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Abstract

For classification problems in psychology (e.g., clinical diagnosis), batteries of tests are often
administered. However, not every test or item may be necessary for accurate classification. In
the current article, a combination of classification and regression trees (CART) and stochastic
curtailment (SC) is introduced to reduce assessment length of questionnaire batteries. First, the
CART algorithm provides relevant subscales and cutoffs needed for accurate classification, in the
form of a decision tree. Second, for every subscale and cutoff appearing in the decision tree, SC
reduces the number of items needed for accurate classification. This procedure is illustrated by
post hoc simulation on a data set of 3,579 patients, to whom the Mood and Anxiety Symptoms
Questionnaire (MASQ) was administered. Subscales of the MASQ are used for predicting diag-
noses of depression. Results show that CART-SC provided an assessment length reduction of
56%, without loss of accuracy, compared with the more traditional prediction method of per-
forming linear discriminant analysis on subscale scores. CART-SC appears to be an efficient and
accurate algorithm for shortening test batteries.

Keywords

classification, test batteries, computerized testing, sequential testing, classification and regression
trees, stochastic curtailment, respondent burden, efficiency

In many applied settings in psychology, test batteries are used for classification and selection.
For example, in mental health care, a battery of self-report questionnaires may be used for per-
forming clinical diagnosis, or for assigning patients to the right treatment. When a number of
questionnaires or tests are administered, assessment length becomes an important consideration.
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<=23 > 23
151
depressed
<=11 > 11
31 141
not depressed depressed

Figure I. Example of a decision tree for two-stage sequential testing.

Lengthier assessment procedures do not always provide better information, as they may result in
adverse side effects as well. For example, lengthy questionnaires are likely to scare off partici-
pants, as they have been found to increase attrition (Edwards et al., 2002, 2009; Edwards,
Roberts, Sandercock, & Frost, 2004), and have been shown to decrease the quality of responses
(Galesic & Bosnjak, 2009; Herzog & Bachman, 1981). Therefore, minimizing the respondent
burden while maximizing the efficiency of test batteries is an important prerequisite for accurate
classification (Finkelman, Smits, Kim, & Riley, 2012). To improve efficiency, two approaches
may be taken: omitting redundant tests from the assessment and omitting redundant items from
the tests.

To omit redundant tests from assessment procedures, Cronbach and Gleser (1965) introduced
sequential testing. Sequential testing aims to collect new information at every stage of testing,
and neglects attributes that are redundant, given previous outcomes. At every stage of sequential
testing, a new test is selected, which is most informative for predicting class membership, until a
final classification decision can be made. So instead of administering the same sequence of tests
to all participants, only those tests that contribute to the classification decision are administered,
resulting in a more efficient testing procedure. The stages in a sequential testing procedure may
be represented by a decision tree. For example, in Figure 1, the sequential testing procedure for
classifying patients as depressed or not is depicted. In this procedure, Test A is administered first:
If a patient’s score on Test A exceeds a cutoff value of 23, testing can be halted, and the patient
can be diagnosed with depression. Only when a patient’s score on Test A does not exceed 23,
administration of Test B is required to make a final classification decision.

To develop a sequential testing plan, the optimal sequence of tests and their cutoff values
have to be derived. As the stages in sequential testing can be represented by a decision tree,
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classification and regression tree (CART) models provide a natural solution. CART algorithms
provide tree-like structures, comparable with Figure 1. In every split, the algorithm creates sub-
groups for which the distributions of the outcome variable (e.g., classification decision) are
most different. Consequently, every split in such a tree provides the current most informative
test and cutoff value for making a classification decision.

Reducing the number of tests is not the only way to reduce assessment length. Many meth-
ods have been developed to reduce the number of items within a test. Traditionally, test length
reduction was aimed at creating fixed-length tests, in which the subset and order of items is
determined a priori, before test administration (e.g., Burisch, 1997). Over the last three decades,
due to the increasing use of computers in psychological testing, efforts have been aimed at
adaptively reducing the number of items, by creating variable length tests. With variable length
tests, the subset and order of items are determined online, during test administration. As a result,
the number and order of items administered may differ between respondents, as a function of
the respondents’ relative standing on the attribute being measured. Several authors have shown
these variable length tests to outperform fixed-length tests (Choi, Reise, Pilkonis, Hays, &
Cella, 2010; Fries, Cella, Rose, Krishnan, & Bruce, 2009; Ware et al., 2003) in terms of accu-
racy and/or test length reduction. These variable length tests can be aimed at either score esti-
mation or classification.

