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Abstract
Laminar gravity-driven thin-film flow down a helically-wound channel of rectangular cross-section

with small torsion in which the fluid depth is small is considered. Neglecting the entrance and exit

regions we obtain the steady-state solution that is independent of position along the axis of the

channel, so that the flow, which comprises a primary flow in the direction of the axis of the channel

and a secondary flow in the cross-sectional plane, depends only on position in the two-dimensional

cross-section of the channel. A thin-film approximation yields explicit expressions for the fluid

velocity and pressure in terms of the free-surface shape, the latter satisfying a non-linear ordinary

differential equation that has a simple exact solution in the special case of a channel of rectangular

cross-section. The predictions of the thin-film model are shown to be in good agreement with much

more computationally intensive solutions of the small-helix-torsion Navier–Stokes equations. The

present work has particular relevance to spiral particle separators used in the mineral-processing

industry. The validity of an assumption commonly used in modelling flow in spiral separators,

namely that the flow in the outer region of the separator cross-section is described by a free vortex,

is shown to depend on the problem parameters.
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I. INTRODUCTION

Flows in curved geometries, such as those that arise in many piping systems, and, in

particular, in the human blood-circulation system, have motivated study of fully-developed

flow in completely filled helically-wound pipes. A common assumption is that the flow is he-

lically symmetric, which here means that there is a steady-state solution that is independent

of position along the axis of the pipe. Thus the flow, which comprises a primary flow along

the axis and a secondary flow in the cross-sectional plane normal to the axis, depends only

on position in the two-dimensional cross-section of the pipe [1–5]. In the present work we

consider flows in helically-wound channels (see Figure 1) which differ from their filled-pipe

counterparts in having a free surface. They have been studied in the contexts of river flow

and sediment transport [6–8], distillation of petroleum products [9, 10] and, of particular

interest here, spiral particle separation [11–18, 22–25].

Spiral particle separators are helically-wound channels along which particle-laden slurries

flow under gravity. They are used in the coal and mineral-processing industries to segregate

and concentrate particles of different sizes and densities [12, 26]. Theoretical understand-

ing of these devices has lagged practical development and, although considerable progress

towards filling this gap has been made over the past four decades, the lack of a good “quan-

titative basis for the design and evaluation of spiral separators” [12] largely remains to this

day. A steady-state empirical mathematical model was developed by Holland-Batt [11, 25],

in which the primary flow down the channel is described by a Manning law in an inner

region near the central column around which the channel is wound, and a free vortex in the

outer region. The transition point between the two regions is specified empirically, with a

smoothing function used to avoid discontinuities; for details see Holland-Batt [11]. Flow-

visualisation experiments performed by Hotham [12, 14] and Holland-Batt and Holtham [13]

to validate this model proved to be difficult, but did confirm the existence of the predicted

secondary flow, in addition to showing that the fluid depth is small, that some flow regions

are turbulent, and that the flow reaches a fully-developed profile within two spiral turns, as

well as giving rough estimates of flow velocities.

Computational Fluid Dynamics (CFD) simulations of steady laminar flow in a spiral

separator seem to have been performed first by Wang and Andrews [15]; helical symmetry

was assumed, and the flow in a planar cross-section of the channel was determined via a finite

2



difference method. Three-dimensional CFD simulations of laminar flow were performed by

Jancar et al. [16] using the finite-volume method, and turbulence models were included by

Matthews et al. [17, 18], who used the volume-of-fluid method.

All the above studies are in agreement that in order to improve the operation of spi-

ral separators it is necessary to have a better understanding of the flow in them, and, in

particular, to obtain a quantitative understanding of the influences of fluid properties and

of geometrical parameters (such as the curvature and torsion of the helical channel axis,

and the channel cross-sectional geometry) on the flow; the purpose of the present paper is

to develop an alternative model for this flow (and for other helical flows of similar types),

based on the observation that the fluid depth is small but centrifugal effects are significant,

in general. We then verify this approach via comparison with numerical solutions of the full

problem, and investigate the predictions of the thin-film theory in detail.

The work of Holland-Batt and Holtham [12–14] shows that over most of the channel the

flow is laminar; this motivates the use of a laminar model, as considered herein. (Indeed,

the laminar and turbulence models of Holland-Batt and Holtham are not too dissimilar

from each other.) However, Holland-Batt’s suggestion of a free-vortex primary flow (either

in the outer region [11, 13] or across the entire channel [25]) is inconsistent with some of

the experimental observations of Holland-Batt and Holtham [13], because the predicted free-

surface shape has the wrong curvature in the outer region; the present model seems to capture

the observed curvature correctly, although quantitative comparison with the experiments is

difficult because, as Holtham [14] acknowledges, the experimental measurements that he

reports are prone to significant errors. Holland-Batt [25] adopts the free-vortex model even

for spiral separators of large diameter, a case in which, according to the present model, it is

unlikely to be valid.

In the present work we consider laminar gravity-driven thin-film flow in a helically-wound

channel. We assume that the helical channel axis has small torsion, an assumption that

is appropriate for spiral particle separators, and seek a helically-symmetric steady-state

solution for the flow. As part of the solution process, the free-surface shape of the fluid

in the channel must be determined, making this analysis significantly different from and

more complicated than that for fully-developed flows in filled pipes. Since the channels of

spiral particle separators typically have widths of the order of half a metre, two orders of

magnitude larger than the capillary length scale at which surface tension is important (of
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FIG. 1. A right-handed helically-wound channel. The central axis of the channel is a helix of radius

A and pitch 2πP . The fluid-filled portion of the channel has width 2a.

the order of a few millimetres for water), we are justified in neglecting the effect of surface

tension. In Section II we describe the helically-symmetric small-torsion model for flows

of arbitrary depth and discuss the numerical solution of this model. Then, since flows in

spiral separators are typically shallow, in Section III we derive a thin-film model, which we

verify using the more general model described in Section II. Related work on the flow of

a thin rivulet down a locally non-planar substrate (but in which surface-tension effects are

significant) has been performed by Wilson and Duffy [20, 21]. In Section IV we use the thin-

film model to examine thin-film flow in helically-wound channels of rectangular cross-section.

Some preliminary work on deeper flows has been performed by Stokes [22, 23]. Finally, in

Section V we summarise our results and draw some conclusions (which we anticipate are also

relevant to helical flows with a free surface other than those occurring in particle separators).

II. HELICALLY-SYMMETRIC SMALL-HELIX-TORSION MODEL

A. Governing equations

Consider steady gravity-driven flow of a prescribed volume flux Q of fluid of constant

density ρ and viscosity µ down a helically-wound channel whose central axis is a vertical

right-handed helix with radius A and pitch 2πP (see Figure 1). The fluid-filled portion of the

channel is taken to be A+ yℓ ≤ r ≤ A+ yr, where r denotes the radial coordinate indicated

in Fig. 1, and yℓ and yr correspond to the positions of the left-hand and right-hand ends of
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the free surface, respectively, so that the fluid occupies a width 2a = yr − yℓ of the channel.

(In particular, later in the present study we consider a channel of rectangular cross-section

of width 2a, for which we take −yℓ = yr = a.)

