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Abstract 

The present work concerns a systematic investigation of power sector portfolios through discrete 

scenarios of electricity and CO2 allowance prices. The analysis is performed for different prices, 

from regulated to completely deregulated markets, thus representing different electricity market 

policies. The modelling approach is based on a stochastic programming algorithm without 

recourse, used for the optimisation of power sector economics under multiple uncertainties. A 

sequential quadratic programming routine is applied for the entire investigation period whilst the 

time-dependent objective function is subject to various social and production constraints, usually 

confronted in power sectors. The analysis indicated the optimal capacity additions that should be 

annually ordered from each competitive technology in order to substantially improve both the 

economy and the sustainability of the system. It is confirmed that higher electricity prices lead to 

higher financial yields of power production, irrespective of the CO2 allowance price level. 

Moreover, by following the proposed licensing planning, a medium-term reduction of CO2 

emissions per MWh by 30% might be possible. Interestingly, the combination of electricity prices 

subsidisation with high CO2 allowance prices may provide favourable conditions for investors 

willing to engage on renewable energy markets.   
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--------------------------------------------- 

<Insert nomenclature table about here> 

1. Introduction  

Optimal expansion planning of electricity production has been an important goal for grid 

designers, energy policy makers, operational researchers and economic analysts. The incomes 

from electricity selling to the grid, as well as the power production costs, both determine the 

economics of the power sector, though to a different extent. The compensation of the electricity 

producers depends on the System Marginal Prices (SMP), which are announced by the grid 

operators based on the market dynamics. On the other hand, the costs of power production may 

depend on the installation of mature but proven workhorse technologies or, on the displacement 

of obsolete plants by emerging eco-friendly technologies necessitated by the recent 

environmental directives. The fuel costs and the power loads demanded by the end-users may 

additionally impact the aggregate power production costs. Moreover, the economics of the power 

sector depend on the current generation mix thus leading to initiatives related with its expansion 

planning. Such initiatives may include deregulated pricing policies as well as the determination 

of capacity shares from each competing technology.  

Electricity production planning may be influenced by interventions on licensing policies, fiscal 

conditions and price volatility. The evaluation of policies used for the assistance of project 

designers usually requires the discounting of future incomes and expenses. The Discounted Cash 

Flow (DCF) method has been extensively used in past energy investment studies. These were 

characterised by incorporating arbitrary values of risk premium in the interest rates, which were 

assumed to remain constant throughout the projects’ operational life time. In practice, high values 

of interest rate were used and moreover, immediate investments were considered.  

Modern business plans have focused on time-varying methods and therefore, previously 

irreversible investment decisions are progressively replaced by flexible planning, subject to 

optimisation processes. Thus, the minimisation of production costs and the determination of the 

optimal generation mix may be inquired over time. Significant contributions on power sector 
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portfolio analysis and optimisation have been recently available, focusing on non-probabilistic or 

probabilistic models [1, 2] for the representation of multiple uncertainties, usually confronted in 

energy investment analysis, expansion planning and the related CO2 mitigation strategies. 

With these advances on hand, the analysis of energy investments may now utilise powerful 

computational tools applicable for many case studies. The present article addresses the case 

of the Greek Power Sector. The capacity additions -recently installed and connected to the 

national grid- have been questioned for their environmental implications and financial 

performance, especially when considered in the context of the EU emissions trading system 

(EU-ETS), which has set the rules of the emissions’ trading market. On the other hand, the 

power demand is marginally served in peak seasons (e.g. in temperature extremum) thus 

stressing the underlying grid commitment issues. Moreover, the Greek Power Sector has 

been criticised for not complying with the emission constraints, set for its power generation 

mix. Therefore, an urgent need has emerged for a thorough analysis of the Greek Power 

portfolio aiming at the minimisation of the aggregate production cost, while keeping the 

power supply failures (system black-outs) to a minimum and complying with the European 

environmental constraints. This type of analysis may also contribute to the identification of 

investment opportunities based on emerging technologies. Attractive projects might then be 

realised, given that an admissible modelling of electricity and emission allowance pricing is 

available.  

The objective of the research is the assessment of the impact of electricity and CO2 

allowance prices to the future structure of the Greek Power Sector. The ultimate goal is the 

determination of the optimal generation mix which is inquired on an annual basis in order 

to set the power licensing policy for the oncoming 25 years. Four different electricity price 

scenarios are investigated: a) Prices regulated and evolving according to stochastic inflation rates, 

b) deregulated and simulated through random walk process based on historical data, c) semi-

regulated to the extend that the prices for conventional producers are deregulated and 

stochastically evolving according to historical data, while the prices for renewable energy 

producers are fixed and evolving according to stochastically evolving inflation rates and d) semi-

regulated to the extend that the prices for conventional producers are deregulated and 
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stochastically evolving according to historical data, while the prices for renewable energy 

producers are fixed and follow the drift of the conventional prices. Furthermore, two scenarios of 

CO2 allowance prices evolution are assumed thus dealing with the uncertain behaviour of 

emissions trading markets: I) The allowance prices regress around their current levels by 

following a random walk process and II) the allowance prices revert to a long-run mean of 31 

Euros/tn CO2. The above 8 scenarios (A,B,C,D) – (I, II) may be interesting for policy makers 

willing to provide optimal electricity production in terms of system economics and anticipated 

CO2 emissions, while meeting the power demand targets and complying with the imposed 

market and environmental constraints. 

Apart from the analysed pricing impact in optimised expansion planning, the contribution of the 

present study also lies on the non-linear stochastic programming approach, the utilised constraints 

as well as on the statistical analysis of the results. The above will be analysed in detail in the next 

sections, which are essentially structured as follows: In Section 2, the related recent studies are 

presented. In Section 3 a description of the case study is given and the mathematical modelling of 

the problem is formulated. The technical details of the numerical algorithm and the input data are 

described in Section 4. Section 5 includes the results of the numerical experiments conducted, 

with critical comments on the relevant graphical representations. A statistical error analysis of the 

results is performed in Section 6 to validate the model’s reliability. Finally, in Section 7 the 

concluding remarks of the research are summarised.  

 

2. Background 

2.1 Power portfolios, electricity pricing impact and risk analysis  

Bar-Lev and Katz (1976) [3] introduced the mean variance portfolio analysis in fossil fueled 

Power Sector. More recent research [4, 5, 6] extended the analysis to various power expansion 

mixes. Focus on mean-variance portfolios has been shown in some applications testing different 

risk measures [7, 8]. Mean-variance frameworks have been proposed to address the energy 

portfolio planning and the optimal allocation of positions in peak and off-peak forward price 

contracts [9]. It has been shown that optimal allocations are based on the risk premium 
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differences per unit of day-ahead risk as a measure of relative costs of hedging risk in the day-

ahead markets. The influence of the risk management has been also analysed in further studies 

concerning either solely electricity production or multi-objective functions comprising of 

combined heat and power production [10, 11]. Multiple objectives have been also addressed in 

some case studies of discrete regional power portfolios under demand uncertainty [12, 13]. In 

[13] the multi-objective function was extended by assigning cost penalties to non-cost attributes 

to force the optimisation to satisfy non-cost criteria, while still complying with environmental 

and demand constraints. The impacts of uncertain energy prices on the supply structures and their 

interaction with the demand sectors have been analysed in the work of Krey et al. (2007) [14]. 

