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Abstract

This thesis is concerned with the pricing of American-type contingent claims.

First, the explicit solutions to the perpetual American compound option pricing problems

in the Black-Merton-Scholes model for financial markets are presented. Compound options are

financial contracts which give their holders the right (but not the obligation) to buy or sell some

other options at certain times in the future by the strike prices given. The method of proof

is based on the reduction of the initial two-step optimal stopping problems for the underlying

geometric Brownian motion to appropriate sequences of ordinary one-step problems. The lat-

ter are solved through their associated one-sided free-boundary problems and the subsequent

martingale verification for ordinary differential operators. The closed form solution to the per-

petual American chooser option pricing problem is also obtained, by means of the analysis of

the equivalent two-sided free-boundary problem.

Second, an extension of the Black-Merton-Scholes model with piecewise-constant dividend

and volatility rates is considered. The optimal stopping problems related to the pricing of

the perpetual American standard put and call options are solved in closed form. The method

of proof is based on the reduction of the initial optimal stopping problems to the associated

free-boundary problems and the subsequent martingale verification using a local time-space

formula. As a result, the explicit algorithms determining the constant hitting thresholds for the

underlying asset price process, which provide the optimal exercise boundaries for the options,

are presented.

Third, the optimal stopping games associated with perpetual convertible bonds in an ex-

tension of the Black-Merton-Scholes model with random dividends under different information

flows are studied. In this type of contracts, the writers have a right to withdraw the bonds

before the holders can exercise them, by converting the bonds into assets. The value functions

and the stopping boundaries’ expressions are derived in closed-form in the case of observable

dividend rate policy, which is modelled by a continuous-time Markov chain. The analysis of

the associated parabolic-type free-boundary problem, in the case of unobservable dividend rate

policy, is also presented and the optimal exercise times are proved to be the first times at which

the asset price process hits boundaries depending on the running state of the filtering dividend

rate estimate. Moreover, the explicit estimates for the value function and the optimal exercise

boundaries, in the case in which the dividend rate is observable by the writers but unobservable

by the holders of the bonds, are presented.

Finally, the optimal stopping problems related to the pricing of perpetual American options

in an extension of the Black-Merton-Scholes model, in which the dividend and volatility rates

of the underlying risky asset depend on the running values of its maximum and its maximum

drawdown, are studied. The latter process represents the difference between the running max-

2



imum and the current asset value. The optimal stopping times for exercising are shown to

be the first times, at which the price of the underlying asset exits some regions restricted by

certain boundaries depending on the running values of the associated maximum and maxi-

mum drawdown processes. The closed-form solutions to the equivalent free-boundary problems

for the value functions are obtained with smooth fit at the optimal stopping boundaries and

normal reflection at the edges of the state space of the resulting three-dimensional Markov pro-

cess. The optimal exercise boundaries of the perpetual American call, put and strangle options

are obtained as solutions of arithmetic equations and first-order nonlinear ordinary differential

equations.
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Introduction

I. Description of the subject

The focus of this thesis is optimal stopping problems, which is an important and well-

developed class of stochastic control problems. In such problems, we aim to find stopping

times, at which the underlying stochastic processes should be stopped in order to optimise the

values of some given functionals (e.g. maximise gain functions, minimise loss functions, etc).

These kind of problems appear in various different research areas in sciences, one of which is

mathematical finance. A great deal of the derivatives traded in the financial markets all over the

world is of the so-called American-type. Contrary to the European-type derivatives, the holders

of which have the opportunity to exercise only at a fixed maturity time, the American-type

derivatives can be exercised at any time up to maturity. The rational (no-arbitrage) prices of

such contracts are given by the values of their associated optimal stopping problems, which are

considered under some martingale measures for the underlying risky asset price processes. A

broad overview of the general theory, explanations of the main concepts and results, examples

and proofs of key facts as well as the principles of the methods used for solving optimal stopping

problems in various stochastic models can be found in [97], [105; Chapter VIII], [70] and [44].

A formulation of the general optimal stopping problem for sequences of random variables and

the establishment of the supermartingale characterization of its value function was presented

by Snell [107]. Then, it was observed by Dynkin [31] that the proposed in [107] supermartin-

gale characterization of the value function of an optimal stopping problem is superharmonic,

whenever the underlying sequence of random variables is Markovian. This resulted to further

development of the field by allowing for more concrete results.

The optimal stopping times in the problems involving continuous time Markov processes

were proved to be the first exit times of the associated Markov processes called sufficient statis-

tics from some continuation regions specified by optimal stopping boundaries. The crucial con-

nection between optimal stopping problems for continuous Markov processes and free-boundary

problems for differential operators (see also e.g., Stefan’s ice-melting problem in mathemati-

cal physics) was discovered (see also [58] for a result in a general multi-dimensional case). A

detailed analysis of optimal stopping problems for continuous time Markov processes can be

found in the book of Peskir and Shiryaev [97]. Based on these results the optimal values of
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given functionals in continuous Markov models can be obtain in analytic expressions. The

closed-form solutions of these free-boundary problems satisfying certain additional conditions

are then proved to be the solutions of the initial optimal stopping problems, through some

standard verification arguments from stochastic analysis. These include the application of the

relevant change-of-variable formula (i.e. Itô’s formula or its various extensions) and Doob’s op-

tional sampling theorem. A complete overview of the optimal stopping theory for both discrete-

and continuous-time Markov processes can be found in the monograph of Shiryaev [104].

In order to select the unique solution of the free-boundary problem, which will eventually

turn out to be the solution of the initial optimal stopping problem, the specification of these

additional conditions in the free-boundary problems becomes essential. It was observed and

then proved by many different authors, that if the underlying process exits the continuation

region continuously, then the smooth-fit condition for the value function at the optimal stopping

boundary should hold. Different proofs of the principle of smooth fit in continuous Markov

models are contained in [104; Chapter III] and [97; Chapter IV]) (see also [58] for sufficient

conditions for the occurrence of smooth fit in a general multi-dimensional continuous Markov

model).

The value function, obtained as a solution of optimal stopping problems involving the

running maximum process of continuous Markov (diffusion) processes, satisfies the normal-

reflection condition on the diagonal of the state space of the two-dimensional process, whose

components are given by the underlying and its running maximum. This fact was proved by

Dubins, Shepp and Shiryaev [28] through the solution of the optimal stopping problem, which

appeared in the proof of the related maximal inequalities for Bessel processes on random time

intervals in stochastic calculus. A key result in the general theory, which proved that the

maximality principle is equivalent to the superharmonic characterization of the value function,

was established by Peskir [90], through the solution of the same problem in a general diffusion

model (see also [64], [56]-[57]).

II. Historical notes and references

Let us now present some historical notes on the optimal stopping problems studied in this

thesis and refer to the relevant literature, by also specifying the position of the results of this

thesis.

Compound options are financial contracts which give their holders the right (but not the

obligation) to buy or sell some other options at certain times in the future by the strike prices

given. Such contingent claims are widely used in currency, stock, and fixed income markets,

for the sake of risk protection (see, e.g. Geske [52]-[54] and Hodges and Selby [63] for the first

financial applications of compound options of European type). In the real financial world, a
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common application of such contracts is the hedging of bids for business opportunities which

may or may not be accepted in the future, and which become available only after the previous

ones are undertaken. This fact makes compound options an important example of using real

options to undertake business decisions which can be expressed in the presented perspective

(see Dixit and Pindyck [27] for an extensive introduction). Other important modifications of

such contracts are compound contingent claims of American type in which both the initial and

underlying options can be exercised at any (random) times up to maturity. The rational (no-

arbitrage) pricing problems for such contracts are considered in [48] (Chapter 1), where they

are embedded into two-step optimal stopping problems for the underlying asset price processes.

The latter are decomposed into appropriate sequences of ordinary one-step optimal stopping

problems which are then solved sequentially.

Apart from the extensive literature on optimal switching as well as impulse and singular

stochastic control, the multi-step optimal stopping problems for underlying one-dimensional

diffusion processes have recently drawn a considerable attention. Duckworth and Zervos [29]

studied an investment model with entry and exit decisions alongside a choice of the production

rate for a single commodity. The initial valuation problem was reduced to a two-step optimal

stopping problem which was solved through its associated dynamic programming differential

equation. Carmona and Touzi [19] derived a constructive solution to the problem of pricing of

perpetual swing contracts, the recall components of which could be viewed as contingent claims

with multiple exercises of American type, using the connection between optimal stopping prob-

lems and their associated Snell envelopes. Carmona and Dayanik [18] then obtained a closed

form solution of a multi-step optimal stopping problem for a general linear regular diffusion pro-

cess and a general payoff function. Algorithmic constructions of the related exercise boundaries

were also proposed and illustrated with several examples of such optimal stopping problems for

several linear and mean-reverting diffusions. Other infinite horizon optimal stopping problems

with finite sequences of stopping times are being sought. Some of them are related to hiring

and firing options and were recently considered by Egami and Xu [33] among others.

The problems related to the option pricing theory in mathematical finance and insurance,

where the underlying process can describe the price of a risky asset (e.g. the value of a com-

pany) on a financial market have become of great importance. Such perpetual option pricing

problems were first studied by McKean [81], who proved the optimality of the first time at

which the price of the underlying risky asset, modelled by a geometric Brownian motion, hits a

constant threshold (see also Shiryaev [105; Chapter VIII; Section 2a], Peskir and Shiryaev [97;

Chapter VII; Section 25], and Detemple [26] for an extensive overview of other related results

in the area). Note that the obtained prices of perpetual American options can be considered

as upper bounds for the values of the corresponding European options with finite expiry, which

are widely used by practitioners. Mordecki [83]-[84], Asmussen, Avram and Pistorius [5], and
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Alili and Kyprianou [4] proved the optimality of the threshold strategies for the underlying

process and derived closed form expressions for the values of these optimal stopping problems

in several exponential Lévy models. Some associated optimal stopping games for such processes

were recently studied by Baurdoux and Kyprianou [9] among others.

The framework of the so-called local models of stochastic volatility, in which the diffusion

coefficients depend on both the time and the current state of the underlying risky asset price

process, was proposed by Dupire [30] and Derman and Kani [25]. Apart from easy calibration

features (see, e.g. [30] and [25]), such extensions of the classical model with constant coeffi-

cients remained within complete market setting in which any contingent claim can be replicated

by an admissible self-financing portfolio strategy, based on the underlying asset and the risk-

less bank account only. More recently, Ekström [34]-[35] found explicit values for the rational

prices of the perpetual American options and investigated their properties in some diffusion

models with time- and state-dependent volatility coefficients. The call-put duality for perpet-

ual American options was studied by Alfonsi and Jourdain [2]-[3] within a local volatility and

constant dividend yield framework. Villeneuve [109] proposed a model with both the volatil-

ity and dividend yield coefficients depending on the underlying price process and investigated

sufficient conditions on the payoff functions ensuring the optimality of the constant threshold

exercise strategies for the perpetual American options. The closed-form solutions to the per-

petual American put and call options in a diffusion model with piecewise-constant dividend

and volatility coefficients are presented in [49] (Chapter 2). Using a geometric approach, Lu

[80] presented a solution of the optimal stopping problem related to the perpetual American

put option in a dividend-free model with piecewise-constant volatility rate. He also studied

the inverse problem of recovering the volatility rate of such type from the perpetual put option

prices, initiated by Ekström and Hobson [36] within the general local volatility framework.

Optimal stopping problems for general time-homogeneous one-dimensional diffusion pro-

cesses were studied in Salminen [101] and Beibel and Lerche [13] for the cases of deterministic

and random discounting, respectively. Dayanik and Karatzas [24] provided a characterization of

the value functions of the optimal stopping problems for such general diffusions as the smallest

nonnegative concave majorants of the reward functions. Rüschendorf and Urusov [100] used the

free-boundary approach to study optimal stopping problems for integral functionals of general

one-dimensional diffusion processes, the coefficients of which do not satisfy the usual regularity

assumptions. More recently, Christensen and Irle [21] characterized stopping regions of optimal

stopping problems in terms of harmonic functions for general one-dimensional diffusions.

Stochastic game-theoretic problems in which both participants can select random (stopping)

times, at which certain payoffs should be made from one participant to the other, attracted a

considerable attention in the literature on optimal stochastic control. The study of such game-

theoretic problems was initiated by Dynkin [32]. The purely probabilistic approach for the
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analysis of such games, based on the application of martingale theory, was developed in Neveu

[85], Krylov [74], Bismut [17], Stettner [108], and Lepeltier and Mainguenau [78] among others.

