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ABSTRACT

Radio jet and core data for a complete sample of 98 FRIl ssuxith z < 1 are analysed
with a Markov-Chain Monte Carlo (MCMC) model fitting methaal ¢btain constraints on
bulk-flow speeds in the beam. The Bayesian parameter-ifermethod is described and
demonstrated to be capable of providing meaningful coimsgran the Lorentz factor at both
kiloparsec and parsec scales. For both jets and cores we thlabwnodels in which some
intrinsic dispersion is present in the features’ intringiominence, bulk-flow speeds or both
provide the best fit to the data. The constraints on the Laffator on parsec scales are found
to be consistent with the expected values given VLBI obg&mwa and other evidence, with
7 =~ 10-14. On kiloparsec scales, the Lorentz factor is found tezbke 18 —1.49, in agreement
with the results of previous analyses of radio jet data. €vadues are clearly not consistent
with the~ ~ 10 speeds required by beamed inverse-Compton models of Xanggsmn from
quasar jets; our results therefore support models thaireegalocity structure in powerful
jets.
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1 INTRODUCTION the line of sight, as would be the case in standard unified mode
(Barthel 1989) for an FRII quasar, emission associated thétap-
proaching jet is then Doppler-boosted and observable,enthiht
Fanaroff & Riley (1974) type Il quasars and radio galaxiesr¢h associated with the receding jet is Doppler-suppressecdande-
after FRIIs) generally exhibit double radio lobes with ssabf tens tected. For a source where the beam axis lies close to the pfan
to hundreds of kiloparsecs that are symmetrical about thecets the sky, both jets are likely to be Doppler-suppressed.

central engine. There is now a very large amount of evideace f The key piece of evidence for relativistic beaming on kpc
models (e.g. Scheuer 1974; Blandford & Rees 1974) inwhiekdh  scales comes from the tendency for the jet side to be assdciat
are supplied with energy, mass, momentum and magnetic flax by with the less depolarised lobe of the source, the LaingiGgton

1.1 Relativistic beaming of jet emission

bipolar, symmetrical, continuous flow of material — the ‘trear effect (Garrington et al. 1988, Laing 1988). The depolagzainech-
‘beams’. These outflows must persist and be well-collimatedo anism is believed to be an external Faraday screen in whieh th
the 100-kpc scales of the lobes in order to give rise to therviesl source is embedded, presumably the hot phase of the irdetigal

compact terminal hotspots. However, the observationalasiges medium, and thus the degree of depolarization observeddspe
of these collimated outflows, ‘jets’ (e.g. Bridle & Perley8l), are upon the path length of the radiation through the screen.l@sse

not always detected in FRIIs, either in the radio or at othavev depolarized lobe is therefore expected to be the nearey dolibe
bands. Where jet emission is observed, the jet is very often-* lobe pointing towards us, and any correlation with the kileec jet
sided’: i.e., it is either detected on one side of the sourdg or requires that the jet emission is Doppler-boosted. Howevhile
is very much brighter on one side. This is particularly chtea observations of the Laing-Garrington effect require reistic jet

istic of powerful FRII quasars. As the presence of twin bedns  speeds on kiloparsec scales, they do not tell us what thesslsp

suggested by the morphology of the large scale structuecfattt are.

that the deteciion of both jets in these poweriul sources Brs Direct evidence for relativistic flow speeds in theerregions

common supports the hypothesis that the beam’s emittingmaét  f the beams, on parsec and sub-parsec scales, comes from VLB

is moving at relativistic speeds on kpc scales and that the-em  opservations of apparent superluminal motion. For exaphfiegh

sion is affected by Doppler boosting (‘beamed’). For theecas et a1, (2002) have mapped the parsec scale regions of a cemple

a source where the beam axis makes a relatively small angle t0gample of 25 lobe-dominated quasars (defined as havingoaofati
nuclear to extended flux density at 5 GHz of less than 1) fraen th
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such a jet is detected. Hough et al. estimate bulk flow speétis w
Lorentz factor,y, ~ 5 — 10 from multi-epoch observations, and
these results are consistent with those from other obsgiio-
grammes. Further observational support for the idea of bigh
speeds in radio-loud AGN in general comes from the rapid-vari
ability and consequent high brightness temperatures eépescale
features, the absence of very strong inverse-Compton iemiss
X-ray observations of the nucleus, and transparency to &igingy

~ rays, which together imply bulk Lorentz facteys> 2 and possi-
bly as high asv 50 (Begelman, Fabian & Rees 2008). Arguments
based on unification and population statistics (mostlywpmwer
objects; e.g. Chiaberge et al. 2000, Hardcastle et al. 2i003ly

v ~ 3: a plausible explanation for the widely differingvalues

is that there is velocity structure in the parsec-scaleHetvever,
the essential point for our purposes is that all parse@sesti-
mates agree on the need for Lorentz factors correspondsyetrs
greater thanv 0.9¢, and the direct VLBI estimates imply speeds
20.99¢ in general. It is therefore important to ask whether these
speeds persist to the kiloparsec scale.

Two approaches to determining the kiloparsec-scale jetcspe
have been taken in the literature. The first uses the radipepro
ties of the jets. This approach was pioneered by Wardle & Aaro
(1997, hereafter WA97), who analysed the observed jet flymas
metry in the 13 quasars imaged by Bridle et al. (1994). Thiygt
asymmetry was defined as the observed jet flux over the ceunter
jet flux (where the counter-jet is the fainter of the two), bstfor
most sources no counter-jet was actually detected, mankedf t
data points are actually lower limits. Taking into accourg pos-
sibility of some intrinsic asymmetry, they simulated a n@mbf

model for the radio through X-ray data, while various ineers
Compton models for the X-rays require extreme departu@s fr
equipartition for a non- or mildly relativistic jet. Instéathe model
proposed independently by Tavecchio et al. (2000) and @Gelot
Ghisellini, & Chiaberge (2001) is widely adopted. In this aed
the jet is moving relativistically, with a bulk Lorentz facty > 1.

As seen by the jet, the energy density in the microwave backgt
increases by a factor of the ordgt, and this increases the emissiv-
ity of the inverse-Compton scattering of the microwave lgmokind
(hereafter CMBY/IC) in the jet frame; in PKS 063752, crucially,
they (~ 10) required for the kpc-scale jet is very similar to that
inferred from VLBI studies of superluminal motion in the tewgs.
The emission from this process is strongly anisotropic amiss
only visible in core-dominated objects, but, in unified misdéhe
jets in lobe-dominated quasars and FRII radio galaxies imagt
comparable speeds. The implicatiomof> 1 in the kpc-scale jets
of all radio-loud objects is in strong contrast to the resolt the
prominence/sidedness analyses described above.

How can these two very different estimates of the kpc-scale
jet speed be reconciled? There is still disagreement initbad
ture over whether the beamed CMB/IC model really does dascri
all, or even any, of the observed quasar jets (e.g. Stawaat et
2004, Hardcastle 2006, Jester et al. 2007). If it does, tasrar-
gued by Hardcastle (2006), velocity structure in the kitspa-
scale jets and perhaps bulk deceleration on hundred-kdessca
seem inevitable consequences. At the same time, thougbxiste
ing work on the radio data is open to a number of criticism® Kh
S test is not really adapted to model fitting (that is, it is olotious
that maximizing the K-S test null hypothesis probabilitglie cor-

data sets that were compared to the observed data by means ofesponds to maximizing the likelihood). More seriously thrge

a Kolmogorov-Smirnov (K-S) test. They found that the obedrv
data are best fitted with.6 < 8 < 0.8, whereg is the jet speed
as a fraction of the speed of light. However, because thegmna
sample was not complete, they were forced to take quite aleaxmp
approach to the inclusion of the selection criteria in tlagialysis,
and effectively to treat the upper limit on angle to the lifiesight
made by the beam axes of their sources as a free parameteirin th
fits. Hardcastle et al. (1999, hereafter H99), used a simikthod

to constrain the jet bulk-flow velocities for their sampleFRRIIs
with z < 0.3, which overlaps considerably with the sample con-
sidered in the present paper (see Sedfich 2.1). Rather ging u
jet sidednesses they used the jet and core prominencese@efin
the ratio between the jet/core flux density and that of therede:d
emission: see Sectign 2.4). Because their sample was ctentipée
source orientation could be assumed to be random, simpijifyie
analysis with respect to WA97’s work. In their analysis trexfpa-
rameters were the intrinsic prominengeg,:, and3 and, exploring

a grid in these two parameters and using K-S tests in the saye w
they derived speeds betweérsc ~ 0.7c. Arshakian & Longair
(2004) used an analytic approach to the H99 data to infehtbjig
lower speedsp = 0.4, on the basis of the jet sidedness distribu-
tion, while constraining3 > 0.6 for the sample used by WA97.
Thus all the approaches based on the distribution of therobde
properties of the radio jets to date have been consistentptying
only moderately relativistic bulk speed$/ 0.5 +0.1.

