)Λ(Γ′Γ)

= Λ since ΓΓ′ = Ip.

Thus, since normality is preserved under linear transformations:

Y ∼ wN(Γµ,Λ) + (1− w)F ∗∗,

where F ∗∗ is the transformed contamination distribution. We wish to show that

the MPDC-α divergence criterion for Y is equivalent to that for X. By the MLE

invariance principle, we know that the result holds for the α = 0 case. Thus, we

restrict our attention to the case when α > 0. The MPDC-α divergence criterion for

X is given by:

w1+α

[(2π)α(1 + α)]p/2
|U |α−

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(xi|µ,Σ)]α

where Σ−1 = U ′U .
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The MPDC-α divergence criterion for Y is given by:

w1+α

[(2π)α(1 + α)]p/2
|Λ|−α/2−

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(yi|Γµ,Λ)]α

=
w1+α

[(2π)α(1 + α)]p/2
(|Γ′Γ||Λ|)−α/2 −

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(yi|Γµ,Λ)]α

=
w1+α

[(2π)α(1 + α)]p/2
|Γ′ΓΛ|−α/2−

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(yi|Γµ,Λ)]α

=
w1+α

[(2π)α(1 + α)]p/2
|ΓΛΓ′|−α/2−

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(yi|Γµ,Λ)]α

=
w1+α

[(2π)α(1 + α)]p/2
|Σ|−α/2−

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(yi|Γµ,Λ)]α

=
w1+α

[(2π)α(1 + α)]p/2
|U |α−

(
1 +

1

α

)
wα

n

n∑
i=1

[(φ(yi|Γµ,Λ)]α.

φ(yi|Γµ,Λ) =
e−

α
2
(yi−Γµ)′Λ−1(yi−Γµ)

(2π)pα/2|Λ|p/2

=
e−

α
2
(xi−µ)′Γ′Λ−1Γ(xi−µ)

(2π)pα/2|Σ|p/2

=
e−

α
2
(xi−µ)′Σ−1(xi−µ)

(2π)pα/2|Σ|p/2

= φ(xi|µ,Σ).

Thus, the MPDC-α divergence criterion is invariant under linear transformation.

Without loss of generality, for simulation purposes we will henceforth only consider

Σ of the form

Σjj = 1 ∀j ∈ [1, p],

since, by Lemma 2.4, any arbitrary matrix Σ can be transformed to have unit vari-

ances, yielding the correlation matrix.



Chapter 3

Parametric Density Estimation

Our parameter vector of interest, θ, consists of three components for a total of p2+3p+2
2

parameter values: (1) the weight parameter, w; (2) the mean vector, µ (which has

p parameters); (3) the covariance matrix Σ (for which we estimate p(p+1)
2

parame-

ters). Our parametric estimation study will consider simulated cases as well as an

application in baseball. For the simulated cases, we will draw samples from the full

two-component Normal mixture distribution and use the MPDC-α divergence crite-

rion to estimate w, µ and Σ with ŵα, µ̂α and Σ̂α, respectively.

3.1 Parameter and Criterion Definition

We construct the setting for our simulated cases, which will draw from a two-component

Normal mixture. It should be noted that the applicability of the MPDC-α divergence

estimator is not limited to these cases. We can utilize θ̂α for pure samples as well

as samples with outliers, and the contamination can be particular points, a single

29
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cluster of points, or multiple clusters of points. The framework for our study will be

defined as follows.

Given an iid sample {x1,x2, ...,xn} from the mixture

wN(µ1,Σ1) + (1− w)N(µ2,Σ2)

and model

f(x|θ) = wφ(x|µ ≡ µ1,Σ ≡ Σ1),

we estimate the parameter vector θ = (w,µ,Σ) with θ̂α by solving the following

optimization problem for α > 0:

min
θ

[
w1+α

[(2π)α(1 + α)]p/2|Σ|α/2
−
(

1 +
1

α

)
wα

n

n∑
i=1

[(φ(xi|µ,Σ)]α

]
. (3.1)

Before proceeding with the optimization, we apply some helpful transformations

to our parameters and rewrite the criterion (3.1) in a more computationally tractable

form.

3.2 Parameter Transformations

We wish to estimate θ ≡ (w, µ, Σ) via an unconstrained optimization algorithm.

Since w and Σ are constrained parameters, we apply transformations to them for the

purpose of the optimization.

3.2.1 w: logit transformation

The weight parameter, w, falls in the range of (0,1). However, since we are solving this

as an unconstrained optimization problem, we wish to optimize over some function



31

τ(w) such that the range of τ(w) is (−∞,∞). Thus, we define τ(w) to be the logit

transformation,

τ(w) = log

(
w

1− w

)
, (3.2)

so that when we reverse the transformation, we get:

w =
1

1 + e−τ
. (3.3)

This yields the desired range of (0,1) for values of w.

3.2.2 Σ−1: Cholesky Decomposition and exp transformation

Further computational efficiency can be gained by considering the Cholesky decom-

position of the precision matrix, Σ−1. We decompose Σ−1 into the product of an

upper triangular matrix, U and its transpose, i.e.:

Σ−1 = U ′U . (3.4)

Thus, when we optimize over U , we need only estimate p(p+1)
2

values as opposed

to p2. However, we opt to restrict the diagonal values of U to be positive. Thus, we

exponentiate the diagonal values of U :

diag(η(U)) = exp (diag(U)), (3.5)

where η is the transformed matrix over which we will perform our optimization.
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3.2.3 Computationally Efficient Criterion

Let d ≡ |U | =
∏p

i=1U ii. To improve computational efficiency, we can redefine the

criterion (3.1) as:

w1+α

[(2π)α(1 + α)]p/2
dα −

(
1 +

1

α

)
wα

n

n∑
i=1

[
dα

(2π)pα/2
e−

α
2

1′p[U(x′i−µ)]2
]
, (3.6)

where [ ]2 in the exponent is a component-wise squaring.

3.3 Simulated Cases

We will simulate MPDC samples with varying characteristics. Our cases span from

p = 2 to p = 10 dimensions. Results from the simulations for p = 6 through p =

10 can be found in the Appendix. The uncontaminated and contaminated clusters

are well-separated or overlapping, and we also consider the effect of correlation in

the uncontaminated data on θ̂α. Without loss of generality, we fix the fraction of

contamination in our samples at 25%. Also, for the optimization, we initialize the

parameter vector at the true values.

3.3.1 Simulated Cases for p = 2

Pure Sample

We first verify that the MPDC-α estimator yields the correct results for an uncontam-

inated sample. The simulated sample of size n = 1000 is from the bivariate standard
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Normal distribution

N


0

0

 , I2

 .

Figure 3.1 shows a contour plot of the N (( 0
0 ) , I2) distribution overlain on the

sample points.
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Figure 3.1: Pure sample of size n = 1000 simulated from N ((0, 0)′, I2) distribution

with contour lines of true density (red).
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Figure 3.2: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2

by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameter estimates (in this case, µ̂2,α and σ̂2,α) that we track to assure

algorithm stability. Estimates based on pure sample of size n = 1000 simulated from

N ((0, 0)′, I2) distribution.
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Figure 3.2 shows trace plots of the parameter estimates ŵα, µ̂α,i, σ̂α,i, and ρ̂α,ij for

α in the range [0, 2]. We can see that the MPDC-α estimator yields consistent values

for a pure sample regardless of the value of α.

Overlapping Clusters with Zero Correlation

We begin our exploration of contaminated samples with a two-dimensional example,

generating a sample of size n = 1000 from the mixture distribution
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Figure 3.3 shows a contour plot of the N (( 0
0 ) , I2) distribution overlain on the sam-

ple points (uncontaminated data in green and contamination in blue). We can see

that there is considerable overlap between the main (uncontaminated) data and the

contamination.
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Figure 3.3: Overlapping clusters with zero correlation in the uncontaminated data.

Contour lines (red) of N ((0, 0)′, I2) density overlain on sample of size n = 1000

simulated from the Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0)′;µ2 = (3, 0)′; Σ1 = Σ2 = I2.
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Figure 3.4: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 3

by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0)′;µ2 = (3, 0)′; Σ1 = Σ2 = I2.
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Figure 3.4 shows trace plots of the parameter estimates ŵα, µ̂α,i, σ̂α,i, and ρ̂α,ij

for α in the range [0, 2]. We see that the weight parameter estimate, ŵα, starts at 1,

which is the MLE estimate for w, and beyond an α value of about 0.75, the estimate

declines steadily to about 0.85 for α = 2. While the true value of w is 0.75, because of

the overlap between the main data and contaminated data in this example, we should

expect our estimate for w to be somewhat inflated. Our other estimates are clearly

affected by the contamination for α values between 0 and 1 (denoted by the purple

dashed vertical line, giving the L2E solution as a reference point). These estimates

for µ, σ and ρ begin to reach their true values (denoted by the blue dashed horizontal

lines) around α = 1.5 and continue to improve until α = 2, where they begin to level

off. There is not sufficient benefit to be gained from looking at α values beyond 2 in

this case, particularly because of the decrease in efficiency (to be explored in Chapter

4).