The analytical theory of stochastic differential games with stopping times was developed in

Bensoussan and Friedman [14]-[15] in Markov diffusion models. The latter approach, dealing

with the analysis of the value functions and saddle points of such games, was based on the

usage of the theory of variational inequalities and free-boundary problems for partial differential

equations. Cvitanic and Karatzas [22] established a connection between the values of optimal

stopping games and the solutions of backward stochastic differential equations with reflection

and provided a pathwise approach to these games. Karatzas and Wang [71] studied such games

in a more general non-Markovian setting and brought them into connection with bounded-

variation optimal control problems. More recently, Ekström and Peskir [37] and Peskir [93]-[95]

proved that the value function of a general optimal stopping game for a right-continuous strong

Markov process is measurable and found necessary and sufficient conditions for the existence

of the Stackelberg and Nash equilibria. Bayraktar and Sirbu [12] applied stochastic Perron’s

method and verification without smoothness using viscosity comparison for solving obstacle

problems and Dynkin games.

The related concept of the so-called game-type (or Israeli) contingent claims for models

of financial markets was introduced by Kifer [73], who generalised the one of American-type

claims, by also allowing the writer to cancel the contract prematurely at the expense of some

penalty. It was shown that the problem of pricing and hedging of such options can be reduced

to solving an associated optimal stopping game. Kyprianou [77] obtained explicit expressions

for the value functions of two classes of perpetual game option problems. Kühn and Kyprianou

[76] characterized the value functions of the finite expiry versions of these classes of options

via mixtures of other exotic options using martingale arguments and then produced the same

analysis for a more general class of finite expiry game options via a pathwise pricing formulae.

Kallsen and Kühn [67]-[68] applied the neutral valuation approach to American and game

options in incomplete markets and introduced a mathematically rigorous dynamic concept to

define no-arbitrage prices for game contingent claims. Sirbu, Pikovsky and Shreve [106] studied

the convertible bond optimal stopping game within a structural model for the underlying risky

asset. Further calculations of rational prices of perpetual game options and convertible bonds

in reduced form models involving jump-diffusion structure were provided by Baurdoux and

Kyprianou [8]-[10], Ekström and Villeneuve [38], and Baurdoux, Kyprianou and Pardo [11]

among others, and involving random-dividend structure, modelled by a continuous Markov

chain (under different information flows), are provided in Chapter 3.

Several versions of such models in which the drift and volatility coefficients of the underlying

asset price process switch their values, according to the change in the state of continuous Markov

chains, have been considered in the option pricing theory. The closed-form solutions of the
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perpetual American lookback and put option pricing problems were obtained by Guo [59] and

Guo and Zhang [62] in a version of such a model in which the drift and volatility coefficients of

the underlying asset price process are switching between two constant values, according to the

change in the state of the observable continuous-time Markov chain. Jobert and Rogers [66]

considered the perpetual American put option problem within an extension of that model to

the case of several states for the Markov chain and solved the corresponding problem with finite

expiry numerically. In the model with a two-state Markov chain and no diffusion part, Dalang

and Hongler [23] presented a complete and essentially explicit solution to a similar problem,

which exhibited a surprisingly rich structure. These results were further extended by Jiang and

Pistorius [65], who studied the perpetual American put option problem within the framework

of an exponential jump-diffusion model with observable dynamics of regime-switching behaving

parameters.

Optimal stopping problems for running maxima of some diffusion processes given linear costs

were studied by Jacka [64], Dubins, Shepp, and Shiryaev [28], and Graversen and Peskir [56]-[57]

among others, with the aim of determining the best constants in the corresponding maximal

inequalities. A complete solution of a general version of the same problem was obtained in Peskir

[90], by means of the established maximality principle which is equivalent to the superharmonic

characterization of the value function. Discounted optimal stopping problems for certain payoff

functions depending on the running maxima of geometric Brownian motions were initiated

by Shepp and Shiryaev [102]-[103] and then considered by Pedersen [89] and Guo and Shepp

[60] among others, with the aim of computing rational values of perpetual American lookback

(Russian) options. More recently, Guo and Zervos [61] derived solutions for discounted optimal

stopping problems related to the pricing of perpetual American options with certain payoff

functions depending on the running values of both the initial diffusion process and its associated

maximum. Glover, Hulley, and Peskir [55] provided solutions of optimal stopping problems for

integrals of functions depending on the running values of both the initial diffusion process and

its associated minimum. The main feature of the resulting optimal stopping problems is that

the normal-reflection condition holds for the value function at the diagonal of the state space

of the two-dimensional continuous Markov process having the initial process and its running

extremum as the components, which implies the characterization of the optimal boundaries as

extremal solutions of one-dimensional first-order nonlinear ordinary differential equations.

Asmussen, Avram, and Pistorius [5] considered perpetual American options with payoffs

depending on the running maximum of some Lévy processes with two-sided jumps having

phase-type distributions in both directions. Avram, Kyprianou, and Pistorius [6] studied exit

problems for spectrally negative Lévy processes and applied the results to solving optimal stop-

ping problems for payoff functions depending on the running values of the initial processes

or their associated maxima. Optimal stopping games with payoff functions of such type were
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considered by Baurdoux and Kyprianou [10] within the framework of models based on spec-

trally negative Lévy processes. Other complicated optimal stopping problems for the running

maxima were considered by Gapeev [43] for a jump-diffusion model with compound Poisson

processes with exponentially distributed jumps and by Ott [87] (see also [88]) for a model

based on spectrally negative Lévy processes. More recently, Peskir [94]-[96] studied optimal

stopping problems for three-dimensional Markov processes having the initial diffusion process

as well as its maximum and minimum as the state space components. It was shown that the

optimal boundary surfaces depending on the maximum and minimum of the initial process

provide the maximal and minimal solutions of the associated systems of first-order non-linear

partial differential equations. The perpetual American strangle options pricing problems in

a diffusion-type extension of the Black-Merton-Scholes model, for which the dividend and the

volatility coefficients depend on both the running maximum and maximum drawdown processes

of the underlying, are studied in Chapter 4. The drawdown process represents the difference

between the running values of the underlying asset price and its maximum and can therefore be

interpreted as the market depth. The Laplace transforms of the drawdown process and other

related characteristics associated with certain classes of the initial processes such as diffusion

models (including constantly drifted Brownian motions, the Ornstein-Uhlenbeck process and

the Cox-Ingersoll-Ross model), and spectrally positive and negative Lévy processes were studied

by Pospisil, Vecer, and Hadjiliadis [98] and by Mijatovic and Pistorius [82], respectively.

III. Contribution of the thesis

Let us now summarise the contribution of the thesis into the methods of optimal stopping

problems and their applications.

The explicit solutions to the problems of pricing of the perpetual American standard com-

pound options in the Black-Merton-Scholes model are derived (Chapter 1 or [48]), something

which has not been done so far. For this, the approach based on the reduction of the result-

ing optimal stopping problems to their associated one-sided ordinary differential free-boundary

problems, described profoundly in the monograph of Peskir and Shiryaev [97] (see also Dayanik

and Karatzas [24]), is followed. It turns out that the payoff functions of some compound options

are concave and the resulting value functions may have different structure, depending on the

relations between the strike prices given. Moreover, a closed form solution to the problem of

pricing of the perpetual American chooser option is obtained through its associated two-sided

ordinary differential free-boundary problem. It is shown that the admissible intervals for the

resulting exercise boundaries are smaller than the ones of the related strangle option recently

studied by Gapeev and Lerche [47]. Note that the problem of pricing of American compound

options was recently studied by Chiarella and Kang [20] in a more general stochastic volatility
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framework. The associated two-step free-boundary problems for partial differential equations

were solved numerically, by means of a modified sparse grid approach.

The rational prices of the perpetual American standard put and call options in an extension

of the Black-Merton-Scholes model for underlying dividend paying assets with both piecewise-

constant dividend and volatility rates are presented (Chapter 2 or [49]). It is assumed that

these rates change their values at the times at which the underlying asset price process crosses

some prescribed constant levels under the risk-neutral probability measure. Such a situation

may appear in the case in which either the firm issuing the asset decides to change the dividend

rate paid to stockholders or the volatility rate of the asset changes from one value to another

at the times at which the market price crosses certain levels. These levels can have both

statistical and psychological nature depending on the strategies of market participants. This

model represents another example of local models of stochastic dividend and volatility, in which

the related coefficients depend on the current state of the underlying asset price process and

provides an approximation of the corresponding diffusion models with continuous coefficients

studied in [34]-[35], [2]-[3], and [109]. A linear version of this diffusion model was proposed

by Radner and Shepp [99] with the aim of solving some stochastic optimal impulse control

problems. Explicit algorithms to determine the constant hitting thresholds for the underlying

diffusion process, which provide the optimal exercise boundaries for the options, are presented.

Based on solving the associated free-boundary problems, our approach should allow to handle

optimal stopping problems with more complicated payoffs than the ones of put and call options,

within the general diffusion framework of both piecewise-linear drift and diffusion coefficients.

The perpetual convertible bond pricing problem is studied in an extension of the Black-

Merton-Scholes model in which the dynamics of the dividend rate of the underlying risky asset

are described by means of a two-state continuous-time Markov chain (Chapter 3). Closed-form

solutions to the associated optimal stopping games for the case in which the Markov chain is

observable by both the writer and the holder of the convertible bond (full information) are de-

rived. An analysis of the equivalent parabolic-type free-boundary problem for the case in which

the Markov chain is unobservable by both participants of the contract (partial information) is

also presented, as well as the case in which the Markov chain is observable by the writer but

remains unobservable by the holder of the bond (asymmetric information) is studied.

The perpetual American standard options pricing problem in an extension of the Black-

Merton-Scholes model with path-dependent coefficients is studied and closed-form solutions

are obtained (Chapter 4). The underlying asset price dynamics are described by a geometric

diffusion-type process X with local drift and diffusion coefficients which essentially depend on

the running values of the maximum process S and the maximum drawdown process Y , defined

in (4.1.1)-(4.1.3). It is shown that the optimal exercise times are the first times at which

the process X exits some regions restricted by certain boundaries depending on the running
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values of S and Y . The process Y represents the maximum of the difference between the

running values of the underlying asset price and its maximum and can therefore be interpreted

as the maximum of the market depth. Closed-form expressions for the value function of the

resulting free-boundary problem are derived and the maximality principle from [90] is applied

to describe the optimal boundary surfaces as the extremal solutions of first-order nonlinear

ordinary differential equations. The starting points for these surfaces at the edges of the three-

dimensional state space are specified from the solutions of the corresponding optimal stopping

problem for the two-dimensional Markov process (X,S) in a model in which the coefficients of

the process X depend only on the running maximum process S .

IV. Structure of the thesis

In Section 1.1, we formulate the perpetual American compound option problems and then

specify the decompositions of the initial two-step optimal stopping problems into sequences

of ordinary one-step problems for the underlying geometric Brownian motion. In Section 1.2,

we derive explicit solutions of the four resulting one-sided ordinary differential free-boundary

problems. In Section 1.3, we verify that the solution of the free-boundary problem related to the

most informative put-on-call case provides the solution of the initial two-step optimal stopping

problem. In Section 1.4, we present a closed form solution to the two-sided free-boundary

problem associated with the perpetual American chooser option. The main results of Chapter

1 are stated in Propositions 1.3.1-1.3.4 and 1.4.1.

In Section 2.1, we formulate the perpetual American put and call option pricing optimal

stopping problems in a diffusion model with piecewise-linear coefficients and their associated

ordinary differential free-boundary problems. In Section 2.2, we derive solutions to the resulting

systems of arithmetic equations equivalent to the free-boundary problems for the put and call

options, separately. In Section 2.3, we verify that the solutions of the free-boundary problems

provide the solutions of the initial optimal stopping problems. The main result of Chapter 2 is

stated in Theorem 2.3.1.

In Section 3.1, we formulate the associated optimal stopping game for a two-dimensional

Markov diffusion process, which has the underlying risky asset price and the filtering dividend

rate estimate as its state space components. We show that the optimal exercise time of the

writer and the holder of the convertible bond is expressed as the first time at which the asset

price process hits stochastic boundaries depending on the running state of the filtering div-

idend rate estimate. In Section 3.2, we derive closed-form solutions of the coupled ordinary

free-boundary problem, associated with the optimal stopping game for the case in which the

continuous-time Markov chain, expressing the dividend policy, is observable by both partici-

pants of the contract. In Section 3.3, we provide an analysis of the parabolic-type free-boundary

13



problem equivalent to the optimal stopping game in the case of an unobservable Markov chain.