For score estimation, the most popular method is computerized adaptive testing (CAT; for
example, Van der Linden & Glas, 2010; Wainer, 2000). With CAT, after administration of
every item, a current estimate of the respondent’s ability is made. The most informative item,
given the respondent’s current ability estimate, is administered next. To allow for estimation of
the respondent’s ability, CATs are developed using item response theory (IRT) models. Non-
IRT adaptive testing methods for score estimation have been developed as well. For example,
Yan, Lewis, and Stocking (2004); Ueno and Songmuang (2010); and Riley, Funk, Dennis,
Lennox, and Finkelman (2011) have used CART as an item selection algorithm in adaptive
testing, and compared its performance with IRT-based item selection. Note that this approach
differs from the sequential testing approach as described earlier, as CART was used for item
selection in these studies, not for test selection. In all three studies, CART performed equally
well or better than IRT, in terms of efficiency and accuracy.

For classification, IRT-based adaptive testing methods have been developed, as well. These
methods are referred to as computerized classification testing (CCT; for example, Thompson,
2009, 2011). CCT has been successfully applied in educational settings to test students’ mastery
in specific domains (e.g., Weiss & Kingsbury, 2005). Several non-IRT based adaptive testing
methods for classification have been developed as well. For example, Finkelman, He, Kim, and
Lai (2011) and Finkelman et al. (2012) recently introduced stochastic curtailment (SC) as an
algorithm for improving test efficiency in classification. With SC, items are presented in the
same order as in the full-length test, but testing is halted if the remaining items are unlikely to
change the final classification decision. Finkelman et al. (2012) found SC to compare quite
favorably with assessment by CAT, in terms of efficiency and accuracy of a mental health self-
report questionnaire.

In what follows, the authors introduce a procedure for efficient administration of multiple
tests or questionnaires for classification and selection, by combining CART and SC. CART will
be used to derive the optimal order and cutoff values for test administration and SC to allow for
early stopping of item administration within a test. This will result in a reduction of assessment
length on two levels: the number of tests in the battery and the number of items in the tests. In
the remainder of the introduction, CART, SC, and the combined method (CART-SC) are
described in more detail. In the method and results section, an illustration of CART-SC is pre-
sented by performing a post hoc simulation study on a real data set. The data set consists of
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item scores on subscales of a self-report questionnaire covering symptoms of depression, anxi-
ety, and psychological distress. These self-report data are used to predict clinical diagnoses of
depression. In the discussion, the findings are summarized, comments on the method are made,
and directions for future research are described.

CART

The first tree building algorithm as a tool for data analysis was proposed by Morgan and
Sonquist (1963). However, the most popular tree building algorithm was introduced by
Breiman, Friedman, Olshen, and Stone (1984), who referred to it as CART. Many authors have
suggested refinements or adaptations since, but these can all be seen as special cases of the same
algorithm (see also Hothorn, Hornik, & Zeileis, 2006). CART is a nonparametric algorithm, as
it makes no assumption about a data-generating function. Using predictor variables, the CART
algorithm recursively partitions observations into increasingly smaller subgroups, whose mem-
bers are increasingly similar with respect to the outcome variable. For qualitative outcome vari-
ables, the resulting tree is a classification tree, and for quantitative outcomes, the resulting tree
is a regression tree. In the current article, CART will only be used for classification, so the dis-
cussion will focus on classification trees. Partitions, or splits, are made using one predictor vari-
able at a time: In every node, the algorithm selects the variable and splitting point that separate
the observations into subsets for which the distributions of the outcome variable are most differ-
ent. The CART algorithm produces binary splits only, that is, the observations are partitioned
into two subgroups at every split. The result is a decision tree consisting of branches and nodes.
This tree can be used for prediction, by ‘“dropping’” new observations down the tree. The distri-
bution of the outcome variable of the training data in the final node determines the prediction
for the new observation. For example, the largest class among the training observations in the
final node may be used for predicting the class of a new observation.

