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ABSTRACT

Locally Mass-Conservative Method With Discontinuous Galerkin In Time For Solving

Miscible Displacement Equations Under Low Regularity

by

Jizhou Li

The miscible displacement equations provide the mathematical model for simulating the

displacement of a mixture of oil and miscible fluid in underground reservoirs during the

Enhance Oil Recovery(EOR) process. In this thesis, I propose a stable numerical scheme

combining a mixed finite element method and space-time discontinuous Galerkin method for

solving miscible displacement equations under low regularity assumption. Convergence of

the discrete solution is investigated using a compactness theorem for functions that are dis-

continuous in space and time. Numerical experiments illustrate that the rate of convergence

is improved by using a high order time stepping method. For petroleum engineers, it is es-

sential to compute finely detailed fluid profiles in order to design efficient recovery procedure

thereby increase production in the EOR process. The method I propose takes advantage

of both high order time approximation and discontinuous Galerkin method in space and is

capable of providing accurate numerical solutions to assist in increasing the production rate

of the miscible displacement oil recovery process.
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Chapter 1

Introduction

According to a report [27] in 2007, 58% of the entire original oil reserved in U.S. is trapped

in discovered reservoirs, but was unrecoverable by current technology. With this staggering

percentage and the increasing demand of energy, engineers have designed Enhanced Oil

Recovery (EOR) techniques after the secondary recovery process. EOR seeks to alter the

properties of reservoir and the remaining oil including the pressure and fluid displacement.

One of the most important EOR techniques is called the miscible displacement technique.

58%28%

3%
5% 6%

Original Oil in Place (U.S.): 649 Billion Barrels

Target for 
Enhanced Oil 

Recovery(EOR)

Discovered Unrecoverable by Current Technology: 337 Billion Barrels
Cumulative Production: 183 Billion Barrels
Proved Reserves: 22 Billion Barrels
Undiscovered Recoverable by Current Technology: 30 Billion Barrels
Undiscovered Unrecoveravle by Current Technology: 37 Billion Barrels

Figure 1.0.1 : original U.S. oil reserves

During the miscible displacement recovery process, instead of using water, a solvent is

injected into the reservoir to mix with the remaining oil, and eventually the fluid mixture

is forced out of the reservoir. This process is governed by a system of non-linear partial

differential equations (PDE) called the miscible displacement equations. Therefore, providing

high resolution numerical simulations by solving the PDE is essential for engineers to design
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and optimize the recovery strategy. One of the biggest challenges involves incorporating

highly sophisticated reservoir formations and fluid properties into the design of the numerical

simulation tools.

The contribution of my thesis is a novel numerical method to solve the miscible displace-

ment equations that is locally mass-conservative and high order in space. Also, the numerical

method uses discontinuous Galerkin in time which allows arbitrary order of approximation

in time.

An outline of the thesis is as follows. First, I give a literature review for the miscible

displacement problem and related numerical methods. In chapter 3, I introduce the mathe-

matical model and numerical scheme for solving the problem. Afterwards in chapter 4, I dive

into the theoretical analysis of the numerical method and prove stability and convergence of

the numerical solutions. In chapter 5, numerical examples both for analytical and physical

problems are presented. Finally, I draw conclusion in the last chapter and propose a full

discontinuous Galerkin method in time and space for the miscible displacement problem.
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Chapter 2

Literature Review

Over the last five decades, the miscible displacement problem has gained enormous attention

in the fields of science and engineering, in particular petroleum engineering, environmental

science, hydrology, and geophysics. Hundreds of papers have been published on the subject

with interests ranging from physical principles, mathematical analysis, experimental results

and economics.

The quantitative studies of the miscible displacement process depend on the mathematical

model which has been derived in [5, 6, 20, 38, 45]. The derived mathematical model is a

system of coupled nonlinear partial differential equations describing the displacement of a

fluid mixture in porous media. The coupled system consists of an elliptic equation for the

pressure and a convection-dominant convection-diffusion equation for the concentration of

the solvent. There are still many open questions concerning the solutions and the well-

posedness of the miscible displacement equations. The coupled system of equations is of

great theoretical interest itself and extremely challenging to provide analytic solutions.

Numerical simulations, on the other hand, provide insight and offer a systematic way to

study the miscible displacement equations. On one hand the miscible displacement processes

guarantee virtually complete recovery, but on the other hand the miscible fluids are in general

more expensive than oil. Hence, the oil production must exceed far more than the injected

miscible fluids to assure profitability. Driven by this economical consideration, one of the

main concerns from numerical perspective is to provide accurate numerical approximations to

the physical problems with real-world parameters where the analytic solutions generally are

unknown. And as a consequence, the miscible displacement equations have been extensively
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investigated by numerical analysts over the last fifty years.

As early as 1962, Peaceman and Rachford introduce the mathematical formulation based

on the source-sink approach, and also propose a finite difference method for solving the

equations [39]. For the detail of this mathematical formulation proposed by Peaceman

and Rachford, one can refer to [55]. Soon after the use of the finite difference method

for solving the problem, Garder et al introduce the method of the characteristics [29] for

the miscible displacement simulations. In 1971, based on the result in [39], Chaudhari

propose an improved high-order finite difference method eliminating most of the numerical

smearing in previous cases. In the next decade, in the engineering community, the numerical

simulations of the miscible displacement are mostly done by using finite difference approach.

This approach, however, might not be accurate, especially when working with real-world

parameters that are heterogeneous such as permeability and porosity. A significant amount

of numerical diffusion is often observed.

Until 1980, Ewing and Wheeler propose a finite element method to handle more complex

geometry and to better approximate solutions that lack certain regularity [26]. Following

the Ewing and Wheeler’s analysis, these authors and Darlow introduce the mixed finite

element method for solving the pressure equation [17]. In their analysis, they show that the

mixed finite element method is able to produce very accurate Darcy’s velocity. In addition,

this work shows that by solving the pressure equation in one term reduces the difficulty

of differentiation comparing to the traditional finite difference method. The concentration

equation, however, is still solved by using the finite element method. But, due to the

convection-dominant nature of the problem and that the conforming finite element is not

mass-conservative, global oscillations will occur in the numerical solutions if no stabilization

technique is applied. A stabling technique for the finite element method is introduced later by

Wei [56] to reduce the nonphysical oscillations caused by using the finite element method. In

this result the author uses discontinuous Galkerin in time. However, no numerical examples



5

are presented to illustrate the reduction of the oscillations.

The years between 1980 and 1990, the study of the miscible displacement equations from

numerical perspective mainly dwells on the methodologies and the related error estimation.

Methods such as finite element method, mixed finite element method, method of characteris-

tics, collocation method, the combinations thereof and their variations, have been introduced

in [46, 19, 51, 21, 24, 25, 18, 57].

In the next decade, the efficient implementations of those methods become one of the

main concerns. On one hand, using the mixed finite element method for the Darcy’s law,

one can obtain very accurate approximations for the pressure and velocity of the same order

unlike the classical finite element method where the velocity is one order lower. Yet, on the

other hand, the linear system becomes indefinite which poses a big challenge to solve for the

iterative solver for large-scale simulation. Yang et al [58, 35] propose methods to simplify

computation by replacing it with an iterative process. They also show that the number of

the iterations is small. For the concentration equation, it is solved by using the method of

the characteristics which is not mass-conservative. The parallel implementations are done

by Coutinho et al both in shared memory machines [15] and distributed memory machines

[36]. Both pressure-velocity and concentration equations are solved by finite element method

with post processing procedure to enhance the stability and accuracy.

Around the beginning of this century, discontinuous Galerkin (DG) method have gained

a renewed interest for providing numerical solutions for the partial differential equations,

largely due to the advancement on high performance computing and the highly-parallelizable

nature of the method. In particular for the miscible displacement equations, Rivière and

Wheeler [40, 42] conduct numerical experiments and show that DG is well-suited for the

problem because of the local mass conservation property of the method, the ability to handle

unstructured grids and to capture fluid instability. The quality of the numerical solutions

from the results of those two authors suggests DG is a good alternative for space discretization
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for the miscible displacement problem comparing with methods such as finite element method

and Godunov method. Following the numerical experiments, convergence and stability have

been shown by Epshteyn and Rivière for a fully discrete DG scheme they introduce [23].

While developing efficient and accurate solutions to this real-world problem, we also like

to maintain a solid theoretical base. Yet, one of the major drawbacks in the analysis of

convergence and stability for the numerical methods mentioned so far is the assumption that

the diffusion/dispersion tensor is uniformly bounded above in L∞. However, from a problem

formulation point of view, there is no theoretical guarantee for this condition to hold because

the fluid velocity might not be bounded and in fact one can construct such a problem [3].

This condition is known as the low regularity condition.

Under low regularity assumption, Sun, Rivière and Wheeler [50] introduce a stable nu-

merical scheme with mixed method and DG in space using a “cut-off” operator. An error

bound is derived to show the convergence of the numerical solutions to the strong solutions

whose existence is still unknown. The weak solution, on the other hand, is proven to exist

by Feng [28] in 2D and extend to 3D by Chen and Ewing [13]. This theoretical result, there-

fore, gives grounds for us to approximate the weak solutions with methods such as finite

element and DG, though the weak solutions might not even be unique under low regularity

assumption. The work done by Bartels, Jensen and Müller [3] establishes the convergence

and stability of the numerical solutions to the weak solutions with mixed method and DG

in space. The Aubin-Lions compactness theorem is used in this case to prove the conver-

gence since under low regularity condition one cannot obtain the error estimators between

the exact and numerical solutions. In their analysis, they bypass the difficulty of the un-

boundness of the diffusion/dispersion tensor by using its L2 projection in their numerical

scheme which enables them show stability and convergence of the solutions. The DG form

for the convection term has been modified into a skew symmetric form as opposed to the

upwind DG convection operator in order to prove the coercivity of the bilinear form. Again,
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their numerical results demonstrate the advantage of using the DG method by showing the

robustness of the DG solutions in L-shaped domain with a singularity point. Different from

scheme in [50], no “cut-off” operator is required in this case. Nevertheless, their resulting

DG discretization only addresses symmetric interior penalty Galerkin method (SIPG).

There are many advantages for combining the mixed finite element method and DG in

space. Using the mixed finite element method, one can obtain fluid pressure and flux at the

same time and it is more accurate than methods such as finite difference and finite volume;

the method is locally mass-conservative; and is capable of handling discontinuous parameter

while producing the flux that is continuous between the interface of two neighboring elements

[37, 22]. DG is also locally mass-conservative and is known for its flexibility and higher

order approximation [32]. Apart from the incompressible miscible displacement equations,

the method is also used to solve two-phase incompressible immiscible fluid flow problem

[12], convection-diffusion problem [48], incompressible single-phase flow in porous media

[10], single-phase flow of compressible and multicomponent fluid in fractured media [31],

and two-phase compressible multicomponent fluid flow in porous media [32], compressible

miscible displacement equations [16].

While the discretization in space is under on-going analysis, the time stepping method

has often been overlooked. Rivière and Walkington [41] propose a scheme with mixed finite

method for the pressure and finite element method in space and DG in time for the concen-

tration equation. They prove stability and convergence of the scheme up to arbitrary order

of approximation in time. They establish a generalized compactness theorem to show the

convergence that allows the approximation using the discontinuous functions both in space

and time. For the low order DG in time, stability and convergence is proved by obtaining the

exact integral over time. Radau quadrature is used for proving the stability and convergence

in time for higher order approximation in time.

Following up the analysis done by Bartels, Jensen and Müller, Jensen and Müller intro-
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duced a stable second-order Crank-Nicolson time approximation [33] within the context of

the scheme they have derived earlier [3]. Most of their analysis is built upon the existing

results in [3]. Their result is the highest order time stepping until now with regard to DG dis-

cretization in space. They observe a second-order convergence in time from their numerical

experiment.

Motivated by the results from [3, 33, 41], I intend to solve the concentration for transport

equation using a space-time discontinuous Galerkin method which not only allows arbitrary

order of approximation in space, but also arbitrary order of approximation in time. The

space-time discontinuous Galerkin method itself has attracted considerable attention recently

due to its inherit nature for handling hp-adaptation. It seeks to localize the problem that

results in a local conservative and highly parallelizable method which is a very important

numerical method for today’s numerical simulation in science and engineering. The method

is used by Van der Vegt and Van der Ven [52, 53] for problem concerning the inviscid

flow in 2002. Soon, this method started to be implemented and analysed for problems

such as compressible Navier-Stokes equations [34], convection-diffusion equation [49], shallow

water equation [2]. Yet, problems concerning porous media flow like miscible displacement

equations have not been addressed using space-time DG.

This thesis aims at developing and analyzing a numerical method using the mixed finite

element method for the pressure equation and space-time discontinuous Galerkin method for

the concentration equation. My analysis avoids projecting the diffusion/dispersion tensor

onto polynomial space as what has been done in [3, 33]. Apart from SIPG, I also will address

NIPG and IIPG discretization in the thesis. For the new higher order discretization in time,

Radau quadrature will no longer be required. Stability and convergence of the numerical

solutions to the weak solutions will be covered. In the following section, I will start by

introducing the weak formulation and the numerical scheme for the problem.
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Chapter 3

Mathematical Model

3.1 Introduction

In this chapter, I will first introduce the mathematical model for the miscible displacement.

Then I will move on to the numerical scheme and to show its consistency. Consider the

miscible displacement equation in a porous medium Ω modelling the displacement of oil

in underground reservoirs by mixing fluids with oil over the time interval [0, T ]. With the

assumption of incompressibility, we need to determine the pressure p, velocity u, and the

concentration c satisfy:

φ∂tc− div(D(u)∇c) + u · ∇c+ qIc = ĉqI , in Ω× [0, T ] (3.1)

div(u) = qI − qP , in Ω× [0, T ] (3.2)

u = −K(x, c)(∇p− ρ(c)g), in Ω× [0, T ] (3.3)

with the boundary conditions:

u · n = 0, D(u)∇c · n = 0, on ∂Ω× [0, T ]

and initial condition:

c(·, 0) = c0, in Ω.

The coefficients of the PDEs are: φ is the porosity of the porous medium; K(x, c) =
K(x)

µ(c)

where K(x) is the absolute permeability of the porous media and µ(c) is the viscosity of the
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fluid; ρ is the density of the fluid mixture; the constant vector g describes the gravity; D is the

diffusion dispersion coefficient; c0 and ĉ are initial and injected concentration respectively;

And last, qI , qP ≥ 0 are the injection source and production sinks.

We shall have following assumptions on the input data:

• Ω ⊂ Rd with d ∈ {2, 3}, is a bounded Lipschitz domain.

• K : Ω × R → Rd×d is symmetric, Carathéodory (measurable in first argument and

continuous almost everywhere in the second), uniformly bounded and elliptic. And

there exist constants 0 < k0 < k1 such that

k0 |ξ|2 ≤ ξTK(x, c)ξ ≤ k1 |ξ|2 , ξ ∈ Rd, ∀x, c ∈ Rd × R

• D : Rd → Rd×d is symmetric, Lipschitz continuous. There exist constants 0 < d0 < d1

such that

d0(1 + |u|) |ξ|2 ≤ ξTD(u)ξ ≤ d1(1 + |u|) |ξ|2 , u, ξ ∈ Rd (3.4)

We note that D(u) is not assumed to be bounded.

• φ ∈ L∞(Ω) and φ0 < φ < φ1 for some positive constants φ0, φ1.

• qI , qP ∈ L∞(0, T, L2(Ω)) with qI , qP ≥ 0 and

∫
Ω

qI(x, t) =

∫
Ω

qP (x, t) for t ∈ [0, T ].

• There exist positive constants ρ0, ρ1 such that the function ρ : R → R is Lipschitz

continuous and ρ0 ≤ ρ ≤ ρ1 .

3.2 Discretization in Time and Space

Set

H0(Ω, div) = {v ∈ L2(Ω)d : div(v) ∈ L2(Ω),v · n = 0 in H−1/2(∂Ω)}
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and

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

qdx = 0}

We denote the L2 inner-product on Ω by (·, ·).

The weak formulation of the problem is as follows:

We need to find the triple (u, p, c) ∈ L∞[0, T ;H0(Ω, div)]×L∞[0, T ;L2
0(Ω)]×L2[0, T ;H1(Ω)]

such that

∫ T

0

(K−1(c)u,v)− (p, div(v)) =

∫ T

0

(ρ(c)g,v) (3.5)

∫ T

0

(q, div(u)) =

∫ T

0

(qI − qP , q) (3.6)

for all (v, q) ∈ L1[0, T ;H(Ω, div)]× L1[0, T ;L2
0(Ω)] and

∫ T

0

−(φc, ∂tw) + (D(u)∇c,∇w) + (u · ∇c, w) + (qIc, w)− (φc0, w(0))− (ĉqI , w) = 0 (3.7)

for all w ∈ {w ∈ L4[0, T ;W 1,4(Ω)] ∩H1[0, T ;H1(Ω)′] : w(T ) = 0}

The requirement that w ∈ L4[0, T ;W 1,4(Ω)] is needed since D(u) is not known to be

bounded which is also the major challenge when solving the equation. We know from [14],

[28] the weak solutions (u, p, c) ∈ L∞[0, T,H0(Ω, div)] × L∞[0, T, L2
0(Ω)] × L2[0, T,H1(Ω)]

exist with D(u)1/2∇c ∈ L2[0, T ;L2(Ω)].

We use mixed finite element method for the first two equations and discontinuous Galerkin

in both time and space for solving the last equation. Thus, we let {Eh}{h>0} be a family of

regular mesh of Ω and {Γh}{h>0} be the corresponding interior edges. Define the Raviart-

Thomas space

RTk(Eh) = {u ∈ H(Ω; div) | u|E ∈ (Pk(E))d + xPk(E), E ∈ Eh},
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where Pk(E) is the set of all polynomials of degree less or equal to k over the element E.

One should notice that the mixed finite element is not restricted to Raviart-Thomas space.

Any classical mixed finite element space such as BDMk(Eh) and BDFMk(Eh) for the spacial

discretization will suffice. Then we define the related finite element subspaces:

Uh = RTk(Eh)

Ph = {qh ∈ L2(Ω) : qh|E ∈ Pk(E), E ∈ Eh}

Ch = {ch ∈ H1(Eh) : ch|E ∈ P`(E), E ∈ Eh}

where H1(Eh) = {c ∈ L2(Ω) : c|E ∈ H1(E), E ∈ Eh} is the H1 broken Sobolev space. Before

we introduce the numerical scheme we define our notation: Let e denote the face between

two elements. We fix a normal vector ne, and we let Ee
1 and Ee

2 denote two neighboring

elements sharing the face e. If ne is oriented from Ee
1 to Ee

2, then

vn+ = lim
ε↓0

v(·, tn + ε), vn− = lim
ε↓0

v(·, tn − ε), [vn]t = vn+ − vn−

{v} =
v|Ee1 + v|Ee2

2
, and [v] = v|Ee1 − v|Ee2

Vice versa for if the normal vector ne is pointing from Ee
2 to Ee

1.

We derive the numerical scheme as follows:

∫ tn

tn−1

(
(K−1(ch)uh,vh)− (ph, div(vh))

)
=

∫ tn

tn−1

(ρ(ch)g,vh) (3.8)∫ tn

tn−1

(qh, div(uh)) =

∫ tn

tn−1

((qI − qP ), qh) (3.9)∫ tn

tn−1

((φ∂tch, wh) +Bd(ch, wh; uh) +Bcq(ch, wh; uh)) + (
[
cn−1
h

]
t
, φwn−1

h+ ) =

∫ tn

tn−1

(ĉqI , wh)

(3.10)
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for all vh ∈ P`[tn−1, tn; Uh], qh ∈ P`[tn−1, tn;Ph], wh ∈ P`[tn−1, tn;Ch].