However, a different approach is motivated by the widegprea
detection of strong X-ray emission from the jets of core-twmted
quasars, believed to be the highly aligned counterpartseoFRII
radio galaxies and lobe-dominated quasars studied by WA#7 a
H99. Following the discovery of the prototype of this claB&KS
0637-752 (Schwartz et al. 2000), it was quickly realised that the
broad-band spectra of these object preclude a one-zonkrsyran

number of jet or counterjet non-detections and consequerits|
on sidedness or prominence measurements are hard to taleeint
count either in the K-S method of WA97 or H99 or in the anaBftic
method of Arshakian & Longair (2004), although H99 atterdpte
to assess the effect of the limits in their sample by scaliegtand
argued that they did not have a strong effect. In all casesaimple
sizes are small; additionally, WA97’s sample has compléacsien
effects while H99's sample is low-luminosity and contant@tbby
low-excitation radio galaxies whose role in unified modsls0t
clear. For all these reasons, it is worth revisiting the adshsed
estimates of kpc-scale jet speeds with new data and newsimaly
techniques: the present paper presents the results of satya

1.2 This paper

The present paper is based on the work of Mullin, Riley & Hard-
castle (2008, hereafter Paper 1). In that paper we presentist
tailed study of the observed properties of a complete sample
FRII sources, including the kiloparsec-scale jets and teagures.
We concluded that the observational evidence supportstmming
hypothesis and that, while there is stronger evidence fativestic
speeds on parsec scales, the observed correlation betetesmdj
core brightness implies the extension of high bulk-flow sigeato
kiloparsec scales.

In this paper we use these jet and core data together with a
Bayesian inference method in order to constrain Lorentmfac
in the beams on parsec and kpc scales. Our approach is frae fro
many of the disadvantages of earlier work. We do not carry out
systematic grid searches of parameter space, and so aimitet|
to a small number of model parameters: this allows us to dahl w
the case in which the intrinsic prominence and speed digioibs
are not delta functions but themselves have some intrimsittes.



Bayesian inference of jet bulk-flow speeds in FRII radio sesir 3

Crucially, we can also treat the limits in the data properdgher a narrow ridge running through more diffuse emission, or ma na
than treating them as measurements. In addition, our datase row feature in the inner part of the source entering morenehad
factor ~ 2 larger than that of H99, and contains luminous quasars emission in the outer part).
and powerful radio galaxies which are well matched to the-cor
dominated quasars for which high bulk Lorentz factors haaenb
inferred. This paper therefore represents a significantorgment
over previous work.

The remainder of the paper is structured as follows. In the fo
lowing Section the dataset is described, while the anaipsithod . L : .
and performance of the code used is discussed in Sédtiors@ltRe the compact radio core where it is closest to it (and is messur

are presented in Sectibh 4 and the discussion and conciuaien 10 the end closest the core along its length only while tii-d
in Sectior 5. ation from a straight line is less than the jet radius). Ohly flux

density of the straight jet is used in the analysis in thisgpap

In practice, the straight jet is taken to be the longest gittai
section of the jet in the source that is aligned with the ctle.
ing the AIPs task TVSTAT, the integrated flux within the region
containing the apparent jet emissidfy,s, was found. Background
flux was corrected for by taking measurements of two regides-i
tical in size to the initial jet measurement to the immediagat
2 THE DATA and left of the feature. The average of theBg,s, was then sub-
tracted from the jet measurement to give the observed jet flux
Jobs = Fons — Bobs. In order to get the best estimate.ff.s, three
The sample is that of Paper I, which consists of the 98 FRibrad ~ values of jet flux were taken this way and averaged. The great-
galaxies and quasars with< 1 in the sample of LRL. Thisisa €St source of error in the jet measurement is consideredise ar
complete flux-limited sample, including all 3CR sourceserbed from the ambiguity in defining the jet emission itself: theces

to haveSizs > 10.9 Jy (on the scale of Baars et al., 1977) with 9uoted are therefore based on the range of the three jet neasu
declination> 10° and|b| > 10°, whereSis is the total source ~ Ments made. Where no jet emission is detected, an upperigimit

flux measured at 178 MHz. At this low frequency the source fiuxi ©Stimated by measuring the integrated flux of a regioR restor-

In some sources jets appear to bend, and this causes praidems
analysis in terms of beaming models, which must assume &sing
angle to the line of sigh@, as discussed by Bridle et al. (1994).
We follow Bridle et al. (1994) and H99 in defining the straiggtt
which satisfies the above two criteria but also must be atigvieh

Throughout the paper we use the quantities measured and
calculated in Paper I: this implies the use of a cosmology wit
Ho = 70 km s™* Mpc™!, Q@ = 0.3 andQy = 0.7. All sym-
bols used are summarized in Table 1.

2.1 Thesample

dominated by the diffuse emission of the large scale lohestre  INg beam widths across the entire distance between the ooyera
and as such little contribution should be made by Dopplestest ~ Mary hotspot region. Background flux is corrected for in tame
components; thus the selection criterion should ensuteftagam- ~ Manner as for the detected jets by taking two further integrfux
ple is not biased with respect to orientation. measurements either side of the initial region. Howevehefflux

A long-term observing project has mapped the vast majority associated with_th_e cer_1tra| rggion is not the highegF of h]!neet
of these 98 sources at high resolution and sensitivity iagh\LA then the upper limit estimate is taken to be the positiveedtifice
telescope. Data from this project have been presented iries s between the central measure and the lower gf the other two.
papers: Black et al. (1992), Leahy et al. (1997), Hardcastlal. The gample e>.<tends overa large range in redshift and was ob-
(1997), Gilbert et al. (2004) and, most recently, Mullinriizastle ~ Served using a variety of different telescopes and telescopfig-
& Riley (2006). Observations of the outstanding source® timen urations, which means that the effective (spatial) observeso-

made by us or by other workers and the data are available in the!ution is far from constant across the sample. Observaltieffects
literature; all references to the data used here are givétajer on jet detectability were considered in Paper |, where welcoied

I In addition, the data — maps and measurements — from Paper [that, although observing resolution is clearly a factoreinsibil-
are now available on-liffle The subsample of sources with < ity, therg is no s.lmplcsystematldmas across the sample nor any
0.3 overlaps considerably with that of H99, and the measuresnent {rend with redshift. We therefore do not expect that theaterms

of H99 are used for the sources that we have in common, but the N effective observing resolution will affect the robusteeof the
larger redshift range of our sample gives us a factor 2 marecss results of any analysis @fps; .

(improving the statistical significance of our results) amehns that

15 FRII quasars are included, complementing the data ordbroa

and narrow-line radio galaxies from H99’s work. 2.3 Cores

Paper | also contains a detailed discussion of core measatsm
The core measurements were obtained from the highestitisol

2.2 Jets map available for a given source using #es task JMFIT, which
The definition of the term jet and a discussion of the data aea-m  fits an elliptical Gaussian model of between one and four @mp
surements is given in Paper I. Here, the jet criteria arenatied: nents to a feature. One component was fitted and the peak inten
they are based on those of Bridle & Perley (1984). Thus, asjet i sity found was taken as the core flux. As most cores in the sam-
any feature that is ple were unresolved at all resolutions such a model fitteditia
well. Errors were determined from the square root of theayeof
(i) atleast four times as long as it is wide; the squared formal errors returned from the fitting procedBor
(if) separable at high resolution from other extended $tnes around two thirds of the sample this error is less than 2 petr @k

(if any), either by brightness contrast or spatially (etghiould be the core flux, so the calibration error (expected to be 2-Xpat)
will dominate. Errors quoted therefore correspond to 3 et of
the core flux measurement, unless the formal error from JM&IT

1 See hitp://zI1.extragalactic.inio/ greater, in which case the latter is quoted. Cores were aotbet
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in only seven sources, and in these cases estimates of uipyitsr |
were made from the off-source noise.

Again, observing effects were considered for the core promi
nence data in Paper I. We concluded that, as the cores acaltypi
bright, unresolved features that are generally much heigtitan
any lobe or jet material with which they might be confusedoat |
resolution, observational effects are not a source of Byatie bias
in the analysis 0pobs.. -

2.4 Prominence

In order to analyse the jet and core data the observed jet@med c
flux density data are extrapolated to a common frequencyf 8.
GHz and then K-corrected assuming the spectral index; 0.5

for jets and= 0 for cores, before being converted to a luminosity
using the relation

P =R*(1+2)%S 1)

whereP is the jet or core luminosityR the proper distance (as cal-
culated using thencsiA] code) andS the jet or core flux density.
The total source flux measured at 178 MHz is K-corrected u$iag
low-frequency spectral indexy; ¢ (appropriate over the range 178
— 750 MHz), and converted to a luminosify;7s. The jet and core
prominence are then the ratio of the corresponding featlmenii-
nosity to Pi7s. Observed jet and core prominences for our sample
are plotted in FigEll arid 2.

This definition of prominence, which we used in Paper I, as-

sumes that the total source flux as measured at 178 MHz is uncon

taminated by beamed components. It is expected that thelsamp
will be dominated by the extended lobe emission at this lav fr
quency; however, in sources with very bright jet or core ezt
it is not clear that no contamination exists and this is paaéy a
source of bias in the prominence values. We investigatedhehe
there is any evidence for such contamination in our data loy-co
paring prominence values evaluated as described aboveheike
evaluated with a modified total source flux, that is, a totalrse
flux corrected by subtracting off jet and core features.

The modified total source flux at 178 MHz was calculated by
extrapolating the jet and core fluxes from the observed &rqu
to 178 MHz. Here, theotal jet was used, that is, the feature that
satisfies the jet conditions as specified in Sedfioh 2.2 ahndheo
more restrictivestraight jet conditions (see Paper | for a more de-
tailed description of total and straight jet definitionsptB jet and
counter-jet features were extrapolated back to 178 MHz. e
rected fluxes were then subtracted from the total source o,
this modified total source flux was K-corrected and used ttueva
ate the core and straight jet prominence as described above.