SC

Finkelman et al. (2011, 2012) introduced SC for shortening questionnaires used for classifica-
tion, but SC has been applied before in, for example, clinical trial monitoring (Davis & Hardy,
1994). Traditionally, a trial is terminated only when the predetermined number of participants
has been included. With SC, the probability of rejecting the null hypothesis at the end of a trial,
given the current observations, is calculated. If the probability of rejecting the null hypothesis at
the end of a trial is sufficiently high or low, the trial can be stopped early. This can be readily
translated into classification using questionnaires: Traditionally, all items of a scale are adminis-
tered first, and then a test score is calculated and compared with a predetermined cutoff value.
With SC, after administration of an item, a cumulative score is calculated, and the probability
of obtaining a test score exceeding the cutoff at the end of the questionnaire, given the cumula-
tive score, is calculated. This probability can be calculated by empirical proportions, obtained
from a training data set. In the current study, this empirical approach is applied, but Finkelman
et al. (2012) have proposed a model-based variation of SC as well: logistic SC, in which the
probability of exceeding the cutoff value is calculated by means of logistic regression (LR). As
long as the probability of exceeding the cutoff value is below some predetermined threshold,
testing continues; if not, testing is halted and a classification decision is made. SC (logistic and
empirical) requires a training data set to determine the probability of obtaining a final positive
(““at risk’”) or negative (‘‘not at risk’’) classification decision. Applying empirical SC for classi-
fication using a single scale consists of the following steps (Finkelman et al., 2012):
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1. The cutoff value for classifying observations as “‘at risk” (X") is determined.

2. The threshold for the probability of making an incorrect risk classification (7y) is chosen
by the user.

3. The learning data set is split into two parts: 7, containing item scores of all partici-
pants ““at risk” (i.e., with a test score equal to or exceeding X"), and 7, containing
item scores of all participants “‘not at risk” (i.e., with a test score less than X").

4. For every new (i.e., not in the learning data set) respondent, a cumulative score is calcu-
lated after administration of every item k. All answers to items £ + 1 through N are taken
from the 7" data set and appended to the cumulative score at item k. The proportion of
the resulting test scores exceeding X~ is denoted by ﬁ’,f.

5. Similarly, all answers to items k+ 1 through N are taken from the 7~ data set and
appended to the cumulative score at item k. The proportion of resulting test scores
exceeding X~ is denoted by fD,j.

6. When 15; and P,: are both > v, testing is halted, and an “‘at risk™ classification is made
for the respondent. When P, and Pj; are both < (1 — ), testing is halted, and a “‘not at
risk” classification is made for the respondent. Otherwise, the next item is administered,
and Steps 4 through 6 are repeated.

Note that in Steps 2 and 6 of the algorithm, Finkelman et al. (2012) used two -y values instead
of one. This allows for specification of different thresholds for the probability of making an
incorrect decision for “‘at risk’” and ‘‘not at risk’* classifications. In the application of SC in the
current article, the same threshold is used for both probabilities, so one y value suffices.

Applying the SC algorithm may provide substantial reductions in assessment length:
Finkelman et al. (2011) showed that SC could reduce the average test length of a health ques-
tionnaire by 42%, while the curtailed and full-length instruments showed identical diagnostic
accuracy. Likewise, Finkelman et al. (2012) applied curtailment and SC to shorten the Center
for Epidemiological Studies—Depression Scale (CES-D; Radloff, 1977) and showed that test
length could be reduced by up to 23% on average, with identical diagnostic accuracy, compared
with administration of the full-length CES-D.

CART-SC

As noted earlier, sequential testing using CART may provide a powerful tool for reducing the
number of tests to be administered for classification. A classification tree can be built using test
scores on several scales as inputs and classifications as outputs. By using this tree to guide test
administration, only those scales that are necessary for classification are administered, thereby
reducing the average total test length. In addition, the classification tree would provide optimal
cutoff values for every scale. In turn, these cutoff values can be used to apply SC in every node
of the tree, resulting in an additional reduction of items administered within each scale.