Overlapping Clusters with ρ12 = 0.75

We then investigate what happens when we introduce a non-zero correlation in the

cluster centered at µ1. Thus, we will consider the case where ρ12 = 0.75, i.e. we

generate a sample of size n = 1000 from the mixture model
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Figure 3.5: Overlapping clusters with ρ12 = 0.75 in the uncontaminated data. Con-

tour lines (red) of N ((0, 0)′, ( 1.00 0.75
0.75 1.00 )) density overlain on sample of size n = 1000

simulated from the Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0)′;µ2 = (3, 0)′; ρ12 = 0.75; Σ2 = I2.

Figure 3.5 shows a contour plot of the N (( 0
0 ) , ( 1.00 0.75

0.75 1.00 )) distribution overlain on
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the sample points. Due to the correlation in the main data, we see less overlap between

the uncontaminated cluster and the contamination than we saw in the previous case

with zero correlation in the cluster centered at the origin.

Trace plots of the parameter estimates can be seen in Figure 3.6. In this case, ŵα

starts at the MLE solution of 1 and begins to decline rapidly around an α value of 0.3

until α = 0.5, at which point it continues to decline less rapidly until reaching a value

of less than 0.8 at α = 2. The first component of the mean vector, µ̂α,1 is inflated for

α values between 0 and 0.5, at which point it has reached the true value of µ1 = 0 and

then stabilizes. σ̂α,1, the standard deviation of the first variable, is inflated for α values

between 0 and 0.5, and then it steadily declines until reaching its true value around

α = 1.7. The correlation estimate, ρ̂α,12 actually increases for the α range of (0, 0.5)

and then steadily declines until reaching the true value ρ12 = 0.75 around α = 1.7.

Thus, we can see that α values beyond 1 provide additional robustness compared to

the L2E solution when there is overlap between the main data and the contamination.

The correlation ρ12 can also be captured by the MPDC-α divergence estimator for

slightly lower α values than are needed when there is zero correlation. Overall, in

the p = 2 case, when there is overlap between the main data and contamination, we

turn to α values between 1.5 and 2 to reach a sufficiently robust estimate. Another

scenario we will consider is when the uncontaminated and contaminated data are

well-separated.
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Figure 3.6: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 3

by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0)′;µ2 = (3, 0)′; ρ12 = 0.75; Σ2 = I2.
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Well-Separated Clusters with Zero Correlation

We generate a sample of size n = 1000 from the mixture model
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Figure 3.7 shows a contour plot of the N (( 0
0 ) , I2) distribution overlain on the

sample points. The uncontaminated and contaminated data are clearly separated,

not showing the overlap we saw in the first example.
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Figure 3.7: Well-separated clusters with zero correlation in the uncontaminated data.

Contour lines (red) of N ((0, 0)′, I2) density overlain on sample of size n = 1000

simulated from the Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0)′;µ2 = (7, 0)′; Σ1 = Σ2 = I2.
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Figure 3.8: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 3

by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0)′;µ2 = (7, 0)′; Σ1 = Σ2 = I2.



46

As we can see in Figure 3.8, because the clusters are well-separated, we do not

require as high of an α value in order for θ̂α to converge to θ. There is an abrupt drop

in each trace plot around α = 0.4, and each of the parameter estimates converges to

its respective true value around α = 0.5. We also note that the estimates given for

α values between 0 and 0.4 include the contaminated data and thus are significantly

inflated, with µ̂α,1 close to 2 (true value µ1 = 0) and σ̂α,1 exceeding 10 (true value

σ1 = 1). The correlation estimate, ρ̂α,12, does not stray too far from the true value

of ρ12 = 0. This begs the question of whether introducing a non-zero correlation in

the main data would affect the range of α values yielding consistent solutions for this

example.

Well-Separated Clusters with ρ12 = 0.75

Once again, we investigate what happens when we introduce a non-zero correlation

in the cluster centered at µ1. Thus, we will consider the case where ρ12 = 0.75, i.e.

we generate a sample of size n = 1000 from the mixture model
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Figure 3.9 shows a contour plot of the N (( 0
0 ) , ( 1.00 0.75

0.75 1.00 )) distribution overlain on

the sample points.



47

Figure 3.9: Well-separated clusters with ρ12 = 0.75 in the uncontaminated data.

Contour lines (red) of N ((0, 0)′, ( 1.00 0.75
0.75 1.00 )) density overlain on sample of size n = 1000

simulated from the Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0)′;µ2 = (7, 0)′; Σ1 = Σ2 = I2.
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Figure 3.10: Trace plots of MPDC-α divergence estimates for α ranging from 0 to

2 by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0)′;µ2 = (7, 0)′; Σ1 = Σ2 = I2.
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In Figure 3.10 we can see that θ̂α is not significantly affected by the correlation,

ρ12, as the estimates have trace plots very similar to those in the previous example.

Thus, in the p = 2 case, when the main data and contamination are well-separated, we

do not require α values much greater than 0.5 to reach a sufficiently robust estimate.

We now investigate the behavior of the MPDC-α divergence estimator in cases of p

greater than 2.

3.3.2 Simulated Cases for p = 3

We will explore analogous cases for higher dimensional problems. When p ≥ 3, we

cannot identify outliers by visual inspection, so we rely on alternative methods for

detection and management of contamination. In our case, we would like to identify

a range of α values for which θ̂α is a consistent estimate of θ.

Overlapping Clusters

We consider a 3-dimensional case, generating a sample of size n = 1000 from the

mixture model
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ŵ

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

µ̂i

i
1
Other

0.0 0.5 1.0 1.5 2.0 2.5

-1
0

1
2

3

α

σ̂i

i
1
Other

0.0 0.5 1.0 1.5 2.0 2.5

α

-1
.0

-0
.5

0.
0

0.
5

1.
0

ρ̂i j

i  j

1 2
Other

α

Figure 3.11: Trace plots of MPDC-α divergence estimates for α ranging from 0 to

2.5 by increments of 0.025. Black lines represent parameters of interest, and red

lines indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0)′;µ2 = (3, 0, 0)′; ρ12 = 0.75; Σ2 = I3.
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As we can see in Figure 3.11, our estimates begin to approach their true values

around an α value of 0.5, converging around α = 0.7. Like the p = 2 case, the

overlap between the main data and contamination yields an estimate of the weight

parameter, ŵα, that is slightly higher than the true value of w. We see that as α

increases beyond 1, estimates for the other parameters that are not our primary focus

(the red lines) begin to stray from their true values. Thus, we see that there is no

additional robustness benefit from α values beyond 1 in this case. As we did for

the 2-dimensional case, we would like to examine whether increasing the separation

between the uncontaminated and contaminated data will change the range of α values

yielding consistent estimates.

Well-Separated Clusters

To explore the effect of this increased separation, we generate a sample of size n =

1000 from the mixture model
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Figure 3.12: Trace plots of MPDC-α divergence estimates for α ranging from 0 to

2 by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0)′;µ2 = (7, 0, 0)′; ρ12 = 0.75; Σ2 = I3.
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Figure 3.12 shows that the estimates reach their true values around α = 0.3.

The difference between this setting and the previous one is that in this situation,

rather than smoothly transitioning to a consistent solution, the estimates quickly

switch (around α = 0.3) from incorporating all of the data to just considering the

uncontaminated cluster. Thus, just as in the 2-dimensional case, when the clusters

are well-separated we do not require α values as high as are needed for cases with

overlapping clusters to achieve consistent solutions. Overall, the α values needed to

provide robust estimates are lower for p = 3 than they are for analogous cases with

p = 2. We will see if this trend continues as we push the dimension, p, even higher.

3.3.3 Simulated Cases for p = 4

Overlapping Clusters

Continuing to increase the dimension p, we generate a sample of size n = 1000 from

the mixture model
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Figure 3.13: Trace plots of MPDC-α divergence estimates for α ranging from 0 to

2 by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0, 0)′;µ2 = (3, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I4.
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Figure 3.13 shows that the parameter estimates begin to get close to their true

values around α = 0.5, converging around α = 0.8. Once again, ŵα is still slightly

inflated due to the overlap between clusters. The results are very similar to the

analogous case for p = 3.

Well-Separated Clusters

Increasing cluster separation, we generate a sample of size n = 1000 from the mixture

model
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Figure 3.14 shows that the parameter estimates converge to their true values

around α = 0.3. Due to the separation between clusters, we do not see much inflation

in ŵα. The results are very similar to the analogous case for p = 3.
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Figure 3.14: Trace plots of MPDC-α divergence estimates for α ranging from 0 to

2 by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0, 0)′;µ2 = (7, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I4.
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3.3.4 Simulated Cases for p = 5

Overlapping Clusters

For a 5-dimensional example, we generate a sample of size n = 1000 from the mixture

model
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As we can see in Figure 3.15, the parameter estimates get close to their true values

around α = 1. We continue to see the slight inflation in ŵα due to the overlap between

the main data and contamination. It seems that the minimum α required to yield a

consistent solution does not decrease monotonically with increasing dimension, p.
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Figure 3.15: Trace plots of MPDC-α divergence estimates for α ranging from 0 to

1.5 by increments of 0.025. Black lines represent parameters of interest, and red

lines indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0, 0, 0)′;µ2 = (3, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I5.
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Well-Separated Clusters

Increasing the separation between clusters, we generate a sample of size n = 1000

from the mixture model
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0.75 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




+

1

4
N





7

0

0

0

0


, I5


.