Plotting these alternative jet and core prominence values
against those initially determined, there was no evidehaesither
the core or jet prominence values were greatly affected byaro-
ination of beamed components if the total source flux at 17&MH
is used without first correcting it — the correlation in thetplis
linear and there is no trend for sources to curve away from thi
line. Additionally, considering the errors in the jet andedlux
measurements, the difference in prominence values mad@tiy m
fication of the total source flux is low — in particular, thefdience
in the jet prominence made by modifying the total source fhix i
typically a fraction of a percent of the quoted error.

From this we conclude that using the 178 MHz total source

2 http://ascl.net/angsiz.html

flux without making any attempt to remove beamed emission to
define prominence, as we did in paper I, will not affect theustb
ness of our analysis. We therefore use the unmodified proroine
for consistency with Paper I.

Finally, we note that in Paper | a spectral index of 0.5 wasluse
for jets, despite the fact that higher values0.8 have typically
been used by other workers (H99, for example). Hotspot featu
are expected to be associated with much flatter spectra étan |
and it was decided in the previous analysis, given that send
core, jet and hotspot properties as well as correlationsd®i the
features were being considered, that a spectral index afhéld
be used for both jet and hotspot features. The analysis megbe
here uses the jet prominence data of Paper 1; however, wigleons
the effects of varyingy for jets in Sectioifi 4J1.

3 DATA MODELS
3.1 Doppler boosting of source emission

The emission from any component of a radio source that ikrav
ling at a significant fraction of the speed of light with resp® an
Earth-bound observer will be anisotropic due to relatigiseam-
ing even if it is isotropic in the rest frame (in this paper veglect
the minor effects due to intrinsic anisotropy of emissiofets: see
H99 for more discussion). As received on Earth, a featurehaite
an observed flux densit,, _, given by

Syor. = Surese (7[1 — Bcos]) " 2

(e.g. Ryle & Longair 1967; Bridle et al. 1994) whefg,__, is the
flux density of the feature in the emitter’s rest frarmidas the frac-
tion of the speed of light at which the emitter is travelings the
Lorentz factor £ 1/4/(1 — 32)), 6 is the angle of the velocity
vector to the line-of-sighte is the spectral index of the radiation
(where S o« v~%) andm is a constant reflecting the geometry
of the beamed component. Following Scheuer & Readhead 1979
and Lind & Blandford (1985), the value of taken here to be ap-
propriate for a continuous jet is 2. As the spectral indexeapp in
the exponent of the Doppler factor, it follows that, all atlieings
being equal, a larger assumadgives rise to a stronger beaming
effect.

Yobs Vrest

3.2 Jets

Applying equation[{R) to the jet features in the sample, wiiob
the relationship between the observed jet prominepgg, , and
the intrinsic jet prominenceyixe; :

(©)

wherec is the adopted spectral index of the jet.; is the intrinsic,
rest-frame prominence of the jet feature ghds the orientation
of the jet with respect to the observer’s line of sight # are as
before). Here we assume that the normalizing luminodiy{ in
our case) is unaffected by beaming, as discussed above.

Pobs; = Pint; [7(1 — B cos 9)] >t

3.3 Cores

The core emission is thought to originate in the inner parsdc
the beam, that is, the parsec-scale bipolar jets, and soddelrof
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equation[(R) can be applied to the observed core prominenbe i
following manner, assuming that for cores= 0:

= pinta[1a(1 = Bacosba)]
+pintr ["Yr(l - ﬁr COs ar)]72 (4)

where the subscripts ‘a’ and ‘r’ correspond to the appraaghind
receding parsec scale jet respectively. Again the sulisirifindi-
cates the intrinsic, rest frame prominence of these jet9amndnd
(3 are as before. In the simplest models, which we adopt thimutgh
the paperpint, = Pint, = 0.5 X Pint., O = 180° — 0, = 180 — 0
whered has the same value as for the kpc-scalefjet- 5. = (G
andy; = va = Y.

Pobs.

3.4 Model Fitting Method
3.4.1 Beaming Model Validity

As discussed in Sectidn_1.1, previous workers have usechikt a
core models of the form given in equatioh$ (3) ddd (4) to caist

~ values. An advantage of the present analysis method ovse the
studies is the possibility to allow for distributions in therinsic
prominence andy parameters. Arguments have been made (e.g.
Urry & Shafer 1984) that the intrinsic jet or core prominenaight

be expected to be a fixed fraction of the intrinsic total setftax,
but, while this is a useful simplifying assumption, it is radikely
that there will be a range in intrinsic prominence valuesizngam-
ple, since if nothing else there will be scatter in the relaship be-
tween the total (normalizing) luminosity and the intringtpower.

In the present paper the nature of such distributions isasgu
to be normal or log-normal in the case of jets, since suchiblist
tions are appropriate to cases in which the observed valegha
sum, or product, of many variable factors. This is also theedar
the cores, but in this case we also consider a model based\@rpo
law distributions. There have been a number of studies ifitdre
ature of samples of VLBI observations in terms of the apfaren
velocities and luminosities, often including model fittitggobtain
information on the probablges and luminosity functions. In these
studies, a power-law distribution faris often assumed. For exam-
ple, Urry & Padovani (1990) consider the effects of allowsgh
a distribution in the bulk Lorentz factors in their analysisguing
that it allows both low or high values of to be favoured, but also
that a wide Gaussian distribution would resemble a flat pdewer
Subsequent studies, such as Lister & Marscher (1997), amd mo
recently Cohen et al. (2007), find that model fitting baseduahs
distributions is consistent with the data, though no ewvigethat
such a model is to bfavouredis reported. Given this other work,
applying a power-law distribution to the core data providasn-
teresting comparison to models based on a normal distoibbuf
uniform distribution incos @ is used fo®, assuming that the sample
sources are randomly aligned with respect to the obsenvee' ©f
sight.

10

Number of objects

0.01

2

o L

107°

107* 107%

Jet prominence

Figure 1. Histogram of the observed jet prominence d@tq)sj. Filled re-
gions indicate measurements and empty regions upper lifirties data are
compared (solid lines) with the expected distribution jetrpinence from

a simulation withy = 1.5 (broad curve, red) and the corresponding distri-
bution of intrinsic prominence (narrower curve, greenjornalized to a
common maximum value for convenience of presentatjilm.j has a log-
normal distribution witho = 0.3 (in units of the natural logarithm) around
ln(pintj) = -8.

10

Number of objects

7,

7

Core prominence

1074 1070 1

Figure 2. Histogram of the observed core prominence datg,_. Regions
and curves are as in Figl 1. Here the simulated data have 10.0 and
Pint, has a lognormal distribution withk = 0.8 (in units of the natural
logarithm) aroundn(pimj) = —5.5.

sion in many sources, while boosting it in a smaller fractida

Examples of simulated data sets using this approach and the~y increases this effect is more pronounced. Changes in tha mea

beaming models of equatiord (3) ahdl (4) are plotted togstar

of the intrinsic prominence distribution affect the obsshpromi-

the observed data in Fif$ 1 did 2. It can be seen that the shape onence distribution’s location on theaxis but not its shape: it acts

the resulting distributions can give a good representatidhe true
observed distributions. (Note that the simulated datasteten are
not fitted to the data in any way other than by simple scalimy,gh
the parameters used are representative of those we obtibse-
guent sections by fitting.) The observed jet and core prontieés
strongly determined by in each case. The effect of beaming on
the shape of the observed prominence with respect to theatigrm
distributed intrinsic prominence is to suppress the oleskemis-

as a scale factor. Changes in the intrinsic scatter that wenses
broaden the distribution (and are thus to some extent deagene
with changes iny) but also tend to smooth out the resulting distri-
bution.

Therefore, while the problem is degenerate, with at leastth
unknown parameters (intrinsic prominence, orientatich-gnit is
clear that analysis of the observed prominence distributam tell
us something about beaming in the sample.
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Table 1. Glossary for symbols used.

Symbol Parameter Definition

3 speed as a fraction of the speed of light Sectior LIL
Pint intrinsic prominence of the jet or core feature Sedlion 1.1
S178 total source flux measured at 178 MHz Sectiorl 2,11
Fops measured jet flux Sectiof 2.2
Bobs jet background flux correction Sectiof 2P
Jobs background-corrected jet flux Sectiof 2.2
o spectral index Sectiof 2%
P jet or core observed luminosity Sectiol 2}
R proper distance Sectio 2%
S jet or core flux density Sectior 2.4
ouf low frequency spectral index Sectio 2%
Pi7g source luminosity, as measured at 178 MHz Sedtioh 2.4
Sobs observed flux density Sectior 3L
Sirest flux density in emitter’s rest frame Sectior 3.1
~ bulk Lorentz factor Sectior 3.1
m constant reflecting the geometry of the beamed component tioBEC1
Pobs; observed jet prominence Sectio 3.2
Dint; intrinsic jet prominence Sectio 3.2