The form Bd is the discretization of the operator −∇ · (D(u)∇c):

Bd(ch, wh; uh) = (D(uh)∇ch,∇wh)E − ([wh], {D(uh)∇ch · ne})Γh

+ε([ch], {D(uh)∇wh · ne})Γh + (σh−1(1 + {|uh|})[ch], [wh])Γh (3.11)

We should recognize that {|uh|} = 1
2

(∣∣u+
h

∣∣+
∣∣u−h ∣∣).

The form Bcq is the discretization of the operator −u · ∇c+ qIc:

Bcq(ch, wh; uh) =
1

2

(
(uh∇ch, wh)Eh − (uch,∇wh)Eh + ((qI + qP )ch, wh)

+(cup
h uh · ne, [wh])Γh − (wdown

h uh · ne, [ch])Γh

)
(3.12)

with

uh ∈ P`1 [tn−1, tn; Uh], ph ∈ P`1 [tn−1, tn;Ph], ch ∈ P`2 [tn−1, tn;Ch]

Note, the problem is independent of the choice of normal vector ne on the edges.

For the spacial discretization, we use the mixed finite element method and DG to main-

tain the mass-conservation. Also, the discretization enables us to obtain arbitrary order of

approximation.

3.3 Consistency of the Numerical Scheme

We now give a more detailed analysis concerning the numerical scheme and its equivalence

to the weak formulation of the problem.



14

3.3.1 Darcy’s Law with Mixed Finite Element Method

We begin by examining the Darcy’s Law:

div(u) = qI − qP

u = −K(c)(∇p− ρ(c)g)

in which case we will rewrite as:

div(u) = qI − qP

K−1(c)u +∇p = ρ(c)g

By integration over Ω, we have:

∫
Ω

div(u)q =

∫
Ω

(qI − qP )q

∫
Ω

K−1(c)u · v +

∫
Ω

∇p · v =

∫
Ω

ρ(c)g · v

for all v ∈ H0(Ω, div) and q ∈ L2
0(Ω).

We note that according to Green’s first identity:

∫
Ω

∇p · v = −
∫

Ω

p div(v) +

∫
∂Ω

pv · n = −
∫

Ω

p div(v)

The desired weak form (3.5)-(3.6) is obtained

∫
Ω

div(u)q =

∫
Ω

(qI − qP )q

∫
Ω

K−1(c)u · v −
∫

Ω

p div(v) =

∫
Ω

ρ(c)g · v

Once we pass in the piecewise polynomials from the finite element space we have the de-



15

sired spacial discretization for the Darcy’s law. Next, we will show the consistency of the

discretization of the transport equation.

3.3.2 Transport Equation with DG Method

For the left-hand side of the transport equation, we divide our analysis into two parts. The

diffusion part −div(D(u)∇c), and convection part −u · ∇c+ qIc.

Diffusion Term

For all w ∈ W 1,4(Ω), we have according to the Green’s theorem over each element E

−
∫
E

div(D(u)∇c)w =

∫
E

D(u)∇c · ∇w −
∫
∂E

D(u)∇c · nEw

Note, nE is the outward normal vector of element E.

And if we sum up over all the elements we have,

−
∑
E∈Eh

∫
E

div(D(u)∇c)w =
∑
E∈Eh

∫
E

D(u)∇c · ∇w −
∑
E∈Eh

∫
∂E

D(u)∇c · nEw

We can switch the last integral term to the sum over all interior edges with

∑
E∈Eh

∫
∂E

D(u)∇c·nEw =
∑
e∈Γh

∫
e

[D(u)∇c·new]+
∑
e∈∂Ω

∫
e

D(u)∇c·new =
∑
e∈Γh

∫
e

[D(u)∇c·new]

given the boundary condition D(u)∇c ·n = 0 on ∂Ω. By the regularity of the solution c, we

have D(u)∇c ·ne = {D(u)∇c ·ne} a.e. over the edges. Therefore, the diffusion term can be

rewritten as ∑
E∈Eh

∫
E

D(u)∇c · ∇w −
∑
e∈Γh

∫
e

{D(u)∇c · ne}[w]
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Also, note that the jump [c] = 0 a.e. on the interior edges. Therefore, we can add the terms

ε
∑
e∈Γh

∫
e

{D(u)∇w · ne}[c] and
∑
e∈Γh

σh−1

∫
e

(1 + {|u|})[c][w]

So, we have the desired DG form for the diffusion operator

Bd(c, w; u) =
∑
E∈Eh

∫
E

D(u)∇c · ∇w −
∑
e∈Γh

∫
e

{D(u)∇c · ne}[w]

+ ε
∑
e∈Γh

∫
e

{D(u)∇w · ne}[c] +
∑
e∈Γh

σh−1

∫
e

(1 + {|u|})[c][w]

= (D(u)∇c,∇w)Eh − ({D(u)∇c · ne}, [w])Γh

+ ε({D(u)∇w · ne}, [c])Γh + (σh−1(1 + {|u|})[c], [w])Γh

Hence, we can obtain the discretization of the diffusion term by passing in the piecewise poly-

nomials from the finite element space. Next, we will show the consistency of the convection

term.

Convection Term

We use a skew symmetric weak formulation for the convection in our numerical scheme. Nev-

ertheless, the reader will soon notice this is nothing but upwind scheme with a stabilization

term. Before we use the Green’s theorem, consider to rewrite the convection term as

u · ∇c = 1
2
u · ∇c+ 1

2
u · ∇c

=
1

2
u · ∇c+

1

2
div(uc)− 1

2
div(u)c

=
1

2
(u · ∇c+ div(uc)− (qI − qP )c)

Thus, we have

u · ∇c+ qIc =
1

2
(u · ∇c+ div(uc) + (qI + qP )c)
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Now, we use the Green’s theorem over each element

∫
E

(
u · ∇c w + qIc w

)
=

1

2

(∫
E

u · ∇c w +

∫
E

div(uc) w +

∫
E

(qI + qP )c w

)
=

1

2

(∫
E

u · ∇c w −
∫
E

uc · ∇w +

∫
E

(qI + qP )c w +

∫
∂E

cu · nEw
)

where nE is the outward normal vector of element E. We can sum up the term within the

parentheses over all the elements from the equation above. Since u · n = 0 on ∂Ω, we have

∑
E∈Eh

∫
E

u · ∇c w −
∑
E∈Eh

∫
E

uc · ∇w +
∑
E∈Eh

∫
E

(qI + qP )c w +
∑
e∈Γh

∫
e

[cu · new]

=
∑
E∈Eh

∫
E

u · ∇c w −
∑
E∈Eh

∫
E

uc · ∇w +
∑
E∈Eh

∫
E

(qI + qP )c w +
∑
e∈Γh

∫
e

cupu · ne[w]

with

cup =


c|Ee1 if u · ne ≥ 0

c|Ee2 if u · ne < 0

and we define cdown as the opposite of cup i.e.

cdown =


c|Ee2 if u · ne ≥ 0

c|Ee1 if u · ne < 0

Furthermore, since [c] = 0 a.e., we can add the stabilization term
∑
e∈Γh

∫
e

wdownu · ne[c].

Therefore, for the convection term we have

Bcq(c, w; u) =
1

2

(
(u∇c, w)Eh − (uc,∇w)Eh + ((qI + qP )c, w)

+(cupu · ne, [w])Γh − (wdownu · ne, [c])Γh

)
So, we conclude that the spacial discretization is consistent.
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3.4 DG Time Discretization

Since the pressure and velocity do not depend upon the time explicitly, we simply integrate

over each time domain. Hence, we have

∫ tn

tn−1

(
(K−1(c)u,v)− (p, div(v))

)
=

∫ tn

tn−1

(ρ(c)g,v)

∫ tn

tn−1

(q, div(u)) =

∫ tn

tn−1

((qI − qP ), q)

In the rest of the section we will focus on the discretization in time fpr the transport equation.

First, observe that the transport equation can be viewed as follows

φc′ + A(u)c = F (c)

where A(u) is the convection-diffusion operator that is non-linearly depending upon u. Let

w be smooth in time and w(tN) = wN = 0 with tN = T . We follow the standard procedure

to obtain the weak form

∫ tN

0

(φc′, w) + (A(u)c, w)dt =

∫ tN

0

(F (c), w)

Use the integration by part,

∫ tN

0

(φc′, w) = −
∫ tN

0

(φc, w′) + (φc, w) | tN0 = −
∫ tN

0

(φc, w′)− (φc0
−, w

0
+)

where we set c0
− = c0 as the initial condition. Hence, we have

−
∫ tN

0

(φc, w′) + (A(u)c, w)dt = (φc0
−, w

0
+) +

∫ tN

0

(F (c), w) (3.13)



19

Next, we integrate the first term over each element

∫ tN

0

(φc, w′)dt = −
N∑
n=1

∫ tn

tn−1

(φc′, w)dt+
N∑
n=1

(φcn−, w
n)−

N∑
n=1

(φcn−1
+ , wn−1)

= −
∫ tN

0

(φc′, w)dt−
N−1∑
n=1

([cn]t, φw
n
+)− (c0

+, φw
0
+) (3.14)

By adding (3.13) and (3.14) we have,

∫ tN

0

(φc′, w) + (A(u)c, w)dt+
N−1∑
n=0

([cn]t, φw
n
+) =

∫ tN

0

(F (c), w)

We can now obtain the discretization

∫ tN

0

(φc′h, wh) + (A(uh)ch, wh)dt+
N−1∑
n=0

([cnh]t, φw
n
h+) =

∫ tN

0

(F (ch), wh)

where wh ∈ {vh : vh|[tn−1,tn] ∈ P`[tn−1, tn;Ch]}. Choose wh ∈ P`[tn−1, tn;Ch] such that it

vanishes outside [tn−1, tn] and we have

∫ tn

tn−1

((φc′h, wh) + a(ch, wh; uh)) dt+ ([cn−1
h ]t, φw

n−1
h+ ) =

∫ tn

tn−1

(F (ch), wh)dt

with a(ch, wh; uh) is the spacial discretization of (A(u)c, w), i.e. the spacial discretization of

the convection and diffusion terms. Or for simplicity, one can regard the time discretization

as integrating over each time domain while adding the stabilization term ([cn−1
h ]t, φw

n−1
h+ ).

Therefore, we have the DG discretization in time,

∫ tn

tn−1

((φ∂tch, wh) +Bd(ch, wh; uh) +Bcq(ch, wh; uh)) + (
[
cn−1
h

]
t
, φwn−1

h+ ) =

∫ tn

tn−1

(ĉqI , wh)

with uh ∈ P`[tn−1, tn; Uh], ch ∈ P`[tn−1, tn;Ch].
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Chapter 4

Stability and Convergence of the Numerical Scheme

In this section, I will illustrate that the numerical scheme is stable and the numerical solutions

converge under mesh refinement. I will begin the analysis of the numerical scheme with some

preliminary results. With the help of the preliminary results, I will establish the stability of

the numerical scheme. Before proving the convergence of the solution, I will present a more

general compactness theorem for the functions that are discontinuous in space and time with

some required assumptions. Finally, I will show the convergence of the numerical solutions

by using the compactness theorem.

For the analysis of fluid pressure and velocity, I will refer to the analysis done by Walk-

ington and Rivière [41] since the numerical methods for the pressure and velocity and the

regularity of the functions in this case are identical to their analysis which have be studied

in detail. Whereas, I will put a great emphasis on the transport equation concerning the

solvent concentration.

4.1 Preliminary Results

4.1.1 Basic Inequalities

I will begin by stating several well-known inequalities that will be used to obtain some useful

results in the setting concerning the numerical scheme. In following analysis, I require the

mesh for the numerical method to be a regular mesh, i.e. there are positive constant a◦, a
◦,
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b◦ and b◦ independent of h such that:

a◦ |e|
d
d−1 ≤ |E| ≤ a◦ |e|

d
d−1

b◦ |e|
1
d−1 ≤ h ≤ b◦ |e|

1
d−1

where E is a mesh element and its measure|E|, e is a face and its measure |e|. We use

the notation ”.” to denote the fact that the constant is independent of e, E and h. The

properties above can be written as:

|e|
d
d−1 . |E| and |E| . |e|

d
d−1

|e|
1
d−1 . h and h . |e|

1
d−1

If it satisfies the properties as above, we use the notation ”≈” to describe the relationships.

i.e.

|E| ≈ |e|
d
d−1 , h ≈ |e|

1
d−1 and

|E|
|e|
≈ h (4.1)

I shall now state the inverse inequality as follow.

Lemma 4.1.1 (Inverse Inequality [8]). Let ρh ≤ diam(E) ≤ h, where 0 < h ≤ 1, and P

be finite dimensional subspace of W`,p(E) ∩Wm,q(E), where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and

0 ≤ m ≤ `. Then there exists C = C(P̂ , Ê, `, p, q, ρ) then

∀v ∈ P , ‖v‖W`,p(E) ≤ Chm−`+
d
p
− d
q ‖v‖Wm,q(E) (4.2)

Another inequality that will be used frequently is a simplified version of Jensen’s inequal-

ity, stated as

Lemma 4.1.2 (Jensen’s Inequality [44]). Let p, q, and n be positive integers. If 1 ≤ q ≤
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p ≤ ∞, then

(
n∑
i=1

|ai|p
)1/p

≤

(
n∑
i=1

|ai|q
)1/q

,∀ai ∈ R (4.3)

Also, the trace inequality is extremely useful when one needs to translate the property

of element from edge to the interior of the element.

Lemma 4.1.3 (Trace Inequality [43]). If v ∈ P, where P is a finite dimensional subspace,

then

‖v‖L2(e) ≤ Ch−1/2 ‖v‖L2(E) (4.4)

‖v‖L4(e) ≤ Ch−1/4 ‖v‖L4(E) (4.5)

where C is positive and independent of e and E.

4.1.2 Bounds for Stabilization Terms

The numerical scheme is as follows

∫ tn

tn−1

(
(K−1(ch)uh,vh)− (ph, div(vh))

)
=

∫ tn

tn−1

(ρ(ch)g,vh)

∫ tn

tn−1

(qh, div(uh)) =

∫ tn

tn−1

((qI − qP ), qh),

∫ tn

tn−1

((φ∂tch, wh) +Bd(ch, wh; uh) +Bcq(ch, wh; uh)) + (
[
cn−1
h

]
t
, φwn−1

h+ ) =

∫ tn

tn−1

(ĉqI , wh)

where,

Bd(ch, wh; uh) = (D(uh)∇ch,∇wh)−([wh], {D(uh)∇ch · ne})Γh

+ε([ch],{D(uh)∇wh · ne})Γh + (σh−1(1 + {|uh|})[ch], [wh])Γh
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Bcq(ch, wh; uh) =
1

2

(
(uh∇ch, wh)− (uhch,∇wh)− (uhch,∇wh) + ((qI + qP )ch, wh)

+(cupuh · ne, [w])Γh − (wdownuh · ne, [c])Γh)
)

for all uh ∈ P`[tn−1, tn; Uh], qh ∈ P`[tn−1, tn;Ph], wh ∈ P`[tn−1, tn;Ch].

Now, let us look at the terms ([ch], {D(uh)∇wh ·n})Γh and ([wh], {D(uh)∇ch ·n})Γh . The

goal in this section is to establish the bound for the these terms as stated in Proposition

4.1.10. First, we obtain several inequalities that will prove to be useful for our analysis.

Lemma 4.1.4. Let e be a given face of an arbitrary mesh element E. If w ∈ Pd where w

is a vector function and P is a finite dimensional subspace, then

‖w‖L2(e) . h−1/2 ‖w‖L2(E)

Proof. We write the definition of L2 norm:

‖w‖L2(e) =

(
d∑
i=1

∫
e

w2
i

)1/2

=

(
d∑
i=1

‖wi‖2
L2(e)

)1/2

Hence, applying the Trace Inequality in Lemma 4.1.3 we have

‖w‖L2(e) .

(
d∑
i=1

h−1 ‖wi‖2
L2(E)

)1/2

. h−1/2

(
d∑
i=1

∫
E

w2
i

)1/2

. h−1/2 ‖w‖L2(E)

With the help of this inverse estimate, the following inequalities can be obtained.

Lemma 4.1.5. Given wh ∈ P and uh ∈ Pd then for a fixed element E and a face e ∈ ∂E,

‖∇wh‖L2(e) . h−1/2 ‖∇wh‖L2(E) and
∥∥∥|uh|E|1/2 |∇wh|∥∥∥

L2(e)
. h−1/2

∥∥∥|uh|1/2 |∇wh|∥∥∥
L2(E)

.
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Proof. The first inequality directly follows from Lemma 4.1.4.

For the second inequality,

∥∥∥|uh|1/2 |∇wh|∥∥∥
L2(e)

. |e|1/4
(∫

e

|uh|2 |∇wh|4
)1/4

. |e|1/4
(

d∑
i,j=1

∫
e

u2
h,i

(
∂wh
∂xj

)4
)1/4

. |e|1/4
 d∑
i,j=1

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥

2

L2(e)

1/4

As the consequence of Trace Inequality from Lemma 4.1.3,

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥
L2(e)

. h−1/2

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥
L2(E)

Hence, we related the face to the interior of the element E,

∥∥∥|uh|1/2 |∇wh|∥∥∥
L2(e)

. |e|1/4
h−1

d∑
i,j=1

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥

2

L2(E)

1/4

By the Inverse Inequality from Lemma 4.1.1,

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥
L2(E)

. h−d/2

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥
L1(E)
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Therefore, we can conclude

∥∥∥|uh|1/2 |∇wh|∥∥∥
L2(e)

. |e|1/4
h−1h−d

d∑
i,j=1

∥∥∥∥∥uh,i
(
∂wh
∂xj

)2
∥∥∥∥∥

2

L1(E)

1/4

. h−1/2

 d∑
i,j=1

(∫
E

|uh,i|
(
∂wh
∂xj

)2
)2
1/4

. h−1/2

(∫
E

d∑
i=1

|uh,i| |∇wh|2
)1/2

. h−1/2

(∫
E

|uh| |∇wh|2
)1/2

. h−1/2
∥∥∥|uh|1/2 |∇wh|∥∥∥

L2(E)

Lemma 4.1.6. If wh ∈ P, then we have

‖∇wh‖L2(Eh) . ‖∇wh‖L4(Eh)

Proof. We apply Cauchy-Schwarz inequality,

(∑
E∈Eh

‖∇wh‖2
L2(E)

)1/2

≤

(∑
E∈Eh

|E|1/2
(∫

E

|∇wh|4
)1/2

)1/2

≤

(∑
E∈Eh

|E|

)1/4(∑
E∈Eh

∫
E

|∇wh|4
)1/4

. ‖∇wh‖L4(Eh)

Lemma 4.1.7. Let uh ∈ Pd and ch ∈ P, then for an element E and one of its face e,

∥∥D1/2(uh|E)∇ch
∥∥
L2(e)

. h−1/2
∥∥D1/2(uh)∇ch

∥∥
L2(E)
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and ∥∥D1/2(uh|E)∇ch
∥∥
L2(e)

. h−1/2
(
‖∇ch‖L2(E) + ‖uh‖1/2

L2(E) ‖∇ch‖L4(E)

)
Proof. Recall the property of diffusivity tensor in (3.4), we have

d0(1 + |uh|) |∇ch|2 ≤ ∇chTD(uh)∇ch ≤ d1(1 + |uh|) |∇ch|2

We therefore obtain the inequality,

(∫
e

D(uh)∇ch · ∇ch
)1/2

.

