Bacterial Meningitis: The Role of Transforming Growth Factor-Beta in Innate Immunity and Secondary Brain Damage

Ursula Malipieroa Uwe Koedelb Walter Pfisterb Adriano Fontanaa

aClinics for Immunology, University Hospital Zurich, Zurich, Switzerland; bDepartment of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany

Key Words
Chemotaxis · Leukocytes · Endothelium · Vasculitis · Inflammation

Abstract
Project 6 of the NCCR ‘Neural Plasticity and Repair’ focuses on mechanisms of immunity and tissue damage in autoimmune and infectious diseases of the central nervous system (CNS). In one of the subprojects, the influence of transforming growth factor-\(\beta\) (TGF-\(\beta\)) on the immune reactivity of the CNS was investigated. In mice with \textit{Streptococcus pneumoniae}-induced meningitis, a deletion of TGF-\(\beta\) receptor II on leukocytes is found to enhance recruitment of neutrophils to the site of infection and to promote bacterial clearance. The improved host defense against \textit{S. pneumoniae} was associated with an almost complete prevention of meningitis-induced vasculitis, a major intracranial complication leading to brain damage. The data show that endogenous TGF-\(\beta\) suppresses host defense against bacterial infection in the CNS. This contrasts with findings from other body compartments that suggested that TGF-\(\beta\) is a powerful chemotactic cytokine and increases microbial clearance.

Transforming growth factor-\(\beta\) (TGF-\(\beta\)) controls proliferation, differentiation, and the function of many types of cells. By these activities, TGF-\(\beta\) plays a pivotal role in development, tissue homeostasis and tumor formation. The multiple actions of TGF-\(\beta\) also influence the function of the innate and acquired immune system. In this brief review, we describe the functional role of TGF-\(\beta\) in bacterial meningitis.

Bacterial Meningitis

At present, approximately 1.2 million cases of bacterial meningitis are estimated to occur annually worldwide resulting in 135,000 deaths. Bacterial meningitis is now a top 10 infectious cause of death worldwide and about half of the survivors have neurological sequelae of the disease. Despite antimicrobial agents and intensive care medicine, mortality and morbidity have remained high. With the introduction of \textit{Haemophilus influenzae} conjugate vaccines in the United States and Western Europe, \textit{Streptococcus pneumoniae} and \textit{Neisseria} meningitides have become the major causes of bacterial meningitis in these regions. The mortality rate associated with pneumococcal meningitis is about 20–35\% \cite{1} versus 15–30\%
for *Listeria monocytogenes*. An analysis of 87 consecutive cases that were treated in the Department of Neurology, Klinikum Grosshadern in Munich showed intracerebral complications to occur in 75% with seizures (28%), arterial cerebrovascular complications (22%), venous complications (10%), diffuse brain edema (29%), and hydrocephalus (16%) [2].