Like CART and SC, the CART-SC algorithm consists of two parts: calibration and applica-
tion. For calibration, a classification tree is grown using all observations in the training data set.
Subsequently, for every node (cutoff value) in the tree, a 7+ and 7~ dataset is created using all
training observations. For application of CART-SC, the first node of the classification tree is
used to determine the first scale to be administered to new participants and the cutoff value to
be used. Items of this scale are administered until a classification decision can be made accord-
ing to the last step of the SC algorithm. Finkelman et al. (2012) referred to the decision in this
step as an “‘at risk’’ or “‘not at risk’’ decision, because in their algorithm, only one scale is admi-
nistered for making the final classification decision. In the CART-SC algorithm, several scales
are administered before a final classification decision can be made, so these decisions will be
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referred to as ‘‘above cutoff’” and “‘below cutoff’’ decisions. In case of an ‘“above cutoff”’ deci-
sion, the next node on the right determines the next scale and next cutoff value to be used for
SC. In case of a “‘below cutoff’’ decision, the next node on the left determines the next scale
and the next cutoff value to be used for SC. This process continues until the respondent reaches
a final node and the final classification decision can be made.

In summary, CART-SC may provide a substantial reduction in assessment length at two lev-
els: a reduction in the number of tests and in the number of items. In what follows, the potential
accuracy and reduction in assessment length of CART-SC will be evaluated by means of post
hoc simulation on a real data set.

Method
Data set

Participants. The data set consisted of data points of 3,597 participants, of which 36.8% was
male. Mean age was 38.8 years (SD = 13.22, range = 17-91). Participants were outpatients at
one of three outpatient centers of the Psychiatric Regional Mental Health Care Centers
Rivierduinen in Leiden, the Netherlands. They were referred by their general practitioner for a
potential mood, anxiety, or somatoform disorder. Of all participants, 46.4% was diagnosed with
a current depressive or dysthymic disorder, 43.2% with a current anxiety disorder, and 16.6%
with a current somatoform disorder. About one in four participants (26.8%) had comorbid dis-
orders, and about one in four participants (22.9%) did not have any depressive, anxiety, or
somatoform disorder. Further details of the sample have been described in Smits, Zitman,
Cuijpers, Den Hollander-Gijsman, and Carlier (2012).

Mini-International Neuropsychiatric Interview (MINI). Depressive disorder diagnoses according to
the Dutch translation of MINI (Sheehan et al., 1998; Van Vliet & De Beurs, 2007) were used
as the gold standard or criterion classification. The MINI is a semistructured psychiatric inter-
view for clinical diagnosis of mental disorders, according to the Diagnostic and Statistical
Manual of Mental Disorders (4th ed.; DSM-1V; American Psychiatric Association, 1994) and
International Classification of Diseases (ICD-10; World Health Organization, 1993) criteria. It
has been found to have good interrater and retest reliability (Sheehan et al., 1997). All inter-
views were carried out by a research assistant (a psychiatric nurse or a psychologist). In the cur-
rent study, participants with a major depressive or dysthymic disorder were labeled as suffering
from depressive disorder.

Mood and Anxiety Symptoms Questionnaire (MASQ). Clark and Watson (1991) proposed a tripar-
tite model of anxiety and depression, grouping symptoms into three categories: nonspecific
symptoms of general distress, symptoms of anxiety, and symptoms of depression. Based on this
model, the MASQ was developed (Watson & Clark, 1991). The MASQ consists of 5 subscales,
covering symptoms of anhedonic depression (AD; 22 items), anxious arousal (AA; 17 items),
general distress: depression (GDD; 12 items), general distress: anxiety (GDA; 11 items), and
general distress: mixed (GDM; 15 items). The AD and AA subscales are indicators of symp-
toms specific to depression and anxiety, respectively. Internal consistency estimates for the
MASQ subscales indicate good reliability: Watson et al. (1995) reported o > .78 for all sub-
scales, and Wardenaar et al. (2010) reported o > .93 for the GDM, AD, and AA subscales.
Several authors have studied the predictive accuracy of the MASQ. Bredemeier et al. (2010)
reported sensitivity and specificity of .80 and higher for using the AD subscale with a single
cutoff for diagnosing depressive disorders. Geisser, Cano, and Foran (2006) performed linear
discriminant analysis (LDA) on the MASQ subscale scores and reported sensitivity of .69 and
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specificity of .80 for depressive disorders. More modest results were reported by Boschen and
Oei (2007), who applied LR to predict depressive and anxiety disorders using the MASQ sub-
scales, and reported sensitivities of about .40 and specificities of about .80. In addition, De
Beurs, Den Hollander-Gijsman, Helmich, and Zitman (2007) reported good validity for the
Dutch translation of the MASQ.