Let α be the angle of inclination of the helix to the horizontal, given by tanα = P/A. We

define the dimensionless curvature and torsion of the helix, ǫ and τ , and the dimensionless

Reynolds and Froude numbers of the flow, R and F , by

ǫ =
aA

A2 + P 2
, τ =

aP

A2 + P 2
, R =

ρUa

µ
, F =

U
√
ga
, (1)

where U is a characteristic axial velocity (specified in Section III, after the thin-film model

has been introduced) and g is the magnitude of gravitational acceleration, and we note that

tanα = P/A = τ/ǫ. Physically we require A ≥ a, to avoid self-intersection of the channel.

This immediately implies from (1) that ǫ < 1 for any τ > 0. Spiral particle separators used

in the mineral-processing industry typically have ǫ ≃ 0.2 − 0.5 and τ ≃ 0.03 − 0.11, and

so in the present work we will consider spiral channels with 0 < ǫ < 1 in the small-torsion

limit (τ → 0). Note that torsion was also assumed to be small in the early work by Dean

[27] on flow in curved pipes. For flow in a channel the assumption of small torsion implies

that the pitch of the helix is much larger than the fluid depth, and so the free surface will

not intersect the portion of the channel directly above. This is consistent with the fact that

fluid depths in spiral separators are small [12].

In studies of flow in helically-wound filled pipes with non-zero torsion [1, 3–5] considerable

attention has been given to the selection of an appropriate orthogonal helical coordinate

system. The essentially identical coordinate systems of Germano [1, 4] and Kao [3] identify a

point in the flow domain by its local position in the cross-sectional plane normal to the vector

tangent to the central helical pipe axis and the arc-length distance of the cross-section along

this axis, which is valid for ǫ < 1. In general, for such coordinate systems the assumption of

helical symmetry means, in fact, that the flow is independent of the arc-length coordinate,

which, as discussed by Zabielski and Mestel [5], is not true helical symmetry. They therefore

propose a different coordinate system, formally equivalent to that of Germano and Kao,

but which permits true helical symmetry. However, in the small torsion limit τ → 0, as

considered in the present study, these coordinate systems are equivalent, and a flow that

is independent of arc length along the central axis is truly helically symmetric. Thus, for

simplicity, we adopt a coordinate system (x, y, z) similar to that used by Germano [1, 4]
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FIG. 2. Cross-section of a channel showing the locally Cartesian (x, y, z) coordinate system. The

x-axis is directed out of the figure in the direction of the primary axial flow.

and Kao [3], in which x is arc length measured along the central axis of the helically-wound

channel in the direction of the primary flow, and y and z are local Cartesian coordinates in

the cross-sectional plane, as shown in Figure 2.

The steady helically-symmetric Navier–Stokes equations in the small-torsion limit (τ → 0)

may be derived directly in terms of the present helical coordinates (x, y, z) using the vector

differential quantities given by Batchelor [19, Appendix 2] in general curvilinear coordi-

nates, in the same manner as Germano [1]; the scale factors corresponding to the x, y and

z coordinates are hx = 1 + ǫy, hy = 1 and hz = 1, respectively. Alternatively, we may

start with the small-torsion limit of the fluid-flow equations given by Germano [1, 4], to

which we add the gravitational force terms, and convert from the spatial (s, r, θ) coordi-

nates used by Germano to the (x, y, z) coordinates used herein, using the transformation

(x, y, z) = (−s, r sin θ, r cos θ). For helically symmetric flow in a channel the velocity and

pressure are independent of arc length (x = −s), with the flow being driven by gravity; this

differs from a filled pipe, in which the flow may instead be driven by a prescribed pressure

gradient along the axis of the pipe.

Let u(y, z) = (u(y, z), v(y, z), w(y, z)) and p = p(y, z) be the velocity vector and pres-

sure, respectively, in the (x, y, z) coordinate system, with u corresponding to the primary

(axial) flow, and v and w corresponding to the secondary (transverse) flow. In terms of the

dimensionless variables

(x̃, ỹ, z̃) =
(x

a
,
y

a
,
z

a

)

, (ũ, ṽ, w̃) =

(

u

U
,
Rv

U
,
Rw

U

)

, p̃ =
R2(p− pa)

ρU2
, (2)

where pa is the constant atmospheric pressure, and with the tildes on dimensionless variables

omitted for clarity, the continuity equation is

∂

∂y
[(1 + ǫy)v] +

∂

∂z
[(1 + ǫy)w] = 0, (3)

6



and the Navier–Stokes equations are

v
∂u

∂y
+ w

∂u

∂z
=
∂2u

∂y2
+
∂2u

∂z2
− ǫ

1 + ǫy

(

uv − ∂u

∂y
+

ǫu

1 + ǫy

)

+
R sinα

F 2
, (4a)

v
∂v

∂y
+ w

∂v

∂z
− Ku2

2(1 + ǫy)
= −∂p

∂y
+
∂2v

∂y2
+
∂2v

∂z2
+

ǫ

1 + ǫy

(

∂v

∂y
− ǫv

1 + ǫy

)

, (4b)

v
∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+
∂2w

∂y2
+
∂2w

∂z2
+

ǫ

1 + ǫy

∂w

∂y
− R2 cosα

F 2
, (4c)

where K = 2ǫR2 is the dimensionless Dean number.

Equations (3) and (4) are to be integrated subject to no-slip and no-penetration boundary

conditions on the channel walls, and continuity-of-stress and kinematic conditions on the

free surface. Thus on the channel walls we have simply

u = v = w = 0. (5)

On the free surface the stress condition takes the form −pn+ 2e · n = 0, where n denotes

the unit normal vector to the free surface, and e denotes the rate-of-strain tensor, whose

components in helical coordinates may be obtained from the expressions given by, for ex-

ample, Batchelor [19] or Yuan [29]. For a free surface S(y, z) = 0 a normal vector is given

by

n = (nx, ny, nz) = ∇S =

(

0,
∂S

∂y
,
∂S

∂z

)

, (6)

and the continuity-of-stress boundary conditions at the free surface are

(

∂u

∂y
− ǫ

1 + ǫy
u

)

ny +
∂u

∂z
nz = 0, (7a)

(

−p+ 2
∂v

∂y

)

ny +

(

∂w

∂y
+
∂v

∂z

)

nz = 0, (7b)

(

∂w

∂y
+
∂v

∂z

)

ny +

(

−p+ 2
∂w

∂z

)

nz = 0. (7c)

In addition to the above, the kinematic condition at the free surface, u · ∇S = 0, gives

v
∂S

∂y
+ w

∂S

∂z
= 0. (8)

The governing equations and boundary conditions (3)–(8) are to be solved for some

prescribed value of the volume flux Q down the channel to give the velocity and pressure

distributions in the flow domain and the free-surface shape S(y, z) = 0. We denote the

cross-sectional area of the flow domain by Ω.
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From (3) we see that the secondary flow may be represented in terms of a stream function

ψ = ψ(y, z) defined by

∂ψ

∂z
= (1 + ǫy)v,

∂ψ

∂y
= −(1 + ǫy)w, (9)

together with the condition that ψ = 0 on the boundary of the flow domain.

B. Numerical solutions

In general, the model described above must be solved numerically, and for this we may

use a general-purpose CFD package. Previously, a method employing the finite-element

package Fastflo (developed by the CSIRO, Australia) was discussed and demonstrated by

Stokes [22, 23]. In the present work we instead make use of the commercial finite-element

package COMSOL Multiphysics.

