Activity Pattern and Personal Exposure to Nitrogen Dioxide in Indoor and Outdoor Microenvironments

C. Kornartit¹, R. S. Sokhi¹, M.A. Burton² and Khaiwal Ravindra^{1*}

¹ Centre for Atmospheric and Instrumentation Research (CAIR), *University of Hertfordshire*, *Hatfield*, *Hertfordshire*, *AL10 9AB*, *UK*

² School of Life Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK

9 10 11

1

2

4 5

6

7

8

ABSTRACT

12 13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO₂), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO₂ concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO₂ personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO₂ levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO₂ concentrations in winter but not for summer. In winter, indoor NO₂ concentrations were found to be strongly correlated with personal exposure levels. NO2 concentration in houses using a gas cooker were higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference were noticed in summer. The average NO₂ levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO₂ concentrations. Interestingly, for our particular study higher NO₂ personal exposure levels were found during summer (14.0 ± 1.5) than winter (9.5 ± 2.4) .

333435

36

Key words: nitrogen dioxide, indoor and outdoor sources, gas/electric cooking, personal exposure, smokers, NO₂/NO_x ratio, time weighted average modelling

373839

40

41

42

*Corresponding author: Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, Hatfield, AL109AB, UK. E-mail: <u>r.khaiwal@herts.ac.uk</u> or <u>Khaiwal@yahoo.com</u>, Tel.: +441707 285232; fax: +441707 284208.

1. INTRODUCTION

Nitrogen dioxide (NO₂) is one of the most common air pollutants in ambient and indoor air (Lai et al., 2006; Hanninen et al., 2004). The major outdoor source of NO₂ concentrations are mobile and stationary combustion sources (Kampa and Castanas, 2008; Lewne et al., 2004), whereas indoor sources includes gas cookers, wood stoves, fireplaces, and environmental tobacco smoke (ETS). NO₂ is formed from the combination of nitrogen and oxygen (O₂) during high temperature combustion processes (Brunekreef, 2001; Baili, et al., 1999). NO₂ and associated compounds can also produce secondary aerosol by the photochemical oxidation (Bencs et al., 2008). In some indoor environments such as industrial workplaces and in homes with gas stoves, peak concentrations may reach 1 to 2 ppm with a 24-h averages NO₂ concentration up to 0.5 ppm (Chan et al., 2007; Monn, 2001).

NO₂ is an irritant gas and can increase susceptibility to airway infections and impair lung function in exposed populations (Kattan et al., 2007; Curtis et al., 2006; Kraft et al., 2005). Several, multi- and single-pollutants time-series studies have also found association between NO₂ and non accidental mortality (Beelen et al., 2008; Brook et al., 2007; Burnett et al., 2004). Table 1 summarizes some of the short-term and long-term health effects of NO₂ exposure over various concentration and exposure time. A review by Latza et al. (2009) also examines some recent studies assessing the health effects of environmental NO₂. The toxicity of NO₂ depends on its oxidative and free radical properties, as well as its ability to form nitric and nitrous acids in aqueous solution on the moist surfaces (Sandström, 1995; Utell, et al., 1991). Its main effect, therefore, on human health is to damage respiratory tract cells such as mucous membranes of the lung (Frampton et al., 2002; Blomberg et al., 1999; Spengler et al. 1983). Hence it is important to study the factors that lead to personal exposure to air pollutants such as NO₂ and how it can be assessed.

The personal exposure to air pollutants from both indoor and outdoor sources has recently received high attention (Krzyzanowski, 2008; Chaloulakou et al., 2008; Mitchell et al., 2007). Personal exposure to pollutants like NO₂ depends on the concentration of NO₂ in microenvironments and the time that one spends in those microenvironments (see for example, Ott, 1982; Monn, 2001; Harrison, et al., 2002). Although high ambient NO₂ concentrations are dangerous to health, indoor NO₂ concentrations can pose a greater health risk due to people spending most of their time indoors. In indoor environments where ventilation is restricted, using wood, solid, liquid and gaseous fuels in a small space in home can lead to high exposure. However, the NO₂ levels may be comparatively lower in newly built houses with proper ventilation (Willers et al., 2006). NO₂ is often found at higher concentrations indoors than outdoors (Lai et al., 2006; Garcia Algar et al., 2004; Lee, et al., 2002; Bailie, et al., 1999), and houses with gas cookers have been found to have much higher mean 24-hr concentrations than houses with electric cookers (Willers et al., 2006; Hanninen et al., 2004; Berglund, 1993).

This paper examines the relationship between measurements of personal exposure levels of office workers to NO₂ and those measured in microenvironments for an area of Hertfordshire and North London, UK. Although people may be exposed to several different sources during a typical day depending on their activity patterns, this paper focuses on levels measured in the work place, the home and outdoors and how these explain the overall personal exposure of the

subjects. This work has implications for air quality monitoring networks and their representativeness of personal levels of exposure to air pollution.

2. METHODOLOGY

2.1 The Study area

The study was carried out in north London and Hertfordshire which consists of several small and medium sized towns (shown in Figure 1). Hertfordshire is a county adjacent to the north of London, which covers an area of 1643sq km and has a population of over 1 million. The county has important transport links, with the A1(M) and M1 motorways for traffic travelling north and south. M25 is a major motorway to the south of the county and encompasses the Greater London area.

2.2 Target population

The target populations of this study were 21 - 60 year old office workers living and working in urban areas in Hertfordshire and north London. For the winter period of 2000, a random sample of 60 office workers were asked to fill in their activities diaries and questionnaires. This number of subjects is in accordance with the WHO guidance of having sample of a minimum of 50 subjects for the sample to be representative of a target population (see for example, EXPOLIS, 1999, WHO 2000). At the same time, weekly average concentrations of NO₂ (personal, bedroom, living room, kitchen, outside front door, office and inside car were measured using two passive Palmes diffusion tubes at each site. Correlations between weekly personal exposures and mean indoor and outdoor concentrations during the same periods were examined. In addition, 30 individuals from winter study participated again in a summer season campaign (2001). The lower number was due to the fact that not all subjects from the winter study were able to participate in this second campaign. The supplementary data (Table S1-S2) shows various detail including the age distribution, male/female ratio, houses with gas cooker, electric cooker, smokers, non-smokers etc.

2.3 Monitoring strategy

During winter 2000 and summer 2001 passive NO₂ diffusion tubes (Palmes, et al. 1976) were used to measure weekly average NO₂ concentrations for fixed indoors microenvironments, an outdoor site and personal average exposures of individuals. The Palmes tube method is simple to use with the tubes having a long shelf live before and after exposure giving both reliable and reproducible results (Bush, et al., 2001). The diffusion tube relies on molecular diffusion of NO₂ through a vertical acrylic tube of known length and cross-sectional area onto a reactive surface or absorbent mesh coated with triethanolamine (TEA) where the molecule is captured by chemical reaction forming a nitrite. After exposure to NO₂ for a seven-day period, the reactive surface is analysed using UV/VIS spectrophotometry at 540 nm and the integrated loading of the reaction product is used to infer the average gas concentration (Palmes et al. 1976). All tubes were prepared and analysed at the University of Hertfordshire laboratory.

2.4 Siting protocol for passive diffusion tubes

Indoor passive tubes were placed to avoid windows, corners, and heating vents and outdoor passive tubes were located outside homes, approximately 2 m above the ground away from possible localized pollutant sources such as driveways, roads and exhaust vents. All tubes were tracked by individual identification numbers, which were also recorded on their activity diaries and questionnaires. Volunteers were instructed to wear the passive tubes at breathing

height by clipping them onto their collar or lapel, to keep them outside of coats and to keep tubes nearby when not wearing them, for example, while sleeping, having a shower or taking a bath.

2.5 Statistical analyses

Statistical analysis was performed with SPSS software. Descriptive data or simple summary statistics (mean, standard deviation, maximum and minimum) were derived to describe the distribution of NO₂ concentrations to which the individuals were exposed. Pair t-test for mean values were performed to find any differences between time weighted average NO₂ exposure values and average personal exposure to NO₂ concentrations. Standard multiple regression analysis was used to assess the importance of indoor NO₂ concentrations measured over the 7-day period. Pearson's correlation coefficient was used to summarise the relationship between personal exposure and the exposure levels measured in microenvironments.