Decision support tools have been developed [15] seeking for globally optimal solutions, taking 

into account financial and economical conditions and constraints imposed at an international 

level.  

The analysis of individual power-plant strategies (i.e. [16, 17, 18]) as well as the optimisation of 

power expansion planning (i.e. [19, 20, 21]) might be separated in two discrete research 

categories. The present study might be classified in the latter category in which the optimal 

structure of power generation may be inquired, though considering individual investment 

opportunities in a broader sense: Suboptimal generation mixes imply that individual plants might 

sometimes operate under imperfect financial conditions. On the contrary, compliance with 

optimal investment timing might lead to optimal system NPV thus allowing significant profit 

chances for individual players. The optimisation of energy portfolios relies on the determination 

of the objective function representing the aggregate Net Present Value (NPV) of the system 

(Power Sector). This function has to be optimised while being subject to an appropriate set of 

constraints. The resulting optimal point determines the power generation mix for which the 

aggregate system NPV is maximised, thus indicating the optimal investing time as well as the 

upper bound share of capacities from each technology, allowed to be ordered in a specific time 

point.  

The optimisation of the power generation mix may entail complicated algorithms for handling the 

non-linear functional relationships of multi-variable sets and constraints. Multiple uncertainties 

may be introduced as inputs, whilst the Lagrangian functions usually become discontinuous due 
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to various conditional algorithmic statements, thus inhibiting smooth, global results. Reliable 

trust-region algorithms have been recently available [22, 23] thus allowing more accurate results 

within acceptable computational times. They are widely used in operational research applications, 

but the competing Sequential Quadratic Programming (SQP) solvers may outperform them both 

in terms of accuracy and reliability. SQP routines are based on the solution of the Karush-Kuhn-

Tucker (KKT) equations [24] which are comprised of a combined Lagrangian formulation of the 

objective function and the constraints set. The SQP solvers are used in order to approximate the 

KKT equations with a convex quadratic formulation, thus ensuring continuity. Moreover, 

convexity constitutes both necessary and sufficient condition for the KKT equations to be 

resolved thus leading to global optimisation of the quadratic approximation. An overview of the 

KKT equations and details of the computational SQP solvers may be found in Fletcher, (1987) 

[25] or Biggs and Hernandez (1995) [26], but they are also outlined here in Appendix A. 

In the present research, a non-linear SQP routine is embedded in a stochastic programming 

algorithm without recourse. This method leads to a single strategy for the entire time horizon, 

operating on the average of all the stochastic input future states. The stochastic programming 

approach has been effectively used in past and recent researches of power generation planning 

under uncertainty [13, 21, 27, 28]. The research analysed in [13] in particular, comprises of a 

stochastic programming algorithm with recourse, thus embedding the uncertainties’ modelling in 

the optimisation iterations. Nonetheless, linear solvers were mainly used in the above studies, 

instead of the non-linear SQP solver implemented in the present research. Moreover, different 

objective functions and constraints are used here, approaching the environmental limitations, the 

emissions trading system, as well as the stability and the reliability of the grid.    

2.2 Time dependent investments under uncertainty 

The analysis of power sector portfolios under multiple uncertainties may depend on the evolution 

of various stochastic variables, which determine the efficiency of energy investment 

opportunities. Various computational algorithms have been recently applied for the representation 

of stochastically evolving variables. The autoregressive models [29] are mainly used for the 

simulation of stationary and non-stationary time-series, whilst the random-walk algorithms [30], 

including Ito and Ornstein-Uhlenbeck processes, may be considered as particular cases of 

http://www.google.com/search?hl=el&rls=com.microsoft:el:&rlz=1I7SNYJ&ei=1-8cSvrhCpSysgb5yez9Cg&sa=X&oi=spell&resnum=1&ct=result&cd=1&q=Ornstein-Uhlenbeck&spell=1
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autoregressive models when dealing with discrete time. In computational practice, the above two 

processes are applied through the Geometric Brownian Motion (GBM) and the mean reverting 

(MR) models respectively. The Cox Ingersoll Ross (CIR) and the Vasicek models [31, 32, 33] are 

mean-reverting derivatives mainly used for the prediction of interest and inflation rates. The 

accuracy and the computational cost of the above mentioned random-walk algorithms may 

depend on the utilised solvers which are basically comprised of Euler-Marujama routines [34, 

35]. Moreover, they may depend on the number of a Monte-Carlo solver trials [36] used to 

average the multiple lognormal solutions set.  

Among the stochastic variables commonly seen in the analysis of energy investments, the 

electricity prices, the fuel and the CO2 allowance prices as well as the energy demand, represent 

the most significant business, and/or climatic uncertainties [17, 37, 38, 39, 40, 41]. GBM and MR 

models have been recently applied for the representation of the evolution of stochastic electricity 

prices [17, 21, 42]. The discounting factor and more specifically the interest rates may introduce 

additional uncertainties in the model. Ingersoll and Ross (1992) [33] and Tolis et al. (2010) [43] 

suggest that the interest rate volatility may be an important factor for the investment decision. In 

the review of Dias and Shackleton (2005) [44] switching between the options to invest or 

disinvest is analysed considering different methods of stochastically evolving interest rates: the 

(CIR) model and the Vasicek model. In more recent studies [45] it is argued that the simulation 

of interest rates may contribute to the elimination of arbitrary risk premium assumptions, mainly 

within the framework of real-options models. The capital costs may decrease over time due to the 

global experience on similar projects, introducing further time-dependent characteristics in the 

analysis of energy investments [21, 46, 47].  

 

3. Modelling approach 

3.1 Uncertainties modelling and assumptions  

In the present research, forward contracts have been considered for the prices of electricity selling 

to the grid. Forward prices may not contain information about the very short term variations of 

the underlying spot prices as the latter are averaged over discrete time intervals [48]. Both spot 
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and forward prices are characterised by normally distributed variations (noise) as observed in the 

raw data sets retrieved by the Greek System Operator [49]. Based on the fact that the GBM and 

the MR processes require normally distributed Brownian differentials, it is assumed that:  

A- The evolution of forward prices is represented through random walk processes (GBM/MR). 