Clearance of bacteria in the central nervous system (CNS) which depends on a functional phagocyte system – polymorphonuclear neutrophils (PMN) and monocytes/macrophages – is limited due to low complement-mediated opsonic activity in the cerebrospinal fluid (CSF) and low complement C4 and C3 concentrations [3]. In meningitis, inflammation is seen in the meninges and leads to parenchymal damage in the brain and spinal cord, as evidenced by endothelial injury, increased vascular permeability, brain edema and neuronal damage. Bacterial cell wall components and toxins (released during antibiotic-induced or bacterial autolysis) enter into the CSF compartment and reach the interstitium of the CNS by paravascular fluid circulation. Besides the infectious pathogens, vascular damage and neurotoxicity are also caused by the host defense system. Recognition of microbial constituents is mediated through pattern recognition receptors of which Toll-like receptors (TLRs) are key participants [4]. TLRs recognize structural motifs referred to as pathogen-associated molecular patterns on the pathogens, a process initiating activation of PMN, monocyte-macrophages and natural killer cells. As a consequence, innate immunity results in the production of chemokines and proinflammatory cytokines [e.g. tumor necrosis factor (TNF-α), interleukin (IL)-1 and IL-6], which initiate endothelial cell damage, recruitment of PMN and monocytes into the meninges and CNS tissue, activation of both astrocytes and microglia cells, and neuronal damage. TLR2 recognizes the pneumococcal cell wall molecule lipoteichoic acid whereas TLR4 acts as a ligand for the pneumococcal cytotoxin pneumolysin [references in ref. 5]. Mice that lack either TLR2, TLR4 or their downstream adaptor protein myeloid differentiation factor 88 show reduced CSF PMN pleocytosis, less inflammation but severely impaired bacterial clearance [5]. The production of TNF-α, IL-1 and of the PMN chemokines MIP-2 and KC was significantly diminished [5]. Recent studies using anti-IL-6 antibodies and IL-6 gene knockout mice showed IL-6 to inhibit migration of PMN into the CNS but to promote vascular permeability, brain edema formation and rise in intracranial pressure [6]. In the breakdown of the blood-brain barrier nitric oxide plays a decisive role by modulating adhesiveness of PMN through inhibition of β2-integrin expression. Impaired nitric oxide synthesis in mice with a deletion of the inducible nitric oxide synthase (iNOS) results in aggravated CSF pleocytosis [7]. The extent of the inflammatory process is limited by counterregulatory cytokines, namely IL-10 and TGF-β, which deactivate neutrophils and macrophages. These cytokines interfere with production of neurotoxic molecules by phagocytes, which include radical oxygen intermediates, nitric oxide and proteases such as matrix metalloproteinases (MMP). MMP8 and MMP9 are up-regulated in the CSF in meningitis, MMP9 concentrations being higher in patients with secondary brain damage than in those who show complete recovery [8]. Besides MMP9, also high levels of the nitric oxide-induced oxidant peroxynitrite in the CSF are associated with an unfavorable outcome [9]. One of the pathways of oxidant-induced CNS damage includes poly(ADP ribose) polymerase, its deletion in mice improving the clinical score of meningitis [10].

TGF-β and Immune Response

TGF-β is part of the TGF-β superfamily, with additional members including bone morphogenetic proteins, activins and growth differentiation factors. From the three homologous TGF-β isoforms in mammals, it is TGF-β1 that is predominantly expressed in cells of the macrophage lineage such as microglia, whereas TGF-β2 and TGF-β3 are produced by astrocytes and neurons [11, 12]. TGF-β is secreted as a homodimer noncovalently bound to the latency-associated protein. TGF-β latency-associated protein may complex latent TGF-β-binding protein-1 via disulfide bonds. The active molecule needs to be released from latency-associated protein to mediate its functions via TGF-β receptor I (TGF-βR1) ALK-5 and TGF-β receptor II (TGF-βRII). The latter binds TGF-β with high affinity (fig. 1). In the case of TGF-β2, binding to this receptor requires the presence of TGF-βRIII, a membrane-bound betaglycan. Signaling is initiated upon binding of TGF-β dimers to the tetrameric ALK-5 and TGF-βRII, which leads to activation of TGF-βRI and thereafter phosphorylation of intracellular SMAD2 and SMAD3 [for review, see ref. 13]. TGF-β regulates T-cell survival, inhibits perforin and Fas ligand expression on CD8 T cells and converts CD4+ CD25- T cells into FoxP3 expressing regulatory T cells. Expression of a dominant negative form of TGF-βRII in CD4+ cells blocks TGF-β signaling in these cells and is associated...
Role of TGF-β in Innate Immunity in Bacterial Infections

Cells of the mononuclear phagocyte system and PMN mediate the innate immune response in bacterial infections. In S. pneumoniae infection, phagocytosis is mainly mediated by complement which interacts with CR3 and in part with CR1, CR2 and CR4. Neutrophil activation during phagocytosis of microbes leads to respiratory burst and production of radical oxygen intermediates by the NADPH oxidase of phagocytic cells. Protective microbicidal activity is mediated by radical oxygen intermediates and granule proteases including elastase and cathepsin G [16]. Activation of PMN and monocyte-macrophages results in the secretion of chemokines and cytokines, which recruit further phagocytes into the tissue and boost the inflammatory reaction. Recognition and uptake of apoptotic cells lead to TGF-β production by phagocytes, a process which depends on the presence of phosphatidyl serine in the cell membrane [17]. The classical view is that TGF-β counteracts the inflammatory response.

