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 Off-road and racing motorcycles require a particular setup of the suspension to 

improve the comfort and the safety of the rider. Further, due to ground unevenness, off-

road motorcycle suspensions usually experience extreme and erratic excursions in 

performing their function. In this regard, the adoption of nonlinear devices, such as 

progressive springs and hydro pneumatic shock absorbers, can help limiting both the 

acceleration experienced by the sprung mass and the excursions of the suspensions. For 

dynamic analysis purposes, this option involves the solution of the nonlinear differential 

equations that govern the motion of the motorcycle, which is excited by the stochastic road 

ground profile. In this study a 4-degree-of-freedom (4-DOF) nonlinear motorcycle model is 

considered. The model involves suspension elements with asymmetric behaviour. Further, 

it is assumed that the motorcycle is exposed to loading of a stochastic nature as it moves 

with a specified speed over a road profile defined by a particular power spectrum. It is 

shown that a meaningful analysis of the motorcycle response can be conducted by using the 

technique of statistical linearization. The validity of the proposed approach is established 

by comparison with results from pertinent Monte Carlo studies. In this context the 

applicability of auto-regressive (AR) filters for efficient implementation of the Monte Carlo 

simulation is pointed out. The advantages of these methods for the synthesis of excitation 

signals from a given power spectrum, are shown by comparison with other methods. It is 



 

shown that the statistical linearization method allows the analysis of multi-degree-of-

freedom (M-DOF) systems that present strong nonlinearities, exceeding other nonlinear 

analysis methods in both accuracy and applicability. It is expected that the proposed 

approaches can be used for a variety of parameter/ride quality studies and as preliminary 

design tool by the motorcycle industry. 
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Chapter 1 

Literature Review 

1.1   Introduction 

     Since the first two-wheeled motorized vehicle was created in 1867 [1], the motorcycle 

has evolved to become a quite complex machine not only devoted to the task of 

transportation, but also to leisure and sports.  Many kinds, makers, and models are available 

in the world market nowadays. As an example of this diversity in motorcycle applications, 

it is noted that cruiser motorcycles, see for instance Figure 1.1, are designed to provide 

comfort to the rider and stability while driving on a straight path, and their design is 

intended to allow the rider to travel long distances by limiting fatigue and carrying heavy 

loads while keeping a stable straight motion. On the contrary, racing motorcycles, see for 

instance Figure 1.2, are designed to sustain high speeds and to allow the rider to make 

quick changes in direction in spite of sacrificing stability [43]. Further, off-road 

motorcycles, see for instance Figure 1.3, require to be light weight and easy to handle, and 

to have a stronger chassis as well [5]. In all these cases adherence to the road (wheel grip) 

is an important safety factor, which varies from type to type. Thus, wheel grip and comfort 

are two features a motorcycle must provide to more or less a degree depending on its 

potential use. These two requirements are achieved by means of a suspension system, 

which in general, must provide the following features [26, 93]:  

I. To isolate the main body of the motorcycle along with the driver from excessive 

and dangerous destabilizing vibrations produced by the interaction of the wheels 

and the road roughness; 
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Figure 1.1.  Harley Davidson XL1200R 

Roadster (From [207]). 

 

Figure 1.2.  Suzuki GSXR1000 2010  

  (From [208]). 

 

II. To ensure road adherence, by allowing the wheel to follow the road profile; 

III. To allow proper dynamical interaction between the tire and the road that ensures 

transmission of the necessary driving and braking forces.  

     Thus, the motorcycle suspension characteristics play a crucial role in ride quality, 

handling, and the generation of dynamic tire forces.  

     Basically, three elements are involved in a motorcycle dynamics analysis [93]: 

I. A model, which involves the dynamic characteristics of the mechanical system. 

It is specified by a set of ordinary differential equations (ODE´s) that can be 

either linear or nonlinear. 

 

Figure 1.3   Yamaha YZ250 2006 (From [209]).  
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II. An excitation source, in this case the road roughness which is specified by its 

power spectrum. 

III. The system response, which corresponds to the solution of the ODE´s and may 

be specified by time histories or a power spectrum. 

A more detailed explanation of each of these elements (Figure 1.4) is provided in chapters 

2, 5, and 6.  

     Besides comfort and ride, a dynamic analysis can provide useful information related to 

the motorcycle´s response properties that can be used to explore other areas such as [164]: 

I. Speed limitation due to road roughness and/or vehicle configuration 

II. Optimization of suspension characteristics 

III. Fatigue stresses and strains of vehicle structure due to vibration 

IV. Estimation of power losses due to vehicle vibration 

 

 

Figure 1.4 Elements of motorcycle dynamics analysis (adapted from [210]). 
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1.2   Bibliographical Review on Motorcycle Dynamics 

     A substantial body of literature has been devoted to study several aspects of single-track 

vehicles in which different concepts of motorcycle mathematical models are used with 

varying complexity which depends on the purpose of the study. Some of the areas of 

motorcycle research that involve the use of motorcycle models are [1, 43]: quantification of 

ride quality, analysis of modal behavior, motorcycle control, rider’s safety, motorcycle 

simulators, and experimental characterization of dynamic properties. Due to such 

multiplicity of applications, this review does not aim to be exhaustive; rather the goal is to 

present a general perspective of important contributions to the motorcycle dynamics field 

that help to set up the emphasis of this dissertation and to identify themes of opportunity for 

further contribution in this field.  

     The first attempts to mathematically describe a two-wheeled vehicle, seem to be the 

works that appeared in the 1890’s due to Klein and Sommerfeld [10], who set up the 

equations of motion of a bicycle; and the study of the stability of the motion of a bicycle by 

Whipple [11]. The pneumatic tire was invented in 1888, thus the effect of tire on the 

bicycle dynamics was not considered in those analyses [1]. Döhring and Braunschweig 

[12], based on the analysis of Klein and Sommerfeld, set up the linearized equations of 

motion for a motorcycle, and, by carrying out measurements on three vehicles, obtained 

machine constants to solve the equations of motion. Other researchers, like Collins [13] and 

Singh [14], conducted a more detailed analysis investigating the effects of several 

motorcycle parameters on its stability, and validated their results with experimental. One of 

the seminal contributions to motorcycle modeling was made by Sharp in 1971 [2]. This 

work contributed, through the use of a linearized model, to understanding the dynamic 
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behavior of a motorcycle in straight-running, moving forward at constant speed with 

freedom to sideslip, to yaw, and to roll (under small perturbations). The model comprises 

two rigid frames joined at an inclined steering axis, the rider being rigidly attached to the 

rear frame. This configuration is described by four degrees of freedom, namely lateral 

motion, yaw, roll, and steer. The equations are obtained using a Lagrangian approach, and 

they are linearized by assuming small perturbations during straight running at constant 

speed.  From this study Sharp predicted the existence of  three important modes which he 

called “weave“, “wobble“ and “capsize“. The term weave denotes an oscillation of the 

whole vehicle that involves yaw, roll, and steer motions. It is a low frequency (2-3 Hz) 

oscillation, highly damped at low speeds and less damped at higher speeds, which may 

become unstable. Wobble becomes present in the range of 7-9 Hz, it is highly damped, thus 

stable at low speeds, but turning lightly damped at high speeds. Wobble is a motion that 

involves primarily the rotation of the front steering system relative to the rear frame.  

Finally, capsize is a slow speed divergent instability of the whole vehicle falling onto its 

side. In a second contribution, Sharp [3] improves his previous model by taking into 

account the torsional flexibility of the rear wheel. The new results showed that, while the 

wobble and capsize modes were not noticeably affected, the weave mode damping was 

lower at medium and high speeds.  Sharp’s model has been used, in some cases with certain 

modifications, by himself and other researchers to investigate the acceleration and breaking 

in motorcycles [18, 19], and the effects of frame compliance on the straight running 

vibrational modes [21-24]. Black and Taylor [5] made an in-plane dynamic analysis of a 4-

degree-of-freedom (4-DOF) nonlinear model of an off-road motorcycle. The modes 

involved in the analysis are bounce, pitch, and movement of each wheel. The motorcycle 

moves at constant speed and the ground excitation is modeled as a sinusoidal ground 
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profile. The study follows a time domain approach. The results show that the response is 

highly nonlinear. The authors also concluded that the maximum acceleration experienced 

by the driver occurs when the vehicle is forced in a pitching motion. However, they were 

not able to obtain experimental data to validate the results. De Molina [6] applied the finite 

element method (FEM) to the simulation of the driving behavior of motorcycles. His results 

showed discrepancies with experimental data. Nevertheless, it was perhaps the first 

dynamic analysis of a motorcycle in which the finite element method was used. Yokomori 

et al. [32] investigated the effect of rider leaning on controlling the in-plane motion of a 

motorcycle moving at low speed.  

     The need to improve the stability aspects of motorcycles at high speeds has also 

attracted the attention of researchers who have used in-plane models to analyze wobble and 

weave modes and their relation to stability [24, 25, 27, and 28]. To achieve a better 

description of the dynamical behavior of a motorcycle in cornering –where both, in-plane 

and out-of-plane modes of vibration are coupled– more complex models have been 

proposed. Cossalter and Lot [29] developed a 3D multi-body model that involves eleven 

degrees of freedom and takes into account the non-linear properties of tires and 

suspensions. The natural coordinates approach was applied in the derivation of the 

equations of motion. Constant cornering and a flat road (no roughness) were considered. 

This model has been used to study the vibrational modes of a motorcycle in straight 

running and on a curve [33].  The complexity required in the description of a 3D model has 

led other researchers to opt for a computer assisted multi-body modeling approach [28, 29, 

and 31].  The availability of 3D models and multi-body codes has allowed the development 

of several motorcycle simulators [34, 35, and 37]. 
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1.3   Motivation and Objectives 

     Even though the amount of publications related to motorcycle dynamics is large, most of 

them present almost identical approaches for solving the governing nonlinear differential 

equations. Efforts for presenting new methods of simulating road excitations, which are 

stochastic in nature, are scarce. It is the stochastic nature of the road roughness, as it 

influences the motorcycle dynamics, which will be the focal point of this thesis. Naturally, 

this will lead to the formulation of a nonlinear stochastic dynamics problem. 

     Note there are several numerical techniques that are in use to solve nonlinear systems 

stochastic dynamic problems. However, with the exception of the Monte Carlo (MC) 

method, most methods present serious limitations when the nonlinear problems involve 

strong nonlinearities. A detailed discussion of these nonlinear methods is presented in 

Chapter 3. Clearly, if the model used is linear, besides the time domain approach, a 

frequency domain approach can be used [36].  However, when nonlinearities are present 

the traditional frequency domain approach does not apply [136]. Thus, if both nonlinear 

behavior and road randomness are to be considered in the dynamic analysis of motorcycles, 

the number of techniques available to deal with the problem is limited.  

     With regards to roughness modeling for time domain deterministic analysis, most of the 

studies in which the response of the motorcycle to ground excitation is studied, involve a 

sinusoidal type roughness. For stochastic approach studies, white noise is considered as the 

excitation in most of the cases. In other studies a sinusoidal excitation with either random 

amplitude or random angular phase is used. If the excitation is obtained from certain road 

power spectrum the harmonic superposition simulation method is the common choice 

among researchers.  
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     The previous discussion leads to consider the necessity of investigating alternate 

methods that can be included in motorcycle dynamics research, which may be implemented 

in a practical and reliable way, and to allow a significant reduction in the computing time.  

     To the author’s best knowledge, at the present time there are no reported studies that 

treat the case of the interaction between a motorcycle and the road by using a time domain 

approach in which the excitation complies with certain road roughness power spectrum and 

is generated by autoregressive (AR) filters. Further, neither use of the statistical 

linearization method (SLM) in both, the time domain approach and the frequency domain 

approach, is made in motorcycle dynamics studies. 

     In context with the preceding comments, the primary objective of this work is to propose 

the SLM as an alternate and reliable technique to tackle nonlinear problems that appear in 

the motorcycle dynamics field and involve strong nonlinearities. The SLM is chosen due to 

its computational simplicity and fast convergence to an accurate solution. The reason for 

choosing this particular method becomes clearer when investigating the problem presented 

in Chapter 7, concerning the estimation of the spectral characteristics of the response of a 

motorcycle model that includes nonlinear elements in its front and rear suspension systems, 

and is subjected to stationary road excitation. The thesis will show that, when the SLM is 

used to obtain the nonlinear system response from a linear approach, the results obtained 

are reliable in a wide range of velocities and for different kinds and degrees of 

nonlinearities included in the motorcycle model. To achieve this purpose, the results 

obtained from applying the SLM are validated by pertinent MC simulations, since no 

access to experimental data has been possible. 

     As previously mentioned, motorcycle dynamics analysis requires the generation of 

accurate excitation signals which comply with a prescribed road power spectrum. Thus, the 
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secondary objective of this dissertation is to advocate the use of AR filters for generating 

the input signals for the time domain analysis of the nonlinear system. Several features 

make these filters an effective tool in fitting a power spectrum and synthesizing signals that 

comply with it. They are computationally robust, and efficient, and allow reaching the 

desirable accuracy by simply increasing the order of the filter [64]. 

1.4   Thesis Outline 

     Chapter 2 introduces the topic of random processes and provides a discussion of the   

necessary concepts to understand the response of the motorcycle to road excitation as a 

stochastic process. The statistical parameters required to characterize a stochastic process 

are also reviewed. The justifications of certain assumptions used in the analyses presented 

are discussed here, in the case of the assumed normality of both the excitation and the 

system’s response. A brief discussion of concepts useful in signal processing is given, since 

it is required to work with signals in both the time and the frequency domains. The 

mathematical relationships employed in the spectral analyses of the motorcycle’s response 

are also included in this chapter. Certain elements of linear systems theory are also 

reviewed. Finally, the concepts presented with respect to a single-DOF system are extended 

to the case of multi-DOF (M-DOF) systems. 

      Chapter 3 presents a discussion of the methods of analysis of nonlinear systems 

commonly used in the automotive field. Advantages and drawbacks of each method are 

contrasted versus the SLM, which is proposed in the thesis as a method for the analysis of 

nonlinear M-DOF models of motorcycles. 

     Chapter 4 presents a discussion of the general formulation of the SLM applied to M-

DOF systems. A brief discussion of the state of the art of the method is provided, and a link 



10 

 

with the spectral theory is established. This chapter serves as the general background 

required to implement the technique in any field, while the particular details of 

implementation for the analysis of motorcycle dynamics are left for a subsequent chapter. 

      Chapter 5 is devoted to the description of road roughness and the generation of time 

series compatible with a given road power spectrum. An account of the state of the art in 

this subject is presented, and the concepts on random processes discussed in Chapter 2 are 

used to explain how roads are characterized. The main body of Chapter 5 is devoted to the 

synthesis of excitation time histories by means of auto-regressive-moving-average (AR) 

filters. The theory of this algorithm is briefly discussed and it is shown, by an example, 

how the technique can be applied. 

     Chapter 6 reviews certain elements of motorcycle dynamics. The classification of the 

motorcycle motion in two general modes is established, but the discussion is focused 

primarily on in-plane motion. Nevertheless, a general description of the motorcycle in 

geometric terms is given. Also, the main components of a motorcycle that are essential to 

obtain a simplified model are discussed along with the required simplifying assumptions. A 

4-DOF motorcycle model is presented. The derivation of the governing equations is 

discussed along with the derivation of the relationships between the absolute coordinate 

system and the relative coordinate system in which the motorcycle model may be 

expressed. This chapter also presents a dynamic analysis of the 4-DOF model to road 

roughness. It highlights the effect of the wheelbase filtering effect on the dynamic response 

of the motorcycle, and the importance of analyzing the frequency response function of the 

motorcycle for various velocities as a way to ensure the appropriate implementation of the 

SLM and for assesing the range of velocities in which the results obtained by this method 

are reliable. As a way of validating the correct implementation of the MC technique, which 
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in turn is used to validate the results obtained with the SLM, a linear 4-DOF model is 

analyzed in the frequency domain and its solution is compared with that obtained via MC 

simulation. A discussion of results is provided. 

     Chapter 7 contains the implementation details of the statistical linearization method. The 

specific assumptions required to adapt the method to the analysis of motorcycle dynamics 

are explained, along with the kind of nonlinearities considered. A step-by-step 

implementation outline is described at the end of the chapter. 

     Chapter 8 presents two cases where the statistical linearization technique is applied. 

Along with the results obtained with the statistical linearization method, MC simulations 

are reported. Comparisons between the two set of results are presented along with a 

discussion of the results. 

     Chapter 9 provides an overview of the needs detected, the methods of solution proposed, 

and the implementation methodologies employed. The results obtained are assessed, and 

further research is proposed. 
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Chapter 2 

An Overview of Stochastic Processes and Linear Systems 

2.1 Introduction 

     This chapter provides a discussion of the main concepts involved in the analysis of 

linear systems subjected to random vibrations. This material is part of the background 

knowledge required to understand how the excitation of the road and the motorcycle’s 

response are treated as signals in a stochastic manner, and to understand how the SLM is 

implemented.  

     A brief description of concepts in random processes is presented. For a more thorough 

treatment of concepts on random processes the reader may consult references [55-57, and 

87].  

     Several concepts of mechanical vibrations are involved in this thesis, and those 

considered relevant for the present work are explained. The theory of mechanical vibrations 

is quite broad and many books are available; some examples are references [45, 46, 48, 53, 

and 54].  

     To set up the appropriate theoretical background for studying random vibrations, a S-

DOF system is used to show how these elements can be combined with the concepts of 

stochastic processes presented.  Further, the results discussed are extended to the case of M-

DOF systems.  References [26, 39-42, 54, 55, and 61] are suggested for an in depth 

explanation of random vibrations. 

Finally, since it is necessary to obtain the power spectrum of the time histories 

synthetized by the auto-regressive filter and of those obtained as the motorcycle’s response, 

an introduction to spectrum estimation is also provided. 
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2.2 General Concepts of Stochastic Processes 

     If the description and analysis of the response of mechanical systems can be done by an 

explicit mathematical relationship between the input variables of a system and its response, 

a deterministic approach can be used.  However, if randomness plays a key role the 

problem must be treated from a different perspective. By randomness it is meant that, under 

the same conditions, a series of experiments, all of them performed in the same fashion, 

will lead to different responses, even though on the ‘average’, they have the same overall 

behavior. It turns out that, in general, one record or time history is not enough to describe 

the response of the system, but rather a collection, or an ensemble of possible time histories, 

also called realizations. Later in this chapter it will be shown that under certain conditions, 

a single record of sufficient length can often be used to obtain the statistical characteristics 

of the process. 

     A random process must be specified in terms of statistical parameters, such as its mean 

and variance, and functions such as the power spectrum. These concepts will be defined 

and discussed in the chapter.  The description of a random process is given in terms of a 

random variable (rv).  The rv can be characterized in a probabilistic manner by means of its 

probability density function or pdf, which is expressed as	�����	 .  
     The pdf of the rv x is a statistical measure that defines a probability distribution for a 

random variable. If the pdf of a random variable x is available, certain statistical measures 

can be calculated, namely the mean, mean square, standard deviation, and variance.  The 

mean value or expected value computes a statistical average of the rv x by using its pdf as a 

weighing function, and is defined as 
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���	 ≜ �� =  ������
∞

��
��. (2.1) 

     The mean can be interpreted as the ‘center of gravity ‘of the pdf associated to x.  