GBM and MR models have been adopted in several past researches for the representation of the 

evolution of forward electricity prices, thus considering the absorption of jumps and spike 

processes over time [16, 50, 51]. Either endogenous [17] or exogenous [21, 42] modelling of the 

evolution of spot electricity prices through GBM or MR processes have been adopted in past 

studies, indicating a wide range of applications. It has been shown that the impact of investors’ 

actions on electricity prices is minimised [48, 52] when multiple investors are considered, 

provided that the following two assumptions are additionally made:  

B- Market equilibrium is considered.  

C- The investors’ profit is a direct function of electricity prices.  

In the present work the above assumptions have been also adopted and therefore, the effect of 

multiple investors’ actions on the evolution of forward prices has been considered to be minimal. 

However, the dynamics of the electricity prices evolution may additionally depend on the 

evolution of the remaining stochastic commodities for which uncertainty may be introduced: fuel 

and CO2 allowance prices, electricity demand as well as interest and inflation rates.  For this 

reason, a correlation of all the participating Brownian differentials has been performed, thus 

permitting some form of endogenous modelling of the uncertainties. The required statistical 

factors of data correlation have been extracted from the historical data of the stochastic variables 

whilst a similar procedure has been followed for the mean drift and the volatility parameters as in 

Clewlow and Strickland (2000) [53]. 

The evolution of the stochastic variables is based on the numerical solution of the corresponding 

Stochastic Differential Equations (SDE). GBM models are used when the past data fail to 

converge to a long run mean, whilst MR models are used in the opposite case. The evolution of 

the interest rates is represented through a CIR model, which is an MR derivative, suitable for 
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producing non-negative forecasts, as required in real world interest rates. The entire Monte-Carlo 

approximation of the underlying uncertainties is comprised of the following two steps: a) 

producing multiple SDE solutions using an Euler-Marujama solver and b) averaging the multiple 

solution sets; the average path of each variable is further introduced as input in the optimisation 

algorithm. The above process precedes the optimisation algorithm, thus allowing the reduction of 

the floating point operations during its iterative numerical processes. Alternatively, one may run 

the optimisation code for each one of the multiple input combinations of SDE paths, requiring an 

excessive number of complete optimisation cycles. However, this option, namely a stochastic 

programming algorithm with recourse [13, 42] has not been the approach of the present work. 

Various reasons like the numerous variables, comprising of long-term investment horizon (>40 

years) for various technologies, as well as numerous non-linear constraints, promoted the 

decision for the final simplified approach, namely a stochastic programming algorithm without 

recourse.  

3.2 An overview of the case study  

The Greek power sector is the market under uncertainty for which an optimal structure is sought, 

in terms of energy production and fuel sources. A variety of technologies are examined to form 

the optimal portfolio. Existing base-load technologies (mainly fossil fuelled) and competing 

emerging technologies (mainly based on renewable sources) are considered as potential 

contributors to the power generation mix. The objective function is comprised of the aggregate 

benefit from electricity selling to the grid, subject to environmental constraints and State 

regulations. The stability of the grid, the total power demand, and the availability of energy 

sources are additional targets to be met. Four different scenarios are investigated in order to 

assess the impact of electricity prices evolution:  

a) electricity prices regulated: evolving according to inflation rates, 

b) electricity prices deregulated: forecasted according to a stochastic procedure and based on 

historical data, 



10 
 

c) electricity prices semi-regulated: prices of conventional producers are deregulated and 

stochastically evolving according to past data, while the prices for renewable energy producers 

are contractually fixed and evolving according to inflation rates  

d) electricity prices semi-regulated: prices of conventional producers are deregulated and 

stochastically evolving according to past data, while the prices for renewable energy producers 

are contractually fixed and follow the drift of the conventional forward prices.  

The above electricity prices are further processed in order to form the forward prices evolution 

paths, required for the optimisation model. Apart from the electricity price uncertainty, a non-

stationary behaviour has been modelled for the CO2 allowance prices, by assuming two discrete 

scenarios: 

I) CO2 allowance prices regress around their recent observations slightly increased in the long 

term, 

II) CO2 allowance prices regress around a higher long run mean (31 Euros/tn CO2) with a 

moderate mean-reverting speed.  

3.3. Mathematical formulation 

The context of the study is the existing power sector, in which the prices of electricity, fuel and 

CO2 allowances as well as the inflation rates are assumed to evolve through random walk (GBM) 

processes, as formulated by the following equation 1:     

    )(    dWt V)D(t, A dt A(t)dA tttt                                     (1) 

where by At, the above mentioned stochastic variables are denoted using a generic notation. The 

evolution of the risk-free interest rates is represented through the Cox-Ingersoll-Ross (CIR) 

model (equation 2), resulting to non-negative forecasts. This is ensured by the component (rt
1/2) 

which is included in the diffusion vector function (D): 

 )(
21

      dWtV)D(t, r] dt [L(t)-r(t)dr t
/

ttt                             (2) 
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The use of stochastic interest rates contributes to the endogenous modelling of the multi-

variate problem by avoiding arbitrary assumptions and this may have direct implications 

on the financial results, as explained in [43]. Investing in the electricity market may 

incorporate some risk. An approximation of the risk uncertainty may be derived from the 

combined simulations of the underlying fiscal uncertainties, thus reflecting the difference 

between a stochastic NPV calculation (with optimised investment entry times) and a traditional 

DCF calculation. In the present study, the discounting factor Dz is calculated using the above 

non-constant, risk-free interest rates (equation 2) and a discrete discounting formulation: 

  



z

t

tz rD
1

1)1(                                                             (3) 

The independent variables of the optimisation problem are comprised of the capacities ordered in 

the year v (Xi,v in MW) and the load factor しi,z of the operational power plants during year z (z≠v), 

for power plants of technology i. しi,z is a dimensionless factor representing the usage intensity of 

power plants i.e. the actual operating time over the annually available time. 

A detailed modelling of the capacities installed in different time spots is further required. Thus, 

the capacity additions (either ordered in the past or planned for the future) may be linked with the 

currently installed capacity (Li,z in MWel) using the following formulation:  
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The dashed symbols denote the capacity additions that have already exceeded their operational 

life time. With the above relationship it is ensured that the plants exceeding their operational life-

time, may not contribute anymore to the power production process. The electricity energy 

production P i,z (P i,z in MWhel) represents the aggregate energy produced by the operational power 

plants of type (i) during year z:  
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i,zaaLP iciazizizi           8760 ,,,,,                                        (5) 

This is further used in the discrete optimisation as a factor of the incomes and the expenses 

contributors. The objective function represents the NPV of the system and includes the aggregate 

incomes (electricity selling and emissions trading) and expenses (fixed costs, variable costs, 

emission allowances, investment costs etc.) in present values. Its mathematical formulation may 

be represented by the following equation 6: 
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where the factor Dz is calculated using equation 3. A more detailed expression of equation 6 can 

be seen in Appendix A (equation A5) where all the different contributors of the NPV function are 

analytically expressed in relationship with the requested capacity orders. One may notice that the 

maximisation of the aggregate system NPV is required instead of the minimisation of the 

aggregate power production cost, thus allowing the estimation of the anticipated profits or losses.  