(∫
e

(1 + |uh|) |∇ch|2
)1/2

.

(
‖∇ch‖2

L2(e) +
∥∥∥|uh|1/2 |∇ch|∥∥∥2

L2(e)

)1/2

According to Lemma 4.1.5, we have

(∫
e

D(uh)∇ch · ∇ch
)1/2

. h−1/2

(
‖∇ch‖2

L2(E) +
∥∥∥|uh|1/2 |∇ch|∥∥∥2

L2(E)

)1/2

. h−1/2

(∫
E

(1 + |uh|) |∇ch|2
)1/2

Therefore, we obtain the first inequality using the property (3.4),

∥∥D1/2(uh)∇ch
∥∥
L2(e)

. h−1/2
∥∥D1/2(uh)∇ch

∥∥
L2(E)

Also, by Lemma 4.1.2

(∫
E

(1 + |uh|) |∇ch|2
)1/2

=

(∫
E

|∇ch|2 +

∫
E

|uh| |∇ch|2
)1/2

≤
(∫

E

|∇ch|2
)1/2

+

(∫
E

|uh| |∇ch|2
)1/2

≤ ‖∇ch‖L2(E) + ‖uh‖1/2

L2(E) ‖∇ch‖L4(E)
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Therefore, we have

∥∥D1/2(uh)∇ch
∥∥
L2(e)

. h−1/2
(
‖∇ch‖L2(E) + ‖uh‖1/2

L2(E) ‖∇ch‖L4(E)

)

With all the helpful inequalities attained so far, we can now bound the terms ([wh], {D(uh)∇ch·

ne})e and ([ch], {D(uh)∇wh · ne})e in our scheme.

For the next result, let Ee
+ and Ee

− be the mesh elements that share the face e. We define

the average to be:

{‖w‖Lp(Ee)} =
1

2

(
‖w‖Lp(Ee+) + ‖w‖Lp(Ee−)

)
likewise,

{‖w‖Lp(Ee) ‖v‖Lq(Ee)} =
1

2

(
‖w‖Lp(Ee+) ‖v‖Lq(Ee+) + ‖w‖Lp(Ee−) ‖v‖Lq(Ee−)

)

we also use the notations

w+ = w|Ee+ and w− = w|Ee−

In the rest of the analysis, we will use the notations Ph, Uh and Ch corresponding to the

finite element spaces for the numerical scheme. But, those results hold for all the piecewise

polynomials.

Lemma 4.1.8. Let e be a given face of an arbitrary mesh element E. Given ch, wh ∈ Ch,

uh ∈ Uh and D the diffusion dispersion matrix satisfying the property (3.4), then we have

([ch], {D(uh)∇wh · ne})e .
(∫

e

h−1(1 + {|uh|})[ch]2
)1/2

×
{
‖∇wh‖L2(Ee) + ‖uh‖1/2

L2(Ee) ‖∇wh‖L4(Ee)

}
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Proof. We begin by expanding and bounding the terms using Cauchy-Schwarz’s inequality,

([ch], {D(uh)∇wh · ne})e . ([ch],D(u+
h )∇w+

h · ne)e + ([ch],D(u−h )∇w−h · ne)e

. {
∫
e

∣∣D1/2(uh)ne
∣∣ |[ch]| ∣∣D1/2(uh)∇wh

∣∣}
. {
(∫

e

∣∣D1/2(uh)ne
∣∣2 [ch]

2

)1/2(∫
e

∣∣D1/2(uh)∇wh
∣∣2)1/2

}

.

(∫
e

{
∣∣D1/2(uh)ne

∣∣}2[ch]
2

)1/2

{
(∫

e

∣∣D1/2(uh)∇wh
∣∣2)1/2

}

By the property (3.4), we obtain

([ch], {D(uh)∇wh · ne})e .
(∫

e

(1 + {|uh|})[ch]2
)1/2

{
∥∥D1/2(uh)∇wh

∥∥
L2(e)
} (4.6)

By Lemma 4.1.7, therefore, we have

([ch], {D(uh)∇wh · ne})e .
(∫

e

h−1(1 + {|uh|})[ch]2
)1/2

×
{
‖∇wh‖L2(Ee) + ‖uh‖1/2

L2(Ee) ‖∇wh‖L4(Ee)

}

Lemma 4.1.9. Given ch, wh, uh and D as in Lemma 4.1.8, then

([wh], {D(uh)∇ch · ne})e .
(∫

e

h−1(1 + {|uh|})[wh]2
)1/2

{
∥∥D1/2(uh)∇ch

∥∥
L2(Ee)

}

Proof. From (4.6), we have

([wh], {D(uh)∇ch · ne})e .
(∫

e

(1 + {|uh|})[wh]2
)1/2

{
∥∥D1/2(uh)∇ch

∥∥
L2(e)
}

And according to Lemma 4.1.7,

([wh], {D(uh)∇ch · ne})e .
(∫

e

h−1(1 + {|uh|})[wh]2
)1/2

{
∥∥D1/2(uh)∇ch

∥∥
L2(Ee)

}
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We now sum up the contributions over all the interior edge and establish the following

proposition.

Proposition 4.1.10. Let ch, wh be in Ch and uh be in Uh. We have

([ch], {D(uh)∇wh · ne})Γh . J(ch, ch; uh)
1/2(‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω) ‖∇wh‖L4(Eh)) (4.7)

and

([wh], {D(uh)∇ch · ne})Γh . R(wh; uh)
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

(4.8)

with

J(ch, ch; uh) =
∑
e∈Γh

h−1

∫
e

(1 + {|uh|})[ch]2 (4.9)

and

R(wh; uh) =
(

1 + ‖uh‖1/2

L2(Ω)

)(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

(4.10)

Proof. To sum up over all the interior edges, by Lemma 4.1.8 one would have

([ch], {D(uh)∇wh · ne})Γh =
∑
e∈Γh

([ch], {D(uh)∇wh · ne})e

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2

{‖∇wh‖L2(Ee) + ‖uh‖1/2

L2(Ee) ‖∇wh‖L4(Ee)}

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2 (

{‖∇wh‖L2(Ee)}+ {‖uh‖1/2

L2(Ee) ‖∇wh‖L4(Ee)}
)

. J(ch, ch; uh)
1/2

(∑
e∈Γh

{‖∇wh‖L2(Ee)}
2

)1/2

+

(∑
e∈Γh

{‖uh‖1/2

L2(Ee) ‖∇wh‖L4(Ee)}
2

)1/2

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For the term, (∑
e∈Γh

{‖∇wh‖L2(Ee)}
2

)1/2

we have

(∑
e∈Γh

{‖∇wh‖L2(Ee)}
2

)1/2

.

(∑
e∈Γh

(
‖∇wh‖2

L2(Ee+) + ‖∇wh‖2
L2(Ee−)

))1/2

. ‖∇wh‖L2(Eh)

Likewise, we can obtain

(∑
e∈Γh

{‖uh‖1/2

L2(Ee) ‖∇wh‖L4(Ee)}
2

)1/2

.

(∑
E∈Eh

‖uh‖L2(E) ‖∇wh‖
2
L4(E)

)1/2

. ‖uh‖1/2

L2(Ω) ‖∇wh‖L4(Eh)

Therefore, for the term ([ch], {D(uh)∇wh · ne})Γh we have

([ch], {D(uh)∇wh · ne})Γh . J(ch, ch; uh)
1/2(‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω) ‖∇wh‖L4(Eh))

For the term ([wh], {D(uh)∇ch · ne})Γh using Lemma 4.1.9 we have,

([wh], {D(uh)∇ch · ne})Γh =
∑
e∈Γh

([wh], {D(uh)∇ch · ne})e

.
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[wh]2
)1/2

{
∥∥D1/2(uh)∇ch

∥∥
L2(Ee)

}

. J(wh, wh; uh)
1/2

(∑
e∈Γh

{
∥∥D1/2(uh)∇ch

∥∥
L2(Ee)

}2

)1/2

. J(wh, wh; uh)
1/2
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

Thus,

([wh], {D(uh)∇ch · ne})Γh . J(wh, wh; uh)
1/2
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

(4.11)
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For J(wh, wh; uh)
1/2, we can establish the inequality,

J(wh, wh; uh)
1/2 =

(∑
e∈Γh

∫
e

h−1(1 + {|uh|})[wh]2
)1/2

.

(∑
e∈Γh

∫
e

h−1[wh]
2

)1/2

+

(∑
e∈Γh

∫
e

h−1{|uh|}[wh]2
)1/2

For the first term we have,

(∑
e∈Γh

∫
e

h−1[wh]
2

)1/2

.

(∑
e∈Γh

h−1 |e|1/2
(∫

e

[wh]
4

)1/2
)1/2

.

(∑
e∈Γh

|E|

)1/4(∑
e∈Γh

h−2 |e|
|E|

∫
e

[wh]
4

)1/4

Using the property of regular mesh in (4.1), we have

(∑
e∈Γh

h−2 |e|
|E|

∫
e

[wh]
4

)1/4

.

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

For the second term we notice,

(∑
e∈Γh

∫
e

h−1
∣∣u+

h

∣∣ [wh]2)1/2

.

(∑
e∈Γh

h−1

(∫
e

∣∣u+
h

∣∣2)1/2(∫
e

[wh]
4

)1/2
)1/2

.

(∑
e∈Γh

∥∥u+
h

∥∥2

L2(e)

)1/4(∑
e∈Γh

h−2

∫
e

[wh]
4

)1/4

.

(∑
e∈Γh

h−1 ‖uh‖2
L2(Ee+)

)1/4(∑
e∈Γh

h−2

∫
e

[wh]
4

)1/4

. ‖uh‖1/2

L2(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4
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In the same way we can establish,

(∑
e∈Γh

∫
e

h−1
∣∣u−h ∣∣ [wh]2

)1/2

. ‖uh‖1/2

L2(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

(4.12)

To summarize we have,

(∑
e∈Γh

h−1

∫
e

(1 + {|uh|})[wh]2
)1/2

.
(

1 + ‖uh‖1/2

L2(Ω)

)(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

(4.13)

Therefore, we conclude

([wh], {D(uh)∇ch · ne})Γh . R(wh; uh)
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

These results will be used extensively in the analysis to come concerning the stability

and compactness theorem. In our analysis, we use a rather unconventional jump term to

bypass the difficulty of the low regularity condition.

4.2 Stability Analysis

4.2.1 Stability of Pressure and Velocity

The stability of the fluid pressure and velocity follows the same argument as the result in

Walkington and Rivière [41]. For completeness, this section recalls the existing results.

Lemma 4.2.1. There exists a constant m > 0 depending only upon Ω such that

sup
uh∈Uh

∫
Ω
phdiv(uh)

‖uh‖H(Ω;div)

≥ m ‖ph‖L2(Ω) , ph ∈ Ph

In particular, if Zh = {uh ∈ Uh | div(uh) = 0} and Uh = Zh ⊕ Z⊥h is the orthogonal

decomposition, then there exists a linear operator Lh : Ph → Z⊥h with ‖Lh‖L(Ph,Uh) ≤ 1 such
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that

m ‖ph‖2
L2(Ω) ≤

∫
Ω

phdiv(Lh(ph)), ph ∈ Ph

and if uh ∈ Z⊥h then m ‖uh‖H(Ω;div) ≤ ‖div(uh)‖L2(Ω).

Lemma 4.2.2. Let V be a linear space and (., .)V be a (semi) inner product on V ; w ≥ 0

be a non-zero element of L1(0, 1); and 0 < a < b. Then there exists a constant M` > 0,

depending only upon ` and w, such that for all u ∈ P`[a, b;V ]

‖u‖Lp[a,b;V ] ≤ (b− a)1/p−1/2

(
M`

∫ b

a

w((t− a)/(b− a)) ‖u(t)‖2
V dt

)1/2

, 1 ≤ p ≤ ∞

In particular, if 1/p+ 1/p′ = 1 then

‖u‖Lp[a,b;V ] ‖u‖Lp′ [a,b;V ] ≤M`

∫ b

a

w((t− a)/(b− a)) ‖w(t)‖2
V

Now, we state and prove the stability for the pressure and velocity.

Theorem 4.2.3. There exists a constant M > 0 independent of h and ∆t such that solutions

of the numerical scheme satisfy the following bounds.

• If 1 ≤ p, q ≤ ∞ and qI , qP ∈ Lp[0, T ;Lq(Ω)], then

‖div(uh)‖Lp[0,T ;Lq(Ω)] ≤M
(∥∥qI∥∥

Lp[0,T ;Lq(Ω)]
+
∥∥qP∥∥

Lp[0,T ;Lq(Ω)]

)

• If 1 ≤ p ≤ ∞, qI , qP ∈ Lp[0, T ;L2(Ω)], then

‖uh‖Lp[0,T ;H(Ω,div)] + ‖ph‖Lp[0,T ;L2(Ω)] ≤M
(∥∥qI∥∥

Lp[0,T ;L2(Ω)]
+
∥∥qP∥∥

Lp[0,T ;L2(Ω)]

+ ‖ρ1g‖Lp[0,T ;L2(Ω)]

)

Proof. For each E ∈ Eh, let Πh : L2(tn−1, tn;E) → P`[tn−1, tn,Pk(E)] denote the L2 projec-
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tion. A parent element calculation shows that there exists a constant M >) depending only

on the parent element such that

∥∥Πh(q
I − qP )

∥∥
Lp[tn−1,tn,Lq(E)]

≤M
∥∥qI − qP∥∥

Lp[tn−1,tn,Lq(E)]
, 1 ≤ p, q ≤ ∞

Since div(uh) ∈ Ph it follows from (3.9) that

div(uh) = Πh(q
I − qP )

Next, we introduce the orthogonal decomposition Uh = Zh⊕Z⊥h , thus we can let uh = zh+u⊥h

be the decomposition of uh. From Lemma 4.2.1 we find

M
∥∥u⊥h ∥∥H(Ω;div)

≤
∥∥div(u⊥h )

∥∥
L2(Ω)

= ‖div(uh)‖L2(Ω)

and since div(uh) = Πh(q
I − qP ) it follows that

∥∥u⊥h ∥∥Lp[tn−1,tn;H(Ω;div)
≤M ‖div(uh)‖Lp[tn−1,tn;L2(Ω)]

≤M(
∥∥qI∥∥

Lp[tn−1,tn,L2(Ω)]
+
∥∥qP∥∥

Lp[tn−1,tn,L2(Ω)]
)

To estimate zh select it to be the test function in (3.8) and we have

∫ tn

tn−1

(K−1(ch)(zh + u⊥h ),vh) =

∫ tn

tn−1

(K−1(ch)uh,vh) =

∫ tn

tn−1

(ρ(ch)g,vh)
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Upon rescaling that ‖zh‖H(Ω;div) = ‖zh‖L2(Ω) and the assumption on K, it follows that

‖zh‖2
L2[tn−1,tn;div(Ω,div)] ≤M

∫ tn

tn−1

(K−1(ch)zh, zh)

≤M

(∣∣∣∣∫ tn

tn−1

(ρ(ch)g,vh)

∣∣∣∣+

∣∣∣∣∫ tn

tn−1

(K−1(ch)u
⊥
h ,vh)

∣∣∣∣)
≤M ‖zh‖Lp′ [tn−1,tn;H(Ω;div)]

(
‖ρ1g‖Lp[tn−1,tn;L2(Ω)] +

∥∥u⊥h ∥∥Lp[tn−1,tn;L2(Ω)]

)

And since 1/p+ 1/p′ = 1 we can use Hölder’s inequality

‖zh‖Lp[tn−1,tn;div(Ω,div)] ≤M
(
‖ρ1g‖Lp[tn−1,tn;L2(Ω)] +

∥∥u⊥h ∥∥Lp[tn−1,tn;L2(Ω)]

)

Therefore, we can construct the bound

‖zh‖Lp[tn−1,tn;div(Ω,div)] ≤M
(
‖ρ1g‖Lp[tn−1,tn;L2(Ω)] +

∥∥qI∥∥
Lp[tn−1,tn,L2(Ω)]

+
∥∥qP∥∥

Lp[tn−1,tn,L2(Ω)]

)

from which we can find the bound for ‖zh‖Lp[tn−1,tn;div(Ω,div)]. Since the operator Lh : Ph → Z⊥h

in Lemma 4.2.1 is independent of time, it follows that Lh(ph) ∈ P`[tn−1, tn,Uh]. We may

then set vh = Lh(ph) in (3.8) to find

M

∫ tn

tn−1

‖ph‖2
L2(Ω) ≤

∫ tn

tn−1

(ph, div(Lh(ph))) =

∫ tn

tn−1

((K−1(ch)uh, Lh(ph))− (ρ(ch)g, Lh(ph))

By Lemma 4.2.2 we have

‖ph‖Lp[tn−1,tn,L2(Ω)] ≤M
(
‖uh‖Lp[tn−1,tn,L2(Ω)] + ‖ρ1g‖Lp[tn−1,tn;L2(Ω)]

)
≤M

(
‖ρ1g‖Lp[tn−1,tn;L2(Ω)] +

∥∥qI∥∥
Lp[tn−1,tn,L2(Ω)]

+
∥∥qP∥∥

Lp[tn−1,tn,L2(Ω)]

)
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4.2.2 Stability of Concentration

In this subsection, I will show that the scheme is stable for the concentration.

Define the energy semi-norm ‖·‖Xh in following way:

‖v‖Xh =

(∑
E∈Eh

∥∥D1/2(uh)∇v
∥∥2

L2(E)
+
∑
e∈Γh

h−1
∥∥(1 + {|uh|})1/2[v]

∥∥2

L2(e)

)1/2

(4.14)

I will first show the coercivity of the diffusion term:

Lemma 4.2.4. There always exists penalty parameter σ > 0 such that

Bd(wh, wh; uh) ≥
1

2
‖wh‖2

Xh
, ∀wh ∈ Ch

Proof. From our numerical scheme, we have

Bd(wh, wh; uh) = (D(uh)∇wh,∇wh) + (ε− 1)([wh], {D(uh)∇wh · ne})Γh

+ (σh−1(1 + {|uh|})[wh], [wh])Γh

According to results attained previously in (4.11)

([wh], {D(uh)∇wh·ne})Γh ≤M

(∑
e∈Γh

h−1
∥∥(1 + {|uh|})1/2[wh]

∥∥2

L2(e)

)1/2 ∥∥D1/2(uh)∇wh
∥∥
L2(Eh)

for a constant M independent upon h.

We use Young’s inequality to obtain,

([wh], {D(uh)∇wh · ne})Γh ≤
δ
∥∥D1/2(uh)∇wh

∥∥2

L2(Eh)

2
+
M2

2δ

∑
e∈Γh

h−1
∥∥(1 + {|uh|})1/2[wh]

∥∥2

L2(e)

for all δ > 0.
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Thus,

Bd(wh, wh; uh) ≥(1 +
δ

2
(ε− 1))

∥∥D1/2(uh)∇wh
∥∥2

L2(Eh)

+
∑
e∈Γh

(
σ +

ε− 1

2δ
M2

)
h−1

∥∥(1 + {|uh|})1/2[wh]
∥∥2

L2(e)

When ε = 1, immediately one obtains Bd(wh, wh; uh) = ‖wh‖2
Xh

; (since ε = 1 in this case)

When ε = 0, choose δ = 1 and σ ≥ 1
2
(1 +M2);

When ε = −1, choose δ =
1

2
and σ ≥ 1

2
+ 2M2.