Starting with an initial estimate of the free-surface shape, the problem is solved itera-

tively, with the free-surface shape adjusted at each iteration, until a steady state solution

is obtained. In the present work we are considering flows of small depth, and an excellent

estimate of the free-surface shape is given by the thin-film model described subsequently in

Section III. In particular, the points of contact of the free surface with the channel walls

are taken to be as given by the thin-film model, so that the difficulty of determining these,

discussed by Stokes [22, 23], is resolved. As will be shown, with the thin-film model provid-

ing the initial flow domain for the numerical solution process, a numerical solution of very

good accuracy can be obtained. A detailed description of the setup and solution process is

given in Appendix A.

III. THIN-FILM MODEL

A. Derivation

As mentioned earlier, flows in spiral particle separators are typically of small depth. We

now exploit this to derive a thin-film model for a channel of general shape by a perturbation

expansion in terms of a small parameter δ ≪ 1 representative of the cross-sectional aspect

ratio of the flow.
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We first define new variables (denoted by carets) by

z = δẑ, v = Rδv̂, w = Rδ2ŵ and p =
Rp̂

δ
, (10)

and choose δ2R/F 2 = 1, i.e. δ = F/
√
R =

√

νU/(ga2), where ν = µ/ρ, which explicitly

defines the parameter δ in terms of the physical parameters. We return to this definition in

a more detailed examination of the scaling of the model in the next Subsection. Substituting

(10) into equations (3) and (4) gives, at leading order in δ,

∂

∂y
[(1 + ǫy)v̂)] +

∂

∂ẑ
[(1 + ǫy)ŵ] = 0, (11a)

∂2u

∂ẑ2
+ sinα = 0, (11b)

−∂p̂
∂y

+
∂2v̂

∂ẑ2
+

χ

1 + ǫy
u2 = 0, (11c)

−∂p̂
∂ẑ

− cosα = 0, (11d)

where the parameter χ = δK/(2R) is taken to be O(1). Equations (11b)–(11d) repre-

sent balances between viscosity and gravity in the x direction, pressure gradient, viscosity

and centrifugal force in the y direction, and pressure gradient and gravity in the z direc-

tion, respectively. Under this thin-film scaling, the boundary conditions on the free surface

Ŝ(y, ẑ) = 0 become, at leading order in δ,

∂u

∂ẑ
= 0,

∂v̂

∂ẑ
= 0, p̂ = 0 and v̂

∂Ŝ

∂y
+ ŵ

∂Ŝ

∂ẑ
= 0. (12)

Let the cross-section of the channel be of general shape ẑ = H(y) and let the fluid

depth be h(y), so that the free surface is at ẑ = H(y) + h(y). Integrating (11b) and (11d),

substituting u and p̂ into (11c) and integrating for v̂ we obtain

u =
sinα

2
(ẑ −H)(H + 2h− ẑ), (13a)

v̂ = − χ sin2 α

120(1 + ǫy)
(ẑ −H)

[

(ẑ −H)5 − 6h(ẑ −H)4 + 10h2(ẑ −H)3 − 16h5
]

−cosα

2
(ẑ −H)(H + 2h− ẑ)

d

dy
(H + h), (13b)

p̂ = cosα (H + h− ẑ). (13c)

Rewriting the continuity equation (11a) in the alternative form

∫ H+h

H

v̂ dẑ = 0, (14)

9



substituting for v̂, and integrating yields a first-order ordinary differential equation (ODE)

for h for a general prescribed channel shape ẑ = H(y):

d

dy
(H + h) =

h4

1 + ǫy
. (15)

In writing (15) we have set 6χ sin2 α/(35 cosα) = 1, which scales the problem as described

in the next Subsection. Note that the ODE (15) explicitly involves the helix curvature ǫ,

but is independent of other parameters.

Substituting (15) in (13b) yields

v̂ =
cosα

144(1 + ǫy)
(ẑ −H)(H + 2h− ẑ)

{

7
[

(H + h− ẑ)2 − 2h2
]2 − 23h4

}

(16)

from which it is straightforward to show that the flow is outward (v̂ > 0) on and near the

free surface ẑ = H + h, but is inward (v̂ < 0) near the channel wall ẑ = H . Thus, in

general, the secondary flow comprises one or more eddies in each of which the flow is always

clockwise, regardless of the channel shape ẑ = H(y).

From (9) the stream function for the secondary flow ψ̂ is defined by ∂ψ̂/∂ẑ = (1 + ǫy)v̂

and −∂ψ̂/∂y = (1+ ǫy)ŵ. Substituting for v̂ and integrating subject to ψ̂ = 0 on ẑ = H(y)

we obtain

ψ̂ =
cosα

144
(ẑ −H)2(H + 2h− ẑ)2(H + h− ẑ)

[

(H + h− ẑ)2 − 5h2
]

. (17)

The scaled cross-sectional area of the flow domain, Ω̂ = Ω/δ = ΩR1/2/F , is given by

Ω̂ =

∫ yr

yℓ

h dy, (18)

and the scaled volume flux down the channel, Q̂ = Q/(δ sinα) = QR1/2/(F sinα), is given

by

Q̂ =
1

sinα

∫ yr

yℓ

∫ H+h

H

u dẑ dy =
1

3

∫ yr

yℓ

h3 dy, (19)

where again y = yℓ and y = yr are the positions of the left-hand and right-hand ends of the

free surface, respectively. To obtain a thin-film solution for a given channel shape ẑ = H(y)

we must solve (15) subject to a prescribed flux Q̂ = Q, with Q̂ given by (19).

We let h(yℓ) = hℓ and h(yr) = hr denote the fluid depth at the left-hand and right-hand

end of the free surface, respectively, so that (yℓ, hℓ) and (yr, hr) are the points of contact

of the free surface with the channel wall. For any channel geometry, two of the four values

yℓ, yr, hℓ, hr will be known and two must be determined as part of the solution of the problem.

10



Once the fluid depth h has been determined it is straightforward to obtain ψ̂, u, v̂, ŵ

and p̂ by substituting for H and h in the formulae given above.

B. Scaling of the model

In deriving the thin-film model in the previous Subsection we set

δ2R

F 2
= 1 and

6χ sin2 α

35 cosα
= 1, (20)

and claimed that this corresponds to a particular scaling of the model. In this Subsection

we describe this scaling in more detail.

Since χ = δK/(2R) = δǫR = 35 cosα/(6 sin2 α) and δ = FR−1/2 we find that

35 cosα

6ǫ sin2 α
= FR1/2. (21)

Then, substituting FR−1/2 =
√

νU/(ga2) and FR1/2 =
√

U3/(gν) gives

U =

[

(

35 cosα

6ǫ sin2 α

)2

gν

]1/3

and δ =
1

a

[

35ν2 cosα

6gǫ sin2 α

]1/3

. (22)

We want to examine the effect of varying the helix curvature ǫ on the flow and, for this,

we choose to keep the helix torsion τ = ǫ tanα fixed at some small value (since the torsion

is assumed to be small). Then, as ǫ decreases the helix slope tanα must increase and we

will still obtain a non-trivial free-surface shape. Thus we write

U =

[

(

35

6τ sinα

)2

gν

]1/3

and δ =
1

a

[

35ν2

6gτ sinα

]1/3

, (23)

where sinα = τ/
√
τ 2 + ǫ2.