Applying the change-of-variable formula with local time on surfaces from Peskir [92], we verify

that the appropriate (unique) solution of the free-boundary problem gives the solution to the

initial optimal stopping game. We also obtain a closed-form solution of the free-boundary prob-

lem under certain relations between the parameters of the model. In Section 3.4, we propose a

solution to the optimal stopping game for the case in which the Markov chain is observable by

the writer but remains unobservable by the holder of the bond. The main results of Chapter 3

are stated in Theorems 3.2.1 and 3.3.1, and Corollary 3.4.1.

In Section 4.1, we formulate the associated optimal stopping problem for a necessarily

three-dimensional continuous Markov process which has the underlying asset price and the

running values of its maximum and maximum drawdown as the state space components. The

resulting optimal stopping problem is reduced to its equivalent free-boundary problem for the

value function which satisfies the smooth-fit conditions at the stopping boundaries and the

normal-reflection conditions at the edges of the state space of the three-dimensional process.

In Section 4.2, we obtain closed-form solutions of the associated free-boundary problem in

which the sought boundaries are found as unique solutions of appropriate systems of arithmetic

equations or first-order nonlinear ordinary differential equations, where we specify the starting

values for the latter on the edges of the three-dimensional state space. In Section 4.3, we

verify by applying the change-of-variable formula with local time on surfaces, that the resulting

solutions of the free-boundary problem provide the expressions for the value function and the

optimal stopping boundaries for the underlying asset price process in the initial problem. The

main results of Chapter 4 are stated in Propositions 4.3.1-4.3.3.
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Chapter 1

On the pricing of perpetual American

compound options

In this chapter (following [48]), we present explicit solutions to the perpetual American com-

pound option pricing problems in the Black-Merton-Scholes model. The method of proof is

based on the reduction of the initial two-step optimal stopping problems for the underlying ge-

ometric Brownian motion to appropriate sequences of ordinary one-step problems. The latter

are solved through their associated one-sided free-boundary problems and the subsequent mar-

tingale verification. We also obtain a closed form solution to the perpetual American chooser

option pricing problem, by means of the analysis of the equivalent two-sided free-boundary

problem.

1.1. Preliminaries

In this section, we give a formulation of the perpetual American compound option optimal

stopping problems and the associated ordinary differential free-boundary problems.

1.1.1. Formulation of the problem. For a precise formulation of the problem, let us

consider a probability space (Ω,F , P ) carrying a standard one-dimensional Brownian motion

B = (Bt)t≥0 . Let us define the process S = (St)t≥0 by

St = s exp

((
r − δ − σ2

2

)
t+ σ Bt

)
(1.1.1)

which solves the stochastic differential equation

dSt = (r − δ)St dt+ σ St dBt (1.1.2)

for s > 0, where σ > 0 and 0 < δ < r . Assume that the process S describes the risk-neutral

dynamics of the price of a risky asset paying dividends, where r represents the riskless interest

rate and δS is the dividend rate paid to stockholders.
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We further consider the problem of pricing of the initial perpetual American standard

compound options, which are contracts giving their holders the right to buy or sell some other

underlying (perpetual American) call or put options at certain (random) exercise times by

the (positive) strike prices given. More precisely, the call-on-call (call-on-put) option gives its

holder the right to buy at an exercise time τ for the price of K1 a call (put) option with the

strike K2 (L2 ) and exercise time ζ . Furthermore, the put-on-call (put-on-put) option gives

its holder the right to sell at an exercise time τ for the price of L1 a call (put) option with

the strike K2 (L2 ) and exercise time ζ . Then, the rational (or no-arbitrage) prices of such

perpetual American contingent claims are given by the values of the optimal stopping problems

V ∗1 (s) = sup
τ

sup
ζ
E
[
e−rτ

(
e−r(ζ−τ) (Sζ −K2)+ −K1

)+
]

(1.1.3)

V ∗2 (s) = sup
τ

sup
ζ
E
[
e−rτ

(
e−r(ζ−τ) (L2 − Sζ)+ −K1

)+
]

(1.1.4)

V ∗3 (s) = sup
τ

inf
ζ
E
[
e−rτ

(
L1 − e−r(ζ−τ) (Sζ −K2)+

)+
]

(1.1.5)

V ∗4 (s) = sup
τ

inf
ζ
E
[
e−rτ

(
L1 − e−r(ζ−τ) (L2 − Sζ)+

)+
]

(1.1.6)

where the suprema and infima are taken over the sets of stopping times 0 ≤ τ ≤ ζ with respect

to the natural filtration (Ft)t≥0 of the asset price process S , that is Ft = σ(Su | 0 ≤ u ≤ t), for

all t ≥ 0. Here, the expectations are taken with respect to the equivalent martingale measure

under which the dynamics of S started at s > 0 are given by (1.1.1)-(1.1.2), and z+ denotes the

positive part max{z, 0} of any z ∈ R . Note that the payoff of the call-on-call option in (1.1.3)

is unbounded, while the payoffs, and thus the related rational prices of the other options in

(1.1.4)-(1.1.6), are bounded by L2 and L1 , respectively. Moreover, it is easily seen from (1.1.4)

and will be shown for (1.1.6) below that the optimal exercise times of the related options are

trivial whenever K1 ≥ L2 and L1 ≥ L2 holds, respectively.

Observe that the value functions in (1.1.3)-(1.1.4) are given by the optimal sequential choices

of τ and ζ , that results in the suprema over both such stopping times, since the holders of the

initial compound options can buy the underlying calls or puts at the time τ and then control

the exercise time ζ . This is not the case for the value functions in (1.1.5)-(1.1.6), due to the

fact that, in the case in which the holders of the compound options exercise the initial puts at

the time τ by selling the underlying calls or puts, they cannot control the subsequent exercise

time ζ of the latter options. We should then assume that the holders of the underlying options

exercise them optimally. This turns out to be the worst case scenario for the holders of the

initial compound options, resulting in the infima over ζ in the expressions of (1.1.5)-(1.1.6).

1.1.2. The structure of the optimal stopping times. The optimal stopping problems

formulated above involve the sequential choice of the stopping times τ and ζ . Hence, the

initial two-step optimal stopping problems can then be decomposed into sequences of two one-
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step optimal stopping problems which can then be solved separately. More precisely, using

the strong Markov property of the process S , we further show that the expressions for V ∗i (s),

i = 1, . . . , 4, in (1.1.3)-(1.1.6) can be reduced to the values of the optimal stopping problems

V ∗i (s) = sup
τ
E
[
e−rτ H+

i (Sτ )
]

(1.1.7)

where the payoff functions Hi(s), i = 1, . . . , 4, are given by

H1(s) = W (s)−K1, H2(s) = U(s)−K1, H3(s) = L1−W (s), H4(s) = L1−U(s) (1.1.8)

for all s > 0. Here we denote the rational prices of the underlying perpetual American put and

call options by U(s) and W (s) with strike prices L2 and K2 , respectively. These are given by

U(s) = sup
η
E
[
e−rη (L2 − Sη)+

]
and W (s) = sup

η
E
[
e−rη (Sη −K2)+

]
(1.1.9)

where the suprema are taken over the stopping times η of the process S started at s > 0. It

is well known (see, e.g. [105; Chapter VIII, Section 2a]) that the value functions in (1.1.9) are

continuously differentiable and have the form

U(s) =

−(g∗/γ−)(s/g∗)
γ− , if s > g∗

L2 − s, if s ≤ g∗
(1.1.10)

and

W (s) =

(h∗/γ+)(s/h∗)
γ+ , if s < h∗

s−K2, if s ≥ h∗.
(1.1.11)

The optimal exercise times have the structure

η∗g = inf{t ≥ 0 | St ≤ g∗} and η∗h = inf{t ≥ 0 | St ≥ h∗} (1.1.12)

and the hitting boundaries are given by

g∗ =
γ−L2

γ− − 1
and h∗ =

γ+K2

γ+ − 1
(1.1.13)

with

γ± =
1

2
− r − δ

σ2
±

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
(1.1.14)

so that γ− < 0 < 1 < γ+ holds.

It follows from the general theory of optimal stopping for Markov processes (see, e.g. [97;

Chapter I, Section 2.2]) that the optimal stopping times in the problems of (1.1.7)-(1.1.8) are

given by

τ ∗i = inf{t ≥ 0 |V ∗i (St) = H+
i (St)} (1.1.15)
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whenever they exist. Analysing the structure of the outer and inner payoffs in (1.1.3)-(1.1.6),

we observe that the call-on-call and put-on-put options should be exercised at the first time at

which the price of the underlying risky asset rises to some upper levels b∗i , while the call-on-

put and put-on-call options should be exercised at the first time at which the asset price falls

to some lower levels a∗i . Hence, we need further to search for optimal stopping times in the

problems of (1.1.7)-(1.1.8) in the form

τ ∗i = inf{t ≥ 0 | St ≤ a∗i } or τ ∗i = inf{t ≥ 0 | St ≥ b∗i } (1.1.16)

for some a∗i > 0 and b∗i > 0 to be determined, where the left-hand stopping time in (1.1.16) is

optimal for the cases of i = 2, 3, and the right-hand one is optimal for the cases of i = 1, 4.

Taking into account the structure of the stopping times in (1.1.12), we then further assume

that the optimal stopping times ζ∗i in (1.1.3)-(1.1.6) have the form

ζ∗i = inf{t ≥ τ ∗i | St ≤ g∗} or ζ∗i = inf{t ≥ τ ∗i | St ≥ h∗} (1.1.17)

depending on the view of the payoff functions of the underlying options.

1.1.3. The free-boundary problem. It can be shown by means of standard arguments

(see, e.g. [69; Chapter V, Section 5.1] or [86; Chapter VII, Section 7.3]) that the infinitesimal

operator L of the process S acts on an arbitrary twice continuously differentiable locally

bounded function F (s) according to the rule

(LF )(s) = (r − δ) s F ′(s) +
σ2

2
s2 F ′′(s) (1.1.18)

for all s > 0. In order to find explicit expressions for the unknown value functions V ∗i (s),

i = 1, . . . , 4, from (1.1.7)-(1.1.8) and the unknown boundaries a∗i and b∗i from (1.1.16), we may

use the results of the general theory of optimal stopping problems for continuous time Markov

processes (see, e.g. [104; Chapter III, Section 8] and [97; Chapter IV, Section 8]). We formulate

the associated free-boundary problems

(LVi)(s) = rVi(s) for s > ai or s < bi (1.1.19)

Vi(ai+) = H+
i (ai) or Vi(bi−) = H+

i (bi) (instantaneous stopping) (1.1.20)

V ′i (ai+) = H+
i
′
(ai) or V ′i (bi−) = H+

i
′
(bi) (smooth fit) (1.1.21)

Vi(s) = H+
i (s) for s < ai or s > bi (1.1.22)

Vi(s) > H+
i (s) for s > ai or s < bi (1.1.23)

(LVi)(s) < rVi(s) for s < ai or s > bi (1.1.24)

for some ai > 0 and bi > 0 fixed, depending on the structure of the payoff H+
i (s) in (1.1.8),

for every i = 1, . . . , 4.
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1.2. Solutions of the free-boundary problems

We further derive solutions of the free-boundary problems related to the optimal stopping

problems in (1.1.7)-(1.1.8), by specifying whether the left-hand or the right-hand part of the

system in (1.1.19)-(1.1.24) is realised in every case of i = 1, . . . , 4. For this we first note that

the general solution of the second order ordinary differential equation in (1.1.19) is given by

Vi(s) = C+,i s
γ+ + C−,i s

γ− (1.2.1)

where C+,i and C−,i are some arbitrary constants, and γ− < 0 < 1 < γ+ are defined in (1.1.14).

Observe that we should have C−,i = 0 in (1.2.1) when the right-hand part of the system in

(1.1.19)-(1.1.24) is realised, since otherwise Vi(s)→ ±∞ , which must be excluded because the

value functions in (1.1.7) are bounded under s ↓ 0. Similarly, we should also have C+,i = 0

in (1.2.1) when the left-hand part of the system in (1.1.19)-(1.1.24) is realised, since otherwise

Vi(s) → ±∞ , which must be excluded because the value functions in (1.1.7) are less than s

under s ↑ ∞ .