0 angle of emitter’s trajectory with respect to observer lof sight Sectioh 312
Pobs. observed core prominence Sectior 3.8
PDinte intrinsic core prominence Sectio 3.B
Pint, intrinsic prominence of approaching parsec scale jet Sal@i3
Dint, intrinsic prominence of receding parsec scale jet Seffidn 3
Ya bulk Lorentz factor of approaching parsec scale jet Sef&i@n
Ir bulk Lorentz factor of receding parsec scale jet Sefich 3.3
Ba approaching parsec scale jet speed as fraction of speeghof li Sectiof 3.3
Br receding parsec scale jet speed as fraction of speed of light Sectior 3.8
0 angle of approaching emitter’s trajectory with respectiieasver’s line of sight ~ Sectidn 3.3
0r angle of receding emitter’s trajectory with respect to obses line of sight Sectioh 313
H hypothesis Sectio 3.4P
D observed data Sectior 3.4P
I prior information aboutD Sectio 3.4P
P(H|D,I) posterior probability ofif given D andl Sectio 3.4P
P(H|I) prior probabiliy of H Sectio 3.4P
P(D|H,I) likelihood of D given H and! Sectior 3.4P
P(DI|I) evidence Sectio 3.4P
Pmod expected observed prominence corresponding to model ptearalues Sectidn 3.4.2
P(Pmod,, 1 [Pmod,)  transition probability Sectio 3.4P
Pean candidate value for next chain step Sectio 3.4P
Q(Pean|Pmod, ) proposal distribution Sectiof 3.4P
a(Pmod; > Pcan) acceptance probability Sectio 3.4P
r metropolis ratio Sectio 3.4P
A factor by which the posterior is scaled in burn-in Seclich2.
5 mean bulk Lorentz factor Sectio 3.44
Yenin upper limit ony Sectio 3.44
Ymax upper limit ony Sectio 3.44
Dint mean intrinisic prominence Sectiof 3.44
o intrinsic dispersion iny/y Sectio 3.44
Opint intrinsic dispersion in prominence Sectior 341
a power-law index for power-law Lorentz factor distribution Sectio 3.44
X general symbol for parameters Sectior 3.46
M model Sectior 3.46
Oir Bayes factor Sectiof 3.46
¥ mean bulk Lorentz factor for the jets Sectio 4.2
e mean bulk Lorentz factor for the cores Sectior[ 4.B
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3.4.2 MCMC approach

The discussion in the following sections is only a very biief
troduction to the MCMC approach to Bayesian inference; mere
tailed treatments can be found in the literature [e.g., Gne(R005)
and references therein].

We can obtain the posterior probability of a hypothekis
from Bayes’ theorem:

P(D|H,I)
P(D|I)

whereD is the observed data ardds the prior information we have
aboutD, P(H|I) is the prior probability ofH, P(D|H,I) is its
likelihood andP(D|I) is the normalization factor, the ‘evidence’.
In the present problem, we have observed prominence gata,

If we define a parameter space in termspgf, v andf, we can
evaluate the expected observed prominepgg,q,, correspond-
ing to a parameter set drawn from this space using equdfjon (3
or (4) as appropriate. We can then determine the posterad-pr
ability of pmod;» P(Pmod;|Pobs, 1), by evaluating P(pmod, |I),
P(pobs|pmod1,:I) andp(pobSU)'

The obvious problem is that, with a minimum of three pa-
rameters, the exhaustive computation of the probabilisgridiu-
tion corresponding to the defined parameter space is ndbfeas
Straightforward Monte Carlo could provide a good approxiora
—the method is to draw uniform, randomly distributed, inetegient
samples from the distribution and its accuracy is deterchbnethe
number of these samples. However, this approach is stilpcem
tationally expensive and much time can be spent in regiorerevh
the probability is very small. Instead, MCMC is more effidies
it exploits the fact that samples needtbe drawn independently if
they are generated from the target distribution or sometiomof
it, here P(pmod|pobs, I ), in the correct proportions.

The Metropolis-Hastings algorithm is used to apply the
method. This algorithm generates a sample set by constgueti
walk through parameter space in which the probability of m-sa
ple’s being in some region of space is proportional to thegras
density for that region. It does this by determining the rehdin
step, which in this case §$noa,.,,» With respect to its probability
given the current chain stepmoq,, through the evaluation of the
transition probability (or kernel?(pmod, , 1 [Pmod, )-

The algorithm chooses a candidate valuef@td, ,,, Pean,
from a proposal distribution@) (pcan|pmod,) that is understood
and easy to evaluate (see Secfion 3.403). is accepted or re-
jected aspmoq,,, as determined by the acceptance probability,
a(Pmod, s Pcan) Which can be expressed as

P(H|D,I) = P(H|I) ©)

min(1, ) (6)
. P(pcan |D7 I) Q(pmodp |pcan) )
min | 1, :
< P(pmod, | D, I) Q(Pean|Pmod, )

wherer is the Metropolis ratio. I > 1, thenpcan is accepted and
Pmody1 = Pean. If 7 < 1, then a random variablg is sampled
from a uniform distribution in the interval 0 to 1. In the cabat
U <7, Pmod,;; = Pean, Otherwisep.an is rejected. The transition
kernel, the probability that the algorithm will draw and ept a
samplepmod, ; given the chain’s present state, is then

« (pmodt ) pcan)

@)

As a first consideration, we might want the proposal distrimy
Q(pcan|Pmod, ), to be the target distribution itself — but of course,
this is unknown as it is this that we are trying to evaluateweler,
if the Markov chain is irreducible, aperiodic and positieeurrent

P(pmodH,l |pmodt) = Q(pmodH,] |pmodt )a(pmod“pcan)

then it can be shown that there exists a stationary distoibditom
which all samples will be drawn subsequently once one Irstien-
ple is drawn; thus the algorithm will converge on this stadiy
distribution for a wide range of proposal distributions.

The probability of drawingpmoa, from the posterior is
P(pmod,|D, I) and the probability thapmed,,, is subsequently
drawn and accepted is given by the joint probabilitypef,q, and
Pmodsy 1+ P(Pmod;  Pmod, 1 ), Which can be expressed as the fol-
lowing:

®)

Expanding this out using equatiofs (6) ahH (7), gives thaildet
balance equation:

P(pmodp 5 pmodpr] ) - P(pmodt |D7 I)P(pmodpr] |pmodt)

P(pmodt |D7 I)P(pmodt+1 |pmodt) = P(pmodt+1 |D7 I)P(pmodt |pmodt+1)

)

From this it can be seen that the stationary distributiohéstarget
distribution of the chain, irrespective of the proposatritisition —
Q(Pcan|Pmod, ) — initially used. The sampling process before the
stationary distribution is reached is referred to as barn-i

The algorithm allows the chain to move to regions of increas-
ing probability while sometimes accepting a chain step ofelo
probability. This contributes to the efficient exploratiofparame-
ter space as the chain can move away from regions of localmaaxi
However, for a target posterior distribution of a multi-@insional
problem this flexibility will not necessarily be sufficiert prevent
the chain becoming stuck in a local maximum region; the tesul
will still be dependent on the starting sample. In practiee wge
multiple chains with information exchange (see the nextiset
but we also make use of a simulated annealing method thatsallo
a modified posterior distribution to be sampled during biarn-

This modified posterior distribution is defined as

P(Pobs| D, I) = p(pobs|p(Dlpovs, I)*

where\ may take values between 0 and 1. Wheg- 0 the sam-
ples are drawn just from the prior distribution, which wilpically

be much flatter than the likelihood function — if this is thesea
increasing\ draws samples from an increasingly peaked function
until the posterior itself is being sampled whan= 1. Sampling
from the flatter distributions gives the sampler better opputy to
reach all regions of the posterior probability distribati@ven in
the presence of many local maxima. The general practiceds-to
termine the rate at which is increased from 0 to 1 (the annealing
schedule) such that it will correspond to the burn-in perladhis
scheme, onca = 1 sampling is being made from the target distri-
bution. The rate at which should be increased is then subjective
and determined by experiment.

(10)

3.4.3 Implementation

Our implementation of the Metropolis-Hastings algorittetheav-
ily based on the approach of Hobson & Baldwin (2004), as imple
mented in theveTRO sampler code, kindly provided to us by Mike
Hobson. We implemented the basic algorithm in modular Cgusin
the Message Passing Interface (MPI) framework to allow iuto
on a cluster of multi-core computers; only the functions tha
plement the likelihood function and priors need be modifiedaf
particular problem. At run-time the code separates intoroaster
and one or more slave threads; in general it is advantagedws/é
as many slave threads as there are available CPUs.

Each slave carries out a separate and (except as discussed be
low) independent Metropolis-Hastings run with burn-ing¢hain’),
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starting in a random point in the prior parameter space. As di
cussed by Hobson & Baldwin, multi-threading of this kind ajie
reduces the chances of getting stuck in a local minimum iarpar
eter space; it also allows us to speed up by a factor of the aumb
of available computing cores the sampling of the postenioba-
bility distribution. We borrow from the1teTRO code the concept of
‘engines’, which are different versions of the proposatrédisition

Q. Several engines are available, and the code picks the arseto
for each trial at random, using probabilities that we hasgaed
based on our experience with the code. The active engind®in t
implementation of the code used here are ‘take a random rst&p i
single dimension of the problem’, ‘take a random jump in &l d
mensions of the problem simultaneously’, ‘jump to a randaimp

in parameter space’ and ‘jump in one dimension to the cupent
sition of another thread’ (allowing cross-mixing). Theesof the
random steps used in the first two engines are adaptivelyechos
during burn-in to achieve a reasonable ratio of successiltoda
but are fixed thereafter.