Concerning the energy produced in excess to the demand, it is noted that this condition may 

occasionally occur during the numerical iterations of the optimisation algorithm until it converges 

to an optimal solution. In the present research, any excessive energy produced is assumed to have 

zero (income) value, as it cannot be exploited by the system. On the other hand, the production 

costs of the non-served energy, contribute (being a part of the expenses) in the NPV objective 

function and therefore they are always calculated (equation 6). As a result, the optimisation 

algorithm tends to eliminate any excess energy production, by iteratively attempting to reduce the 

overall system costs. 

The last two terms in equation 6 represent the emissions trading costs and revenues respectively. 

The expenses of the required emission allowances for conventional power plants are represented 

by the left term with the (-) sign. The revenues are represented by the right term with the (+) sign 
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and correspond to the incomes from trading the emission allowances generated by using 

renewable energy sources. They result from the multiplication of the renewable energy generated 

with the emissions factor of the current conventional generating mix and the allowance prices.  

The emissions factor of the current conventional mix, denoted by the fractional term
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implies the assumption that the renewable energy generated, replaces energy that would 

otherwise be produced by the conventional generation mix of technologies of the country.  

The fixed costs as well as the logistical fuel costs (only for those fuels with no available historical 

data) are approximated by compounding their present values in the future using the stochastically 

(GBM) evolving inflation rate: 
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In this study the past capacity additions of the last 40 years are taken into account due to 

unavailability of older data. The unitary investment costs Ii,v, of a power plant type (i) ordered in 

the year (v) depend on the technical advances arising from long periods of cumulative experience 

on construction of such power production units in the domestic market. This can be 

mathematically formulated as follows: 
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The capital costs of the year 2009 are used as a reference value (Ii,0) for each technology (i). 

The objective NPV function of equation 6 is subject to the following constraints:  
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1) Non-negativity constraints:  

The factor (しi,z) may take values in the range:  10 ,  zi  (しi,z = 0 means a non-operational power 

plant whilst しi,z =1 implies the maximum operational time in the year z). Moreover, the annual 

capacity orders for new power plants Xi,v should be positive numbers: Xi,v >0, vi, . 

2) Natural resource availability:  

The plants from each technology may not produce more cumulative power than the maximum 

energetic potential of the corresponding natural resources, domestically available: 

 
izi EnL ,
          zi,                                               (10) 

 where the aggregate installed capacity of technology (i) (Li,z) is calculated using equation 4.  

3) Demand Constraints 

Meeting the demand target is a basic condition ensuring social acceptance of power production at 

a national level. The rationale for this constraint was based on the assumption that a possible 

generic failure of power supply (system black-out) would result to an excessive social cost. This 

case should be avoided in the expense of additional capacity orders causing a system NPV 

reduction. Therefore the average annual electricity energy production is assumed to be at least as 

much as the simulated annual electricity energy demand projection. This constraint can be 

mathematically formulated as follows: 
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An additional reliability requirement may be imposed by stating that the installed capacities 

should be able to serve the peak power demand. In that case the availability and the intensity 

factors have been considered to be equal to 1, meaning full-load operating conditions with 

guaranteed fuel availability. However, this may not be the case for the wind turbines and the 

photovoltaic (PV) plants as they certainly depend on meteorological conditions, which are 

unpredictable in the medium term. Based on past observations, the peak-power spots generally 
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follow a linear trend and therefore have been linearly projected to the future. An additional safety 

factor has been further multiplied to the projected peak-power demand in order to account for the 

possibility of some plants’ failure or fuel unavailability [13, 21]. The mathematical formulation 

of this constraint is represented in equation 11b: 
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The above two-fold demand constraints (11a - 11b) might be able to model any possible case of 

the system’s reliability limits (either total energy or peak power) depending on which constraint 

proves to be stricter.  

4) Grid Stability 

Some power generation technologies, which strongly depend on weather conditions, might 

constitute a base-load solution in the long term (i.e. photovoltaic and/or wind farms). However, 

despite their certain advantages (short setup periods, zero emissions, zero fuel requirements) they 

often suffer from unavailability of natural resources. These –occasionally unpredictable– 

conditions might impact the stability of the national grid and the reliability of power supply. 

Also, despite the fact that there is no consensus on the maximum allowable percentage of 

renewable energy sources to secure the grid stability, scientists agree that there is currently an 

upper limit on renewable power infusion to the grid [54]. For this reason a constraint is imposed 

ensuring that the total energy production from these specific types may not exceed 50% of the 

total energy demand:  
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5) Environmental constraints
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These are obligatory constraints applied in every country participating in the Kyoto Protocol. 

Greece is required to meet the following targets

 

imposed by the EU directive 2001/77/EC [55]: 

5a) The renewable energy technologies should obtain a share of more than 20.1% of the total 

domestic electricity production by the year 2010. Hence: 
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5b) The renewable energy technologies should obtain a share of more than 30% of the total 

domestic electricity production by the year 2020. Hence: 
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4. The numerical algorithm 

4.1 Inputs of the model 

The numerical algorithm used for the determination of the optimal power generation mix 

comprises of the following discrete steps: a) Retrieving technological and economical inputs, b) 

retrieving historical time-series of stochastic variables, c) simulating the evolution of stochastic 

variables and d) optimisation routine. The inputs used in the present study are shown in table 1.  

-------------------------------- 

<Insert table 1 about here> 

The historical data of the stochastically fluctuating variables have been acquired by various 

sources. The past demand loads and SMPs have been acquired by the national grid operator [49]. 

The historical data of fuel prices have been provided by the Greek State [56] the Statistical 

Service [57], the natural gas provider [58] and the International Energy Agency [59]. The recent 
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CO2 allowance prices were retrieved from Point-Carbon [60]. For the case of biomass, lacking 

price historical data, their current gate fees were estimated using a holistic Activity Based 

Costing procedure [61]. After the current supply chain costs are estimated, they are post-

projected using equation 7 together with the stochastically evolving inflation rates (SDE equation 

1). A similar procedure has been followed for the estimation of the hard-coal’s logistic costs. In 

that case, fuel imports are considered as there are only few non-exploitable domestic reserves.  