1.2.1. The call-on-call option. Let us first consider the case of i = 1 in which the right-

hand stopping time from (1.1.16) is optimal in (1.1.3) and (1.1.7)-(1.1.8), so that the right-hand

part of the free-boundary problem is realised in (1.1.19)-(1.1.24). Applying the conditions of

the right-hand parts of the equations in (1.1.20) and (1.1.21) to the function in (1.2.1) with

C−,1 = 0, we obtain after some rearrangements that if b1 < h∗ then the equalities

C+,1 b
γ+
1 =

h∗
γ+

( b1

h∗

)γ+
−K1 and C+,1 γ+ b

γ+
1 = h∗

( b1

h∗

)γ+
(1.2.2)

should hold, and if b1 ≥ h∗ then the equalities

C+,1 b
γ+
1 = b1 −K2 −K1 and C+,1 γ+ b

γ+
1 = b1 (1.2.3)

are satisfied for some C+,1 and b1 > 0, where h∗ is given by (1.1.13). Multiplying the first

equation in (1.2.2) by γ+ , we conclude from the second one there that the system in (1.1.19)-

(1.1.21) does not have solutions, so that the subcase b∗1 < h∗ cannot be realised. Solving the

system in (1.2.3), we obtain the solution of the right-hand part of the system in (1.1.19)-(1.1.21)

having the form

V1(s; b∗1) =
b∗1
γ+

( s
b∗1

)γ+
with b∗1 =

γ+(K1 +K2)

γ+ − 1
≡ γ+K1

γ+ − 1
+ h∗ . (1.2.4)

1.2.2. The call-on-put option. Let us then proceed with the case of i = 2 in which the

left-hand stopping time from (1.1.16) is optimal in (1.1.4) and (1.1.7)-(1.1.8), so that the left-

hand part of the free-boundary problem is realised in (1.1.19)-(1.1.24). Applying the conditions
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of the left-hand parts of the equations in (1.1.20) and (1.1.21) to the function in (1.2.1) with

C+,2 = 0, we obtain after some rearrangements that if a2 > g∗ then the equalities

C−,2 a
γ−
2 = − g∗

γ−

(a2

g∗

)γ−
−K1 and C−,2 γ− a

γ−
2 = −g∗

(a2

g∗

)γ−
(1.2.5)

should hold, and if a2 ≤ g∗ then the equalities

C−,2 a
γ−
2 = L2 − a2 −K1 and C−,2 γ− a

γ−
2 = −a2 (1.2.6)

are satisfied for some C−,2 and a2 > 0, where g∗ is given by (1.1.13). Multiplying the first

equation in (1.2.5) by γ− , we conclude from the second one there that the system in (1.1.19)-

(1.1.21) does not have solutions, so that the subcase a∗2 > g∗ cannot be realised. Solving the

system in (1.2.6), we obtain the solution of the left-hand part of the system in (1.1.19)-(1.1.21)

having the form

V2(s; a∗2) = − a
∗
2

γ−

( s
a∗2

)γ−
with a∗2 =

γ−(L2 −K1)

γ− − 1
≡ g∗ −

γ−K1

γ− − 1
(1.2.7)

where the number a∗2 is strictly positive if and only if L2 > K1 .
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Figure 1. A computer drawing of the payoff function H1(s)
and the resulting value function V ∗1 (s).
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Figure 2. A computer drawing of the payoff function H2(s)
and the resulting value function V ∗2 (s).
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1.2.3. The put-on-call option. Let us now continue with the case of i = 3 in which the

left-hand stopping time from (1.1.16) is optimal in (1.1.5) and (1.1.7)-(1.1.8), so that the left-

hand part of the free-boundary problem is realised in (1.1.19)-(1.1.24). Applying the conditions

of the left-hand parts of the equations in (1.1.20) and (1.1.21) to the function in (1.2.1) with

C+,3 = 0, we get after some rearrangements that if a3 < h∗ then the equalities

C−,3 a
γ−
3 = L1 −

h∗
γ+

(a3

h∗

)γ+
and C−,3 γ− a

γ−
3 = −h∗

(a3

h∗

)γ+
(1.2.8)

hold, and if a3 ≥ h∗ then the equalities

C−,3 a
γ−
3 = L1 − a3 +K2 and C−,3 γ− a

γ−
3 = −a3 (1.2.9)

are satisfied for some C−,3 and a3 > 0, where h∗ is given by (1.1.13). Solving the systems in

(1.2.8) and (1.2.9), we conclude that the two regions for L1 and K2 , with qualitatively different

solutions of the free-boundary problem, can be distinguished. By means of straightforward

computations, if the condition

L1 <
γ− − γ+

γ+γ−
h∗ ≡

(γ− − γ+)K2

γ−(γ+ − 1)
(1.2.10)

is satisfied, then a∗3 < h∗ holds and the solution of the left-hand part of the system in (1.1.19)-

(1.1.21) has the form

V3(s; a∗3, h∗) = − h∗
γ−

(a∗3
h∗

)γ+( s
a∗3

)γ−
(1.2.11)

with

a∗3 = h∗

( γ+γ−L1

(γ− − γ+)h∗

)1/γ+
≡ γ+K2

γ+ − 1

(γ−(γ+ − 1)L1

(γ− − γ+)K2

)1/γ+
. (1.2.12)

Using similar arguments, if the condition

L1 ≥
γ− − γ+

γ+γ−
h∗ ≡

(γ− − γ+)K2

γ−(γ+ − 1)
(1.2.13)

is satisfied, then a∗3 ≥ h∗ holds and the solution of the left-hand part of the system in (1.1.19)-

(1.1.21) has the form

V3(s; a∗3) = − a
∗
3

γ−

( s
a∗3

)γ−
with a∗3 =

γ−(L1 +K2)

γ− − 1
. (1.2.14)

1.2.4. The put-on-put option. Let us finally consider the case of i = 4 in which the

right-hand stopping time from (1.1.16) is optimal in (1.1.6) and (1.1.7)-(1.1.8), so that the

right-hand part of the free-boundary problem is realised in (1.1.19)-(1.1.24). Applying the

conditions of the right-hand parts of the equations in (1.1.20) and (1.1.21) to the function in

(1.2.1) with C−,4 = 0, we get after some rearrangements that if b4 > g∗ then the equalities

C+,4 b
γ+
4 = L1 +

g∗
γ−

( b4

g∗

)γ−
and C+,4 γ+ b

γ+
4 = g∗

( b4

g∗

)γ−
(1.2.15)
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hold, and if b4 ≤ g∗ then the equalities

C+,4 b
γ+
4 = L1 − L2 + b4 and C+,4 γ+ b

γ+
4 = b4 (1.2.16)

are satisfied for some C+,4 and b4 > 0. Solving the systems in (1.2.15) and (1.2.16), we conclude

that the two regions for L1 and L2 , with qualitatively different solutions of the free-boundary

problem (besides the trivial solution in the case L1 ≥ L2 ), can be distinguished. By means of

straightforward computations, if the condition

L1 <
γ− − γ+

γ+γ−
g∗ ≡

(γ− − γ+)L2

γ+(γ− − 1)
(1.2.17)

is satisfied, then b∗4 > g∗ holds and the solution of the left-hand part of the system in (1.1.19)-

(1.1.21) has the form

V4(s; b∗4, g∗) =
g∗
γ+

( b∗4
g∗

)γ−( s
b∗4

)γ+
(1.2.18)

with

b∗4 = g∗

( γ+γ−L1

(γ− − γ+)g∗

)1/γ−
≡ γ−L2

γ− − 1

(γ+(γ− − 1)L1

(γ− − γ+)L2

)1/γ−
. (1.2.19)

Using similar arguments, if the condition

L1 ≥
γ− − γ+

γ+γ−
g∗ ≡

(γ− − γ+)L2

γ+(γ− − 1)
(1.2.20)

is satisfied, then b∗4 ≤ g∗ holds and the solution of the left-hand part of the system in (1.1.19)-

(1.1.21) has the form

V4(s; b∗4) =
b∗4
γ+

( s
b∗4

)γ+
with b∗4 =

γ+(L2 − L1)

γ+ − 1
(1.2.21)

where the number b∗4 is strictly positive if and only if L2 > L1 .
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Figure 3. A computer drawing of the payoff function H3(s) and
the value function V ∗3 (s), when (1.2.10) holds for L1 and K2 .
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Figure 4. A computer drawing of the payoff function H3(s) and
the value function V ∗3 (s), when (1.2.13) holds for L1 and K2 .
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Figure 5. A computer drawing of the payoff function H4(s) and
the value function V ∗4 (s), when (1.2.17) holds for L1 and L2 .
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Figure 6. A computer drawing of the payoff function H4(s) and
the value function V ∗4 (s), when (1.2.20) holds for L1 and L2 .

24



1.3. Main results and proofs

Taking into account the facts proved above, let us now formulate the main assertions of

the chapter. We recall that the price process S of the underlying risky asset is defined in

(1.1.1)-(1.1.2), and the exercise boundaries g∗ and h∗ for the underlying perpetual American

put and call options are given by (1.1.13).

Proposition 1.3.1 In the optimal stopping problem of (1.1.3), related to the perpetual Amer-

ican call-on-call option with strike prices K1 > 0 and K2 > 0 of the outer and inner payoffs,

respectively, the value function has the form

V ∗1 (s) =

V1(s; b∗1), if s < b∗1

(s−K2)−K1, if s ≥ b∗1
(1.3.1)

where the function V1(s; b∗1) and the hitting boundary b∗1 ≥ h∗ for the right-hand optimal exercise

time τ ∗1 in (1.1.16) are given by (1.2.4) (see Figure 1 above).

Proposition 1.3.2 In the optimal stopping problem of (1.1.4), related to the perpetual Amer-

ican call-on-put option with strike prices 0 < K1 < L2 of the outer and inner payoffs, respec-

tively, the value function has the form

V ∗2 (s) =

V2(s; a∗2), if s > a∗2

(L2 − s)−K1, if s ≤ a∗2
(1.3.2)

where the function V2(s; a∗2) and the hitting boundary a∗2 ≤ g∗ for the left-hand optimal exercise

time τ ∗2 in (1.1.16) are given by (1.2.7) (see Figure 2 above), while V ∗2 (s) = 0 and τ ∗2 = 0

whenever K1 ≥ L2 .

Proposition 1.3.3 In the optimal stopping problem of (1.1.5), related to the perpetual Amer-

ican put-on-call option with strike prices L1 > 0 and K2 > 0 of the outer and inner payoffs,

respectively, the following assertions hold:

(i) if (1.2.10) holds for L1 and K2 then the value function has the form:

V ∗3 (s) =

V3(s; a∗3, h∗), if s > a∗3

L1 − (h∗/γ+)(s/h∗)
γ+ , if s ≤ a∗3

(1.3.3)

where the function V3(s; a∗3, h∗) and the hitting boundary a∗3 < h∗ for the left-hand optimal

exercise time τ ∗3 in (1.1.16) are given by (1.2.11) and (1.2.12), respectively (see Figure 3 above);
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(ii) if (1.2.13) holds for L1 and K2 then the value function has the form:

V ∗3 (s) =


V3(s; a∗3), if s > a∗3

L1 − (s−K2), if h∗ ≤ s ≤ a∗3

L1 − (h∗/γ+)(s/h∗)
γ+ , if s < h∗

(1.3.4)

where the function V3(s; a∗3) and the hitting boundary a∗3 for the left-hand optimal exercise time

τ ∗3 in (1.1.16) are given by (1.2.14) (see Figure 4 above).

Proposition 1.3.4 In the optimal stopping problem of (1.1.6), related to the perpetual Amer-

ican put-on-put option with strike prices L1 > 0 and L2 > 0 of the outer and inner payoffs,

respectively, the following assertions hold:

(i) if (1.2.17) holds for L1 and L2 , then the value function has the form

V ∗4 (s) =

V4(s; b∗4, g∗), if s < b∗4

L1 + (g∗/γ−)(s/g∗)
γ− , if s ≥ b∗4

(1.3.5)

where the function V4(s; b∗4, g∗) and the hitting boundary b∗4 > g∗ for the right-hand optimal

exercise time τ ∗4 in (1.1.16) are given by (1.2.18) and (1.2.19), respectively (see Figure 5 above);

(ii) if (1.2.20) holds with L1 < L2 , then the value function has the form

V ∗4 (s) =


V4(s; b∗4), if s < b∗4

L1 − (L2 − s), if b∗4 ≤ s ≤ g∗

L1 + (g∗/γ−)(s/g∗)
γ− , if s > g∗

(1.3.6)

where the function V4(s; b∗4) and the hitting boundary b∗4 for the right-hand optimal exercise

time τ ∗4 in (1.1.16) are given by (1.2.21) (see Figure 6 above), while V ∗4 (s) = L1 − (L2 − s)
and τ ∗4 = 0 whenever L1 ≥ L2 .