The typical values ν ≃ 10−6m2 s−1 (water), a ≃ 0.5m, τ ≃ 0.1, ǫ ≃ 0.5 and sinα ≃ 0.2

give δ ≃ 6 × 10−4, so that δ ≪ 1, as assumed. Also, for these values, U ≃ 0.95m/s, the

Reynolds number R and the reduced Reynolds number δ2R are of orders 106 and 10−1,

respectively, and F is of order 1.

The parameters of the full small-helix-torsion numerical model of Section II may also be

expressed in terms of physical parameters:

R sinα

F 2
=

[

(

6τga3

35ν2

)2

sin5 α

]1/3

,
R2 cosα

F 2
=
ga3ǫ sinα

ν2τ
, K = 2ǫa2

[

(

35

6ντ sinα

)2
g

τ

]1/3

.

(24)

11



The dimensional flux Ua2Q down the channel is given by

Ua2Q = Ua2δ sinα Q̂ =
35νa

6τ
Q̂, (25)

which is independent of the helix curvature ǫ. Thus, results for a given value Q of the

dimensionless flux Q̂ correspond to results for a given physical flux and we may examine

how they change with changes in the helix curvature ǫ. Note that both of our dimensionless

models require specification of values for three free parameters, which we choose to be ǫ, τ

and δ. In particular, we will fix τ and δ, both of which must be small, and allow ǫ to vary

from zero to unity.

C. Solution and verification of results

In general, solutions for h(y) of the ODE (15) must be obtained numerically; this was

done readily using an ODE solver in MATLAB, for a chosen value of a parameter such

as hℓ. Then h and h3 were integrated numerically to determine the corresponding values

of Ω̂ and Q̂ from (18) and (19), respectively, using one of the MATLAB (version R2009b)

built-in quadrature functions; for accuracy we used the adaptive Gauss-Konrad quadrature

function (quadgk). More specifically, starting with two initial guesses of the unknown fluid

depth hℓ at the left-hand free-surface contact point, one for Q̂ < Q and one for Q̂ > Q,

where Q̂ = Q is the prescribed flux down the channel, the bisection method was employed

to determine the location of the free-surface contact points for Q̂ = Q to within a small

tolerance. The flow-domain area Ω̂ was then calculated, by numerical integration of h, and

a grid was defined over the flow domain on which the remaining quantities were calculated.

MATLAB’s in-built contouring functions were used to plot streamlines and contours of the

axial velocity and pressure.

In the particular case of a channel of rectangular cross-section treated in Section IV,

the ODE (15) may be solved exactly, and the integration to determine Ω̂ and Q̂ may be

performed exactly.

In order to verify the thin-film approximation the flow-domain geometry from a solution

of the thin-film model was imported into COMSOL Multiphysics, and a solution of the full

small-helix-torsion model described in Section II was found for this geometry via the method

described in Subsection IIB. The parameters for the full model were chosen to be consistent

12



c

6

-
y

ẑ
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with those used to obtain the thin-film solution. Specifically, for chosen values of the helix

curvature and torsion, ǫ and τ , and the aspect ratio of the fluid domain, δ, we have

R sinα

F 2
=

τ

δ2
√
τ 2 + ǫ2

,
R2 cosα

F 2
=

35ǫ

6τ 2 δ3
, K =

2ǫ(τ 2 + ǫ2)

δ2

(

35

6τ 2

)2

. (26)

In general, the free-surface shape was adjusted a little from that obtained from the thin-

film solution. The post-processing facilities provided by COMSOL were used to calculate the

area of and flux through the updated flow domain. A quantitative indication of the accuracy

of the thin-film model was obtained by comparing these quantities with those obtained from

the thin-film solution.

IV. A CHANNEL OF RECTANGULAR CROSS-SECTION

Consider now the particular case of a channel of rectangular cross-section with left-hand

and right-hand vertical walls at y = yℓ = −1 and y = yr = 1, as shown in Figure 3, for which

H(y) ≡ 0 for −1 < y < 1. For this case the thin-film flow solution may be found exactly for

a prescribed fluid depth at some position y = y0 in the channel. Comparison of this solution

with the numerical solution of the full small-helix-torsion model, for different values of the

relevant parameters, verifies the thin-film model. Analysis of the exact thin-film solution

for the channel of rectangular cross-section, for curvature between zero and unity and for

flux ranging from zero to infinity, then provides insight into the flow behaviour not readily

obtained from a numerical solution.

A. Thin-film solution

Let the fluid depth at the left and right vertical walls be h(yℓ) = hℓ and h(yr) = hr,

13



which must, for prescribed curvature and flux, be determined as part of the solution. From

(15) the film depth h = h(y) satisfies

dh

dy
=

h4

1 + ǫy
, (27)

whose solution satisfying h(−1) = hℓ is

h = hℓ

[

1− 3h3ℓ
ǫ

log

(

1 + ǫy

1− ǫ

)]−1/3

for − 1 ≤ y ≤ 1, (28)

or alternatively whose solution satisfying h(1) = hr is

h = hr

[

1− 3h3r
ǫ

log

(

1 + ǫy

1 + ǫ

)]−1/3

for − 1 ≤ y ≤ 1. (29)

Equation (27) shows that h increases monotonically with y, and hence, in particular, that

hℓ < hr; specifically, hℓ and hr are related by

1

h3ℓ
− 1

h3r
= η, (30)

in which we have defined

η =
3

ǫ
log

(

1 + ǫ

1− ǫ

)

, (31)

so that η ≥ 6 for 0 ≤ ǫ < 1. Note from (28) that, except in the limit ǫ → 1, in which

h(−1) → 0 (i.e. hℓ → 0), the fluid depth h is strictly positive within the channel −1 ≤ y ≤ 1,

showing that the free surface never intersects the bed ẑ = 0 of the channel.

Substituting the solution (28) or (29) for h into (18) and (19) gives the flow-domain area

Ω̂ and the flux Q̂, respectively:

Ω̂ =
1 + ǫ

31/3ǫ2/3
exp

(

ǫ

3h3r

)[

Γ

(

2

3
,
ǫ

3h3r

)

− Γ

(

2

3
,
ǫ

3h3ℓ

)]

, (32)

Q̂ =
1 + ǫ

9
exp

(

ǫ

3h3r

)[

Γ

(

0,
ǫ

3h3r

)

− Γ

(

0,
ǫ

3h3ℓ

)]

, (33)

where Γ(a, z) denotes the incomplete gamma function, defined by

Γ(a, z) =

∫ ∞

z

ta−1e−t dt. (34)

Equations (30) and (33) determine hℓ and hr when ǫ and Q̂ = Q are prescribed.