     Based on the expected value operation a description of certain useful aspects of the pdf 

can be made. The moments of � are defined as 

����	 =  �������
∞

��
��. (2.2) 

According to this definition, the first moment (m=1) corresponds to the mean value ��. 

     The second moment or mean-square value of x is then defined as 

����	 =  �������
∞

��
��. (2.3) 

      The square root of Equation (2.3) is called the root mean square value (rms). 

      The variance of x, denoted by	σ��, is also called the second central moment of x and is 

defined as the average value of the square of the deviation of x from its mean value �� [41]. 

That is, 

σ�� ≜ ���� − ���	��	 = ����	 − ����	��. (2.4) 

     The square root of  σ�� , also called the standard deviation of x, is a measure of the 

dispersion of the x values around its mean	��. 

     It is a well known fact that in nature many phenomena follow a symmetric bell-shaped 

pdf centered at	��. This pdf is called the Gaussian or normal distribution, and is given by 

the equation 
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����� = 1
√2�� ��������

��� . (2.5) 

     Due to this fact, in many practical engineering applications it is assumed that the random 

process is Gaussian. The mathematical justification for this assumption is based on the 

Central Limit Theorem, which states that the sum of infinitely many independent random 

variables, having individual arbitrary distributions, will tend to have a Gaussian probability 

distribution [57].  

     It is worth noting that the Gaussian distribution is completely determined by its first two 

moments, the mean	��, and the variance	σ��. One property of a Gaussian random variable 

that is of great importance in random vibrations is that any linear combination of Gaussian 

random variables is Gaussian, as well. Hence, when analyzing stochastic linear systems one 

can expect that given a Gaussian input, the system output is Gaussian, as well [39].  

     In engineering, the experiments carried out involve time and some others space as well. 

The general idea of a random variable as the numerical value related to an experiment’s 

outcome is now extended to the concept of stochastic or random process, which can be 

conceived as an infinite set, or ‘ensemble’ off all possible time histories, or ‘realizations’ 

��� �, ��� �, �"� �, … , � $. Together, these realizations make up the stochastic process. 

Each realization is the outcome of one experiment carried out under the same conditions as 

the others. The whole random process is denoted by	��� �	. Even though in practice it is 

not possible to obtain an infinite set of realizations, it is feasible to obtain a large number of 

them, which allows a good approximation for the infinite ensemble of a random process.  

An ensemble from a stochastic process is shown in Figure 2.1.   
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     Ensemble averaging is an alternate way of calculating averages, and involves measuring 

the averages across the ensemble, refer again to Figure 2.1. If enough sample functions are 

available, the first-order probability distribution for ��� �	 at t1 can be calculated by 

determining the value of each sample at time t1. Moreover, the second-order probability 

distribution for ��� �	  at t1 and ��� �	  at t2 can be found by obtaining a second series of 

measurements at time t2. 

     A stochastic process is called stationary if its statistical properties do not change with 

time. In practical terms, this means that all the experiments are carried out under the same 

conditions, so that the probability distributions obtained for the ensemble of time 

histories	��� �	, are dependent only on the time difference	 � −  �	, i.e. they are 

independent of absolute time   [42]. As a consequence, the mean value		��, and the 

standard deviation σ� are constants [39]. If, in addition the experimental conditions remain 

Figure 2.1 Ensemble from a stochastic process and averaging. 
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steady during each experiment the stochastic process is called ergodic, which, statistically 

speaking, means that at any one time, the quantities	��� ��, ��� ��,… , have a distribution 

equal to the distribution with respect to time of any single member function of the random 

process [42].  

     An important consequence of regarding a stochastic process as ergodic is that once the 

statistical properties of a single time history �� � are determined, the statistical properties 

of the ensemble ��� �	 can be defined. This allows the use of a single long enough time 

history to determine the statistical characteristics of the ensemble [39]. The characterization 

of the statistical properties of a given road or its roughness is an example of this conclusion. 

A section of adequate length of a road that possesses certain random properties is used to 

characterize that type of road instead of using several sections of a road. This approach 

simplifies greatly the characterization process and gives accurate statistical results from the 

data obtained [67-69, and 164]. Chapter 5, dedicated to road roughness, explains in more 

detail this procedure. 

     In the characterization of a stochastic process ��� �	 the autocorrelation function %� of 

�� � plays an important role. Denoting by τ the time lag between two x values on the same 

time history, that is ' =  � −  �,  %� is defined as the expected value of the product 

�� ��� + '�, or ���� ��� + '�	. With reference to Fig. 2.1, the computation of the 

autocorrelation function is made by sampling the process at instants t and	 + ', and the 

expected value of the product �� ��� + '�  computed for the ensemble. For a stationary 

process, %�  will be independent of absolute time t and will depend only on the time lag τ, 

hence it can be written 
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%��'� = ���� ��� + '�	. (2.6) 

     Some useful properties of %��'� that are quite helpful in the stochastic analysis of the 

dynamic response of linear and nonlinear systems subjected to random excitation can be 

mentioned. Specifically, based on the fact that for a stationary random process, the mean 

value ��, and the standard deviation σ� are constants, it can be proved that the value of the 

autocorrelation function is bounded as follows [41] 

−��� + ��� ≤ %��'� ≤ ��� + ��� = ����	. (2.7) 

     If the time lag τ is zero, the autocorrelation function equals the mean square value of the 

process 

%��' = 0� = ����	. (2.8) 

     As the time lag between the values �� � and �� + '� increases, the coherent 

relationship between these two values decreases, and as a result as	 → ∞, the value of %� 

becomes the mean value of		��� �	�, 

%��' → ∞� → ���. (2.9) 

     The last property of the autocorrelation function discussed in this section considers the 

fact that for a stationary process, %��'� depends only on the time lag	'. This leads to the 

conclusion that 	%��'� is an even function. That is 

%��'� = ���� ��� + '�	 = ���� ��� − '�	 = %��−'�. (2.10) 
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					The properties of the autocorrelation function discussed above are graphically captured 

in Figure 2.2. 

     The autocorrelation function is useful in describing the manner of the fluctuation of a 

quantity, but this description is better achieved if, along with the concept of autocorrelation 

function, a harmonic analysis approach is adopted. Section 2.7 presents a brief discussion 

of the main concepts needed in the description of random processes in terms of frequency 

content, and it will be shown how they are applied in the study of the mechanical behavior 

of a linear system operating in a random environment. 

     To obtain information about the frequency composition of a stationary stochastic 

process	��� �	, its autocorrelation function %��'�	 is analyzed by means of a Fourier 

transform approach.  The spectral density	-��.�, also known as the power spectrum, is 

defined as the Fourier transform of the autocorrelation function, %��'� and describes the 

distribution of variance in frequency of the random process. 

Figure 2.2  Typical graph of %��'� and its properties for a stationary random process. 
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-��.� = 1
2� %��'�

�

��
�/01�'. (2.11) 

     Its inverse is defined by 

%��'� =  -��.�
�

��
��/01�.. (2.12) 

Equations (2.11) and (2.12) are also known as the Wiener-Khinchine relations. 

By considering the limiting case of Equation (2.12) in which τ=0 

%��0� = ����� �	 =  -��.�
�

��
�.. (2.13) 

Therefore, the mean square value of a stationary random process equals the area under the 

power spectral density curve, as shown in Figure 2.3.  

     Both %��'� and -��.� are even functions, hence they can be written as  

-��.� = 1
2�  %��'�

�

��
$23�.'��', (2.14) 

 

 

Figure  2.3  The area enclosed by the power spectrum graph equals the mean square value of x(t).	
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 and 

%��'� =  -��.�
�

��
$23�.'��.. (2.15) 

     The dimensions of -��.� are mean square per unit of circular frequency.  

     The preceding definition of the power spectrum -��.�	 is convenient for analytical 

investigations. However, for some practical purposes, as in the case of automotive studies, 

the experimental spectral density is used, and is denoted by 4���, where f is the frequency 

in cycles per unit time or Hertz (Hz). The relation between -��.� and 4��� is simply [41] 

4��� = 4�-��.�. (2.16) 

     An example of the experimental spectral density is given in Figure 2.4 where the PSD of 

the roughness of certain road for a vehicle traveling at 50 mph is shown. Some 

characteristics of typical road roughness PSDs can be observed from Figure 2.4. The data 

are represented in a log-log plane and the real road data is shown along with the average 

data. As it will be seen later the log-log graphs present some advantages over linear-linear 

graphs when analyzing random data. 

     In place of Equation (2.13) one has 

%��0� = ����� �	 =  4���
�

6
��. (2.17) 

     It can be proved that the spectral density -�7�.� of the derivative process ��7 � �	, can be 

obtained from the spectral density -��.�	of  ��� �		 by means of the relation  

-�7�.� = .�-��.�. (2.18) 
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Figure 2.4  PSD of the elevation of a typical road (from [93]). 

 

     Similarly, for the second derivative,  

-�8�.� = .9-��.� = .�-�7�.�. (2.19) 

     Equations (2.18) and (2.19) ease the dynamic analysis by providing simple relationships 

between the PSDs of displacement (ground elevation), velocity and acceleration.  

2.3 Broad Band Processes 

     The classification of stationary stochastic processes into broad and narrow processes 

does not correspond to precisely defined frequency intervals.  A broad or wide process is 

characterized by a power spectrum whose frequency values lie within a band of 

frequencies, which is about the same order of magnitude as the center frequency of the 
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band. The time history of a broad band process is a combination of the whole band of 

frequencies involved. Figure 2.5 depicts a typical broad band process and its associated 

time history. Road roughness PSDs and response PSDs of vehicles traveling over rough 

roads are examples of broad band processes. 

     A quite common and useful idealization of a broad band process is the one called white 

noise. This process is the result of assuming a uniform power spectrum S0 which spans over 

the frequency interval (-∞, ∞), Figure 2.6. This definition of white noise implies that the 

mean square value of the process would be infinite making it not physically possible to 

obtain. However, in analyzing a process, the frequency bandwidth can be extended enough 

to include all the frequencies of interest. 

 

Figure 2.6 Power spectrum of ideal white noise. 

Figure 2.5  Broad band process. Power spectrum and time history. 
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     This band-limited or clipped white noise can be used to obtain reliable results that 

represent a close approximation to the actual process, provided that the system being 

analyzed is not sensitive to the frequencies that lie beyond the chosen bandwidth limits. 

The power spectrum of band-limited white noise is shown in Figure 2.7. 

2.4   General Concepts on Linear Systems and Digital Signal Processing 

     A system is often represented in a black box fashion, as shown in Figure 2.8. The system 

may have several inputs and outputs, all of them vary with time. 

     The description of the system can be made in mathematical terms through the use of an 

equation or a set of equations depending on how the system is deemed. This is called 

modeling the system and the equation or set of equations correspond to the model.  

Depending on the type of equations used, models are classified in several ways [49]. If the 

criterion for classification employed is the spatial characteristics of the system, or in other 

words, if the system is considered as a continuum or as a set of interconnected discrete 

parts, then the model could be called a distributed mass model in the first case or as a 

lumped model in the second case.  The classification of the mathematical model could be 

done based on the continuity of the time variable in which case the model is considered 

continuous-time or discrete-time. 

Figure 2.7 Power spectrum of clipped white noise. 
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     Other criteria for classifying a model can involve parameters variation, linear or 

nonlinear behavior, etc. Of course, a combination of the previous criteria and others not 

mentioned here is possible.   

2.5   Mathematical Modeling 

2.5.1   Lagrange’s Equations  

     In order to derive the equations of motion of a M-DOF system, vector quantities such as 

force and acceleration, are required while applying Newton’s laws. This procedure can 

become very tedious. The use of Lagrange’s equations eases this task [39].  Instead of 

vector quantities, scalar quantities, like work and kinetic energy, are required. Lagrange’s 

equations can be derived from the principle of virtual displacements [47] or from 

Hamilton’s principle. Here, they are briefly presented. 

     Every point within an n-DOF system is specified by a set of n independent quantities qi 

(i=1, 2, …, n) called generalized coordinates. For the n-DOF system the kinetic energy T, 

and the potential energy V, can be expressed in terms of the generalized coordinates and 

their first time derivatives. The virtual work of nonconservative forces		:4;<, is expressed 

in terms of arbitrary variations in the generalized coordinates :=/. 

     Thus, 

Figure  2.8  General schematic representation of a system. 
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> = >�=�, =�, … , =;, =�,7 … , =;	7 �, 
? = ?�=�, =�, … , =;,  �, 

:4;< = @�:=� + @�:=�+⋯+ @;:=;, 

 

where @�, @�, … , @; are called the generalized forces 

     Lagrange’s equations have the form 

�
� B

C>
C=D7 E − C>

C=/
+ C?

C=/
= @/,									F = 1,2, … , G (2.20) 

     Lagrange’s equations are applicable in the derivation of the equations of either linear or 

nonlinear systems.  

2.5.2   Other Modeling Approaches  

     Although Lagrange’s approach represent an easier way of deriving the equations of 

motion of n-DOF systems than Newton’s approach, the derivation process will become 

cumbersome as the number of degrees of freedom increases [29]. Thus, alternative 

approaches have been considered for motorcycle modeling. Cossalter and Lot [29] used the 

natural coordinate’s approach [62] to develop an 11-DOF model which included two sub-

models: a 6-DOF motorcycle model with the rider considered firmly attached to the rear 

assembly, and a 5-DOF tire model that allows the correct description of tire dynamics at 

large camber angles. Bos [147] analyzed the steering behavior of a motorcycle by using a 

model derived by applying bond graphs, an approach developed by Karnopp and 

Rosenberg [146].  

     During recent years the use of multibody dynamics software for dynamics analysis has 

also become popular among the research community. Goncalves and Ambrosio [7] 
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modeled a car suspension employing a FEM software to represent the interaction among 

the multiple flexible components of the system. Lot, Cossalter and Massaro [170] described 

a motorcycle model obtained by automatic derivation of the symbolic linearized equation of 

motions.  

     Although automated multibody analysis software simplifies the derivation of equations 

process, at some point it may present certain limitations regarding the description of the 

features of the model into consideration. As a consequence, to obtain a model that includes 

all the aspects required in the analysis becomes problematic. In such a case, the researcher 

has to resort in the techniques of mathematical modeling and dispense with the modeling 

software. Furthermore, regarding computational efficiency, mathematical modeling leads to 

faster simulations [29]. 

2.6   General Excitation-Response Relations 

     Figure 2.9 shows a typical representation of a single-degree of freedom (S-DOF) linear 

model characterized by its mass m, damping c, and stiffness k. These parameters are 

assumed to be constant, i.e., they are not changing with time. Thus this type of system is 

also called linear time-invariant, or LTI.  

     If the system of Figure 2.9 is subjected to a time varying force F(t) then, according to 

Newton’s second law, its equation of motion is expressed as 

H�8 + $�7 + I� = J� �. (2.21) 

     Equation (2.21) exemplifies a mathematical characteristic of an LTI system; its equation 

of motion has the form of a linear differential equation with constant coefficients. 
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Figure 2.9  Single-degree of freedom linear model. 

 

     The system discussed can also be represented using a black-box diagram, similar to the 

one depicted in Figure 2.8. In this case, there is only one prescribed input, the excitation 

force F(t); and, under given initial conditions, one output corresponding to the displacement 

x(t). The introduction of this pictorial representation is useful in describing the dynamic 

characteristics of a linear system based on the determination of the response to a sine wave 

input. 

     A property of a linear system is that for a deterministic excitation a deterministic 

response can be found by integrating the differential equations of motion, provided the 

initial conditions are specified. For this purpose among the established methods available 

[45-48] a time domain approach and a frequency domain approach are considered. 

     If the system is subject to a random excitation, the response is also random. In this 

situation the system’s response is characterized by various statistical parameters that are 

determined from the statistical parameters of the excitation, and the system’s equations of 

motion.  An important characteristic of a linear system under random excitation is that if 

this excitation is Gaussian, then the system’s response is also Gaussian [39]. For most 

physical linear systems this is a reasonable assumption based on the Central Limit Theorem 
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(section 2.2), which allows a criterion for characterizing the probability distribution of the 

response, especially in the absence of knowledge of the true probability distribution. 

2.7   Complex Frequency Response 

     For a steady state simple harmonic excitation F(t) acting on a LTI system, the 

corresponding response x(t) is also a steady state simple harmonic motion, whose amplitude 

and phase will be functions of the driving frequency .. Mathematically this can be 

expressed as 

J� � = �/0K , 
and 

�� � = L�.�	�/0K . 

(2.22a) 

 

(2.22b) 

     The complex frequency response H(ω) describes this dependence; for an arbitrary 

excitation the response can be obtained, provided H(ω) is known. It can be obtained by 

substituting F(t) and x(t) as given by Equation (2.22a) and (2.22b) into Equation (2.21), and 

solving for H(ω).   

     For a linear system, the principle of superposition holds. This principle allows to treat a 

periodic excitation F(t) as built up of sinusoids (a Fourier series). The same reasoning 

applies for the periodic response x(t). In a similar fashion, if F(t) is not periodic but has a 

Fourier transform, the output x(t) can be expressed in the frequency domain as [40] 

M�.� = L�.�J�.�, (2.23) 

where 

		J�.� =  	J� ��/0K� 
�

��
; 					M�.� =  	�� ��/0K� 

�

��
.	 (2.24) 
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     In motorcycle dynamics, and in general, in vehicle dynamics, the input-output 

relationship Equation (2.23) is a potent way of characterizing the dynamic behavior of the 

vehicle, this is due to the fact that a linear relationship between the input (driving force) and 

the output (response)  is established, in which the dynamic properties of the system are 

contained in		L�.�. This equation also allows identifying L�.� as the ratio of the output to 

the input. One clear advantage of using this approach is that the input of the system 

considered may be any of the excitations discussed, or a combination thereof. Typically, 

interest is focused on the vibrations on the body as the system’s output. The “gain” for the 

dynamic system is defined as the ratio of output to input amplitudes. A common way to 

denote the gain is by the term “transmissibility”, which, for a system subjected to steady-

state forced vibration, is the dimensionless ratio of response amplitude to excitation 

amplitude. Displacements, velocities, accelerations or even forces can be used in this ratio 

[93].  

     If both F(t) and x(t) are stationary stochastic processes, a quite important connection, in 

the frequency domain, between the power spectra (Equation (2.11)) of the input and the 

output exists. Specifically, 

-��.� = L�−.�L�.�-O�.�, (2.25) 

or, since L�.� is a complex quantity 

-��.� = |L�.�|�-O�.�. (2.26) 

     Equation (2.26) plays a key role in random vibration theory. It shows the response 

changes according to the change in the random driving force.  
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2.8   Mean Square Response 

     Based on the result of Equation (2.26) and (2.13), the mean square value of the response 

can be expressed as 

����� �	 =  -��.�
�

��
�. =  |L�.�|�-O�.�

�

��
�.. (2.27) 

     When dealing with stationary driving inputs, Equation (2.26) and (2.27) are the main 

tools used in random vibration analysis. This approach is applied in this work for the 

analysis of a motorcycle traveling at a constant forward velocity over a random road 

surface.  