Since all the assertions formulated above are proved using similar arguments, we only give

a proof for the problem related to the perpetual American put-on-call option, which represents

the most complicated and informative case.

Proof of Proposition 1.3.3. In order to verify the assertion stated above, it remains to show

that the function V ∗3 (s) defined in either (1.3.3) or (1.3.4) coincides with the value function in

(1.1.5), and that the stopping time τ ∗3 in the left-hand side of (1.1.16) is optimal with a∗3 given

by either (1.2.12) or (1.2.14). Let us denote by V3(s) the right-hand side of the expression in
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(1.3.3) or (1.3.4). Applying the local time-space formula from [91] (see also [97; Chapter II,

Section 3.5] for a summary of the related results as well as further references) and taking into

account the smooth-fit condition in (1.1.21) and the smoothness of the functions in (1.1.10)-

(1.1.11), the following expressions

e−rt V3(St) = V3(s) +

∫ t

0

e−ru (LV3 − rV3)(Su) I(Su 6= a∗3) du+Mt (1.3.7)

e−rtW (St) = W (s) +

∫ t

0

e−ru (LW − rW )(Su) I(Su 6= h∗) du+Nt (1.3.8)

hold, where I(·) denotes the indicator function and the processes M = (Mt)t≥0 and N =

(Nt)t≥0 defined by

Mt =

∫ t

0

e−ru V ′3(Su)σSu dBu and Nt =

∫ t

0

e−ruW ′(Su)σSu dBu (1.3.9)

are continuous square integrable martingales with respect to the probability measure P . The

latter fact can easily be observed, since the derivatives V ′3(s) and W ′(s) are bounded functions.

By means of straightforward calculations similar to those of the previous section, it can be

verified that the conditions of (1.1.23) and (1.1.24) hold with a∗3 given by either (1.2.12) or

(1.2.14). These facts together with the conditions in (1.1.19)-(1.1.20) and (1.1.22) yield that

(LV3 − rV3)(s) ≤ 0 holds for all s 6= a∗3 , and V3(s) ≥ (L1 −W (s))+ is satisfied for all s > 0.

It is well known (see, e.g. [105; Chapter VIII, Section 2a]) that (LW − rW )(s) ≤ 0 holds for

all s 6= h∗ , and W (s) ≥ (s−K2)+ is satisfied for all s > 0. Moreover, since the time spent by

the process S at the boundaries a∗3 and h∗ is of Lebesgue measure zero, the indicators which

appear in the integrals of (1.3.7)-(1.3.8) can be ignored. Hence, it follows from the expressions

in (1.3.7)-(1.3.8) that the inequalities

e−r(τ∧t) (L1 −W (Sτ∧t))
+ ≤ e−r(τ∧t) V3(Sτ∧t) ≤ V3(s) +Mτ∧t (1.3.10)

e−r(ζ∧u) (Sζ∧u −K2)+ ≤ e−r(ζ∧u)W (Sζ∧u) ≤ e−r(τ∧t) W (Sτ∧t) +Nζ∧u −Nτ∧t (1.3.11)

hold for all 0 ≤ t ≤ u and any stopping times 0 ≤ τ ≤ ζ of the process S started at

s > 0. Then, taking the (conditional) expectations with respect to P in (1.3.10)-(1.3.11), by

means of Doob’s optional sampling theorem (see, e.g. [79; Theorem 3.6] or [69; Chapter I,

Theorem 3.22]), we get that the inequalities

E
[
e−r(τ∧t) (L1 −W (Sτ∧t))

+
]
≤ E

[
e−r(τ∧t) V3(Sτ∧t)

]
≤ V3(s) + E

[
Mτ∧t

]
= V3(s) (1.3.12)

E
[
e−r(ζ∧u) (Sζ∧u −K2)+

∣∣Fτ∧t] ≤ E
[
e−r(ζ∧u) W (Sζ∧u)

∣∣Fτ∧t] (1.3.13)

≤ e−r(τ∧t) W (Sτ∧t) + E
[
Nζ∧u −Nτ∧t

∣∣Fτ∧t] = e−r(τ∧t) W (Sτ∧t) (P -a.s.)
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hold for all s > 0. Thus, letting u and then t go to infinity and using (conditional) Fatou’s

lemma, we obtain

E
[
e−rτ (L1 −W (Sτ ))

]
≤ E

[
e−rτ (L1 −W (Sτ ))

+
]
≤ E

[
e−rτ V3(Sτ )

]
≤ V3(s) (1.3.14)

E
[
e−rζ (Sζ −K2)+

∣∣Fτ] ≤ E
[
e−rζW (Sζ)

∣∣Fτ] ≤ e−rτ W (Sτ ) (P -a.s.) (1.3.15)

for any stopping times 0 ≤ τ ≤ ζ and all s > 0. By virtue of the structure of the stopping

times in (1.1.16) and (1.1.17), it is readily seen that the equalities in (1.3.14)-(1.3.15) hold with

τ ∗3 and ζ∗3 instead of τ and ζ , when s ≤ a∗3 and Sτ∗3 ≥ h∗ (P -a.s.).

It remains to be shown that the equalities are attained in (1.3.14)-(1.3.15) when τ ∗3 and ζ∗3
replace τ and ζ , respectively, when s > a∗3 and Sτ∗3 < h∗ (P -a.s.). By virtue of the fact that

the function V3(s; a∗3, h∗) and the boundary a∗3 satisfy the conditions in (1.1.19) and (1.1.20) as

well as for the function W (s) and the boundary h∗ the condition (LW−rW )(s) = 0 is satisfied

for s < h∗ and W (h∗−) = h∗ −K2 holds, it follows from the expressions in (1.3.7)-(1.3.8) and

the structure of the stopping times τ ∗3 and ζ∗3 in (1.1.16) and (1.1.17) that the equalities

e−r(τ
∗
3∧t) V3(Sτ∗3∧t) = V3(s) +Mτ∗3∧t (1.3.16)

e−r(ζ
∗
3∧u) W (Sζ∗3∧u) = e−r(τ

∗
3∧t) W (Sτ∗3∧t) +Nζ∗3∧u −Nτ∗3∧t (1.3.17)

are satisfied for all 0 ≤ t ≤ u , when s > a∗3 and Sτ∗3 < h∗ (P -a.s.), and where the processes M

and N are defined in (1.3.9). Taking into account the fact that V3(s) is bounded by L1 from

above and the properties of the function W (s) in (1.1.11) (see, e.g. [105; Chapter VIII, Sec-

tion 2a]), we conclude from (1.3.16)-(1.3.17) that the variables e−rτ
∗
3 V3(Sτ∗3 ) and e−rζ

∗
3W (Sζ∗3 )

are equal to zero on the events {τ ∗3 = ∞} and {ζ∗3 = ∞} (P -a.s.), respectively, and the pro-

cesses (Mτ∗3∧t)t≥0 and (Nζ∗3∧t)t≥0 are uniformly integrable martingales. Therefore, taking the

(conditional) expectations with respect to P and letting u and then t go to infinity, we apply

the (conditional) Lebesgue dominated convergence theorem to obtain the equalities

E
[
e−rτ

∗
3 (L1 −W (Sτ∗3 ))

]
= E

[
e−rτ

∗
3 (L1 −W (Sτ∗3 ))+

]
= E

[
e−rτ

∗
3 V3(Sτ∗3 )

]
= V3(s) (1.3.18)

E
[
e−rζ

∗
3 (Sζ∗3 −K2)+

∣∣Fτ∗3 ] = E
[
e−rζ

∗
3 W (Sζ∗3 )

∣∣Fτ∗3 ] = e−rτ
∗
3 W (Sτ∗3 ) (P -a.s.) (1.3.19)

for all s > a∗3 and Sτ∗3 < h∗ (P -a.s.). The latter, together with the inequalities in (1.3.14)-

(1.3.15), imply the fact that V3(s) coincides with the function V ∗3 (s) from (1.1.5), and τ ∗3 and

ζ∗3 from (1.1.16) and (1.1.17) are the optimal stopping times. �

Remark 1.3.5 Note that in the cases of call-on-call and call-on-put options in Propositions

1.3.1 and 1.3.2 above, one should not stop the underlying process S when s < b∗1 and s > a∗2 ,

respectively. However, both the initial and underlying options should be exercised immediately

when s ≥ b∗1 and s ≤ a∗2 , accordingly. Moreover, in the case of put-on-call option in Proposition
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1.3.3 above, one should not stop the underlying process when s > a∗3 holds, one should exercise

the initial option only when either s ≤ a∗3 under (1.2.10) or s < h∗ under (1.2.13) is satisfied,

while both the initial and underlying options should be exercised immediately when h∗ ≤ s ≤ a∗3
holds under (1.2.13). Similarly, in the case of put-on-put option in Proposition 1.3.4 above, one

should not stop the underlying process when s < b∗4 , one should exercise the initial option only

when either s ≥ b∗4 under (1.2.17) or s > g∗ under (1.2.20) is satisfied with L1 < L2 , while

both the initial and underlying options should be exercised immediately when b∗4 ≤ s ≤ g∗

holds under (1.2.20) with L1 < L2 .

1.4. Chooser options

In this section, we give a formulation of the perpetual American chooser option optimal

stopping problem and prove the uniqueness of solution of the associated free-boundary problem.

1.4.1. Formulation of the problem. Let us finally consider the perpetual American

chooser option which is a contract giving its holder the right to decide at an exercise time τ

whether the initial compound option acts further as the underlying perpetual American put or

call option. Then, according to the arguments above, the rational price of such a contingent

claim is given by the value of the optimal stopping problem

V ∗(s) = sup
τ
E
[
e−rτ

(
U(Sτ ) ∨W (Sτ )

)]
(1.4.1)

where the supremum is taken over the stopping times τ of the process S started at s > 0, and

x ∨ y denotes the maximum max{x, y} of any x, y ∈ R . Recall that the functions U(s) and

W (s) represent the rational prices of the underlying perpetual American put and call options

defined in (1.1.9), respectively. By virtue of the structure of the resulting convex and strictly

monotone value functions in (1.1.10)-(1.1.11), we further search for an optimal stopping time

in the problem of (1.4.1) of the form

τ ∗ = inf{t ≥ 0 |St /∈ (p∗, q∗)} (1.4.2)

for some numbers 0 < p∗ < c < q∗ < ∞ to be determined, where c denotes the point of

intersection of the curves associated with the functions U(s) and W (s) (see Figure 8 below).

Note that the latter inequalities always hold, since we have U ′(c−) < 0 < W ′(c+), so that it

is never optimal to exercise the option at s = c (see, e.g. [24; Section 4] or [47; Section 3]).

In order to find explicit expressions for the unknown value function V ∗(s) from (1.4.1) and

the unknown boundaries p∗ and q∗ from (1.4.2), we follow the schema of arguments above and
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formulate the free-boundary problem

(LV )(s) = rV (s) for p < s < q (1.4.3)

V (p+) = U(p) and V (q−) = W (q) (instantaneous stopping) (1.4.4)

V ′(p+) = U ′(p) and V ′(q−) = W ′(q) (smooth fit) (1.4.5)

V (s) = U(s) ∨W (s) for s < p and s > q (1.4.6)

V (s) > U(s) ∨W (s) for p < s < q (1.4.7)

(LV )(s) < rV (s) for s < p and s > q (1.4.8)

for some 0 < p < c < q <∞ fixed.