From (30) we see that for physically meaningful (i.e. finite and positive) hr we require

hℓ < η−1/3; equation (30) also shows that hr → ∞ and dh/dy → ∞ as hℓ → η−1/3, i.e.

both the fluid depth and the free-surface slope at the right-hand wall become infinite in this

limit. Thus there is a limiting value of hℓ, denoted by hℓmax = hℓmax(ǫ) = η−1/3 (and, as we

shall see, a corresponding limiting value of Ω̂, denoted by Ω̂max = Ω̂max(ǫ)), at and beyond

which there is no physically meaningful solution.
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B. Small-helix-curvature limit

At leading order in the limit of small helix curvature, ǫ → 0+ (the case considered by

Stokes et al. [24]), from (31) we have η → 6 and from (28) we have

h = hℓ
(

1− 3h3ℓ(1 + y)
)−1/3

. (35)

Also the flow-domain area Ω̂ and the flux Q̂ in (32) and (33) simplify to

Ω̂ =
1

2h2ℓ

[

1−
(

1− 6h3ℓ
)2/3

]

, Q̂ = −1

9
log

(

1− 6h3ℓ
)

. (36)

Prescribing the value of the flux Q̂ = Q we thus obtain hℓ and hr in terms of Q:

hℓ =

(

1− exp(−9Q)

6

)1/3

, hr =

(

exp(9Q)− 1

6

)1/3

. (37)

Therefore

h =

[

6

1− exp(−9Q)
− 3(1 + y)

]−1/3

, (38)

and hence

Ω̂ =

(

3√
2(1− exp(−9Q))

)2/3

(1− exp(−6Q)) . (39)

In the limit of small flux Q → 0 we have hℓ ∼ (3Q/2)1/3 → 0, hr ∼ (3Q/2)1/3 → 0 and

Ω̂ ∼ (12Q)1/3 → 0, and in the limit of large flux Q → ∞ we have hℓ → hℓmax(0) = 6−1/3 ≃
0.5503, hr ∼ 6−1/3 exp(3Q) → ∞ and Ω̂ → Ω̂max(0) = (9/2)1/3 ≃ 1.6510. Note that hℓ,

hr and Ω are all monotonically increasing functions of the flux Q, and so, in particular,

Ω̂ < 1.6510 for all Q. Figure 4 shows the free-surface shape given by (35) for a range of

values of hℓ. In particular, Figure 4 shows that the free-surface shape changes rapidly with

hℓ as the latter approaches the limiting value 6−1/3.

C. Unit-helix-curvature limit

In the limit of unit helix curvature, ǫ → 1− (satisfying the physical requirement that

ǫ < 1), from (31) we have η → ∞ and, since 0 < hℓ < hℓmax = η−1/3 → 0, we see that

hℓ = 0 at leading order in the limit ǫ→ 1−. Moreover from (29)–(33) it may readily be seen

that

h = hr

[

1− 3h3r log

(

1 + y

2

)]−1/3

(40)
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FIG. 4. Free-surface shape in the limit ǫ→ 0+ for h−3

ℓ = 6, 7, 8, 10, 15, 30, 50, 100, i.e. hℓ ≃ 0.55,

0.52, 0.50, 0.46, 0.41, 0.32, 0.27, 0.22.

and

Ω̂ =
2

31/3
Γ

(

2

3
,

1

3h3r

)

exp

(

1

3h3r

)

, Q̂ =
2

9
Γ

(

0,
1

3h3r

)

exp

(

1

3h3r

)

(41)

at leading order in the limit ǫ → 1−. Prescribing the value of the flux Q̂ = Q in (41) gives

hr implicitly in terms of Q. In the limit of small flux Q → 0 we have hr ∼ (3Q/2)1/3 → 0

and Ω̂ ∼ (12Q)1/3 → 0, and in the limit of large flux Q → ∞ we have hr ∼ 3−1/3 exp(γ/3 +

Q/2) → ∞ (where γ ≃ 0.5772 is Euler’s constant) and Ω̂ → Ω̂max(1) = (2/31/3)Γ(2/3) ≃
1.8778. Note that both hr and Ω are monotonically increasing functions of the flux Q, and

so, in particular, Ω̂ < 1.8778 for all Q. Figure 5 shows the free-surface shape given by (40)

for a range of values of hr.

D. Verification of the thin-film model

In this Subsection we verify the thin-film solution for different values of the helix curvature

ǫ (which, for the scaling used in our thin-film model, is the only free parameter in the problem

for the free-surface shape) by comparing it with the numerical solutions of the full small-

helix-torsion model described in Subsection IIB. To do this we must choose values for the

helix torsion and fluid-domain aspect ratio, which we fix to be τ = 0.1 and δ = 0.1. As we

have already seen, the parameters ǫ, τ and δ are the only parameters needed in the thin-film

and the full small-helix-torsion models. The initial flow-domain geometry for the COMSOL
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FIG. 5. Free-surface shape in the limit ǫ→ 1− for h−3
r = 0, 1, 2, 5, 100, i.e. hr ≃ ∞, 1, 0.79, 0.58,

0.46, 0.22.

computation is that given by the thin-film model for prescribed flux Q = 0.1. Since the free

surface is, in general, modified by COMSOL, we also compare the flow-domain area and the

flux of the two solutions. Because of the different scalings in the two models, we must use

appropriate scalings of the results to make direct comparison between them possible. We

have

z = δ ẑ, p =
R

δ
p̂, ψ = δ2R ψ̂, Ω = δ Ω̂, Q = δ sinα Q̂, (42)

where carets again denote variables of the thin-film model and

δ2R =

(

35

6τ sinα

)

δ,
R

δ
=

(

35

6τ sinα

)

1

δ2
, sinα =

τ√
τ 2 + ǫ2

. (43)

Since τ is held fixed as we vary ǫ, we have limǫ→0+ sinα = 1 and limǫ→1 sinα ≃ τ for small

torsion τ .

Figures 6–8 show the streamlines of the secondary flow, the axial velocity contours and

the pressure contours, respectively, for both the full small-helix-torsion and the thin-film

models with small helix curvature ǫ = 0.01, while Figures 9–11 show the corresponding

plots for large helix curvature ǫ = 0.9. All of these figures also show the free-surface shapes

predicted by both models. The agreement between the results of the two models is excellent.

At the scale used, the free-surface shape and pressure contours are in remarkably good

agreement, differing only near to the vertical channel walls. The axial velocity contours

also agree extremely well, also differing only near to the vertical channel walls. The most
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FIG. 6. Streamlines of the secondary flow, ψ̂ = C× 10−5 where C = 0.0 (outer curve), −0.2, −0.4,

. . . , −3.4 (inner curve), for a rectangular channel with helix curvature ǫ = 0.01 and torsion τ = 0.1.

The aspect ratio of the flow domain is δ = 0.1 and the flux is Q = 0.1. Black curves correspond to

the thin-film model and grey curves correspond to the full small-helix-torsion model. The arrows

show the direction of the flow.
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FIG. 7. Axial flow contours, u = C × 10−1 where C = 0.0 (lowest curve), 0.2, 0.4, . . . , 1.8 (highest

curve), for a rectangular channel with helix curvature ǫ = 0.01 and torsion τ = 0.1. The aspect

ratio of the flow domain is δ = 0.1 and the flux is Q = 0.1. Black curves correspond to the thin-film

model and grey curves correspond to the full small-helix-torsion model.
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ẑ
=
z
/δ

FIG. 8. Pressure contours, p̂ = C × 10−2 where C = 0.0 (highest curve), 0.2, 0.4, . . . , 6 (lowest

curve), for a rectangular channel with helix curvature ǫ = 0.01 and torsion τ = 0.1. The aspect

ratio of the flow domain is δ = 0.1 and the flux is Q = 0.1. Black curves correspond to the thin-

film model and grey curves correspond to the full small-helix-torsion model. The only discernible

differences between the two sets of curves are at the right-hand channel wall.
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FIG. 9. Streamlines of the secondary flow, ψ̂ = C× 10−4 where C = 0.0 (outer curve), −0.2, −0.4,

. . . , −5.6 (inner curve), for a rectangular channel with helix curvature ǫ = 0.9 and torsion τ = 0.1.