Simulation Design

Cross-validation. As described by, for example, Hastie, Tibshirani, and Friedman (2009), using
the same data for calibration and evaluation of a model results in overly optimistic estimates of
performance. Therefore, the data set was randomly split in two parts: a training set (n = 1,799)
for calibration of the models and a test set (n = 1,798) for application and evaluation of the
models.

Classification tree. First, a classification tree was built using all training observations to deter-
mine the sequential testing plan. This classification tree was built using the recursive binary
partitioning algorithm of Hothorn et al. (2006) consisting of three steps: In the first step, in a
given node, a global hypothesis of independence between any of the predictor variables and the
response variable is tested. If this hypothesis is rejected, the predictor variable with the stron-
gest association to the response variable is selected. For evaluation of the global hypothesis of
independence, parameter a (the probability of falsely rejecting the independence hypothesis in
each node) has to be specified. In the second step, for the predictor variable selected in Step 1,
a split is made on the value that separates the observations into two subgroups that are most dif-
ferent with respect to the outcome variable. In the third step, Steps 1 and 2 are repeated in each
of the subgroups. The algorithm stops when the global hypothesis of independence can no lon-
ger be rejected, in Step 1.

In the current study, the predictor variables for building the classification tree were subscale
scores on the MASQ. The response variable consisted of diagnoses on depressive disorders
according to the MINI. The misclassification costs used for building the tree were equal for
false positives and false negatives, and o was set to .05.

To evaluate the accuracy and efficiency of sequential testing by means of CART, the obser-
vations in the test set were dropped down the classification tree, and the number of items admi-
nistered and classification decisions were collected.

Empirical SC. For calibration and application of CART-SC, T+ and 7~ data sets were created
using the complete training set for every node in the classification tree. Subsequently, the obser-
vations in the test set were dropped down the tree, and for every observation, SC was simulated
in every node the observation passed through. The threshold for making an incorrect decision,
v, was set to .05. As the same subscale may appear in multiple nodes of the same tree (with dif-
ferent cutoff points), all item scores are collected during application of the CART-SC algorithm.
When the same scale appears in a node further down the tree, the curtailment procedure is first
applied to the items already administered, and further items of the scale are administered only if
necessary. For every respondent, the number of items administered and the classification deci-
sions were collected to evaluate the accuracy and efficiency of CART-SC.

For the CART and CART-SC simulations, the original item ordering within every scale was
preserved. As suggested by Finkelman et al. (2011, 2012), changing the item order for SC, by
starting with the most informative items within a scale, may result in a further reduction of
assessment length. To test whether changing the item order may further improve performance
of CART-SC, CART-SC was applied with two additional item orders. First, items were ordered
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by item-total correlations within every subscale, starting with the items showing the highest
correlations to the subscale score. This approach assumes the most informative items to provide
most information about the subscale scores. Second, items were ordered by entry order in a for-
ward stepwise LR model, fit within every subscale, with depression diagnosis as outcome vari-
able. This approach assumes the most informative items to provide most information about the
final classification.

Assessment of Performance

Performance of CART and CART-SC in terms of accuracy and efficiency was compared with
the performance of two standard classification methods: LDA and LR, using all five subscale
scores of the MASQ. LDA and LR have been shown to perform well on diverse sets of classifi-
cation tasks (e.g., Hastie et al., 2009; Michie & Taylor, 1994; Press & Wilson, 1978). As such,
they provide a benchmark for evaluating the accuracy and efficiency of CART-SC. As LDA
and LR differ in their assumptions, one method may be preferable over the other, depending on
the distribution of the predictor variables (Press & Wilson, 1978). Therefore, both methods were
applied to the data set to minimize the effects of distributional assumptions on the performance
of the reference classifier.

In addition, the performance of CART and CART-SC was compared with that of a fixed-
length assessment length reduction method. By means of receiver operating characteristic
(ROC) analysis, the best subscale and cutoff value for predicting depression diagnoses were
selected.

Accuracy was evaluated by calculating correct classification rates ([true positives + true
negatives] / total), sensitivity (true positives / [true positives -+ false negatives]), and specificity
(true negatives / [true negatives + false positives]) for every method. Efficiency was evaluated
by calculating the mean, the standard deviation, and the median of the total number of items
administered. Accuracy and efficiency were calculated separately for every node of the classifi-
cation tree, as well.

