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In 1994, on our way back from Luzern, waiting for a
flight from Ziirich’s airport I kept hacking on my pocket
calculator and Professor Konrad Messmer - startled —
asked what I was doing. I did not hesitate to explain and
ask for his permission to follow my plans to do a series of
measurements in an investigation already under way. Of
course, this included my asking him for funding. ‘Go
ahead’ was his answer without further questions. This
open, interested approach to every new possibility, every
problem posed is typical for Professor Konrad Messmer.
This started me off on a successful pursuit of questions
about non-linear phenomena in physiology. One of the
more general questions I will lay out in the following.

Not so many years ago, heterogeneity of cardiac perfu-
sion was thought to be a sign of coronary artery disease. In
reality, heterogeneity of organ perfusion is a necessary
adaptation to heterogeneous metabolism and has nothing
to do with disease. This knowledge has led to the desire to
adequately measure perfusion heterogeneity. But such a
measurement is far from trivial since results depend on
the resolution of measurement. The higher the resolution,
the larger heterogeneity will appear. In 1989, Bassingth-
waighte demonstrated that dependence of measured per-

fusion heterogeneity of resolution follows a non-linear law
[1]. The coronary vascular tree has a complex structure
the description of which is not possible with the means of
general Euklidian geometry. If, however, Mandelbrot’s
fractal geometry is applied, the coronary vessel tree lends
itself to classification as a self-similar, recursively con-
structed object [2]. Fractal geometry of the coronary vas-
cular tree and - in analogy — fractal geometry of heteroge-
neity of myocardial perfusion is standard knowledge.
Interestingly, fractals are considered a typical expression
of deterministic chaos as known in modern physics [3].
The question forming the basis for the hypothesis driving
our research was whether fractal geometry is an expres-
sion of deterministic chaos also in the case of myocardial
perfusion. In a series of projects we looked for signs of
deterministic chaos in heterogeneity of cardiac perfusion.
This question seemed to be relevant since other signals in
cardiac physiology display chaotic variability. The appli-
cation of modern chaos theory has led to eminent ad-
vances in the understanding of regulation of cardiac sig-
nals: reduction of chaotic heart rate variability has been
shown to precede serious cardiac dysrhythmias and to
imply reduced life expectancy.

In general language use, chaos is defined as ‘utter con-
fusion and disorder’ (MacMillan Contemporary Diction-
ary). Modern physics, however, does not consider chaos
to be confusion without rules. Chaos occurs in dynamic
systems that react sensitively to very small changes of
starting conditions. Thus, minimal changes of these con-
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Fig. 1. Example for a method to graphically detect chaos. Left panel:
linear representation of the function f(x): y =k - x - (1 = x), with k =
3.8. The result of the equation is repeatedly inserted as x in the next
calculation (logistic map). The graph of the function is non-periodic,
i.e. there are no repetitions. There is no random element in the equa-
tion, i.e. it is completely pre-determined. The function is chaotic.
Right panel: processes with unknown underlying functions can be
graphically examined using special representations. The ‘return map

ditions lead to great variation of results. Chaos theory was
not knowingly founded by E. Lorenz in the sixties of the
last century during his attempts to simulate atmospheric
flow with differential equations. Figure 1 shows a a simple
example of chaos. The quadratic equation

y=k-x-(1-%) (1)

defines an ordinary parable. This equation is often re-
ferred to as ‘logistic map’. y can be calculated with a set
value for k and an arbitrary x. The result, say yy, is taken
as x for a repeated calculation using the same equation —
one gets y,. This is done a great number of times, e.g. until
V1000 OT, generally, y,. Much like a microphone placed to
close to the speaker this mathematical coupling leads to a
loss of order. However, whether chaos or order occurs
depends on the parameter k in the equation. Figure 2
shows a part of the process that is described by equation 1.
Doing the series of calculations with equation 1 with the
parameter k set below 1 leads to a continuous series of
zeros as results (upper panel in fig. 2). If, however, k is set
between 1 and 3, the results swing about one single value
that is eventually reached and kept (second panel in
fig. 2). If k is greater than 3, stability disappears. If k
equals 3.2, there are two end-points that eq. 1 alternately
reaches (third panel in fig. 2). Letting k become greater
results in sudden doubling of the number of end-points of
eq 1. Sequentially, 4, 8, 16, 32, ... results can be observed.
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is shown here. The abscissa shows a value of the function at a certain
point. The result of the function is used to repeatedly calculate a
result which is then shown on the ordinate. Results of one function
are alternatingly displayed on the abscissa and the ordinate. This
graphical representation can give hints whether a function is chaotic
(as in this example) or whether there is periodicity, i.e. whether func-
tion values are exactly repeated excluding chaos.