2.6 Calculation of time weighted average micro-environmental exposure

Time weighted average micro-environmental exposure was estimated based on weekly average NO₂ concentrations from home indoor (bedroom, living room and kitchen) and outdoor including in office and car and time activity diaries according to the following equation:

$$E_i = \sum_{j}^{J} C_j t_{ij} \tag{1}$$

21 where

- E_i is the NO₂ time weighted average exposure for person i over the specified time period;
- C_j is the NO₂ concentration in microenvironment j;
- t_{ij} is the aggregate time that person i spends in microenvironment j;
- *J* is the total number of microenvironments that the person *i* moves through during the specified time period such as indoors at home, indoors at work, indoors in other locations, in transit, and outdoors.

3. RESULTS AND DISCUSSION

3.1 Questionnaires and Time activity diary data

The time activities diaries were filled by 55 subjects (out of a total of 60 volunteers) in winter 2000. Analysis of their activities showed that all volunteers spent more than 80% of their time indoors. The time spent in each microenvironment over the week is shown in Figure 2. Over 50% of the time was spent at homes during winter but less in summer periods, followed by about 30% of the time being spent at the workplaces. The individuals spent 5.5% (in winter) and 4.6% (in summer) of their time in other non-smoking areas such as shopping malls and cinemas, and 2.7% on average in other smoking areas such as in restaurants and public houses. With regard to travelling time, the average total time spent in the traffic was about 45 minutes per day, equivalent to 4.5% (winter) and 4.0% (summer) of the daily activities time. The individuals spent three times (11.9%) of the total daily activities time outdoors during summer in comparison to winter (4%). These results are in agreement with other European studies e.g. Piechocki-Minguy et al., (2006); Harrison, et al., (2002) and EXPOLIS (1999).

$3.2\ Average\ personal\ exposure\ to\ NO_2$ and average NO_2 concentrations in microenvironments

In winter, average NO₂ concentrations in bedroom, living room and kitchen were significantly higher (p<0.05) in houses with gas cookers compared with those with electric cookers, while there was also significant difference in personal exposure. Weekly average NO₂ concentrations in all microenvironments are depicted in Figure 3. The result shows that personal exposure to NO₂ concentrations for all volunteers ranged from 5.7 to 15.4 ppb. This range was 6.3 to 15.4 ppb for volunteers using gas cookers and 5.7 to 11.0 ppb for those using electric cookers. NO₂ concentrations in the bedroom ranged from 3.2 to 15.5 ppb with 6.3 to 15.5 ppb in houses with gas cookers and 3.2 to 11.1 ppb in houses with electric cookers. NO₂ concentrations in the living room ranged from 4.1 to 30.1 ppb with 6.1 to 30.1 in houses with gas cookers and from 4.1 to 11.4 in houses with electric cookers. The results also show that weekly mean NO₂ concentrations in the kitchens with gas cookers ranged from 12.9 to 38.8 ppb (Table 2a). These values were higher than for the kitchens with electric cookers (4.2-9.7 ppb).

In summer, there were no significant differences in NO₂ concentrations in rooms of houses with electric or gas cookers or in personal exposure. Weekly average NO₂ concentrations in all microenvironments are presented in Figure 3. The results shows that personal exposure of volunteers using gas cookers ranged from 12.7 to 18.1 ppb (average 14.6 ppb) and from 11.3 to 15.3 ppb for those volunteers using electric cookers (average 13.3 ppb). Further, it was also noticed that NO₂ levels in kitchens with gas cookers (ranging from 12.8 to 17.7 ppb) were higher than those with electric cookers (ranging from 8.0 to 13.3 ppb). NO₂ concentrations in the bedroom ranged from 12.5 to 17.3 ppb in houses with gas cookers and 10.6 to 14.8 ppb in those with electric cookers (Table 2b). NO₂ concentrations in the living room ranged from 10.8 to 18.2 ppb (from 13.2 to 18.2 in house with gas cookers and from 10.8 to 15.4 in houses with electric cookers).

The highest difference between concentrations in gas cooker and electric cooker houses is observed for kitchens and this would be expected as cooking appliances represent a dominant exposure source. The results also show that indoor contribution to personal exposure to NO₂ is important for winter months especially for those people living in houses with gas cookers. During the summer period, when ventilation is high (such as through open windows), the variation between the microenvironment concentrations is less than for winter (see values of standard deviation in Table 2). Similarly, there is less difference between the personal exposure and microenvironmental levels for the summer period due to the higher ventilation rates and because people tend to spend less time at home.

3.3 Personal exposure to NO₂ and indoor/outdoor concentrations

Outdoors NO₂ concentrations were significantly higher when compared with indoor concentrations for the winter period. Average outdoors NO₂ concentrations ranged from 8.1 to 16.1 ppb, with an average of 12.9 ppb and NO₂ concentrations in offices ranged from 5.6 to 13.5 ppb (average 8.8 ppb) and average NO₂ concentrations in the cars ranged from 4.1 to 11.3 ppb (average 6.8 ppb). In contrast, outdoor NO₂ concentrations were not significantly different

from indoor concentrations in summer. The outdoors concentrations ranged from 11.3 to 18.8 ppb (average 14.5 ppb). NO₂ concentrations in offices ranged from 9.2 to 15.2 ppb (average 12.2 ppb) and in cars ranged from 8.7 to 14.4 ppb (average 11.4 ppb). Winter periods are often subject to higher congestion and hence higher traffic emissions of nitrogen oxides. In addition, stable atmospheric conditions are common which restricts the dispersion of air pollution giving rise to higher concentrations especially in cities (see for example, Kukkonen, et. al., 2005). During summer times in contrast, traffic levels can be lower (e.g. due to holiday periods) and greater dispersion which can lead lower ambient levels of pollutants like NO₂.

Outdoor levels of NO₂ could be higher due to increased primary NO₂ emissions from vehicles. Several studies have shown that while NO_x levels show a decreasing trend, the NO₂ levels remain constant in urban centres i.e. higher NO₂/NO_x ratio (Carslaw, 2005; AQEG, 2006; Carslaw et al., 2007; Carslaw and Carslaw, 2007; Grice et al., 2009). These studies also suggest that this increase may be due to an increased NO/NO₂ ration in vehicular exhaust. Furthermore, present vehicular emission control technologies (such as oxidation catalyst, catalytic diesel particulate filter) also contribute to an increased NO₂/NO_x ratio due to increase primary NO₂ emissions. Interestingly an increase in the NO₂/NO_x ratio could also lead to the increased urban ozone levels (Carslaw and Carslaw, 2007).

A summary of personal exposure in different microenvironment is shown in Figure 4 which illustrates that significant exposure occur from indoor sources. This obviously has implications for groups other than office workers, in particular individuals who are elderly or have existing illness and spend most of their time indoors. It also shows the importance of outdoor contributions to the overall exposure for the summer period.

Several microenvironmental models have been proposed to predict indoor NO₂ concentrations as a function of outdoor concentrations, indoor source strength, and key building parameters such as infiltration, ventilation (Sexton et al., 1983; Rijnders et al., 2001; Kulkarni and Patil, 2002; Milner et al., 2005; Dimitroulopoulou et al., 2001, 2006). Sexton et al. (1983) proposed a simple deterministic model to relate exposure to background ambient levels, indoor values, and human activities. The study indicates that indoor NO₂ concentrations vary primarily with outdoor levels and type of cooking fuel, but are also affected by factors such as air-exchange rates and strength of indoor sources. Rijnders et al. (2001) have shown that personal and outdoor NO₂ concentrations are significantly influenced by (a) the degree of urbanization (b) by the traffic density and by (c) distance to a nearby highway. However, considering the above discussion, it would be useful to develop a holistic model that can consider the relative contribution of the outdoor levels to the indoor concentrations, microenvironment designs/structure, influence of personal habits and time activity patterns, including physical properties and cocktail effects of chemicals/reactivity of air pollutants and consequently the implication on personal exposure.

3.4 Average personal exposure of non-smokers, passive smokers and smokers to NO₂

Personal exposure of non-smokers, passive smokers and smokers to NO₂ concentrations and NO₂ concentrations in house microenvironments with electric and gas cookers is shown in Figures 5 and 6. The results from the winter study clearly showed that, average personal exposure to NO₂ of smokers in houses with gas cookers (13.6 ppb) was higher than those non-

smokers (10.8 ppb) and passive smokers (10.9 ppb). Furthermore, small but significant differences were noticed for personal exposure to non-smokers, passive smokers and smokers in houses with electric cookers (8.1, 8.7 and 9.4 ppb, respectively). The study also shows that average NO₂ concentrations in kitchens, living rooms and bedroom of smokers using gas cookers were found to be higher than the rooms of smokers, non-smokers and passive smokers with electric cookers. Furthermore various microenvironments have comparatively higher NO₂ levels with smoker and hence it can be suggested that smoking also influence the NO₂ exposure. Further the personal exposure risk may increase during winter, when the windows of a house are kept closed during most of the period.