Software

R (R Development Core Team, 2010) was used for all analyses. For building the classification
tree, the party package (Hothorn, Hornik, Strobl, & Zeileis, 2012) was used, which provides an
implementation of the CART algorithm (Breiman et al., 1984) described earlier. The default set-
tings of the package were used. For LDA, the MASS package (Venables & Ripley, 2002) was
used. For ROC analysis, the ROCS (Sing, Sander, Beerenwinkel, & Lengauer, 2005) was used.
A custom function for SC by empirical proportions was written in R, following the procedure of
Finkelman et al. (2012), which was also described previously.

Results

A classification tree for depression classification was built using the training observations; the
resulting tree is presented in Figure 2. As can be seen in Figure 2, the first split was made on the
AD subscale. In every branch, an additional split was made on the AD subscale farther down
the tree. For the most severely depressed subgroup (branch most to the right in Figure 2, con-
taining observations with AD score >87), administration of the AD subscale was sufficient for
classification. For all other subgroups, administration of an additional subscale (GDD, GDM, or
GDA) was necessary to make the final classification decision. The AA subscale did not appear
in the tree, indicating that this subscale was redundant for depression classification.
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<=76 > 76
<=25 >25 <=87 > 87

<=44 > 44 <=27>27
10 (1] {13] 14

p=448| p=653| p=.779 | p= 561

Figure 2. Tree for classification of depressive disorders, with training set prevalences in final nodes.
Note: AD = anhedonic depression; GDD = general distress: depression; GDM = general distress: mixed; GDA =
general distress: anxiety.

To provide a benchmark for evaluating the performance of CART and CART-SC, ROC,
LDA, and LR analyses were performed on the training data set. ROC analysis of the training
data showed the AD subscale to discriminate best between depressed and nondepressed partici-
pants, with an area under the curve of .83. Maximum specificity and sensitivity for the AD scale
was observed for a cutoff value of 77, in the training data set. Using the AD subscale with a cut-
off value of 77 in the test data set resulted in a fixed assessment length of 22 items and a correct
classification rate of .73.

The accuracy of LDA and LR were very similar, therefore, only the results of LDA will be
discussed. Absolute values of standardized coefficients for the linear discriminant function ran-
ged from .31 to .75, with exception of the standardized coefficient for the AA scale, with an
absolute value of .06. This indicates that the AA subscale did not contribute to the prediction of
LDA. Therefore, the LDA model was rebuilt, using only the AD, GDD, GDA, and GDM sub-
scales. Using this model for prediction of test observations resulted in a fixed assessment length
of 60 items and a correct classification rate of .74 (Table 1).

To evaluate the performance of CART, observations in the test data set were dropped down
the classification tree, which resulted in an average assessment length of 31.06, a reduction of
48% compared with prediction by LDA using four subscales (Table 1). The distribution of
assessment length for CART showed negative skewness, with higher median than mean
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Table I. Assessment Length and Classification Accuracy in Test Data set (N = 1,798).

LDA CART CART-SC
Average assessment length 60.00 31.06 26.50
SD of assessment length — 1.22 5.46
Median assessment length 60 34.00 27.00
Proportion curtailed® — — 0.92
Correct classification rate® 0.74 0.76 0.76
Specificity® 0.75 0.71 0.71
Sensitivity® 0.72 0.8l 0.8l

Note: LDA = linear discriminant analysis; CART = classification and regression tree; CART-SC = classification and
regression tree with stochastic curtailment.

?Denotes the proportion of observations in the test set, for which at least | of the subscales was curtailed.
bAccur'acy figures are based on test data set, and were calculated with respect to the relevant MINI diagnoses.

(Table 1). The prediction accuracy of the tree was similar to that of LDA. The correct classifi-
cation rate for CART on the test data was .76, indicating that it performed slightly better than
did LDA (Table 1). Specificity of CART was slightly lower than that of LDA (.71 and .75,
respectively), whereas sensitivity of CART was notably higher than that of LDA (.81 and .72,
respectively).