4.2 Stochastic variables 

The uncertainty is introduced for all the stochastic variables: forward electricity selling prices, 

electricity demand, CO2 allowance and fuel prices. Their evolution paths constitute the inputs for 

the optimisation algorithm as described in the mathematical formulation. The historical data of 

the various stochastic variables were available in different time intervals. Therefore, prior to the 

optimisation iterations, the data structures have been averaged in order to create uniform arrays 

over time, as adopted by Fleten and Maribu (2007) [37]. The selected granularity was based on 

the widest common time intervals, comprising of monthly periods. Concerning a forward 

electricity contract with maturity T1 and monthly delivery period [T1, T2], an approximation of 

monthly averages F(T) (forward prices) can be made. Daily prices f(t) within daily intervals dt 

may thus be averaged as represented in the following equation 15 [62]: 

 T2] [T1,T       )(
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This way, a time-average of peak and off-peak prices is performed. The above process was not 

the case for the demand loads. Spot demand observations were modified by multiplying with 

their occurrence time interval dt, and aggregating the products within each month thus resulting 

to total monthly energy demand estimations (D(T) in MWhel): 

T2] [T1,T        )()(
2

1
 

T

T
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When in the same granularity form, the stochastic variables were mathematically correlated using 

correlation factors derived from their past history, in a similar vein to [53]. Actually, the 

Brownian differentials of fuel prices, electricity prices and electricity demand were mutually 
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correlated. They were also correlated with the corresponding Brownian differentials of the 

interest and the inflation rates. The CO2 allowance prices have been correlated with the 

electricity prices as in [17]. The above mentioned Brownian differentials were processed through 

a multivariate Monte-Carlo algorithm in which an Euler-Marujama solver was used to produce 

multiple lognormal solutions of GBM (or MR) SDEs. The resulting paths were extracted by 

averaging the multiple solutions set as shown in the following figures 1 and 2:  

-------------------------------- 

<Insert figure 1 about here> 

-------------------------------- 

<Insert figure 2 about here> 

In figure 1 (upper) the anticipated electricity demand is presented and in figure 1 (lower) the 

electricity price scenarios are displayed. The forecasts of scenarios C and D represent the prices 

foreseen for renewable producers, while the prices of conventional electricity generation, in the 

same scenarios, retain the path of scenario B. In figure 2 (upper) the fuel price forecasts are 

presented (years 11-50) together with their historical data (years 1-10), while in figure 2 (lower) 

the inflation and the interest rates are presented -with the same time distribution-. The Monte-

Carlo simulation, being a variation reduction technique, succeeded to smooth-out the time-path of 

many variables whose historical data were characterised by relatively low volatilities. On the 

contrary the oil and the natural gas price forecasts as well as the electricity prices are 

characterised by non-stationary profiles, due to high recent variations. The remaining fuel prices 

are characterised by negative slopes. In particular the lignite’s ascending price may be in line 

with the domestic reserves depletion, which in turn might lead to inefficient mining in the 

expense of increasing fuel costs. In figure 3, the two assumed scenarios for the CO2 allowance 

price evolution (I and II) are presented. 

-------------------------------- 

<Insert figure 3 about here> 
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It is noted that a relatively slow mean-reverting speed has been selected in the scenario II, 

assuming a slow convergence to the long run mean (31 Euros/tn CO2). The correlations matrix 

derived by the historical data of fuel prices is presented in table 2: 

------------------------------ 

<Insert table 2 about here> 

Moreover, the statistical analysis indicated a significant correlation between lignite and electricity 

prices (0.77) while the correlation between natural gas and electricity prices is slightly weaker 

(0.71). A moderate correlation has been recorded for the Brownian differentials of CO2 

allowance and electricity prices (0.62). 

 

5. Numerical results  

5.1 Results presentation and discussion 

Various numerical experiments were conducted in order to reveal the influence of the electricity 

and the CO2 allowance prices in the economics of the expansion mix and the sustainability. In 

figure 4, the electricity and CO2 allowance price scenarios (A, B, C, D – I, II) are compared in 

respect of the optimal system NPVs derived from the optimisation.  

-------------------------------- 

<Insert figure 4 about here> 

The NPVs vary proportionately with the forward electricity prices, as expected. The scenario D 

reflects the most profitable case due to the highest prices foreseen for renewable energy forward 

contracts. A two–fold explanation may hold: (i) high prices constitute an attractive condition for 

hypothetical investors (more capacities are ordered) and therefore the anticipated yields of 

electricity selling to the grid are more promising (ii) the renewable energy technologies are 

characterised by low or zero fuel costs and moreover their neutral emission rates contribute to the 

minimisation of the anticipated CO2 penalties.    
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The increased CO2 allowance prices (scenario II) contribute to the reduction of the system NPV, 

leading to lower CO2 emissions per unit of energy generated over time, as shown in figure 5.  

-------------------------------- 

<Insert figure 5 about here> 

The optimisation algorithm succeeds to reduce the aggregate CO2 emissions of the Greek Power 

Sector from the current levels (0.75 tn CO2 eq. / MWhel) to the levels of 0.60 tn CO2 eq. / MWhel 

at the end of the investigated time period. This considerable reduction (~20%) may be attributed 

to the high CO2 allowance prices (Scenario II), which seem to act as barriers for conventional 

plant investments. The average differences between the two scenarios (I and II) in terms of CO2 

emissions is close to 20 Kg CO2 eq. / MWhel, which is not negligible considering the aggregate 

electricity production. The numerical experiments of Scenario D-II resulted to the lowest average 

emissions compared to any other scenario. More specifically, the emissions produced by scenario 

D-II were approximately 50 Kg CO2/ MWhel lower than the average emissions of the remaining 

class-II scenarios and almost 70 Kg CO2/ MWhel lower than the average emissions of class-I 

scenarios. This might also be attributed to the higher electricity prices foreseen for renewable 

producers in D scenarios, which in turn favour their increasing share in the domestic market, 

resulting in lower aggregate systemic emissions over time.  

The capacity additions that should be ordered on a yearly basis vary between the investigated 

scenarios. In the graphs of figures 6 and 7 the optimal capacity orders and plant usage intensities 

are presented for the scenario D-I. The annual energy production –corresponding to the above 

capacities and plant loads-is presented in figure 8. Capacities, intensities and cumulative energy 

production for scenario D-II are presented in figures 9, 10, 11 respectively. As stated before, the 

D-scenarios represent the most profitable cases irrespective of the CO2 allowance price levels 

and therefore, they have been selected in the following graphical presentations: 

-------------------------------- 

<Insert figure 6 about here> 

-------------------------------- 
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<Insert figure 7 about here> 

-------------------------------- 

<Insert figure 8 about here> 

-------------------------------- 

<Insert figure 9 about here> 

-------------------------------- 

<Insert figure 10 about here> 

-------------------------------- 

<Insert figure 11 about here> 

The expansion mix of Scenario D-II include more capacity orders compared to D-I, especially 

concerning the renewable technologies (hydroelectric and biomass plants, as well as wind farms). 