The aspect ratio of the flow domain is δ = 0.1 and the flux is Q = 0.1. Black curves correspond to

the thin-film model and grey curves correspond to the full small-helix-torsion model. The arrows

show the direction of the flow.
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FIG. 10. Axial flow contours, u = C×10−2 where C = 0.0 (lowest curve), 0.2, 0.4, . . . , 4.2 (highest

curve), for a rectangular channel with helix curvature ǫ = 0.9 and torsion τ = 0.1. The aspect ratio

of the flow domain is δ = 0.1 and the flux is Q = 0.1. Black curves correspond to the thin-film

model and grey curves correspond to the full small-helix-torsion model.
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FIG. 11. Pressure contours, p̂ = C × 10−1 where C = 0.0 (highest curve), 0.2, 0.4, . . . , 6 (lowest

curve), for a rectangular channel with helix curvature ǫ = 0.9 and torsion τ = 0.1. The aspect

ratio of the flow domain is δ = 0.1 and the flux is Q = 0.1. Black curves correspond to the thin-

film model and grey curves correspond to the full small-helix-torsion model. The only discernible

differences between the two sets of curves are at the two vertical channel walls.
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Thin-film model Small-helix-torsion model

ǫ Ω̂ Q̂ = Q Ω̂ Q̂

0.01 1.05485 0.10000 1.05486 0.096000

0.5 1.05489 0.10000 1.05501 0.096292

0.9 1.05291 0.10000 1.05347 0.096460

TABLE I. Comparison of the flow-domain area Ω̂ and the flux Q̂ for the thin-film and full small-

helix-torsion models.

significant differences between the predictions of the two models are in the streamlines.

These differences are due to the fact that the thin-film model satisfies the no-slip boundary

condition only along the bottom of the channel, while the no-slip conditions along the vertical

channel walls are necessarily neglected. In reality there is a thin boundary layer along these

walls which the thin-film model does not resolve, but which is shown in the solution to

the full small-helix-torsion model. The thickness of these boundary layers reduces with the

aspect ratio δ, and goes to zero in the thin-film limit, δ → 0. Hence the smaller the value

of δ used for our full small-helix-torsion model, the better the agreement with the thin-film

model should be. The effect of this boundary layer is greater at the right-hand wall of the

channel, near to which the axial velocity in the thin-film model is largest, than at the left-

hand wall, where it is smallest. Similar excellent agreement between the two models was

found for ǫ = 0.5, but this is not shown here for brevity. The agreement in the free-surface

shape improves slightly as the helix curvature ǫ decreases.

The flow-domain area Ω̂ and flux Q̂ predicted by each model for each of ǫ = 0.01, 0.5

and 0.9 are shown in Table I. In all cases, the flux Q̂ given by the full small-helix-torsion

model is just a little less than the value Q̂ = 0.1 used to obtain the thin-film solution. This

larger flux in the thin-film model corresponds to the neglect of the no-slip conditions on the

vertical channel walls, as discussed above. The flow-domain areas Ω̂ agree very well.

E. Discussion of results

Having shown the thin-film model to be in good agreement with numerical solutions to

the full small-helix-torsion model, we now use it to analyse further the flow in a rectangular
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FIG. 12. Fluid depths at the left-hand and right-hand channel walls, hℓ and hr, as functions of the

prescribed flux Q in the asymptotic limits ǫ → 0+ (dashed), ǫ → 1− (dash-dot) and for ǫ = 0.05,

0.25, 0.5, 0.75, 0.9 (solid). The lower set of curves is for hℓ and the upper set for hr. The arrows

show the direction of increasing ǫ. Note that hℓ = 0 for all Q at leading order in the limit ǫ → 1−.

hℓ and hr are shown separately in Figures 13 and 14 for a larger range of Q.

channel. The effects of both the helix curvature ǫ and the flux Q on the free-surface shape

are of particular interest. Also of interest is how well the solutions in the limits ǫ→ 0+ and

ǫ→ 1− represent the solutions for small non-zero curvature and for curvature near to unity.

1. Fluid depth at the vertical channel walls

Figures 12–14 show the fluid depths at the left-hand and right-hand channel walls, hℓ

and hr, as functions of the prescribed flux Q for a range of values of the helix curvature

ǫ. Figure 12 shows both hℓ and hr over a relatively small range of Q, and shows that hℓ

quite quickly approaches its maximum value hℓmax = η−1/3, with η given by (31), while hr

continues to increase without bound. Figures 13 and 14 show hℓ and hr, respectively, over a

larger range of Q. Clearly the maximum value of hℓ has almost been reached by Q = 1 for

all values of ǫ shown. This is also shown in Figure 15, which shows hℓmax = η−1/3 plotted

as a function of ǫ, with crosses showing computed values of hℓ for Q = 1 for a range of

values of ǫ. From Figure 15 it is apparent that the computed value of the flux Q̂ becomes

very sensitive to the value of hℓ as it increases. Hence, as Q increases, hℓ needs to be
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FIG. 13. Fluid depth at the left-hand channel wall, hℓ, as a function of the prescribed flux Q for

the asymptotic limit ǫ → 0+ (dashed) and for ǫ = 0.25, 0.5, 0.75, 0.9, 0.99, 0.999 (solid). The

arrow shows the direction of increasing ǫ. The curve for ǫ = 0.05 cannot be distinguished from

that for ǫ→ 0+ at the scale used. Note that hℓ = 0 for all Q at leading order in the limit ǫ → 1−.
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FIG. 14. Fluid depth at the right-hand channel wall, hr, as a function of the prescribed flux Q in

the asymptotic limits ǫ → 0+ (dashed), ǫ → 1− (dash-dot) and for ǫ = 0.05, 0.25, 0.5, 0.75, 0.9

(solid). The arrow shows the direction of increasing ǫ.

calculated to an increasingly higher precision. Eventually, for moderately large Q we reach

the limits of numerical precision. For ǫ = 0.05 this occurred at Q ≃ 3.5, but for ǫ ≥ 0.25

it was possible to compute up to Q = 4 (which was the largest value of Q considered)

without significant loss of accuracy. For satisfactory numerical accuracy at these larger
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FIG. 15. The maximum possible fluid depth at the left-hand channel wall, hℓmax = η−1/3, where

η = (3/ǫ) log((1 + ǫ)/(1 − ǫ)), plotted as a function of the helix curvature ǫ. The crosses show the

fluid depth hℓ for flux Q = 1 in the asymptotic limit ǫ → 0+ and for ǫ = 0.05, 0.25, 0.5, 0.75, 0.9,

0.99.

values of the flux it was essential to compute Q̂ using a quadrature function of sufficient

accuracy. The trapezoidal rule was not suitable, but MATLAB’s higher-order quadrature

functions (namely, adaptive Simpson, adaptive Lobatto and adaptive Gauss-Konrod) all

gave satisfactory results. The adaptive Gauss-Konrod function (quadgk) was selected for

its accuracy and because it handles moderate singularities at the endpoints of the domain.