2.9   Generalization of the Excitation-Response Relations to M-DOF 

Systems 

     In many applications the description of the vibratory motion of a mechanical system can 

be done with a good degree of approximation by means of a single (independent) 

coordinate and a single second-order differential equation, which are associated to one 

single body. However, many mechanical devices and structures cannot be modeled as a S-

DOF system.  Single-track vehicles, such as motorcycles, and machines with many moving 

parts have many degrees of freedom. These systems can be treated as lumped-parameter-

models, in which the mass is ‘lumped’ into a finite number of rigid bodies [39]. This 

approach allows obtaining a M-DOF model. For mechanical systems these models consist 

of dampers and springs, which serve as connectors, and permit the interaction between 

masses; or between masses and the system’s surroundings. It is important to note that the 
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number of degrees of freedom associated to a lumped-parameter model is equal to or 

greater than the number of lumped masses. 

     For a linear lumped-parameter n degree of freedom system the general form for the 

equations of motion associated to it can be expressed in matrix notation as 

QR8 + SR7 + TR = U, (2.28) 

where the G × G symmetric matrices M, C, and K stand for inertia, damping, and stiffness 

respectively. The G × 1 vector q contains the n generalized displacements of the system and 

the G × 1 vector Q contains the n generalized forces, corresponding to q.  

     Similarly, the input-output relations associated with this M-DOF system in the 

frequency domain are 

W�.� = X�.�Y�.�, (2.29) 

where the frequency response function matrix X�.� can be computed as follows  

X�.� = Z−.�Q + F.S + T[��, (2.30) 

this matrix can be used to compute the spectral density matrix of the response \��.� in 

terms of the power spectral matrix of the excitation \O�.�, specifically,  

\��.� = X�.�\O�.�X�.�]∗, (2.31) 

where the symbols T and * denote transposition and conjugation, respectively. 

     Upon determining		\��.�, the covariance matrix of the response process can be 

obtained as 

_à� =  SSSS`�.�
�

��
�., (2.32) 
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and  

_à7
� =  .�SSSS`�.�

�

��
�.. (2.33) 

     Once the mathematical model has been set up, it must be placed within a theoretical 

framework required to analyze and describe the behavior of the system under the action of 

the prescribed inputs. Within the context of the present work, namely a motorcycle 

subjected to road excitation, the theory of vibrations provides such a theoretical framework. 

2.10   State-Space Models 

     If one is interested only in the input-output relationships of a linear n-DOF system, a 

mathematical model, as the one represented in matrix form by Equation (2.28), can be 

constructed. However, in many cases some important aspects of the system’s behavior can 

be analyzed by taking into account the other variables that are internal to the system. This 

can be accomplished by means of a state-space model, which can be obtained by defining a 

set of independent variables, commonly known as state variables. In general, these state 

variables differ from the output variables, but may include one or more of them. The state 

variables must be chosen so that knowledge of their values at any reference time t0 and 

knowledge of the inputs for all t ≥ t6	is sufficient to determine the outputs and state 

variables for all		t ≥ t6. This approach has found applications in diverse disciplines such as 

filter design, automatic control, robotics, and aerospace. The reader can find more details 

about the theory of state-space models in references [39, 46, 49, 51, 58-60]. 

     The set of n coupled differential equations in Equation (2.28) can be expressed in state-

space form by defining the 2n state-vector e� � 
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e� � = fRR7 g, (2.34) 

which allows to obtain a first order matrix equation of the form 

e7 = he + i, (2.35) 

where A is a 2G × 2G matrix so that 

h = f j k
−Q��T −Q��Sg, 

 

(2.36) 

and f is the 2G × 1 excitation vector 

i = l j
−Q��Um. 

 

(2.37) 

 

2.11 General Concepts on Digital Signal Processing 

2.11.1   Classification of Signals 

     A signal corresponds to a time-amplitude representation of the attributes or behavior of a 

physical phenomenon. 

     Usually a signal is not pure in the sense that along with the information that is of interest 

for the researcher, it carries undesirable random disturbances or unwanted signals that 

conflict with the desired signal.  These disturbances are known as noise.  

     There is no unique way of classifying signals. According to continuity in time a 

common distinction is between discrete-time signals, also known as time series; and 

continuous-time signals or simply continuous signals. 

     In terms of its predictability signals are classified in two main groups: deterministic, and 

stochastic or random. Deterministic signals can be described by means of a definite 
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mathematical relationship, although in reality, there is always some noise added. However, 

in many applications it is advantageous to approximate or model a signal by means of a 

deterministic function.  Deterministic signals are subdivided into two groups: periodic and 

aperiodic signals. Periodic signals follow a repetitive pattern every certain amount of time 

called the period of the signal. A single period is sufficient to describe a periodic signal. 

This repetitive behavior can be expressed mathematically as  

�� � = �� + G>�, 

where T is the period (usually in seconds) and n is an integer.  

     Aperiodic signals are divided in two groups: almost periodic and transient signals. 

Almost periodic signals have a discrete description in the frequency domain although they 

are not periodic in the mathematical sense. The frequency description differs from the 

periodic one in that the various frequencies participating are not harmonics of some 

fundamental frequency. 

     Transformation of a signal from the time-domain into the frequency-domain and vice 

versa is commonly required for analysis and processing purposes. The transformation into 

the frequency-domain allows highlighting the frequency content of the signal, a feature 

barely difficult to quantify in its time-domain representation. The transformation from one 

domain to the other does not change the information content present in the signal. 

2.12   Estimation of the Power Spectrum of Stationary Random Signals 

     Spectral analysis involves the characterization of the frequency content of a signal by 

means of a signal processing method [84]. Statistical analysis is used to assess the spectral 

content of noise present in signals.  If the signal to be analyzed is treated as finite, as it 
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occurs in most real world signals, its underlying statistical characteristics are neither known 

nor can be determined in an exact way; only an estimate of its true spectrum can be 

obtained [69]. 

     One useful and easy-to-implement way for estimating the power spectrum of a signal is 

the one originally proposed by Bartlett and known as the averaging periodogram method 

[20]. The method consists of transforming the coefficients of a discrete time signal M�G� by 

obtaining its discrete Fourier transform M���  

M��� = 	> n M�G����/�op;K�
q��

;r6
, 

 

(2.38) 

where N denotes the number of sample points of the discrete signal		M�G�, T the sampling 

period and		G = 0, 1, 2, … ,s − 1	. Once the Fourier transform is obtained the PSD of the 

signal at frequency f can be computed by the expression 

t���� = 1
s> uM�p�u�. (2.39) 

          The periodogram method as proposed originally by Bartlett introduces bias in the 

computation of the PSD function. Welch [175] introduced a modification to reduce the 

bias. This modification consists on averaging certain overlapping portions of length-N 

input samples to compute the periodogram.  Thus, an estimation of the PSD is obtained by 

calculating the average spectrum at all overlapping intervals. In the case of a stochastic 

process, described by an ensemble of records, the bias is reduced by computing the 

spectrum for each record and then averaging all the spectra. 
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Chapter 3   

Methods of Nonlinear Analysis 

3.1  Introduction 

     The description and analysis of mechanical systems by the linear systems approach is in 

many cases insufficient to describe the dynamic behavior of many systems such as the 

suspension and the component parts of a vehicle when it is subjected to strong road 

excitation. If the system behaves linearly and the excitation is stationary, the evaluation of 

the response statistics is straightforward; there are several techniques to obtain, in most 

cases, a closed form solution. However, when the magnitude of such excitation is high 

enough to drive the system to exhibit nonlinear behavior, or when the system parameters 

are changing, the dynamic analysis of the vehicle requires techniques which apply beyond 

the linear response range. Unlike linear vibration systems, when dealing with nonlinear 

vibration problems the superposition principle does not apply. However, since most linear 

analysis techniques make use of the superposition principle, many researchers have 

attempted to obtain alternative formulations to find a general solution for nonlinear analysis 

by superimposing particular solutions [139, 143]. Another limitation encountered in 

nonlinear systems is that, unlike a linear system subjected to Gaussian random excitation, a 

Gaussian random response is not obtained. Due to this limitation the second order statistics 

that give the complete definition of the probability distribution function of the response of a 

linear system for Gaussian excitation provide only partial information for a nonlinear 

system [140, 141, and 144].  
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     In this chapter some of the most commonly used nonlinear methods are discussed along 

with their advantages and drawbacks. In general, for the analysis of nonlinear systems, 

exact solutions are not available and analysts have to resort to numerical techniques, and to 

analytical techniques to determine approximate solutions to the problems. Some of these 

methods are summarized below. A more detailed review can be found in the references 

provided [90, 91, 142, 148-150].  

3.2 The Monte Carlo Method 

     Amongst the variety of methods available to treat nonlinear problems, the Monte Carlo 

method provides a general technique that is applicable to many tasks in engineering for 

estimating, within any desired level of confidence, the exact response statistics of randomly 

excited non-linear systems. In lieu of experimental data, Monte Carlo simulation is often 

the only tool available for assessing the accuracy of random vibration solutions generated 

by approximate methods of analysis [151, 152]. Therefore, due to its importance in 

nonlinear analysis a, detailed discussion about this technique is presented.  

     Monte Carlo simulation is based on random computation experiments [99, 152, 153, and 

155]. The stochastic differential equations governing the motion of the system can be 

construed an infinite set of deterministic differential equations [152]. The input data 

generation process plays a pivotal part in the implementation of the method. It is important 

that the process ensures that the input sample excitation are representative of the real world. 

Therefore, the creation of time histories of random processes whose frequency content is 

compatible with a prescribed power spectrum is essential in the Monte Carlo simulation of 

a stochastic system.   Note that at this stage of the process a set of pseudo-random numbers 

belonging to a population with a specified pdf must be generated. For each sample of the 
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random excitation the response may be computed by any of the commonly available 

numerical integration techniques of differential equations. When the set of response time 

histories is complete, they are ensemble averaged, and both, the statistical moments and the 

psd are estimated from the response time series. By increasing the number of sample 

responses the expected deviation of the obtained numerical values from the theoretical 

values of the response statistics is reduced, providing results within any confidence level. If 

determination of the probability density function of the system’s response is needed, a 

greater number of response samples is required to achieve a reliable result. However, if the 

set of time histories corresponds to an ergodic process, the ensemble average can be 

determined from its temporal counterpart [145]. Under this condition only one, long, 

sample response function is required eliminating the need of a large number of sample 

functions. 

     The Monte Carlo Method allows the computation of the probability density function, the 

moments, and the spectral density of the response of a stochastic system. These statistical 

parameters are determined from an ensemble of deterministic solutions, which are created 

from realizations of the system´s random parameters. If ��(��) denotes the system’s 

response computed at each time step		∆� or at time		�� = 
∆�, where j=1,2,...N, the estimates 

of statistical parameters such as the mean and the standard deviation can be obtained. If 

	��  denotes mean response of		� then an estimate of the mean is obtained by means of 

the expression 

		�� = 1���������
��� . (3.1) 
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     Similarly, an estimate		��, of the standard deviation of the response, �, can be 

computed by using  

�� = � 1� − 1�������� −		�����
��� .  

(3.2) 

     The Monte Carlo analysis requires numerous computations of the response of the system 

that is studied. The accuracy of the results improves as the number of deterministic 

solutions is increased.  For every simulation that is conducted, an excitation time history 

must be computed. Thus, an efficient method to create these time histories is critical for the 

minimization of the computational time of the simulation.  In the case of the determination 

of the probability density function, a greater number of solution samples is required in 

comparison with the number of samples needed to accurately estimate the mean value and 

mean square of the response.  

     The major advantage of Monte Carlo method is that reliable solutions can be obtained 

for any problem whose deterministic solution (either analytical or numerical) is unknown. 

However, the major drawback of the Monte Carlo method, as mentioned before, is the large 

number of sample records required for the estimation of the response statistics within 

confidence levels of accuracy, which makes the computation process time consuming. Even 

though the accuracy can be improved as much as required, it is important to bear in mind 

that accuracy is inversely proportional to	√�	, where N denotes the number of samples.  

Thus, it is necessary to increase the number of experiments by a factor of 100 to decrease 

the error by a factor of 10. Obviously, this method is quite inefficient from a computational 

point of view, especially when M-DOF systems are considered. Figure 3.1  
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Fig. 3.1   Schematic representation of Monte Carlo method. 

 

summarizes the steps involved in the Monte Carlo simulations carried out in either the 

time-domain or the frequency-domain. 

3.3 Perturbation Methods 

     Perturbation methods or perturbation theory is a large collection of iterative methods for 

obtaining approximate solutions to problems involving a small parameter ε, which 

characterizes the magnitude of the nonlinear terms in these equations. The basic idea is to 

expand the solution to the nonlinear set of equations in terms of a nonlinearity scaling 

parameter ε in the form of a power series [138, 143, and 149]. Specifically, the perturbation 
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approach seeks to decompose a nonlinear problem into an infinite number of linear ones. 

Hence, perturbation theory is most useful when the first few steps capture the important 

features of the solution and the remaining ones yield small corrections.  

      In principle, the perturbation method can be used to estimate the response to any order. 

However, the calculations are usually lengthy and after the first order, the method may 

become impractical. Consequently, the perturbation method can only be applied effectively 

when weakly nonlinear systems are considered. 

3.4 Closure Techniques 

     To characterize the probability density function of the response of a nonlinear system, 

computation of higher order moments is required. However, these statistical moments are 

governed by an infinite hierarchy of coupled equations; therefore, some form of a closure 

scheme has to be applied in order to make the set of moment equations solvable. In 

stochastic dynamics the term ‘closure’ refers to a procedure, by which an infinite hierarchy 

of equations governing the statistical moments of random quantities is truncated, and higher 

order moments are computed approximately. In other words, the moment equations are 

‘closed’ by assumptions regarding the statistical structure of the response [99]. The 

simplest closure scheme is the Gaussian closure, in which higher moments are expressed in 

terms of the first-order and second-order moments as if the random processes involved 

were normally distributed. Gaussian closure leads to an associated linear system which 

excitation is Gaussian, and its response is then assumed to be an approximation to the 

response of the nonlinear system [152]. One limitation of Gaussian closure is that it only 

yields satisfactory results when the system under analysis possesses weak non-linearities. 

To improve accuracy, a higher non-Gaussian level of closure can be used. This 
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improvement can be achieved, for example, by neglecting all the cumulants moments [39] 

above certain order n>2, where n=2 correspond to Gaussian closure. Of course, the 

complexity of the closed set of moment equations to be solved, increases with a higher 

order of closure. Although this greater complexity presented by non-Gaussian closure 

method makes it difficult to treat M-DOF systems and non-stationary problems with strong 

nonlinearities, it is certainly possible to apply the method to tackle these kinds of problems.  

3.5 Markov Methods  

     Markov methods offer an alternative approach to the solution of non-linear random 

vibration problems. For many dynamic systems subjected to wide-band random excitation, 

the system’s response can be modeled as a multi-dimensional Markov process, for which 

the probability density function of the response is governed by a partial differential 

equation, called the Fokker-Planck-Kolmogorov (FPK) equation [99, 134]. FPK equation 

should be solved under appropriate initial and boundary conditions. One important aspect 

of these methods is that the actual excitation processes are approximated as white noises. 

Pre-filters are used in those cases where the white noise approximation is not suitable.  

Despite the recent theoretical contributions to these methods, the type of non-linear random 

vibration problems for which the appropriate FPK equation can be solved exactly is still 

quite limited. For example, when applied to the analysis of M-DOF systems the numerical 

integration of the FPK equation becomes quickly quite cumbersome, because of the high 

dimension of the probability space that is to be discretized. Hence, in the case of M-DOF 

non-linear systems the applicability of Markov methods is restricted to the solution of the 

stationary response of the system. This limitation makes Markov Methods not readily 

applicable for a wide class of practical M-DOF systems. 
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3.6   Probability Density Evolution Method 

     Among the most recent methods proposed to tackle stochastic dynamic analysis 

problems is the Probability Density Evolution Method (PDEM). This method was proposed 

by Li and Chen [156] as an alternate way of analyzing nonlinear stochastic systems with 

random parameters. The method is applicable to either S-DOF systems or M-DOF systems. 

In the case of M-DOF systems, they can be described by the governing equation [157] 

M((((�)))) !! !! + #((((�)))) $$ $$ + %((((�,  )))) = '(t) (3.3) 

where M((((�)))) and C((((�)))) are, the ) × ) mass and damping random matrices respectively;  � 
is the + × 1 random structural parameter vector with known probability density function 

(PDF) ,�(-) where  � = (Θ�, Θ�, … , Θ0);  %(�,  ) is the ) × 1 restoring nonlinear random 

vector,   '(t) is the deterministic or random excitation.  

     The purpose of the PDEM is to estimate the instantaneous probability density function 

(PDF) and its evolution for the response of linear and nonlinear structures involving 

random parameters. The PDEM has also been applied for reliability evaluation [157, 159]. 

In order to apply the method it is necessary to know the joint probability density function 

(PDF) ,�(-) of the random parameters. 

     It seems that the PDEM is still in an early stage of development and validation. In the 

different papers written by Li and Chen about the PDEM, the authors address the case of 

nonlinear restoring force and consider Rayleigh´s damping to simplify the problem, but no 

description on the treatment of other type of damping is further considered. There are also 

several numerical issues that must be addressed. For example, the PDEM is very sensitive 

to the way the representative discretized points in the domain Ω2 are selected; accuracy and 
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computational efficiency can be seriously compromised if an adequate selection of points is 

not achieved. To this end researchers are still working in numerical algorithms that allow 

the optimal selection of these points [157, 159, and 161]. One of these methods is based on 

cubature formulae [160], but careful attention to the use of these formulae is required, 

otherwise spurious results could still be obtained. The PDEM involves the use of difference 

schemes to evaluate the PDF. In principle any method could be used, however it has been 

found that the Lax-Wendroff difference scheme yields reliable results in many cases; still 

some problems preserving the non-negative nature of the PDF may arise. A modified Lax-

Wendroff scheme has been proposed to overcome this difficulty [157]. 

     Despite the numerical restrictions discussed above, the PDEM yields to reliable results 

in the problems discussed by Li and Chen to exemplify the applicability of the method. 

Juxtaposing the results obtained by the PDEM with those obtained via Monte Carlo 

simulation the authors found good agreement between both sets of results, and a much 

faster convergence than that obtained with Monte Carlo simulation. 

     Most applications of this method have been related to the study of the probabilistic 

response and reliability evaluation of structures subjected to earthquake excitation [156-

161]. In the research about recent applications of the PDEM in other fields of mechanics, 

the author of this dissertation could not find references to the application of the PDEM in 

the analysis of the response of vehicles to random excitation. It is the author´s opinion that 

this is due to the nature of many of the stochastic problems studied by researchers in the 

automotive field. In general, the dynamics of these systems are governed by ordinary 

differential equations that do not contain random parameters.  
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3.7 Statistical Linearization Method 

     The basic idea of the linearization approach is to replace the original nonlinear system 

by a linear one in such a way that the difference between the two systems is minimized in 

some statistical sense. In this way, the parameters of the linearized system are determined. 

The response of the equivalent linear system is used to approximate the response of the 

nonlinear system. By assuming Gaussian excitation the unknown statistics of the response 

are evaluated by approximating it as a Gaussian process. Roberts and Spanos provided a 

comprehensive account of statistical linearization [39]. 

     A feature that differentiates statistical linearization from all approximate methods, 

discussed earlier, is its capacity to provide information on the power spectral density of the 

response quite easily. Moreover, once the actual linearization has been performed, the 

response statistics can be computed analytically. Consequently, the method is 

computationally quite efficient compared to numerical integration. The linearization 

approach can be applied for both white noise and non-white noise inputs. Therefore, it can 

be concluded that the linearization can be applied to problems with a wide variety of 

excitation forms. Furthermore, it is quite convenient in applications involving M-DOF 

systems. 