Figure 3.16 shows essentially the same picture as we have seen in the previous

analogous cases where the contamination is centered at a point with first component

7. The estimates converge to their respective true values around α = 0.3.
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Figure 3.16: Trace plots of MPDC-α divergence estimates for α ranging from 0 to

1.5 by increments of 0.025. Black lines represent parameters of interest, and red

lines indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0, 0, 0)′;µ2 = (7, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I5.
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3.3.5 Simulated Cases for 6 ≤ p ≤ 10

The trace plots for the cases of p ∈ [6, 10] can be found in the Appendix. We examine

both overlapping and well-separated cases for those dimensions. We wish to utilize

these simulated cases to help establish an exploratory method of selecting an optimal

α level that will yield consistent robust estimates for a particular dataset. In order

to do so, we will have to repeat these sampling procedures multiple times.

3.3.6 Selecting α

As there is no universally agreed upon method to select α when utilizing this estima-

tion method, we can take a number of approaches to select the appropriate α values.

Because of the tradeoff between robustness and efficiency as α increases, we could set

a desired level of efficiency we wish to attain and choose α accordingly. Our approach

in the following real data example will be to exploit a prior notion of the extent of

contamination in the model, namely the proportion of contamination and its degree

of separation from the main data. Thus, we wish to understand how the optimal α

value varies with the level of separation and the dimension, p.

We will utilize our simulated cases in the previous section, generating M = 100

iterations of samples from the mixture

3

4
N(0p,Σ1) +

1

4
N((s,0p−1)

′, Ip) (3.7)

where (Σ1)ij = 0.75 for {(i, j) = (1, 2) or (2, 1)} and (Σ1)ij = δij else. The value of α

will range from 0.025 to 3 in increments of 0.025. Our separation variable, s, will be

3 (overlap), 5 (minimal overlap), or 7 (no overlap). The dimension p will range from
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2 to 10. Thus, for each value of p we will have 360 estimates θ̂α (120 α values x 3 s

values). For each of these θ̂α we compute

RMSE(θ̂α) =

√√√√ 1

M

M∑
i=1

(
θ̂α,i − θα,i

)2
.

To provide an exploratory method of α selection, we examine the RMSE values

versus α for these various values of p and s. Thus, for a given dimension and degree

of separation, we can select the range of α which gives us the smallest RMSE. On

each plot we will specify the α value at which the minimum RMSE is attained as well

as a range of α values for which the RMSE is within 10% of its minimum.
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Case: p=2

Figure 3.17 displays the relationship between RMSE and α for the 2-dimensional

case. We require values of α between 0.8 and 1.4 to yield consistent estimates when

there is overlap between the main data and contamination (s = 3). If the clusters are

well-separated, i.e. s ∈ {5, 7}, then α values between 0.3 and 0.5 are optimal.
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0.
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s=7
MinRMSE
<= 1.1*MinRMSE

Figure 3.17: Selection of α for p = 2. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0)′;µ2 = (s, 0)′; ρ12 = 0.75; Σ2 = I2. Points at which minimum RMSE is attained

are in red, and points at which RMSE is within 10% of its minimum are in blue.
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Case: p=3

Figure 3.18 displays the RMSE plot for the 3-dimensional case. For the low-separation

case (s = 3), the optimal α∗ is approximately 1.2, with α ∈ [0.8, 1.7] yielding fairly

consistent solutions. Once again, when we increase separation between clusters, α ∈

[0.3, 0.5] are optimal.
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Figure 3.18: Selection of α for p = 3. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0)′;µ2 = (s, 0, 0)′; ρ12 = 0.75; Σ2 = I3.
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Case: p=4

Figure 3.19 displays the RMSE plot for the 4-dimensional case. For the low-separation

case (s = 3), α∗ is about 0.8, with α ∈ [0.7, 0.9] yielding fairly consistent solutions.

Once again, when we increase separation between clusters, α ∈ [0.3, 0.5] are optimal.
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Figure 3.19: Selection of α for p = 4. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0, 0)′;µ2 = (s, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I4.



66

Case: p=5

Figure 3.20 displays the RMSE plot for the 5-dimensional case. For low values of

separation, we rely on α values between 0.8 and 1.1 for θ̂α to consistently estimate

θ, with an optimal value of α∗ = 0.9.. An α value of 0.3 or 0.4 is optimal when s = 5

or 7.
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Figure 3.20: Selection of α for p = 5. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0, 0, 0)′;µ2 = (s, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I5.
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Cases: 6≤ p≤ 10

The RMSE plots for the cases of 6 ≤ p ≤ 10 can be found in the Appendix. Rather

than describing them all in detail here, we summarize the simulation results in a

table.

Summary

Table 3.1 lists ranges of α values that are optimal for situations when the main data

and contamination are either overlapping or well-separated. This is for the case of

n = 1000 and 25% contamination.
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p Overlapping α∗ Separated α∗ αmax

2 [0.8, 1.4] [0.3, 0.5] 3.0

3 [0.7, 1.6] [0.3, 0.5] 2.5

4 [0.7, 0.9] [0.3, 0.4] 1.5

5 [0.7, 1.1] [0.3, 0.4] 1.4

6 [0.6, 0.9] [0.3, 0.4] 1.3

7 [0.6, 0.9] [0.3, 0.4] 1.1

8 [0.5, 0.7] [0.3, 0.4] 0.9

9 [0.5, 0.8] [0.3, 0.4] 0.8

10 [0.5, 0.7] [0.3, 0.4] 0.8

Table 3.1: Guidelines for selection of α for various dimension (p) values. The range

of optimal α values (α∗) and the maximum recommended α value (αmax) are given

for cases of overlapping and well-separated clusters.

We should note that the minimum α value required to attain the true solution,

for a fixed level of separation s, does not decrease monotonically as the dimension p

increases. There is more to be done on understanding this pattern.

We will now seek to apply the MPDC-α divergence estimation procedure to a real

data example.
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3.4 Application: Baseball

The statistical analysis of sports is becoming increasingly prevalent, particularly in

baseball since the nature of the game is inherently conducive to such analysis. Re-

cently, there has been more attention given to the theory of Defense Independent

Pitching Statistics (DIPS), the idea that we can isolate a pitcher’s influence on the

outcome of an at-bat.

Fairly new data has been made available via cameras that track various compo-

nents of pitches for every at-bat during a Major League Baseball season. We pulled

together this data, called PITCHf/x, from every at-bat during the 2009, 2010, 2011

MLB seasons, yielding a dataset consisting of N = 132, 103 observations and p = 19

variables. Among the variables we will examine are horizontal movement, vertical

movement, pitch speed, break and spin.

3.4.1 Robust Parametric Estimation for PITCHf/x Variables

Many of the characteristics of a pitch can be attributed to its type. Naturally, fastballs

and curveballs tend to have different speeds, movement, break angles and spin. We

can crudely classify a given pitch as a breaking ball (curveball, slider, change-up or

knuckleball) or a fastball (four-seam fastball, two-seam fastball, cut fastball or sinker).

Horizontal and Vertical Movement

First, we explore the relationship between horizontal and vertical movement (denoted

“pfx x” and “pfx z”, respectively). We seek to estimate the joint distribution of pfx x



70

and pfx z, a bivariate problem. Because we are looking at breaking balls and fastballs

as different populations, we will have separate pfx x and pfx z distributions for each

of those two pitch types. Before proceeding with our analysis, we discard 7,444 data

points with pitch type labels that do not fall into either of the two categories (e.g.

pitch-outs), leaving us with a sample size of N = 124, 659. Based on prior research

(Stackpole 2012), the distributions of pfx x and pfx z are approximately Normal.

Also, the data indicates that 65% of pitches are fastballs. A summary of the data

can be found in Table 3.2.

Fastball Breaking All

n1 = 96, 218 n2 = 28, 441 N = 124, 659

x̄1 = (−2.45, 6.99)′ x̄2 = (2.03,−0.98)′ x̄ = (−1.43, 5.18)′

S1 = ( 44.1 2.6
2.6 13.0 ) S2 =

(
16.3 −2.9
−2.9 21.8

)
S =

(
41.3 −5.0
−5.0 26.2

)
r1 = 0.1 r2 = −0.2 r = −0.2

Table 3.2: Sample statistics for horizontal and vertical movement of fastballs, breaking

pitches, and the full sample.