Results from summer studies showed that average personal exposure to NO₂ of smokers in houses with gas cookers (17.0 ppb) was higher than those non-smokers (14.9 ppb) and passive smokers (13.7 ppb). However, there was no significant difference between personal exposure of non-smokers, passive and smokers in houses with electric cookers (13.1, 13.7 and 13.4 ppb, respectively). Significant differences were found between the average NO₂ concentration in bedrooms and living rooms of smokers using gas cookers and those for rooms of non-smokers and passive smokers. No difference was found for the other areas for non-smokers and passive smokers using gas cookers or electric cookers.

3.5 Time-weighted average personal exposure to NO₂ concentrations

Paired t-test was used to analyse the data for significance. It showed that there was a non-significant difference at the 95% level between time-weighted average NO₂ microenvironment concentrations and average personal exposure to NO₂ concentrations for the winter season. The results show that overall time weighted average ranged from 6.6 to 15.4 ppb (average 10.9 ppb) and the time weighted average of smokers, non-smokers, and passive smokers using electric cookers ranged from 7.0 to 9.3 ppb (mean: 8.6 ppb), 5.4 to 11.7 ppb (mean: 7.6 ppb) and 6.7 to 9.7 ppb (mean: 8.2 ppb) respectively. The time weighted average of smokers, non-smokers, and passive smokers using gas cookers ranged from 11.2 to 12.0 ppb (mean: 11.6 ppb), 7.1 to 14.7 ppb (mean: 10.4 ppb) and 6.7 to 16.5 ppb (mean: 10.5 ppb) respectively. The time weighted average gave a good approximation of personal exposure NO₂ levels although there was a small (\sim 6%) underestimation (y = 0.9433x, $R^2 = 0.8535$).

In contrast, significant different at the 95% level were found in summer. The results shows that overall time weighted average ranged from 11.0 to 16.3 ppb (average 13.1 ppb). Further, the time weighted average of volunteers using gas cookers ranged from 12.0 to 16.3 (average 12.5 ppb) and from 11.0 to 14.1 (average 13.8 ppb) for those using electric cookers. This is the opposite trend to that observed for winter where the mean of the time-weighted microenvironment concentrations was higher for the cases where gas cookers where used. Higher average time weighted concentrations of non-smokers, passive smokers and smokers using gas cookers (13.6, 13.4 and 15.6 ppb respectively) was observed than those using electric cookers (12.5, 12.9 and 11.6 ppb respectively). The time-weighted average exposure was also plotted against the personal exposure to NO_2 concentrations as shown in Figure 7 which shows that just over 65% of the time weighted average correlates with the direct personal exposure measurements of NO_2 concentrations (y = 0.5934x + 4.7931, $R^2 = 0.6533$).

A probable reason for this large unexplained fraction was that the volunteers spent more time outside during the summer campaign and were involved with activities not recorded in present

case. In addition, there is an intercept of nearly 5 ppb which indicates there were NO_2 pollution levels to which the person was not exposed. Another complication during summer period is the infiltration of outdoor air into indoors through open windows which was not specifically investigated as part of this study. It should be noted that the number of subjects were significantly less than for the winter campaign and hence the uncertainties in the dataset will be higher.

3.6 Comparison of the current work with other studies

Table 3 also shows a comparative overview of recent studies on NO₂ concentration in various microenvironments and personal exposure. It is interesting to note that none of the studies really covered all the microenvironments as studied in the present case. This highlights the significance of the present study in explaining much of personal exposure assessment of NO₂, especially for the winter case where people spend more time indoor.

Compared to other UK studies outdoor NO₂ levels in Hertfordshire falls towards lower range. For example, outdoor level reported include Ashford: 12.4 ppb; Birmingham: 10 ppb; London: 22 ppb; Oxford: 12.4 ppb, Southampton: 27 ppb (Lai et al., 2004; Gracia-Algar et al., 2004; Harrison et al., 2002; Levy et al., 1998; Linaker et al. 1998). Campbell et al., (1994) measured the NO₂ concentration at 243 validated urban sites throughout the UK and the average concentrations varied from 10 ppb (northern Scotland) to 50 ppb (near road side in London). Compared to other European cities (Table 3), outdoor NO₂ levels falls in lower to moderate range in UK. On a global prospective, Asian cities seem to have highest outdoor NO₂ concentrations such as Delhi (36.4±15.6ppb), Hong Kong (38±8 ppb), where vehicular emission seems to be a major contributor (Ravindra et al., 2006, 2003; Chao et al., 2000). European Union aim to achieve an outdoor annual average guide value of 21.3 ppb by 2010.

In addition to the Table 3, various other studies also report the indoor NO_2 levels in European cities such as Kuopio (5.5 ppb), Kjeller (7.8 ppb), Geneva (8.3 ppb), Avon (6.8 ppb), Hamburg (8.8 ppb), Erfurt (9.0 ppb) (Cyrys et al., 2000; Levy et al., 1998; Farrow et al., 1997). However, only few studies report the levels in different microenvironment as depicted in Table 3. It shows that indoor levels are comparable to reported values in UK cities (Lai et al., 2004; Harrison et al., 2002) and also some of the European cities. However, higher indoor levels were also reported for Antwerp, Barcelona, Paris and Prague (Table 3). A study by Breysee et al. (2005), also reports significantly higher levels of indoor NO_2 in Baltimore, USA.

The NO_2 concentration in various microenvironments are related with various factors such as ventilation, electrical/gas cooking or heating, ETS etc (Zota et al., 2005; Gallelli et al., 2002). Algar-Gracia et al. (2004) reported that gas fire increase average NO_2 concentrations by 1.3 fold and gas cooker by 2.1 times. Further, the outdoor NO_2 levels and seasons variability can also influence the levels in these microenvironments (Franklin et al., 2006). People living in small apartments with limited ventilation and lack of local exhaust mechanism have probability to high personal exposure. Gas stoves are typically used for brief periods and combustion by product from these sources are not evenly distributed in an apartment (Zota et al., 2005) and hence NO_2 levels may exceed the maximum hourly limits of NO_2 in kitchen during cooking. However, long term monitoring approaches only provide limited possibilities to study the health effect of short term peak exposure to NO_2 . Hence further studies would be

needed to address this challenge and to develop a strong database for short term exposure assessment.

In addition to the present study, only few studies have monitored NO₂ levels inside a vehicle (Lewne et al., 2006, Harrison et al., 2002). Interestingly, the NO₂ level seems to be lower in a personal car than a taxi, bus and lorry although this would also be related to the time, traffic intensity and the location in different environments. The NO₂ levels in offices/workplaces/schools seems to be slightly lower than indoor except in some cases; where the they may be situated near an area with dense vehicular activities or near a highway. This aspect, however, was not studied in this work as most work places were away from particular sources such as major roads.

Levy at al. (1998) studied 18 cities in 15 countries around the world and found that personal NO_2 exposures were more strongly correlated with indoor concentrations (r = 0.75) than with outdoor concentrations (r = 0.57) when all countries were considered simultaneously. Linaker et al., (1998) noticed that personal exposure to NO_2 in school children of Southampton and levels ranged from 6 to 137 ppb with a geometric mean of 199 ppb. In contrast to other studies (Monn et al., 1998; Zota et al., 2005; Piechocki-Minguy et al., 2006, see Table 3) personal exposures were found to be higher in summer than winter at Hertfordshire. This could indicate that for this particular cohort of subjects and their micro-environments, outdoor sources were particularly important. Further the personal exposure seems to be strongly dependent on both the levels of NO_2 in indoor and outdoor environments (see Figure 3 and 4). In certain cases, as shown by Lewne et al (2007), specific micro-environments can play an important role in determining the overall exposure level as in the of bus drivers, taxi drivers and tunnel workers.

Although there are ambient air pollution guidelines and threshold values for NO_2 , they are limited for indoor air quality (Franchi et al., 2004; 2006; WHO, 2000, 2003). Table 4 shows an overview of outdoor/indoor air quality guide values for NO_2 . Kraft et al. (2007) proposed two short-term NO_2 exposure values to protect public health i.e. 53.2 ppb (for 1 hour) and 26.6 ppb (for 24 hours) based on the results of exposure-chamber experiments. A recent study by Pilotto et al., (2004) suggests that a reduction in NO_2 exposure can reduce asthma symptoms. Hence, it would be more useful to propose indoor to supplement the outdoor guidelines and threshold values for NO_2 based on personal exposure in different microenvironments.