Figures 12–14 also show that for 0 < ǫ < 1 the fluid depths hℓ and hr are monotonically

decreasing functions of the helix curvature ǫ and monotonically increasing functions of the

flux Q, satisfying hℓ → 0 and hr → 0 as Q → 0 and hℓ → hℓmax = η−1/3 and hr → ∞ as

Q → ∞, in accord with the behaviour in the limits ǫ→ 0+ and ǫ→ 1− described earlier.

2. Flow-domain area

Figure 16 shows the flow-domain area, Ω̂, plotted as a function of the prescribed flux Q for

a range of values of the helix curvature ǫ. In particular, Figure 16 shows that for 0 < ǫ < 1

the flow-domain area Ω̂ is a monotonically increasing function of the helix curvature ǫ and

of the flux Q, satisfying Ω̂ → 0 as Q → 0 and Ω̂ → Ω̂max(ǫ) as Q → ∞, again in accord

with the behaviour in the limits ǫ → 0+ and ǫ → 1− described earlier. In particular, this
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FIG. 16. Cross-sectional area of the flow domain Ω̂ as a function of the prescribed flux Q in the

limits ǫ→ 0+ (dashed), ǫ→ 1− (dash-dot) and for ǫ = 0.05, 0.25, 0.5, 0.75, 0.9 (solid). The arrow

shows the direction of increasing ǫ.
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FIG. 17. Free-surface shape h(y) for ǫ = 0.05, 0.25, 0.5, 0.75, 0.9, 0.99 (solid) and in the limits

ǫ→ 0+ (dashed) and ǫ→ 1− (dash-dot) with flux Q = 0.1.

means that Ω̂ < Ω̂max(1) ≃ 1.8778 for all values of ǫ and Q.

3. Free-surface shape

Figure 17 shows the free-surface shape h(y) with prescribed flux Q = 0.1 for a range of

values of the helix curvature ǫ. In particular, Figure 17 shows how the curvature of the free
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surface changes sign as ǫ increases. Differentiating (27) with respect to y we have

h′′ =
h4(4h3 − ǫ)

(1 + ǫy)2
, (44)

where a dash denotes differentiation with respect to argument, from which it is clear that the

free-surface curvature (i.e. h′′ in the thin-film approximation) changes sign when h passes

through (ǫ/4)1/3. Substituting hℓ = (βη)−1/3, where β ≥ 1 and η is given by (31), into (28)

we find that

h′′
>
=
<

0 for y
>
=
<

ζ, where ζ =
1

ǫ

[

e−4/3

(

1 + ǫ

1− ǫ

)β−1

(1 + ǫ)− 1

]

, (45)

i.e. that the curvature h′′ changes sign from negative to positive at y = ζ . In particular, as

Figure 17 confirms, in the limit ǫ → 0+ we have ζ → −∞ and hence the curvature is always

positive across the entire channel (in agreement with the solution in that limit described

in Subsection IVB), while in the limit ǫ → 1− we have ζ → +∞ and hence the curvature

is always negative across the entire channel (in agreement with the solution in that limit

described in Subsection IVC). As the helix curvature ǫ increases, the slope of the channel

decreases because the helix torsion is held constant, and the free-surface shape changes from

one resembling the paraboloidal shape generated by a forced (rotational) vortex, seen, for

example, when a container of fluid is rotated about its axis, to one resembling that generated

by a free (irrotational) vortex, seen, approximately, when water drains through a plug hole

[30].

Figure 18 shows the free-surface shape h(y) with fixed helix curvature, specifically ǫ =

0.99, for a range of values of the prescribed flux Q. Figure 18 also shows the asymptotic

solution in the limit ǫ→ 1− (which is, as expected, virtually indistinguishable for all values

of Q) and the asymptotic solution in the limit Q → ∞ given by (40) in the limit hr → ∞.

In particular, Figure 18 shows that the free-surface shape in the limit Q → ∞ is very similar

to that for Q = 1, except near to the left-hand channel wall where, in the limit Q → ∞,

the fluid depth drops rapidly to zero at the wall. In the case of near-unity helix curvature

and large flux, the free-surface shape resembles that of a compound vortex [30]; near to the

left-hand channel wall (y = −1) the free-surface shape is like that generated by a free vortex

(with negative curvature) and, as y increases, its shape becomes like that generated by a

forced vortex (with positive curvature). Using (40) we find that in the limit ǫ → 1−, h′′

changes from negative to positive at y = 2 exp[(h−3
r − 4)/3]− 1. In particular, as Figure 18
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FIG. 18. Free-surface shape h(y) for Q = 0.1, 0.2, 0.3, 0.4, 0.5, 1 with ǫ = 0.99. The arrow shows

the direction of increasing Q. The solid curves show predictions of the thin-film model and the

dashed curves show the virtually indistinguishable asymptotic solution in the limit ǫ → 1−. The

asymptotic solution in the limit Q → ∞ curve (dash-dot) is given by (40) in the limit hr → ∞.

shows, in the limit Q → ∞ (hr → ∞) the sign of h′′ changes at y ≃ −0.4728, while for

Q ≃ 0.1 (hr = 0.6) h′′ < 0 across the entire width of the channel, as shown by the curve for

Q = 0.1.

V. CONCLUSIONS

We developed a thin-film model for flows of small depth in helically-wound channels.

The helix torsion was assumed to be small and the helix radius must be greater than the

half-width of the channel. The channel may have any cross-sectional shape, and it was

shown that the solution for the film depth as a function of horizontal position in the channel

cross-section is governed by the first-order ODE (15) (which must, in general, be solved

numerically). With the scaling used, the fluid depth (and therefore the free-surface shape)

depends only on the helix curvature ǫ and the fluid depth at a given position, usually taken

to be the left-hand end of the free surface. The volume flux down the channel is found by

quadrature.

The present work focused on a channel with rectangular cross-section, for which an exact

solution of (15) is available, greatly facilitating detailed analysis of the flow. We found that
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there is a (finite) upper limit on the fluid depth at the left-hand channel wall, hℓ, dependent

on the helix curvature, above which there is no physically meaningful solution. At this value

of hℓ both the fluid depth and the slope of the free surface at the right-hand channel wall

are infinite. The upper limit on hℓ corresponds to infinite flux down the channel, and so the

range of possible values of hℓ covers all possible fluxes Q (i.e. ranging from zero to infinity).

In the limit as the flux goes to infinity the flow-domain area also approaches a (finite) upper

limit. Computed results for non-zero helix curvature show the same behaviour as in the

limits of zero- and unit-helix-curvature.

An interesting feature of this problem is the change in the free-surface shape as the helix

curvature increases to unity for fixed values of the flux and (small) helix torsion. If the

helically-wound channel is viewed from above, the axial velocity component resembles that

of a vortex flow. In the case of small flux, the free-surface shape at small helix curvature

resembles that generated by a forced vortex; as the helix curvature increases it changes to

resemble that generated by a free vortex. In the case of large flux the free-surface shape at

small helix curvature still resembles that of a forced vortex; as the helix curvature increases

the free-surface shape near the left-hand channel wall resembles that generated by a free

vortex but changes to a shape resembling a forced vortex away from that wall, i.e. it has

a shape consistent with a compound vortex. Given the helix curvature ǫ and the flux Q,

which determines the fluid depth at the left-hand vertical wall hℓ, we are able to determine

from (45) whether the free surface has a shape corresponding to a free, forced, or compound

vortex and, in the latter case, the inflexion point. In addition, the helix torsion is small. It

is, then, not surprising that the flow has features of free, forced and compound vortex flow,

as we have inferred from the free-surface shape. Note that our findings call into question the

assumption made by Holland-Batt [11] of free vortex flow in the outer region of the channel.