In order to apply the MPDC-α estimator to this example, we begin by standard-

izing the values of pfx x and pfx z. The sample mean is x̄ = (−1.43, 5.18)′, and the

sample covariance matrix is S =
(

41.3 −5.0
−5.0 26.2

)
. We are trying to estimate the weight

parameter, mean and covariance matrix for the fastballs. Because we have the benefit

of knowing the pitch types for every sample point, we can utilize these starting values
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to attempt to locate the “fastball” component: ŵ = 0.65, x̄1 = (−2.45, 6.99)′, and

S1 = ( 44.1 2.6
2.6 13.0 ). In order to use the MPDC-α divergence estimator, we apply the

following transformation to the sample data points:

W ij =
X ij − x̄i√

Sjj
(3.8)

Figure 3.21 shows a contour plot of the estimated distribution of the standard-

ized values of (pfx x, pfx z) for straight pitches overlain on the standardized sample

points, which are colored by pitch type (green for fastball and blue for breaking ball).

We can see that there is considerable overlap between the clusters. We seek to esti-

mate the weight parameter, mean vector and covariance matrix for the fastball group

using the MPDC-α divergence estimator.
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Figure 3.21: Horizontal and vertical movement (pfx x, pfx z) for a random sam-

ple of 5,000 pitches, with fastballs in green and breaking balls in blue. The esti-

mated bivariate distribution of (pfx x, pfx z) for fastballs and breaking balls is rep-

resented by the 1- and 2-sigma ellipses in red and gold, respectively. ŵfastball,α = 0.77;

ŵbreaking,α = 0.41.
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Figure 3.22: Trace plots of MPDC-α estimates for the distribution of (pfx x, pfx z)

for fastballs for α ranging from 0 to 2 in increments of 0.025. The black lines represent

parameters of interest, and the red lines show other parameters to track algorithm

stability.

Upon applying the transformation in (3.8), we seek to estimate ŵα, µ̂α and Σ̂α.
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Thus, we compute the MPDC-α divergence estimator for α values in the range [0,2].

Figure 3.22 shows trace plots of ŵα, µ̂j,α, σ̂j,α and ρ̂12,α.

We can see that ŵα is 1 for smaller α values, and it gets closest to ŵ = 0.65 around

α = 1.2. Transforming back to the original units, the other parameter estimates also

fairly consistently estimate their corresponding true values for that α level: ŵ(α=1.2) =

0.77, µ̂(α=1.2) = (−4.58, 6.97)′, σ̂2
1,(α=1.2) = 35.5, σ̂2

2,(α=1.2) = 15.7, ρ̂12,(α=1.2) = −0.01.

This is a two-dimensional example with overlap, so we would expect that an α value

greater than 1 would be needed. The α value of 1.2 closely matches the suggested

value from the exploratory α selection ranges we established in Section 3.3.6.

While this example takes advantage of the fact that we know whether every indi-

vidual pitch in the data is a fastball or breaking ball, we can see how the MPDC-α

divergence method would allow us to perform parametric estimation in practical sit-

uations where the labels are unknown. We could utilize our prior understanding of

the separation between the main data and contamination, and assuming our sample

is sufficiently large, we would simply select the appropriate α value for the particular

dimension p of the problem to yield consistent robust estimates of the parameters of

interest.

Returning to the context of this example, we see that fastballs tend to move

about 4.6 inches to a catcher’s left and have, on average, 6.97 inches less downward

movement than pitches without spin. There is also no apparent correlation between

horizontal pitch movement (pfx x) and vertical pitch movement (pfx z) for straight

pitches. Clearly, there are other variables to be considered that could potentially have

an effect on the outcome of a pitch, including the pitch speed, break and spin.
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Pitch Speed, Break and Spin

We now add three more variables to the picture: pitch start speed, break angle, and

spin direction. Including horizontal and vertical movement, we have a 5-dimensional

problem with variables (pfx x, pfx z, start speed, break angle, spin rate).

Fastball Breaking

n1 = 96, 218 n2 = 28, 441

x̄1 = (−2.5, 7.0, 89, 10.0, 1975)′ x̄2 = (2.0,−1.0, 81,−5.2, 973)′

S1 =

(
44.1 2.6 −5.8 −164.2 −84.2
2.6 13.0 5.1 −0.9 1133
−5.8 5.1 19.9 28.9 931.2
−164.2 −0.9 28.9 674.6 1290
−84.2 1133 931.2 1290 279230

)
S2 =

(
16.3 −2.9 −1.7 −34.6 639
−2.9 21.8 13.9 0.7 −1061
−1.7 13.9 27.6 −2.9 −916
−34.6 0.7 −2.9 83.1 −1033

639 −1061 −915.5 −1033.5 244715

)

r12,1 = 0.1 r12,2 = −0.2

All

N = 124, 659

x̄ = (−1.5, 4.9, 87, 6.7, 1714)′

S =

(
40.3 −5.7 −11.5 −140.9 −737
−5.7 28.5 20.3 22.3 2156
−11.5 20.3 36.0 42.5 2095
−140.9 22.3 42.5 551.1 3387
−737 2156 2095 3387 454580

)

r12 = −0.2

Table 3.3: Sample statistics for horizontal and vertical movement, pitch speed, break

and spin for fastballs, breaking balls and the full sample.
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Figure 3.23: Trace plots of MPDC-α estimates for distribution of pfx x, pfx z,

pitch speed, break angle, and spin dir for fastballs for α ranging from 0 to 2 in in-

crements of 0.025. The black lines represent parameters of interest, and the red lines

show other parameters to track algorithm stability.

In order to apply the MPDC-α estimator to this example, we standardize the
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values of pfx x, pfx z, start speed, break angle, and spin rate. Thus, as in the p = 2

case, the MLE solution is inconsistent and insufficiently robust. We apply the same

transformation in (3.8) to the sample data points.

Upon applying the transformation, we seek to obtain ŵα, µ̂α and Σ̂α. Thus, we

compute the MPDC-α divergence estimator for α values in the range [0,2].

We can see that ŵα is 1 for smaller α values, decreases to about 0.4 at α around

0.5, and then gets close to the true value of w at an α value of about 0.6. Transforming

back to the original units, the other parameter estimates reach their corresponding

true values for an α value around 1. The best solution occurs at α = 1.2: ŵ(α=1.2) =

0.77, µ̂(α=1.2) = (−2.7, 6.9, 89, 10.6, 1960)′, ρ̂(α=1.2),12 = 0.14. The α value of 1.2 closely

matches the suggested value from the exploratory α selection ranges we established

in Section 3.3.6. There is considerable overlap between the two components, so we

would expect that an α value around 1 or greater would be needed.
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Figure 3.24: Pairwise scatterplots for pfx x, pfx z, pitch speed, break angle, spin dir

for a random sample of 5,000 pitches, with fastballs in green and breaking balls

in blue. 2 MPDC-α solutions are shown. Above the diagonal, the solutions for

the breaking ball group are shown by the gold 1 and 2-sigma ellipses. Below the

diagonal, the solutions for the fastball group are shown by the red 1 and 2-sigma

ellipses. ŵfastball,α = 0.77; ŵbreaking,α = 0.41.
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When considering these 3 additional variables, we see that fastballs and breaking

balls tend to have the following characteristics, on average:

Variable Fastball Breaking Ball

Horiz. Movement 2.6 in. left 0.7 in. right

Vert. Movement 7.4 in. up 1.1 in. up

Speed 91 mph 81 mph

Break Angle 11 degrees -1.5 degrees

Spin Rate 2040 rpm 1215 rpm

Table 3.4: Comparison of fastballs and breaking balls with respect to five PITCHf/x

characteristics.



Chapter 4

Asymptotics

We wish to examine the behavior of our estimator, θ̂α, as n→∞. Basu et. al. (1998)

provided asymptotic results for µ̂α as well as the asymptotic distribution of σ̂2
α. We

will verify these results and extend them to the case of Σ = σ2Ip (σ unknown) and

unknown Σ for a general dimension p. The asymptotic distribution of the weight

parameter, ŵα, was computed in Section 2.3.1.

4.1 Motivation: p = 1

We begin by motivating our asymptotic distribution computations with the one-

dimensional cases. These distributions are given in Basu (1998), but the details of

their derivations are verified here.

80
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4.1.1 Asymptotic Distribution of µ̂α, Known σ

Lemma 4.1. Let X1, X2, ..., Xn be iid wN(µ, σ2)+(1−w)F ∗, and let µ̂α be the mean

component of the MPDC-α divergence estimator, θ̂α ≡ (ŵα, µ̂α). Then as n→∞:

√
n(µ̂α − µ)→ N

(
0,

(
1 +

α2

1 + 2α

)3/2
σ2

w

)
. (4.1)

Proof.

We define the model: fθ =
w√
2πσ

e−
1

2σ2
(x−µ)2 .

Taking the log: logfθ = log(w)− 1

2
log(2π)− log(σ)− 1

2σ2
(x− µ)2.

The score function is: uθ ≡
∂logfθ
∂µ

=
1

σ2
(x− µ).

Thus, ξ =

∫
uθf

1+α
θ

=

∫
x− µ
σ2

w1+α

(2π)
1+α
2
σ1+α

e−
1+α

2σ2
(x−µ)2

= 0.