Applying curtailment in every node of the CART tree resulted in an average assessment
length reduction of 15% compared with sequential testing with CART only, and 56% compared
with LDA using four subscale scores (Table 1). The distribution of assessment length for
CART-SC was symmetrically distributed (Table 1). Predictions for CART-SC were identical to
those of CART: Subjects ended up in the same nodes of the tree, with and without curtailment.
There was, however, one exception to this rule: One participant ended up in Node 5 in the cur-
tailed tree, but would have ended up in Node 4 in the original tree, due to an inconsistent
response pattern. However, this did not change the final classification (no depressive disorder)
for this participant.

Changing the item order within every subscale did not result in further reductions, but in
minimal increases in average assessment length. Ordering items within every subscale by item-
total correlations, and starting every subscale with the items showing the highest correlation to
the subscale score, yielded an increase in average assessment length of .13 items. Ordering
items within every subscale by entry order in a forward stepwise logistic regression yielded an
increase in average assessment length of .08 items. As these changes in assessment length are
minimal, they are not presented in Table 1.

For every final node in the classification tree, predictive accuracy and summary statistics for
the test length distributions of CART and CART-SC are presented in Table 2. Prevalence (the
proportion of participants diagnosed with depressive disorder) in every node was quite similar
in training and test data sets, indicating that generalization error is rather small (Table 2).
Largest assessment length reductions due to the application of SC were found in Nodes 4 and
6. These were the first and third largest nodes for the test data set and showed assessment
length reductions of about 22%.

Predictive accuracy showed some variation across the final nodes of the classification tree
(Table 2). Highest predictive accuracy was observed in the nodes with the largest number of
observations, Nodes 4 and 15. These two nodes comprised about 25% of all observations each
and showed predictive accuracy in the test data of .87 and .79, respectively. Lowest predictive
accuracy was observed in Node 10, one of the smaller final nodes, where the proportion of
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Table 2. Summary Statistics for Distributions in Final Nodes of the Classification Tree.

Assessment length

Number of observations Prevalence CART CART-SC

Node  Training set Testset  Trainingset  Testset  Accuracy” Average Average  SD

4 488 496 NN 13 .87 34.00 26.47 3.98
5 108 125 .30 29 71 34.00 32.44 1.18
6 278 285 .35 .34 .66 34.00 26.84 3.75
10 105 127 45 43 .57 37.00 33.59 1.84
I 72 58 .65 .62 .62 37.00 35.28 1.69
13 131 137 .78 .63 .63 33.00 31.08 1.24
14 123 104 .56 .65 .65 33.00 30.56 1.59
15 494 466 .84 79 79 22.00 19.46 1.56

Note: CART = classification and regression tree; CART-SC = classification and regression tree with stochastic
curtailment.

a . o
Accuracy equals prevalence for cases not classified as depressed and (I — prevalence) for cases classified as
depressed.

correctly classified observations in the test data set was .57 (Table 2). The characteristics of the
observations in this node were inspected, as this may provide an explanation for its relatively
low classification accuracy. The observations in this node showed above-average AD subscale
scores: AD scores in Node 10 ranged from 77 to 81, whereas the overall training set mean was
75.16. At the same time, the observations in this node showed relatively low GDM subscale
scores: GDM scores in this node were <44, whereas the overall training set mean was 40.76.
In other words, this group reported relatively high levels of depressive symptomatology but
moderate levels of general distress: a somewhat ambiguous profile, which may have resulted in
low predictive accuracy. Overall, the variations in predictive accuracy across the final nodes of
the classification tree were not specific to CART. The accuracies for LDA and LR in the sub-
groups defined by the final nodes of the classification tree were equal to, or slightly lower than,
that of CART.

Discussion

The results of the post hoc simulation show that the CART-SC algorithm provided a substantial
reduction in assessment length. CART-SC provided an average reduction in assessment length
of 61% compared with administration of the complete scale, a reduction of 48% compared with
LDA on four subscale scores, and a reduction of 15% compared with CART only. At the same
time, the classification accuracy of the curtailed tree proved to be identical to that of the uncur-
tailed tree and even slightly better than that of competitive classification methods (LDA and
LR). These findings indicate that CART-SC is an efficient and accurate sequential testing algo-
rithm that may prove useful for shortening test batteries for classification problems in
psychology.