The master thread records the accepted samples of all thee sla
threads in a file, and also co-ordinates synchronizationcamna-
munication between the slave threads. The final result wiien a
slave threads are completed is a large file giving the caratds
in parameter space of all accepted samples both before tad af
burn-in. The density of points in a given (necessarily finiegion
of n-dimensional parameter space is proportional to the poster
probability of the model parameters lying in that regionstifaated
value determination, credible interval estimates, pigttand evi-
dence determination can then all be carried out using tleisTie
burn-in points are discarded for most applications, buuaesl for
evidence determination, as discussed below.

3.4.4 Model parameters and priors

Our basic model for jets and cores (hereafter ‘the basic it)ddes
up to 4 parameters.

(i) 7, the mean bulk Lorentz factor. We adopt a uniform (un-
informative) prior in the range hmax for this quantity. vmax
throughout our fitting is taken to be 5.5 for jets and 20.0 fmes.

(i) Pint, the mean intrinsic prominence. As this is a scale param-
eter, we adopt a uniform prior im(pint) between two values cho-
sen to cover all reasonable values of parameter space. didsa
bias towards large values (Gregory 2005).

(iii) o, the intrinsic dispersion in the bulk Lorentz factor.
Lorentz factors of simulated sources are drawn from a nodisal
tribution with mearfy and standard deviatioyv, truncated so that
v > linall cases. The cage, = 0 is equivalent to a delta function
in Lorentz factor. We adopt a uniform prior fer, between 0 and
0.6.

(iv) op;,., the intrinsic dispersion in the prominence. Since the
observed prominence will be the product of a number of inde-
pendent variables, it is appropriate to draw simulated jmentes
from a lognormal distribution with medmn (pint ) and standard de-
viationo,, . ; the caser,,,, = 0 is equivalent to a delta function in
intrinsic prominence. We adopt a uniform prior fey, , between
0 and 6.

int

For cores, we also investigated a model (hereafter ‘the powe
law model’, as discussed in Sectibn 3]4.1) in which the Ltren
factor follows a power-law distribution between two limitgnin
andymax, With a power-law index, i.e. P(v) « v~ ¢. For these
parameters we adopted uniform priors between 1 and 5.f@r,
between 10 and 40 fofmax, and between 0 and 5 fgr. Since

the mean intrinsic prominengg. is a required component of this
model, and a dispersion in the intrinsic prominence, patareel

as above by, ., may also be considered, the model has up to 5
parameters.

3.4.5 Likelihood calculation

The likelihood is the probability of obtaining a given setiof
trinsic prominencesp.s, given the model and the priors, i.e,
[T, P(Pobs [Pmod, I). In general it is difficult to write down the
likelihood function for the type of models discussed in 8ett
[B:4.4 analytically. We therefore proceed by Monte Carlohuods.
For the set of model parameters determined by the Metrepolis
Hastings algorithm, we simulate a set df model prominences
based on the beaming equations (equafibns §and 4) and gez-dis
sions discussed in Sectibn 34.4 and with an appropriatglulis
tion of the angle to the line of sight(in practice we assume sources
randomly oriented to the line of sight in all models,&walues are
drawn from a uniform distribution inos 6). By construction, these
simulated prominences are distributed with the approgpnsob-
ability distribution for the model being tested. The proitigbof
obtaining any given observed value of the prominepgs,, , with

an associated error, assumed Gaussian,of ~given the model
is then given by

_ 2
_ (pobsk ; pmodi) (11)
20 obsy,

Essentially here we are Monte Carlo integrating over thelpco
of the probability distribution for the data point and thelpability
distribution for the given model, with a suitable normaliaa. In
the case wherg,,s is an upper limit, we could simply write

N
1
P(pobsy, [Pmoa, I) = N E eXp{
i=1

N
1
—F)(pobs,c |pmod7 I) = N Z l(pobsk 7pmodi)

(12)
i=1
where
1, b<a
I(a,b) = ’ - 13
(a,5) {0, otherwise (13)

In practice we slightly ‘soften’ the treatment of limits ihe case
wherepobs, < Pmod; 10 take into account that no limit is absolute;
thus model data points Withmoa, > pobs, are assigned a non-
zero probability, again based on a normal distribution,sstodreat
the limits as though they werg upper limits. This approach is
exactly valid for the limits on core prominences and an adégu
approximation for the less well-defined jet limits.

A two- to five- dimensional parameter space is defined by
the possible parameters given in Secfion 3.4.4. The proeedk+
scribed above effectively integrates oveand the posterior prob-
ability represents a joint posterior probability for soneadl of
Dints Opypes Vs Trys Ymin, Ymax OF @, depending on how the parame-
ter space has been defined. We are more interested in theiposte
probability of some of these parameters than of others: itigoa
lar the one of most physical interestys The marginal posterior
probability of~, or in general of any other parameter, can be deter-
mined from the joint posterior probability by integratingeo the
other parameters:

P(lpas M) = [ dXP@ Xlpos ) (14)
where X represents all parameters excgpfThis integration can
be carried out trivially using the output of the MCMC routine
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3.4.6 The evidence and the Bayes factor

The denominator of equatio] (5) is the ‘evidence’ and isuated
from the following.

P(pob5|1) = Z P(pmodi |I)P(pobs|pmodi7 I) (15)
Since this is the same for eaph,.q; for a given model M, it may

be omitted in calculating the posterior probabilityef.4, (equa-
tion[H). However, if we want to compare models, for example a
model in which we have 2 parametefsandpint, with one where
we have foury, pint, 04 andoy,,, , the evidence must be evaluated.
This is not possible using only the post burn-in samples ftioen
posterior, as these are, by definition, not uniformly sachmeer
the prior. Instead, it is possible to use the burn-in samgiiem-
selves, as justified by the following.

The continuous equivalent of equatién](15) gives us theailob
likelihood for M, that is the weighted average likelihood for its
parameters.

P(pone| M) = / dXP(X|I)P(povs| X, M) (16)
whereX represents all parameters.

Remembering that the function actually being sampled by the
code is a modification o (X |pobs, ), (equatio ID), we can de-
fine a partition functionZ () as

Z(\) :/dXP(X|M,I)P(pObS|X, M, 1) (a7)

- / dX exp{In[P(X|M, )] + MNn[P(povs| X, M, I)]}
(18)

Z(\) is then the tempering simulation corresponding\f@nd in-
tegrating over all gives us the function we want, the global like-
lihood,

P(pobs| M) = /O1 dln Z(\)

(19)

But, from equation{118) with some rearrangement, we carewni
derivative ofln[Z())] as

d

dX

where (In[P(pobs|M, X, I)])» is the expectation value of
In[P(pobs| M, X, I)] and the subscript denotes which tempering
simulation the samples correspond to. But we can also say tha

ID[Z(A)] = <1n[P(pobs|M7 X, I)D)\ (20)

I[P (povs | X, M, T) = / AI[P(porel X, M, I)s (20)

~ %Z)‘i<ln[P(pobS|X7 M, I)])M (22)

So for a given model, the log global likelihood can be obtdiftem
the burn-in samples and this, along with the model prior, lban
used to evaluate the odds ratio, defined as the ratio of tieree
values for the two models:

_ PQML|T) P(pobs| M, I)
P(Mx|I) P(pobs|M2, 1)

In this analysis identical priors are applied to the variousdels
tested, so this expression is simplified to the ratio of gldikali-
hoods, known as the Bayes factor. We can then use the odds rati
or, equivalently, the Bayes factor, to attempt to say whithwo
models provides the best description of the data.

O1,2

(23)

3.4.7 Credible intervals and regions

We define the credible interval on a parameter for a confidieved
p as the smallest interval such that the posterior probglwfithe
parameter lying in the interval js In one dimension (i.e. integrat-
ing over all other parameters, which in the context of thepouof
the code simply means ignoring their values) there is gleprb-
vided the posterior probability has a single peak, a unidwece
of interval that satisfies this requirement, which can bentbby
an exhaustive search over the results of the sampler, archvgi
accurate up to the constraints imposed by the finite sampuling
the posterior. In more than one dimension, there is no sugh ob
ous choice, and we find an approximation to the credible regio
by binning the posterior probability distribution (marglizing out
uninteresting parameters), sorting by the probabilityaaftebinned
element, and taking the first elements that sum to give the prob-
ability p: the credible region is then approximately the region of
parameter space enclosing thesegrid elements. This procedure
has the advantage that if there truly are multiple peakseaptiste-
rior they will be represented correctly: it has the disadaga that
the results may depend on the binning and, in particulat, tiiea
binning may have to be quite coarse in order to define a credibl
gion in many dimensions. In what follows we only present iyied
intervals in one dimension and credible regions in two disi@ms.
We note in passing that this definition of the credible inter-
val can (for a very asymmetrical posterior) actually exelutle
position of the Bayesian estimate of the parameter, sincerie-
sponds to the mode, while the Bayesian estimate correspoitiais
mean; the credible interval is certainly not constrainetiesym-
metrically about the mean (in fact it is more likely to be syatm
rical about the maximum-likelihood value). This should lmere
in mind when interpreting the ‘errors’ that we quote on derfza-
rameters.

3.5 Method verification
3.5.1 Data simulation

Before running the code on real datasets it is necessarjtdb-es
lish whether the Bayesian estimator of the parameters efédst
provided by the code (i.e. the mean of the values of that petem
for all post burn-in samples) is really an unbiased estinoétihe
true value under realistic conditions and whether the uatgres
(credible intervals) on parameters or combinations of patars
are good estimates of the true uncertainty.