These criteria will guarantee Bd(wh, wh; uh) ≥
1

2
‖wh‖2

Xh
.

We just showed the coercivity of the diffusion term. Now, with the help of this property,

we will proceed by proving the stability of the concentration solution.

Theorem 4.2.5. The numerical scheme is stable with respect to the fluid concentration, so

that ‖ch‖`∞[L2(Ω)] , ‖ch‖L2[0,T ;Xh] and ‖ch‖L2[0,T ;H1(Eh)] are bounded independent of h and ∆t.

In particular, we have:

max
1≤n≤N

∥∥φ1/2cnh−
∥∥2

L2(Ω)
+

N∑
n=1

∥∥[φ1/2cn−1
h ]

∥∥2

L2(Ω)
+

∫ T

0

(
‖ch‖2

Xh
+
∥∥∥√qP ch

∥∥∥2

L2(Ω)

+ (|uh · ne| [ch], [ch])Γh

)
≤
∥∥φ1/2c0

h−
∥∥2

L2(Ω)
+

∫ T

0

∥∥∥√qI ĉ
∥∥∥2

L2(Ω)

Proof. According to result in Lemma 4.2.4, we have

Bd(ch, ch; uh) ≥
1

2
‖ch‖2

Xh

Also according to our numerical scheme,

Bcq(ch, wh; uh) =
1

2

(
(uh∇ch, wh)− (uhch,∇wh) + ((qI + qP )ch, wh)

+ (cup
h uh · ne, [wh])Γh − (wdown

h uh · ne, [ch])Γh

)
then we have
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Bcq(ch, ch; uh) =
1

2

(
(u∇ch, ch)Eh − (uhch,∇ch)Eh + ((qI + qP )ch, ch)

+ (cup
h uh · ne, [ch])Γh − (cdown

h uh · ne, [c])Γh

)
=

1

2

(
(qI + qP )ch, ch) + (|uh · ne| [ch], [ch])Γh

)
And we conclude

Bcq(ch, ch; uh) =
1

2

(
(qI + qP )ch, ch) + (|uh · ne| [ch], [ch])Γh

)
(4.15)

Now, we expand the numerical scheme:

∫ tn

tn−1

((φ∂tch, ch) +Bd(ch, ch; uh) +Bcq(ch, ch; uh)) + (cn−1
h+ ,φcn−1

h+ )

= (cn−1
h− , φc

n−1
h+ ) +

∫ tn

tn−1

(ĉqI , ch)

Notice,

∫ tn

tn−1

(φ∂tch, ch) =

∫ tn

tn−1

1

2
∂t(φch, ch) =

1

2
(φcnh−, c

n
h−)− 1

2
(φcn−1

h+ , cn−1
h+ )

Thus, we have

∫ tn

tn−1

(φ∂tch, ch)+(cn−1
h+ , φcn−1

h+ ) =
1

2
(φcnh−, c

n
h−) +

1

2
(φcn−1

h+ , cn−1
h+ )

=
1

2

∥∥φ1/2cnh−
∥∥2

+
1

2
(φ[cn−1

h ]t, [c
n−1
h ]t) + (φcn−1

h+ , cn−1
h− )− 1

2
(φcn−1

h− , c
n−1
h− )

=
1

2

∥∥φ1/2cnh−
∥∥2

+
1

2

∥∥φ1/2[cn−1
h ]t

∥∥2
+ (φcn−1

h+ , cn−1
h− )− 1

2

∥∥φ1/2cn−1
h−
∥∥2
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Therefore,

∫ tn

tn−1

(Bd(ch, ch; uh) +Bcq(ch, ch; uh)) +
1

2

∥∥φ1/2cnh−
∥∥2

+
1

2

∥∥φ1/2[cn−1
h ]t

∥∥2

+(φcn−1
h+ , cn−1

h− )− 1

2

∥∥φ1/2cn−1
h−
∥∥2

= (cn−1
h− , φc

n−1
h+ ) +

∫ tn

tn−1

(ĉqI , ch)

Hence, we obtain

1

2

∥∥φ1/2cnh−
∥∥2

L2(Ω)
+

1

2

∥∥[φ1/2cn−1
h ]t

∥∥2

L2(Ω)
+

∫ tn

tn−1

(Bd(ch, ch; uh) +Bcq(ch, ch; uh))

=
1

2

∥∥φ1/2cn−1
h−
∥∥2

L2(Ω)
+

∫ tn

tn−1

(ĉqI , ch)

The equation above can be simplified into by Lemma 4.2.4 and 4.15.

1

2

∥∥φ1/2cnh−
∥∥2

L2(Ω)
+

1

2

∥∥[φ1/2cn−1
h ]t

∥∥2

L2(Ω)
+

1

2

∫ tn

tn−1

(
‖ch‖2

Xh
+ ((qI + qP )ch, ch)

+(|uh · ne| [ch], [ch])Γh) ≤ 1

2

∥∥φ1/2cn−1
h−
∥∥2

L2(Ω)
+

∫ tn

tn−1

(ĉqI , ch) (4.16)

Now, again use Cauchy-Schwarz’s inequality and Young’s inequality to obtain

(ĉqI , ch) ≤
∥∥∥ĉ√qI

∥∥∥
L2(Ω)

∥∥∥√qIch

∥∥∥
L2(Ω)

≤

∥∥∥√qIch

∥∥∥2

L2(Ω)

2
+

∥∥∥ĉ√qI
∥∥∥2

L2(Ω)

2

Thus, substitute this term into (4.16) and have

1

2

∥∥φ1/2cnh−
∥∥2

L2(Ω)
+

1

2

∥∥[φ1/2cn−1
h ]t

∥∥2

L2(Ω)
+

1

2

∫ tn

tn−1

(
‖ch‖2

Xh
+ ((qI + qP )ch, ch)

+(|uh · ne| [ch], [ch])Γh) ≤ 1

2

∥∥φ1/2cn−1
h−
∥∥2

L2(Ω)
+

1

2

∫ tn

tn−1

∥∥∥√qIch

∥∥∥2

L2(Ω)
+

1

2

∫ tn

tn−1

∥∥∥ĉ√qI
∥∥∥2

L2(Ω)
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Therefore,

∥∥φ1/2cnh−
∥∥2

L2(Ω)
+
∥∥[φ1/2cn−1

h ]t
∥∥2

L2(Ω)
+

∫ tn

tn−1

(
‖ch‖2

Xh
+
∥∥∥√qP ch

∥∥∥2

L2(Ω)
+ (|uh · ne| [ch], [ch])Γh

)

≤
∥∥φ1/2cn−1

h−
∥∥2

L2(Ω)
+

∫ tn

tn−1

∥∥∥√qI ĉ
∥∥∥2

L2(Ω)
.

We sum up overall the time interval and obtain:

max
1≤n≤N

∥∥φ1/2cnh−
∥∥2

L2(Ω)
+

N∑
n=1

∥∥[φ1/2cn−1
h ]t

∥∥2

L2(Ω)
+

∫ T

0

(
‖ch‖2

Xh
+
∥∥∥√qP ch

∥∥∥2

L2(Ω)

+ (|uh · ne| [ch], [ch])Γh

)
≤
∥∥φ1/2c0

h−
∥∥2

L2(Ω)
+

∫ T

0

∥∥∥√qI ĉ
∥∥∥2

L2(Ω)

Therefore, the scheme is stable for the concentration. Now, we show that ‖ch‖L2[0,T ;H1(Eh)]

is bounded. Define the semi-norm for H1(Eh) to be

|v|H1(Eh) =

(∑
E∈Eh

‖∇v‖2
L2(E) +

∑
e∈Γh

h−1 ‖[v]‖2
L2(e)

)1/2

and the H1(Eh) norm to be

‖v‖H1(Eh) =
(
‖v‖2

L2(Ω) + |v|2H1(Eh)

)1/2

We exclude the case when

∫
Ω

qP = 0, since this implies qP = 0 and qI = 0 which implies

c = 0 according to (3.1)-(3.3).

Consider

∫
Ω

qP > 0, then we apply the Poincaré’s inequality for the broken Sobolev space

from [7].

‖ch‖2
L2(Ω) ≤ C2

p

(
|ch|2H1(Eh) +

(∫
Ω

√
qP ch

)2
)1/2

where Cp is the Poincaré constant independent of h on a regular mesh. Hence, we use
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Cauchy-Schwarz’s inequality and obtain

‖ch‖2
L2(Ω) ≤ C

(
|ch|2H1(Eh) +

∥∥∥√qP ch

∥∥∥2

L2(Ω)

)1/2

Therefore,

‖ch‖H1(Eh) .

(
|ch|2H1(Eh) +

∥∥∥√qP ch

∥∥∥2

L2(Ω)

)1/2

.

(
‖ch‖2

Xh
+
∥∥∥√qP ch

∥∥∥2

L2(Ω)

)1/2

Therefore, ‖ch‖L2[0,T ;H1(Eh)] is bounded as well.

This completes the stability analysis which we will find it essential for us to establish the

convergence.

4.3 Compactness Theorem for the Concentration

In this section I will lay down the foundation for proving the convergence of the concentration

term by establishing a compactness theorem for the concentration.

4.3.1 Generalized Compactness Theorem

First, we state and prove a general compactness theorem that can be applied to broken

Sobolev spaces. The proof of the theorem relies on the existing results stated and proved in

the Appendix A.

Theorem 4.3.1. Let H be a Hilbert space with inner-product (·, ·)H and V and W be Banach

spaces equipped with norms ‖ · ‖V and ‖ · ‖W . Assume that W ⊂ H is dense and

W ↪→ V ↪→→ H ↪→ W ′

are embeddings with V compactly embedded in H. Let h ∈ (0,∞) be a (mesh) parameter and

for each h > 0 let W (Eh) be a Banach space with W ↪→ W (Eh) ↪→ V where the embedding
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constants are independent of h.

For each h, let Wh ⊂ W (Eh) be a closed subspace and let {tnh}
Nh
n=0 be a quasi-uniform

family of partitions of [0, T ]. Let Πh : H → Wh denote the orthogonal projection, and

assume that its restriction to W (Eh) is stable in the sense that there exists a constant M > 0

independent of h such that ‖Πhw‖W (Eh) ≤M ‖w‖W (Eh) for w ∈ W (Eh).

Fix ` ≥ 0 an integer and 1 < p <∞, 1 ≤ q <∞, with 1/p+ 1/q ≥ 1, and assume that

1. For each h > 0, wh ∈ {wh ∈ Lp[0, T ;Wh] | wh|(tn−1
h ,tnh) ∈ P`[t

n−1
h , tnh;Wh]} and on each

interval satisfies

∀zh ∈ P`[tn−1
h , tnh;Wh],

∫ tnh

tn−1
h

(wht, zh)H + (wn−1
h+ − w

n−1
h− , zn−1

h+ )H =

∫ tnh

tn−1
h

Fh(zh).

2. The sequence {wh}h>0 is bounded in Lp[0, T ;V ].

3. For each h > 0, Fh ∈ Lq[0, T ;W ′
h] and {‖Fh‖Lq [0,T ;W ′h]}h>0 ⊂ R is bounded.

Then the set {wh}h>0 is precompact in Lp[0, T ;H] ∩ Lr[0, T ;W ′] for each 1 ≤ r <∞.

Proof. We fix h > 0, consider the space Lp[δ, T ;W (Eh)] with σ > 0.

The dual space of Lp[δ, T ;W (Eh)] is Lp
′
[δ, T ;W (Eh)′] with 1/p+ 1/p′ = 1.

Since W (Eh) is a Banach space with W (Eh) ↪→ H, then W (Eh) is a Hilbert space equipped

with the inner-product (·, ·)H . Consider an element in the dual space z ∈ Lp′ [δ, T ;W (Eh)′],

it is identified to an element in Lp[δ, T ;W (Eh)]. Hence, the dual norm for such element is

(∫ T

δ

‖z(t)‖p
′

W ′h
dt
)1/p′

= sup
v∈Lp[δ,T ;W (Eh)]

∫ T
δ

(z(t), v)Hdt

‖v‖Lp[δ,T ;W (Eh)]

We apply this to the function wh(t)− wh(t− δ)

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

= sup
v∈Lp[δ,T ;W (Eh)]

∫ T
δ

(wh(t)− wh(t− δ), v)Hdt

‖v‖Lp[δ,T ;W (Eh)]
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Since the function t→ wh(t)−wh(t−δ) belongs to Wh, we use the definition of the projection

Πh onto Wh to have:

sup
v∈Lp[δ,T ;W (Eh)]

∫ T
δ

(wh(t)− wh(t− δ), v)Hdt

‖v‖Lp[δ,T ;W (Eh)]

= sup
v∈Lp[δ,T ;W (Eh)]

∫ T
δ

(wh(t)− wh(t− δ),Πhv)Hdt

‖v‖Lp[δ,T ;W (Eh)]

So we have

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

= sup
v∈Lp[δ,T ;W (Eh)]

∫ T
δ

(wh(t)− wh(t− δ),Πhv)Hdt

‖Πhv‖Lp[δ,T ;W (Eh)]

‖Πhv‖Lp[δ,T ;W (Eh)]

‖v‖Lp[δ,T ;W (Eh)]

Next we use the assumption that ‖Πhv‖W (Eh) ≤M‖v‖W (Eh), this yields:

‖Πhv‖Lp[δ,T ;W (Eh)] ≤M‖v‖Lp[δ,T ;W (Eh)], ∀v ∈ Lp[δ, T ;W (Eh)]

So,

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

≤M sup
v∈Lp[δ,T ;W (Eh)]

∫ T
δ

(wh(t)− wh(t− δ),Πhv)Hdt

‖Πhv‖Lp[δ,T ;W (Eh)]

This implies

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

≤M sup
v∈Lp[δ,T ;Wh]

∫ T
δ

(wh(t)− wh(t− δ), v)Hdt

‖v‖Lp[δ,T ;W (Eh)]

(4.17)

At this point, we want to apply Lemma .0.6 with the spaces W (Eh),W,H in the lemma to

be the spaces Wh,W (Eh), H of the theorem. First we check the assumptions of the lemma.

By the assumptions of the theorem, we have

W (Eh) ↪→ H.
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Since H is a Hilbert space, this implies

H ↪→ W (Eh)′

In addition, since W ↪→ W (Eh) ↪→ H, and W is dense in H, we have that W (Eh) is dense in

H. This implies that H is dense in W (Eh)′ by Lemma .0.2.

Lemma .0.6 then gives that

sup
vh∈Lp[δ,T ;Wh]

∫ T
δ

(wh(t)− wh(t− δ), vh)H dt
‖vh‖Lp[δ,T ;W (Eh)]

≤M(`, ϑ) ‖Fh‖Lq [0,T ;W ′h] max(∆t, δ)1/q′δ1/p′ .

Thus equation (4.17) becomes (with a different constant M that depends on ‖Πh‖L(W (Eh),Wh))

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′h
dt
)1/p′

≤M(`, ϑ) ‖Fh‖Lq [0,T ;W ′h] max(∆t, δ)1/q′δ1/p′ .

Next, since W ↪→ W (Eh), we have W (Eh)′ ↪→ W ′ by Lemma .0.1 so we have for a constant

M

‖wh(t)− wh(t− δ)‖W ′ ≤M ‖wh(t)− wh(t− δ)‖W ′h

Therefore

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt
)1/p′

≤M(`, ϑ) ‖Fh‖Lq [0,T ;W ′h] max(∆t, δ)1/q′δ1/p′ . (4.18)

By assumption, ‖Fh‖Lq [0,T ;W ′h] is uniformly bounded. We now show (wh)h>0 is equicontinuous

in Lp
′
[0, T ;W ′]:

Fix ε > 0. We want to show there is δ0 > 0 such that

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt
)1/p′

≤ ε, ∀h > 0, ∀δ < δ0 (4.19)

Since p > 1, we have p′ <∞. Consider the case q = 1 first, then q′ =∞, and 1/q′ = 0. The
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bound (4.18) above becomes for some constant M :

(∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt
)1/p′

≤Mδ1/p′ .

Choose δ0 such that Mδ
1/p′

0 < ε and we get (4.19).

Consider now the case q > 1, then q′ <∞. It suffices to find δ0 such that

M max(∆t, δ0)1/q′δ
1/p′

0 < ε

We can assume that δ0 < ∆t and take

δ0 = min

(
1

2
(

ε

M∆t1/q′
)p
′
,∆t

)

We apply now Theorem .0.7 with the spaces B0 = V , B = W ′. The theorem is recalled

below. We first check the assumptions that are required in Theorem .0.7. V and W ′ are

Banach spaces. One can easily show that V ↪→ W ′ is a compact embedding by lemma .0.4.

By assumption (wh)h is bounded in Lp[0, T ;V ] with p > 1. This implies that (wh)h is

bounded in L1[0, T ;V ]. In addition, we showed that (wh)h is equicontinuous in Lp
′
[0, T ;W ′]

for 1 < p′ < ∞. Then, Theorem .0.7 says that for all 0 < θ < T/2, the set (wh|(θ,T−θ))h is

precompact in Lp
′
[θ, T − θ;W ′].

Equation (4.18) gives:

∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt ≤M(p′) max(∆t, δ)p
′/q′δ.

Assume now that 0 < δ < T , then we have for a constant M independent of δ:

∫ T

δ

‖wh(t)− wh(t− δ)‖p
′

W ′ dt ≤Mδ.
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We then apply Lemma .0.8 with W and p in the lemma taken equal to W ′ and p′. We

conclude that wh ∈ Lr[0, T ;W ′] for any 1 ≤ r <∞.

Remark following Theorem .0.7 also says that if (wh)h is bounded in Lr[0, T ;W ′] for some

r > p′, then we have uniform integrability, and this gives us the precompactness result in

Lp
′
[0, T ;W ′]. Therefore, we conclude that (wh)h is precompact in Lp

′
[0, T ;W ′].

Now, the fact that (wh)h is bounded in Lr[0, T ;W ′] for any 1 ≤ r < ∞ and that (wh)h

is precompact in Lp
′
[0, T ;W ′], implies that (wh)h is precompact in Lr[0, T ;W ′] for any 1 ≤

r <∞ by Lemma .0.3.

Finally it remains to show that (wh)h is precompact in Lp[0, T ;H]. From a result in [47],

we have for all ε > 0 there exists M(ε) > 0 such that

‖wh(t)‖H ≤ ε‖wh(t)‖V +M(ε)‖wh(t)‖W ′

So,

‖wh‖Lp[0,T ;H] ≤ ε‖wh‖Lp[0,T ;V ] +M(ε)‖wh‖Lp[0,T ;W ′]

Since (wh)h is bounded in Lp[0, T ;V ] and precompact in Lp[0, T ;W ′] it follows it is also

precompact in Lp[0, T ;H] by Lemma .0.5.

The only thing that remains is to put our numerical scheme in the context of this theorem

in order to show the compactness of the concentration {ch}h>0.

Before we begin, we shall introduce several function spaces and related concepts. First,

we introduce the bounded variation functions or simply BV functions.

Define the total variation to be

V (u,Ω) = sup{
∫

Ω

u divφ : φ ∈ C1(Ω̄)d, ‖φ‖L∞(Ω) ≤ 1}
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then the space of the BV functions is defined as

BV (Ω) = {u ∈ L1(Ω) : V (u,Ω) <∞}

It worth to note that BV (Ω) is a Banach space, but is not separable nor reflexive.