      Because of its versatility the method of statistical linearization will be used for the first 

time to study in the ensuing the nonlinear dynamic behavior of motorcycles. In this context 

the method is briefly reviewed in the next chapter.  
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Chapter 4 

Statistical Linearization Method Applied to M-DOF Systems 

4.1  Introduction 

     The statistical linearization method is based on the idea of substituting an original 

nonlinear system by an equivalent linear system (auxiliary system) in such a way that the 

difference between these two systems is minimized in a statistical sense. In general, the 

auxiliary system needs not necessarily be linear [39]. However, for the case of M-DOF 

systems only the response of linear systems is readily available. Several authors have 

shown that this method has fewer limitations as compared to other analytical methods [97-

99]. 

     The pioneer works of Krylov and Bogoliubov [94] on deterministic linearization set the 

theoretical foundation of the method of statistical linearization. The method is presented as 

such in the papers of Caughey [95], Iwan [96] and others with a probabilistic approach.  A 

practical perspective of the method in engineering applications was first presented by 

Atalik and Utku [97], who made a great contribution to the applicability of the method by 

assuming a Gaussian behavior of all the state variables, and demonstrating that the 

Gaussian assumption greatly simplifies the computation of the linearization coefficients. 

Caughey was the first to apply the stochastic linearization technique to a restricted class of 

M-DOF systems with specific forms of nonlinearities in the stiffness terms and 

uncorrelated excitation vector [126, 127, and 129]. Iwan and Paparizos generalized the 

method to cover M-DOF systems with a fairly general type of nonlinearity in the damping 

and stiffness terms [117]. Later, the method was further generalized to include non-
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stationary responses, and the conditions for existence and uniqueness of solutions generated 

by equivalent linearization were examined [99, 109]. Faravelli, Casciati, and Singh  showed 

that the method was very reliable in the analysis of hysteretic systems [98]. Spanos and 

Iwan [99] studied the mathematical conditions required to ensure the existence and 

uniqueness of the equivalent linear system. The book by Roberts and Spanos [39] on 

computational techniques in nonlinear stochastic dynamics shows that among them, the 

statistical linearization method is the one that offers more advantages in terms of 

implementation, accuracy, applicability to M-DOF systems, systems with hysteretic 

behavior, and treatment of non-polynomial nonlinearities. The work by Bouc [101] on 

hysteretic systems presented a smooth and versatile model of hysteresis. This work along 

with the contributions by Wen and Eliopoulos [109] and others [110–112], motivated the 

diversification of the application of the method in many structural dynamics fields such as 

vibration of frames [113], steel and concrete structures [115,116], soil profiles [117], three 

dimensional frames [118], base isolation [119] and hybrid control [120].  

4.2   General Formulation of Statistical Linearization Method  

     A brief overview of the method is given below. Only the general steps involved in the 

analysis of a M-DOF nonlinear system by the method of statistical linearization are 

presented. However, in chapter 6 the details related to the analysis of a 4-DOF motorcycle 

model subjected to road roughness and experiencing in-plane motion are discussed, along 

with the necessary implementation steps. A thorough treatment of this technique can be 

found in the book of Roberts and Spanos [39]. 
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     In the following discussion it is assumed that the excitation and response processes of 

concern are stationary, and the non-linear system is of the zero-memory type. Also, the 

assumption of Gaussianity for both, the excitation and the response is considered. 

     Consider a M-DOF nonlinear system which equations of motion have the following 

general matrix form 

��� + ��� + �� +�	�, �� , �� � = 	t�, (4.1) 

     where the n x n matrices M, C, and K correspond to the system mass, damping, and 

stiffness matrices, respectively. q is the system displacement vector, F(t) is the system force 

vector, and Φ	�, �� , �� � is a vector function containing the nonlinearities. According to the 
basic idea of the statistical linearization method, the nonlinear system described by 

Equation 4.1 is replaced by an equivalent linear system, the statistics of which are easily 

computed and may be used as approximations to the statistics of the output of the nonlinear 

system. This equivalent linear system has the form 

	� +����� + 	� + ����� + 	� + ���� = 	t�, (4.2) 

where the linearizing matrices Me, Ce, and Ke are obtained by minimizing the difference, or 

error ε, between the actual and the equivalent linear system. That is  

� = �	�, �� , �� � − ���� − ���� − ���. (4.3) 

     The difference ε can be minimized by keeping in mind that it is a random process, and 

then the expected value of the square of the error can be used as a criterion for 

minimization, i.e. require that ������ = �������. 
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     The previous condition is satisfied when [39] 

������������ = 0, 
�������� ��� = 0, 
��������!��� = 0, 

(4.4) 

 

(4.5) 

 

(4.6) 

where ���� ,  ��� "�#	!���  are the 	�, %� elements of the matrices Me, Ce, and Ke, respectively, 

and		�, % = 1,2, … , �. 
     Applying conditions (4.4), (4.5), and (4.6)  to Eq (4.3) leads to 

���)�*� = ��+*+*��	, -)∗/01)∗/02)∗/0
3 ,				� = 1,2, … , �  

(4.7) 

where +* = 4+, +� , +� 56, (4.8) 

and  2)∗/0 ,  	1)∗/0 ,  and -)∗				/0 are the ith rows of the matrices Me, Ce, and Ke , respectively. 

     From the previous results, and using Gaussian approximation, Kazakov [39] obtained 

the following simple expressions that allow the computation of the elements of the matrices 

Me, Ce, and Ke: 

���� = � 7�8��9� :, 
 ��� = � 7�8��9� :, 

and !��� = � 7�8��9 :. 

(4.9) 

 

(4.10) 

(4.11) 
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     The set of equations (4.9), (4.10), and (4.11) can be used for both stationary and non-

stationary random vibration analyses [39]. 

     As mentioned earlier, the idea of substituting the actual nonlinear system by an 

equivalent linear one relates the fact that well established techniques exist to analyze linear 

problems. Depending on the nature of the information which is being sought, the analyst 

chooses among the various methods of analysis available, the one that suits particular 

needs.  Once the elements of the linearizing matrices Me, Ce, and Ke are found, the 

auxiliary linear system is defined and ready to be used to determine its statistics, which 

should be the best approximation of the statistics of the nonlinear system. At this point note 

that instead of a single-step procedure, what is established is an iterative process that leads 

to the optimal values for the elements of the matrices Me, Ce, and Ke. In this regard, 

Equation (4.7) leads to a unique set of equations for Me, Ce, and Ke, if and only if, the 

matrix ��+*+*�� is non-singular. Spanos and Iwan [99] have shown that in general, this is the 
case and it can be assumed that 9;	, … , 9<, 9�;, … , 9�<, 9�;, … , 9�< are linearly independent, 
which ensures that a unique set of equations for the matrices Me, Ce, and Ke exists, 

corresponding to the minimization of the error defined by equation (4.3).  

4.3  Spectral Approach Solution Procedure 

     The spectral approach is one of the methods for conducting linear vibration analyses. In 

this method the corresponding spectral density matrix of the response process =>	?� is 
sought. 

     Consider a nonlinear system described by  

��� + ��� + �� + @	�, �� � = A	t�, (4.12) 
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in which the non-linearity @	�, �� � depends only on displacements and velocities, and is 

assumed to be antisymmetric. The input excitation B	C� is a zero-mean stationary random 

process with spectral density matrix =D	?�. 
     The matrix =>	?� of the response random process can be determined via the equivalent 

of Equation (2.31). That is, 

=>	?� = E	?�=D	?�E	?��∗, (4.13) 

which involves the spectral density matrix =D	?� of the excitation Q(t)  and the matrix of 

the frequency response functions E	?� of the equivalent linear system  

E	?� = 4−?FG+ �?	� + ��� + 	� + ���5H;, (4.14) 

which is associated to the auxiliary system 

��� + 	� + ����� + 	� + ���� = A	t�. (4.15) 

     It is clear that in order to compute E	?�  it is necessary to compute the elements of the 

matrices Ce, and Ke first. This step is accomplished by applying the relations (4.10) and 

(4.11) obtained previously. 

     Next, the variance of the response can be calculated by using the indexed version of 

Equation (2.27) 

�I+��F 	J�K = L =+MN	?�O
HO #?, (4.16) 

where � = 1,… , �; and	% = 1,… , �.  
    The iterative process can be set next by using equations (4.10), (4.11), (4.13), and (4.14).      

A detailed scheme with the steps of implementation will be provided in the next chapter 

while applying the method to the analysis of the stochastic dynamics of a motorcycle.  
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 Chapter 5 

Road Profile Modeling and Synthetic Road Realization 

5.1   Introduction 

     This chapter is divided in three parts. The first part is a description of some studies to 

characterize road roughness as a stationary random process. The second part is devoted 

providing an introduction to the methods of synthetic road realization. The third part 

features a study of AR filters showing  that they are suitable computational tools that allow 

the synthesis of reliable time histories compatible with a given road spectrum. A 

comparison between the power spectrum of the AR filter output time histories and the 

target road spectrum is presented. Also the stochastic properties of the time histories and 

how well their target spectrum is fitted are assessed. 

5.2   Characterization of Road Roughness  

        To analyze in the time-domain the dynamic response of a vehicle, such as a 

motorcycle, moving on an uneven road surface, the excitation due to the road profile must 

be modeled as a time series, or a realization of a stochastic process. The appropriate 

synthesis of road roughness profiles, compatible with certain power spectrum, is the basis 

for conducting riding comfort studies, among others (see section 1.1) in which the dynamic 

behavior of the motorcycle must be understood.  Thus, a reliable characterization of the 

road profiles is required. Roughness is a measure of the deviations from a true planar 

surface in a road. It is responsible for vehicle vibrations which affect vehicle dynamics and 

ride comfort, and can be described effectively in a statistical sense, usually in terms of 

power spectral density [200]. 



54 

 

     The definition of roughness is kept intentionally general because roughness is a relative 

term. The effects on vehicle dynamics and ride comfort depend strongly on the geometrical 

and physical characteristics of the vehicle, and on the velocity at which it is moving on the 

ground. For instance, what could seem to be a smooth road for a passenger on a heavy large 

vehicle could be experienced as an uncomfortable vibration for another passenger on a 

small light vehicle, regardless of the fact that both vehicles traverse the same section of the 

road at the same constant velocity [164]. For these reasons, any description of the 

geometrical features of a road must be linked to the vehicle characteristics to be meaningful 

in ride and comfort studies. However, to have a practical description of roughness that can 

be operational, models of roughness must simple in its mathematical form and must involve 

a limited number of parameters.   

    Road elevation profiles can be measured either by using high-speed profilometers, or by 

performing close interval rod and level surveys [93].  The first attempts of characterizing 

roughness from a statistical point of view dates back to the late 1950’s. Bekker [164] 

provides a historical overview of this kind of studies. As an example, one of the first 

significant results that were obtained is shown in Figures 5.1, 5.2, and 5.3.  

 

Figure 5.1   Terrain profiles measured in off-road locomotion studies [164]. 
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     Figure 5.1 shows the profiles of two different proving grounds [201]. Measurements 

were taken every two feet, and the elevation was measured to the nearest one-hundredth of 

a foot. Since roughness is a spatial disturbance, the power spectral density function is 

defined in terms of spatial frequency Ω (radians per foot).  

     Figures 5.2 and 5.3 show the corresponding power spectra of these profiles plotted in 

log-log format, which has been of common usage in the automotive field. Both curves 

present the characteristic decaying versus frequency behavior of this type of spectra. Higher 

amplitudes imply rougher roads and vice versa. The PSD corresponding to Terrain 1, which 

presents pronounced profile irregularities, exhibits higher values than those exhibited by the 

PSD of terrain 2, which has a smoother profile. Noted can also be a waviness at the tail of 

both spectra, which was of concern for the researchers, since they initially expected a 

smoother behavior at the tail. Problems related with aliasing, and elimination of bumps and 

potholes needed to be resolved prior to deriving smoother PSDS. Also methods and 

equipment for collecting data needed to be improved [164]. Blackman and Tuckey [85] 

provided descriptions of the computations of the PSD and estimates of errors involved. 

     Based on the idea of the exponential equation, Dodds and Robson [67] proposed a 

simple power formula that fits experimental data in most of the operational range of 

frequencies (0.5-20 Hz) required for motorcycle studies. This model is widely used in 

dynamics studies, and is discussed more in detail in section 5.15. 

     Other approaches and models have been proposed. Kropác and Mucka [128] presented a 

road model that, besides describing ground roughness, it incorporates potholes and 

obstacles associated with deteriorated roads. Öijer and Edlund [74] also presented a model 

to describe a combination of random roughness and transient obstacles that allow analysis 

of vehicles  
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Figure 5.2   Power spectral density of terrain 1 [164]. 

 

 

Figure 5.3   Power spectral density of terrain 2 [164]. 
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subject to non-stationary excitation. Sprinc et.al [77] discussed the practical aspects of 

gathering roughness data and proposed the use of a device called DYNVIA, which allows 

acquiring reliable roughness data at a lower cost compared to other devices. Xu et.al [79] 

proposed the use of a non-contact acoustical transducer, and also a roughness model of 

exponentially decaying form. Bogsjö and Forsén [86] analyzed fatigue due to road 

roughness, and suggested the use of a road model which is the sum of Gaussian noise and 

of transient events such as holes and bumps. 

5.2.1    General Considerations on the Characterization of Roughness  

     When characterizing road roughness it is commonly assumed that it is a zero-mean, 

stationary and ergodic Gaussian process [67].  These assumptions, by virtue of the Central 

Limit Theorem (section 2.2), can be considered reasonably reliable. They allow the 

complete characterization of this kind of random processes in terms of their second-order 

moments; namely the mean and variance, which are obtained from the time histories of the 

excitations, as discussed in section 2.2.  

     In the frequency domain, under the same assumptions, road profiles can be adequately 

described by a power spectral density function. This approach is suitable for analyzing both 

linear and non-linear systems, and allows the study of the motorcycle response, given its 

traversal speed and its dynamical characteristics [36].  

     As it has been indicated previously, the PSD of road roughness is described as a 

function of the wave number (cycle/m, or cycle/ft), but it can also be described as a 

function of frequency with units in either radians per second (rad/s) or cycles per second 

(Hz). The last form is particularly useful in vehicle dynamics because the velocity of the 

vehicle appears as a parameter in the PSD roughness function [68].  In addition, there exist 
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several ways of expressing the PSD of a road profile; see for example references [41], [68] 

and [87], and no agreement among authors exists on what definition must be used. 

Moreover, in many publications it is not clearly stated which definition of PSD is 

considered, making it often difficult to compare reported data.   

     The problem of the variety of definitions for a PSD and the generated confusion has 

been addressed by Davis and Thompson [68], who have summarized the different ways of 

defining a road profile PSD and have provided insight in the use of the units involved. In 

this thesis, the Wiener-Khinchine relations (equations (2.11) and (2.12)) and the PSD of 

both, the road and the motorcycle’s response, are defined following the convention used by 

Newland [41]. The relation between the so called two-sided power spectrum �� and the 

one-sided experimental power spectrum  � is given by Equation (2.16), reproduced here 

again for convenience 

���� = 4	���
� (2.16) 

      It is important to point out that the two-sided power spectrum �� is expressed as a 

function of the angular frequency ω while the one-sided experimental power spectrum � is 

expressed as a function of frequency in Hz. 

5.3 Road Roughness Model 

     In the first stage of the work of this thesis the model presented in [67] known as the 

split-power law, was adopted.  This power spectrum gives the magnitude of the surface 

irregularities as a function of their wavelength	�. It is described by the equation 

���� = �� � ������ �� = ��				� ≤ ��� = ��				� > ��, (5.1) 
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where  �� = ��� is the cut-off wavenumber, �� and �� are exponents, and �� is a constant 

that depends on the quality of the road; k is the wavenumber defined as 

� = 2	� , 
 

(5.2) 

which can be interpreted as the number of wavelengths � contained in a distance of 2	. 
Table 5.1 shows the values of these parameters for various road types as presented by 

Dodds and Robson [67]. 

  Table 5.1 Road quality constants (adapted from reference [67]) 

                                                                                                                     n1                              n2_   ____ 

                                                            S0  [x10-6 m3/cycle]                                       Standard                   Standard 
      Road class                            Road Quality           Range         Mean       deviation     Mean     deviation 
Motorways 
 
 
Principal roads 
 
 
 
 
Minor roads 

Very good 
Good 
 
Very good 
Good 
Average 
Poor 
 
Average 
Poor 
Very poor 

2-8 
8-32 
 
2-8 
8-32 
32-128 
128-512 
 
32-128 
128-512 
512-2048 

1.945 
 
 
 
2.05 
 
 
 
 
2.28 

0.464 
 
 
 
0.487 
 
 
 
 
0.534 

1.360 
 
 
 
1.440 
 
 
 
 
1.428 

0.221 
 
 
 
0.266 
 
 
 
 
0.263 

 

     The experimental power spectrum of a typical road, along with two approximations is 

shown in Figure 5.4. The solid line corresponds to the split-power law approximation 

Equation (5.1), and the dotted line shows an integrated white noise approximation, the 

latter is explained in reference [88].  

     Assuming that the motorcycle travels at constant speed V, the power spectrum given by 

Eq (5.1), which is expressed in terms of the wavenumber k can be rewritten in terms of 

time. To this end the following relations are useful [41] 
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Figure 5.4 Typical power spectrum of road profile and two approximations [88]. 


 = ��, 
and 

(5.3) 

��
 = ��� = 1� ����. (5.4) 

     Combining equations (5.1), (5.2) and (5.3) the following expression is obtained 

��
, �� = ��� � 
������  � = �� 				
� ≤ ��� = �� 				
� > ��. 
 

(5.5) 

In this case, due to the transformation, �� = 1. Thus, ��
, �� has units m2/Hz. 

Several PSD’s for an average quality road profile were obtained using Equation 

(5.5). The curves, corresponding to various speeds are shown in Figure 5.5. The values 

used for generating these curves are n1=2, n2=1.5, S0=64 x 10-6 m2/rad m-1. 
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Figure 5.5   Power spectra for an average quality road. 

 

Although the split power formula provides a simple way to fit a road power 

spectrum, it cannot be generated by linear filters. This problem has been reported by 

Turkay and Akcay [88]. They discarded the split power formula and applied a subspace-

based frequency-domain algorithm [89] to approximate an experimental spectrum. The 

author of this thesis also experienced the same problem when tried to generate time 

histories based on this PSD model. The problem observed is that, since the split power 

formula is unbounded at the zero frequency, the signals generated using AR filters, contain 

low frequency components with large amplitudes which are not part of the real signals 

compatible with the given power spectrum. As it will be discussed later, depending on how 

the model is formulated, absolute coordinates or relative coordinates, the analysis of the 

response of a motorcycle, involve the use of the velocities and accelerations imposed by the 

road profile. The velocity and acceleration PSD’s are computed by means of Equations 
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(2.18) and (2.19), which involve the road profile PSD. Hence, when these time histories are 

synthesized by using Equation (5.5), through Equations (2.18) and (2.19), without any 

modification the results obtained are not good representation of the true signals. Therefore, 

this model is not suitable for simulating the response of the motorcycle. Yet, this model 

gives a good approximation within the regions B and C shown in Figure 5.6. Thus, instead 

of discarding Equation (5.5), a complimentary function was used to approximate the road 

PSD within region A of the same figure. The model used by Narayanan and Senthil [78] 

can be used to accomplish this goal. It provides a good approximation for the road PSD 

within the regions A and B of Figure 5.6, but fails in region C. 