4. CONCLUSIONS

Nitrogen dioxide concentration measurements of personal exposure, home and workplace microenvironments (e.g. office, bedroom, living room and kitchen), outdoor and in-car are presented for Hertfordshire and north London during winter and summer. A number of key conclusions can be drawn from this work

(i) The study revealed that average NO_2 concentrations were higher in the various microenvironment of a house with a gas cooker than a house with an electric cooker. Hence, kitchens are a major source of indoor NO_2 .

- 1 (ii) The concentration in kitchens with gas cooker was noticed to be 2–3 times higher than 2 those with electric cooker. The use of gas cooker in house with poor ventilation significantly 3 increases the risk of high NO₂ personal exposure in indoor microenvironments.
- 4 (iii) In comparison to the passive smokers and non-smokers, the highest personal exposures 5 were noticed in smoker's house with the risk of exposure rising further with the use of gas 6 cookers.
- 7 (iv) The work shows that where gas cookers are not being used, the outdoor NO₂ could be a major source of indoor NO₂ concentration in various microenvironments.
- 9 (v) The high levels of NO₂ were observed in summer but a high correlation was observed 10 between the measured personal exposure and time-weighted microenvironment concentrations 11 during winter.
- 12 (vi) A comparison of personal exposure of NO₂ and levels in various microenvironments 13 was also performed with other recent indoor studies. The levels of NO₂ ranged from 3.2 ppb to 14 30.1 ppb during summer and winter seasons for the various microenvironments.
- 15 (vii) The study also supports the conclusion that indoor NO_2 concentrations can better explain personal exposure than outdoor concentrations alone.
- (viii) In light of the above points the time weighted average exposure to NO_2 gave a good approximation of personal exposure with some underestimation, when compared with personal exposure to NO_2 concentrations. The mean indoor NO_2 concentrations, especially in bedrooms, have been found to reflect personal exposure closely.
- 21 (ix) As we spend most of our time indoor, it is suggested that indoor guide values based on 22 personal exposure in different microenvironments should be developed to support limit values 23 for outdoor levels.

ACKNOWLEDGMENTS

24 25

26

27

28

29

30

3132333435

We sincerely thank all the volunteers' who participated in the study. BRE are thanked for providing calibration facilities for the Palmes tubes. The results of the study were relevant for. The motivation for this study was driven by projects such as FUMAPEX (FP5 Project), OSCAR (FP5 Project), the Cluster of European Air Quality Research (CLEAR) and more recently ENVIRISK and HENVINET both of which are FP6 funded projects.

REFERENCES

- 3 AQEG, 2006. Primary nitrogen dioxide in the United Kingdom. Report prepared by the Air
- 4 Quality Expert Group for the Department for Environment, Food and Rural Affairs, Scottish
- 5 Executive, Welsh Assembly Government, and Department of the Environment in Northern
- 6 Ireland, Draft, August 2006.
- Arbex, M.A.; Martins, L.C.; Pereira, L.A.A.; Negrini F.; Cardoso A.A.; Melchert W.R.; Arbex
- 8 R.F.; et al. Indoor NO₂ air pollution and lung function of professional cooks. Braz J Med Biol
- 9 Res. 40:527-534; 2007.
- Bailie, R.S.; Pilotto, L.S.; Ehrlich, R.I.; Mbuli, S.; Truter, R.; Terblanche, P. Poor urban
- environments: use of paraffin and other fuels as sources of indoor air pollution. J Epidemiol
- 12 Community Health 53:585-586; 1999.
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.;
- Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air
- pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health perspect.
- 16 116:196-202; 2008.
- Bencs L.; Ravindra K.; De Hoog J.; Rasoazanany E.O.; Deutsch F.; Bleux N.; Berghmans P.
- et al. Mass and ionic composition of atmospheric fine particles over Belgium and their
- relation with gaseous air pollutants. J. Environ. Monit. 10:1148-1157; 2008.
- 20 Berglund, M. Risk evaluation of nitrogen oxides. Scand. J. Work Environ. Health 19:14-20;
- 21 1993.
- Blomberg, A.; Krishna, M.T.; Helleday, R.; Soderberg, M.; Ledin, M.C.; Kelly, F.J.; Frew,
- 23 A.J.; Holgate, S.T.; Sandstrom, T. Persistent airway inflammation but accommodated
- 24 antioxidant and lung function responses after repeated daily exposure to nitrogen dioxide. Am
- 25 J Respir Crit Care Med. 159:536-543; 1999.
- Brauer, M.; Hoek, G.; Van Vliet, P.; Meliefste, K.; Fischer, P.H.; Wijga, A.; Koopman, L.P.;
- Neijens, H.J.; Gerritsen, J.; Kerkhof, M.; Heinrich, J.; Bellander, T.; Brunekreef, B. Air
- 28 pollution from traffic and the development of respiratory infections and asthmatic and allergic
- symptoms in children. Am. J. Respir. Crit. Care Med. 166, 1092-1098; 2002.
- 30 Breysse, P.N.; Buckley, T.J.; Williams, D.A.; Beck, C.M.; Jo, S-J.; Merriman, B.;
- 31 Kanchanaraksa, S.; Swartz, L.J.; Callahan, K.A.; Butz, A.M.; Rand, C.S.; Diette, G.B.;
- 32 Krishnan, J.A.; Moseley, A.M.; Curtin-Brosnan, J.; Durkin, N.B.; Eggleston, P.A. Indoor
- exposure to air pollutants and allergens in the homes of asthmatic children in inner-city
- 34 Baltimore. Environ Res. 98:167-176; 2005.
- Brook, J.R.; Burnett, R.T.; Dann, T.F.; Cakmak, S.; Goldberg, M.S.; Fan, X.H.; Wheeler, A.J.
- Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series
- studies. J Exposure Sci Environ Epidemiol. 17:S36-S44; 2007.
- Brunekreef, B. NO₂: the gas that won't go away. Clin. Exp. Allergy 31:1170-1172; 2001.

- Burnett R.T.; Stieb D.; Brook J.R.; Cakmak S.; Dales R.; Raizenne M.; Vincent, R.; Dann, T.
- 2 Associations between short-term changes in nitrogen dioxide and mortality in Canadian
- 3 citiesThe short-term effects of nitrogen dioxide on mortality in Canadian cities. Arch Environ
- 4 Health 59:228-237; 2004.
- 5 Campbell, G.W.; Stedman, J.R.; Stevenson, K. A survey of nitrogen dioxide in the United
- 6 Kingdom using diffusion tubes. Atmos Environ. 28:477-486; 1994.
- 7 Carslaw, D.C. Evidence of an increasing NO₂/NO_x emissions ratio from road traffic emissions.
- 8 Atmos Environ. 39: 4793-4802; 2005.
- 9 Carslaw, D.C.; Beevers, S.D.; Bell, M.C. Risks of exceeding the hourly EU limit value for
- 10 nitrogen dioxide resulting from increased road transport emissions of primary nitrogen
- dioxide. Atmos Environ. 41:2073-2082; 2007.
- 12 Carslaw, D.C.; Carslaw N. Detecting and characterising small changes in urban nitrogen
- dioxide concentrations. Atmos Environ. 41:4723-4733; 2007.
- 14 Chaloulakou A.; Marvroidis I.; Gavriil I. Compliance with the annual NO₂ air quality
- standard in Athens. Required NOx levels and expected health implications. Atmos Environ.
- 16 42:454-465; 2008.
- 17 Chao, C.Y.H.; Law, A. A study of personal exposure to nitrogen dioxide using passive
- samplers. Build Environ. 35:545–553; 2000.
- 19 Chen, T.M.; Gokhale, J.; Shofer, S.; Kuschner, W.G. Outdoor air pollution: Nitrogen dioxide,
- sulfur dioxide, and carbon monoxide health effects. Am J med Sci. 333:249-256; 2007.
- 21 Cotterill, A.; Kingham, S. Nitrogen dioxide in the home: cooking, double glazing or outdoor
- 22 air? Indoor Built Environ. 6:344-349; 1997.
- Curtis, L.; Rea, W.; Smith-Willis, P.; Fenyves, E.; Pan, Y. Adverse health effects of outdoor
- 24 air pollutants. Environ Int. 32:815-830; 2006.
- 25 Cyrys, J.; Heinrich, J.; Richter, K.; Wolke, G.; Wichmann, H.E. Sources and concentrations of
- 26 indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany), Sci Total
- 27 Environ. 250:51-62; 2000.
- Dimitroulopoulou, C.; Ashmore, M.R.; Byrne, M.A.; Kinnersley, R.P. Modelling of indoor
- exposure to nitrogen dioxide in the UK (2001) Atmos Environ.35: 269-279; 2001.
- Dimitroulopoulou, C.; Ashmore, M.R.; Hill, M.T.R.; Byrne, M.A.; Kinnersley, R. INDAIR:
- A probabilistic model of indoor air pollution in UK homes. Atmos Environ. 40: 6362-6379;
- 32 **2006**.
- Dockery, D.W.; Spengler, J.D.; Reed, M.P.; Ware, J. Relationships among personal, indoor
- and outdoor NO₂ measurements. Environ Int. 5:101-107; 1981.