Now, assume X0 and X1 are Banach spaces,

|u(x)| ≤ λu1−θ
0 (x)uθ1(x), with u0 ∈ X0 and u1 ∈ X1, ‖u0‖X0

= ‖u1‖X1
= 1, and λ, u0, u1 ≥ 0

then we define the fractional space [X0, X1]θ to be

[X0, X1]θ = {u : inf λ <∞}

For this definition we refer to [1]. Now, we set W = W 1,4(Ω), W (Eh) = W 1,4(Eh), V =

[BV(Ω) ∩ L4(Ω), L4(Ω)]1/2 and H = L2(Ω), with norm

‖w‖W (Eh) =

(
‖w‖4

L4(Ω) +
∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e∈Γh

h−3 ‖[w]‖4
L4(e)

)1/4

(4.20)

It is clear that ‖·‖W (Eh) is a norm.

Using Brenner’s Poincaré’s inequality for Broken Sobolev space [7] and the embedding

property from [3] we have:

‖w‖L2(Ω) ≤ C ‖w‖V , ‖w‖L4(Ω) ≤ C ‖w‖V , ‖w‖L4(Ω) ≤ C ‖w‖W 1,4(Ω)

where the constant C is independent of the mesh size.

Without loss of generality, I will use the regular inner product on L2(Ω), rather than the

weighted inner product with the weight φ since φ ∈ L∞ the inners products are equivalent.

Let Πh be the L2 projection to the finite element space. Now, I will verify the properties of
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the spaces W,V,H, and W ′ so that they satisfy the requirements in Theorem 4.3.1.

Lemma 4.3.2. Let W = W 1,4(Ω), W (Eh) = W 1,4(Eh), V = [BV(Ω) ∩ L4(Ω), L4(Ω)]1/2 and

H = L2(Ω), then V , W (Eh) and W are Banach spaces with the norm ‖·‖W , ‖·‖W (Eh) and

‖·‖V and

W ↪→ V ↪→→ H ↪→ W ′

W ⊂ H is dense embedding with V compactly embedded in H, and W ↪→ W (Eh) ↪→ V with

the embedding constant independent of h.

Proof. It is clear that W is a Banach space. The spaces BV (Ω) and L4(Ω) are Banach spaces

which implies BV (Ω) ∩ L4(Ω) is a Banach space. We know that the interpolating space of

two Banach spaces is still a Banach space. We can conclude V is a Banach space.

Now, let us verify W (Eh) is a Banach space. Let the sequence {wn} ⊂ W (Eh) be a Cauchy

sequence. Thus for any ε > 0, there exists N such that m,n > N implies ‖wn − wm‖W (Eh) <

ε. Since

‖w‖W (Eh) =

(
‖w‖4

L4(Ω) +
∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e∈Γh

h−3 ‖[w]‖4
L4(e)

)1/4

Fix E in Eh, then the sequence is ∇wn|E is a Cauchy sequence in L4(E), then this implies

lim
n→∞

‖∇wn|E − vE‖L4(E) = 0 ∀E ∈ Eh

Also because ‖w‖L4(Ω) ≤ C ‖w‖W (Eh), we have

lim
n→n
‖wn − wE‖L4(E) = 0 ∀E ∈ Eh

Hence, we have

∫
E

wE∇ · φ = lim
n→∞

∫
E

wn∇ · φ = − lim
n→∞

∫
E

∇wn · φ = −
∫
E

vE · φ ∀φ ∈ C∞(Ω)d



49

which implies vE = ∇wE.

Let w be the function s.t. w|E = wE ∀E ∈ Eh and by trace theorem,

‖wn − w‖L4(e) < C1 ‖wn − w‖L4(E) + C2 ‖∇wn −∇w‖L4(E)

where C1, C2 are independent of n.

Therefore,

lim
n→∞

‖wn − w‖W (Eh) = 0

hence W (Eh) is a Banach space.

From [3] have the following embeddings.

BV (Ω) ∩ L4(Ω) ↪→ [BV (Ω) ∩ L4(Ω), L4(Ω)]1/2 ↪→→ L2(Ω)

Also, BV (Ω) ∩W 1,4(Ω) ↪→ L4(Ω). Hence, combine the embedding results

W 1,4(Ω) ↪→ [BV (Ω) ∩ L4(Ω), L4(Ω)]1/2 ↪→→ L2(Ω)

with [BV (Ω) ∩ L4(Ω), L4(Ω)]1/2 compactly embedded in L2(Ω). And from [41] we have

L2(Ω) ↪→ W 1,4(Ω)′. Hence, we can establish the following:

W 1,4(Ω) ↪→ [BV (Ω) ∩ L4(Ω), L4(Ω)]1/2 ↪→→ L2(Ω) ↪→ W 1,4(Ω)′

We also know that W 1,4(Ω) ⊂ L2(Ω) is dense because C∞(Ω) ⊂ W 1,4(Ω) is dense in L2(Ω).

What remains is to show the embedding

W ↪→ W (Eh) ↪→ V

with embedding constants independent of h.
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First, we observe

W 1,4(Ω) ⊂ W 1,4(Eh), then W 1,4(Ω) ↪→ W 1,4(Eh)

Second, we notice

W 1,4(Eh) ↪→ BV (Ω) ∩ L4(Ω) ↪→ [BV (Ω) ∩ L4(Ω), L4(Ω)]1/2

Therefore, we conclude

W ↪→ W (Eh) ↪→ V

What remains is to show the stability of L2 projection in the context of the broken

Sobolev space.

Lemma 4.3.3. The L2 projection

Πh : H → Ch

is stable in W (Eh) = W 1,4(Eh), i.e. there is a constant M > 0 independent of h such that

‖Πhw‖W (Eh) ≤M ‖w‖W (Eh) ∀w ∈ W (Eh)

Proof. Define the semi-norm:

|w|W 1,4(Eh) =

(∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e∈Γh

h−3 ‖[w]‖4
L4(e)

)1/4

Then,

‖w‖W (Eh) =
(
‖w‖4

L4(Ω) + |w|4W 1,4(Eh)

)1/4
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So,

‖Πhw‖W (Eh) =
(
‖Πhw‖4

L4(Ω) + |Πhw|4W 1,4(Eh)

)1/4

For the first term we can construct a bound using inverse inequality from Lemma 4.1.1,

‖Πhw‖L4(Ω) =

(∑
E∈Eh

‖Πhw‖4
L4(E)

)1/4

.

(∑
E∈Eh

h−d ‖Πhw‖4
L2(E)

)1/4

We use the property

‖Πhw‖L2(E) ≤ ‖w‖L2(E)

and Cauchy-Schwarz’s inequality to obtain

‖Πhw‖L4(Ω) .

(∑
E∈Eh

h−d ‖w‖4
L2(E)

)1/4

.

(∑
E∈Eh

‖w‖4
L4(E)

)1/4

= ‖w‖L4(Ω)

For the second term in the W (Eh) norm, let w̄ be the average of w on each element, i.e.

w̄|E =
1

|E|

∫
E

w

Thus,

|Πhw|W 1,4(Eh) ≤ |Πh(w − w̄)|W 1,4(Eh) + |Πhw̄|W 1,4(Eh)

≤

(∑
E∈Eh

‖∇Πh(w − w̄)‖4
L4(E) +

∑
e∈Γh

h−3 ‖[Πh(w − w̄)]‖4
L4(e)

)1/4

+

(∑
e∈Γh

h−3 ‖[Πhw̄]‖4
L4(e)

)1/4
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Next, we apply inverse inequality

‖∇Πh(w − w̄)‖L4(E) ≤Mh
−d/4
E ‖∇Πh(w − w̄)‖L2(E) ≤Mh

−d/4
E h−1

E ‖Πh(w − w̄)‖L2(E)

≤Mh
−d/4
E h−1

E ‖w − w̄‖L2(E)

We now use Poincaré’s inequality,

‖∇Πh(w − w̄)‖L4(E) ≤Mh
−d/4
E ‖∇w‖L2(E) ≤M ‖∇w‖L4(E)

This implies
∑
E∈Eh

‖∇Πh(w − w̄)‖4
L4(E) ≤M

∑
E∈Eh

‖∇w‖4
L4(E)

Furthermore, by trace and inverse inequality we obtain

‖Πh(w − w̄)‖L4(e) ≤Mh
−1/4
E ‖Πh(w − w̄)‖L4(E) ≤Mh

−1/4
E h

−d/4
E ‖Πh(w − w̄)‖L2(E)

≤Mh
−1/4
E h

−d/4
E ‖w − w̄‖L2(E) ≤Mh

1/4
E h

−d/4
E h

−1/2
E ‖w − w̄‖L2(E)

≤Mh
1/4
E h

−d/4
E h

1/2
E ‖∇w‖L2(E) ≤Mh

1/4
E h

−d/4
E h

1/2
E h

d/4
E ‖∇w‖L4(E)

≤Mh3/4 ‖∇w‖L4(E)

Hence,
∑
e∈Γh

h−3 ‖[Πh(w − w̄)]‖4
L4(e) ≤M

∑
E∈Eh

‖∇w‖4
L4(E).

For the last term, we have

‖[Πhw̄]‖L4(e) = ‖[w̄]‖L4(e) ≤ ‖[w − w̄]‖L4(e) + ‖[w]‖L4(e)

From [9], we have

∑
e⊂Γh

h−3 ‖[w − w̄]‖4
L4(e) ≤M

∑
E∈Eh

‖∇w‖4
L4(E)
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Hence,
∑
e⊂E0h

h−3 ‖[Πhw̄]‖4
L4(e) ≤M

(∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e⊂Γh

h−3 ‖[w]‖4
L4(e)

)
So, we can conclude

|Πhw|W 1,4(Eh) ≤M

(∑
E∈Eh

‖∇w‖4
L4(E)

)1/4

+M

(∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e⊂Γh

h−3 ‖[w]‖4
L4(e)

)1/4

≤M

(∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e⊂Γh

h−3 ‖[w]‖4
L4(e)

)1/4

≤M |w|W 1,4(Eh)

Thus,

‖Πhw‖W 1,4(Eh) ≤M ‖w‖W 1,4(Eh)

with M independent of the mesh size. Therefore, the L2 projection is stable.

Following the format in Theorem 4.3.1, the scheme can be rewritten as:

∫ tn

tn−1

(cht, wh)H + ([cn−1
h ], wn−1

h+ )H =

∫ tn

tn−1

Fh(wh) (4.21)

Fh(wh) = (ĉqI , wh)−Bd(ch, wh; uh)−Bcq(ch, wh; uh) (4.22)

where we recall:

Bd(ch, wh; uh) = (D(uh)∇ch,∇wh)− ([wh], {D(uh)∇ch · ne})Γh

+ ε([ch], {D(uh)∇wh · ne})Γh + (σh−1(1 + {|uh|})[ch], [wh])Γh

Bcq(ch, wh; uh) =
1

2

(
(uh∇ch, wh)− (uhch,∇wh) + ((qI + qP )ch, wh)

+ (cup
h uh · ne, [wh])Γh − (wdown

h uh · ne, [ch])Γh

)
One still need to show that Fh ∈ L1[0, T ;W ′

h] where Wh = Ch and it is bounded. First, I



54

will show the diffusion term Bd(ch, wh; uh) is bounded.

4.3.2 Upper Bound for Diffusion

In this subsection, we will obtain an upper bound for the discretization of diffusion.

Lemma 4.3.4. Given uh ∈ Uh and ch, wh ∈ Ch, then we have

(D(uh)∇ch,∇wh) . ‖ch‖Xh (1 + ‖uh‖1/2

L2(Ω)) ‖wh‖W 1,4(Eh) (4.23)

Proof.

(D(uh)∇ch,∇wh) ≤
∑
E∈Eh

∥∥D1/2(uh)∇ch
∥∥
L2(E)

∥∥D1/2(uh)∇wh
∥∥
L2(E)

Notice that by (3.4),

∥∥D1/2(uh)∇wh
∥∥
L2(E)

. (

∫
E

(1 + |uh|) |∇wh|2)1/2 . ‖∇wh‖L2(E) + (

∫
E

|uh| |∇wh|2)1/2

. ‖∇wh‖L2(E) + ‖uh‖1/2

L2(E) ‖∇wh‖L4(E)

So, we have

(D(uh)∇ch,∇wh) .
∑
E∈Eh

∥∥D1/2(uh)∇ch
∥∥
L2(E)

(‖∇wh‖L2(E) + ‖uh‖1/2

L2(E) ‖∇wh‖L4(E))

.
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

(‖∇wh‖L2(Eh) + (
∑
E∈Eh

‖uh‖L2(E) ‖∇wh‖
2
L4(E))

1/2)

.
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

(‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω) ‖∇wh‖L4(Eh))
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And consequently using Lemma 4.1.6 we have,

(D(uh)∇ch,∇wh) . ‖ch‖Xh (1 + ‖uh‖1/2

L2(Ω)) ‖wh‖W 1,4(Eh)

Lemma 4.3.5. Given uh ∈ Uh and ch, wh ∈ Ch, we have

(σh−1(1 + {|uh|})[ch], [wh])Γh . J(ch, ch; uh)
1/2R(wh; uh) (4.24)

where J and R are defined in (4.9) and (4.10) respectively.

Proof. We recall from numerical scheme,

(σh−1(1 + {|uh|})[ch], [wh])Γh =
∑
e∈Γh

σh−1

∫
e

(1 + {|uh|})[ch][wh]

By Cauchy-Schwarz’s inequality,

(σh−1(1 + {|uh|})[ch], [wh])Γh . J(ch, ch; uh)
1/2J(wh, wh; uh)

1/2

Furthermore, according to (4.13) we have

(σh−1(1 + {|uh|})[ch], [wh])Γh . J(ch, ch; uh)
1/2R(wh; uh)

Consequently, we can obtain the bound for the diffusion term as follows.

Proposition 4.3.6. For uh ∈ Uh and ch, wh ∈ Ch, we have

|Bd(ch, wh; uh)| . (1 + ‖uh‖1/2

L2(Ω)) ‖ch‖Xh ‖wh‖W 1,4(Eh) (4.25)
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Proof. We summarize from (4.7), (4.8), (4.23) and (4.24)

([ch], {D(uh)∇wh · ne})Γh . J(ch, ch; uh)
1/2(‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω) ‖∇wh‖L4(Eh))

([wh], {D(uh)∇ch · ne})Γh . R(wh; uh)
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

(D(uh)∇ch,∇wh) . ‖ch‖Xh (1 + ‖uh‖1/2

L2(Ω)) ‖wh‖W 1,4(Eh)

(σh−1(1 + {|uh|})[ch], [wh])Γh . J(ch, ch; uh)
1/2R(wh; uh)

To sum up what we have,

|Bd(ch, wh; uh)| . J(ch, ch; uh)
1/2(‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω) ‖∇wh‖L4(Eh))

+R(wh; uh)
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

+ ‖ch‖Xh (1 + ‖uh‖1/2

L2(Ω)) ‖wh‖W 1,4(Eh)

+ J(ch, ch; uh)
1/2R(wh; uh)

Note that according to the definitions of the norms ‖·‖Xh and ‖·‖W 1,4(Eh), we have

J(ch, ch; uh)
1/2 . ‖ch‖Xh and R(wh; uh) . (1 + ‖uh‖1/2

L2(Ω)) ‖wh‖W 1,4(Eh)

Therefore,

|Bd(ch, wh; uh)| . (1 + ‖uh‖1/2

L2(Ω)) ‖ch‖Xh ‖wh‖W 1,4(Eh)

Notice that the constant does not depend on the mesh size. So, the diffusion term is

bounded. Now, let us bound the convection term.

4.3.3 Upper bound for Convection

For the convection:

Bcq(ch, wh; uh) =
1

2

(
(uh∇ch, wh)− (uhch,∇wh) + ((qI + qP )ch, wh)

+ (cup
h uh · ne, [ch])Γh − (cdown

h uh · ne, [ch])Γh

)
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we can derive the bound as follows.

Proposition 4.3.7. For uh ∈ Uh and ch, wh ∈ Ch, we have

|Bcq(ch, wh; uh)|

.
(
‖uh‖1/2

L2(Ω) ‖ch‖Xh +
∥∥qI + qP

∥∥
L2(Ω)

‖ch‖L4(Ω) + ‖uh‖L2(Ω) ‖ch‖L4(Ω)

)
‖wh‖W 1,4(Eh)

(4.26)

Proof. For the first term we have:

(uh∇ch, wh)E =

∫
E

uh · ∇chwh ≤
∫
E

|uh| |∇ch|wh ≤
(∫

E

|uh| |∇ch|2
)1/2(∫

E

|uh|w2
h

)1/2

=
1√
d◦

(∫
E

d◦ |uh| |∇ch|2
)1/2(∫

E

|uh|w2
h

)1/2

≤ 1√
d◦

(∫
E

D(uh)∇ch · ∇ch
)1/2(∫

E

|uh|2
)1/4(∫

E

w4
h

)1/4

=
1√
d◦

∥∥D1/2(uh)∇ch
∥∥
L2(E)

‖uh‖1/2

L2(E) ‖wh‖L4(E)

Hence,

(uh∇ch, wh) =
∑
E∈Eh

(uh∇ch, wh)E ≤
1√
d◦

∑
E∈Eh

∥∥D1/2(uh)∇ch
∥∥
L2(E)

‖uh‖1/2

L2(E) ‖wh‖L4(E)

≤ 1√
d◦

(∑
E∈Eh

∥∥D1/2(uh)∇ch
∥∥2

L2(E)

)1/2(∑
E∈Eh

‖uh‖L2(E) ‖wh‖
2
L4(E)

)1/2

≤ 1√
d◦

∥∥D1/2(uh)∇ch
∥∥
L2(Eh)

(∑
E∈Eh

‖uh‖2
L2(E)

)1/4(∑
E∈Eh

‖wh‖4
L4(E)

)1/4

≤ 1√
d◦

∥∥D1/2(uh)∇ch
∥∥
L2(Eh)

‖uh‖1/2

L2(Ω) ‖wh‖L4(Ω)

Therefore,

(uh∇ch, wh) .
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

‖uh‖1/2

L2(Ω) ‖wh‖L4(Ω) (4.27)
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For the second term we have:

(uhch,∇wh)E =

∫
E

uh · ∇whch ≤
∫
E

|uh| |∇wh| |ch| ≤ ‖uh‖L2(E) ‖ch‖L4(E) ‖∇wh‖L4(E)

And then we have:

(uhch,∇wh) =
∑
E∈Eh

(uhch,∇wh)E ≤M
∑
E∈Eh

‖uh‖L2(E) ‖ch‖L4(E) ‖∇wh‖L4(E)

≤M

(∑
E∈Eh

‖uh‖ ‖∇wh‖2
L2(E)

)1/2(∑
E∈Eh

‖uh‖L2(E) ‖ch‖
2
L2(E)

)1/2

≤M

(∑
E∈Eh

‖∇wh‖4
L4(E)

)1/4(∑
E∈Eh

‖uh‖2
L2(E)

)1/2(∑
E∈Eh

‖ch‖4
L4(E)

)1/4

≤M ‖∇wh‖L4(Eh) ‖uh‖L2(Ω) ‖ch‖L4(Ω)

Therefore,

(uhch,∇wh) . ‖∇wh‖L4(Eh) ‖uh‖L2(Ω) ‖ch‖L4(Ω) (4.28)

We apply the same technique to the term ((qI + qp)ch, wh), then we have:

((qI + qp)ch, wh) .
∥∥qI + qp

∥∥
L2(Ω)

‖ch‖L4(Ω) ‖wh‖L4(Ω) (4.29)

Now, for (cup
h uh · ne, [wh])Γh we have as follows.