If k is larger than approximately 3.57, there is a virtually
unlimited number of ‘end-points (or no end-point). No
periodicity of sequential results of eq. 1 can be discerned
(lower panel of fig. 2). The results of a series of calcula-
tions using the logistic map appear random - ‘chaotic’ -
but it is not! Everything is pre-determined with a simple
equation.The logistic map is far from being a mere mathe-
matical game. The logistic map is used by biologists to
understand the kinetics of seemingly random variations
of populations. Epidemiologists are enabled to under-
stand appearing and disappearing of epidemics. The logis-
tic equation is of central importance for chaos theory.
Using this equation, M.J. Feigenbaum at the Los Alamos
National Laboratory found a general structure in chaos,
hidden in the logistic map and in natural processes: the
interval of the parameter k in eq 1 that leads to one end-
point of a series of calculations is approximately 4.669
times as large as the interval that leads to two end-points.
This interval, in turn, is 4.669 times as large the interval
that leads to four end-points, and so forth.

In contrast to general language use, chaos displays the
following properties: (1) unpredictability (no random-
ness); (2) lack of periodicity; (3) limited range of possible
results; (4) non-periodic order (hidden structure); (5) sen-
sitive dependence on starting conditions.

We investigated regional myocardial perfusion in 28
anesthetized pigs. For measureing regional blood flow we
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injected radioactive microparticles (15 um diameter) that
embolize in small arterioles. In 23 animals we induced a
hemorrhagic shock and after 60 min resusciated with dif-
ferent therapeutic regimens [5, 6]. Five animals did not
suffer from shock and were observed for hours to guaran-
tee stability of the animal model. For this paper, we report
excerpts of the measurements under control conditions.
After completion of the experiments, hearts were excised
and the left ventricle was dissected into 102-204 speci-
mens. Regional perfusion was measured by quantifying
emitted radioactivity.

For appreciation of chaos in perfusion we developed
methodology that is based on graphically detecting aperi-
odic order that is not directly apparent in a chaotic signal.
Briefly, this is based on transforming the signal into a pre-
sentation with a different geometric dimension. For ex-
ample, the time-dependent variation of a variable may be
displayed as an irregular curve in a Cartesian coordinate
system with time on the abscissa. For detection of chaos
one transforms this one-dimensional signal into a two-
dimensional representation with consecutive data pints
given alternately on the ordinate and the abscissa, respec-
tively. An exemplary application of such a transformation
is given in figure 1, right panel. Ordinary methods for
examining chaotic dynamics are not applicable for three-
dimensional data sets that result from measuring three-
dimensional processes such as spatial distribution of re-
gional myocardial perfusion. New ways had to be found.

Following the criteria given above, chaos in myocar-
dial perfusion may be suspected since regional myocardial
perfusion is not predictable. This was shown by many
studies. Still, blood flow is not random, since heterogene-
ity of perfusion follows substrate needs of the myocar-
dium. Repetitions of certain patterns of perfusion — peri-
odicity — could not be found in our data. This has been
confirmed by other authors. The possible intervals of val-
ues of left ventricular perfusion is limited, variations from
25t0200% of the average value occur. These criteria have

Fig. 2. Different graphical representation of the equationy =k - x -
(1 - x) depending on the parameter k. The abscissae show the number
of iterations used. The ordinate gives the function value. Upper panel:
k is 0.8. After few iterations (almost) O is reached as an end-point.
Second panel: k is 2. The function value quickly becomes 0.5 an does
not change anymore. Third panel: k is 3.2. The function value varies
between two values: ~0.51 and ~0.8. A so called bifurcation has
occurred. The number of function end-points has doubled. As k is
increased, many more bifurcations occur. Lower panel: k is 3.8. An
unlimited number of ‘end-points’ (or no end-point at all) is reached
and there is no periodicity. No value is ever repeated exactly.
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Fig. 3. Distance dependent correlation of
regional myocardial perfusion. The x-axis
shows the spatial distance between myocar-
dial specimens in arbitrary units. The y-axis
gives the correlation coefficient (rho). The
four panels represent results of four typical
experiments (codes 5, 6, 9, and 16). In all