1.4.2. Solution of the free-boundary problem. In order to solve the free-boundary

problem in (1.4.3)-(1.4.8), we first recall that the general solution of the differential equation

in (1.4.3) has the form of (1.2.1) with some arbitrary constants C+ and C− . Hence, applying

the instantaneous stopping conditions from (1.4.4) to the function in (1.2.1), we obtain the

equalities

C+ p
γ+ + C− p

γ− = U(p) and C+ q
γ+ + C− q

γ− = W (q) (1.4.9)

which hold for some 0 < p < c < q < ∞ , where c is uniquely determined by the equation

U(c) = W (c). Solving the system of equations in (1.4.9), we obtain the function

V (s; p, q) = C+(p, q) sγ+ + C−(p, q) sγ− (1.4.10)

which satisfies the system in (1.4.3)-(1.4.4) with

C+(p, q) =
U(p)qγ− −W (q)pγ−

pγ+qγ− − qγ+pγ−
and C−(p, q) =

W (q)pγ+ − U(p)qγ+

pγ+qγ− − qγ+pγ−
(1.4.11)

for 0 < p < c < q < ∞ . Applying the smooth-fit conditions from (1.4.5) to the function in

(1.4.10), we obtain the equalities

C+(p, q) γ+ p
γ+ + C−(p, q) γ− p

γ− = pU ′(p) (1.4.12)

C+(p, q) γ+ q
γ+ + C−(p, q) γ− q

γ− = qW ′(q) (1.4.13)

which hold with C+(p, q) and C−(p, q) given by (1.4.11). It is shown by means of standard

arguments that the system in (1.4.12)-(1.4.13) is equivalent to

I+(p) = J+(q) and I−(p) = J−(q) (1.4.14)

with

I+(p) =
pU ′(p)− γ−U(p)

pγ+
and J+(q) =

qW ′(q)− γ−W (q)

qγ+
(1.4.15)

I−(p) =
γ+U(p)− pU ′(p)

pγ−
and J−(q) =

γ+W (q)− qW ′(q)

qγ−
(1.4.16)
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for all 0 < p < c < q <∞ .

In order to show the existence and uniqueness of a solution of the system of equations in

(1.4.14), we follow the schema of arguments from [47; Section 4] which are based on the idea

of the proof of the existence and uniqueness of solutions applied to the systems of equations in

(4.73)-(4.74) from [104; Chapter IV, Section 2] and (3.16)-(3.17) from [42; Section 3]. For this,

we observe that, for the derivatives of the functions in (1.4.15)-(1.4.16), the expressions

I ′+(p) = −(γ+ − 1)(γ− − 1)p− γ+γ−L2

pγ++1
≡ −(γ+ − 1)(γ− − 1)(p− L2)

pγ++1
< 0 (1.4.17)

J ′+(q) =
(γ+ − 1)(γ− − 1)q − γ+γ−K2

qγ++1
≡ (γ+ − 1)(γ− − 1)(q −K2)

qγ++1
< 0 (1.4.18)

I ′−(p) =
(γ+ − 1)(γ− − 1)p− γ+γ−L2

pγ−+1
≡ (γ+ − 1)(γ− − 1)(p− L2)

pγ−+1
> 0 (1.4.19)

J ′−(q) = −(γ+ − 1)(γ− − 1)q − γ+γ−K2

qγ−+1
≡ −(γ+ − 1)(γ− − 1)(q −K2)

qγ−+1
> 0 (1.4.20)

hold under 0 < p < g∗ < L2 and K2 < h∗ < q <∞ , and are equal to zero otherwise, where we

set

L2 =
γ+γ−L2

(γ+ − 1)(γ− − 1)
≡ rL2

δ
and K2 =

γ+γ−K2

(γ+ − 1)(γ− − 1)
≡ rK2

δ
. (1.4.21)

Hence, the function I+(p) decreases on the interval (0, g∗) from I+(0+) = ∞ to I+(g∗) = 0,

and then remains equal to zero on the interval (g∗,∞), so that the range of its values is given

by the interval (0,∞). The function J+(q) is equal to J+(h∗) = (γ+ − γ−)h
1−γ+
∗ /γ+ > 0 on

the interval (0, h∗), and then decreases to zero on the interval (h∗,∞), so that the range is

(0, J+(h∗)). The function I−(p) increases from zero to I−(g∗) = (γ−− γ+)g
1−γ−
∗ /γ− > 0 on the

interval (0, g∗), and then remains equal to I−(g∗) on the interval (g∗,∞), so that the range

is (0, I−(g∗)). The function J−(q) is equal to zero on the interval (0, h∗), and then increases

from J−(h∗) = 0 to infinity on the interval (h∗,∞), so that the range is (0,∞). It is shown by

means of straightforward computations that I+(g∗∧c) < J+(h∗∨c) and I−(g∗∧c) > J−(h∗∨c)
holds. This fact guarantees that the ranges of values of the left- and right-hand sides of the

equations in (1.4.14) have nontrivial intersections.

It thus follows from the left-hand equation in (1.4.14) that, for each q ∈ (h∗ ∨ c,∞),

there exists a unique number p ∈ (p̂, g∗ ∧ c), where p̂ is uniquely determined by the equa-

tion I+(p̂) = J+(h∗ ∨ c). It also follows from the right-hand equation in (1.4.14) that, for each

p ∈ (0, g∗∧c), there exists a unique number q ∈ (h∗∨c, q̂), where q̂ is uniquely determined by the

equation I−(g∗∧c) = J−(q̂) (see Figure 7 below). We may therefore conclude that the equations

in (1.4.14) uniquely define the function q+(p) on (p̂, g∗ ∧ c) with the range (h∗ ∨ c,∞) and the

function q−(p) on (0, g∗∧c) with the range (h∗∨c, q̂), respectively. This fact directly yields that,

for each point p ∈ (p̂, g∗∧c), there exist unique values q+(p) and q−(p) belonging to (h∗∨c,∞),
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that together with the inequalities h∗ ∨ c ≡ q+(p̂) ≡ q−(0+) < q−(g∗ ∧ c) <∞ ≡ q+(g∗) guar-

antees the existence of exactly one intersection point with the coordinates p∗ and q∗ of the

curves associated with the functions q+(p) and q−(p) on the interval (p̂, g∗ ∧ c) such that

h∗ ∨ c < q+(p∗) ≡ q∗ ≡ q−(p∗) < q̂ holds (see Figure 7 below). This completes the proof of the

claim.
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Figure 7. A computer drawing of the functions q+(p) and q−(p).

-

6

p̂ p∗ g∗ h∗ q∗ q̂c

@
@
@
@
@
@
@
@@R

V ∗(s)

HH
H
HH

HY

W (s)

��
��
��
�1

U(s)

V

s

Figure 8. A computer drawing of the value function V ∗(s) for
the case g∗ < c < h∗ for the payoff function U(s) ∨W (s).
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Summarising the facts proved above, we are now ready to formulate the following result.

Proposition 1.4.1 Let the process S be given by (1.1.1)-(1.1.2), the functions U(s) and W (s)

be defined in (1.1.9)-(1.1.11), and the number c is uniquely determined by U(c) = W (c). Hence,

in the optimal stopping problem of (1.4.1), related to the perpetual American chooser option

with the inner put and call payoffs with strike prices L2 > 0 and K2 > 0, respectively, the value

function has the form

V ∗(s) =

V (s; p∗, q∗), if p∗ < s < q∗

U(s) ∨W (s), if s ≤ p∗ or s ≥ q∗
(1.4.22)

where the function V (s; p, q) is given by (1.4.10)-(1.4.11), and the exit boundaries p∗ and q∗

such that 0 < p∗ < g∗ ∧ c ≤ h∗ ∨ c < q∗ < ∞ for the optimal exercise time τ ∗ in (1.4.2) are

uniquely determined by the system of (1.4.14) (see Figure 8 above). The underlying perpetual

American put or call option should then be exercised at the same time τ ∗ .

Proof of Proposition 1.4.1. In order to verify the assertion stated above, let us follow the

schema of arguments from [47; Theorem 3.1] and show that the function defined in (1.4.22)

coincides with the value function in (1.4.1), and that the stopping time τ ∗ in (1.4.2) is optimal

with the boundaries p∗ and q∗ specified above. Let us denote by V (s) the right-hand side

of the expression in (1.4.22). Applying the local time-space formula from [91] and taking into

account the smooth-fit conditions in (1.4.5), the following expression

e−rt V (St) = V (s) +

∫ t

0

e−ru (LV − rV )(Su) I(Su 6= p∗, Su 6= q∗) du+M∗
t (1.4.23)

holds for all t ≥ 0, where the process M∗ = (M∗
t )t≥0 defined by

M∗
t =

∫ t

0

e−ru V ′(Su)σSu dBu (1.4.24)

is a continuous square integrable martingale with respect to P . The latter fact can be easily

observed, since the derivative V ′(s) is a bounded function.

By means of straightforward computations, it can be verified that the conditions of (1.4.7)

and (1.4.8) hold with p∗ and q∗ being a unique solution of the system in (1.4.14). These facts

together with the conditions in (1.4.3)-(1.4.4) and (1.4.6) yield that (LV − rV )(s) ≤ 0 holds

for any s > 0 such that s 6= p∗ and s 6= q∗ , and V (s) ≥ U(s) ∨W (s) is satisfied for all s > 0.

Moreover, since the time spent by the process S at the boundaries p∗ and q∗ is of Lebesgue

measure zero, the indicator which appear in the integral of (1.4.23) can be ignored. Hence, it

follows from the expression in (1.4.23) that the inequalities

e−r(τ∧t)
(
U(Sτ∧t) ∨W (Sτ∧t)

)
≤ e−r(τ∧t) V (Sτ∧t) ≤ V (s) +M∗

τ∧t (1.4.25)
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hold for any stopping time τ of the process S started at s > 0. Then, taking the expectations

with respect to P in (1.4.25), by means of Doob’s optional sampling theorem, we get that the

inequalities

E
[
e−r(τ∧t)

(
U(Sτ∧t) ∨W (Sτ∧t)

)]
≤ E

[
e−r(τ∧t) V (Sτ∧t)

]
≤ V (s) + E

[
M∗

τ∧t
]

= V (s) (1.4.26)

hold for all s > 0. Hence, letting t go to infinity and using Fatou’s lemma, we obtain

E
[
e−rτ

(
U(Sτ ) ∨W (Sτ )

)]
≤ E

[
e−rτ V (Sτ )

]
≤ V (s) (1.4.27)

for any stopping time τ and all s > 0. By virtue of the structure of the stopping time in

(1.4.2), it is readily seen that the equalities in (1.4.27) hold with τ ∗ instead of τ when either

s ≤ p∗ or s ≥ q∗ .

It remains to be shown that the equalities are attained in (1.4.27) when τ ∗ replaces τ for

p∗ < s < q∗ . By virtue of the fact that the function V (s; p∗, q∗) and the boundaries p∗ and q∗

satisfy the conditions in (1.4.3) and (1.4.4), it follows from the expression in (1.4.23) and the

structure of the stopping time in (1.4.2) that the equality

e−r(τ
∗∧t) V (Sτ∗∧t; p∗, q∗) = V (s) +M∗

τ∗∧t (1.4.28)

is satisfied for all s ∈ (p∗, q∗), where the process M∗ is defined in (1.4.24). Observe that the

explicit form of the function in (1.4.10) and (1.4.11) yields that the condition

E
[

sup
t≥0

e−r(τ
∗∧t) V (Sτ∗∧t; p∗, q∗)

]
<∞ (1.4.29)

holds for all s ∈ (p∗, q∗), as well as the variable e−rτ
∗
V (Sτ∗ ; p∗, q∗) is equal to zero on the event

{τ ∗ = ∞} (P -a.s.). Hence, taking into account the property in (1.4.29), we conclude from

the expression in (1.4.28) that the process (M∗
τ∗∧t)t≥0 is a uniformly integrable martingale.

Therefore, taking the expectation in (1.4.28) and letting t go to infinity, we apply the Lebesgue

dominated convergence theorem to obtain the equalities

E
[
e−rτ

∗ (
U(Sτ∗) ∨W (Sτ∗)

)]
= E

[
e−rτ

∗
V (Sτ∗ ; p∗, q∗)

]
= V (s) (1.4.30)

for all s ∈ (p∗, q∗). The latter, together with the inequalities in (1.4.27), implies the fact that

V (s) coincides with the value function V ∗(s) from (1.4.1) and τ ∗ from (1.4.2) is the optimal

stopping time. �

Remark 1.4.2 Observe that the system of (1.4.14) is equivalent to the system of (4.5) from [47]

with the only difference that the (p̂, g∗∧c) and (h∗∨c, q̂) are allowed for p∗ and q∗ , respectively,

which are eventually smaller than the corresponding ones (p, g∗ ∧ c) and (h∗ ∨ c, q) from [47;

Section 4]. Here, the numbers g∗ and h∗ are given by (1.1.13), and the boundaries p < p̂ and
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q > q̂ are uniquely determined by the equations I+(p) = J+(K2) and I−(L2) = J−(q) with L2

and K2 defined in (1.4.21). It follows from the arguments above that the rational price V ∗(s)

of the perpetual American chooser option in (1.4.1) coincides with the one of the perpetual

American strangle option in [47; Example 4.2].
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Chapter 2

Perpetual American options in a

diffusion model with piecewise-linear

coefficients

In this chapter (following [49]), we derive closed form solutions to the discounted optimal

stopping problems related to the pricing of the perpetual American standard put and call

options in an extension of the Black-Merton-Scholes model with piecewise-constant dividend

and volatility rates. The method of proof is based on the reduction of the initial optimal

stopping problems to the associated free-boundary problems and the subsequent martingale

verification using a local time-space formula. We present explicit algorithms to determine the

constant hitting thresholds for the underlying asset price process, which provide the optimal

exercise boundaries for the options.