The significant investment costs of photovoltaic plants seem to act as inhibitors for solar-PV 

projects. On the other hand, the natural gas plants prove to be the most intensive in terms of 

productive hours, since their output し factor was the highest among the competing technologies 

(figures 7 and 10). They were proved to operate for more than 90% of the available operating 

hours annually. For comparison reasons, the corresponding し factors of renewable energy sources 

(except biomass) were imposed to be equal to 1, thus meaning operational readiness depending 

on favorable weather conditions. The lignite and the natural gas fuelled plants determine the 

base-load workhorse technology in all the scenarios, due to the high availability factors and their 

relatively moderate fuel prices. However, as the lignite costs gradually increase, the lignite fired 

plants should progressively decrease their productivity (し factor) to the levels of 65%. The high 

emission rates and the relatively lower power production efficiency of the lignite fired plants 

might further justify the progressive reduction of lignite-based electricity, as reflected on the load 

intensity of these plants (figures 7 and 10). By comparing those graphs it is also noted that the 

average し factor is lower in Scenario D-II than in D-I. This may be attributed to the optimisation 

algorithm, which on the one hand attempted to meet the electricity demand target (by increasing 
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lignite plant orders) but on the other hand attempted to minimise the emission costs (by lowering 

the plants’ usage intensity). This counterbalancing effect proves to be stronger in Scenario D-II, 

as reflected in its lower し factor, by considering that the emission costs are prone to be relatively 

higher, due to the higher assumed CO2 allowance prices of Scenario D-II.  

The above arguments may be further justified through the analysis of figures 8 and 11, where the 

annual electricity production is presented (Scenarios D-I and D-II respectively). Some problems 

may be identified regarding a hypothetical broadening of renewable energy penetration in 

electricity market. The long construction periods of hydro-electric plants and the relatively low 

capacity factors of photovoltaic, hydroelectric and wind plants induce the requirement for very 

high installed capacities in order to meet the demand targets. On the other hand, the investment 

costs of the above mentioned technologies –and in particular of solar energy technologies– are 

significantly high –despite their State subsidisation– and may not favour renewable energy 

investments. The above arguments are reflected to the annual capacity orders resulting from the 

optimisation algorithm, which are not as high as one might expect (figures 6, 9). Moreover, the 

renewable energy generation (shown in figures 8 and 11) barely manages to meet its lower bound 

share in the electricity market (> 30% after the year 2020 as stated in the EU directive 

2001/77/EC).  It also stays far away from reaching the upper bound target determined by the 

requirements for the grid stability (50% of total electricity demand as described in equation 12). 

Therefore, the renewable energy technologies are challenged to the power sector domination race 

and may not gain a higher market share unless the experience acquired in the distant future 

contributes to the further reduction of their investment costs. Despite their obvious environmental 

advantages, the renewable energy technologies may not be promoted under the current CO2 

allowance prices, which might have to be strengthened, thus forming an attractive condition for 

investors willing to engage in this market. The reduction of investment costs due to the expected 

experience from future constructions or market competition may be a matter of time, while on the 

other hand, the determination of CO2 allowance prices may not depend only on allowances’ 

market dynamics but it may rather be a consequence of environmental policy interventions. 

Nonetheless, the renewable energy technologies are currently favoured by their low (or zero) fuel 

cost, which constitutes their sole significant promoting factor.  
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Of particular interest might be the exploitation of biomass feedstocks, which are cheap and 

readily available in the domestic fuel market. Agricultural crops like cotton, corn, wheat etc. 

which are cultivated and grow in many rural areas of Greece might become an alternative to the 

conventional energy production. Nonetheless, the complicated supply chains as well as life-cycle, 

logistical and organisational issues should prior be resolved. Probably they could not replace 

natural gas as a base-load fuel, but their neutral CO2 emissions and the relatively high capacity 

factors render this technology as a candidate alternative needing additional focus for the 

oncoming decade (figures 6, 9).  

The required policy interventions should be incorporated in the future power generation 

licence calls released by the State. They should aim at high percentage of renewable 

energies (hydro-plants, wind turbines and biomass) in the first 3-4 years of implementation 

of the program in order to put a basis for meeting the environmental directive targets. 

Some kwh subsidising policies should probably be considered for the promotion of 

renewable energies during these first years of the program. From this point forward, the 

distribution of capacity orders for power plants based on combustion technologies (natural 

gas, lignite and biomass) should be balanced, whilst the capacity orders of solar PVs, wind 

parks and hydro plants (either of hydro pumped storage or of medium and high head hydro 

plants) should be reduced. As the total installed capacities gradually rise over time, the 

environmental constraints impose the requirement for decreased usage of conventional 

lignite plants (characterised by high emission factors), thus enabling the minimisation of 

aggregate system emissions. The above rationale should be followed in the future licensing 

procedures, irrespective of the pricing model. Nonetheless, individual power plants should 

take it into account, in order to remain competitive and keep up with current market trends 

-as far as their own potential expansion planning is concerned-. It is noted that the pricing 

model seems to impact, basically, the comparative scale of the interventions but not their 

qualitative characteristics.  

5.2 Dependency from uncertainties and installed generation mix   

The expansion planning may depend on the multiple effects of the uncertainties as well as on the 

diversification of the installed generation mix. More specifically the results of the model, which 
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essentially depend on the input state, may not be valid for the entire future horizon. This problem 

might be attributed to the progressively increasing uncertainty characterising long-term random 

walk simulations. Moreover, the effect of the long times required for the construction, setup and 

commissioning of each plant type should be accounted, thus complicating the determination of 

the valid time-period of the results. Therefore, despite the fact that the scope of the work spans to 

the next 25 years, the optimisation algorithm was allowed to run for an extended time-period of 

42 years, in an attempt to smoothly absorb the above mentioned boundary timing effects. 

Furthermore, the uncertainties’ modelling may not represent the real future evolution of the 

corresponding stochastic variables. It rather projects their past behaviour by sampling the 

underlying noise through probability distributions determined by recent historical data. This 

inherent limitation should definitely be accounted during any decision making process. 

Interestingly, non-smooth variations of the capacity orders have been derived from the 

optimisation, despite that the opposite might be expected for progressive time spots. Moderately 

smooth distributions of optimal plant loads (し factors) were also produced over time. The 

variations of the corresponding graphs may be partially attributed to the non-stationary evolution 

of the forward electricity and fuel prices, as indicated by their simulated projections. In a similar 

vein, the volatile evolution paths of the CO2 allowance prices and of the discounting factors can 

further justify the above non-smooth distributions. The capacity orders required for the 

displacement of obsolete plants (mainly of the workhorse lignite-fired plants), also contribute to 

non-uniform results, as long as the end of their operation life signals massive capacity orders to 

meet the demand targets, thus resulting to non-smooth orders’ distribution. This may be 

characterised as a moderate drawback of discrete -or quasi-continuous treatment-, especially 

when expansion planning is modelled on an annual basis.   