(cup
h uh · ne, [wh])e ≤

∫
e

|cup
h | |uh| |[wh]|

Notice that,

|cup
h | ≤ max{

∣∣c+
h

∣∣ , ∣∣c−h ∣∣} ≤ ∣∣c+
h

∣∣+
∣∣c−h ∣∣
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Consequently, according to the property of Raviart-Thomas space u+
h · ne = u−h · ne,

(cup
h uh · ne, [wh])e ≤

∫
e

∣∣c+
h

∣∣ ∣∣u+
h · ne

∣∣ |[wh]|+ ∫
e

∣∣c−h ∣∣ ∣∣u−h · ne∣∣ |[wh]|
≤
∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]|+ ∫
e

∣∣c−h ∣∣ ∣∣u−h ∣∣ |[wh]|
By Cauchy-Schwarz’s inequality, inverse inequality and trace inequality in Lemma 4.1.3, we

have

∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]| ≤ (∫
e

∣∣u+
h

∣∣ ∣∣c+
h

∣∣2)1/2(∫
e

∣∣u+
h

∣∣ [wh]2)1/2

. ‖uh‖1/2

L2(Ee+) ‖ch‖L4(Ee+)

(
h−1

∫
e

{|uh|}[wh]2
)1/2

Next, we sum up over all interior faces while applying the inverse inequality,

∑
e∈Γh

∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]| . ∑
e∈Γh

‖uh‖1/2

L2(Ee+) ‖ch‖L4(Ee+)

(
h−1

∫
e

{|uh|}[wh]2
)1/2

. ‖uh‖1/2

L2(Ω) ‖ch‖L4(Ω)

(∑
e∈Γh

h−1

∫
e

{|uh|}[wh]2
)1/2

(4.30)

Using (4.12) we have,

∑
e∈Γh

∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]| . ‖uh‖1/2

L2(Ω) ‖ch‖L4(Ω) ‖uh‖
1/2

L2(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

. ‖uh‖L2(Ω) ‖ch‖L4(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

Therefore, we have

(cup
h uh · ne, [wh])Γh . ‖uh‖L2(Ω) ‖ch‖L4(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

(4.31)
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We apply the same idea as in (4.30) to the last term and have:

(wdown
h uh · ne, [ch])Γh . ‖uh‖

1/2

L2(Ω) ‖wh‖L4(Ω) J(ch, ch; uh)
1/2 (4.32)

Therefore, according to (4.27), (4.28), (4.29), (4.31) and (4.32)

|Bcq(ch, wh; uh)|

.
∥∥D1/2(uh)∇ch

∥∥
L2(Eh)

‖uh‖1/2

L2(Ω) ‖wh‖L4(Ω) + ‖∇wh‖L4(Eh) ‖uh‖L2(Ω) ‖ch‖L4(Ω)

+
∥∥qI + qp

∥∥
L2(Ω)

‖ch‖L4(Ω) ‖wh‖L4(Ω) + ‖uh‖L2(Ω) ‖ch‖L4(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]
4

)1/4

+ ‖uh‖1/2

L2(Ω) ‖wh‖L4(Ω) J(ch, ch; uh)
1/2

.
(
‖uh‖1/2

L2(Ω) ‖ch‖Xh +
∥∥qI + qP

∥∥
L2(Ω)

‖ch‖L4(Ω)

)
‖wh‖L4(Ω)

+ ‖uh‖L2(Ω) ‖ch‖L4(Ω) ‖wh‖W 1,4(Eh)

Since we have the embedding according to the definition of W 1,4(Eh),

W 1,4(Eh) ↪→ L4(Ω)

the convection term is bounded by

|Bcq(ch, wh; uh)|

.
(
‖uh‖1/2

L2(Ω) ‖ch‖Xh +
∥∥qI + qP

∥∥
L2(Ω)

‖ch‖L4(Ω) + ‖uh‖L2(Ω) ‖ch‖L4(Ω)

)
‖wh‖W 1,4(Eh)

Theorem 4.3.8. {‖Fh‖L1[0,T,W ′h]}h>0 is bounded with Wh = Ch.

Proof. Recall from (4.22),

Fh(wh) = (ĉqI , wh)−Bd(ch, wh; uh)−Bcq(ch, wh; uh)
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One can easily obtain

(ĉqI , wh) ≤ |Ω|1/4
∥∥qI∥∥

L2(Ω)
‖wh‖L4(Ω)

Therefore, by (4.25) and (4.26) we have,

|Fh(wh)| ≤M
(

(1 + ‖uh‖1/2

L2(Ω)) ‖ch‖Xh +
∥∥qI + qP

∥∥
L2(Ω)

‖ch‖L4(Ω)

+ ‖uh‖L2(Ω) ‖ch‖L4(Ω) +
∥∥qI∥∥

L2(Ω)

)
‖wh‖W 1,4(Eh)

with the constant M independent of the mesh.

From [3], we know that

‖ch‖L4(Ω) . ‖ch‖H1(Eh)

Hence, using Cauchy-Schwarz’s inequality

∫ T

0

|Fh(wh)| ≤M

∫ T

0

(
(1 + ‖uh‖1/2

L2(Ω)) ‖ch‖Xh +
∥∥qI + qP

∥∥
L2(Ω)

‖ch‖H1(Eh)

+ ‖uh‖L2(Ω) ‖ch‖H1(Eh) +
∥∥qI∥∥

L2(Ω)

)
‖wh‖W 1,4(Eh)

≤M
(
‖ch‖L2[0,T ;Xh] +

∥∥qI∥∥
L∞[0,T ;L2(Ω)]

+ ‖ch‖L2[0,T ;Xh] ‖uh‖L∞[0,T ;L2(Ω)]

+ ‖ch‖L2[0,T ;Xh]

∥∥qI + qP
∥∥
L∞[0,T ;L2(Ω)]

+ ‖uh‖1/2

L∞[0,T ;L2(Ω)] ‖ch‖L2[0,T ;Xh]

)
‖wh‖L4[0,T ;W 1,4(Eh)]

Therefore,

‖Fh(wh)‖L1[0,T ;W ′h] ≤M
(
‖ch‖L2[0,T ;Xh] +

∥∥qI∥∥
L∞[0,T ;L2(Ω)]

+ ‖ch‖L2[0,T ;Xh] ‖uh‖L∞[0,T ;L2(Ω)]

+ ‖ch‖L2[0,T ;Xh]

∥∥qI + qP
∥∥
L∞[0,T ;L2(Ω)]

+ ‖uh‖1/2

L∞[0,T ;L2(Ω)] ‖ch‖L2[0,T ;Xh]

)
‖wh‖L4[0,T ;W 1,4(Eh)]

Furthermore, according to the stability analysis in Theorem 4.2.3 and Theorem 4.2.5, we

know that ‖uh‖L∞[0,T ;L2(Ω)], ‖ch‖L2[0,T ;Xh] and ‖ch‖L2[0,T ;Xh] are bounded by a constant de-

termined by the source terms. Therefore, {‖Fh‖L1[0,T,W ′h]}h>0 is bounded.
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4.3.4 Compactness of the Concentration

Finally, with all the preliminary results being established and the requirements in the state-

ment of Theorem 4.3.1 being satisfied I will state and prove the compactness theorem.

Theorem 4.3.9. Suppose the maximal time step ∆t tends to zero with the mesh parameter.

Then the concentration {ch}h>0 computed using our numerical scheme are precompact in

L2[0, T ;L2(Ω)] ∩ Lr[0, T ;W 1,4(Ω)′] for all 1 ≤ r <∞.

Proof. In Lemma 4.3.3, we have shown the stability of L2 projection in W (Eh) = W 1,4(Eh).

Assumption (1) in Theorem 4.3.1 is immediately satisfied since this the numerical scheme

can be rewritten as (4.21). The sequence {ch}h>0 is bounded in H1(Eh) and H1(Eh) ↪→

BV (Ω)∩L4(Ω) ↪→ [BV (Ω)∩L4(Ω), L4(Ω)]1/2, thus, it is bounded in L2[0, T ;V ] which shows

that assumption (2) is satisfied. Assumption (3) is satisfied by Theorem 4.3.8. Therefore,

one can conclude that {ch}h>0 is precompact in L2[0, T ;L2(Ω)] ∩ Lr[0, T ;W 1,4(Ω)′] for all

1 ≤ r <∞ by Theorem 4.3.1.

Remark 4.3.10. This result is significant because it allows us to construct a convergence

subsequence of the sequence {ch}h>0 which will be essential when proving the convergence

of the solvent concentration.

4.4 Convergence of the Numerical Solutions

Using the machinery we established from previous section, we are able to use the compactness

theorem to construct a convergent subsequence. This result will allow us to establish the

convergence of pressure and velocity and eventually the convergence of the concentration to

the true solution as we will illustrate next.

4.4.1 Convergence of the Velocity and Pressure

Now, we show the convergence of velocity and pressure using exact argument from [41].
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Theorem 4.4.1. Given the data, parameters and numerical scheme, and suppose the maxi-

mal time step ∆t tends to zero with the mesh parameter. Suppose that the sequence {ch}h>0 ⊂

L2[0, T ;L2(Ω)] converges to c in L2[0, T ;L2(Ω)], then the velocity and pressure computed us-

ing the scheme (3.8)-(3.10) over the regular family of meshes convergence strongly to the

solutions of the weak forms (3.5) and (3.6).

Proof. For completeness, we repeat the proof given in [41]. Let U = L2[0, T ;U ] and P =

L2[0, T ;L2(Ω)] and denote the finite element subspaces to be

Uh = {uh ∈ U | uh|(tn−1,tn) ∈ P`[tn−1, tn; Uh]}, and

Ph = {ph ∈ P | ph|(tn−1,tn) ∈ P`[tn−1, tn;Ph]}

by Lemma 4.2.3 we know the numerical approximation {(uh, ph)}h>0 are bounded in U× P,

so we may pass to a subsequence for which (uh, ph) converges weakly to a pair (u, p) in U×P.

Also, we can use dominate convergence theorem to show µ(ch)→ µ(c) in Lr[0, T ;Lr(Ω)] for

each 1 ≤ r <∞.

To show (u, p) is the weak solution of the mixed problem, we fix (v, q) ∈ C∞([0, T ]× Ω̄)∩

(U × P). Approximation theory tells us that there exists a sequence ((vh, qh))h ⊂ Uh × Ph

such that (vh, qh)→ (v, q) in W 1,∞((0, T )× Ω). Hence, we can pass the limit term-by-term

in equation (3.8) and (3.9) to show that

∫ T

0

(K−1(c)u, v)− (p, div(v)) =

∫ T

0

(ρ(c)g, v)

∫ T

0

(q, div(u)) =

∫ T

0

(qI − qP , q)

Since C∞([0, T ]× Ω̄) ∩ (U× P) is dense in U× P, it follows that (u, p) is a weak solution of

the mixed problem.

In order to show strong convergence we introduce the notation b(·, ·; c) such that for a
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fixed c ∈ L2[0, T ;L2(Ω)] we have b(·, ·; c) : (U× P)2 → R where

b((u, p), (v, q); c) =

∫ T

0

(
(K−1(c)u,v)− (p, div(v)) + (q, div(u))

)
Lemma 4.2.1 shows that b(·, ·; c) is coercive on Uh×Ph. Cleary, b(·, ·; c) is continuous. Hence,

we can use the Strang’s Lemma

‖(u− uh, p− ph)‖U×P ≤ inf
(vh,qh)∈Uh×Ph

‖(u− vh, p− qh)‖U×P

+ sup
(vh,qh)∈Uh×Ph

|b((u, p), (vh, qh); c)− b((u, p), (vh, qh); ch)|
‖(vh, qh)‖U×P

Since we have

b((u, p), (vh, qh); c)− b((u, p), (vh, qh); ch) =

∫ T

0

(K−1(c)−K−1(ch))u,vh)

so

‖(u− uh, p− ph)‖U×P

≤ inf
(vh,qh)∈Uh×Ph

‖(u− vh, p− qh)‖U×P +
∥∥(K−1(c)−K−1(ch))u

∥∥
L2[0,T ;L2(Ω)]

The assumptions on K guarantee that |K−1(ch)u|2 converges pointwise to |K−1(c)u|2, and

since K−1 takes values in a compact set it follows that |K−1(ch)u|2 ≤ M |u|2. Apply the

dominated convergence theorem shows K−1(ch)u → K−1(c)u in L2[0, T ;L2(Ω)], and strong

convergence of the velocity and pressure follows.

4.4.2 Convergence of the Concentration

To prove the convergence of concentration, we first state a result related to the approximation

spaces from [3]. The result concerns the convergence of sequence from DG approximation
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spaces.

Lemma 4.4.2. Consider a sequence {vh} ∈
N∏
n=1

P`[tn−1, tn, Ch], such that

N∑
n=1

∫ tn

tn−1

‖vh‖2
H1(Eh) dt < M (4.33)

for some M > 0. Then there exists a subsequence {vh}h which converges weakly to v ∈

L2[(0, T ) × Ω]. As h → 0 every weak accumulation point in L2[(0, T ) × Ω] belongs to

L2[0, T,H1(Ω)]. Moreover, ‖v‖L2[0,T,H1(Ω)] .M , and the gradients {∇vh}h converges weakly

in L2[0, T ;H−1(Ω)] to ∇v.

We now show the convergence of the concentration.

Theorem 4.4.3. Suppose that the maximal time step ∆t and h tend to zero with mesh

parameter. Then upon passage to a subsequence, the concentrations {ch}h computed using

the scheme (3.8)-(3.10) over a regular family of meshes converge strongly in L2[(0, T ) × Ω]

to c ∈ L2[0, T ;H1(Ω)] and {∇ch}h converges weakly in L2[0, T ;H−1(Ω)] to ∇c.

Proof. From Theorem 4.3.9 we know {ch}h>0 is precompact in

L2[0, T ;L2(Ω)] ∩ Lr[0, T ;W 1,4(Ω)′] for all 1 ≤ r < ∞ by Theorem 4.3.1. There exists a

subsequence {ch}h that converges to c ∈ L2[0, T ;L2(Ω)] strongly in L2[0, T ;L2(Ω)]. The

condition (4.33) in Lemma 4.4.2 is satisfied since from boundedness of the concentration

from Theorem 4.2.5, there exists M > 0 such that ‖ch‖L2[0,T ;H1(Eh)] < M . Therefore, there

exists a subsequence {∇ch}h that converges weakly in L2[0, T ;H−1(Ω)] to ∇c.

Remark 4.4.4. The analysis has showed the convergence of the concentration {ch}h>0 to

a solution. Further analysis is required for us to show that the solution satisfies the weak

form (3.7). However, if we use an L2-projection of the diffusion-dispersion tensor

Πh : D→ Dh
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in our numerical scheme as in [3], then one can prove the convergence of the concentration

to weak solution in (3.7) using SIPG.
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Chapter 5

Numerical Examples

In this chapter, numerical simulations of the miscible displacement problem are given in

two and three dimensions for analytical and physical problems. Convergence rates of the

numerical solutions with respect to time and space will be presented.

I shall begin by offering some more detail information about the numerical implementa-

tion.

5.1 Implementation Outline

For the numerical implementation, due to the coupling nature and nonlinearity of the PDE

system, it would require us to use Newton’s method to solve the coupled equations. But,

for simplicity we use the decoupling concept and numerical quadrature for time integration,

hence on each sequential update we only need to solve two separate linear PDE systems.

However, there is a challenge concerning using the sequential update. At time tn−1 we

only know the value of ch from 0 to tn−1. But, if we use the numerical quadrature for

integration over the time [tn−1, tn], the time integration for the Darcy’s Law requires us to

know the value of ch at each quadrature point or at least some accurate approximations

over the interval. If uh is not very sensitive to the time fluctuation we can simply use

ch(·, tn−1) which is nothing but a 1st-order approximation of the numerical integral in time,

although this most likely will cause deterioration of the convergent rate. One can also use

extrapolation to approximate ch at the quadrature points using the previous computed ch, or

approximate uh at the quadrature points using the previous computed uh see [33], with the

assumption that the function is continuous in time. What we will do is to introduce a class
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of diagonalizable DG time updating which we will discuss in further detail next section.

We consider a time stepping method to be diagonalizable if the upper triangular entries

Butcher’s tableau are all zero. So, instead of solving the Darcy’s Law over the entire time

domain we approximate the velocity at first quadrature point call it u
(1)
h using ch(·, tn−1).

Since the time updating is diagonalizable we can use u
(1)
h to solve for c

(1)
h . And with c

(1)
h we

can have a better approximation of u
(2)
h . Therefore, instead solving u

(1)
h ,u

(2)
h , · · · ,u(s)

h over

[tn−1, tn] once for all in each update in the Darcy’s Law where s is the number of quadrature

points, we bootstrap them according to our need while updating the transport equation.

uh(·, tn−1)Darcy’s Law

Transport Equation

c
(k)
h u

(k−1)
h

ch(·, tn)

ch(·, tn−1)

stop when tn = T

s timesset n = n + 1

Figure 5.1.1 : Diagram for the numerical algorithm

Figure 5.1.1 above illustrates the concept of the decoupling algorithm. We give the algorithm

as follows.

Algorithm 5.1.1. For n ≤ N with tN = T , set c
(0)
h = ch(·, tn−1). Let i go from 1 to s where

s is the number of quadrature points.
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Find (u
(i)
h , p

(i)
h ) ∈ (Uh, Ph) such that

(
(K−1(c

(i−1)
h )uh,vh)− (p

(i)
h , div(vh))

)
= (ρ(c

(i−1)
h )g,vh)

(qh, div(u
(i)
h )) = ((qI − qP )(i), qh)

Find c
(i)
h ∈ Ch using DG time updating with previously computed c

(0)
h , · · · , c(i−1)

h and u
(1)
h ,· · · ,

u
(i)
h .

Update ch(·, tn) and set n = n+ 1.

The implementation of this decoupling scheme rests on the diagonalizability of DG time

updating we use. In the next section, we will give a detail description of the diagonalizable

DG time updating.

5.2 Implementation Details

5.2.1 Implementing DG in Time

One of the biggest challenges in the implementation is to translate rather abstract DG time-

steppings into practice. The most practical way for the implementation is to use Butcher

tableaux. Here, I will introduce a unified approach to accomplish the task. I will illustrate

how to obtain Butcher Tableaux for 1st-order DG in time (DG0) up to 4th-order DG in time

(DG3).

Recall the discretization of the transport equation

∫ tn

tn−1

((φ∂tch, wh) +Bd(ch, wh; uh) +Bcq(ch, wh; uh)) + (
[
cn−1
h

]
t
, φwn−1

h+ ) =

∫ tn

tn−1

(ĉqI , wh)
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with uh ∈ P`[tn−1, tn;Uh], ch ∈ P`[tn−1, tn;Ch].

We can regard the discretization as

∫ tn

tn−1

(∂tc, w)H + (
[
cn−1

]
t
, wn−1

+ )H =

∫ tn

tn−1

(f(c), w)

with c, w ∈ P`[t
n−1, tn;Ch] for simplicity, where (·, ·)H is the weighted inner product with

the weight φ.