Also, J =

∫
u2θf

1+α
θ

=

∫
(x− µ)2

σ4

w1+α

(2π)
1+α
2
σ1+α

e−
1+α

2σ2
(x−µ)2

= w1+α(2π)−
α
2 σ−(2+α)(1 + α)−

3
2 .

Then, K =

∫
u2θf

1+2α
θ

=

∫
(x− µ)2

σ4

w1+2α

(2π)
1+2α

2
σ1+2α

e−
1+2α

2σ2
(x−µ)2

= w1+2α(2π)−ασ−2(1+α)(1 + 2α)−
3
2 .
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Therefore,
K

J2
=

(1 + α)3

(1 + 2α)
3
2

σ2

w

=

[
(1 + α)2

(1 + 2α)
3
2

] 3
2
σ2

w

=

(
1 +

α2

1 + 2α

) 3
2 σ2

w
.

Thus,
√
n(µ̂α − µ)→ N

(
0,

(
1 +

α2

1 + 2α

)3/2
σ2

w

)
.

4.1.2 Asymptotic Distribution of σ̂α, Unknown σ

Lemma 4.2. Let X1, X2, ..., Xn be iid wN(µ, σ2)+(1−w)F ∗, and let σ̂α be the stan-

dard deviation component of the MPDC-α divergence estimator, θ̂α ≡ (ŵα, µ̂α, σ̂α).

Then as n→∞:

√
n(σ̂α − σ)→ N

(
0,

(1 + α)5

(2 + α2)2

[
2(1 + 2α2)

(1 + 2α)5/2
− α2

(1 + α)3

]
σ2

w

)
. (4.2)

Proof.

The score function is: uθ =

(
∂logf

∂µ
,
∂logf

∂σ

)T
=

(
x− µ
σ2

,
(x− µ)2 − σ2

σ3

)T
.

Then, ξ =

∫
uθf

1+α
θ =

(
0,
w1+α(2π)−α/2ασ−1−α

(1 + α)3/2

)T
.

Next, J =

∫
uθu

T
θ f

1+α
θ =

w1+α(2π)−α/2σ−(2+α)

(1+α)3/2
0

0 w1+α(2π)−α/2(2+α2)σ−2−α

(1+α)5/2

 .
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Also, K =

∫
uθu

T
θ f

1+2α
θ − ξξT

=

w1+2α(2π)−ασ−2(1+α)

(1+2α)3/2
0

0 w1+2α21−απ−α(1+2α2)σ−2(1+α)

(1+2α)5/2

−
0 0

0 w2+2α(2π)−αα2σ−2(1+α)

(1+α)3

 .

Therefore,

J−1KJ−1 =


(1+α)3σ4+2α−2(1+α)

w(1+2α)3/2
0

0
(2π)α(1+α)5σ4+2α

(
21−απ−α(1+2α2)σ−2(1+α)

(1+2α)5/2
− (2π)−αα2σ−2α

(1+α)3

)
w(2+α2)2

 .

Thus,

√
n(σ̂α − σ)→ N

(
0,

(1 + α)5

(2 + α2)2

[
2(1 + 2α2)

(1 + 2α)5/2
− α2

(1 + α)3

]
σ2

w

)
.

4.2 General p

We derive the asymptotic distribution of the MPDC-α estimator θ̂α ≡ (ŵα, µ̂α, Σ̂α)

for a general dimension p.

4.2.1 Asymptotic Distribution of µ̂α, Known Σ

Lemma 4.3. Let X1,X2, ...,Xn be iid wN(µ,Σ) + (1 − w)F ∗, and let µ̂α be the

mean component of the MPDC-α divergence estimator, θ̂α ≡ (ŵα, µ̂α, Σ̂α). Then as

n→∞:

√
n(µ̂α − µ)→ N

(
0p,

1

w

(
1 +

α2

1 + 2α

)p/2+1

Σ

)
. (4.3)
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Proof.

We observe that: ξ =

∫
uθf

1+α
θ = 0.

Integrating by parts, we get that:

J =

∫
uθu

T
θ f

1+α
θ =

∫
w1+αΣ−1(x− µ)(x− µ)TΣ−1

(2π)p(1+α)/2|Σ|(1+α)/2
e−

1
2
(x−µ)T ( Σ

1+α)
−1

(x−µ)

=
w1+αΣ−1(1 + α)−p/2

(2π)pα/2|Σ|α/2(1 + α)

∫
e−

1
2
(x−µ)T ( Σ

1+α)
−1

(x−µ)

(2π)p/2| Σ
1+α
|1/2

= w1+α(2π)−pα/2|Σ|−α/2(1 + α)−p/2−1Σ−1.

Similarly, K =

∫
uθu

T
θ f

1+2α
θ = w1+2α(2π)−p(2α)/2|Σ|−2α/2(1 + 2α)−p/2−1Σ−1

= w1+2α(2π)−pα|Σ|−α(1 + 2α)−p/2−1Σ−1.

Then, J−1KJ−1 =
1

w
(1 + α)p+2(1 + 2α)−p/2−1Σ

=
1

w

(
1 + α√
1 + 2α

)p+2

Σ

=
1

w

[
(1 + α)2

1 + 2α

]p/2+1

Σ

=
1

w

(
1 +

α2

1 + 2α

)p/2+1

Σ.

Thus,

√
n(µ̂α − µ)→ N

(
0p,

1

w

(
1 +

α2

1 + 2α

)p/2+1

Σ

)
.

4.2.2 Asymptotic Distribution of Σ̂α, Σ = σ2Ip, σ Unknown

Lemma 4.4. Let X1,X2, ...,Xn be iid wN(µ,Σ = σ2Ip)+(1−w)F ∗, and let Σ̂α be

the covariance component of the MPDC-α divergence estimator, θ̂α ≡ (ŵα, µ̂α, Σ̂α).
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Then as n→∞:

√
n(σ̂α − σ)1p → N

(
0p,

(1 + α)p+4

[p2(1 + α)2 − 2p(1 + α) + 3]2
{
p2[(1 + 2α)−p/2−

(1 + α)−p]− 2p[(1 + 2α)−p/2−1 − (1 + α)−p−1]+

[3(1 + 2α)−p/2−2 − (1 + α)−p−2]
} σ2

w
Ip

)
.

(4.4)

Proof.

The model: fθ = wN(µ, σ2Ip) = w(2π)p/2σ−pe
1

2σ2
(x−µ)T (x−µ).

Taking the log: logfθ = log(w)− plogσ − 1

2σ2
(x− µ)T (x− µ).

The score function: uθ =
∂logf

∂σ
=

(x− µ)T (x− µ)− pσ2

σ3
.

Then, ξ =

∫
uθf

1+α
θ =

∫ [
(x− µ)T (x− µ)− pσ2

σ3

]
w1+αe

1+α

2σ2
(x−µ)T (x−µ)

(2π)p(1+α)/2σp(1+α)

=

∫
(x− µ)T (x− µ)w1+αe

1+α

2σ2
(x−µ)T (x−µ)

(2π)p(1+α)/2σp(1+α)+3
−∫

pw1+αe
1+α

2σ2
(x−µ)T (x−µ)

(2π)p(1+α)/2σp(1+α)+1

= w1+α(2π)−pα/2σ−pα−1
[
(1 + α)−p/2−1 − p(1 + α)−p/2

]
= w1+α(2π)−pα/2σ−pα−1(1 + α)−p/2

[
1

1 + α
− p
]

= w1+α(2π)−pα/2σ−pα−1(1 + α)−p/2−1 [1− p(1 + α)] .
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Next, J =

∫
uθu

T
θ f

1+α
θ

=

∫ {[
(x− µ)T (x− µ)− pσ2

σ3

] [
(x− µ)T (x− µ)− pσ2

σ3

]
×

w1+αe
1+α

2σ2
(x−µ)T (x−µ)

(2π)p(1+α)/2σp(1+α)

}

=

∫
w1+α(x− µ)T (x− µ)(x− µ)T (x− µ)− 2pσ2(x− µ)T (x− µ) + p2σ4

σ6

= w1+α[3(1 + α)−p/2−2(2π)−pα/2σ−pα−2 − 2p(1 + α)−p/2−1(2π)−pα/2σ−pα−2+

p2(1 + α)−p/2(2π)−pα/2σ−pα−2]

=
(1 + α)2 − 2(1 + α) + 3

(1 + α)2
w1+α(2π)−pα/2σ−pα−2(1 + α)−p/2×

[
p2 − 2p(1 + α)−1 + 3(1 + α)−2

]
= w1+α(2π)−pα/2σ−pα−2(1 + α)−p/2−2

[
p2(1 + α)2 − 2p(1 + α) + 3

]
.

Similarly, K =

∫
uθu

T
θ f

1+2α
θ − ξξT

= w1+2α(2π)−pασ−2(pα+1)(1 + 2α)−p/2−2
[
p2(1 + 2α)2 − 2p(1 + 2α) + 3

]
− w1+2α(2π)−pασ−2(pα+1)(1 + α)−p−2[1− p(1 + α)]2

= w1+2α(2π)−pασ−2(pα+1)
{
p2
[
−(1 + α)−p + (1 + 2α)−p/2

]
−

2p
[
−(1 + α)−p−1 + (1 + 2α)−p/2−1

]
+[

−(1 + α)−p−2 + 3(1 + 2α)−p/2−2
]}
.