This can be done using Monte Carlo simulations (as H99 did
for their K-S test model fitting). To do this we simulated agkar
number (50) of sets of jet data, with parameters chosen tesept
a best guess at what resembles the real data most closelj-A si
ulated dataset contained 100 prominence points, eachpyiith
simulated using equatioh](3).

Initially pint; was drawn from a Gaussian distribution with
In(Pint) = —7,0p,, = 0.6 and we usedy = 1.5,0, = 0. For
30 per cent of sourcgs,ps; Was not used as calculated but instead
an upper limit was generated. To generate the upper limitssed
a random number between 0.1 and the calculated jet pronenenc
value. While the non-detection of a jet might be expectedeo b
dependent Oobs; 10 SOMeE extent, when we considered the jet
prominences and upper limits for the sample as a whole (Paper
I) we found that there was no discernible trend with promagen
with respect to upper limits. It would appear that obseorsl ef-
fects, particularly the variations in observing resolntimask any
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strong dependence of jet detectionygis; such that there is no ob-
vious model that should be used for generating upper lirhéagce
we adopt a random deviate method. It is reasonable to exipaict t
this method, along with the high maximum upper limit relatto
the observed upper limit values used, will only provide dated
data of ‘worse’ quality than that which is observed, justifythe
simplifying approach in this context. For the remaining rees,
the jet prominence was used with an associated error. Thos er
was drawn from a normal distribution where the mean was the ca
culatedpons; and the standard deviation was variable, itself taken
from a normal distribution with (0,1 x p;). This standard deviation
was chosen to simulate as closely as possible the erroibdisbn

of the real jet data.

3.5.2 Parameter estimation

enough information to require the extra parameter. Foelarglues

of the inputo,,,., = 0.2, the Bayes factor clearly tends to favour
the models with non-zero intrinsic dispersion. Howeverewhve
fitted the same data with other versions of the basic modédl wit
intrinsic dispersion (e.g. models wherg, , was constrained to be
zero anar, was allowed to vary) we found that the Bayes factor did
not reliably distinguish between the correct model and ropfes-
sible models for the dispersion; all such models gave venyiai
Bayes factors. Consistent with this, we found that the Bdges
tor in simulations did not allow us to distinguish betweensi@ns

of the basic model with Gaussian dispersion either in theénisit
prominence or in the Lorentz factor and the power-law model f
cores; again, the Bayes factor is sufficent to point to sorapedl
sion but not to say what its origin is.

For each simulated dataset we then ran the MCMC code and de-3-5-4 Observed data

rived the posterior probability distribution, from whichewcould
obtain the Bayesian estimators of the value of each paranTéte
mean and dispersion of the values(af, (In(pint)) and (op,,,)

Finally we note that two factors distinguish the jet and cdata.
The core data contains far fewer upper limits than the jet dad
S0 in one sense is expected to be easier to fit. However, ag is ev

for each run of the code — where the angle brackets denote thegen from the broader distribution of core prominences.@jgnd

Bayesian estimates of the model parameters — then tell ugherhe
the code recovers the true values and estimates the umtiexsaip-
propriately. For the initial trial input values éf andIn(p) we ob-
tained a mearfy) of 1.52 and a standard deviation of 0.14, a mean
(In(pint)) of -7.01 with standard deviation 0.16 and a méay,, )

of 0.56 with standard deviation 0.16. We can see that whéesth
rors and limits imposed on the data result in considerald¢tesc
in the returned parameters about the true (input) valuesyians
are in good agreement with those true values once the séstter
taken into account. Thus there is no evidence that the coble is
ased for this type of dataset. Moreover, the standard dengtve
find (which are in some sense frequentist estimates of thertain-
ties on the fitting procedure, and were used in that way by He9)
very similar in magnitude to the credible intervals infekrfeom
the posterior probability distributions for individualnsilations.
We verified that the same result holds for a range of otheregalu
of 4. The fitting procedure is, unsurprisingly, biased if we fi¢ th
wrong model (e.g., if we fit a simulated dataset with intringis-
persion with a model in whichkr,, , is held at zero, then we will
recover an artificially high value of) but for models that match
the data it is not. This is true for all parameters of the basidel
and also for the parameters of the power-law model for cotesw
we carried out appropriate simulations, although we natesim-
ulating power-law distributions that it is very hard to reengood
constraints onymax, Which is only constrained by the tail of the
prominence distribution.

3.5.3 Model selection

We further investigated whether the Bayesian evidencedcre#
liably be used to distinguish between models. Again comaént
ing on simulated datasets with, set to zero and with properties
matched to the observed jet data, we simulated a large nuofiber
datasets witlr,, . > 0 and investigated whether the Bayes factor
allowed us to distinguish between models in which (a) theditt
opin: Was fixed to zero and (b) it was allowed to vary. The results
turned out to depend on the valuewgf ,, adopted in the simulated
data, as one would expect. For very low values of the simdilate
opine s the Bayes factor on average favoured the simpler modet, eve
though it is formally incorrect: the data here simply do netgus

also expected from earlier work (e.g. H99) we expect sigaifily
largery values in the fits to the cores. This means that the feature of
the data that discriminates between different models besaime
extent of the tail of very high prominences. However, sirtoere
are only a very few sources with such high values, the fit besom
less reliable. In a fit to 50 simulated jet data sets with ifpet 5.0
andoy,,,, = 0.6, we found a mean fitteg of 5.3 with standard
deviation 1.0. The higher standard deviation of the fit risstal the
simulated data as a fraction of the trgewhen compared to the jet
data, indicates that the second factor dominates: evergiththe
core data are in some sense better, the fitting problem ighard
the results likely to be more uncertain.

We conclude that the MCMC fitting procedure can give a good
estimate of the true underlying beaming parameters in theamce
of the types of error and the numbers of upper limits seenen th
real data. In the next section we proceed to use this proeddur
estimate parameters using the actual measurements.

4 RESULTS
4.1 Jets

Since the spectral indices of jets are poorly known, we edrout
all the modelling in this section for two representativeues of
jet spectral indexpe = 0.5 anda = 0.8 (recalculating the jet
prominence distribution consistently for the= 0.8 case from the
original data of Paper |.) By using these two values, whiehciose
to the extreme values observed for individual objects, wehzith
evaluate the extent to which a choicewfffects our results and,
hopefully, bracket the true values of the beaming paramadter
intermediate spectral index values.

We initially used the simplest possible model, with an as-
sumed delta-function distribution in both the intrinsiominence
and the bulk Lorentz factor, to estimate beaming paramétens
the prominence distribution of the jets for all 98 objecttha sam-
ple. We then allowed the parameters governing the intridisiger-
sion in prominence and Lorentz factor to vary. Results aosveh
in Fig.[3 (for thea = 0.5 case) and tabulated in Talhle 2. (It should
be noted that the posterior distribution ®f is clearly limited by
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the prior: the upper limit on the prior distribution was cbnso as
to avoid generating large numbers of negative Lorentz fagto
Comparison of the values for the differemtvalues in Table
shows that, as expected, the choice of jet spectral indexaha
significant effect on the result. Although the two sets ofilssare
very comparable, the results for the higher spectral indee Isys-
tematically lower estimated Lorentz factors. The nextdghimnote
is that the Lorentz factor for a delta-function distributim both
parameters is quite highy = 2.37 corresponds t@ = 0.91, and
5 = 2.07 to 8 = 0.88, which can be compared to thie= 0.62
found by H99. However, when we allow any dispersion in either
the intrinsic prominence or the Lorentz factor, the valuies drop
very substantiallyy = 1.28 corresponds t@# = 0.62 and1.18 to
B = 0.53: H99 foundj = 0.5 for a similar model. We emphasise
that no model allows jet speeds with~ 10; this would predict a
much larger dispersion than is seen in the data. The ratiesiof
dence (Bayes factors) very strongly favour any model wittirisic
dispersion, but does not allow us to distinguish betweerttiree
different models that have this property with any degreeauifie
dence (as we would expect from the simulations discussedeabo
In fact, when we fitted a model with fixed to 1.0 andr, = 0 (i.e.
the data are modelled witbnly a lognormal prominence distribu-
tion) the Bayes factor marginally favours this simplest elaner
any other, showing that the prominence data in themselwesder
no evidence for a beaming model, while intrinsic scattehedata
is required.

surement. For consistency with the convention adopted 8y W@
usea = 0.8 throughout this comparison. We found a Bayesian es-
timate ofy = 1.6573:9+ (8 = 0.80), which is considerably larger
than the best-fitting value found by H99,= 0.62. This suggests
that there is some difference in the different fitting apphes, and
perhaps reinforces the notion that H99's approach of fittisigg

the K-S statistic was not ideal. If we allow,,,, to vary in the fits,
which was the most sophisticated model considered by H99, we
obtainy = 1.107) 52; this corresponds t8 = 0.43, which is very
similar to the3 =~ 0.5 reported by H99.