- European Union, Council Directive 1999/30/EC of 22 April 1999 relating to limit values for
- 2 sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in
- ambient air. Official Journal L 163, 29/06/1999, 41-60; 1999.
- 4 EXPOLIS Final Report: Air Pollution Exposure in European Cities: the EXPOLIS Study,
- 5 Kuopio, Finland; 1991.
- 6 Farrow, A.; Greenwood, R.; Preece, S.; Golding, J. Nitrogen dioxide, the oxides of nitrogen
- and infants health symptoms. Arch Environ Health 52:189-194; 1997.
- 8 Frampton, M.W.; Boscia, J.; Roberts, N.J. Jr.; Azadniv, M.; Torres, A.; Christopher, C.O.X.;
- 9 Morrow, P.E.; Nichols, J.; Chalupa, D.; Frasier, L.M.; Raymond Gibb, F.; Speers, D.M.; Tsai,
- 10 Y.; Utell, M.J. Nitrogen dioxide exposure: effects on airway and blood cells. Am J Physiol
- 11 Lung Cell Mol Physiol. 282:L155-L165; 2002.
- Franchi, M.; Carrer, P.; Kotzias, D.; Rameckers, E.M.A.L.; Seppänen, O.; van Bronswijk
- J.E.M.H.; Viegi, G.; Gilder, J.A.; Valovirta, E. EU forum: working towards healthy air in
- dwellings in Europe. Allergy 61:864-8; 2006.
- Franchi, M.; Carrer, P.; Kotzias, D.; Rameckers, E.M.A.L.; Seppänen, O.; van Bronswijk
- J.E.M.H.; et al. Towards healthy air in dwellings in Europe. The THADE Report, 2004.
- 17 (Accessed 10 April 2008). http://www.efanet.org/activities/ documents/THADEReport.pdf
- Franklin, P.; Runnion, T.; Farrar, D.; Dingle, P. Comparison of peak and average nitrogen
- dioxide concentrations inside homes. Atmos Environ. 40:7449-7454; 2006.
- Gallelli, G.; Orlando, P.; Perdelli, F.; Panatto. D. Factors affecting individual exposure to NO₂
- in Genoa (northern Italy). Sci Total Environ. 287:3136; 2002.
- Garcia Algar, O.; Pichini, S.; Basagana, X.; Puig, C.; Vall, O.; Torrent, M.; Harris, J.; Sunyer,
- 23 J.; Cullinan, P. Concentrations and determinants of NO2 in homes of Ashford, UK and
- 24 Barcelona and Menorca, Spain. Indoor Air 14:298-304; 2004.
- Garcia-Algar, O.; Zapater, M.; Basagana, X.; Sunyer, J.; Figueroa, C.; Freixa, A.; Guardino,
- 26 X.; Vall, O.; Pichini, S. Sources and concentrations of indoor nitrogen dioxide in Barcelona,
- 27 Spain. J Air Waste Manage. Assoc. 53:1312–1317; 2003.
- Gehring, U.; Eberwein, H.G.; Wichmann, H.E.; Rauchfuss, K.; Heinrich, J.; Kramer, U.;
- Grote, V.; Hochadel, M.; Sugiri, D.; Kraft, M. Long-term exposure to ambient air pollution
- and cardiopulmonary mortality in women. Epidemiology 17:545-551; 2006.
- Gilbert, N.L.; Gauvin, D.; Guay, M.; Heroux, M.E.; Dupuis, G.; Legris, M.; Chan, C.C.; Dietz,
- 32 R.N.; Levesque, B. Housing characteristics and indoor concentrations of nitrogen dioxide and
- formaldehyde in Quebec City, Canada. Epidemiology 17:S353-S354; 2006.
- Grice, S.; Stedman, J.; Kent, A.; Hobson, M.; Norris, J.; Abbott, J.; Cooke, S. Recent trends
- and projections of primary NO₂ emissions in Europe. Atmos Environ. 43:2154-2167; 2009.

- Hanninen, O.O.; Alm, S.; Katsouyanni, K.; Kunzli, N.; Maroni, M.; Nieuwenhuijsen, M.J.;
- 2 Saarela, K.; Srám, R.J.; Zmirou, D.; Jantunen, M.J. The EXPOLIS study: implications for
- 3 exposure research and environmental policy in Europe. J. Exposure Anal. Environ. Epidemiol.
- 4 14:440-456; 2004.
- 5 Harrison, R.M.; Thornton, C.A.; Lawrence, R.G.; Mark, D.; Kinnersley, R.P.; Ayres, J.G.
- 6 Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide,
- 7 including susceptible groups. Occup Environ Med. 59:671-679; 2002.
- 8 Kampa, M.; Castanas, E. Human health effects of air pollution. Environ Pollut. 151:362-367;
- 9 2008.
- Kattan, M.; Gergen, P.J.; Eggleston, P.; Visness, P.M.; Mitchell, H.E. Health effects of indoor
- 11 nitrogen dioxide and passive smoking on urban asthmatic children. J Allergy Clin Immunol.
- 12 120:618-24; 2007.
- Kousa, A.; Monn, C.; Rotko, T.; Alm, S.; Oglesby, L.; Jantunen, M. Personal exposures to
- NO2 in the Expolis-study: relation to residential indoor, outdoor and workplace concentrations
- in Basel, Helsinki and Prague. Atmos Environ. 35:3405-3412; 2001.
- Kraft, M.; Eikmann, T.; Kappos, A.; Kunzli, N.; Rapp, R.; Schneider, K.; Seitz, H.; Voss, J.U.;
- Wichmann, H.E. The German view: effects of nitrogen dioxide on human health derivation of
- health-related short-term and long-term values. Int. J. Hyg. Environ. Health 208:305-18; 2005.
- 19 Krzyzanowski, M. WHO air quality guidelines for Europe. J toxicol Environ Health 71:47-50;
- 20 2008.
- Kukkonen, J.; Pohjola, M.; Sokhi, R.; Luhana, L.; Kitwiroon, N.; Rantama" ki, M.; Berge, E.;
- Odegaard, V.; Slørdal, L.H.; Denby, B.; Finardi, S. Analysis and evaluation of selected local-
- scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo.
- 24 Atmos Environ. 39:2759-2773; 2005.
- 25 Kulkarni, M.M.; Patil, R.S. An empirical model to predict indoor NO2 concentrations. Atmos
- 26 Environ. 36: 4777-4785; 2002.
- 27 Lai, H.K.; Bayer-Oglesby, L.; Colvile, R.; Gotschi, T.; Jantunen, M.J.; Kunzli, N.;
- 28 Kulinskaya, E.; Schweizer, C.; Nieuwenhuijsen, M.J. Determinants of indoor air
- 29 concentrations of PM2.5, black smoke and NO₂ in six European cities (EXPOLIS study).
- 30 Atmos Environ. 40:1299-1313; 2006.
- Lai, H.K.; Kendall, M.; Ferrier, H.; Lindup, I.; Alm, S.; Hänninen, O.; Jantunen, M.; Mathys,
- 32 P.; Colvile, R.; Ashmore, M.R.; Cullinan, P.; Nieuwenhuijsen, M.J. Personal exposures and
- microenvironment concentrations of PM_{2.5}, VOC, NO₂, CO in Oxford, UK. Atmos Environ.
- 34 38:6399-410; 2004.
- Latza, U.; Gerdes, S.; Baur, X. Effects of nitrogen dioxide on human health: Systematic
- review of experimental and epidemiological studies conducted between 2002 and 2006.
- 37 International Journal of Hygiene and Environmental Health, 212:271-287; 2009.