Therefore,

J−1KJ−1 =
(1 + α)p+4

[p2(1 + α)2 − 2p(1 + α) + 3]2
{
p2
[
(1 + 2α)−p/2 − (1 + α)−p

]
−

2p
[
(1 + 2α)−p/2−1 − (1 + α)−p−1

]
+[

3(1 + 2α)−p/2−2 − (1 + α)−p−2
]} σ2

w
Ip.
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Thus,

√
n(σ̂α − σ)1p → N

(
0p,

(1 + α)p+4

[p2(1 + α)2 − 2p(1 + α) + 3]2
{
p2[(1 + 2α)−p/2−

(1 + α)−p]− 2p[(1 + 2α)−p/2−1 − (1 + α)−p−1]+

[3(1 + 2α)−p/2−2 − (1 + α)−p−2]
} σ2

w
Ip

)
.

4.2.3 Asymptotic Distribution of (σ̂1,α, ..., σ̂p,α)′, Unknown Σ

Lemma 4.5. Let X1,X2, ...,Xn be iid wN(µ,Σ) + (1 − w)F ∗. Let (σ̂1,α, ..., σ̂p,α)′

be the vector of standard deviations from Σ̂α and (σ1, ..., σp)
′ the vector of standard

deviations from Σ. As n→∞:
√
n((σ̂1,α, ..., σ̂p,α)′ − (σ1, ..., σp)

′)→

N
(
0p,

1

w

(1 + α)p+4

[p2(1 + α)2 − 2p(1 + α) + 3]2
{
p2[(1 + 2α)−p/2 − (1 + α)−p]−

2p[(1 + 2α)−p/2−1 − (1 + α)−p−1] + [3(1 + 2α)−p/2−2 − (1 + α)−p−2]
}

Σ
)
.

Proof. We generalize Lemma 4.4.

4.2.4 Asymptotic Distribution of ρ̂α, Unknown ρ

Lemma 4.6. Let X1,X2, ...,Xn be iid wN(0p,Σ)+(1−w)F ∗. Let ρ̂α be an arbitrary

correlation from Σ̂α and ρ the corresponding correlation from Σ. As n→∞:

√
n(ρ̂α − ρ)→d N

(
0,

(1 + α)p

(1 + 2α)p/2
(1− ρ2)2

w

)

Proof. Assume W.L.O.G. Σjj = 1 ∀j ∈ [1, p] and ρ is the only non-zero correlation.

We define the model: fθ = wφ(x|µ,Σ) =
e−

1
2
(x−µ)TΣ−1(x−µ)

(2π)p/2|Σ|1/2
.
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Then we obtain an estimate of the divergence function by plugging the model into

(1.1):

d̂α =

∫
w1+αe−

1+α
2
xTΣ−1x

(2π)p(1+α)/2(1− ρ2) 1+α
2

−
(

1 +
1

α

)
1

n

n∑
i=1

[
wαe−

α
2
xTi Σ−1xi

(2π)pα/2(1− ρ2)α2

]
.

Letting γ1 ≡
∫

w1+αe−
1+α
2
xTΣ−1x

(2π)p(1+α)/2(1− ρ2) 1+α
2

= w1+α(2π)−pα/2(1 + α)p/2(1− ρ2)−α/2

and γ2 ≡
wαe−

α
2
xTi Σ−1xi

(2π)pα/2(1− ρ2)α2
,

we get E[γ2] =

∫
w1+2αe−

1+α
2
xTΣ−1x

(2π)p(1+α)/2(1− ρ2) 1+α
2

= γ1.

Thus, d̂α = γ1 −
(

1 +
1

α

)
1

n

n∑
i=1

[(γ2 − γ1) + γ1]

= − 1

α
γ1 −

(1 + 1
α

)
√
n

Z
√

Σ(θ), where Σ(θ) ≡ V ar(γ2).

To find ρ̂ we differentiate with respect to ρ:

∂d̂α
∂ρ

= −γ1
ρ

1− ρ2
+ 2

1 + α√
n
Z
√

Σ(θ)
ρ

1− ρ2
= 0.

Therefore,
√
n (ρ̂− ρ)→d N

(
0,

[
1− Σ(θ)

γ21

]
(1− ρ2)2

)
as n→∞

→d N

(
0,

(1 + α)p

(1 + 2α)p/2
(1− ρ2)2

w

)
.

4.3 Simulation to Verify Asymptotic Results

To verify our asymptotic results, we simulate M = 1000 samples of size n = 1000

from the mixture distribution

3

4
N


0

0

 , I2

+
1

4
N


7

0

 , I2

 .
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This corresponds to the two-dimensional case of well-separated clusters with zero

correlation from Section 3.3.1. Because we found an α value of 0.5 to be in the

optimal range for that case, we will fix α to be 0.5 for this simulation.
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Figure 4.1: Sampling Distributions for Components of θ̂α. Obtained via 1000 simula-

tions of samples of size n = 1000 from a bivariate Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0)′;µ2 = (7, 0)′; Σ1 = Σ2 = I2. Theoretical asymptotic

densities are shown in red.

Figure 4.1 shows the resulting sampling distributions for ŵα, µ̂α,
√

Σ̂jj,α (where
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j = 1 or 2), and ρ̂12,α. The estimated sampling distributions of ŵα (top left) and

ρ̂12,α (bottom right) are approximately Normal, and the estimated bivariate sampling

distributions of µ̂α (top right) and σ̂j,α =
√

Σ̂jj,α (bottom left) are approximately

bivariate Normal. We check that the parameters we have derived for these asymptotic

distributions are accurate.

4.3.1 Verification of Asymptotic Distribution of ŵα

Recall from Section 2.3.1 that the asymptotic distribution of ŵα is

N

w, 1
w

[
(1+α)p

(1+2α)p/2
− 1
]

n

 .

Thus, for p = 2, n = 1000 and α = 0.5, ŵα is asymptotically Normal with mean w =

0.75 and variance
1
w

[
(1+α)p

(1+2α)p/2
−1

]
n

=
(1.5)2

21
−1

750
= 1.667 x 10−5. From our simulation, we

yielded Ê[ŵα] = 0.7502 and V̂ ar[ŵα] = 1.551 x 10−5, which are close to the theoretical

results.

4.3.2 Verification of Asymptotic Distribution of µ̂α

Recall from Section 4.2.1 that the asymptotic distribution of µ̂α is

N

µ, 1
w

(
1 + α2

1+2α

)p/2+1

n
Σ

 .

Thus, for p = 2, n = 1000 and α = 0.5, µ̂α is asymptotically bivariate Normal

with mean µ = ( 0
0 ) and covariance matrix

1
w

(
1+ α2

1+2α

)p/2+1

n
Σ =

1
w

(
1+

(0.5)2

2

)2

750
I2 =

( 0.001688 0.000000
0.000000 0.001688 ). From our simulation, we yielded Ê[µ̂α] = ( 0.000360

−0.002038 ) and Ĉov[µ̂α] =(
0.001692 −0.000033
−0.000033 0.001705

)
, which are fairly close to the theoretical results.
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4.3.3 Verification of Asymptotic Distribution of σ̂j,α =
√

Σ̂jj,α

Recall from Section 4.2.3 that the asymptotic distribution of σ̂j,α has a mean of σj

and variance

1

w

(1 + α)p+4

[p2(1 + α)2 − 2p(1 + α) + 3]2
{
p2[(1 + 2α)−p/2−

(1 + α)−p]− 2p[(1 + 2α)−p/2−1 − (1 + α)−p−1]+

[3(1 + 2α)−p/2−2 − (1 + α)−p−2]
} σ2

j

n
.

Thus, for p = 2, n = 1000 and α = 0.5, for j ∈ {1, 2}, σ̂j,α =
√

Σ̂jj,α is asymptotically

Normal with mean σj = 1 and variance = 0.004967. From our simulation, we yielded

Ê[σ̂1,α] = 1.0028, Ê[σ̂2,α] = 0.9933, V̂ ar[σ̂1,α] = 0.004398, V̂ ar[σ̂1,α] = 0.004239,

which are close to the theoretical results.

4.3.4 Verification of Asymptotic Distribution of ρ̂12,α

Using the asymptotic result from Section 4.2.4, we know that the asymptotic dis-

tribution of ρ̂12,α is Normal with mean ρ12 and variance
1
w

(1+α)p

(1+2α)p/2
(1−ρ212)2

n
. Thus, for

p = 2, n = 1000 and α = 0.5, ρ̂12,α is asymptotically Normal with mean ρ12 = 0

and variance = 0.001500. From our simulation, we yielded Ê[ρ̂12,α] = 0.0006 and

V̂ ar[ρ̂12,α] = 0.001738, which are close to the theoretical results.