The current study provides realistic estimates of accuracy and reductions in respondent bur-
den of CART-SC, as cross-validation was used to estimate classification accuracy of the
method. At the same time, the simulation was based on a real data set, which increases confi-
dence in the accuracy and reductions in respondent burden that can be obtained by using
CART-SC in applied settings.
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As the simulation shows, CART-SC may substantially reduce assessment length in mental
health care settings. In many other areas of applied psychology, CART-SC may prove useful in
reducing assessment length, as well. The efficiency of selection procedures in, for example,
school psychology or personnel selection may be reduced substantially by application of
CART-SC. In addition to shortening self-report questionnaires, CART-SC may also be used for
shortening other types of tests used for classification and selection, such as mastery tests or
neuropsychological test batteries. CART-SC may prove especially useful in settings where tests
or questionnaires are already administered by computer in, for example, Internet therapies
(computerized self-help interventions delivered by the Internet) or routine outcome monitoring
(repeated assessments for monitoring therapy effects in clinical practice; for example, De Beurs
et al., 2011). Moreover, it is expected that, in practice, a shorter assessment length will yield
better quality data (Galesic & Bosnjak, 2009; Herzog & Bachman, 1981).

As a sequential strategy for assessment length reduction, CART-SC provides some advan-
tages over adaptive testing strategies. First, CART-SC offers test results in the original metric of
the scale, which may ease interpretation for psychologists working in applied settings. Second,
with CART-SC, the item order of the original instrument can be retained, as the results indicate
that item order makes little difference for the performance of CART-SC, in terms of test length
and accuracy. In post hoc simulation studies of dynamic adaptive tests, item order is altered
after administration of the tests. In practice, changing the item order may result in changes in
response patterns, due to item order effects (e.g., McFarland, 1981). Therefore, the test length
reduction and accuracy estimates obtained in post hoc simulations may differ from the test
length and accuracy that would have been obtained by actual application of the adaptive testing
algorithm. For CART-SC, the original item ordering can be preserved in simulation and applica-
tion of the algorithm, and estimates of performance obtained in post hoc simulation may be bet-
ter generalizable to future applications of the algorithm.

It should be noted that although CART trees provide intuitively appealing structures, they
should not be used as a basis for substantial interpretation. Small changes in the data can result
in quite different tree structures, and two rather different tree structures may show equal predic-
tion accuracy on the same data set (Hastie et al., 2009; Hothorn et al., 2006). Nevertheless,
inspection of a tree structure may provide valuable information about the relative certainty of
the classification decision for a given participant. For participants in nodes with relatively low
predictive accuracy, the classification decision may be relatively uncertain and additional test-
ing or interviewing may be necessary. Or the tree structure may be used to indicate potential
further reductions in assessment length, by collapsing branches ending in final nodes with the
same classification decision. However, these final nodes may be retained to provide informa-
tion on the certainty of the classification decision made.

Several authors have noted that a potential pitfall of the CART methodology is overfitting: A
decision tree may adapt to the idiosyncrasies of the data set too much (e.g., Hand, 2006; Hastie
et al., 2009). In the current study, the statistical hypothesis testing approach of Hothorn et al.
(2006) was used to counter overfitting, and the data were divided into training and test sets to
obtain a realistic estimate of the generalization error. The prevalences in the final nodes of the
classification tree in training and test data sets indicated some generalization error, which may
have been the result of overfitting. However, classification accuracy was not influenced much,
as the classifications were correct for the majority of test observations in every final node.

A potential downside of SC may be that its predictive accuracy is determined by the predic-
tive accuracy of the test score of the full-length test. Relatedly, all item scores are weighed
equally and assumed to be equally important for determining the final classification. Items con-
tributing little to the predictive accuracy that may be filtered out by adaptive testing algorithms,
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may still be administered to many respondents when SC is applied, depending on the position
of the item within the test.

In the current study, only empirical SC has been used for shortening assessment length. As
suggested by Finkelman et al. (2012), logistic SC is a more rigorous curtailment algorithm,
which may result in shorter average test lengths and comparable accuracy, if y values are set
high enough. Therefore, in further studies, the performance of logistic SC within a classifica-
tion tree may be explored. Another direction for future research is the application of a unidi-
mensional classification CAT in every node of a classification tree: a CART-CAT, instead of a
CART-SC procedure.

In short, the current study has shown CART-SC to be an efficient and accurate method for
reducing assessment length in classification problems. It may prove useful in many applications
in psychology in which several subscales or tests are administered for selection and
classification.
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