- Leaderer, B.P.; Zagraniski, R.T.; Berwick, M.; Stolwijk, J.A.J. Assessment of exposure to
- 2 indoor air contaminants from combustion source: methodology and application. Am J
- 3 Epidemiol. 124:275-289; 1986.
- 4 Lee, K., Xue, J., Geyh, A.S., Özkaynak, H., Leaderer, B.P., Weschler, C.J. and Spengler, J.D.,
- 5 2002. Nitrous acid, nitrogen dioxide, and ozone concentrations in residential environments.
- 6 Environ Health Perspect. 110, 145-149; 2002.
- 7 Lee, K.; Yang, W.; Bofinger, N.D. Impact of Microenvironmental nitrogen dioxide
- 8 concentrations on personal exposures in Australia. J Air Waste Manage Assoc. 50:1739-1744;
- 9 2000.
- Levy, J.I.; Lee, K.; Spengler, J.D.; Yanagisawa, Y. Impact of residential nitrogen dioxide
- exposure on personal exposure: an international study. J Air Waste Manage Assoc. 48:553-
- 12 560; 1998.
- Lewne, M.; Cyrys, J.; Meliefste, K.; Hoek, G.; Brauer, M.; Fischer, P.; Gehring, U.; Heinrich,
- 14 J.; Brunekreef, B.; Bellander, T. Spatial variation in nitrogen dioxide in three European areas.
- 15 Sci Total Environ. 332:217-230; 2004.
- Lewne, M.; Nise, G.; Lind, M.L.; Gustavsson, P. Exposure to particles and nitrogen dioxide
- among taxi, bus and lorry drivers. Int Arch Occup Environ Health 79:220-226; 2006.
- Lewne, M.; Plato, N.; Gustavsson, P. Exposure to particle, elemental carbon and nitrogen
- dioxide in workers exposed to motor exhaust. Ann Occup Hyg. 8:693-701; 2007.
- Linaker, C.H.; Chauhan, A.J.; Inskip, H.; Frew, A.J.; Sillence, A.; Coggon, D.; Holgate, S.T.
- 21 Distribution and determinants of personal exposure to nitrogen dioxide in school children,
- 22 Occup Environ Med. 53:200-203; 1996.
- 23 Mitchell, C.S.; Zhang, J.F.J.; Sigsgaard, T.; Jantunen, M.; Lioy, P.J.; Samson, R.; Karol, M.H.
- 24 Current state of the science: Health effects and indoor environmental quality. Environ Health
- 25 Perspect. 115:958-964; 2007.
- 26 Monn, C. Exposure assessment of air pollutants: a review on spatial heterogeneity and
- indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone.
- 28 Atmos Environ. 35:1-32; 2001.
- 29 Monn, C.; Brandli, O.; Schindler, C.; Ackermann-Liebrich, U.; Leuenberger, P.;
- 30 SAPALDIATeam. Personal exposure to nitrogen dioxide in Switzerland. Sci Total Environ.
- 31 215:243-51; 1998.
- Mosqueron, L.; Momas, I.; Le Moullec, Y. Personal exposure of Paris office workers to
- nitrogen dioxide and fine particles. Occup Environ Med. 59:550-555; 2002.
- 34 NEGTAP, National Expert Group on Transboundary Air Pollution, Transboundary Air
- Pollution: Acidification, Eutrophication and Ground-Level Ozone in the UK. The Department
- for Environment, Food and Rural Affairs, The Scottish Executive, The National Assembly for

- Wales and the Department of the Environment, Northern Ireland, 2001. Available at:
- 2 http://www.edinburgh.ceh.ac.uk/nehtap/finalreport.htm
- 3 Ostro, B.D.; Lipsett, M.J.; Mann, J.K.; Wiener, M.B.; Selner, J. Indoor air pollution and
- 4 asthma: result from a panel study. Am J Respir Crit Care Med. 149:1400-1406; 1994.
- 5 Ott, W.R. Concepts of human exposure to air pollution. Environ Int. 7:179-196; 1982.
- 6 Palmes, E.D.; Gunnison, A.F.; DiMattio, J.; Tomczyk, C. Personal sampler for nitrogen
- 7 dioxide. Am Ind Hyg Assoc J. 3:570-577; 1976.
- 8 Piechocki-Minguy A.; Plaisance H.; Schadkowski C.; Sagnier I.; Saison J.Y. A case study
- 9 of personal exposure to nitrogen dioxide using a new high sensitive diffusive sampler. Sci
- 10 Total Environ. 366:55-64; 2006.
- Pilotto, L.S.; Nitschke, M.; Smith, B.J.; Pisaniello, D.; Ruffin, R.E.; McElroy, H.J.; Martin, J.;
- Hiller, J.E. Randomized controlled trial of unflued gas heater replacement on respiratory
- health of asthmatic schoolchildren. Int J Epidemiol. 33:208-214; 2004.
- Quackenboss, J.J.; Kanarek, M.S.; Spengler, J.D.; Letz, R. Personal monitoring for nitrogen
- dioxide exposure: methodological considerations for a community study. Environ Int. 8:249-
- 16 258; 1982.
- 17 Quackenboss, J.J.; Krzyzanowski, M.; Lebowitz, M.D. Exposure assessment approaches to
- evaluate respiratory health effects of particulate matter and nitrogen dioxide. J Exp Anal
- 19 Environ Epidemiol. 1:83-107; 1991.
- Quackenboss, J.J.; Spengler, J.D.; Kanarek, M.S.; Letz, R.; Duffy, C.P. Personal exposure to
- 21 nitrogen dioxide: relationship to indoor/outdoor air quality and activity patterns. Environ Sci
- 22 Tech. 20:775-782; 1986.
- 23 Ravindra K.; Mor S.; Ameena; Kamyotra J.S.; Kaushik C.P. Variation in spatial pattern of
- 24 criteria air pollutants before and during initial rain of monsoon. Environ. Monit. Assess.
- 25 87:145-153; 2003.
- 26 Ravindra, K.; Wauters, E.; Taygi, S.K.; Mor, S.; Van Grieken R. Assessment of air quality
- 27 after the implementation of CNG as fuel in public transport in Delhi, India. Environ. Monit.
- 28 Assess. 115:405-417; 2006.
- 29 Sandström, T. Respiratory effects of air pollutants: experimental studies in humans. Eur
- 30 Respir J. 8:976-995; 1995.
- Segala, C.; Poizeau, D.; Neukirch, F.; Aubier, M.; Samson, J.; Gehanno. P. Air pollution,
- passive smoking and respiratory symptoms in adults. Arch Environ Health 59:669-676; 2004.
- 33 Smith, K.R.; Samet, J.M.; Romieu, I.; Bruce, N. Indoor air pollution in developing countries
- and acute lower respiratory infections in children. Thorax 55:518-532; 2000.

- Sorensen, M.; Loft, S.; Andersen, H.V.; Raaschou-Nielsen, O.; Skovgaard, L.T.; Knudsen,
- 2 L.E.; Nielsen, I.V.; Hertel, O. Personal exposure to PM2.5, black smoke and NO₂ in
- 3 Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation.
- 4 J Expo Anal Environ Epidemiol. 15:413-422; 2005.
- 5 Spengler, J.D.; Duffy, C.P.; Letz, R.; Tibbitts, T.W.; Ferris, B.G.Jr. Nitrogen dioxide inside
- and outside 137 homes and implications for ambient air quality standards and health effects
- 7 research. Environ Sci Tech. 17:164-168; 1983.
- 8 Stranger, M.; Potgieter-Vermaak, S.S.; Van Grieken, R. Comparative overview of indoor air
- 9 quality in Antwerp, Belgium. Environ Int. 33:789-797; 2007.
- Sunyer, J.; Basagana X.; Belmonte, J.; Anto J.M. Effect of nitrogen dioxide and ozone on the
- risk of dying in patients with severe asthma. Thorax 57:687-693; 2002.
- 12 Utell, M.J.; Frampton M.W.; Roberts, N.J.Jr; Finkelstein J.N.; Cox, C.; Morrow, P.E.
- Mechanisms of nitrogen dioxide toxicity in humans. Research Report/ Health Effects Institute
- 14 43:1-33; 1991.
- Van Roosbroeck, S.; Jacobs, J.; Janssen, N.A.H.; Oldenwening, M.; Hoek, G.; Brunekreef, B.
- Long-term personal exposure to PM2.5, soot and NOx in children attending schools located
- near busy roads, a validation study. Atmos Environ. 41:3381-3394; 2007.
- Willers, S.M.; Brunekreef, B.; Oldenwening, M.; Smit, H.A.; Kerkhof, M.; De Vries, H. Gas
- cooking, kitchen ventilation, and exposure to combustion products. Indoor Air 16:65-73;
- 20 2006.
- World Health Organization (WHO). Health Aspects of Air Pollution with Particulate Matter,
- Ozone and Nitrogen Dioxide. Report on a WHO Working Group, Bonn, Germany, 2003.
- 23 (http://www.euro.who.int/Document/e79097.pdf, accessed: June 2009)
- World Health Organization (WHO). Nitrogen dioxide. In: Air Quality Guidelines for Europe,
- 25 2nd edn. Copenhagen, World Health Organization Regional Office for Europe, WHO
- 26 Regional Publications, 175-181; 2000.
- Zota, A.; Adamkiewicz, G.; Levy, J.I.; Spengler, J.D. Ventilation in public housing:
- implications for indoor nitrogen dioxide concentrations. Indoor Air 15:393-401; 2005.