Although this is at best qualified success in reproducing the
results of H99, we noted that the valuesydbr the two models we
fitted lay systematically below the results we obtained ftiinfj
the same models to our sample as a whole (SeEfidn 4.1, Thble 2)
This motivated us to look for luminosity effects in the jeesps in
our sample. For simplicity we divided the whole sample, udahg
LERGS, at a 178-MHz luminosity @f x 102 W Hz~* sr!, which
is the cutoff luminosity we used in a number of statisticatddn
Paper I. This gives a sample of 40 low-luminosity and 58 high-
luminosity objects. When we fitted the model with, , = 0 and
o~ = 0 to these two datasets (here usimg= 0.5 only), we found
thaty = 2.3773:59 for the low-luminosity sample antl92593
for the high-luminosity one, a marginally significant diffece but
one that is in th@ppositesense to that implied by the results above
from the H99 data. When we fitted the model with = 0 buto, ,
free, we foundy = 1.25%0 3¢ for the low-luminosity sample and

Since there is some evidence that the low-excitation radio 1.557013 for the high-luminosity one. However, the intrinsic dis-

galaxies (LERGs) do not participate in the unified models for
narrow-line radio galaxies, broad-line radio galaxies godsars
(see H99 for details) we also fitted the same set of modelseto th
prominence data excluding the 15 low-excitation objectshia
sample. The very similar results we obtained are tabulatethi
ble[2. As the inclusion or exclusion of the small number of IR
clearly makes little difference to the results, we do notvsiptots

of the posterior probability distribution.

4.2 Luminosity dependence in jets

As mentioned above (Sectifn#.1), our best estimategsfof jet
models either with or without intrinsic dispersion tendisdbove
the corresponding values found by H99. To some extent tls-is
pected, since (i) we take limits and errors into account @riyp
which H99's method did not permit, and a correct treatmenhef
limits at least would be expected to broaden the effectigtrieli
bution, and (ii) we are quoting not the maximum-likelihocalue
but the Bayesian estimator of the Lorentz faciosyp(~y)d-y, which
will be biased towards higher values with respect to the manr-
likelihood estimator ifp(y) has a long tail to higher values, as it

persion for the low-luminosity sample is higher,(,, = 1.04*5:11
versus).6575-1%) so itis plausible that we are simply seeing differ-
ent tradeoffs in the somewhat degenerate plane wérsusoy, , .

If, finally, we fix o, to its best-fitting value of 0.95 for the whole
sample (Tablé€]2) and repeat the fits, the estimates bécome
1.29709% and 1.3310-15 respectively; these are not significantly
different from each other or from the estimate for the sanagla
whole. We conclude that there is no convincing evidence foerad

in 4; with source luminosity.

4.3 Cores

Using the basic model, we find that, for a delta-functionribist
tion in Lorentz factor and intrinsic promineng®,,; andy are con-
strained to lie along a line in parameter space, as foundeviquis
work (see Hardcastle et al. 2003 for the equation of this) larel
we can only really say that > 10 (the limit 5 < 20 is imposed by
the prior). However, when any intrinsic dispersion is idwoed,
4 becomes reasonably well constrained, with Bayesian esiima
in the range 10-14, though again this is affected by the ehoic
prior. As in the case of the jets, the Bayes factors for thesd-m

undoubtedly does in some fits (FId. 3). In addition, H99 used a els strongly favour some intrinsic dispersion, but we camistin-

different definition of prominence, normalizing with respéo the
total high-frequency flux, which might have tended to redtiee
scatter in the observed prominence if any of the high-fraque
structure (e.g. hotspots) had been affected by beaming.
However, it is worth asking whether any component of this
difference could correspond to a real physical differenesvben

guish between different dispersion models. Models with ean-
ing and only intrinsic dispersion are not favoured in thisadat,
presumably because the tail of the prominence distributiarot
well modelled with a lognormal distribution.

Again, we also fitted the same set of models to the subsample
that excludes the LERGs. Here the tendency is to reduce thesva

our sample and that of H99. The two samples overlap to some ex-of 4 required — perhaps because the LERGs include a significant
tent — of the 31 NLRG studied by H99, 22 are also in our sample number of both core non-detections with strong upper liraitd

— but the main difference is that H99 considered only objedtis
z < 0.3, and hence largely with low luminosities. We began our in-
vestigation by fitting our models with,, ., = 0 ando, = 0 to the
jet data of H99, for consistency treating upper limits agdgbns
and assuming a constant fractional error on each prominaeee

bright cores with high prominence values. The results ah§tthe
basic model to both datasets are tabulated in Tdble 3.

We then estimated the parameters of the power-law model
for the core prominence distribution. These results arelsaéd
in Table[4. We initially fixedo,,,, to 0, so that all the dispersion
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Figure 3. The posterior probability distribution for fits to the jetgpninence distribution for the whole sample. Contours shasmallest region that contains
68 per cent of the posterior probability distribution, tlee two-dimensional Bayeian credible region as defined oti®@H3.4.T. The white cross marks the
position of the Bayesian estimator gf,; and~. Top left: a delta-function distribution is assumed fortbtlte intrinsic prominence and the Lorentz factor (i.e.
o~ = 0, 0p;,, = 0). Topright:o., = 0 butoy, , is allowed to vary. Bottom lefter,, . = 0 buto is allowed to vary. Bottom right: bothr,, . ando ., are
allowed to vary. All plots are marginalized ovep, . ando, for ease of comparison.

comes from the power-law distribution of with this prior we ob- favour a power-law distribution of Lorentz factors over gror-
tain some constraints on the remaining parameters of theelnod mal one; the very slight difference in Bayes factors in favaiithe
though they are still strongly affected by the choice of p(partic- power-law model whem, . is free is not significant.

ularly ymax, which we expect from the simulated data to be un-
constrained). We attempted a fit with a fixedvalue of 2.0, as
favoured by some previous work (e.g. Liu & Zhang 2007) bug thi
is strongly disfavoured by the Bayes factor. Whsy),, is free, the In Paper |, we suggested that the statistically significafierd
parameters of the power-law model are essentially uncainst, ence in core prominence seen in our low-luminosity and high-
although the Bayes factor favours such a model. It can bethagn luminosity samples might be evidence for a dependence fitor

as expected from the simulations, these data give us norréaso  tactor on source luminosity. To investigate this we diviciae

4.4 Luminosity dependence in cores
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Table 2. Results of fits to the jet prominence distribution. Fits aagied out for two values of the assumed jet spectral index;he Bayes factor quoted is
the natural log of the ratio between the evidence value feoth = 0, oy, = 0 fit (for a given sample and) and the others; thus it gives a measure of
the degree to which the other fits are preferred. Errors quate 68 per cent credible intervals marginalizing over tileo parameters. Where no errors are

guoted, the quantity concerned was fixed at the stated level.

Sample a  Model

ol In(Pint) Bayes factor

Opint Oy

Jets, all sources 05 oy=0,0p,, =0 2377097 —8.42707° 0 0 -
oy =0, 0p,,, free 1287010 —8.207508 0957049 0 19.4

o free,op,, =0 1497012 —8.07012 0 0467502 20.0

o free,ap,,, free 1277018 8207008 0767015 0.3070 1% 19.5

7 =1.0,04 = 0, op,,,, free 1.0 791701, 118tge 0 21.0

0.8 o0y =0,0p,, =0 t 2.07700%  —8.507 000 0 0 -
oy =0, 0p,,, free 1187005 —8.367008  0.9410 58 0 19.2

o free,op,, =0 1247599 —8.1870-19 0 0457508 20.2

o free,ap,,, free 116709  —8.25T00°  0.64701%  0.327013 19.3

¥ =1.0,04 =0, 0p,,, free 1.0 —7.907005 1.11t0 e 0 21.0

Jets, LERGs excluded 0.5 oy =0, 0p,,, =0 2437097 —8.4270-07 0 0 -

_ +0.11 +0.07 +0.09

oy =0, 0py,, free 1324000 —8.357007  0.9475:9) 0 14.4

o free,op,, =0 1517012 —g.1270-12 0 046758 15.6

o free,ap,,, free 1317010 —8.24750% 0737018 0.327010 14.5

¥ =1.0,04 =0, 0p,,, free 1.0 7977008 1197058 0 15.8

08 0y =0,0p, =0 2117002 —8.50700° 0 0 -
oo =0 op free 1217008 g 3g+iioe 0 097t0L 15.6

v = Vi Opint +44-0.10 9°_0.06 2l_0.07 :
oy free,op,. =0 130012 —8.2070 17 0 0451503 15.4
+0.09 +0.04 +0.24 +0.16
o free,op,,, free 1.207536 —8.2670_09 0.61701‘7 0.347 15 14.0
¥ =1.0,0 =0, 0p,,, free 1.0 —7.9470-0% 1157053 0 15.5

sample of core prominences by luminosity in the same way as dispersion is required in the fits to the two quantities irdiially,

was done for jets in Sectidn 4.2. Fitting only the version fof t
basic model in whicho,, . is free, since, as discussed above,
only models with some intrinsic dispersion give reasonat&ji-
constrainedy values, we foundy = 11.20725; for the low-
luminosity sources ant).67"3 33 for the high-luminosity sources.
Thus there is no evidence for differences in Lorentz facabr,
though clearlyy is poorly constrained. The intrinsic normaliza-
tion values for the low- and high-luminosity sample are essp
tively —4.7015 25 and—6.06 " 2}, while the estimates of,,,,,, are
1.4070 35 and1.1970-53. The most obvious interpretation of these
results is that, if any luminosity dependence is presentirdata,
itis a luminosity dependence of intrinsic prominence rathan of
bulk Lorentz factor; either explanation is of course equgbtod in
terms of reproducing our original observation of a differeim ob-
served prominence. Given these results and the fact thayioase
the data do not appear to allow us to distinguish between anhy b
the simplest of models for core Lorentz factor distributime have
not attempted to fit a model in which core Lorentz factor dejsen
on source luminosity to the data.