     The model has the form 

�!�
� = "�#�	�
� + �#���� 
 

 

(5.6) 

where �!�
� is the psd of the road surface, "� denotes the variance of the road, V is the 

vehicle velocity, and a represents the quality of the road. A plot of a road PSD and its 

approximation is shown in Figure 5.7.  

     The single values reported of a and σ2 to approximate the PSD shown in Figure 5.7, 

were used to estimate the order of the constants needed for different values of speed and 

road quality; since these data are not provided by the authors. Thus, by using equations 

(5.5) and (5.6) the entire road profile PSD can be approximated. Figure 5.8 shows one PSD 

obtained applying this approach. 

     Time histories were generated from the new PSD’s. An improvement was observed in 

the quality of the signals generated and also in the response PSD’s obtained. These results 

are discussed in detail in section 5.18.  
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Figure 5.6   Sections of power spectrum fitted by two different roughness models. 

 

 

Figure 5.7  Power spectrum of road roughness and fitting (from reference [78]). 
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Figure 5.8 Combined PSD obtained with two different models. 
 

 
 
     As mentioned in the preceding section, the analysis of the response of the motorcycle 

model, expressed in terms of relative coordinates, requires the use of acceleration 

realizations as the excitation to the system. Equation (2.19), allows the computation of the 

necessary acceleration power spectrum in a very straight forward manner. For the road 

profile PSD of Figure 5.8, the corresponding acceleration PSD is shown in Figure 5.9. 
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                Figure 5.9  Acceleration power spectrum. 

 

5.4 Synthesis of Road Realizations 

    Nowadays a number of methods for simulating stationary random processes which are 

compatible with a specified (target) power spectrum have been proposed. Borgman [199] 

used superposition of sinusoidal functions in the simulation of ocean surface elevation by 

choosing the frequency in such a way that the amplitude of each sinusoidal function was an 

equal portion of the target spectrum. A method for simulating several simultaneous time 

series by passing white noise through filters was also presented in the same publication. 

Cuong et. al. [154], generated random sequences with applications in marine dynamics by 

using a method based on the Fast Fourier Transform (FFT). Shinozuka [131] introduced the 

harmonic superposition method. It is a technique that simulates a random process by a 
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series of cosine functions with random frequency. It employs Monte Carlo method and 

works well with many kinds of PSD. Although the technique is of easy implementation it is 

computationally costly. The harmonic superposition method has been widely accepted and 

applied in various branches of engineering including vehicle dynamics. Later, Shinozuka 

and Deodatis [63] presented an upgraded version of the method which features the use of 

the FFT technique to reduce the cost of digitally generating sample functions of the 

simulated stochastic process. Yonglin and Jiafan [83] present the method of linear filtration, 

which the authors found to be computationally more efficient than the method of harmonic 

superposition. However, the analyses of results presented are based on a visual evaluation 

of a single time history instead of a more formal analysis of the statistical characteristics of 

the generated series, thus casting doubts on the effectiveness of the method. Spanos and 

Hansen [64] proposed an alternative method based on linear prediction theory (LPT), or 

autoregressive (AR) filter, for the numerical simulation of sea wave records obtained as the 

output of a recursive digital filter to a white noise input. In a later publication, Spanos [65] 

reviewed the applicability of LPT on the simulation of ocean waves and extended the study 

by examining the moving average (MA) and the autoregressive moving average (ARMA) 

algorithms as options for this problem, showing the good capabilities of these algorithms in 

fitting the Pierson-Moscowitz spectrum. Further, Spanos [66] showed the applicability of 

the three algorithms in other engineering branches, in particular in the spectral 

characterization of high frequency space shuttle lift-off data. 

5.5 The Autoregressive Approximation 

     In an autoregressive (AR) approximation of order m, the n-th sample time history  �%��� 
is computed as a linear combination of the m previous samples  and a white noise process 
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w(n) (with power spectrum equal to one), defined in the frequency band [−
'(, 
'(], 

where 	
'(		is the cut-off frequency. Thus, the n-th time history  �%��� can be computed as 

follows  

�%��� = −)#*�%�� − �� + +,���-
*.� ,  

(5.7) 

where #* and G are parameters to be determined. 

     The parameters #* can be obtained by minimizing the ratio between the areas of the 

target (known) power spectrum S0(ω) and the power spectrum �%/0(ω) of the synthesized 

time histories [64] 

		1/0 = 2 ���
��/0�
� 	3
,456
�456  (5.8) 

leading to the Toeplitz matrix equation  

788
89 :�:� 			:� 		:� :-��			:� 	…	 :-��:�⋮:-��

:�⋮:-�� … :� =>>
>?
788
89 #�#�⋮
#-=>>
>? = −

788
89 :�:�⋮
:-=>

>>?. 
 

(5.9) 

Each element Rk (k = 0,…, m) can be computed using Equation (2.15). In this case  

:*��� = 2 ���
�456
�456 @AB��
C�3
.			  

(5.10) 

     Once the Ri elements are computed, the parameters #* can be obtained by solving the 

system given by Equation (5.9). 
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     The parameter G can be determined by equalizing the areas under the curves of the 

output spectrum �%/0 and the target power spectrum ��. That is require, 

2 ���
�456
�456 3
 = 2 �/0�
�456

�456 3
,				 (5.11) 

which leads to [64] 

+� = C2			D:� +)#*-
*.� :*E.	  

(5.12) 

     The Nyquist criterion defines the time step to be used in terms of the cut-off frequency 


'(. That is 

∆G = 	
'( .			 (5.13) 

     The power spectrum �/0 can be computed using the equation 

�/0�
� = +�H1 + ∑ #*-*.� J�K*4LH�		. (5.14) 

5.6   AR Fitting of a Combined Dodds-Narayanan Road Power Spectrum 
 

     This section presents the results obtained by fitting an AR model to the roughness PSD 

corresponding to an average quality road with an associated velocity of 15m/s. Table 5.2 

shows the required formulae and parameters. Figure 5.10 shows the linear-linear plot of the 

PSD. 

     The linear-linear representation is helpful to appreciate the real shape of the road PSD. 

A steep decaying behavior is observed. It can also be observed that the greater amplitudes 

are concentrated in a narrow-low-frequency band within 0 and 0.5 Hz, approximately. 
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Table 5.2  Parameters and equations for average quality roughness PSD with V=15m/s, and 
'( = 250	O#3/B. 
Branch of PSD Formula used Domain Parameters 

Right Equation (5.6) 
 ∈ R0, �/ST " = 0.0835,						# = 0.0835	, 
Left Equation (5.5) 
 ∈ ��S ,
'(T �� = 128 × 10�X,			n1= 2.0,  n2=1.5, �� = 1 

 

     However, the order of magnitude of the amplitudes beyond 0.5 Hz is difficult to 

estimate. The decaying behavior and the very low amplitudes can be enhanced with the aid 

of a log-log representation of the PSD, as shown in Figure 5.11. With the aid of this graph 

it is easier to acquire a better graphical description of the distribution of amplitudes along 

the operational frequency range, although the shape of the PSD now appears distorted. 

Once the PSD (target PSD) is computed, the AR filter can be used to fit the target PSD and 

generate the excitation time histories. 

 

Figure 5.10   Linear-linear plot of PSD of average road profile. 
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Figure 5.11   Log-log plot of PSD of average road profile. 

 

     The AR filter was implemented in MATLAB. In general, a good fitting of the target 

spectrum was found with an ensemble of nth=250 realizations and an order of 45 (denoted 

AR(45)). According to the criterion given by Spanos and Hansen [64], who suggest a 

minimum value of the cut-off frequency ωco, equal to twice the frequency range where the 

PSD is defined, the cut-off frequency was set in 40 Hz (≅ 251	O#3/B�; since the range of 

frequencies of interest is 20 Hz.  

     In the present work, the value of ωco is used as the minimum value required, since this 

value has to be adjusted by an algorithm developed to match the time step between two 

consecutive realization values, the time step of integration of the equations of motion; and 

the time lag between the front wheel and rear wheel input, the latter depending on the ratio 

p/V. This algorithm is explained in Chapter 6.  
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5.7   Analysis of Results. Target Power Spectrum Fitting 

     The evaluation of correct fitting of the target spectrum by the PSD of the AR(45) filter is 

carried out by the following tests: visual inspection, computation of area under target 

spectrum (A1), computation of area under spectrum from AR filter (A2), and computation 

of area under spectrum of time histories (A3).  

     The last spectrum computed serves as a further validation. It is obtained by applying the 

Welch method (section 2.13) [81], [84], which is implemented in Matlab as the pwelch 

function.  Figures 5.12 and 5.13 show the target spectrum along with the PSD obtained 

from the AR(45) filter, and the PSD obtained with the Matlab function pwelch. 

 

 

Figure 5.12   PSD of road profile obtained from AR(45) filter and target PSD. 
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Figure 5.13   Log-log of road profile obtained from AR(45) filter and target spectrum. 

 

     The area under each spectrum is computed within the same frequency interval. Besides 

the computation and comparison of areas A1, A2, and A3; information from the time 

histories is obtained by: 

I. Computation of autocorrelation of time histories evaluating	:��Z = 0�, which 

according to Equation (2.8) equals the variance of the signal (vS); and by Equation 

(2.13), equals the area under the power spectral density curve. 

and 

II. Analysis of the behavior of the autocorrelation function as :��Z → ∞�	of the time 

histories generated by the AR(45) filter. According to Equation (2.9), this analysis 

allows verification that a zero-mean stationary process is being obtained. 
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  Table 5.3   Areas under PSD´s of Figures 5.12 and 5.13. 

A1 

Target spectrum 

A2 

AR(45) spectrum 

A3 

Pwelch spectrum 

vS 

Variance of t. h. 

2.6988e-004 2.6351e-004 2.6342e-004 2.5697e-004 

% Error 2.36 2.39 4.78 

 

     Table 5.3 presents the computed areas of each PSD presented in Figures 5.12 and 5.13, 

along with the computed value of the variance of the time histories. From the results of 

Table 5.3 it can be seen that the fitting is very good. Only the variance exhibits a greater 

percentage error, which is acceptable, but it may be even improved by increasing the order 

of the filter. However, the reduction in error of just one or two percent points perhaps is not 

worth the greater computational effort required.  

5.8   Analysis of Results. Generation of Time Histories 

     An ensemble consisting of 250 time histories was created. One sample time history 

compatible with the displacement PSD is shown in Figure 5.14. Note the presence of small 

amplitude components at high frequencies versus the high amplitude components at low 

frequencies. This behavior is in accord with the shape of the PSD of Figure 5.13.  

     The analysis of the behavior of the autocorrelation of the PSD, Figure 5.15, is based on 

the detailed explanations presented in [92] and [145], for the analysis of AR type signals. 

The slowing decaying behavior shows that successive samples of the time histories are 

similar, which occur when the poles of the AR filter are real and positive, and are located 

close to the unit circle. The graph of the autocorrelation corresponds to a low-pass 

spectrum, which is the case corresponding to the displacement PSD used. 
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Figure 5.14   Sample time history of the excitation. 

 

 

    

 

Figure 5.15  Autocorrelation of time history. 
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5.8.1 Fitting of an Acceleration Power Spectrum 
 
     The acceleration PSD was obtained from the displacement PSD with the aid of equation 

(2.19). The resulting PSD is shown in linear-linear format in Figure 5.16 along with the 

PSD of the AR(45) filter, and the PSD of the time histories. The same information is 

presented in Figure 5.17 in log- log format. As in the previous analysis, a number of 250 

time histories was generated and used to determine the PSD of the ensemble using the 

pwelch function of Matlab.  The same procedure used to validate the preceding results is 

used herein.  

 
 

Figure 5.16   PSD of induced acceleration and AR(45) power spectrum. 
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Figure 5.17   Log-log graph of PSD of induced acceleration and AR(45) power spectrum. 

      

     A good fitting is seen in Figures 5.16 and 5.17. Small fluctuations around the target 

spectrum are observed at the high frequencies in Figure 5.16; while Figure 5.17 shows a 

soft wavy fluctuation in the low frequencies.  

      

  Table 5.4   Areas under PSD´s of Figures 5.16 and 5.17. 

A1 

Target spectrum 

A2 

AR(45) spectrum 

A3 

Pwelch spectrum 

vS 

Variance of t. h. 

1.4937e+003 1.4936e+003  1.4897e+003 1.4892e+003 

% Error 0.0067 0.2678 0.3013 
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     Despite these fluctuations about the target spectrum, the numerical results summarized 

in Table 5.4, show that the AR filter is capable of fitting quite accurately the acceleration 

spectrum and of generating reliable signals. With only 250 time histories and an order of 45 

the maximum percent error is less than 0.5%.  

     A sample time history of acceleration is shown in Figure 5.18. In contrast to the time 

history of the displacement PSD; Note the presence of large amplitude components at high 

frequencies, in accord with the shape of the acceleration PSD of Figure 5.16.  

 

 

Figure 5.18   Sample time history of acceleration. 
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     The autocorrelation of the acceleration time histories is shown in Figure 5.19. Contrary 

to the slowing decaying behavior of the displacement PSD autocorrelation, the 

autocorrelation in Figure 5.19 presents a sudden drop and an alternate change of sign. This 

behavior is directly related to the rapidly oscillating sequence shown in Figure 5.18., which 

in turn is related to a high-pass spectrum that has negative real poles close to the unit circle. 

 

 
Figure 5.19  Autocorrelation of acceleration. 

             

     The preceding road profile models are used in ensuing chapters as input in the dynamic 

analysis of nonlinear motorcycle models. 
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Chapter 6 

Modeling of Motorcycle Dynamics 

6.1 Introduction 

     A motorcycle, as many ground vehicles, must comply with comfort and safety criteria. 

To accomplish these goals it is necessary to analyze the dynamical behavior of the 

motorcycle. Depending on the particular study, certain assumptions can lead to a quite 

simplified model that may be used to obtain pertinent and accurate information about the 

motorcycle’s behavior. To that end it is necessary, as a first step, to define the main 

elements and parameters used to model and analyze motorcycles. Also, it is important to 

specify the conditions in which the motorcycle behavior is studied so that the correct 

simplifying assumptions may be made. In this regard, two general kinds of motion define 

the conditions and parts of the motorcycle to be considered in the analysis [43]: 

I. In-plane motion, which occurs when the motorcycle travels in a straight path and is 

lying all the time in the vertical plane. The in-plane modes involve frame, 

suspension, and wheels motion in the vertical plane, 

II. Out-of-plane motion, which presents the out-of-plane modes, and involves roll, yaw, 

steering angles and steering head lateral displacement. 

     The in-plane modes are related to ride comfort and road holding, whereas the out-of-

plane modes are related to vehicle stability. In straight running, in-plane and out-of-plane 

modes are uncoupled and they can be examined separately [33]. 

     Once the motorcycle’s elements and parameters are identified an appropriate model is 

derived. Several configurations are possible. For example, for the analysis of in-plane 
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motion common examples include: the one-degree-of-freedom (1-DOF) model, the 2-DOF 

model, and the 4-DOF model [43]. 

     In this study the analysis of the dynamical response of a motorcycle to road roughness as 

it moves at constant speed in a vertical plane, with respect to the ground is considered.  For 

that purpose the motorcycle is modeled as a 4-DOF system. Thus, only those geometrical 

parameters that are relevant to the description of the in-plane model are explained in detail. 

However, for a more complete description of out of plane motion the reader can consult 

references [12, 20, 23, 29, and 43].   

6.2 General Description of a Motorcycle 

     Basically two complimentary approaches are used to describe a motorcycle [206]: 

I. The kinematic approach, which involves a description of position and 

orientation of the motorcycle and especially of the locations of the points of 

application of contact point forces; 

II. The dynamic approach, which involves the forces and moments acting on the 

motorcycle and those generated between interconnected elements. 

     The kinematic description of the motorcycle is important because it is the way in which 

the various relationships between the motion variables, according to the geometrical 

properties of the motorcycle, are determined. The dynamical approach allows however, 

determining the governing equations of motion of the motorcycle. To a first degree of 

approximation, the kinematical description can be made assuming non-deformable 

elements, and deformations may be taken into account in the dynamical analysis [43].   
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6.2.1 Kinematic Description of a Motorcycle 

     To simplify the kinematic description, the motorcycle is assumed to comprise four main 

rigid bodies [43], Figure 6.1: 

 I. the rear assembly, which includes the frame, saddle, tank, and motor-gear 

group; 

II. the rear wheel, 

III. the front assembly, comprised by the fork, the steering head and the 

handlebars, 

and 

IV. the front wheel. 

 

     Considering non-deformable tires and their pure rolling motion, each wheel can only 

rotate about: 

 I. the contact point on the wheel plane (forward motion), 

II. the intersection axis of the motorcycle and road planes (roll motion), 

III. the axis passing through the contact point and the center of the wheel 

(spin). 

 

Assuming that the tires move without slippage the number of degrees of freedom required 

to describe the motion of a motorcycle is 3 [43]: 

 I. forward motion of the motorcycle (represented by the rear wheel rotation); 

II. roll motion around the straight line which joins the tire contact points on 

the road plane; 

and 

III. steering rotation. 
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Figure 6.1   Kinematic description of a motorcycle (Adapted from [205]). 

A more realistic motion can be considered if slippage is taken into account; due to the 

generation of longitudinal (driving and braking) and lateral forces a set of four degrees of 

freedom can be added to the previous set. That is 

 I. longitudinal slippage of the front wheel (braking), 

II. longitudinal slippage of the rear wheel (thrust or braking), 

and 

III. lateral slippage of the rear wheel. 

 

     Thus, in terms of kinematics there are seven degrees of freedom to completely describe 

the motorcycle’s motion. 

6.2.2 Geometric Parameters of a Motorcycle 

    Assuming that the motorcycle is a rigid body with no suspension and non-deformable 

toroidal tires, the following parameters can be used to geometrically it [43]: 
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I. p  wheelbase, 

II. d  fork offset, 

III. �	caster angle, 

IV. Rr  radius of the rear wheel, 

V. Rf  radius of the front wheel, 

VI. tr  radius of the rear tire cross section, 

and 

VII. tf  radius of the front tire cross section. 

These parameters are shown in Figure 6.2. 

     The wheelbase is the distance between the contact points of the tires on the road; the 

caster angle is the angle between the vertical axis and the rotation axis of the front section 

(the axis of the steering head); the fork offset is the distance between the axis of the steering  

 

 
 

                    Figure 6.2. Geometry of a motorcycle (From reference [43]) 
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head and the center of the front wheel; and the trail is the distance between the contact 

point of the front wheel and the intersection point of the steering head axis with the road. It 

is considered positive if the contact point of the front wheel is behind the intersection point 

of the steering head axis and the road. 

     Two parameters are expressed in terms of the previous ones. Specifically  

the normal trail an, is 

�� = ���	
��� − �, (6.1) 

And the mechanical trail a, is 

� = ��/������	. (6.2) 

     The geometric parameters usually needed to describe the kinematic and dynamic 

behavior of a motorcycle are the wheelbase, the trail, and the caster angle. 

     The wheelbase is important in this analysis because it has a great influence in the in-

plane modes of vibration of the motorcycle. The value of the wheelbase varies according to 

the kind of motorcycle. Usually it ranges from 1.20 m up to 1.6 m, but in some cases it can 

be greater.  