The validity of this assumption depends on the problem parameters, and for moderate to

large flux the flow in the outer region of the channel looks more like that of a forced vortex

than a free vortex. Where the helix torsion and curvature are small, as in Holland-Batt’s

more recent work on large diameter spiral separators of rectangular cross-section [25], the

free-vortex assumption is not justified. The thin-film model presented in the current work

provides an alternative means for predicting the flow within spiral separators that should

be more accurate and more generally applicable, and is straightforward to use.

Corresponding results for channels whose cross-sectional shapes are other than rectangu-
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lar may be obtained. In more typical cases (such as a channel of parabolic cross-section),

the fluid depth at one or both points of contact of the free surface with the channel wall is

zero and the horizontal position(s) of the contact point(s) must be found. In addition, it

is in general no longer possible to obtain a closed-form solution of (15) or, in the few cases

where an exact solution is available, its form often does not allow analysis of the flow to the

extent possible for the rectangular case, so that behaviour must be inferred from numerical

results, which presents some additional challenge.

Finally we note that the validity of the small-torsion assumption everywhere in the flow

domain requires that (A+ y)2+P 2 ≫ aP for yℓ < y < yr. In particular, for the rectangular

channel, as the curvature of the channel axis approaches unity (ǫ→ 1) and yℓ → −A, torsion
effects may be non-negligible in a region of the channel near to the vertical axis around which

the channel is wound.
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Appendix A: Numerical solution of the full small-helix-torsion model

We here describe numerical solution of the full small-helix-torsion model of Section II, us-

ing the finite-element package COMSOL Multiphysics (version 3.5a). In order to implement

the zero-stress boundary conditions (7c) and (8) in the standard finite-element manner,

i.e. as the natural boundary conditions of the Navier–Stokes model, we add the y and z

derivatives of the continuity equation (3) to (4b) and (4c), respectively, to obtain

v
∂v

∂y
+ w

∂v

∂z
=− ∂p

∂y
+ 2

∂2v

∂y2
+

∂

∂z

(

∂v

∂z
+
∂w

∂y

)

+
2ǫ

1 + ǫy

(

∂v

∂y
− ǫv

1 + ǫy

)

+
Ku2

2(1 + ǫy)
,

(A1a)

v
∂w

∂y
+ w

∂w

∂z
=− ∂p

∂z
+

∂

∂y

(

∂w

∂y
+
∂v

∂z

)

+ 2
∂2w

∂z2
+

ǫ

1 + ǫy

(

∂v

∂z
+
∂w

∂y

)

− R2 cosα

F 2
, (A1b)

which replace (4b) and (4c).
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As discussed by Stokes [22, 23], it is necessary either to determine the points of contact of

the free surface with the channel wall a priori or to have a means of varying them during the

solution process. In the present work, considering flows of small depth, we use the thin-film

model of Section III to define the initial flow domain for the numerical solution process and

assume the contact points to be known a priori.

Next note that (4a), with boundary conditions u = 0 on the channel walls and (7a)

on the free surface, has the form of a modified steady-state heat conduction-convection

problem with u playing the role of temperature, while (3), (A1a) and (A1b), along with

boundary conditions (5) on the channel walls and (7b) and (7c) on the free surface, comprise

a modified two-dimensional steady-state Navier–Stokes problem. Thus, a heat conduction-

convection model for the axial velocity (u) and a Navier–Stokes model for the secondary-flow

components (v, w) and pressure (p) are set up within COMSOL Multiphysics. These are

coupled through the three velocity components. In the special case of a straight channel,

ǫ = 0, these are standard models:

1. the heat conduction-convection equation with source term R sinα/F 2, “temperature”

u = 0 on the channel walls and zero “heat conduction” through the free surface;

2. the Navier–Stokes equations with body force (Ku2/2,−R2 cosα/F 2), no slip and no

penetration on the channel walls and zero stress conditions on the free surface.

In the general case of a curved channel, ǫ 6= 0, the extra terms in (4a), containing the factor

ǫ/(1 + ǫy), must be explicitly added to the heat conduction-convection model for u, and

the usual boundary condition at the free surface must be changed to allow non-zero heat

conduction through it:
∂u

∂y
ny +

∂u

∂z
nz =

ǫu

1 + ǫy
ny. (A2)

With respect to the Navier–Stokes model for v, w, p, we first write the continuity equation

(3) in the form
∂v

∂y
+
∂w

∂z
+

ǫv

1 + ǫy
= 0, (A3)

showing that an extra term, ǫv/(1 + ǫy), must be added to the usual form of the continuity

equation. Also, the additional terms in (A1a) and (A1b), containing the factor ǫ/(1 + ǫy),

must be explicitly added to the usual form of the Navier–Stokes equations and the body

force changed slightly to (Ku2/(2(1 + ǫy)),−R2 cosα/F 2).
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Once the conduction-convection and Navier–Stokes models have been solved for the ve-

locity and pressure, the flow-domain geometry is modified via a COMSOL Multiphysics

moving mesh (augmented Lagrangian-Eulerian) model. This maps between fixed reference

mesh coordinates (Y, Z) and the moving physical mesh coordinates (y, z). Motion of the

physical mesh in the interior of the flow domain is determined by solving Laplace’s equation

for each of y(Y, Z) and z(Y, Z), subject to constraints on the boundary. At the channel walls

the mesh does not move, while at the free surface the mesh moves according to the normal

velocity component. An iterative procedure of solving for velocity and pressure, and then

using this to update the physical mesh, is run until the kinematic condition (8) is satisfied.

The kinematic condition is considered to be satisfied when

∫

Γ

(vny + wnz)
2 ds < tol, (A4)

where Γ denotes the boundary of the flow domain, s denotes arc length along Γ, and tol is

a small tolerance of order 10−4 or less.

Finally, we also determine the stream function ψ defined by (9). In order to obtain

ψ at all mesh nodes for export to MATLAB and to plot streamlines for comparison with

those obtained from the thin-film model, the stream function is found by solving Poisson’s

equation

∂2ψ

∂y2
+
∂2ψ

∂z2
= − [(1 + ǫy)ω + ǫw] , (A5)

where ω = ∂w/∂y − ∂v/∂z is the component of vorticity in the direction of the primary

flow.

In summary, the numerical solution to the present helically-symmetric small-torsion

model is found, using COMSOL Multiphysics, by the iterative solution of four sub-problems:

(1) a convection-conduction model for the primary flow velocity, (2) a Navier–Stokes model

for the secondary flow velocity and pressure, (3) a moving mesh problem for updating the

flow-domain geometry, and (4) Poisson’s equation for the stream function. The initial flow-

domain geometry used is that predicted by the thin-film model, which is adjusted a little by

the iterative numerical solution process.
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