 

6. Statistical analysis  

The proposed method could be validated by comparing the corresponding results from several 

studies. However, on the one hand there is no similar research concerning the Greek power 

sector; on the other hand, there were no readily available input data from other countries, which 
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would allow the processing of their portfolio planning and/or the comparison with other power 

sectors. Moreover, it might be hard enough to establish solid qualitative or quantitative criteria 

which may potentially allow a direct comparison with other similar researches referring to power 

sectors with essentially different structures. Although the proposed model may be able to capture 

the different characteristics (or structure) of various power sectors, a statistical analysis of the 

results is used instead, for the assessment of the suggested approach.  

6.1 Convergence history of the optimisation algorithm 

The convergence history of the algorithm is comprised of the objective function differences 

(between successive iterations) until a very small value (i) is obtained. Indicatively, the 

convergence history of the scenario A-I is presented in figure 12. An initial state has been 

introduced in the algorithm, based on a moderate evolution of the current generation mix. In the 

first steps of the iterative procedure, the suboptimal NPV values deviate significantly from the 

optimal value. This is finally converged to the level of 52.109 Euros (also shown in figure 4) 

indicating a significant improvement compared to the initial NPV. Negative NPV values are 

progressively iterated as the algorithm was built to seek for minimum values. Therefore, if a 

maximisation is required, the negative of the NPV objective function should be derived.   

----------------------------------- 

<Insert figure 12 about here> 

6.2 Deviation from the constraints 

The cumulative energy production shown in figures 8 and 11 indicates a minimal deviation from 

the energy demand as imposed in the relevant constraints (equations 11a and 11b). Their 

coincidence ensures meeting the demand target with minimal aggregate costs.  

6.3 Error analysis 

The comparison of the simulated with the actual data was performed using the median absolute 

deviation (MAD) as a measure of error. The MAD indicator is defined as follows:  

MAD =median[dz,f  - median(dz,a)]                                           (17)  
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The analysis was performed using the -daily recorded- data of energy demand for the years 2000-

2009. This period was split in two discrete time-frames: 2000-2005 and 2006-2009. The first set 

was used as a sample set needed for the random walk simulation while the second was used for 

the validation of the resulting forecasts for the corresponding years (2006-2009). The comparison 

lead to an error with MAD=11.5 % of the average observations recorded in the validation data-

set, thus reflecting a relatively accurate forecast. It is noted though that the random walk forecast 

is characterised by progressively increasing statistical uncertainty. In order to calculate this 

uncertainty a statistical analysis is required. Primary objective of this statistical analysis is the 

determination of the statistical distribution of the original (historical) data. The demand data may 

be considered as normally distributed, as shown in the observations statistical fitting (figure 13).   

---------------------------------- 

<Insert figure 13 about here> 

The determination of the uncertainty is possible by assuming normally distributed Brownian 

differentials and a requirement for a confidence interval (CI) equal to 95%. According to theory 

[36], when the Brownian differentials are normally distributed the resulting GBM simulation 

comprises of log-normally distributed solutions. These are characterised by progressively 

increasing confidence limits over time -for a given CI- and may significantly deviate from the 

forecast especially in the distant future. The confidence limits of the aggregate annual demand 

forecasts are plotted in figure 1 (assuming CI=95%). The lognormal distribution fitting of an 

indicative time-point of the GBM solution is shown in figure 14.  

---------------------------------- 

<Insert figure 14 about here> 

The mean value is extracted by the lognormal distribution for this time point, forming an average 

forecast. The same procedure is performed for the calculation of the confidence limits of the 

remaining stochastic variables. It is noted that adequate iterations of this Monte-Carlo procedure 

are required until the confidence limits cannot be further reduced for an assumed CI. 
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7. Conclusions  

In this article, the impact of electricity and CO2 allowance prices is investigated within the 

framework of electricity production portfolios. The numerical experiments conducted, focused on 

the optimisation of the power sector structure over time. The Greek Power Sector was introduced 

as the case-study market under multiple uncertainties. The electricity demand, the forward prices 

of electricity, the CO2 allowance prices as well as the fuel prices were considered as 

stochastically evolving. The evolutions of interest and inflation rates were represented through 

stochastic processes as well, thus minimising the requirement for arbitrary risk assumptions. The 

iterative optimisation algorithm attempted to maximise the system NPV while being subject to 

various social, supply and demand constraints. Constraints related with the availability of natural 

resources, the stability of the national grid operation and the environmental directives were 

additionally imposed. A stochastic programming approach without recourse was used, 

incorporating an SQP numerical solver.  

The results of the optimisation focus on the annual capacity additions, the plant loads and the 

corresponding energy production required from each technology. A significant improvement may 

be identified in respect of the iterated system NPVs and the anticipated CO2 emissions over time. 

More specifically, the algorithm tends to maximise the system NPV by iteratively attempting to 

reduce the overall system costs and the CO2 emission costs in particular, thus minimising the 

anticipated CO2 emissions as well. The resulting generation mix (suggested for the medium-term 

expansion planning of the Greek Power Sector) shows that the CO2 emissions per unit of 

electricity might be reduced by 30% within the next 25 years. The analysis of the results indicates 

that higher electricity prices may be proportionally beneficial for the financial yields of the power 

sector. On the other hand, the CO2 allowance prices may be inversely proportionate with the 

expected yields and with the anticipated CO2 emissions over time, thus forming an inhibitor for 

capacity orders from conventional technologies.  

The combined influence of the various commodities under uncertainty may marginally be 

explained in an empirical way as the results are derived through complex algorithmic 

optimisation processes. Nonetheless, they could provide useful information by focusing on 

specific time spots, thus identifying particularly interesting investment opportunities. If these 



28 
 

opportunities are supposedly bypassed (investments realised in suboptimal time-windows) there 

may be fewer chances for individual players to be profitable. Therefore, the hypothetical 

investors might have to be aware of the upper bound share of each technology. Their subsequent 

decisions should be probably reconsidered according to current market trends, fiscal conditions 

and competition. Moreover, their decisions should be further evaluated in conjunction with 

standard licensing practices, periodically applied by the State during expansion planning, thus 

complying with the relevant policy interventions, which determine the bounds of capacity shares. 

This strategy might potentially contribute to the reduction of the social cost as well as to more 

favourable effects on the sustainability of the system.  

 

Appendix A. 