     The caster angle also varies according to the type of motorcycle: from 19° to 33°.  

     The value of the trail depends on the type of motorcycle and its wheelbase. It ranges 

from 75 mm to 120 mm or even greater in some cases. The trail plays an important role in 

the stability of the motorcycle, especially in rectilinear motion, when the effect of lateral 

forces is considered. The greater the value of a positive trail the more stable the motorcycle 

is in rectilinear motion, but less maneuverable.  

     From these parameters, only the wheelbase is used in the present study, the other two do 

not have a considerable effect in the description of in plane motion [43]. 
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6.3 Simplifying Criteria for Obtaining a 4-DOF In-Plane Model 

     For modeling purposes, a motorcycle with suspension can be regarded as a rigid body 

(sprung mass) connected to the wheels with elastic systems (front and rear suspension). The 

masses attached to the wheels are called unsprung masses. The degrees of freedom 

involved in the 4-DOF model are associated with two modes of vibration, namely the in-

plane and out-of-plane modes; they are characterized by their respective natural 

frequencies.  

6.3.1 In-plane Vibration Modes of a Motorcycle 

     The in-plane modes are decoupled from the out-of-plane ones. The first mode, called the 

bounce mode, is a pure vertical translation, while the second mode, called the pitch mode, is 

a pure rotation around the center of gravity. These modes are shown in Figure 6.3. For in-

plane motion these two modes are uncoupled. Front hop mode, rear hop mode correspond 

to the vertical motion of each unsprung mass. 

 

Figure 6.3. Typical modes of vibration of an in-plane motorcycle model. 
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6.3.2 Simplified Model of Motorcycle Suspension 

6.3.2.1   Suspension Modeling 

     Motorcycle suspension plays an important role in braking, shock absorption, and rider 

comfort by allowing the wheels to follow the profile of the road without transmitting 

excessive vibration to the rider. The suspension is also intended to provide wheel grip on 

the road plane to transmit the required driving and braking forces. 

     Ride quality is an important aspect of vehicle-road interaction and increasing attention 

has been devoted by motorcycle researchers to the area of rider comfort [7-9, and 36]. This 

is not only because there exists a demand from riders of more comfortable motorcycles; but 

because there is also a close connection between comfort and rider’s handling capacity.  

     Another important consequence of improving comfort in motorcycles is an increase in 

rider’s safety. These considerations have also motivated an active research in the field of 

design and analysis of motorcycle suspension systems; the following contributions 

exemplify this trend.  

     Jennings [4] carried out experimental work with suspension dampers in order to 

investigate the effect of suspension damping on cornering weave and concluded that the 

damping characteristics of the suspension greatly affected the motorcycle stability, and that 

the rear suspension damping is important in controlling cornering weave instability. Basso 

et al. [189] used a 2-DOF model to analyze the dynamic behavior of the front suspension of 

a motorcycle which travels at different speeds. They also carried out experimental 

measurements which showed close agreement with simulation results, leading the authors 

to conclude that the 2-DOF model provided a good representation of the suspension 

system. Evangelou [190] introduced a variable geometry rear mono-shock suspension  
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Figure 6.4  Reduced suspension model (from [43]) 

 

system that can be used to control high performance motorcycles. The results show that this 

suspension design renders improvements on the dynamic properties of the weave mode for 

a range of working regimes. Other relevant contributions can be found in references [78, 

166, 176-179] 

6.3.2.2   Reduced Stiffness of the Suspension 

    Since several configurations of suspension are available, the in-plane dynamics study 

requires the real suspension to be reduced to an equivalent suspension, represented by two 

vertical spring-damper units that connect the unsprung masses to the sprung mass [43]. 

Figure 6.4 depicts this abstraction. 

     The parameters defining the equivalent suspension are the reduced stiffness, and the 

reduced damping. 

    With reference to Figure 6.2, if k  denotes the real stiffness of the front suspension, the 

reduced stiffness fk  can be computed by the equation 
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 �� = ��������	.                                                             (6.3) 

     The value of the reduced stiffness of the front suspension varies according to the weight 

of the motorcycle and its use. Values range from about 10,000 N/m for light motorcycles to 

values around 20,000 N/m for heavy motorcycles.  

     The reduced stiffness of the rear suspension involves the geometric parameters of the 

particular type of suspension. Thus, a general formula [43] provides is 

  �� ≅ ���,� ! 	,                                                          (6.4) 

where ��,� !  represents the ratio between the deformation velocity of the spring and the 

wheel vertical velocity.  

     Values of the reduced stiffness of the rear suspension range from about 18,000 N/m for 

light motorcycles to values around 30,000 N/m for heavy motorcycles.  

6.3.2.3   Reduced Damping of the Suspension 

     With reference to Figure 6.2, if the damping constant of the fork is denoted byc , the 

equivalent damping of the front suspension fc  is  

�� = �������� .                                                           (6.5) 

     The velocity ratio depends on the geometric characteristics of the rear suspension 

mechanism and varies with the vertical wheel travel. 

     The reduced damping of the rear suspension is 

  �� ≅ ���,� ! 	.                                                         (6.6) 
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6.4 Motorcycle Tires 

     Tires are one of the most important elements in motorcycles.  Due to their deformability, 

tires allow contact between the wheel and the road; improve the adherence and the comfort 

of the ride, and influence the stability of the vehicle.  

6.4.1    Tire Modeling 

     As mentioned before, the early motorcycle models did not take into account the effect of 

the tire. The paper presented by Sharp in 1971 [2] introduced another important 

improvement in motorcycle modeling with the inclusion of a model for the tires, addressing 

sources of steady state forces and moments due to side-slip and camber angle.      

     An improvement to Sharp´s 1971 model was achieved by Sharp and Pacejka [25]. A 

more detailed study of the generation of shear forces in the contact patch area was 

presented. In this regard, other notable contributions are the works of Cossalter and Doria 

[165], Cossalter et al. [187], Lot [169], and Tezuka et al. [171]. All these studies present 

tire models that have found application in the analysis of the motorcycle stability and 

handling, especially at cornering.  

     Motorcycle tires present a real challenge for modeling purposes. This is the reason why, 

depending on the type of study, different approaches have been employed by researchers. 

Indeed, there is no consensus on a single model that describes all the possible tire features. 

However, some contributions have aimed to present models that can practically cover any 

dynamic situation in which the lateral and longitudinal interaction of the tire and the road is 

considered. The model most widely used is Pacejka’s “magic formula” [198]. Other 

important contribution in this field is the model presented by Cossalter and Lot [29]. Note 
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that these tire models consider the road as flat; in general, non-flat road profiles are not 

included in these formulations.  

6.4.2   Vibration Modes of Tires 

     The modes of vibration of motorcycle tires can be classified in two kinds: in-plane 

modes, and out-of-plane modes. However, mixed modes can also occur. 

     With regard to in-plane dynamics, tires have a direct influence in shock absorption and 

braking.  In-plane modes are characterized by radial and/or circumferential displacement of 

the points located in the symmetry plane of the wheel. In-plane modes occur in a range of 

300-400 Hz, while out-of-plane modes occur in a range of 100-200 Hz.  

     Although out-of plane-modes have an excitation frequency range lower than in-plane 

modes, the latter are in general, the most often excited. This is due to the fact that during 

rectilinear motion or steady turning, the resultant of tire forces remains, approximately, on 

the symmetry plane of the wheel. Also, loss factors influence the presence of both vibration 

modes. 

 

 

Figure 6.5  In-plane tire’s mode of vibration (Adapted from [43]) 
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     For out-of-plane modes these losses are higher than those of in-plane-modes, and as a 

consequence out-of-plane modes fade away faster than in-plane-modes. 

     Since the sensation of discomfort experienced by the driver while traveling on a rough 

road is mainly due to vertical vibration [200], the preponderant excitation force to consider 

acting on the motorcycle is vertical as well. As a consequence, for studies related to 

comfort an in-plane motion is commonly assumed [164]. This assumption simplifies the 

analysis allowing the use of vertical tire/road models that define the vertical force provided 

by the tire. This force is mainly given by the tire’s vertical stiffness and is also dependent of 

the ground profile [182].  These models may comprise a spring stiffness only, or a 

combination of tire stiffness and damping [162].  

 

 

Figure 6.6.  4-DOF In Plane Model (Adapted from [43]) 
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6.5 The Linear 4-DOF In-Plane Model 

6.5.1    General Assumptions and Nomenclature 

    The motorcycle moves in a straight path in its plane of symmetry (in-plane motion) at 

constant speed. The driver is attached to the motorcycle with no possibility of getting 

separated from it. This assumption is reasonably valid for straight motion at constant speed. 

Further, the driver’s mass, the rear assembly of the motorcycle (frame, saddle, tank, and 

motor-gear group), and the front assembly (the fork, the steering head and the handlebars) 

are all represented by a homogeneous, rectangular, prismatic bar (sprung mass) with its 

weight acting on its center of gravity (C.G.), refer to Figure 6.6.   

     Each tire with its corresponding brake system is represented by a single mass, the 

unsprung mass, which also accounts for the suspension elements’ masses. Then the whole 

motorcycle is represented by three rigid bodies: the sprung mass and the rear and front 

unsprung masses whose vibrating motion is described by four independent coordinates: the 

vertical displacement of the sprung mass center q, the pitching rotation of the sprung mass 

µ , and the vertical displacements of the two unsprung masses "#� and "#�. The tires’ 

stiffnesses kpf and kpr, and damping cpf and cpr are represented by the pair of spring-dashpot 

attached to the ground. 

     Drag forces are not considered. It is also assumed that the tires always keep contact with 

the road and that there is no slipping.  

6.5.2   Motorcycle Data 

     The motorcycle values shown in Table 6.1 are reported in reference [43], and they are 

used in this thesis. 
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       Table 6.1   Motorcycle data sheet. 

Motorcycle characteristics 

Wheelbase  p  [m] 

Distance from the center of gravity to the rear wheel  b [m] 

Sprung mass (The masses of the chassis, engine and rider)  m  [kg] 

Front unsprung mass mf  [kg] 

Rear unsprung mass mr  [kg] 

Pitch moment of inertia    IyG   [kgm
2
] 

Reduced stiffness of the front suspension   kf  [N/m] 

Reduced stiffness of the rear suspension   kr  [N/m] 

Reduced damping of the front suspension   cf  [Ns/m] 

Reduced damping of the rear suspension   cr  [Ns/m] 

Front tire stiffness   kpf  [N/m] 

Rear tire stiffness   kpr  [N/m] 

Front tire damping   cpf  [Ns/m] 

Rear tire damping   cpr  [Ns/m] 

1.40 

0.70 

200 

15.0 

18.0 

38.0 

15,000 

24,000 

500 

750 

180,000 

180,000 

0 

0 

 

6.5.3    Derivation of the Linear Model of Motion in Absolute Coordinates 

     To derive the equation of motion of the motorcycle in absolute coordinates, sum up 

forces in the Z-direction. This yields 

$"% + '�� + ��(") − ��")#� − ��")#� + *���+ − ,� − ��,-.) + '�� + ��(" +*���+ − ,� − ��,-. − ��"#� − ��"#� = 0	.  

(6.7) 

Similarly summing up moments about the center of gravity yields 

01.% + *���+ − ,� − ��,-") − ���+ − ,�")#� + ��,")#� + *��,! + ���+ − ,�!-.	)  +*���+ − ,� − ��,-" − ���+ − ,�"#� + ��,"#� + *��,! + ���+ − ,�!-. = 0	.  

(6.8) 
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Also considering the rear unsprung mass one obtains 

$�"%#� − ��") + '�� + �#�(")#� + ��,.) + '�� + �#�("#� − ��" + ��,. = 0	, (6.9) 

and considering the motion of the front sprung mass one derives 

$�"%#� − ��") + '�� + �#�(")#� + ���+ − ,�.) + '�� + �#�("#� −��" + ���+ − ,�. = 0.  

 

(6.10) 

The preceding four equations can be grouped in the form 

	23
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(6.11) 

Or in a symbolic notation 

89% + :9) + ;9 = <	, (6.12) 

where M is the mass matrix given by the equation 

8 = 23
34	$	 0		0 01 0				 0		0				 0		0	 0	0	 0 $� 0		0			 $�	

	

56
67	,  

(6.13) 

C corresponds to the damping matrix  

: =
233
34 �= + �> �=�+ − ,� − �>,�=�+ − ,� − �>, �>,2 + �=�+ − ,�2 	−�> 			−�=				�>, 					−�=�+ − ,�				−�>							 			�>,−�=						 							−�=�+ − ,� �> + �+>					 		0						0				 		�= + �+=				

	

566
67	,  

(6.14) 
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and K denotes the stiffness matrix 

K=

233
34 �� + �� ���+ − ,� − ��,���+ − ,� − ��, ��,! + ���+ − ,�! 	−�� 			−��				��, 					−���+ − ,�				−��							 			��,−��						 							−���+ − ,� �� + �#�					 		0						0				 		�� + �#�				

	

566
67	.  

(6.15) 

Further, q denotes the vector of generalized displacements 

9 =
233
334 	
") 	 	.) 	 	")+>")+=	

	

	

	

566
667	. 

 

 

(6.16) 

6.5.4    Equations of Motion in Relative Coordinates 

     In many situations it may be convenient to express the model in relative coordinates, as 

shown in Figure 6.7. This is the case, for example, for the dynamical analysis of a 

suspension where forces in the spring elements need to be computed. 

     The following transformations relate the absolute and the relative systems 

@� = " − ., − "#� 	, 
@� = " − .� − "#�	, 
@#� = "#� − A�	,  

and @#� = "#� − A�. 

(6.17a) 

(6.17b) 

(6.17c) 

 

(6.17d) 

This set of transformation equations can be expressed in the convenient matrix form 

B = CDE9 −F	, (6.18) 
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Figure 6.7. 4-DOF In Plane Model in relative coordinates. 

where 

CDG = H1 −,1 −� −1 −0−0 −10 −00 −0 −1 −0−0 −1.
.J	,  

(6.19) 

and 

C = 1� H
−� −,−1 −1 −� −,−1 −1−0 −0−0 −0 −� −0−0 −�.

.J.  

(6.20) 

     The last expression allows expressing the model in terms of absolute coordinates 

according to the relation 

9 = C�B + F�. (6.21) 
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     Applying Equation (6.17a-d) to the system in Equation (6.12), the equations of motion 

 take the form 8KB% + :KB) + ;KB = <, (6.22) 

where the mass, damping  and stiffness matrices,	8K , :K,	and ;K  , respectively; in terms of 

relative coordinates are expressed as 

8K = 1+ 23
34 �$ ,$ �$ ,$	−01 01 −01 0100 00 +$�0 0	+$�	.

!

56
67	,	 

 

 

(6.23) 

:K =
233
34 �� �� 0	 0			−,�� ��� 		0	 0					−��0 0−�� �#�0 0					�#� .

!

566
67	, 

 

(6.24) 

 

;K =
233
34 �� �� 0 0−,�� ��� 0 0−��0 0−�� �#�			0 0				�#�.

!

566
67	, 

 

(6.25) 

and 

BM = H @�@�@#�@#�J. 
 

(6.26) 

6.5.5    Free Vibration 

     The natural vibration frequencies of the 4-DOF system described by Equation (6.12) are: 

fn1 = 2.03 Hz 

ωn1 =12.76 rad/s 

fn2 =3.42 Hz 

ωn2 =21.48 rad/s 

fn3=16.98 Hz 

ωn3 =106.70 rad/s 

fn4 =18.16 Hz 

ωn4 =114.11 rad/s 
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6.6.   Motorcycle Response to Road Profile. Frequency Domain Approach 

     If the motorcycle moves at constant speed V the dynamic equilibrium is described by the 

set of second order differential equations in absolute coordinates  

89% + :9) + ;9 = :NF) + ;NF	, (6.27) 

where F is the vector of road unevenness that excites the front and the rear wheels and is 

expressed as 

F = O 00APAQ
		R.  

(6.28) 

     The symbols :N	and	;N   denote the superimposed motion damping and stiffness matrices 

given by the equations 

:N = 233
34−0 0−0 0 0		 00		 0−0 0−0 0 �#� 	0					0 �#�.

!

566
67	, 

and 
 

;N = 233
34−0 0−0 0 0 				00 				0−0 0−0 0 �#� 00 �#�.

!

566
67. 

 

(6.29) 

 

 

 

(6.30) 

    In relative coordinates Equation (6.27) takes the form 

8KB% + :KB) + ;KB = −8KF% . (6.31) 

 

 

6.6.1   Frequency Response Function Matrix 

     The vertical accelerations can be obtained by transforming the system of Equations 

(6.27) into the frequency domain for analysis in the absolute coordinates, or the system of 

Equations (6.31) for analysis in relative coordinates. 
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6.6.1.1   Frequency Response Function Matrix in Absolute Coordinates 

     Transformation of Equations (6.27) into the frequency domain leads to 

V9�W� = X−W!8+ 	W: + ;YDG*	W:N + ;N-. (6.32) 

     The two excitations at the wheels correspond to the same excitation, but with a time lag 

p/V.  Thus the excitation vector Equation (6.28) can be expressed as 

F = O 00A�Z − +/[�A�Z� 	R.  

(6.33) 

     This, in turn can be expressed in the frequency domain as 

\�W, [� = O 00]D^_�#/`�1 	Ra�W� = 	b�W, [�a�W�,  

(6.34) 

where the wheel-base filtering vector b�W, [� is given by 

b�W, [� = O 00]D^_�#/`�1 	R.  

(6.35) 

Taking into consideration Equation (6.34) the FRF given by Equation (6.32) takes the form 

Vc9�W, [� = X−W!8+ 	W: + ;YDG*	W:N + ;N-	b�W, [�. (6.36) 

Considering the form of Equations (6.29), Equation (6.36) can be recast in form 

Vc9�W, [� =
233
334
	0Mde 	0Mde	0Mde 	0Mde fcgghe				 fcgghi			fcjghe					 fcjghi					0Mde 	0Mde	0Mde 	0Mde fcgheghe fcgheghifcghighe fcghighi566

667 O 00]D^_�#/`�1 	R, 
 

(6.37) 
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or  

Vc9�W, [� =
233
334
fcgghe]D^_�#/`� + fcgghi	fcjghe	]D^_�#/`� + fcjghi	fcgheghe]D^_�#/`� + fcgheghifcghighe]D^_�#/`� + fcghighi566

667. 
 

(6.38) 

     Each element of Vc9�W, [�	 in Equation (6.38) defines a correlated FRF’s of a mode. 

     Specifically, the sprung mass bounce (q) mode is 

fcg� = fcgge]D^_�#/`� + fcggi	. (6.39a) 

The sprung mass pitch (µ) mode is 

fck� = fckge]D^_�#/`� + fckgi . (6.39b) 

The rear unsprung mass hop ("#�) mode is 

fcghe� = fcghege]D^_�#/`� + fcghegi . (6.39c) 

And the front unsprung mass hop ("#�) mode is 

fcghi� = fcghige]D^_�#/`� + fcghigi	 (6.39d) 

 

6.6.1.2    Frequency Response Function Matrix in Relative Coordinates 

Transforming Equations (6.31) into the frequency domain leads to 

Vc B�W, [� = X−W!8K + 	W:K + ;KYDGXW8K Y	b�W, [�. 
 