2.1. Preliminaries

In this section, we present the setting and notation of the perpetual American standard put

and call option optimal stopping problems in a diffusion model with piecewise-linear coefficients.

We also formulate the associated ordinary differential free-boundary problems.

2.1.1. Formulation of the problem. Let us consider a probability space (Ω,F , P )

carrying a standard one-dimensional Brownian motion B = (Bt)t≥0 . Assume that there exists

a process S = (St)t≥0 solving the stochastic differential equation

dSt =
(
r −∆(St)

)
St dt+ Σ(St)St dBt (2.1.1)
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with S0 = s , where the functions ∆(s) and Σ(s) are defined by

∆(s) =
n∑
i=1

δi I(Li−1 < s ≤ Li) and Σ(s) =
n∑
i=1

σi I(Li−1 < s ≤ Li) (2.1.2)

for all s > 0 and some 0 = L0 < L1 < . . . < Ln−1 < Ln = ∞ , n ∈ N , fixed, and I(·) denotes

the indicator function. Suppose that the process S describes the risk-neutral dynamics of the

price of a risky asset (e.g. the value of an issuing firm) paying dividends. Here, r > 0 represents

the riskless interest rate, σi > 0 is the volatility rate, and δiS such that 0 < δi < r is the

dividend rate paid to stockholders, whenever S fluctuates within the interval (Li−1, Li] , for

every i = 1, . . . , n . Note that the stochastic differential equation in (2.1.1) admits a unique

strong solution, and hence, S is a strong Markov process with respect to its natural filtration

(Ft)t≥0 defined by Ft = σ(Su | 0 ≤ u ≤ t), for all t ≥ 0 (see, e.g. [110; Theorem 4], [69;

Chapter 5] or [86; Chapter VII, Section 2]). A linear diffusion model with piecewise-constant

coefficients was considered in [99].

The main purpose of this chapter is to compute the value functions of the optimal stopping

problems

V ∗(s) = sup
τ
Es
[
e−rτ (K1 − Sτ ) ∨ 0

]
or V ∗(s) = sup

τ
Es
[
e−rτ (Sτ −K2) ∨ 0

]
(2.1.3)

where the suprema are taken over all stopping times τ with respect to the filtration (Ft)t≥0 .

Such values represent the rational (or no-arbitrage) prices of the perpetual American put and

call options with strike prices K1, K2 > 0, respectively. Here, the expectations Es are taken

with respect to the equivalent martingale measure, under which the dynamics of S started at

s > 0 are given by (2.1.1), and we further denote x∨y = max{x, y} and x∧y = min{x, y} , for

any x, y ∈ R . The left-hand problem of (2.1.3) was recently studied in [80] within the model

of (2.1.1)-(2.1.2), under the assumption that ∆(s) = 0.

2.1.2. Structure of the optimal stopping times. It follows from the general theory of

optimal stopping for Markov processes (see, e.g. [97; Chapter I, Section 2]) that the optimal

stopping times in the problems of (2.1.3) are given by

τ ∗ = inf{t ≥ 0 |V ∗(St) = (K1 − St) ∨ 0} (2.1.4)

or

τ ∗ = inf{t ≥ 0 |V ∗(St) = (St −K2) ∨ 0} (2.1.5)

whenever they exist. The latter fact means that the process S should be stopped at the first

times at which it exits certain open intervals called the continuation regions. In this view, we

further search for optimal stopping times of the problems of (2.1.3) in the form

τ ∗ = inf{t ≥ 0 |St ≤ a∗} or τ ∗ = inf{t ≥ 0 |St ≥ b∗} (2.1.6)
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for some 0 < a∗ ≤ K1 and b∗ ≥ K2 to be determined. We also assume that the optimal

stopping boundaries satisfy the conditions Lj−1 < a∗ ≤ Lj and Lm−1 < b∗ ≤ Lm , for certain

j,m = 1, . . . , n to be specified.

2.1.3. The free-boundary problems. It can be shown by means of standard arguments

(see, e.g. [69; Chapter V, Section 5.1] or [86; Chapter VII, Section 7.3]) that the infinitesimal

operator L of the process S acts on an arbitrary twice continuously differentiable function

F (s) on the intervals (Li−1, Li] according to the rule

(LF )(s) = (r − δi) s F ′(s) +
σ2
i

2
s2 F ′′(s) for Li−1 < s ≤ Li (2.1.7)

and we set F ′(Li) = F ′(Li−) and F ′′(Li) = F ′′(Li−), for every i = 1, . . . , n . In order to

find explicit expressions for the unknown value functions V ∗(s) from (2.1.3) and the unknown

boundaries a∗ or b∗ from (2.1.6), we may use the results of the general theory of optimal

stopping problems for continuous time Markov processes (see, e.g. [97; Chapter IV, Section 8]).

We formulate the associated free-boundary problems

(LV )(s) = rV (s) for s > a or s < b and

such that s 6= Li, i = j, . . . ,m− 1 (2.1.8)

V (a+) = K1 − a or V (b−) = b−K2 (instantaneous stopping) (2.1.9)

V ′(a+) = −1 or V ′(b−) = 1 (smooth fit) (2.1.10)

V (s) = K1 − s for s < a or V (s) = s−K2 for s > b (2.1.11)

V (s) > (K1 − s) ∨ 0 for s > a or V (s) > (s−K2) ∨ 0 for s < b (2.1.12)

(LV )(s) < rV (s) for s < a or s > b (2.1.13)

for some 0 < a ≤ K1 or b ≥ K2 fixed, in the case of put or call option, respectively. Here,

the conditions of (2.1.9) and (2.1.10) are used to specify the solutions of the free-boundary

problems which are related to the optimal stopping problems in (2.1.3).

2.2. Solution of the free-boundary problem

In this section, we derive solutions to the free-boundary problems formulated above for the

cases of put and call option, separately, and prove the uniqueness of solutions of the related

arithmetic equations for optimal stopping boundaries.

2.2.1. The equivalent system of arithmetic equations. We first note that the general

solution of the second order ordinary differential equation in (2.1.8) is given by

V (s) =
n∑
i=1

(
C+
i s

γ+i + C−i s
γ−i

)
I(Li−1 < s ≤ Li) (2.2.1)
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where C+
i and C−i are some arbitrary constants, and define

γ±i =
1

2
− r − δi

σ2
i

±

√(
1

2
− r − δi

σ2
i

)2

+
2r

σ2
i

(2.2.2)

so that γ−i < 0 < 1 < γ+
i holds for every i = 1, . . . , n . Hence, applying the instantaneous-

stopping and smooth-fit conditions from (2.1.9)-(2.1.10) to the function in (2.2.1) and using

the fact that the value function V ∗(s) is continuously differentiable for s > a or s < b in the

case of put or call option, respectively, we get that the equalities

C+
j a

γ+j + C−j a
γ−j = K1 − a or C+

m b
γ+m + C−m b

γ−m = b−K2 (2.2.3)

C+
j γ

+
j a

γ+j + C−j γ
−
j a

γ−j = −a or C+
m γ

+
m b

γ+m + C−m γ
−
m b

γ−m = b (2.2.4)

C+
i−1 L

γ+i−1

i−1 + C−i−1 L
γ−i−1

i−1 = C+
i L

γ+i
i−1 + C−i L

γ−i
i−1 (2.2.5)

C+
i−1 γ

+
i−1 L

γ+i−1

i−1 + C−i−1 γ
−
i−1 L

γ−i−1

i−1 = C+
i γ

+
i L

γ+i
i−1 + C−i γ

−
i L

γ−i
i−1 (2.2.6)

hold for i = j + 1, . . . ,m and some Lj−1 < a ≤ Lj ∧ K1 or K2 ∨ Lm−1 < b ≤ Lm . Observe

that, in the case of the put option when the left hand side of (2.2.3)-(2.2.4) is realised, we

have a unique optimal exercise boundary a∗ given by the left-hand optimal stopping time in

(2.1.6). It thus follows that m = n for the equations in (2.2.5)-(2.2.6), while j is determined

by the interval to which the point a∗ belongs and there is no exercise boundary b involved.

Similarly in the case of the call option, we have a unique optimal exercise boundary b∗ , given

by the right-hand optimal stopping time in (2.1.6). In this case, j = 1 for the equations in

(2.2.5)-(2.2.6), while m is determined by the interval to which the point b∗ belong and there

is no exercise boundary a involved. It thus follows that the function

V (s; a, b) =
m∑
i=j

(
C+
i (a, b, Lj, . . . , Lm−1) sγ

+
i (2.2.7)

+ C−i (a, b, Lj, . . . , Lm−1) sγ
−
i

)
I(Li−1 < s ≤ Li)

satisfies the system in (2.1.8)-(2.1.10) with some C+
i (a, b, Lj, . . . , Lm−1) and C−i (a, b, Lj,

. . . , Lm−1) to be specified by the system in (2.2.3)-(2.2.6), for some Lj−1 < a ≤ Lj ∧ K1

or K2 ∨ Lm−1 < b ≤ Lm .

2.2.2. Solution for the case of put option. Observe that we should also have C+
n = 0

in (2.2.1) when the left-hand part of the system in (2.1.8)-(2.1.13) is realised with m = n , since

otherwise V (s) → ±∞ , that must be excluded by virtue of the obvious fact that the value

function in (2.1.3) is bounded under s ↑ ∞ . In this case, solving the system of equations in

the left-hand part of (2.2.3)-(2.2.4), we get that its solution is given by

C+
j (a) =

I+
j (a)

γ+
j − γ−j

and C−j (a) =
I−j (a)

γ+
j − γ−j

(2.2.8)
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with

I+
j (a) =

(γ−j − 1)a− γ−j K1

aγ
+
j

and I−j (a) =
(1− γ+

j )a+ γ+
j K1

aγ
−
j

(2.2.9)

for all Lj−1 < a ≤ Lj ∧K1 .