Chapter 5

Regression

Now that we have established the theoretical background and applicability of the

MPDC-α divergence estimator to parametric estimation, we move on to consider the

MPDC-α approach in a robust regression context.

As in the usual setting, we define a regression model of response variable y on the

data matrix X:

y = β′X + ε (5.1)

Scott (2001) extends the MPDC approach to regression. We assume the residuals, εi,

come from the model

f(εi|θ) = wφ(εi|θ), (5.2)

where θ = (w,β, σε).

We then apply the α-divergence function to yield θ̂α = (ŵα, β̂α, σ̂ε,α).

93
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5.1 Criterion Definition

Just as we did for parametric estimation, we construct the setting for our simulated

regression cases, which will draw residuals from a two-component Normal mixture.

It should be noted that the applicability of the MPDC-α divergence estimator is not

limited to these cases. We can utilize θ̂α for pure samples as well as samples with

outliers, and the contamination can be particular points or a cluster of points. The

framework for our study will be defined as follows:

Given an iid sample of residuals (ε1, ε2, ..., εn)′ from the mixture

wN(0, σ2
ε1) + (1− w)N(0, σ2

ε2)

and model

f(εi|θ) = wφ(εi|θ)

we estimate the parameter vector θ = (w,β, σε) with θ̂α by solving the following

optimization problem for α > 0:

θ̂α = argmin
θ

[∫
f 1+α −

(
1 +

1

α

)
1

n

n∑
i=1

f(εi)
α

]

= argmin
θ

[∫
w1+αe

− 1+α

2σ2ε
ε2i

(
√

2πσε)1+α
−
(

1 +
1

α

)
wα

n

n∑
i=1

φ(εi)
α

]

= argmin
θ

 w1+α

(
√

2πσε)α
√

1 + α

∫
e

− ε2i

2

(
σε√
1+α

)2

√
2π
(

σε√
1+α

) − (1 +
1

α

)
wα

n

n∑
i=1

φ(εi)
α


= argmin

θ

 w1+α

(
√

2πσε)α
√

1 + α
−
(

1 +
1

α

)
wα

n

n∑
i=1

e
−αε

2
i

2σ2ε

(
√

2πσε)α

 .
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Thus,

θ̂α =



argmin
θ

 w1+α

(
√
2πσε)α

√
1+α
−
(
1 + 1

α

)
wα

n

∑n
i=1

e
−
αε2i
2σ2ε

(
√
2πσε)α

 α > 0

θ̂LS α = 0

.

where θ̂LS denotes the least-squares estimator.

5.2 Parameter Transformations

As we did in the case of parametric density estimation, we will apply transforma-

tions to the regression parameters for the purposes of the unconstrained optimization

algorithm.

5.2.1 w: logit transformation

We apply the same logit transformation as we did in the parametric density estimation

setting to τ(w):

τ(w) = log

(
w

1− w

)
, (5.3)

so that when we reverse the transformation, we get:

w =
1

1 + e−τ
. (5.4)

This yields the desired range of (0,1) for values of w.
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5.2.2 σε: exp transformation

In order to keep σε in the range of (0,∞), we exponentiate it:

ν = exp(σε) (5.5)

We will optimize over ν.

5.3 Simulated Cases

The regression settings we consider involve varying degrees of contamination and

separation of the contamination from the main data. We will revisit some of our

motivating examples from Section 1.1.2.

Example 5.1: We simulate a sample of size n = 100. Let x1, x2, ..., x80 ∼

iid U(−5, 5) and yi = 2xi − 5 + ei for 1 ≤ i ≤ 80, where e1, e2, ..., e80 ∼ iid N(0, 1).

Then, let x81, x82, ..., x100 ∼ iid U(−5,−2) and y81, y82, ..., y100 ∼ iid U(10, 20).

Trace plots for ŵα, β̂α, and σ̂ε,α can be found in Figure 5.1. The estimates converge

to their true values around α = 0.25, shown by the dashed red vertical line.
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Figure 5.1: Regression Example 1 - Outlying Cluster (20% contamination): Trace

plots of MPDC-α divergence estimates (in black) for α ranging from 0 to 1 by incre-

ments of 0.025. Also shown are the targeted parameter values (least-squares estimates

computed on just the targeted cluster, in blue), the best α choice for the example (in

red), and the L2E mark (in purple) as a reference.
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Figure 5.2: Regression Example 1 - Outlying Cluster (20% contamination). MPDC-α

estimate for α = 0.25 is shown (red) along with least-squares (LS Combined, in green)

estimate is shown and least-squares estimate for only the uncontaminated data (LS

1, in black).

The simulated data for Example 5.1 can be seen in Figure 5.2. The least-squares
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line is affected considerably by the outlying cluster, while the MPDC-α estimate with

α = 0.25 provides a robust, consistent solution. We investigate the effect on α of

increasing the overlap and level of contamination in the data to 50%.

Example 5.2: We simulate a sample of size n = 100. Let x1, x2, ..., x50 ∼

iid U(−5, 5) and yi = 2xi − 5 + ei for 1 ≤ i ≤ 50, where e1, e2, ..., e50 ∼ iid N(0, 1).

Then, let x51, x52, ..., x100 ∼ iid U(−5,−2) and y51, y52, ..., y100 ∼ iid U(0, 10).

We have now increased the level of contamination to 50%. As we can see in

Figure 5.3, the estimates converge to the true values around an α value of 1.4. The

increase in contamination has led us to rely on a higher α value to yield an unbiased

solution.
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Figure 5.3: Regression Example 2 - Outlying Cluster (50% overlapping contamina-

tion): Trace plots of MPDC-α divergence estimates (in black) for α ranging from 0

to 2.5 by increments of 0.025. Also shown are the targeted parameter values (least-

squares estimates computed on just the targeted cluster, in blue), the best α choice

for the example (in red), and the L2E mark (in purple) as a reference.
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Figure 5.4: Regression Example 2 - Outlying Cluster (50% overlapping contamina-

tion). MPDC-α estimate for α = 1.4 is shown (red) along with least-squares (LS

Combined, in green) estimate is shown and least-squares estimate for only the un-

contaminated data (LS 1, in black).

The simulated data for Example 5.2 can be seen in Figure 5.4. The LS line is
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even more greatly affected by the outliers since there are more of them than in the

previous example. MPDC-α regression with α = 1.4 provides a consistent solution.

Once again, L2E fails to reach the desired solution when the least-squares estimates

are used as the initial values.

We have shown the need for α values beyond 1 in particular cases of contamination

that comprises a large fraction of the data and/or lies in a particular orientation with

respect to the main data. Next we explore a special non-linear regression case for

which these high α values once again become valuable.

5.4 Mixed Quadratic Example

We consider an example where we have a mixture of two clusters that can each be

modeled by a separate quadratic function:

y = β1 + β2x+ β3x
2 + ε, (5.6)

where ε has mean 0 and standard deviation σε. We simulate a sample of size n = 100.

Let x1, x2, ..., x100 ∼ iid U(−2.5, 2.5) and yi = 3x2 − 2xi + 5 + ei for 1 ≤ i ≤ 50 and

yi = −2x2 + xi − 10 + ei for 51 ≤ i ≤ 100 , where e1, e2, ..., e100 ∼ iid N(0, 1).
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Figure 5.5: Sample of size n = 100 simulated from equal mixture of two quadratic

functions with N(0, 1) noise added to each: Y1 = 3X2−2X+5, Y2 = −2X2 +X−10.

Also shown are least-squares estimate of Y1 on (X,X2)′ (LS 1, shown in red), least-

squares estimate of Y2 on (X,X2)′ (LS 2, shown in blue), and least-squares estimate

of (Y1, Y2)
′ on (X,X2)′ (LS Combined, shown in green).
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The resulting sample can be seen in Figure 5.5, along with the separate least-

squares fits for each cluster and the combined least-squares fit for all the data points.

We will put the MPDC-α divergence regression method to the test to see if it can

converge to the two separate solutions (red and green lines).

Because of the local nature of our method, it is essential to be mindful of the

starting values we use for the algorithm. Thus, we generate N = 200 random starts

as follows:

• β1,0 ∼ U(−30, 30)

• β2,0 ∼ U(−20, 20)

• β3,0 ∼ U(−10, 10)

• σε,0 ∼ U( sy
20
, sy

2
)

We then run the MPDC-α divergence algorithm for these 200 random starts for

a range of α values.
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Figure 5.6: Resulting MPDC-α estimates for 200 random starts for sample of size

n = 100 generated from mixture of quadratic functions with N(0, 1) noise added to

each: Y1 = 3X2 − 2X + 5, Y2 = −2X2 +X − 10.

The results are shown in Figure 5.6, with the black lines denoting the solutions

yielded by MPDC-α divergence regression. As we would expect, for α values close to
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0, we converge to a solution close to the least-squares fit for all of the data, which

misses all of the points. As α increases, we see that solutions start to take the

quadratic shape, but they still miss the bulk of the points. It is not until α = 2.5

that we see consistent convergence to 4 solutions, 2 of which are the least-squares

fits for the individual clusters. Thus, the additional robustness provided by α values

beyond 1 allows us to detect these local solutions. There is an upper threshold to

this robustness, as we can see by the sporadic solutions for α = 3.5. The α range of

2.5 to 3 provides consistent solutions for this example.