TGF-β suppresses: (1) the interferon-γ-induced macrophage activation including the CIITA-dependent induction of class II MHC antigens; (2) the production of expression of the proinflammatory cytokines IL-1β, IL-6 and TNF-α in activated microglia; (3) the production of MMP and of chemokines (MIP-1α, MIP-2) which are important in migration and chemoattraction of phagocytes to the site of infection; (4) the formation of oxidative response and thereby killing of intracellular bacteria; (5) the expression of the scavenger receptors CD3α and SR-A and of CD14; (6) myeloid differentiation factor 88-dependent TLR signaling, FcRI and FcRIII; (7) iNOS expression, thereby no production by phagocytes, and (8) IL-1-induced signaling by enhancing production of the IL-1 receptor antagonist.

These effects of TGF-β prevent both recognition and degradation of bacteria and interfere with microbe-induced proinflammatory activation of phagocytes [18–28]. Moreover, TGF-β inhibits lipopolysaccharide-induced septic shock in the mouse [29]. The effect of TGF-β also includes down-regulation of CD14 and binds the lipid A moiety of lipopolysaccharide, lipoteichoic acid and mycobacterial lipoarabinomannan. It is of note that CD14 activates the c-Jun N-terminal kinase, which is involved in expression of TNF-α, a major mediator of septic shock [21]. TGF-β inhibits TNF-α and MIP-2 production through the crosstalk between mitogen-activated protein kinase, specifically ERK-dependent inhibition of p38 mitogen-activated protein kinase caused by up-regulation of MKP-1 [30].

The picture of the function of TGF-β on cells of the macrophage lineage changes when analyzing the effect of the cytokine on peripheral blood monocytes. TGF-β is chemotactic for monocytes and activates the cells to express adhesion molecules (LFA-1, VLA-3, VLA-5) and Fc-γRIII, and to secrete IL-1 and TNF-α [for review, see ref. 31]. Thus, TGF-β deactivates tissue macrophages but activates blood monocytes. Similar to monocytes, TGF-β is also a potent chemoattractant for PMN. The complexity of actions of TGF-β on PMN, however, becomes evident when TGF-β is tested on endothelial cells. TGF-β inhibits its migration through TNF-α-activated endothelial cells in vitro and down-regulates E-selectin and VCAM-1 ex-
Thus, in bacterial meningitis TGF-β in its active form is produced in the course of the disease and inhibits at the level of PMN their migration into the CNS, a step required for successful elimination of *S. pneumoniae*. Whether TGF-β also counteracts phagocytosis and bacterial destruction by phagocytes remains open. However, since in phag-TGF-βRII−/− mice a two- to threefold increase of PMN in the CSF is paralleled by a 140-fold decrease of the bacterial load, it is possible that TGF-β acts at two levels: the migration process of PMN and the phagocytosis and killing process executed by PMN.

Impairment of PMN recruitment has been suggested in the following studies: (1) PMN adhesiveness to human umbilical vein endothelial cells is inhibited by TGF-β; (2) TGF-β coinfected intratracheally with lipopolysaccharide impairs the acute neutrophilic inflammatory response, and (3) injection of TGF-β into MRL/n mice reduces the recruitment of PMN in the thioglycollate-stimulated peritoneal exudate [35–37]. A different view on the effect of TGF-β on PMN recruitment has been reached in other experimental systems: (1) TGF-β is chemotactic for PMN and monocytes in vitro; (2) mice with a targeted disruption of the SMAD 3 gene – SMAD 3 binds to TGF-β receptors and mediates its signaling – impairs the chemotactic response of mutated neutrophils towards TGF-β; (3) injection of TGF-β into knee joints of rats leads to extensive recruitment of PMN and monocytes [38–41], and (4) TGF-β induces leukocyte recruitment and improves microbial clearance when administered via intrabronchial routes to rats with *Escherichia coli* pneumonia [42]. Our studies show unambiguously that in bacterial infections of the CNS, TGF-β impairs rather than stimulates PMN recruitment to the site of infection. In this context, it is of note that TGF-β₃ is elevated in the CSF of children with acute bacterial meningitis [43]. In this study, no correlation existed between TGF-β₃ levels and cell counts in the CSF on the one hand and between TGF-β₁ levels and subsequent development of neurologic sequelae on the other. However, only 5 out of 16 patients have developed major neurological complications. Thus, the number of patients is too small to allow a definite

Fig. 2. High numbers of leukocytes in CSF and low bacterial titers in the CNS of *S. pneumoniae*-infected phag-TGF-βRII−/− mice. The higher CSF leukocyte numbers are associated with reduced cerebellar bacterial titers, indicating an improved clearance of bacteria in phag-TGF-βRII−/− mice.

