Toll-Like Receptor Stimulation Induces Higher TNF-α Secretion in Peripheral Blood Mononuclear Cells from Patients with Hyper IgE Syndrome

Mehdi Yeganeh a, Philipp Henneke b, Nima Rezaei a, Stephan Ehl b, Doerte Thiel b, Nuria Matamoros d, Cristina Pietrogrande f, Teresa Espanol e, Jiri Litzman h, Jose L. Franco i, Ozden Sanal j, Sara S. Kilic k, Anna Breborowicz l, Alessandro Pleban i, Ellen Renner c, Simon Rothenfusser c, Thomas R. Hawn m, Cristina Woellner n, Bodo Grimbacher n

a Immunology, Asthma and Allergy Research Institute, Medical Sciences/University of Tehran, Tehran, Iran; b Center for Pediatrics and Adolescent Medicine, Freiburg University, Freiburg, and c Dr. v. Haunersches Kinderspital and Division of Clinical Pharmacology, Ludwig Maximilians University, Munich, Germany; d Servicio de Immunologia, Hospital Son Dureta, Palma de Mallorca, and e Immunology Unit, Hospital Vall d’Hebron, Barcelona, Spain; f Department of Pediatrics, University of Milan, Fondazione Polclinico IRCCS, Milano, and g Department of Pediatrics and Institute of Molecular Medicine A. Nocivelli, University of Brescia, Spedali Civili, Brescia, Italy; h Department of Clin. Immunol. Allergol, Masaryk University, St. Anne’s University Hospital, Brno, Czech Republic; i Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia, Medellin, Colombia; j Immunology Division, Hacettepe University Children’s Hospital, Ankara, and k Department of Pediatric Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey; l Department of Pediatric Pulmonology, Allergy and Clinical Immunology, 3rd Department of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland; m Department of Medicine, University of Washington School of Medicine, Seattle, Wash., USA; n Department of Immunology and Molecular Pathology, Royal Free Hospital and University College London, London, UK

Introduction

Hyper IgE syndromes (HIES) are rare primary immunodeficiency disorders characterized by the clinical triad of recurrent cutaneous abscesses, recurrent pneumonia and elevated levels of serum IgE [1]. HIES can be inherited as an autosomal dominant or recessive trait, however, most patients are sporadic. In addition to the aforementioned classical triad, HIES patients suffer of several other symptoms including progressive skeletal deformities and pathologic fractures, delayed secondary dentition, eczema, neonatal rash and autoimmune manifestations [1, 2]. The underlying pathogenesis of HIES still remains elusive, despite 4 decades of research since HIES was first described [3]. Recently, the gene encoding Tyk2, M.Y. and P.H. contributed equally to this work.

Key Words
Hyper IgE syndrome • Toll-like receptor • TNF-α

Abstract
Hyper IgE syndromes (HIES) are primary immunodeficiency disorders of unknown pathogenesis. Patients are typically affected with ‘cold’ abscesses of the skin, recurrent cyst-forming pneumonia, chronic mucocutaneous candidiasis and other less frequent features such as progressive skeletal abnormalities. Defective signaling in the Toll-like receptor (TLR) pathways has been suggested as a responsible pathologic mechanism, however, in previous reports, 10 patients revealed no defect in inflammatory cytokine responses to different TLR ligands. Here, we report the increase in pro-inflammatory cytokines TNF-α and IL-8, following TLR2 and TLR4 stimulation in a larger cohort of 25 additional patients with HIES, and provide a meta-analysis of the TLR data in HIES.

Copyright © 2008 S. Karger AG, Basel

KARGER
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

© 2008 S. Karger AG, Basel
1018–2438/08/1463–0190 $24.50/0
Accessible online at:
www.karger.com/iaa
TLR Stimulation and TNF-α Secretion in HIES Patients

Cytokine levels in 25 patients’ samples, including 12 males and 13 females, were compared to control samples from 15 sex- and age-matched healthy volunteers.

TLR Stimulation and Cytokine Assay

Whole blood EDTA samples were sent from participating centers to Freiburg with an overnight carrier. Peripheral blood mononuclear cells (PBMCs) were then immediately prepared without delay and specifically without freezing the cells. Human PBMCs were isolated by gradient centrifugation on Histopaque 1077 (Sigma-Aldrich) according to the manufacturer’s protocol. The cells were resuspended in RPMI 1640 medium containing 10% FBS and plated at a density of 2 × 10^6/ml in a 96-well dish. PBMCs were stimulated with the following reagents. Lipopolysaccharide (LPS) derived from *Escherichia coli* strain 0111:B4 (Sigma-Aldrich) was twice re-extracted by phenol chloroform. A clinical isolate of *S. aureus* was grown on blood agar plates (Remel). Bacterial colonies were removed from the plates after overnight culture, washed 3 times in PBS, and then used to inoculate RPMI and grown to midlog phase (ABS650 = 0.27–0.30). Subsequently, bacteria were harvested by centrifugation and ethanol inactivated (70% ETOH, 45 min, on ice), washed and resuspended in pyrogen-free water at a concentration of 20 mg/ml (corresponding to approximately 1 × 10^10 bacteria/ml as determined by CFU/ml before inactivation). Peptidoglycan from *S. aureus* was purchased from Sigma. Peptidoglycan was essentially free of LPS, since it did not activate TLR2−/− mouse macrophages that respond to LPS concentrations as low as 100 pg/ml. After addition of the indicated preparations, incubation proceeded for an additional 16 h at 37°C and 5% CO₂. Supernatants were collected and stored at −80°C until assayed with a commercial ELISA for human TNF-α and IL-8 (R&D Systems).