We use the integration by part for the first term,

∫ tn

tn−1

(∂tc, w)H = −
∫ tn

tn−1

(c, ∂tw)H + (cn−, w
n
−)− (cn−1

+ , wn−1
+ )H

Therefore, the scheme becomes

(cn−, w
n
−)H = (cn−1

− , wn−1
+ )H +

∫ tn

tn−1

(c, ∂tw)H +

∫ tn

tn−1

(f(c), w) (5.1)

DG0

We select the basis functions on the reference time interval [0, 1] to be the piecewise constant

function. So, the scheme (5.1) becomes

(cn−, w)H = (cn−1
− , w)H +

∫ tn

tn−1

(f(c), w) ∀w ∈ P0[tn−1, tn,Pk(Eh)]

Since we use piecewise constant approximation in time, the integral can be approximated as

∫ tn

tn−1

(f(c), w) ≈ ∆t(f(cn), w)
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to get the first order accuracy in our implementation.

Hence, we have

(cn−, w)H = (cn−1
− , w)H + ∆t(f(cn), w)

Therefore, we can construct the Butcher tableau for DG0 time stepping

1

1

Notice, the time-stepping is Backward Euler which is a first-order method.

DG1

In this case we use the Gauss I quadrature with quadrature points and weights over the

interval [0, 1]

Q =

{
1

2

}
and W = {1}

Define

c(1) = c(tn−1 + ∆tQ1)

We pick the basis functions on the reference time interval [0, 1] to be

{1, 2x− 1}

So, the basis on In = [tn−1, tn] is

{
1,

2

∆t
(t− tn−1)− 1

}
= {p0, p1}
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For p0w, the scheme (5.1) becomes

(cn−, w)H = (cn−1
− , w)H + ∆t(f(c(1)), w) ∀w ∈ Pk(Eh) (5.2)

For p1w, the scheme (5.1) becomes

(cn−, w)H = −(cn−1
− , w)H + 2(c(1), w)H ∀w ∈ Pk(Eh) (5.3)

Equations (5.2) and (5.3) imply

2(cn−1
− , w)H + ∆t(f(c(1)), w) = 2(c(1), w)H ∀w ∈ Pk(Eh)

Hence, we have for all w ∈ Pk(Eh)

(c(1), w)H = (cn−1
− , w)H +

1

2
∆t(f(c(1)), w)

(cn−, w)H = (cn−1
− , w)H + ∆t(f(c(1)), w)

Therefore, we can construct the Butcher tableau for DG1 time stepping

1/2 1/2

1

This is a second-order method [11].

DG2

In this case we use the Radau II quadrature with quadrature points and weights over the

interval [0, 1]

Q =

{
1

3
, 1

}
and W =

{
3

4
,
1

4

}
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Define

c(i) = c(tn−1 + ∆tQi)

We pick the basis functions on the reference time interval [0, 1] to be

{
1, x,

1

2
(3x2 − 1)

}

So, the basis on In = [tn−1, tn] is

{
1,

1

∆t
(t− tn−1),

3

2∆t2
(t− tn−1)2 − 1

2

}
= {p0, p1, p2}

For p0w, the scheme (5.1) becomes

(cn−, w)H = (cn−1
− , w)H + ∆t

3

4
(f(c(1)), w) + ∆t

1

4
(f(c(2)), w) (5.4)

For p1w, the scheme (5.1) becomes

(cn−, w)H =
3

4
(c(1), w)H +

1

4
(c(2), w)H + ∆t

1

4
(f(c(1)), w) + ∆t

1

4
(f(c(2)), w) (5.5)

For p2w, the scheme (5.1) becomes

(cn−, w)H = −1

2
(cn−1
− , w)H +

3

4
(c(1), w)H +

3

4
(c(2), w)H −∆t

1

4
(f(c(1)), w) + ∆t

1

4
(f(c(2)), w)

(5.6)

with w ∈ Pk(Eh). Thus, (5.4)-(5.5) implies

0 = (cn−1
− , w)H −

3

4
(c(1), w)H −

1

4
(c(2), w)H + ∆t

1

2
(f(c(1)), w) (5.7)
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(5.5)-(5.6) implies

0 =
1

2
(cn−1
− , w)H −

1

2
(c(2), w)H + ∆t

1

2
(f(c(1)), w) (5.8)

(5.7)-
1

2
(5.8) implies

(c(1), w)H = (cn−1
− , w)H + ∆t

1

3
(f(c(1)), w) (5.9)

From (5.8) we have

(c(2), w)H = (cn−1
− , w)H + ∆t(f(c(1)), w) (5.10)

Hence, from (5.4),(5.9) and (5.10) we have for all w ∈ Pk(Eh)

(c(1), w)H = (cn−1
− , w)H + ∆t

1

3
(f(c(1)), w)

(c(2), w)H = (cn−1
− , w)H + ∆t(f(c(1)), w)

(cn−, w)H = (cn−1
− , w)H + ∆t

3

4
(f(c(1)), w) + ∆t

1

4
(f(c(2)), w)

Therefore, we can construct the Butcher tableau for DG2 time stepping

1/3 1/3 0

1 1 0

3/4 1/4

This is a third-order method [11].
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DG3

In this case we use the Lobatto III quadrature with quadrature points and weights over the

interval [0, 1]

Q =

{
0,

1

2
, 1

}
and W =

{
1

6
,
2

3
,
1

6

}
We pick the basis functions on the reference time interval [0, 1] to be

{
1, x,

1

2
(3x2 − 1)

}

and we require an additional constraint for the polynomial on the interval In = [tn−1, tn]

such that

c(tn−1) = cn−1

So, the basis on In is

{
1,

1

∆t
(t− tn−1),

3

2∆t2
(t− tn−1)2 − 1

2

}
= {p0, p1, p2}

For p0w, the scheme (5.1) becomes

(cn−, w)H = (cn−1
− , w)H + ∆t

1

6
(f(c(1)), w) + ∆t

2

3
(f(c(2)), w) + ∆t

1

6
(f(c(3)), w) (5.11)

For p1w, the scheme (5.1) becomes

(cn−, w)H =
1

6
(c(1), w)H +

2

3
(c(2), w)H +

1

6
(c(3), w)H + ∆t

1

3
(f(c(2)), w) + ∆t

1

6
(f(c(3)), w)

(5.12)
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For p2w, the scheme (5.1) becomes

(cn−, w)H = −1

2
(cn−1
− , w)H + (c(2), w)H +

1

2
(c(3), w)H −∆t

1

12
(f(c(1)), w)−∆t

1

12
(f(c(2)), w)

+ ∆t
1

6
(f(c(3)), w)

(5.13)

With the additional constraint c(1) = c(tn−1) on the polynomial basis, we have

(c(1), w)H = (cn−1
− , w)H (5.14)

We combine the equations (5.11), (5.12), (5.13) and (5.14) and have for all w ∈ Pk(Eh)

(c(1), w)H = (cn−1
− , w)H

(c(2), w)H = (cn−1
− , w)H + ∆t

1

4
(f(c(1)), w) + ∆t

1

4
(f(c(2)), w)

(c(3), w)H = (cn−1
− , w)H + ∆t

1

4
(f(c(2)), w)

(cn−, w)H = (cn−1
− , w)H + ∆t

1

6
(f(c(1)), w) + ∆t

2

3
(f(c(2)), w) + ∆t

1

6
(f(c(3)), w)

Therefore, we can construct the Butcher tableau for DG3 time stepping

0 0 0 0

1/2 1/4 1/4 0

1 0 1 0

1/6 2/3 1/6

This is a fourth-order method [11].

One should notice that we have a particular way of choosing the basis functions to

guarantee the upper-triangular entries of Butcher’s table to be zeros. Only these types of

time-stepping schemes can be incorporated into the Algorithm 5.1.1 since we need to have
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the previous intermediate value of the concentration to approximate the velocity at next

intermediate point over each time interval. For this approach of deriving the time-updating

scheme, we refer to the survey done by Gottlieb et al [30].

5.2.2 DUNE and DUNE-PDELab Software

For the numerical experiment, I decided to use DUNE and DUNE-PDELab for 2D and

3D implementation. DUNE is an open source C++ library for solving partial differential

equations which has undergone active development since 2002 by several universities [4]. The

main purpose is to take advantage of the object oriented programming, whereby to enhance

the flexibility and the productivity of the numerical implementation. DUNE consists of

several modules: dune-common, dune-grid, dune-localfunction, dune-istl.(see: Fig(5.2.2))

The dune-geometry is added in the 2.2 release.

The basic classes such as vector, matrices and parallel computing tools are included in

dune-common. Dune-grid is used for abstract grid and mesh interface. The iterative solver

library is contained in dune-istl. The interface for finite element shape functions is provided

by dune-localfunction. Also, DUNE can be linked with several external libraries, such as

SuperLU, ALUGrid, Alberta, METIS, ParMETIS.

Figure 5.2.2 : DUNE design∗

DUNE-PDELab is a discretization module based on DUNE, that allows rapid prototyping

the numerical scheme. The development of DUNE-PDELab started in 2009. A large number
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of finite element spaces were added into this module for solving different types of problems

both stationary and time dependent. The other attraction for me to use this package is that

it provides several easily modifiable time stepping schemes, so that DG time stepping can

be incorporated by modifying the existing source code for the time stepping method.

Here are the details of contributions of my application using DUNE-PDELab to solve

miscible displacement equations. I used the internal mesh generator YaspGrid in DUNE to

create and refine rectangular meshes for the computational domain. I selected monomial

and Raviart-Thomas finite element basis in DUNE-PDELab for space discretization to solve

the Darcy’s law using the mixed finite element method. Also, I have created subroutine

to handle the pure Neumann boundary condition for the Darcy’s law. For simplicity, the

monomial basis is used in space discretization for the transport equation using DG scheme.

Because those two equations are dependent, it has required me considerable effort to modify

the time stepping method in DUNE-PDELab for DG time stepping. For the implementation

of the Raviart-Thomas method, the discretization has been modified to handle pure Nue-

mann boundary condition. I used external package SuperLU to solve the assembled systems.

The numerical results will be presented in the next section.

∗www.dune-project.org/
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5.3 Numerical Results

In this section we present both numerical results for analytical and physical problems. We

will observe the advantages of using high order methods for solving the miscible displacement

problems. We begin by defining some notation. If we use Uh = RTi(Eh) for the Raviart-

Thomas element for the Darcy’s Law and Ch = {ch ∈ H1(Eh) : ch|E ∈ Pj(E), E ∈ Eh} for

the transport equation, then we express the space discretization as RTi-NIPGj, RTi-SIPGj

or RTi-IIPGj depending on the DG discretization.

5.3.1 Analytical Problem and Convergence Rate

Consider an problem with analytical solutions,

p(x, y, t) =
(
2− e−x

(
1 + x+ x2

)
− e−y

(
1 + y + y2

))
e
πt
2

c(x, y, t) =
1

2

(
sin(2πx)2 + cos(2πy)2

)
sin

(
πt

2

)

given the parameters,

φ = 0.2 , K(c) =
9.44× 10−3

1 + (0.0524c)4.74
, g = 0 , qI = 1

D(u) =
uuT

|u|
(
1.8× 10−5 − 1.8× 10−6

)
+
(
1.8× 10−7 + 1.8× 10−6|u|

)
I

The profiles of the function take form at t=1.0 as follows in Figure 5.3.3, 5.3.4 and 5.3.5.
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Figure 5.3.3 : exact p at time t = 1
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Figure 5.3.4 : exact u at time t = 1
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Figure 5.3.5 : exact c at time t = 1

For the discretization in space we use RT0-NIPG1, RT1-NIPG2, and RT2-NIPG3, with

DG3 in time to obtain high accuracy in time with time step ∆t = 0.01 and obtain the

convergence rate at time t = 0.5 as follows.
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Figure 5.3.6 : cvg. rate for p in L2
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Figure 5.3.7 : cvg. rate for u in L2
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Figure 5.3.8 : cvg. rate for c in L2
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Figure 5.3.9 : cvg. rate for c in energy norm

Indeed, we have observed the increases of the convergence rates as the order of approxima-

tions increase as in Figure 5.3.6, 5.3.7, 5.3.8 and 5.3.9. We also present the error.
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Pressure
h ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Eh) Cvg. rate

2−1 1.49467723e-1 – 1.08683259e-3 –
2−2 5.55713388e-2 1.427 2.90026132e-4 1.906
2−3 1.94075368e-2 1.518 7.37036372e-5 1.976
2−4 7.53977315e-3 1.364 1.85015781e-5 1.994
2−5 3.37151442e-3 1.161 4.63013722e-6 1.999

Concentration
h ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 4.00554402e-3 – 3.04940173 –
2−2 1.08790458e-3 2.003 7.92174173e-1 1.945
2−3 1.08790458e-3 -0.123 9.86513989e-1 -0.317
2−4 5.93557729e-4 0.874 5.02300845e-1 0.974
2−5 2.76874914e-4 1.100 2.53417337e-1 0.987

Table 5.3.1 : error and rate for pressure and concentration with RT0-NIPG1

Pressure
h ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Eh) Cvg. rate

2−1 3.75612627e-2 – 9.12292627e-5 –
2−2 1.51988594e-2 1.305 1.18909883e-2 2.940
2−3 4.70278178e-3 1.692 1.50219946e-6 2.985
2−4 1.30205703e-3 1.853 1.88274337e-7 2.996
2−5 3.42238663e-4 1.928 2.35499363e-8 2.999

Concentration
h ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 2.32838162e-3 – 1.86209926 –
2−2 1.37922246e-3 0.755 1.10375937 0.755
2−3 2.30891708e-4 2.579 2.16460653e-1 2.350
2−4 4.84970125e-5 2.251 5.47554909e-2 1.983
2−5 1.01955089e-5 2.250 1.36293565e-2 2.006

Table 5.3.2 : error and rate for pressure and concentration with RT1-NIPG2
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Pressure
h ‖p− ph‖L2(Ω) Cvg. rate ‖u− uh‖L2(Eh) Cvg. rate

2−1 1.14265447e-2 – 4.08259591e-6 –
2−2 1.81358816e-3 2.655 2.62942571e-7 3.957
2−3 2.55346692e-4 2.828 1.65601216e-8 3.989
2−4 3.38735338e-5 2.914 1.03699484e-9 3.997
2−5 4.36191826e-6 2.957 6.48427172e-11 3.999

Concentration
h ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

2−1 2.19480438e-3 – 1.78168909 –
2−2 1.00751042e-4 4.445 8.09128327e-2 4.461
2−3 3.20635143e-5 1.652 3.15839214e-2 1.357
2−4 3.69915500e-6 3.116 4.05515779e-3 2.961
2−5 4.80717242e-7 2.944 5.14981839e-4 2.977

Table 5.3.3 : error and rate for pressure and concentration with RT2-NIPG3

For the DG time stepping we use space discretization RT2-NIPG3 with 64 × 64 grid to

obtain high accuracy in space and plot the errors at time t = 1.0 as follows.
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Figure 5.3.10 : cvg. rate for c in L2
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Figure 5.3.11 : cvg. rate for c in energy norm

Again, we observe in Figure 5.3.10 and 5.3.11 the high accuracy as well as increase of the

convergence rates obtained by using high order DG in time. Errors and rates are presented

below.
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Concentration
∆t ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

1 9.31436128e-2 – 5.22918703e-1 –
0.5 5.36939808e-2 0.795 3.01516836e-1 0.794
0.25 2.89774349e-2 0.890 1.62751631e-1 0.890
0.125 1.50834032e-2 0.942 8.47244201e-2 0.942
0.0625 7.69898626e-3 0.970 4.32471913e-2 0.970

Table 5.3.4 : error and rate of concentration with DG0

Concentration
∆t ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

1 1.83083992e-1 – 1.02901530 –
0.5 4.30672057e-2 2.088 2.42081307e-1 2.088
0.25 1.02830466e-2 2.066 5.78029857e-2 2.066
0.125 2.54485428e-3 2.015 1.43067080e-2 2.014
0.0625 6.34705845e-4 2.003 3.57076445e-3 2.002

Table 5.3.5 : error and rate of concentration with DG1

Concentration
∆t ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

1 2.65020659e-1 – 1.49304362 –
0.5 3.47976408e-2 2.929 1.96155266e-1 2.928
0.25 3.56332588e-3 3.287 2.00777497e-2 3.288
0.125 3.97630912e-4 3.145 2.24174160e-3 3.163
0.0625 4.69802381e-5 3.081 2.82088129e-4 2.990

Table 5.3.6 : error and rate of concentration with DG2

Concentration
∆t ‖c− ch‖L2(Ω) Cvg. rate ‖∇c−∇ch‖L2(Eh) Cvg. rate

1 5.79618138e-2 – 3.27028209e-1 –
0.5 1.23576954e-3 5.552 7.04188045e-3 5.537
0.25 4.19441867e-5 4.881 2.60932509e-4 4.754
0.125 1.66442910e-6 4.655 9.88695054e-5 1.400
0.0625 1.50408449e-7 3.468 9.84599519e-5 0.006

Table 5.3.7 : error and rate of concentration with DG3
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Table 5.3.4, 5.3.5, 5.3.6, and 5.3.7 verifies the improvement of the convergence rate in

time as we increase the order of approximation in time.

5.3.2 Physical Problem

Homogeneous grain size

Now, we turn our attention to a physical problem over the space domain [0, 1] × [0, 1]. For

the diffusion/dispersion tensor we use the semi-empirical relation:

D(u) = dmI + |u| (αlE(u) + αt(I− E(u)))

where E(u) =
uuT

|u|2
and we set,

dm = 1.8× 10−7 , αl = 1, 8× 10−5 and αt = 1.8× 10−6

We neglect the gravity by setting g = 0. We set porosity φ = 0.2. We set the permeability

to be K(x) = 9.44×10−3 throughout the domain and fluid viscosity µ(c) = 1 + (0.0524c)4.74.

Thus, we have

K(c) =
9.44× 10−3

1 + (0.0524c)4.74

We fix the injection concentration to be ĉ = 1 and initial concentration c0 = 0. For the

injection source and production sink we have

∫
Ω

qI =

∫
Ω

qP = 0.018

where qI is piecewise constant on [0, 0.1]× [0, 0.1] and qI = 0 elsewhere and qP is piecewise

constant on [0.9, 1] × [0.9, 1] and qP = 0 elsewhere. We use the solver to simulate the fluid

flow and plot the fluid profile from t = 0 to t = 10 as follows with RT0-NIPG1, RT1-NIPG2
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and RT2-NIPG3 with 1024 elements and ∆t = 0.05 using DG0 up to DG3 in time.

In this case it appears that fluid pressure and velocity remain constant. We plot the

pressure and velocity together, with pressure in the background and velocity streamlines in

the foreground.

RT0-NIPG1 RT1-NIPG2 RT2-NIPG3

Table 5.3.8 : Fluid pressure and velocity streamlines at t = 5 with DG0 in time

For the concentration,

t = 2.5 t = 5 t = 7.5 t = 10

RT0-NIPG0:

RT1-NIPG1:

RT2-NIPG2:

Table 5.3.9 : Simulations of the fluid concentration with DG0 in time
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One can observe the increase of the quality of the simulations as we use higher order ap-

proximations in Table 5.3.9.

RT0-NIPG1 RT1-NIPG2 RT2-NIPG3

Table 5.3.10 : Fluid pressure and velocity streamlines at t = 5 with DG1 in time

For the concentration,

t = 2.5 t = 5 t = 7.5 t = 10

RT0-NIPG0:

RT1-NIPG1:

RT2-NIPG2:

Table 5.3.11 : Simulations of the fluid concentration with DG1 in time
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In Tables 5.3.10 and 5.3.11, we obverse the solution remains stable as we increase the order

of approximation in time which is consistent with our theoretical analysis.