(6.40) 

This can be recast as 

Vc B�W, [� =
233
334
fcdede			 fcdedi			fcdide			 fcdidi			 fcdedhe		 fcdedhi		fcdidhe		 fcdidhi	fcdhede fcdhedifcdhide fcdhidi fcdhedhe fcdhedhifcdhidhe fcdhidhi566

667 O 00]D^_�#/`�1 	R, 
 

(6.41) 
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or  

Vc B�W, [� =
233
334
fcdedhe	]D^_�#/`� + fcdedhi	fcdidhe	]D^_�#/`� + fcdidhi	fcdhedhe]D^_�#/`� +fcdhedhi	fcdhidhe]D^_�#/`� +fcdhidhi	566

667	. 
 

(6.42) 

     Again, each element of Vc B�W, [�	 in Equation (6.42) defines a correlated FRF’s of a 

mode. 

     Specifically the relative bounce (@�) between rear end of sprung mass and rear-unsprung 

mass is 

fcde = fcdedhe	]D^_�#/`� + fcdedhi . 
(6.43a) 

The relative bounce (@�) between front end of sprung mass and front-unsprung mass is 

fcdi = fcdidhe	]D^_�#/`� + fcdidhi . 
(6.43b) 

The relative hop (@#�) between rear unsprung mass and the ground is 

fcdhe = fcdhedhe]D^_�#/`� + fcdhedhi	. 
(6.43c) 

And the relative hop (@#�) between front unsprung mass and the ground is 

fcdhi = fcdhidhe]D^_�#/`� + fcdhidhi	. (6.43d) 

6.6.2   Computation of the Frequency Response Function Matrix 

     Using the values given in Table 6.1, and Equation (6.40) the FRF’s of the 4-DOF were 

computed for several values of forward speed. These functions are shown in Figure 6.8a to 

Figure 6.8d. From these graphs it can be seen that the pitch, bounce, and hop frequencies 

are barely sensitive to speed variation. The computed natural frequency for rear bounce of 

the sprung mass is 12.76 rad/s, while its front bounce natural frequency is 21.48 rad/s. The 
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hop natural frequency for the rear unsprung mass is 106.70 rad/s, and the front hop natural 

frequency is 114.11 rad/s.  

     In Figure 6.8a and Figure 6.8b it can be observed that, for each graph corresponding to a 

certain speed, at low frequencies the amplitude increases quite rapidly until it reaches a 

maximum near the rear bounce mode natural frequency of the sprung mass. A second peak 

appears near the front bounce mode natural frequency of the sprung mass. These graphs 

also show a third maximum at 110 rad/s, which is between the two hop frequencies: the 

rear hop frequency at 106.7 rad/s, and the front hop frequency at 114.11 rad/s.  

 

 

Figure 6.8a FRF’s of rear sprung mass of 4-DOF linear model for several speeds. 
    

 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Frequency response function of rear sprung mass (RC)

Frequency (rad/s)

|H
z
r|
2

V=5 m/s

V=15 m/s

V=25 m/s

V=35 m/s

V=45 m/s



103 

 

Figure 6.8b FRF’s of front sprung mass of 4-DOF linear model for several speeds. 

 

 

      From Figures 6.8a and 6.8b it can also be seen that the peak corresponding to the rear 

bounce mode natural frequency of the sprung mass is located farther to the left of this value 

and its amplitude is sensitive to speed changes. Also the peak corresponding to the front 

bounce mode natural frequency appears located farther to the right from the reference 

value.  

     Figures 6.8c and 6.8d show a more constant behavior for various speeds. The front and 

rear bounce modes of the sprung mass are practically eliminated. A strong presence of the 

front and rear hop modes is shown with a more pronounced variation of the maxima. 
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Figure 6.8c FRF’s of rear unsprung mass of 4-DOF linear model for several speeds. 

 

 

Figure 6.8d FRF’s of front unsprung mass of 4-DOF linear model for several speeds. 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7
Frequency response function of rear unsprung mass (RC)

Frequency (rad/s)

|H
z
p
r|
2

V=5 m/s

V=15 m/s

V=25 m/s

V=35 m/s

V=45 m/s

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
Frequency response function of front unsprung mass (RC)

Frequency (rad/s)

|H
z
p
f|2

V=5 m/s

V=15 m/s

V=25 m/s

V=35 m/s

V=45 m/s



105 

 

6.7   Dynamical Analysis by Monte Carlo Simulation 

     To establish the correct implementation of the Monte Carlo method to be used for the 

dynamic analysis of the nonlinear 4-DOF model, first a numerical simulation is carried out 

using a linear 4-DOF motorcycle model. Subsequently, this numerical solution is compared 

with the analytical solution of the linear model obtained by using the frequency domain 

method. The case of a motorcycle traveling at 15 m/s on a regular quality road is 

considered. The motorcycle parameters are those specified in Table 6.1.  

6.7.1   Validating Solution (Frequency Domain Method) 

     Once the FRF´s of the model are computed it is possible to compute the PSD of the 

response with the aid of Equation (2.26).  Specifically, for the relative coordinates, 

ld��W� = |fd��W�|!ln�W�, 
ld��W� = ofd��W�o!ln�W�, 
ld#��W� = ofd#��W�o!ln�W�, 

and 

ld#��W� = ofd#��W�o!ln�W� 

(6.44) 

(6.45) 

(6.46) 

 

(6.47) 

hold. The power spectrum of the excitation is obtained as discussed in Chapter 3, by 

combining the individual PSD’s specified with Equations (3.5) and (3.6). The resulting 

input PSD’s for the road profile and the accelerations induced on the motorcycle are shown 

in Figure 6.9a, and Figure 6.9b. 
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           Figure 6.9a Power spectrum of road profile.                    Figure 6.9b Power spectrum of accelerations. 

      

     The power spectrum of the road profile is used, in combination with Equations (6.44-

6.47), to determine the analytical (frequency-domain) solution to the motorcycle response. 

However, the power spectrum of the acceleration is used in conjunction with an AR(45) 

filter to synthesize the input time histories required for the Monte Carlo simulation. The 

frequency response functions of the 4-DOF model, for a constant velocity of V=15 m/s are 

shown in Figures 6.10a-d. 

 

 
           Figure 6.10a FRF of the Zr coordinate. 

 

 
           Figure 6.10b FRF of the Zf coordinate. 
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           Figure 6.10c FRF of the Zpr coordinate. 

 
           Figure 6.10d FRF of the Zpf coordinate. 

 

     The power spectra of the response are shown in Figures 6.11a-d. These PSD’s, along 

with those for the acceleration PSD’s are those to be incorporated in the Monte Carlo 

simulation. 

 

        Figure 6.11a  PSD of Response for  Zr  

        coordinate. 

 

 

 

         Figure 6.11b  PSD of Response for  Zf 

         coordinate. 
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       Figure 6.11c  PSD of Response for  Zpr  

       coordinate. 

       Figure 6.11d  PSD of Response for  Zpf 

       coordinate. 

 

     The acceleration PSD’s of the response are shown in Figures 6.12a-d. These PSD’s are 

obtained by using the equations  

ln%�W� = Wpln�W� = W!ln)�W�. (2.19) 

        Figure 6.12a  PSD of Response for  q%�  

        coordinate. 

 

 

         Figure 6.12b  PSD of Response for  q%�  

         coordinate. 
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       Figure 6.12c  PSD of Response for  q%#�  

       coordinate. 

 
       Figure 6.12d  PSD of Response for  q%#�  

       coordinate. 

 

  

6.7.2    Response Power Spectrum Fitting by Monte Carlo Simulation 

     A satisfactory fitting of the target spectrum was obtained with 800 time histories for 

both the response in terms of displacements, and the response in terms of accelerations. 

Figures 6.13a to 6.13d present the results obtained. 

 

   Figure 6.13a  Approximation of PSD of Response 

   for Zr coordinate using 800 time hist. 

 

 

 

     Figure 6.13b  Approximation of PSD of  

     Response for Zf coordinate using 800 time hist. 
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Figure 6.13c  Approximation of PSD of Response 

for Zpr coordinate using 800 time hist. 

 

 

 
Figure 6.13d  Approximation of PSD of Response 

for Zpf coordinate using 800 time hist. 

 

 

     Similarly, the results for the response acceleration PSD’s are shown in Figures 6.14a-d, 

and Table 6.3. 

 

 

 
Figure 6.14a  Approximation of PSD of  response 

for q%� coordinate using 800 time hist. 

 

 

 

 
Figure 6.14b  Approximation of PSD of  response 

for q%� coordinate using 800 time hist. 
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Figure 6.14c  Approximation of PSD of  response for q%#� coordinate using 800 time hist. 

 

 
Figure 6.14d  Approximation of PSD of  response 

for q%#� coordinate using 800 time hist. 

 

 
Table 6.2   rms values of responses (accelerations) for the analytical and MC simulation 

rms value 

acceleration 

Analytical solution 

m/s
2
 

Monte Carlo simulation  

m/s
2
 q%�		 q%�		  q%#� q%#� 

  0.2998 

0.4141 

0.6172 

0.6937 

0.2924 

0.4030 

0.6087 

0.6830 

 

As can be seen from the graphs the Monte Carlo simulation is quite reliable. 
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Chapter 7 

Statistical Linearization of the Nonlinear 4-DOF Motorcycle 

Model 

7.1    Introduction 

     The main drawback of incorporating nonlinear behaving devices in a passive motorcycle 

suspension model relates to the difficulty of solving the system of nonlinear differential 

equations governing the motion of the motorcycle, unless a Monte Carlo simulation is 

performed. In this sense, the statistical linearization method discussed in chapter 4 

represents a powerful alternative tool for stochastic analysis of the nonlinear motorcycle 

dynamics model. 

7.2    The Nonlinear 4-DOF Motorcycle Model 

     In the linear system model, the suspensions and the tires have been modeled by using 

simple Kelvin-Voigt models, whose parameters take into account both the constitutive law 

of real devices and their geometrical position in the motorcycle. This leads to the linear 

differential equations of motion Equation (6.27). 

     The nonlinear system assumes the presence of additional nonlinear devices. In general, 

the main source of nonlinearities is the suspension friction and the shock absorber behavior.  

     Figure (7.1) shows all the possible nonlinearities considered in the nonlinear model. As 

it can be seen in this figure the nonlinearities are related to the relative coordinates system, 

which exhibits some advantages over the absolute coordinates system, for formulation 

purposes. From this general scheme different configurations can be obtained.  
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     Thus, the dynamic equilibrium equations of the nonlinear system in absolute coordinates 

are 

��� + ��� + �� + �	�, �� , �,�� � +  = ���� + ���, (7.1) 

where the vector p is given by the equation 

� = � ��0������	

	�. (7.2) 

     Further, the vector 	�	�, �� , �,�� �	contains all the nonlinear terms and, in general, 

comprises terms involving the excitation because of the absolute coordinate formulation. 

However, a relative formulation may reduce the dependence of the nonlinear vector to only 

the state variables of the dynamic system. 

 

Figure  7.1. Schematic representation of a generalized nonlinear motorcycle system. All the possible nonlinear 

elements are indicated, but different configurations can be defined from this model. 
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     The nonlinear vector �	�, �� , �,�� �	of the nonlinear system in Equation  (7.1) can be 

defined in terms of a generic relative coordinate	��, and its derivative with respect to time 

���, i.e. ��	�,  � �.  
     Specifically, using the relations given by Equations (5.17a-d), the dynamic equilibrium 

of the nonlinear motorcycle model in relative coordinates can be cast in the form 

�!�� + ���� + �!� + ��	�,  � � +  = −�!�� , (7.3) 

where the square matrices �! , ��, and	�! are defined according to Equations (5.23), (5.24), 

and (5.25). 

     Next the vector ��	�,  � �		is independent of the excitation and depends only on the 

nonlinear function of the relative coordinate z and their time derivative	 � . Figure  5.6 

depicts the 4-DOF system described in relative coordinates. 

The types of nonlinearity considered and their mathematical representation are 

summarized in Table 7.1. According to this nomenclature the nonlinearities considered in 

this study , in both suspensions and tires, can be expressed in terms of 	��	and ���. These are, 

a cubic stiffness
�
��&; a friction term ()�*	����; an additional linear dashpot having different 

coefficients in traction	+	�������, and in compression +	−�������; and a nonlinear dissipating 

factor having different coefficients in traction ���|���|-+	����,	and in compression 

���|���|-+	−����. The symbol +	 �		denotes the unit step function.  

     The coefficients of the nonlinear terms represented in Figure 7.1 have been labeled  

for the suspensions, and  for the tires. A first subscript denotes the rear ( ) or front ( ) 

part of the motorcycle, while the second subscript denotes the kind of nonlinearity 

γ

ν r f
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numbered from 1 to 6 as indicated in table 7.1. Thus, for instance, the coefficient  

describes the strength of the nonlinear damping function in the front suspension. 

     The coefficients of nonlinearities are chosen to be proportional to their linear 

counterpart. For instance, the coefficients	.�/, .�/	of the cubic elastic suspension are scaled, 

by the parameter , to the stiffnesses  respectively; the coefficients  of the 

frictional term are scaled, by the parameter , to one twentieth of the sprung weight 

	0� 20⁄ �; the coefficients 	.�3, .�3			4 = 3,… ,6�	 of the nonlinear viscous part are scaled by 

the parameters , to the damping coefficients  respectively; and the coefficients 

 of the cubic elastic term in the tires are scaled, by the parameter , to the stiffness 

 respectively. 

 

Table 7.1   Six kinds (j=1…6) of nonlinear sources 

 

Cubic stiffness 

(j=1)  .�/��&; 	) = 8, 9, :8, :9 

 

Coulomb friction 
(j=2)	  .�;()�*	����; 	) = 8, 9 

Additional linear dashpot 

having different 

coefficient in 

 

(j=3) Traction .�&���+	����; 	) = 8, 9 

(j=4) Compression .�<���+	−����; 	) = 8, 9 

Additional nonlinear 

dissipating devices 

having different 

coefficient in 

 

(j=5) Traction .�=	���|���|-+	����; 	) = 8, 9 

(j=6) Compression .�>	���|���|-+	−����; 	) = 8, 9 

+			� is the unit step function 

 

5fγ

1ε r fk ,k 2 2r f,γ γ

2ε

jε r fc ,c

1 1r f,ν ν 1ε

pr pfk ,k
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7.3    The Statistical Linearization Solution 

7.3.1    Motorcycle Offset 

     Equation (7.3) captures the dynamic equilibrium of the nonlinear motorcycle model 

subjected to the gravity force and excited by the effects of the ground motion. The ground 

is modeled as a zero mean stationary process characterized by the power spectrum ( )WS ω , 

for a given speed as V , reported in Equation (5.6). 

     The response of this system is not a zero mean process. As is well known, the response 

of a linear system under gravity can be assumed as the sum of a zero mean process and 

constant mean. This is nothing but the static equilibrium position, or, alternatively, the 

offset of the linear system. Further, the offset of a linear system does not depend on the 

excitation (amplitude, frequency content of the excitation, etc.) [136]. 

     A nonlinear system in general requires some more considerations. In fact, the presence 

of a nonlinearity complicates the search of a static equilibrium position. Moreover, the 

adoption of asymmetric nonlinear devices creates an excitation-depending offset [202, 

203]. This means that, for a given road roughness, experienced by the motorcycle at various 

velocities, the nonlinear model will yield several offsets, complicating significantly the 

design of suspensions. 

     Consider the response z  of the nonlinear motorcycle as the sum of a stationary zero 

mean component ẑ  and a constant mean zm . That is set 

 (7.4) 

where ( )Tr f pr pfm ,m ,m ,m=zm  is the offset vector, and the generic process iẑ  () =
8, 9, :8, :9) has been assumed as characterized by a Gaussian probability density function. 

ˆ ;= +
z

z z m



117�

�

Since the offset is considered constant, this implies that ˆ=z z&& , and ˆ=z z&&&&  are also zero 

mean stationary processes. 

The position in Equation (7.4), which is based on the assumption of the stationarity of 

the response process, greatly simplifies the analysis of the nonlinear motorcycle’s response.  

From this analysis the following parameters that characterize the response are obtained: 

I. The offset zm  which provides information on the mean geometrical 

configuration of the motorcycle. 

II. The standard deviations of the relative coordinates 
i
ẑσ   which provides 

information on the maximum expected stroke of the front suspension. 

and 

III. The standard deviation of acceleration qσ
&&

 of the center of mass G , to provide 

information about the comfort of the rider. 

Substituting Equation  (7.4) and its time derivatives into Equation  (7.3) one obtains 

 
(7.5) 

Averaging both sides of Equation (7.5), yields 

 
(7.6) 

From the previous equation it can be easily verified that for a linear model, the offset of 

the motorcycle coincides with the equilibrium static position 
1−

= −zm K p  (i.e. 

( )ˆ ˆ,+ =zg z m z 0& ). The same result is obtained if, for the nonlinear system, only symmetric 

damping devices are adopted, otherwise the offset is excitation-dependent. 

( ) ( )ˆ ˆ ˆ ˆ ˆ, ;+ + + + + + = −
z z

Mz Cz K z m g z m z p Mw&& & & &&

( )ˆ ˆE , ; + + + = z zKm g z m z p 0&
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7.3.2    The Equivalent Linear System  

Subtracting the offset equations in Equation (7.6) from Equation (7.5) one derives the 

system of nonlinear differential equations that governs the zero-mean response ẑ  

Specifically, 

 
(7.7) 

where 

. 
(7.8) 

     With being h�?z@, z@�Ais the vector that represents the actual nonlinear elements in the 

motorcycle model, namely the nonlinear stiffness of the springs and the energy dissipation 

effects of the dashpots. These effects depend only on the relative displacements and 

velocities between the sprung mass and each unsprung mass. 

     Next the nonlinear system in Equation (7.7) is replaced by the equivalent linear system  

 
(7.9) 

so that their output difference is adequately minimized according to conditions established 

by Equations (6.4), (6.5), and (6.6) [39, 97, 204], in which the error ε denotes the difference 

between the actual and the equivalent linear system. 

     Applying equations (6.15) and (6.16), the elements of the optimal linearizing stiffness 

and damping matrices eK  and eC  are obtained by means of the expressions 

 

 

(7.10a) 

 

 

(7.10b) 

 

( )ˆ ˆ ˆ ˆ ˆ, ;+ + + = −Mz Cz Kz h z z Mw&& & & &&

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ, , E , ; = + − + z z
h z z g z m z g z m z& & &

( ) ( )eeˆ ˆ ˆ ;+ + + + = −Mz C C z K K z Mw&& & &&

( )

( )

1

1

e,ij i
j

e,ij i

j

ˆ ˆK E h , ; i, j ,...,m
ẑ

ˆ ˆC E h , ; i, j ,...,m
ẑ

 ∂= = ∂ 

 ∂= = 
∂  

z z

z z

&

&

&
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where ( )i
ˆ ˆh ,z z&  the 

th
i  row of the nonlinear vector ( )ˆ ˆ,h z z& .  

     The equivalent linear system provides a good approximation of the actual nonlinear 

system, leading to convenient analytical solution. 

     To obtain the equivalent linear system, it is necessary to evaluate the quantity

( )ˆ ˆE , + z
g z m z&  in Equation (7.6) and the derivatives in Equation (7.10).  

     The vector ( ),g z z&  can be rearranged in a slightly different form which will be 

convenient for the evaluation of the equivalent linear system (ELS) discussed in the 

following. 