Fig. 3. Control mice infected with *S. pneumoniae* show widespread cortical and subcortical leukocytoclastic lesions (A), which are only occasionally observed in phag-TGF-βRII−/− mice (B). Immunohistology shows Gr1⁺ (C), CD11b⁺ (D), neutrophils (overlay E) in the meninges (arrowhead), in destroyed vessels (arrow) and in brain parenchyma of infected TGF-βRIIfloxfloxflox mice (C–F). F Nuclear stain with DAPI.
conclusion. In fact, the data do show a tendency for TGF-β to be high in patients with low leukocyte numbers and high protein content in the CSF.

Bacterial Meningitis in phag-TGF-βRII−/− Mice: Combination of Increased PMN and Decreased Numbers of Bacteria in the CNS Prevents Secondary Brain Damage

In the experimental meningitis model which we used to delineate the function of TGF-β, mice were inoculated with *S. pneumoniae* type 3 and 24 h later treated withceftriaxone. Two days after infection, control mice developed multifocal intracerebral cortical and subcortical leukocytoclastic vasculitis of the small veins (fig. 3A, B) and blood-brain barrier damage with increased brain albumin concentrations and intracerebral pressure [44]. In phag-TGF-βRII−/− mice, vasculitis was one tenth as pronounced, the rise of intracranial pressure and albumin significantly reduced, and the clinical course of the disease much less severe [44]. Thus, despite pronounced CSF pleocytosis, neither vasculitis nor secondary brain damage occur in the absence of TGF-β signaling in phagocytes, and no signs of macrophage or PMN hyperreactivity were found. Likewise, no abnormalities were detected in coagulation assays. In the light of numerous reports on deactivation of phagocytes by TGF-β it is remarkable that there are no signs of a failure to control PMN and macrophage activity when the cells are not provided with TGF-β signaling. In this context it is of note that in TGF-β1 gene knockout mice, the ‘spontaneous’ inflammatory reaction which is observed in different organs is accompanied by increased expression of TNF-α, IL-1β and iNOS. High level of expression was associated with increased TLR4 mRNA expression, the respective receptor mediating NF-κB-dependent activation of proinflammatory cytokines and iNOS [45].

Animal studies of pneumococcal meningitis show an association of low initial CSF leukocyte counts with high bacterial titers, development of intracranial complications and unfavorable outcome [46, 47]. The rise of both the intracranial pressure and the CSF protein concentration in pneumococcal meningitis in rabbits was also observed in neutropenic rabbits [48], which suggests that secondary brain complications are generated by interaction of the infectious agents with endothelial cells and/or brain parenchymal cells. Likewise, in patients with bacterial meningitis brain damage is significantly more frequent in those patients showing a low CSF pleocytosis and high bacterial numbers [2, 49].

Future Roads to Go in the Treatment of Meningitis

The phenotype of phag-TGF-βRII−/− mice observed upon infection with *S. pneumoniae* gives rise to the hope that, by blocking TGF-β effects on innate immunity in the CNS, the clinical course of disease may be improved and the risk of secondary brain damage diminished. Different strategies can be envisaged: inactivation of TGF-β by TGF-β-binding proteins such as decorin, by antibodies against TGF-β and TGF-β receptors, by inhibition of TGF-β signaling via serine/threonine kinase blockers and by overexpression of Smad7 (fig. 1). Thus, as a first step before going into clinical studies, antibodies to TGF-β, or to its receptors or small molecules which interfere with the kinase activity of the receptor, will be studied for their effectiveness in experimental bacterial meningitis.

References

TGF-B, Host Response and Meningitis