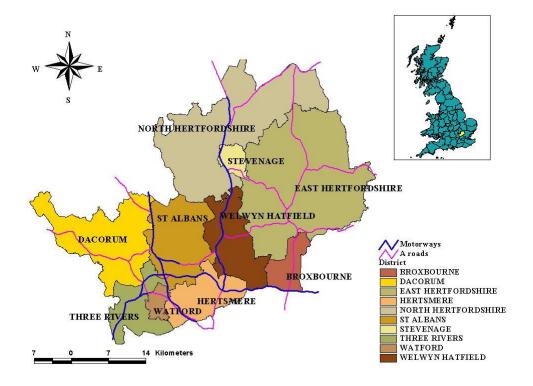
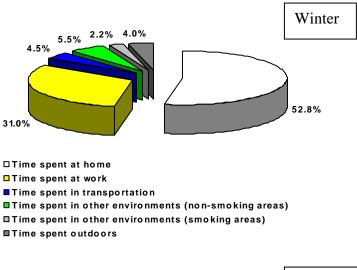



Figure 1: Sketch map of Hertfordshire

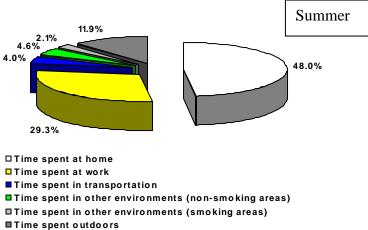
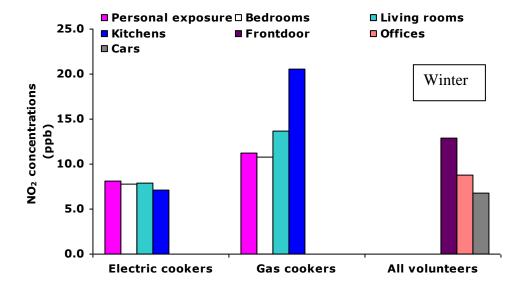



Figure 2: Time spent in microenvironments (house, office, other non-smoking and smoking indoors, outdoors and vehicles) of all volunteers during a 7 day period of exposure in winter and summer

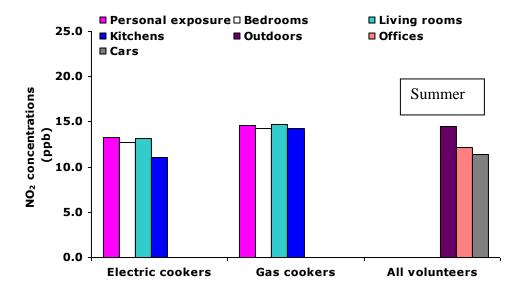


Figure 3: Weekly average NO₂ concentrations in all microenvironments for volunteers using electric and gas cookers for winter of 2000 (upper) and summer of 2001 (lower).

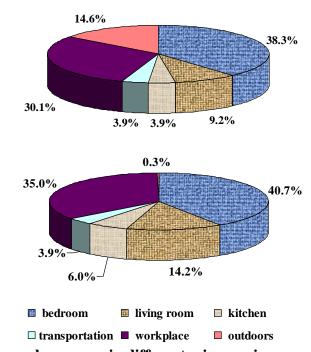
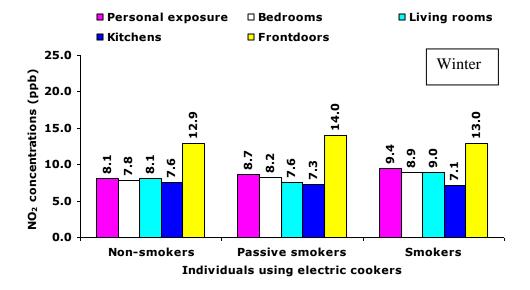



Figure 4: Distribution of personal exposure in different microenvironments during summer (above) and winter (below).

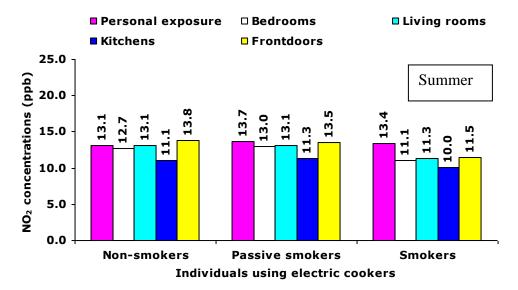
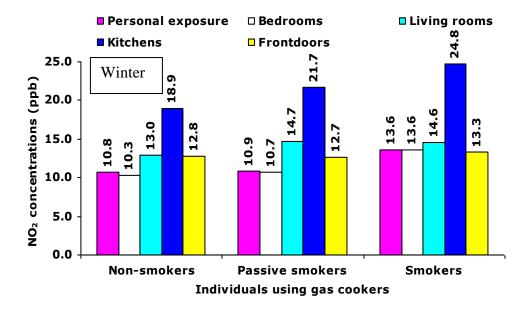



Figure 5: Weekly average personal exposure and NO₂ concentrations in houses of nonsmokers, passive smokers and smokers (using electric cookers)

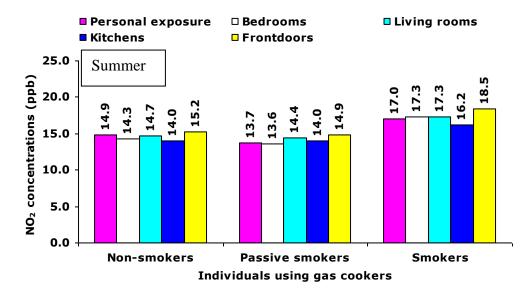
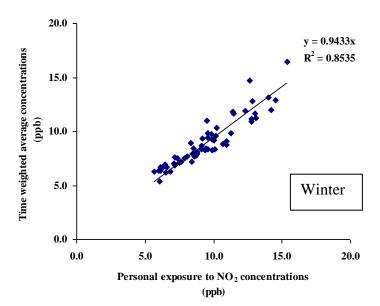



Figure 6: Weekly average personal exposure and NO₂ concentrations in houses of nonsmokers, passive smokers and smokers (using gas cookers)

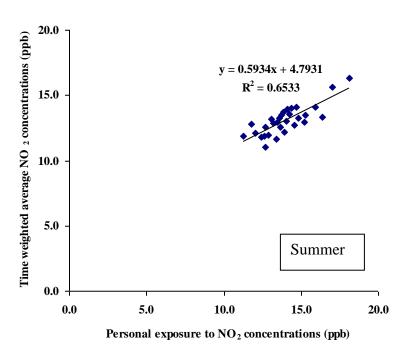


Figure 7: Comparisons between personal exposure to NO₂ concentrations and time weighted average NO₂ concentration

Table 1: Reported exposure levels of NO_2 and associated health effects.