Exp 5

Exp 6

experiments the typical distance-dependent
pattern of correlation was observed. We in-
terpret this order as the hidden pattern in the

seemingly un-ordered distribution of perfu- 0 1
sion. This is evidence for chaos in regional
myocardial blood flow.

been observed before. A method to detect aperiodic order
of regional myocardial blood flow and proof for sensitive
dependence on initial conditions are lacking as yet. Heter-
ogeneity of blood flow is determined by fractal geometric
architecture of the coronary vascular tree. It follows that a
certain order must be given. This order is the similarity of
perfusion values depending on the number of coronary
vascular bifurcations occurring between feeding vessels of
myocardial samples. This order supports the assumption
of chaos in perfusion but is hidden by the inhomogeneity
of the dichotomous separation of blood flow at each of
numerous vascular bifurcations.

Spatially separated organ regions are perfused by arte-
rioles fed by larger vessels that have been separated by
one of the first bifurcations in the vascular tree. Perfusion
of spatially neighboring samples stems from arterioles
that have been separated in one of the later generations of
the vascular tree. The influence of spatial distance be-
tween myocardial samples on linear correlation (= self-
similarity) of perfusion can be quantified with spatial cor-
relation. To this end, a modified version of the linear cor-
relation coefficient (Pearson’s product moment correla-
tion coefficient) is used. Spatial correlation is a one-
dimensional parameter of three-dimensionally distribut-
ed regional perfusion. As described, to detect chaos a
transformation from one to a higher dimension should be
attempted. By calculating correlation (1. dimension) for
all possible distances between paired myocardial samples
and plotting it against distance (2. dimension) a repeating
pattern is obvious (fig. 3). In this order, we see proof for
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Fig. 4. Examination of sensitive dependence of heterogeneity of
myocardial perfusion on initial conditions. Distribution of organ per-
fusion was simulated using a computer model. The initial condition
to be varied was asymmetry of distribution of perfusion at vascular
bifurcations (BA). The coefficient of variation (CV) was calculated
for different (simulated) resolutions of measurement. From the
regression of the coefficients of variation of one data set at different
resolutions, the fractal dimension (D) can be calculated. One set of
symbols with corresponding regression line belongs to one run of the
model. The x-axis shows the natural logarithm (In) of simulated sam-
ple mass as a measure of resolution of measurement. The y-axis
shows the natural logarithm of coefficient of variation. In this loga-
rithmic representation, the coefficient of variation linearly depends
on resolution. The coefficient of resolution increases very strongly
with increasing resolution. This demonstrates sensitive dependence
on initial conditions.
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non-random order and an evidence for chaos in myocar-
dial perfusion.

Experimental proof of sensitive dependence on initial
conditions of myocardial perfusion is impossible due to a
vast number of confounding variables. Therefore, we
approached the problem theoretically using a computer
model. Using this model, we investigated the effect of
minimal changes of blood flow distribution at coronary
bifurcations on heterogeneity of myocardial perfusion.
Our hypothesis was that minimal asymmetry of blood
flow distribution would lead to strong heterogeneity, i.e.
sensitive dependence on initial conditions as postulated
by the assumption of chaos in myocardial perfusion. The
simulation produced uniform blood flow distribution if it
was run without asymmetry of distribution (1 ml/min in
each of 256 myocardial samples). We performed three
simulations for each of five asymmetry conditions. Each
coronary bifurcation was assigned a normally distributed,
random asymmetry. The mean value of the normal distri-
bution was 0 (symmetry). The standard deviation was a

parameter of the model and varied from 0.01 to 0.05 in
steps of 0.01.

The results from these simulations were strongly heter-
ogeneous distributions. Figure 4 shows coefficients of
variation and fractal dimensions of simulated data sets.
Change of asymmetry did not influence fractal dimension
D. D of simulated blood flow was between 1.18 £ 0.01
(asymmetry: 0.01) and 1.27 = 0.02 (asymmetry: 0.04). In
contrast, the coefficient of variation rose strongly from
13.4 £ 0.7% to 75.3 £ 4.5% if asymmetry was increased
from 1% (0.01) to 5% (0.05). We interpret strongly
increasing heterogeneity of simulated perfusion in re-
sponse to tiny changes of bifurcation asymmetry as sensi-
tive dependence of simulated myocardial perfusion on
initial conditions.

In conclusion, we have shown that heterogeneity of
myocardial perfusion is chaotic. Non-periodicity, hetero-
geneity, sensitive dependence on initial conditions, and
hidden order are properties of chaos that can be found in
distribution of myocardial perfusion.
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