RT0-NIPG1 RT1-NIPG2 RT2-NIPG3

Table 5.3.12 : Fluid pressure and velocity streamlines at t = 5 with DG2 in time

For the concentration,

t = 2.5 t = 5 t = 7.5 t = 10

RT0-NIPG0:

RT1-NIPG1:

RT2-NIPG2:

Table 5.3.13 : Simulations of the fluid concentration with DG2 in time
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The fluid profiles remain the same as we varying the orders of approximations in space and

time. Hence, it offers us strong evidence of the convergence of the numerical solutions.

RT0-NIPG1 RT1-NIPG2 RT2-NIPG3

Table 5.3.14 : Fluid pressure and velocity streamlines at t = 5 with DG3 in time

For the concentration,

t = 2.5 t = 5 t = 7.5 t = 10

RT0-NIPG0:

RT1-NIPG1:

RT2-NIPG2:

Table 5.3.15 : Simulations of the fluid concentration with DG3 in time

Perhaps it is not very clear to see the differences between the effect of different DG time

updating schemes. So, we plot the intersection curves of the concentration alone the line

x = y with RT2-NIPG2 in space.
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t = 2.5 t = 5

t = 7.5 t = 10

Table 5.3.16 : Concentration curve intersection with RT2-NIPG2

Table 5.3.16 illustrates the effect of using higher order approximations in time. On one

hand, we observe the localized overshoot and undershoot phenomena using higher order

time approximations. On the other hand, we have gained considerable accuracy globally

using the high order approximations in time and the reduction numerical diffusion effect,

despite the overshoot and undershoot.
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Homogeneous grain size with a discontinuous lens

Now, let us study the case with discontinuous permeability which is always the case for the

permeability in the real world problems. We use all the parameters from previous problem,

except the permeability.

0.50.25

0.25

0.5

Figure 5.3.12 : domain with discontinuous permeability

In Figure 5.3.12, we set the permeability of the shaded area to be K(x) = 9.44× 10−6 and in

the rest of the domain the permeability remains the same as before i.e.K(x) = 9.44× 10−3.

We simulate the flow problem using spacial discretization RT2−NIPG3 with 4096 elements.

For the time discretization, we use DG0 and DG1 in time with ∆t = 0.05 from t = 0 to

t = 10.0. We compare the pressure and velocity as follows.

DG0 DG1

Table 5.3.17 : Fluid pressure and velocity streamlines at t = 5 with RT2-NIPG2 in space

We observe in Table 5.3.17 the streamlines of the fluid avoid the region with low permeability
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which is consistent with physical phenomenon. For the concentration, we have

t = 2.5 t = 5 t = 7.5 t = 10

DG0:

DG1:

Table 5.3.18 : Simulations of the fluid concentration with RT2-NIPG2 in space

In Table 5.3.18, we have observe the robustness of the numerical scheme that it is capable

of capturing the lens in the domain.

SPE10 problem

In addition, we test our solver on the snapshot of the SPE10 problem with given permeability

fields. We shall conduct two tests with Tarbert and Upper Ness permeability field. For the

Tarbert, we have as follows.
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Figure 5.3.13 : SPE10 permeability field layer 30 in log scale
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This permeability field consists of wide range of permeability. We present our approximation

of the solution with DG1 in time as follows.

t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5 t = 6.0

t = 6.5 t = 7.0 t = 7.5 t = 8.0

t = 8.5 t = 9.0 t = 9.5 t = 10.0

Table 5.3.19 : Simulations of the fluid concentration with RT2-NIPG2 in space

Observe in Table 5.3.19, our numerical solution remains stable despite the wide range of

scales and discontinuity in the permeability field. Also, the fluid flow is clearly resembling

the permeability field, as we observe that it avoids the region of low permeability.

Now, for the Upper Ness we have the permeability field taken from SPE10 layer 60.
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Figure 5.3.14 : SPE10 permeability field layer 60 in log scale

This permeability field consists of even wider range of permeability than the Tarbert. With

the fractures in the in the field, it is much harder to simulate the fluid flow. We present our

approximation of the solution with DG1 in time as follows.

t = 0.5 t = 1.0 t = 1.5 t = 2.0

t = 2.5 t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5 t = 6.0
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t = 6.5 t = 7.0 t = 7.5 t = 8.0

t = 8.5 t = 9.0 t = 9.5 t = 10.0

Table 5.3.20 : Simulations of the fluid concentration with RT2-NIPG2 in space

Again we observe the fluid flow is consistent with the distribution of different permeabilities.

We also notice that the simulation produced by the numerical algorithm was able to capture

the areas with low permeability.
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Chapter 6

Conclusions and Future Work

In this chapter, I will begin by summarizing the results obtained so far. Also, I would like

to present the possibility for future work concerning the miscible displacement simulation

under low regularity condition.

6.1 Summary

In the thesis, I developed a numerical method for solving the miscible displacement equations

under low regularity which is an important mathematical model in enhanced oil recovery .

For the numerical discretization of the PDE system, there are three different aspects

concerning the concept of the discretization. First, there is the discretization in space for

the Darcy’s law, for which I used the locally mass-conservative mixed finite element. Then

there is the discretization of the transport equation in space. Due to the difficulty posed by

the low regularity of the solution from Darcy’s law, I introduced a modified discontinuous

Galerkin spacial discretization for the transport equation. The last essential aspect of the

discretization concept is the use of the discontinuous Galerkin method for time updating

which allows arbitrary degree of approximation in time.

After establishing the spacial and time discretizations, I analyzed the numerical scheme.

I began by showing the stability of the numerical method. Using the results from stability

analysis, I then proved compactness of the concentration through a much more general

compactness theorem. For the analysis of the convergence of the numerical solutions, the

convergence of the pressure and velocity is verified by standard technique used for the analysis

of the mixed finite element method. With the help of the compactness theorem for the
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concentration, I also discussed the convergence of concentration.

The chapter following the stability and convergence analysis provides the implementation

concept of the numerical scheme. Because of the concern of the efficiency, I decided to use

the decoupling sequential approach for the implementation. I introduce an implementation

strategy to maintain the order of the approximation in time for the sequential updating. I

developed the software for 2D miscible displacement problems according to the numerical

algorithm I proposed and I tested on various different problems. For the case of when the

analytical solutions are known, the numerical experiments suggested the improvement of

the accuracy and convergence rate as I increased the order of approximation in space and

time. Numerical experiments were also conducted for the physical problem with unknown

solutions. I tested two cases of porous media: one with homogeneous grain size and one

with homogeneous grain size yet with a lens of different permeability inside the domain.

Numerous comparison studies have been done to compare the differences caused by using

the different order of approximations. Finally, I used the permeability values from SPE10

data to test the numerical method. I tested the solver on layers with Tarbert structure

and layer with Upper Ness structure. The solutions remained stable and the fluid flows

also corresponded to the distribution of the permeability inside the domain. The numerical

experiments suggested the improvement of the quality of the simulations and the robustness

of the numerical method using higher order approximation.

In conclusion, the combination of mixed finite element and discontinuous Galerkin method

in space and time provides an alternative for solving miscible displacement problem while

handling the low regularity condition. This thesis provides rigorous analyses of the method.

Apart from the numerical method I proposed, the compactness theorem has theoretical sig-

nificance when Aubin-Lions theorem is no longer applied for the analysis of the convergence

of solution of PDE. In the light of what I have done in this thesis, there are still many

open questions concerning the numerical methods for solving miscible displacement equa-
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tions under low regularity as well as the implementations of the methods when handling the

discontinuous parameters.

6.2 Future Work

In the near future, I would like to carry on further studies on the numerical method I proposed

in the thesis. The convergence of the concentration solution to the weak solution requires

further investigation. Currently, the numerical experiments are restricted to 2D test case.

I will begin to parallelize numerical implementation for the scheme on the cluster machines

and extend the numerical experiments to 3D domains while including gravity effects. Also,

I would like to conduct test with varying porosity. Slope limiters will be introduced in

the numerical implementation as well. I also plan to observe the effect of different mesh

structures have on the numerical solutions.

Furthermore, I want to increase the flexibility of the numerical implementation for higher

order methods. Mixed finite element method itself poses considerable difficulties when it

comes to the implementation of higher order approximations, imposing the boundary condi-

tions, and using adaptive mesh refinement. Hence, I propose to extend the DG discretization

to the Darcy’s law as well. Therefore, most naturally for the same problem we would have

a new discretization as follows.

∫ tn

tn−1

Bd,p(ph, qh; ch) =

∫ tn

tn−1

(
(qI − qP , qh) + (K(ch)ρ(ch)g,∇qh)Eh

−({K(ch)ρ(ch)g · ne}, [qh])Γh)

uh = −K(ch)∇ph∫ tn

tn−1

((φ∂tch, wh) +Bd(ch, wh; uh) +Bcq(ch, wh; uh)) + (
[
cn−1
h

]
t
, φwn−1

h+ ) =

∫ tn

tn−1

(ĉqI , wh)

for all qh ∈ P`[tn−1, tn;Ph], wh ∈ P`[tn−1, tn;Ch].
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where,

Bd,p(p, q; c) = (K(c)∇p,∇q)Eh − ([q], {K(c)∇p · ne})Γh

+ ε([p], {K(c)∇q · ne})Γh + (σh−1[p], [q])Γh

Bd(c, w; u) = (D(u)∇c,∇w)Eh − ([w], {D(u)∇c · ne})Γh

+ ε([c], {D(u)∇w · ne})Γh + (σh−1(1 + {|u|})[c], [w])Γh

and

Bcq(c, w; u) =
1

2

(
(u∇c, w)Eh − (uc,∇w)Eh + ((qI + qP )c, w)

+(cupu · ne, [w])Γh − (wdownu · ne, [c])Γh

)
Implementation wise, it becomes much easier to achieve arbitrary order of approximations

in space for the Darcy’s law. Hence, one would expect for it to provide much more accurate

approximation for the pressure and velocity. Another advantage of this scheme formulation

is that all boundary conditions can be imposed weakly. Furthermore, one can use hanging

nodes for the adaptive mesh refinement in both equations.

Nevertheless, the new scheme poses new challenges in terms of theoretical analysis. The

traditional stability analysis for the mixed finite element method is no longer applied when

analyzing the stability of the pressure and velocity. The low regularity condition makes the

analysis even more sophisticated. Whether the compactness theorem will still be applicable

for studying the compactness of the concentration solutions is unknown. There is even a

possibility that one has to modify the new DG scheme to handle the difficulties posed by

the challenges I listed above.

Furthermore, numerically how does the new scheme performs in comparison to the scheme

I previously proposed in my thesis is worth investigating.

With all the advantages and challenges, I would like to devote more time and effort in
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the hope to shed some light on numerical methods for modeling the miscible displacement

processes and its related problems.
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Appendix A

In this appendix, I will state and prove several results concerning functional analysis which

are extremely useful for the analysis on the broken Sobolev spaces.

Lemma .0.1. For X and Y Banach spaces, let X ↪→ Y : we say that X is embedded into

Y . Then we have

Y ′ ↪→ X ′

Proof. Indeed, denote by i : X → Y the identity operator. Pick F ∈ Y ′ and define

G(x) = F (ix), ∀x ∈ X

Then

|G(x)| ≤ ‖F‖Y ′‖ix‖Y ≤ ‖F‖Y ′C‖x‖X

By linearity of F and i, the map G is linear. Since it is also continuous, G ∈ X ′.

In addition, we have

‖G‖X′ ≤ C‖F‖Y ′

Lemma .0.2. Let X ↪→ H, where H is Hilbert space, and X is Banach space. Then X is

an inner product space with (·, ·)H . Assume that X is dense in H. Then H ↪→ X ′ and H is

dense in X ′.

Proof. Pick F ∈ X ′. By Riesz representation theorem, F (x) = (y, x)H for some y ∈ X ⊂ H.
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Then, since X is dense in H, there is (xn)n ∈ X such that xn tends to y. Define

Fn(v) = (xn, v)H∀v ∈ H

Then Fn ∈ H ′, and in fact Fn is identified to xn. Claim: ‖Fn − F‖X′ tends to zero. Indeed:

Fn(x)− F (x) = (xn − y, x)H ≤ ‖xn − y‖‖x‖

Lemma .0.3. Assume (wh)h is bounded in Lr[0, T ;W ′] for any 1 ≤ r < ∞ and that (wh)h

is precompact in Lp
′
[0, T ;W ′]. Then (wh)h is precompact in Lr[0, T ;W ′] for any 1 ≤ r <∞.

Proof. Pick 1 ≤ r <∞. If r ≤ p′, then Hölder’s inequality yields

‖w‖Lr[0,T ;W ′] ≤ T 1−r/p′‖w‖r
Lp′ [0,T ;W ′]

, ∀w ∈ Lp′ [0, T ;W ′]

Since (wh)h is precompact in Lp
′
[0, T ;W ′], for any ε > 0, there is an ε− net for the closure

of (wh)h. Denote F the closure of (wh)h. Then, we have

F ⊂ ∪Ni=1Bε(wi)

for some wi ∈ Lp
′
[0, T ;W ′]. The inequality above says that wi belongs to Lr[0, T ;W ′]. Pick

ε > 0 and v ∈ F . There is a wi ∈ Lp
′
[0, T ;W ′] (and thus also in Lr[0, T ;W ′]) such that

‖v − wi‖Lp′ [0,T ;W ′] ≤
( ε

T 1−r/p′
)1/r



103

Therefore we have from the inequality above:

‖v − wi‖Lr[0,T ;W ′] ≤ ε

So we prove that F is totally bounded in Lr[0, T ;W ′].

If r > p′, then we use the fact that

‖u‖Lr[0,T ;W ′] ≤ ‖u‖θLp′ [0,T ;W ′]
‖u‖1−θ

Lq [0,T ;W ′]

with

1

r
=
θ

p′
+

1− θ
q

and 0 < θ < 1. Since (wh)h is bounded in Lq[0, T ;W ′], its closure is also bounded and this

gives for a positive constant M :

‖v‖Lr[0,T ;W ′] ≤M‖v‖θ
Lp′ [0,T ;W ′]

, ∀v ∈ F

Let {wh} be a sequence in F , then since F is precompact in Lp
′
[0, T ;W ′] there is a subse-

quence {whk} such that whk → v in Lp
′
[0, T ;W ′]. Hence,

‖whk − v‖Lr[0,T ;W ′] ≤M‖whk − v‖θLp′ [0,T ;W ′]
, ∀v ∈ F

So, whk → v in Lr[0, T ;W ′]. Therefore, (wh)h is precompact in Lr[0, T ;W ′].

Lemma .0.4. Given the dense embedding:

W ↪→ V ↪→→ H ↪→ W ′

And V is compactly embedded in H, then V is compactly embedded in W ′.
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Proof. Let S is a bounded subset of V , if {xn} ∈ S, then there is a subsequence {xnk} such

that xnk → x in H. Hence, we have ‖xnk − x‖W ′ ≤ C ‖xnk − x‖H . So, xnk → x in W ′, which

implies S is precompact in W ′. Therefore, V is compactly embedded in W ′.

Lemma .0.5. Given (wh)h is bounded in Lp[0, T ;V ] and precompact in Lp[0, T ;W ′] it follows

it is also precompact in Lp[0, T ;H].

Proof. Since (wh)h is precompact in Lp[0, T ;W ′], then there exists a subsequence {whk} such

that whk → w in Lp[0, T ;W ′]. Hence, {whk} is a Cauchy sequence in Lp[0, T ;W ′]. i.e. there

exits N > 0 such that for all m,n > N we have ‖whn − whm‖Lp[0,T ;W ′] ≤ ε/M(ε). Therefore,

‖whn − whm‖Lp[0,T ;H] ≤ ε ‖whn − whm‖Lp[0,T ;V ] + M(ε) ‖whn − whm‖Lp[0,T ;W ′]. We know that

(wh)h is bounded in Lp[0, T ;V ], hence, ‖whn − whm‖Lp[0,T ;H] ≤ εM+ε ≤ (M+1)ε. So, {whk}

is Cauchy in Lp[0, T ;H]. Hence, {whk} converges in Lp[0, T ;H] since H is a Hilbert space.

Therefore, {wh} is precompact in Lp[0, T ;H].

Lemma .0.6. Let H be a Hilbert space with inner-product (·, ·)H , let W be a Banach space,

and let W ↪→ H ↪→ W ′ be dense embeddings. Let 0 = t0 < t1 < · · · < tN = T be a partition

of [0, T ], let W (Eh) ⊂ W be a subspace, and ` ≥ 0. Fix 1 ≤ p, q < ∞ with 1/p + 1/q ≥ 1

and assume that wh|(tn−1,tn) ∈ P`[tn−1, tn;W (Eh)] and

∫ tn

tn−1

(wht, vh)H + (wn−1
h+ − w

n−1
h− , vn−1

h+ )H =

∫ tn

tn−1

Fh(vh)

for all vh ∈ P`(tn−1, tn;W (Eh)), where Fh ∈ Lq[0, T ;W (Eh)′].

Then for all 0 ≤ δ ≤ T there exists a constant M(`, ϑ) > 0 such that

sup
vh∈Lp[δ,T ;Wh]

∫ T
δ

(wh(t)− wh(t− δ), vh)H dt
‖vh‖Lp[δ,T ;W ]

≤M(`, ϑ) ‖F‖Lq [0,T ;W (Eh)′] max(∆t, δ)1/q′δ1/p′ .
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With 1/p′ = 1− 1/p and 1/q′ = 1− 1/q. The parameter ϑ is:

ϑ = min
1≤n≤N

(tn − tn−1)/τ, τ = max
1≤n≤N

(tn − tn−1)

Proof. This result is taken from lemma 3.9 in [41] (which comes from Lemma 3.3. in [54]).

Theorem .0.7. Let B0 and B be Banach spaces, and let B0 be compactly embedded into B.

Let F ⊂ L1[0, T ;B0] be bounded, and suppose for some 1 ≤ p <∞ that F is equicontinuous

in Lp[0, T ;B] in the sense that for all ε > 0 there exists δ > 0 such that

∫ T

δ′
‖u(t)− u(t− δ′)‖pBdt ≤ ε, u ∈ F , δ′ < δ

Then for all 0 < θ < T/2 the set F|(θ,T−θ) is precompact in Lp[θ, T − θ;B].

Proof. This result is taken from theorem 3.2 in [54].

The next lemma is a slight modification of Lemma 3.4 in [54].

Lemma .0.8. Let W be a Banach space and let u ∈ Lp[0, T ;W ] for some 1 ≤ p < ∞.

Assume ∫ T

δ

‖u(t)− u(t− δ)‖pWdt ≤ Cδ, 0 < δ < T

then u ∈ Lq[0, T ;W ] for any 1 ≤ q <∞.

Proof. If δ < 1, then we have

∫ T

δ

‖u(t)− u(t− δ)‖pWdt ≤ Cδ ≤ Cδα, ∀0 ≤ α < 1

Hence, by lemma 3.4 in [54] we have the u ∈ Lq[0, T ;W ] for any 1 ≤ q < p/(1− α). Since it

holds for all 0 ≤ α < 1, then it is true for 1 ≤ q <∞.
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If δ ≥ 1, then we have

∫ T

δ

‖u(t)− u(t− δ)‖pWdt ≤ Cδ ≤ CT 1−αδα ≤ CTδα, ∀0 ≤ α < 1

Hence, again using lemma 3.4 in [54], we have the u ∈ Lq[0, T ;W ] for any 1 ≤ q < p/(1−α).

Since it holds for all 0 ≤ α < 1, then it is true for 1 ≤ q < ∞. Therefore, u ∈ Lq[0, T ;W ]

for any 1 ≤ q <∞
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