NO ₂ Concentration Exposure		Health Effects	References	
(ppb) [†]	Time			
General	1			
0.2 - 5		Natural background mean concentration		
10.6 - 47.9		Outdoor urban annual mean levels		
39.9 - 540		Outdoor urban hourly maxima		
10.6.4		Indoor poorly vented gas combustion	WHO, 2000	
		appliances (over few days)		
1064		Indoor hourly maxima		
Short-term exposure	effects			
2500 – 7500		Very small changes in lung functions	DOE, 1996	
200-300		Changes in lung function of sensitive population (e.g. Asthmatic)	DOE, 1996	
2000	Healthy non-	NO ₂ is a proinflammatory air pollutants under	Blomberg et	
	smoking	condition of repeated exposure	al., 1999	
	subjects			
	exposed for 4			
	hrs on four			
	consecutive			
	days			
1000	2 hours	No significant affects		
	exposure			
2500	2 hours	Pronounced decrements in pulmonary function		
	exposure			
4000	1.25 hours	No affects on Asthmatics	WHO, 2000;	
	exposure		WHO 2003	
300	10 min	Decrease in forced expiratory volume		
	exposure	in 1 s (FEV ₁)		
300		Slight affects on chromic obstructive		
		pulmonary disease		
500 - 15000	3 hours	Healthy subjects having single exposures (for 3	Frampton et	
	exposure	hours) to NO_2 with exercise can induce (a)	al., 2002	
		mild airway inflammation; (b) mild respiratory		
		symptoms in some subjects; (c) small		
		reductions in hematocrit and hemoglobin; (d)		
		possible small reductions in circulating T		
		lymphocytes; and (e) possible increased		
		susceptibility of airway epithelial cells to		
10.100 =		injury from exposure to respiratory viruses.		
4.3 - 180.5	1 hours	Exacerbate severe asthma and can cause death among asthmatics (in association with O_3).	Sunyer et al., 2002	
212.8		Review identify demonstrable effects at 212.8	Kraft et al.,	
		ppb or above level (for patients with light	2005	
		asthma at 106.4 ppb)		

Long-term exposure e	ffects				
8-68.1	2 week	eek 20% increased risk of respiratory symptom and			
	average	diseases for each increment of 28.1 ppb			
6.7-31.1	1 year	Respiratory infections and symptoms	Brauer et al.,		
(mean: 13.6)			2002		
22.4	19 Year time-	2.25% ncrease in the daily nonaccidental	Burnett et al.,		
	series analysis	mortality rate	2004		
10.6-31.9 /	1 year/	Can increase mortality due to cardiopulmonary	Gehring et al.,		
11.7 - 29.3	5 years	causes (with PM ₁₀).	2006		
15-100	10 years	20 to 30% decreases in both predicted FEV1	Arbex et al.,		
		and forced expiratory flow (FEF ₂₅₋₇₅) between	2007		
		25 and 75% of forced vital capacity (FVC).			
0.5 - 480	Over 1 week	Higher levels can increases asthma symptoms	Katten et al.,		
(median: 29.8)		in nonatopic children and can decrease peak	2007		
		flow.			

 † [NO₂ (ppb) = 0.532 x NO₂ (μ g/m³)]

Table 2a: Average personal exposure to NO_2 concentrations (of volunteers using electric and gas cookers) and average NO_2 concentrations in house microenvironments measured during winter of 2000

	Average NO ₂ concentrations (ppb)							
	Electr		Gas cookers					
	Min.	Max.	Mean	Stdev.	Min.	Max.	Mean	Stdev.
Personal exposure to NO ₂	5.7	11.0	8.1	1.8	6.3	15.4	11.2	2.3
Bedrooms	3.2	11.1	7.8	2.0	6.3	15.5	10.8	2.3
Living rooms	4.1	11.4	7.9	2.1	6.1	30.1	13.7	5.5
Kitchens	4.2	9.7	7.1	2.8	12.9	38.8	20.6	6.9

Table 2b: Average personal exposure to NO_2 concentrations (of volunteers using electric and gas cookers) and average NO_2 concentrations in house microenvironments measured during summer of 2001

	Average NO ₂ concentrations (ppb)							
	Electr	ers		Gas cookers				
	Min.	Max.	Mean	Stdev.	Min.	Max.	Mean	Stdev.
Personal exposure to NO ₂	11.3	15.3	13.3	1.2	12.7	18.1	14.6	1.6
Bedrooms	10.6	14.8	12.7	1.3	12.5	17.3	14.3	1.4
Living rooms	10.8	15.4	13.1	1.5	13.2	18.2	14.7	1.4
Kitchens	8.0	13.3	11.0	1.7	12.8	17.7	14.2	1.3

Table 3: A comparative summary of NO₂ levels in various microenvironments and personal exposure.

	NO ₂ concen	tration (ppb)		Comments	References				
	Indoor			Out			Outdoors Personal		
Statistics	Bedrooms	Living Room	Kitchen	Vehicle	Office/ workplace		Exposure		
Average	9.1±2.5	10.5±4.8	13.1±8	6.8±1.6	8.8±1.8	12.9±1.8	9.5±2.4	Winter	Present Study
Range	3.2-15.5	4.1-30.1	8.1-13.4	4.1-11.3	5.6-13.5	8.1-16.1	5.7-15.4		
Average	13.5±1.6	13.9±1.6	12.6±2.2	11.4±1.6	12.2±1.5	14.5±1.8	14.0±1.5	Summer	Present Study
Range	10.6-17.3	10.8-18.2	8.0-17.7	8.7-14.4	9.2-15.2	11.3-18.8	11.3-18.1		
Mean				13.1±5.5 [‡]		9.5±6.4	16.7	Birmingham	Harrison et al., 2002
Mean Range	11.9±1.0				15.7±0.8	12.4±1	13.6±1.7 11.7-16.0	Oxford, UK	Lai et al., 2004
Median	5.8 23.9 6.1					12.4 27.4 15.5		Ashford, Barcelona Menorca	Garcia Algar et al., 2004
Mean		26±12	33±18			17±7		No-heating	Zota et al., 2005
Range		4.6-67	8.1-75			5.2-29		period	
Mean		43±16	50±19			21±5.6		During heating	Zota et al., 2005
Range		11-78	10-85		1	7-31		period	
Average	17.6±3.5				30.3	20.7±3.6	22.3±4.0	Antwerp	Stranger et al., 2007
Range	6.4-34.6				7.4-84.6	13.3-47.9	9.6-41		
Range	7.4-14.4				15.4-48.9	16-61.2	9.0/20.2	Summer/winter	Piechocki-Minguy et al., 2006
Average	27.1±6.5	28.6±11.2	32.5±11.9			38.2±8.0	24.5	Hong Kong	Chao et al., 2000
Mean	18.7±7.3		l		23.9±8.5	32±8.1	23.2±6.0	Paris	Mosqueron et al., 2002
Range	7.4-45.5				7.7-55.3	13.5-58	12-45.2		
Median					8 [†]	24	12	School	Van Roosbroeck et al., 2007

Mean			14.9 / 13.8 / 16.0			186±1 17±0.6 49±0.9 22±0.6 28±0.7 24±0.7 25.5 / 31.9 /	Tunnel worker Outdoor worker Garage- Diesel Garage - Petrol Bus Driver Taxi Driver Taxi / Bus / Lorry	Lewne et al., 07 Lewne et al., 06
Mean	9.6±5.9 14.4±6.9 22.9±12.2			14.4±8.0 19.2±12.8 16.0±9.6	12.8±6.4 19.2±6.9 32.5±10.6		Helsinki Basle Prague	Kousa et al., 2001
		14.1±1.1 11.9±1.3					Gas cooking Electric cooking	Willer et al., 2005
Mean Range	31.6±40.2 4.1-260						Baltimore	Breysse et al., 2005
Mean	13.2±5.2	25±8.8				23.6±5.4 13.2±4.1 21.3±7.1	Workers Students Housewife's	Gallelli et al., 2007
Average	11.2				14.4	16.5	25-40% higher during winter	Monn et al., 1998
Mean	23.6-28.0				25-26		Barcelona	Garcia Algar et al., 2003
Median Q25-Q75	8.9 6.9-11				11.0/25 ^{††}	11.4 9.2-15	<8°C	Sorensen et al., 2005
Median Q25-Q75	6.6 4.7-10.3				6.6/13.8	9.2 5.7-11.7	>8°C	Sorensen et al., 2005
Mean Range	8.3±1.6 3.3-29.1						High with gas heating house	Gilbert et al., 2006

[†]School; [‡]see details of microenvironment in text; ^{††}Urban background/Street station; ^{Q25-Q75}25-75% interquartile range

Table 4: Overview of NO₂ guidelines for outdoor air quality.

	Guideline Value [†] (ppb)	Average period
Belgium	71.8	1 h
Canada	<53.2	1 h
China	53.2	1 h
Germany	31.9 186.2	1 week 30 min
Norway	53.2	1 h
UK	21.3	1 h
	106.4	1 year
EPA	53	1 year
WHO	106	1 h
	63.8	8 h
	21	1 year
EU [‡]	106.4	1 h
	21.3	1 year

[†] health related concentration/values based on current toxicological and epidemiological knowledge; [‡] to be achieved by 2010