Wilcoxon W and Mann-Whitney U statistical tests were used to examine the results. p values less than 0.05 were considered significant.

Results

PBMC from 25 patients with the diagnosis of HIES were isolated and stimulated with *S. aureus* extracts, LPS derived from *E. coli* and peptidoglycan. After stimulation, culture supernatants were assayed for human TNF-α and IL-8 production by ELISA.

None of the patients had a loss of TNF-α or IL-8 production, indicating that in all patients tested, the TLR signaling pathway was not grossly ineffective. In fact, TNF-α production by patient cells was increased compared to controls in response to LPS, *S. aureus* and peptidoglycan stimulation (table 1). However, the rise in TNF-α level was significant only at higher concentrations of 10 ng/ml for LPS and at 1 × 10^8 CFU/ml for *S. aureus* (fig. 1; p < 0.05). IL-8 production after stimulation did not statistically differ between patients and controls (table 1; fig. 2).
We then attempted to perform a meta-analysis on TNF-α response with the data from previous studies [9, 10]. However, due to differences in the study design, only data from the study by Hawn et al. [9] could be compared with our data. In addition, it may be worth mentioning that the data by Hawn et al. [9] were obtained by a whole blood assay, whereas our data were collected by studying PBMCs. The combined analysis confirmed that TNF-α levels were considerably higher in patients than controls when stimulated with LPS 10 ng/ml (3,257 vs. 1,240 pg/
Discussion

We have evaluated the TNF-α and IL-8 response to various TLR ligands, and found it not to be deficient in cells from HIES patients. In contrast, we found that production of TNF-α was significantly increased following TLR2 and TLR4 stimulation.

Classical HIES is characterized by ‘cold’ skin abscesses and a lack of inflammation in patients. At the same time, the disorder has features which indicate a generalized inflammatory process. In addition, retained primary teeth and progressive skeletal malformations suggest defective osteohomeostasis.

TNF-α is a pro-inflammatory cytokine that acts as a key molecule in different inflammatory diseases [12]. In addition, it has been shown that TNF-α induces apoptosis in osteoblast and inhibits their differentiation [13, 14]. Furthermore, it has previously been shown that over-expression of Btk, a member of Tec family tyrosine kinases, enhances TNF-α and not IL-8 production in response to TLR2 and TLR4 ligands [15]. Given the different requirements of TLR signaling for cytokine production, the higher levels of pro-inflammatory cytokines in HIES might be due to an accessory pathway, as previously suggested [10].

In conclusion, we show that patients with HIES do not have a deficient TLR signaling pathway. In contrast, we found that mononuclear cells respond with increased TNF-α formation to TLR stimulation. Hence, an imbalanced inflammatory response to microbial stimuli might account in part for the pathology associated with HIES.

Acknowledgments

The authors are grateful to the patients who took part in this study. This work was supported by a DFG grant GR1617/3 to B.G., by DFG grants HE3127/2-3 and HE3127/3-1 to P.H., in part by grant No. NR/9192-3 of the Czech Ministry of Health, the Camillo Golgi Foundation from Brescia and the Italian Association of Primary Immunodeficiencies.

References

Table 1. Median of TNF-α and IL-8 production levels in response to TLR stimulation

<table>
<thead>
<tr>
<th>Stimulants</th>
<th>TNF-α, pg/ml</th>
<th>IL-8, pg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>patients</td>
<td>controls</td>
</tr>
<tr>
<td>LPS 1 ng/ml</td>
<td>691</td>
<td>446</td>
</tr>
<tr>
<td>LPS 10 ng/ml</td>
<td>3,257</td>
<td>1,418.5</td>
</tr>
<tr>
<td>S. aureus 1 × 10⁷ CFU/ml</td>
<td>5,434.5</td>
<td>5,372</td>
</tr>
<tr>
<td>S. aureus 1 × 10⁸ CFU/ml</td>
<td>11,520</td>
<td>5,806</td>
</tr>
<tr>
<td>Peptidoglycan 3 μg/ml</td>
<td>3,550.5</td>
<td>2,023.5</td>
</tr>
</tbody>
</table>

p values were calculated by nonparametric Mann-Whitney U tests.