A general optimisation problem may be formulated as follows: 
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where (x) is the independent variables vector of length k, f(x) is the objective function, which 

returns a scalar value, and the vector function C(x) returns a vector of length k containing the 

values of the equality and inequality constraints evaluated at x. The Karoush-Kuhn-Tucker 

equations (KKT) can be described by the following: 
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It is noted that the KKT equations include the constraints set of equation A1. The principal idea 

for convergence in the SQP algorithms is the construction of a quadratic sub-problem based on a 

quadratic approximation of the Lagrangian function: 
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By assuming that boundary constraints have been expressed as inequality constraints, the QP sub-

problem may be obtained by linearising the nonlinear constraints: 
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where Hk denotes the Hessian matrix of the quadratic approximation and d denotes the updates 

solutions vector. The objective function of the present research may be formulated by combining 

equations (4), (5) and (6) (described in the main text):  
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   (A5) 

It represents an analytical relationship of the final NPV with the requested optimal capacity 

orders and the usage intensities of the power plants during the entire period of investigation. A 

double sweeping in respect of time is implemented: the first one scans the lead-times and the 

second sweeps over the operational life-time. An additional third sweeping direction through the 

competing technologies is additionally implemented. The uncertainties of NPV function are 
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comprised of the forward electricity prices (pez), the electricity demand (dz,f), the CO2 allowance 

prices (pco2,z) and the fuel prices (Cfi,z). The corresponding paths are calculated using the 

stochastic models described by equation 1, whilst the discounting factors (Dz) are calculated 

using the stochastic differential equation 2 combined with equation 3. The above uncertainty sets 

are introduced as inputs in the optimisation problem A1-A5 using the objective function 

(equation A5).  
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Figure Captions 

 

Fig. 1. Electricity demand (up) and forward prices  – scenarios A,B,C,D (down) 
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Fig. 2. Anticipated fuel prices (up) and fiscal rates (down) 

 

Fig. 3. The CO2 allowance price evolution  

 

Fig. 4. The comparison of the optimal system NPV for the various scenarios 



38 
 

 

Fig. 5. Expected CO2 emissions Scenario I (up), Scenario II (down) 
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Fig. 6. Optimal Capacity orders (Scenario D-I) 

 

Fig. 7. Plants load intensity (Scenario D-I) 

 

Fig. 8. Aggregate electricity production (Scenario D-I) 
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Fig. 9. Optimal Capacity orders (Scenario D-II) 

 

Fig. 10. Plants load intensity (Scenario D-II) 
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Fig. 11. Aggregate electricity production (Scenario D-II) 

 

Fig 12. Convergence history for scenario A-I 

 

Fig 13. Normal distribution fitting of actual electricity demand data (daily basis) 
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Fig 14. Log-normal distribution fitting of the multiple GBM solutions for a future time-point  
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Nomenclature table 

 

Symbol Description (Unit) 

At Generic notation for stochastic variables evolving according to a GBM model 

aa,i Availability factor for plant (i) (%) 

ac,i Capacity factor for plant (i) (%) 

b(i) Learning rate of plant (i) construction  

Cfi,z Fuel cost during year (z) for plant (i) (€/MWhel) 

viC ,  
Capacity installed in the past (year v before the initiation of the investigated time-
period) for plants (i) and whose operational life time has ended (MW) 

Ci,v Capacity installed in the past (year v before the initiation of the investigated time-
period) for plants (i) (MW) 

Cvi,z Fixed (Operational and Maintenance) cost of electricity production for plant (i) in 
year (z) (€/MW) 

D Diffusion vector function  (-) 

dWt Wiener (Brownian Motion) Vector Differential, Normally Distributed: ~ iN (0,1) 

Dz Discounting factor of year z 

dz,a Aggregate electricity demand for year (z) (actual data in MWhel) 

dz,f Aggregate electricity demand for year (z) (simulated projection in MWhel) 

ECO2i Emissions generated by using a specific technology (i) (tons CO2 equivalent) 

Eni The annual maximum potential of natural resources for technology (i) (MW)  

fCO2i CO2 emission rate of fuel type (i) (tons CO2 equivalent/MWh) 

I Number of electricity production technologies 

Ii,v Investment Cost for orders of plant type (i) made in year (v) (€/MW) 
Li,z Installed Capacity during year (z) for plant category (i) (MW) 

mr Power Reserve Margin 

ni Power production efficiency for plant (i) (%) 

NPV Net Present Value of a project (€) 

Pcz Projected Peak Power demand 

pCO2z Price of CO2 allowances for the year (z) (€/tons CO2
  equivalent) 

pez Forward electricity price for year (z) (selling to the grid in €/MWh) 
P i,z Aggregate electricity energy production during year (z) for plants (i) (MWhel) 

RE Number of electricity production technologies based on renewable energy sources 

rin Inflation Rate (%) 

rt Interest Rate (%)  

Tli Construction, setup and commissioning time of plant type (i) (years) 

Toi Operational life-time for each plant type (i) (years) 

V Volatility vector function  (-) 

v Counter of the years of investment decisions (capacity orders) 

Xi,v Orders made in year (v) for plant (i) (MW) 

viX ,  
Capacities ordered in year (v) for plant (i) and whose operational life time has ended 
(MW) 
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Y The entire studied time-period (years) 

z Counter of the years of plants operation 

しi,z Plant load factor (operation intensity) during year (z) for plant (i) (%) 

た Mean Drift function (-) 

 

 

 
Hard-coal Oil 

Natural 

Gas 
Lignite Biomass 

Solar 

PV 

Wind 

turbines 

Hydro-

electric 

Hydro 

pumped 

storage 

Geothermy 

Investment cost (€ / KWel) 

for the reference year 2009 
1350 1300 450 1800 1300 4500 1100 1600 3400 1050 

Fixed cost of year 2009 

 (Operational. maintenance. 

insurance etc.) (in € / KWel) 

35 38 14 39 19 12 23 25 50 32 

Availability factor 0.75 0.75 0.75 0.85 0.75 0.9 0.9 0.85 0.92 0.7 

Capacity factor 0.8 0.8 0.65 0.75 0.8 0.15 0.25 0.34 0.4 0.9 

Learning rate 0.01 0.01 0.01 0.01 0.15 0.2 0.1 0 0 0 

Commisioning time (Years) 4 3 2 4 3 1 1 9 9 2 

Efficiency Factor 0.42 0.31 0.57 0.37 0.35 1 1 1 1 1 

Fuel CO2 emissions 

(tn CO2 / MWhfuel) 
0.4 0.3 0.21 0.41 0 0 0 0 0 0 

Operational Life-Time 

(Years) 
40 45 35 45 20 25 25 45 45 25 

 
Table 1. The assumed inputs of the numerical algorithm 

 

 

 Hardcoal Oil Natural 

Gas 

Lignite Biomass Geothermal Hydroelectric 

Hardcoal 1 -0.267 -0.253 -0.366 -0.869 0.925 0.616 

Oil -0.267 1 0.931 0.334 0.311 -0.031 0.061 

Natural Gas -0.253 0.931 1 0.343 0.311 -0.031 0.061 

Lignite -0.366 0.334 0.343 1 0.583 -0.183 0.059 

Biomass -0.869 0.311 0.311 0.583 1 -0.645 -0.194 

Geothermal 0.925 -0.031 -0.031 -0.183 -0.645 1 0.812 

Hydroelectric 0.616 0.061 0.061 0.059 -0.194 0.812 1 

 

Table 2. Stochastic Differential Correlation of fuel prices 

 

 

 