Chapter 6

Conclusions and Future Work

We have developed the framework for the MPDC-α divergence estimator, which pro-

vides a robust procedure for estimating particular functional components. A deeper

exploration of exact computing times and comparison with those of other robust al-

gorithms such as the FAST-MCD is needed. The selection of α should be done with

consideration for characteristics of the data, any prior knowledge about the level of

contamination, and ensuring that not too much efficiency is sacrificed depending on

the dimension p. Values of α in the range of [0.3, 0.5] serve us well when estimating

parameters with data that has contamination that is well-separated from the main

data. When there is overlap between the contamination and main data, we benefit

from α values between 0.5 and 2, depending on the dimension of the problem. Basu’s

α-divergence procedure limited the range of α values to [0,1], and we have found

usefulness for values of α greater than 1, particularly in the case of low-dimensional

parametric density estimation as well as for robust regression when there is high

contamination or considerable overlap between the main and contaminated data.
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Other parameter transformations can also be attempted to help improve compu-

tational efficiency, including the Givens parametrization for the covariance matrix.

We would also like to explore other parametric models to be used with the MPDC,

such as a Beta distribution, and nonparametric approaches such as kernel estimation

with the incorporation of the α-divergence function. While it is not explored here, if

α increases to a certain level (beyond 3 in many of the parametric estimation cases),

the estimates yielded by MPDC-α mimic the behavior of modal estimates – this con-

nection could be further investigated. We would also examine other applications for

the MPDC-α estimator, including estimating the covariance matrix for a financial

time series model.
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Appendix

Optimizer: nlminb

For our optimization we use the nlminb() function in R. Without altering the default,

the function performs unconstrained optimization on the objective for the given initial

values. Because of some numerical rounding errors, we introduced a small additive

adjustment factor, ε, to our objective in order to keep the algorithm stable.

Parametric Estimation Trace Plots for 6 ≤ p ≤ 10

These are the trace plots of the parameter estimates for the cases of p ∈ [6, 10].
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Figure A.1: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2

by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0, 0, 0, 0)′;µ2 = (3, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I6.
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Figure A.2: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2

by increments of 0.025. Black lines represent parameters of interest, and red lines

indicate other parameters that we track to assure algorithm stability. Estimates

based on sample of size n = 1000 simulated from Normal mixture distribution with

parameters: w = 0.75;µ1 = (0, 0, 0, 0, 0, 0)′;µ2 = (7, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I6.
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Figure A.3: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2 by

increments of 0.025. Black lines represent parameters of interest, and red lines indicate

other parameters that we track to assure algorithm stability. Estimates based on

sample of size n = 1000 simulated from Normal mixture distribution with parameters:

w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0)′;µ2 = (3, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I7.
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Figure A.4: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2 by

increments of 0.025. Black lines represent parameters of interest, and red lines indicate

other parameters that we track to assure algorithm stability. Estimates based on

sample of size n = 1000 simulated from Normal mixture distribution with parameters:

w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0)′;µ2 = (7, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I7.
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Figure A.5: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2 by

increments of 0.025. Black lines represent parameters of interest, and red lines indicate

other parameters that we track to assure algorithm stability. Estimates based on

sample of size n = 1000 simulated from Normal mixture distribution with parameters:

w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (3, 0, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I8.
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Figure A.6: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2 by

increments of 0.025. Black lines represent parameters of interest, and red lines indicate

other parameters that we track to assure algorithm stability. Estimates based on

sample of size n = 1000 simulated from Normal mixture distribution with parameters:

w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (7, 0, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I8.
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Figure A.7: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2 by

increments of 0.025. Black lines represent parameters of interest, and red lines indicate

other parameters that we track to assure algorithm stability. Estimates based on

sample of size n = 1000 simulated from Normal mixture distribution with parameters:

w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (3, 0, 0, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I9.
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Figure A.8: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2 by

increments of 0.025. Black lines represent parameters of interest, and red lines indicate

other parameters that we track to assure algorithm stability. Estimates based on

sample of size n = 1000 simulated from Normal mixture distribution with parameters:

w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (7, 0, 0, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I9.
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Figure A.9: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2

by increments of 0.025. Black lines represent parameters of interest, and red lines in-

dicate other parameters that we track to assure algorithm stability. Estimates based

on sample of size n = 1000 simulated from Normal mixture distribution with pa-

rameters: w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (3, 0, 0, 0, 0, 0, 0, 0, 0, 0)′; ρ12 =

0.75; Σ2 = I10.
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Figure A.10: Trace plots of MPDC-α divergence estimates for α ranging from 0 to 2

by increments of 0.025. Black lines represent parameters of interest, and red lines in-

dicate other parameters that we track to assure algorithm stability. Estimates based

on sample of size n = 1000 simulated from Normal mixture distribution with pa-

rameters: w = 0.75;µ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (7, 0, 0, 0, 0, 0, 0, 0, 0, 0)′; ρ12 =

0.75; Σ2 = I10.
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Parametric Estimation RMSE Plots for 6 ≤ p ≤ 10

These are the RMSE plots for α selection for the cases of p ∈ [6, 10].
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Figure A.11: Selection of α for p = 6. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0, 0, 0, 0)′;µ2 = (s, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I6.



123

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

α

R
M
S
E

s=3
s=5
s=7
MinRMSE
<= 1.1*MinRMSE

Figure A.12: Selection of α for p = 7. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0, 0, 0, 0, 0)′;µ2 = (s, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I7.
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Figure A.13: Selection of α for p = 8. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (s, 0, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I8.
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Figure A.14: Selection of α for p = 9. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (s, 0, 0, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I9.
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Figure A.15: Selection of α for p = 10. RMSE of MPDC-α estimate versus α for

three different degrees of separation (s). Derived from 100 simulations of samples of

size n = 1000 from a Normal mixture distribution with parameters: w = 0.75;µ1 =

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′;µ2 = (s, 0, 0, 0, 0, 0, 0, 0, 0, 0)′; ρ12 = 0.75; Σ2 = I10.
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R Code

########### MPDC-Alpha Divergence Criterion & Estimation ############

########################## Justin Silver ###########################

######################### Rice University ###########################

#################### Department of Statistics #######################

# MPDC-alpha criterion, small additive factor epsilon

crit = function(x, alpha=alpha, X=X, eps=eps) {

n = nrow(X); p = ncol(X) # dimensions of data

U <- matrix(0,p,p); U[col(diag(p))>=row(diag(p))] <-

x[1:(p*(p+1)/2)]

diag(U) = exp(diag(U)) # transformation of Cholesky

U[col(diag(p))>row(diag(p))]=2/(1+exp(-U[col(diag(p))>

row(diag(p))]))^2-1

w = 1/(1+exp(-x[p*(p+1)/2+1])) # logistic transformation of weight

mu <- rep(NA, p); mu = x[(p*(p+1)/2+2):((p+2)*(p+1)/2)] # mean vec.

d = prod(diag(U)) # Cholesky determinant

# computationally efficient criterion

w^(1+alpha)*(2*pi)^(-p*alpha/2)*(1+alpha)^(-p/2)*d^alpha-

(1+1/alpha)*w^alpha/n*sum((2*pi)^(-p*alpha/2)*d^alpha*

exp(-.5*alpha*rep(1,p)%*%(U%*%(t(X)-mu))^2))-eps

}
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# Function yielding parameter estimates for range of alpha values

alp.div <- function(X, parms, alpha, eps, p) {

# Reverse parameter transformations

U <- matrix(0,p,p); U[col(diag(p))>=row(diag(p))] <-

parms[1:(p*(p+1)/2)]

diag(U) = log(diag(U))

U[col(diag(p))>row(diag(p))] <- -log(sqrt(2/(1+U[col(diag(p))>

row(diag(p))]))-1)

w = parms[p*(p+1)/2+1]; mu <- rep(NA,p); mu = parms[(p*(p+1)/2+2):

((p+2)*(p+1)/2)]

x0 = c(U[col(diag(p))>=row(diag(p))],log(w/(1-w)), mu) # init. vals

# unconstrained minimization

ans = nlminb(x0,crit,alpha=alpha,X=X,eps=eps,control=list(

iter.max=500,eval.max=500))

U <- matrix(0,p,p); U[col(diag(p))>=row(diag(p))] <-

ans$par[1:(p*(p+1)/2)]

diag(U) = exp(diag(U))

U[col(diag(p))>row(diag(p))] <- 2/(1+exp(-U[col(diag(p))>

row(diag(p))]))^2-1
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w = 1/(1+exp(-ans$par[p*(p+1)/2+1]))

mu <- rep(NA, p); mu = ans$par[(p*(p+1)/2+2):((p+2)*(p+1)/2)]

obj = ans$obj; conv = ans$conv # examine objective and convergence

list(w=w, mu=mu, sig=chol2inv(U), obj=obj, conv=conv) # par. est.

}