4.5 Core-jet correlation

Fits to the jet and core prominence distributions alone daale
into account the correlation between the two quantities. timodel
in which the prominence distributions were completely duatéd
by intrinsic scatter, we would expect no correlation betwtese
two quantities, but in fact we showed in Paper | that thereich &
correlation which is significant even in the presence of ufipets.

It is straightforward to modify our approach to simulate the-
dimensional probability distribution of jet and core promnces
and to sum the likelihoods of objects in (jet, core) promien
space. Accordingly we carried out some fits using this approa
fitting, as before, both to the full database and to the subket
sources that excludes the LERGs. Since we have seen thasintr

we included this in our two-dimensional models; for simipjiave
restricted ourselves to a model in which there are intrid&per-
sions in the prominences but not in the beaming speeds, sththa
free parameters of the model &@g:.., o, » Yer Dint; i and
-

Results of these fits are tabulated in Tdhle 5, again allowing
the jet spectral index to be either 0.5 or 0.8, and an examiple o
the posterior probability distribution for the beaming sraeters is
shown in Fig[h. It can be seen that beaming is strongly reduby
the Bayes factor between these models and the corresponksg
in which the Lorentz factors are fixed to 1.0, as we might ekpec
The effect of including the core-jet correlation in the mitidg is to
make less probable the regions of parameter space with naibga
(compare the right-hand panel of F[d. 5 with the top rightdha
panel of Fig[B). The Bayesian estimates of the beaming spaed
therefore slightly higher than in the case where the cdicglas
not taken into account{ = 1.35 corresponds t@; = 0.67, and
7; = 1.23to B; =~ 0.58) although there is substantial overlap in the
credible intervals. Once again, there is little differebeéween the
results for all sources and the results that exclude the LERG

5 DISCUSSION AND CONCLUSIONS

The models for the prominences of both jets and cores areca fun
tion of three variablespf,: 7y, 6), so that the problem of fitting to
the v distribution is degenerate. However, as discussed in @ecti
[B:Z23, prominence distributions simulated using thessgtimeodels
do represent the sample data well, and are strongly inflaebge
the value ofy. The model fitting that we have performed in this pa-
per has allowed the upper limits in the data to be treatedectiyr
and so the following conclusions can be drawn about the jpeba
range ofy in the jet and core data.

For both jets and cores, it was found that models allowing
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Figure 4. The posterior probability distribution for fits to the coreominence distribution. Labelling as for FIg. 3. Top leftdelta-function distribution is
assumed for both the intrinsic prominence and the Loremtofdi.e.o, = 0, op,,, = 0). Top right:o, = 0 buto,, . is allowed to vary. Bottom left:

Opine = 0buto is allowed to vary. Bottom right: both,, , ando, are allowed to vary. All plots are marginalized ovey; , ando-, for ease of comparison.
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Table 3.Results of fits of the basic model to the core prominenceibigton. Conventions as for Tadlé 2.

10

v

Sample Model 3 In(Pint) Opint oy Bayes factor
Cores, all sources 0y =0,0p,, =0 14.627797  —6.2270-5% 0 0 -
3.15 1.31 0.12
oy =0, op,,, free 10427328 557020 1437003 0 336
o free,op,, =0 14277550 —5.18703) 0 0571508 32.9
o, free,op,,, free 10407287 —5.637057 123703 0.337057 33.7
5 =1.0,04 =0, op,,,, free 1.0 868707, 215100 0 32.7
Cores, LERGs excluded o = 0, 0, = 0 11.9672 70 —6.697 2% 0 0 -
oy =0, ap,,, free 8.24727%  —6.28T0-9 1317011 0 27.8
o free,op,, =0 12,6655 —5.5210 5% 0 055100 27.9
o, free,op,,, free 8.84724%  —6.13710  1.097027  0.3470 59 28.0
5 =1.0,04 =0, op,,,, free 1.0 —8.80707, 2027000 0 27.8
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Table 4. Results of fits of the power-law model to the core prominenistridution. Conventions as for Tal[é 2. The Bayes factowith respect to the
corresponding model with, = 0, o, , = 0 in Table[3.

Sample Model In(Pint) Opint Ymin Ymax a Bayes factor
Cores, all sources Opiny = 0,afree  —6.107033 0 4117052 30747518 0157002 31.1
Opiy =0,a=2 —3.1270:78 0 2491079 20.4613%0¢ 2 24.0
Opi fe€,afree —6.777035 1407020 377Tiat 24247520, 2607295 35.0
Cores, LERGs excluded op,,, = 0,afree  —6.74703) 0 3477023 2656750 0.437007 26.9
Opiy =0,a=2  —7.0715258 0 3.90%p3r 2812t LET 2 24.1
Opy free,afree —7.107095 1217035 3447075 24.3579.70.  2.63153L 28.8

Table 5. Results of joint fits to the jet and core prominence distidng for the whole sample for jet spectral indiegs= 0.5 anda. = 0.8. Conventions as

for Table[2, but the Bayes factor is measured with respettetartodel with free

beaming parameters.

Sample o  Model Ye In(Pint, ) OPint, % ln(ﬁimj ) Tpint, Bayes factor
All sources 0.5 Allfree 11817337 —5177 028 1507017 1377905 —8.2075 11 0.9770%) -
No beaming 1.0 1.0 —10.0

0.8 Allfree 11767537 5187510 1497009 1937008 8367011 0.987008 -

No beaming 1.0 1.0 -8.0

LERGs excluded 0.5  All free 104972355 —561700; 1387905 1.28700%  —8.397013 1077500 -
No beaming 1.0 1.0 —4.0

0.8 Allfree 9.48T320 5851102 1.39700% 1207052 —8.417015  1.05150% -

No beaming 1.0 1.0 —4.2

some dispersion in one or both of the intrinsic distribusiofpin

they make use of all the available data, are still clearly mower

and~ are favoured over the model that assumes a delta-function than 10.

distribution for both parameters. For the jets, the valug &und

for these models varied between 1.18 and 1.49 (see [able2), d
pending on the model and the choiceafwhich corresponds to

B ~ 0.53 — 0.74 and is in reasonable agreement with previously
reported analysis, as discussed in Se¢fioch 1.1. Modelsyithl 0

did not fit well to the data and there was no evidence for any lu-
minosity dependence of. For the cores, a reasonably well con-
strainedy of ~ 10-14 was obtained in models in which intrinsic
dispersion in the prominence was allowed, but the results e
dependent on our choice of prior.

One obvious criticism of the core data modeling is that it has
been assumed that the properties of the twin parsec-sc¢alarg
the same and that the jets are bi-polar. More complicatedetaod
could be defined that allow the.; and~ values to be different
in the approaching and receding jet, and allow the separ&in
tween the jets to be less than 280 even if the real parsec-scale
jets properties are similar or close to being symmetricahetwo
beams, it is entirely plausible there is at least some deviditom
exact symmetry. Experimenting with such models, howeveterd
mined that the data does not justify models any more compkax t
those reported in the preceding sections and Table 2. Thttds
evidence values associated with the models with greatebatsn
of parameters are not higher and fitting results do not diffeatly
from those obtained with the simpler models. Consideradnigdr
datasets will be needed to investigate more complex models.

We also carried out fits to the combined jet and core promi-
nence datasets, as evidence for a jet-core correlatioregeasfound
in our sample and in others (Bridle et al. 1994; H99; Paper I).
The results showed that models with no beaming are strongly d
favoured with respect to models in which beaming is inclyded
since only the latter can reproduce the observed core-jetlation.
The fitted~ value for the kiloparsec-scale jets was slightly higher
than for the corresponding fits in which the correlation was n
taken into account s = 1.35, which corresponds t@ ~ 0.67,
for a = 0.5, or et = 1.23, 8 ~ 0.58, for « = 0.8. Even so,
these values, which represent our best estimates in the sess

How can these results, implying mildly relativistic bulkesals
for kpc-scale jets in FRIIs, be reconciled with the much dangpl-
ues of jet bulk Lorentz factor required by beamed inverseifiton
models of X-ray emission from quasar jets (Secfiod 1.1)? As w
have already pointed out, jet velocity structure is rousimevoked
in models of the parsec-scale jets in order to explain thewadge
of Lorentz factors required by different observations iosth cases.
If a beamed inverse-Compton model is viable at all for kitspa-
scale jets, velocity structure must be present there as(aeiion-
cluded by Hardcastle 2006). Our data are dominated by abict
large angles to the line of sight, and so would naturally lpeeted
to give estimates of the bulk Lorentz factor that are appab@r
to the slow-moving component of the jet. However, the presen
of this slow-moving component in observations of jets evea a
small angle to the line of sight certainly adds to the congpians
of detailed inverse-Compton modelling of FRII sources; ridwdio
emission from the jet is the only independent informatioailav
able on the electron density present, but the assumptioittae
radio-emitting material moves at a single bulk speed whauh loe
estimated from the X-rays is no longer valid in the preserigeto
velocity structure. Ideally measurements of jet promimsncould
be used to constrain models with jet velocity structure,dweain if
our data were good enough (and we have seen that our capabilit
to distinguish between models is limited only to the mostiobs
cases) there is as yet no constraint on how the jet speed dssiem
ity might vary as a function of radius, and so effectively nodal to
test. High-resolution radio observations of jets in FRIighwnext-
generation instruments such as e-MERLIN and the EVLA are re-
quired to give observational constraints on the surfacghbmess
of FRII jets at a range of angles to the line of sight as a famcti
of jet radius. It may then be possible to apply the techniqiees
scribed here to constrain the properties of a more compledemo
of jet speeds.
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