     A vector containing all the nonlinear functions can next be defined. There are 6n =  

kinds of nonlinearities in the model, namely:
3
iz , ( )isgn z& , ( )i iU z z& & , ( )i iU z z− & & , 

( )i i iU z z z
α

& & &  and ( )i i iU z z z
α

− & & & , with iz  ( i r, f , pr, pf= ) a generic Lagrangian parameter 

defining the motion of the system. This vector containing all the nonlinear functions must 

be of dimensions ( ) 1n m⋅ ×    and has the form 

 

 

 

 

(7.11) 

     A second vector B of coefficients comprising the constant values γ  and ν  previously 

described is also defined. The dimension of vector B is ( )m n m× ⋅   . Then, the vector 

( ),g z z&  can be expressed as  

. (7.12) 

( ) ( ) ( ) ( )

( ) ( )

3(

) ;

i i i i i i

T
i i i i i i

z , ,sgn z , ,U z z , ,U z z ,

,U z z z , ,U z z z ,
α α

= −

−

Z z, z% & & & & & &L L L

& & & & & &L L

( ) ( ), ;=g z z BZ z, z%& &
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     By setting =B 0 , Equation  (7.3) leads to the equations of motion of the linear system  

in relative coordinates. The formulation in Equation (7.12) is particularly useful for the 

determination of the expressions for the equivalent matrices of the equivalent linear system. 

     By using the compact notation in Equation (7.12), the offset equations, and the nonlinear 

vector ( )ˆ ˆ,h z z&  (Equations (7.6) , and (7.8)), can alternatively be expressed in the form 

 

 

(7.13) 

 

(7.14) 

respectively, leading to the problem of determining ( )ˆ ˆE  + z
Z z m , z&%  instead of 

. 

     Approximating the response of the equivalent linear system by a Gaussian process the 

equation 

 

 

 

 

(7.15) 

is obtained in which the Euler Gamma function ( )Γ  has been introduced.  

     If only symmetric nonlinear damping devices for which the coefficient of the traction 

phase is equal to the coefficient of the compression phase, then because of Equation (7.15), 

no changes in the offset from the static equilibrium 
1−

= −zm K p  position will be observed. 

Since ( )ˆ ˆE  + z
Z z m , z&%  in Equation (7.13) comprises constant values as found in 

Equation (7.15), the derivatives in Equations (7.10), leads to 
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and 

       

(7.16) 

 

 

(7.17) 

where iB  is the 
th
i  row of the coefficient matrix B 

                                                                                                                                        (7.18) 

     In matrix form Equations (7.16) and (7.17), can be recast in the more compact form, 

�!B = CD�  
��B = CD� �  

(7.19a) 

 

(7.19b) 

where zE  and zE
&
 are ( )n m m⋅ ×    matrices having in the 

th
j  column 	4 = 1,… ,�� the 

averaged derivative of ( )ˆ ˆ+ zZ z m ,z&%  with respect to the Lagrangian coordinates ẑ  and their 

time derivative ẑ&  respectively. That is, 

( )( ) ( )( ) ( )( ) ( )( )
r f pr pf
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  (7.20) 

and 
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  (7.21) 

( )( ) ( )( ) 1e,ij i
ij j

ˆ ˆ ˆ ˆK E E ; i, j ,..,m
ˆ ˆz z

   ∂ ∂= + = + =   ∂ ∂   
z zB Z z m ,z B Z z m , z& &% %

( )( ) ( )( )e,ij i
i

j j

ˆ ˆ ˆ ˆC E E ;
ˆ ˆz z

   ∂ ∂= + = +   
∂ ∂      

z zB Z z m ,z B Z z m ,z& &% %
& &

1 1 2 2 3 3 4 4 5 5 5 5

1 1 2 2 3 3 4 4 5 5 5 5

1 1 2 3 4 5 5

1 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r f r f r f r f r f r f

r f r f r f r f r f r f

r r r r r r r

f f f f f f

b a b a b a b a b a b a

γ γ γ γ γ γ γ γ γ γ γ γ
− γ γ − γ γ − γ γ − γ γ − γ γ − γ γ

=
−γ ν −γ −γ −γ −γ −γ

−γ ν −γ −γ −γ −γ −γ

B

5

;

0 0
f

 
 
 
 
 
 



122 

 

In this regard one finds: 

 

 

 

 

and  

 

 

(7.22a) 

(7.22b) 

(7.22c) 

(7.22d) 

for j r, f , pr, pf= . 

7. 3.3   The Frequency-Domain Representation 

     The wheel-base filtering vector	F	G, H� given by Equation (5.34), is introduced here to 

derive the correlated frequency response function of the equivalent linear system (ELS), 

Equation (7.9).  Following the discussion provided in section 5.6.1.1 this function is found 

to be 

 
(7.23) 

     Selecting a given power spectral density function of the ground profile ( )WS ω  as in 

Equation (3.26), the power spectral density matrix of the response in terms of Lagrangian 

coordinates ẑ  is 

. (7.24) 
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ẑ

ˆ ˆE sign z E z ;
ẑ
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The symbol *T  denote, the transpose-conjugate operation. Once ( )ˆ ωzS  is known, the 

covariance matrix of the response process can be determined using the equation 

 

(7.25) 

 

(7.26) 

     All of these quantities can be handled in the absolute coordinates system as well, once 

the linearization procedure is accomplished. In fact, after some straightforward algebraic 

steps and setting 
1-

ee =C C A  and 
1-

ee =K K A , the frequency response function in the new 

coordinate system becomes 

.         (7.27) 

Thus, the spectral density matrix for the absolute coordinate vector q  process, is 

.                                  (7.28) 

     By using Equation (7.28), the elements of the covariance matrix of the accelerations q&&  

are found by the equations 

.                                                 (7.29) 

The spectral density function of the response of the linear system (LS), can be obtained 

by means of Eqs. (7.24) and (7.28), by simply setting in the transfer functions in Equations 

(7.23) and (7.27), e =C 0  and e =K 0 . 
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7.4    Implementation of the Statistical Linearization Method  

The statistical linearization technique can be implemented following the scheme 

shown below. 

Step 0: 

1. In equation 

�!�@� + ���@� + �!�@ + I̅?�@, �@� A = −	�!��  (1) 

set the nonlinear term equal to zero, i.e. I̅?�@, �@� A = K 
2. In the equation of the equivalent system 

�!�@� + 	�� + ��L��@� + 	�! + �!L��@ = −	�!��  (2) 

 

let ��L = K, and �!L = K as initial guess, so that the system is completely linear 

(B=0). 

3. Evaluate the offset of the linear system, that coincide with the static position:  

MK = −�NO (3) 

4. Work in the frequency-domain, and introduce the wheelbase filtering vector  

P = Q0,0, RN�STU , 1VW 
(4) 

and derive the filtered frequency response function in form 

X!�Y	G� = ?−G;�! + )G	�� + ��LY� + 	�! + �!LY�AN/	G;�!�P (5) 

5. Determine power spectrum of the response using the equation 

Z[Y	G� = X!�Y	G�Z�	G� \X!]K	G�^∗W 
(6) 
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6. Integrate the power spectrum components in the range `Ga�b, Gacde, to determine 

the covariance matrix 

f�@Y = gZ�Y	G�hG (7) 

f�@�Y = gG;Z[Y	G�hG (8) 

Step i: 

i. Use f�@�  and f�@��  to determine m
i
 from the equation 

�!M� + ij��?�@ +M�, �@�Ak +  = K (9) 

ii. Update the values of ��Ll  and �!Ll  by means of  the equation 

m!n`a×	b∙a�e = C`a×	b∙a�ei q rrst�?�@ +M�, �@�Au`	b∙a�×	b∙a�e 
m!n`a×	b∙a�e = C`a×	b∙a�ev`	b∙a�×	b∙a�e (10) 

 

iii. Evaluate X!�� 	G�, 	Z[� 	G�, f�@� , and f�@��  using equations (4)-(7). 

iv. Iterate the process until the quantity  

w\x[y� − x[y�N/^; + ?x[z� − x[z�N/A; + \x[{y� − x[{y�N/^; + \x[{z� − x[{z�N/^; 
(11) 

reaches a preselected value. 
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Chapter 8   Numerical Results 

 

8.1   Introduction 

The purpose of this chapter is to validate the effectiveness of the ELS in capturing the 

behavior of the nonlinear motorcycle dynamics model.  For this purpose, both a linear 

system and a nonlinear system have been developed. All the geometric and mechanical 

parameters values are identical to those shown in table 5.1. 

The natural vibration frequencies of the 4-DOF system described by Equation (4.12) are 

shown on page 97. 

8.2   Case 1. Front Suspension with Nonlinear Springs and Nonlinear 

Dashpots 

Consider for example a non-linear system (NLS) obtained by inserting in the front 

suspension of the linear system (LS) additional nonlinear devices leading to the vector 

( ),g z z&  

( ) ( ) ( ) ( ) ( )3
1 3 4 5 6

0

0

0

f f f f f f f f f f f f f f f fz z U z z U z z z U z z z U z
, ;

α α
γ γ γ γ γ

 
 
 + + − + + −

=  
 
 
 

g z z
& & & & & & & & & &

&  (8.31) 

    The nonlinear terms, are ( )elastic fF z  and viscous constitutive law ( )viscous fF z&  of the 

front suspension are defined as follows 
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( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

3 2
1 1

3 4 5 6

3 5 4 6

1

1

elastic f f f f f f f f
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f f f f f f f f f f f f f f f f

f f f f f f

F z k z z k z z ; a )

F z

c z z U z z U z z z U z z z U z

c z U z z U z z ; b )

α α

α α

γ ε

γ γ γ γ

ε ε ε ε

= + = +

=

= + + − + + −

 = + + + − + 
 

&

& & & & & & & & & & &

& & & & &

 

(8.32) 

 

 

(8.33) 

They are shown in Figure 8.1 and Figure 8.2, for a particular set of mechanical parameters 

and they are compared to the linear counterpart of the linear system. The range of the 

response of the LS is indicated to show the difference between the linear and the nonlinear 

systems. 

 

Figure 8.1   Comparison of the linear and nonlinear behavior of a common motorcycle suspension. Elastic force. 
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Figure 8.2   Comparison of the linear and nonlinear behavior of a common motorcycle suspension. Viscous force. 

 

8.2.1   Monte Carlo Simulation 

     As it was earlier mentioned, to validate the results obtained by the statistical 

linearization method, a Monte Carlo simulation in the time-domain is performed. This 

procedure is done for both the linear system and the nonlinear system. An ensemble of 

5000n =  realizations of the response process of ( )q t&&  and ( )fz t  is generated. 

The response of the systems has been sampled adopting a cut-off frequency bω  

exceeding the value eight times the highest fundamental frequency ( 800b rad / sω = ) of 

the linear system.  

     The power spectrum of the road roughness excitation and its fitting by the AR filter are 

presented in Figure 8.3 and Figure 8.6. In the same figures a third fitting is shown 

corresponding to the power spectrum generated by using the function PWELCH available 

in   Matlab.  
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Figure 8.3   displacement PSD fitting by AR filter and function PWELCH. 

 

     Note there is a small discrepancy between the target power spectrum of the 

displacements and the PWELCH spectrum. This small discrepancy is magnified by the log-

log format given to the graph. However, besides being small, the discrepancy occurs in the 

range of frequencies between zero and 0.5 Hz, which is far from the 2 Hz value that 

corresponds to the minimum frequency relevant in the dynamic behavior of motorcycles. 

Thus, the discrepancy has almost negligible effect on the fidelity of the signal.  

     Figure 8.4 shows a sample time history out of the many generated with the AR filter. An 

autocorrelation test for that signal is shown in Figure 8.5. From this test it can be seen that 

the autocorrelation decays quite rapidly with time. 
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Figure 8.4   Sample time history obtained from the displacement PSD fitting by AR filter. 

     The same test is also performed on the velocity signals, and similar results are obtained. 

With the autocorrelation test and the use of the PWELCH function, it is verified that the 

AR filter implemented in Matlab works correctly, and that the reliability of the signals 

obtained is high.  

 

Figure 8.5   Autocorrelation of  AR filter time histories (displacement).  
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     A sample time history from the velocity PSD is shown in Figure 8.7, and its 

corresponding source PSD is shown in Figure8.6. 

 

Figure 8.6   Velocity PSD fitting by AR filter and function PWELCH. 

 

 

Figure 8.7   Sample time history obtained from the velocity PSD fitting by AR filter. 
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Once the input or excitation signals have been generated, the next step includes 

generating the ensemble of the response. This step is accomplished by using a fourth order 

Runge-Kutta scheme for which it is necessary to rewrite the system of ODE’s in state-space 

form. Figure 8.8 gives a sample of an ensemble of response time histories, in this case for 

the absolute coordinate q.  

By defining ( )j ix t  as the thj  realization of the generic random variable extracted at the 

instant ( )1it i T= − , the first and second order statistics are evaluated from an amount of n  

samples of the response of ( )q t&&  and ( )fz t . These computations require the use of 

Equations (4.1) and (4.2). The result of applying Equation (4.1) to the ensemble of Figure 

8.8 is shown in Figure 8.9. 

 

 
Figure 8.8   Ensemble of response time histories. 
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Figure 8.9   Averaged response time history for q(t). 
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Figure 8.10   Averaged response time histories for ( )fz t

 

 

 
Figure 8.11   Variance of response time history for ( )fz t  
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In a similar manner, the response histories for the acceleration �(�)�   in absolute 

coordinates and its corresponding variance are shown in Figures 8.12 and 8.13. 

 

 
Figure 8.12   Averaged response time history for �(�)� . 

 

 
Figure 8.13   Variance of  response time history for �(�)� . 
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The standard deviations ( )q tσ
&&  of the center of mass acceleration referred to the NLS 

approaches, as predicted by the stationary solution of the ELS, to a smaller value than the 

one associated to the LS, providing therefore an improved comfort for the rider. 

The standard deviations ( )zf tσ  of the stroke of the front suspension referred to the NLS 

approaches, as predicted by the stationary solution of the ELS, to a smaller value than the 

one associated to the LS, leading therefore to designing less cumbersome devices. 

The mean of the stroke process ( )fE z t    approaches quite rapidly the values of the 

static equilibrium position 
1−

= −
z

m K p  for the LS and the values of the offset given by the 

solution of Eq. (7.6) in the case of the NLS. 

 

8.2.1.1    Normality Test 

Once the first and the second order statistics have been evaluated, one can examiney the 

normalityity assumption of the response of the NLS, treating statistically, for example, the 

stroke of the front suspension through Monte Carlo simulation.  

 

Figure 8.14   Normality test. 



137 

 

This has been done in Figure 8.14 for the extracted random variable ( )5fz t s= , showing 

a discrepancy between the theoretical and the actual distribution, which is attributed to the 

non-Gaussian nature of the nonlinear response. 

The same considerations can be obtained alternatively working in the frequency-domain 

assuming the stationarity of the response. In this regard the analytical two-sided PSD 

function ( )qS ω
&&

 of the center of mass acceleration is reported for both the LS and the ELS; 

it is compared with the PSD functions evaluated from the Monte Carlo simulation ( 500n =  

samples, 60 s  sample) of the LS and NLS respectively, showing a good agreement for the 

chosen set of parameters.  

In closure, by varying the speed of the vehicle V  and maintaining the other 

characteristics of the PSD function of the road roughness reported in Equation (3.6), the 

curves in Figures (8.15) and (8.16) are produced. 

 
Figure 8.15   Offset of motorcycle Zf at different speeds. 
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Figure 8.16   Standard deviation of Zf at different speeds. 

8.3   Case 2. Front Suspension with Linear Springs and Nonlinear 

Dashpots           

A different behavior may be observed considering a nonlinear system with a front 

suspension modeled by the equation 
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(8.34) 

 

 

(8.35) 

 

     In this case a linear elastic spring and a nonlinear asymmetric viscous dashpot with 

friction is included. The value of the offset deviation of zf versus various speeds is shown in 

Figure 8.17. 

     Also in this case the equivalent linear system provides a good approximation of the 

actual nonlinear system, but increasing the speed V , a greater variation than the one 

observed in Figure8.15  can be seen. 
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Figure 8.17   Offset of motorcycle at different speeds Zf.. 
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Chapter 9 

Concluding Remarks 

9.1   Conclusions 

In this thesis the significance of the nonlinear behavior in the dynamic response of 

motorcycles has been discussed. Motorcycles are complex dynamical systems that can be 

subjected to strong road excitations. Such excitations have a random nature and can drive 

the suspension system to experience extreme excursions, which in turn induce nonlinear 

behavior.  This behavior requires the adoption of nonlinear springs and dashpots models in 

the design of the suspension that could limit its excursions.  

Specifically, a 4-DOF motorcycle model that includes a variety of nonlinear components 

has been employed to secure a realistic representation of the characteristics of modern 

motorcycles. The simplifying criteria considered to derive the model have been explained, 

along with the derivation of the model. First, a linear 4-DOF model has been derived and 

used to delineate the general steps of solution in the dynamic analysis. This model has 

served as to derive an enhanced 4-DOF nonlinear model. This model includes several 

nonlinear elements, each of them described mathematically. Additional issues regarding the 

nonlinear behavior of the model have been discussed. 

The representation of a random environment, namely the road roughness, via an AR 

filter has also been proposed. It has been found to be a quite reliable way of generating 

excitation time histories that are obtained from an specific road power spectrum. 

Specifically, it has been shown that the AR filter is capable of synthetizing time histories 

with statistical metrics which are compatible with the prescribed power spectrum. Various 

criteria of assessing the quality of the signals have been applied. Further, the time histories 
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generated by the AR filter have been used to perform accurate Monte Carlo simulations. 

The Monte Carlo method has been used to validate the results obtained by the statistical 

linearization method. In this context, the frequency domain solution of a linear multi-

degree-of-freedom (M-DOF) system has been used to calibrate the Monte Carlo algorithm 

implemented and to determine the minimum number of time histories needed to derive 

reliable numerical results. 

An important contribution of this study is the establishment of the method of statistical 

linearization as an efficient tool for analyzing M-DOF motorcycle models with strong 

nonlinearities, such as a motorcycle with nonlinear suspension components. In this sense, 

the general methodology of implementation of the statistical linearization method, intended 

for MDOF systems has been delineated. Indeed, the frequency domain solution of a 

nonlinear MDOF system based on the statistical linearization has been discussed in detail. 

Further, specific comments regarding the motorcycle dynamics have been included in the 

application of the method, and a detailed computational scheme of analysis has been 

established. 

     The importance of the wheelbase filtering effect on the dynamic behavior of the 

motorcycle has been noted and taken into account when deriving the computational steps of 

the statistical linearization method. This effect has also been considered when 

implementing the Monte Carlo method, and an algorithm has been developed to determine 

an integration time step which is compatible with the traversing velocity of the motorcycle. 

     Numerical examples have demonstrated the validity of the statistical linearization 

methodology developed for the stochastic dynamic analysis of the nonlinear motorcycle 

model. 
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9.2   Future Work 

     Additional work on line with this thesis could pertain to enhanced roughness modeling 

by including potholes encountered in roads. In the case of in-plane motion the assumption 

of a driver firmly attached to the motorcycle’s body may be eliminated with the inclusion 

of a driver model. Further, the effect of hysteresis in the suspension elements of the 

motorcycle models can be the focus of further meritorious studies. 
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