Then, solving the system of equations in (2.2.5)-(2.2.6), we get the recursive expressions

C+
i L

γ+i
i ≡ C+

i L
γ+i
i−1

( Li
Li−1

)γ+i
=

[
C+
i−1L

γ+i−1

i−1

γ+
i−1 − γ−i
γ+
i − γ−i

+ C−i−1L
γ−i−1

i−1

γ−i−1 − γ−i
γ+
i − γ−i

]( Li
Li−1

)γ+i
(2.2.10)

and

C−i L
γ−i
i ≡ C−i L

γ−i
i−1

( Li
Li−1

)γ−i
=

[
C+
i−1L

γ+i−1

i−1

γ+
i − γ+

i−1

γ+
i − γ−i

+ C−i−1L
γ−i−1

i−1

γ+
i − γ−i−1

γ+
i − γ−i

]( Li
Li−1

)γ−i
(2.2.11)

for any i = j + 1, . . . , n − 1. Hence, using the expressions in (2.2.8), we obtain that the

expressions

C+
i =

sgn(γ+
i )

γ+
i − γ−i

∑
I±j (a)

L
γ±j
j

L
γ+i
i−1

γ±i−1 − γ−i
γ+
i−1 − γ−i−1

i−1∏
k=j+1

sgn(γ±k )
γ±k−1 − γ

∓
k

γ+
k−1 − γ

−
k−1

( Lk
Lk−1

)γ±k
(2.2.12)

and

C−i =
sgn(γ−i )

γ+
i − γ−i

∑
I±j (a)

L
γ±j
j

L
γ−i
i−1

γ±i−1 − γ+
i

γ+
i−1 − γ−i−1

i−1∏
k=j+1

sgn(γ±k )
γ±k−1 − γ

∓
k

γ+
k−1 − γ

−
k−1

( Lk
Lk−1

)γ±k
(2.2.13)

hold for any i = j + 1, . . . , n − 1, while using the equalities in (2.2.12)-(2.2.13), we also get

from (2.2.5) that the expression

C−n =
1

γ+
n−1 − γ−n−1

∑
I±j (a)

L
γ±j
j

Lγ
−
n
n−1

n−1∏
i=j+1

sgn(γ±i )
γ±i−1 − γ∓i
γ+
i−1 − γ−i−1

( Li
Li−1

)γ±i
(2.2.14)

holds. The sums in (2.2.12)-(2.2.14) as well as in (2.2.18)-(2.2.19) below should be read accord-
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ing to the rule ∑
G(I±j (a), γ±j , γ

∓
j , γ

±
j+1, γ

∓
j+1, . . . , γ

±
n , γ

∓
n ) (2.2.15)

≡ G(I+
j (a), γ+

j , γ
−
j , γ

+
j+1, γ

−
j+1, . . . , γ

+
n , γ

−
n )

+G(I−j (a), γ−j , γ
+
j , γ

+
j+1, γ

−
j+1, . . . , γ

+
n , γ

−
n )

+G(I+
j (a), γ+

j , γ
−
j , γ

−
j+1, γ

+
j+1, . . . , γ

+
n , γ

−
n )

+G(I−j (a)γ−j , γ
+
j , γ

−
j+1, γ

+
j+1, . . . , γ

+
n , γ

−
n ) + · · ·

+G(I+
j (a), γ+

j , γ
−
j , γ

+
j+1, γ

−
j+1, . . . , γ

−
n , γ

+
n )

+G(I−j (a), γ−j , γ
+
j , γ

+
j+1, γ

−
j+1, . . . , γ

−
n , γ

+
n )

+G(I+
j (a), γ+

j , γ
−
j , γ

−
j+1, γ

+
j+1, . . . , γ

−
n , γ

+
n )

+G(I−j (a), γ−j , γ
+
j , γ

−
j+1, γ

+
j+1, . . . , γ

−
n , γ

+
n )

for any measurable function G(I±j (a), γ±j , γ
∓
j , γ

±
j+1, γ

∓
j+1, . . . , γ

±
n , γ

∓
n ). Thus, taking into account

the fact that C+
n = 0, we obtain from the system in (2.2.5)-(2.2.6) that the equality

C+
n−1 (γ−n − γ+

n−1)L
γ+n−1

n−1 = C−n−1 (γ−n−1 − γ−n )L
γ−n−1

n−1 (2.2.16)

is satisfied. Using the expressions in (2.2.12)-(2.2.13), we can therefore conclude that the

equation in (2.2.16) takes the form

I+
j (a)L

γ+j
j Q+

j = I−j (a)L
γ−j
j Q−j (2.2.17)

for Lj−1 < a ≤ Lj ∧K1 , with

Q+
j = sgn(γ+

j )
∑ (γ+

j − γ∓j+1)(γ±n−1 − γ−n )

γ±n−1 − γ∓n

n−1∏
i=j+1

sgn(γ±i )(γ±i − γ∓i+1)
( Li
Li−1

)γ±i
(2.2.18)

and

Q−j = sgn(γ−j )
∑ (γ−j − γ∓j+1)(γ±n−1 − γ−n )

γ±n−1 − γ∓n

n−1∏
i=j+1

sgn(γ±i )(γ±i − γ∓i+1)
( Li
Li−1

)γ±i
(2.2.19)

for every j = 1, . . . , n − 2, while Q+
n−1 = γ+

n−1 − γ−n , Q−n−1 = γ−n − γ−n−1 , Q+
n = γ+

n − γ−n , and

Q−n = 0.

In order to prove the uniqueness of solution of the equation in (2.2.17), we observe that the

derivatives of the functions in (2.2.9) are given by the expressions

I+
j
′
(a) =

(γ+
j − 1)(γ−j − 1)(K1,j − a)

aγ
+
j +1

and I−j
′
(a) =

(γ+
j − 1)(γ−j − 1)(a−K1,j)

aγ
−
j +1

(2.2.20)
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so that I+
j
′
(a) < 0 and I−j

′
(a) > 0 for all 0 < Lj−1 < a ≤ Lj ∧K1 < K1,j , with

K1,j =
γ+
j γ
−
j K1

(γ+
j − 1)(γ−j − 1)

≡ rK1

δj
> K1 (2.2.21)

so that the function I+
j (a) decreases and the function I−j (a) increases on the interval (Lj−1, Lj∧

K1] . Hence, the equation in (2.2.17) admits a unique solution if and only if the inequalities

I+
j (Lj−1)L

γ+j
j

Q−j
>
I−j (Lj−1)L

γ−j
j

Q+
j

and
I+
j (Lj ∧K1)L

γ+j
j

Q−j
≤
I−j (Lj ∧K1)L

γ−j
j

Q+
j

(2.2.22)

hold with Q+
j and Q−j given by the expressions in (2.2.18)-(2.2.19).

In order to prove the inequalities in (2.2.22) above, we first assume that Lj−1 < Lj <

K1 holds. Then, it can be verified by means of the induction principle that the inequalities

Q+
j > 0, γ+

j Q
−
j < −γ−j Q+

j and γ+
j Q

−
j (Lj−1)γ

+
j −γ

−
j < −γ−j Q+

j (Lj)
γ+j −γ

−
j are satisfied for every

j = 1, . . . , n . Hence, it is shown using straightforward computations that there exists a unique

solution a∗j of the equation in (2.2.17) such that Lj−1 < a∗j ≤ Lj if and only if the relationship

µj−1Lj−1 ∨ Lj < K1 ≤ µjLj holds with

µj =
(γ+
j − 1)Q−j + (γ−j − 1)Q+

j

γ+
j Q

−
j + γ−j Q

+
j

> 1 (2.2.23)

for every j = 1, . . . , n , and Q+
j and Q−j given by (2.2.18)-(2.2.19). Thus, the assumption

Lj−1 < a∗j ≤ Lj can equivalently be replaced by the property µj−1Lj−1 ∨ Lj < K1 ≤ µjLj .

Observe that the latter inequalities can hold for K1 if either µj−1Lj−1 ≤ Lj , or Lj−1 < Lj <

µj−1Lj−1 when Q−j ≥ 0, or Lj−1 < µj−1Lj−1/µj < Lj < µj−1Lj−1 when Q−j < 0. Note that the

property µj−1Lj−1∨Lj < K1 ≤ µjLj does not hold, when Lj−1 < Lj ≤ µj−1Lj−1/µj < µj−1Lj−1

and Q−j < 0, in which case there is no solution a∗j of the equation in (2.2.17) in the interval

(Lj−1, Lj] .

Let us now assume that Lj−1 < K1 ≤ Lj holds. In this case, it can be checked by means of

the induction principle that the inequality −Q−j < Q+
j is satisfied for every j = 1, . . . , n . Hence,

it is shown by means of straightforward computations and using the relationships between Q+
j

and Q−j referred above that the equation in (2.2.17) admits a unique solution a∗j such that

Lj−1 < a∗j ≤ K1 if and only if the relationship µj−1Lj−1 < K1 ≤ Lj holds with µj given by

(2.2.23). Thus, the assumption Lj−1 < a∗j ≤ K1 can equivalently be replaced by the property

µj−1Lj−1 < K1 ≤ Lj . Note that when the latter inequalities fail to hold, there is no solution

a∗j of the equation in (2.2.17) in the interval (Lj−1, K1] .

Summarising the facts proved above, we can therefore formulate the following algorithm to

specify the location interval (Lj−1, Lj] for the solution a∗ of the equation in (2.2.17), based

on the corresponding relationships between K1 , Li and µj for i, j = 1, . . . , n referred above.
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Without loss of generality, let us thus assume that the strike price satisfies Lk−1 < K1 ≤ Lk

for some 1 ≤ k ≤ n , so that there exist k possible intervals in which the solution a∗ can be

located. Note that, after finding a solution Lj−1 < a∗j ≤ Lj of the equation in (2.2.17) for some

j = 1, . . . , k − 2, we can get another solution Li−1 < a∗i ≤ Li , if µlLl < µl−1Ll−1 holds for

some l = j+ 1, . . . , k− 1 and l < i . We further denote by a∗ the minimum over such solutions

a∗j , j = 1, . . . , k , whenever they exist, and construct the corresponding solution V (s; a∗) of the

form in (2.2.7), which will dominate the other possible solutions of the second-order ordinary

differential equation in (2.1.8), satisfying the conditions in (2.1.9)-(2.1.10) with the boundaries

a∗j , j = 1, . . . , k . The latter fact can be shown by means of the arguments similar to the ones

used in [97; Chapter VI, Remark 23.2] and [97; Chapter VI, Theorem 24.1], or by verifying

directly.

We can therefore start the following forward procedure started with j = 1, so that the value

function associated with the solution Lj−1 < a∗j ≤ Lj ∧K1 of the equation in (2.2.17), which

is obtained first for a certain j = 1, . . . , k , dominates all the forthcoming possible solutions.

Hence, the possibility of having other solutions Li−1 < a∗i ≤ Li for some i > j + 1, does not

make any impact on the procedure described below:

(1) (searching for a solution in the interval (L0, L1]):

(a) if K1 ≤ µ1L1 holds, then there exists a solution 0 = L0 < a∗1 ≤ L1 of the equation

in (2.2.17) for j = 1 and the optimal stopping boundary is given by a∗ = a∗1 ,

(b) if µ1L1 < K1 holds, then continue with step (2);
...

(j) (searching for a solution in the interval (Lj−1, Lj] , for j = 2, . . . , k − 1):

(a) if K1 ≤ µjLj holds, then there exists a solution Lj−1 < a∗j ≤ Lj of the equation in

(2.2.17) and the optimal stopping boundary is given by a∗ = a∗j ,

(b) if µjLj < K1 holds, then continue with step (j+1);
...

(k) (searching for a solution in the interval (Lk−1, K1]):

in this case, K1 ≤ Lk holds by assumption, and thus, there exists a solution Lk−1 < a∗k ≤
K1 of the equation in (2.2.17) for j = k and the optimal stopping boundary is given by

a∗ = a∗k .

Note that the above algorithm establishes the existence of at least one solution Lj−1 < a∗j ≤
Lj ∧K1 of the equation in (2.2.17) for a certain j = 1, . . . , k , which coincides with the optimal

stopping boundary a∗ .

2.2.3. Solution for the case of call option. Observe that we should also have C−1 = 0

in (2.2.1) when the right-hand part of the system in (2.1.8)-(2.1.13) is realised with j = 1,
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since V (s) → ±∞ otherwise, that must be excluded by virtue of the obvious fact that the

value function in (2.1.3) is bounded under s ↓ 0. In this case, solving the system of equations

in the right-hand part of (2.2.3)-(2.2.4), we get that its solution is given by

C+
m(b) =

J+
m(b)

γ+
m − γ−m

and C−m(b) =
J−m(b)

γ+
m − γ−m

(2.2.24)

with

J+
m(b) =

(1− γ−m)b+ γ−mK2

bγ
+
m

and J−m(b) =
(γ+
m − 1)b− γ+

mK2

bγ
−
m

(2.2.25)

for all K2∨Lm−1 < b ≤ Lm . Then, solving the system of equations in (2.2.5)-(2.2.6), we obtain

the recursive expressions

C+
i L

γ+i
i−1 ≡ C+

i L
γ+i
i

(Li−1

Li

)γ+i
=

[
C+
i+1L

γ+i+1

i

γ+
i+1 − γ−i
γ+
i − γ−i

+ C−i+1L
γ−i+1

i

γ−i+1 − γ−i
γ+
i − γ−i

](Li−1

Li

)γ+i
(2.2.26)

and

C−i L
γ−i
i−1 ≡ C−i L

γ−i
i

(Li−1

Li

)γ−i
=

[
C+
i+1L

γ+i+1

i

γ+
i − γ+

i+1

γ+
i − γ−i

+ C−i+1L
γ−i+1

i

γ+
i − γ−i+1

γ+
i − γ−i

](Li−1

Li

)γ−i
(2.2.27)

for any i = 2, . . . ,m−1. Hence, using the expressions in (2.2.24), we obtain that the expressions

C+
i =

sgn(γ+
i )

γ+
i − γ−i

∑
J±m(b)

Lγ
±
m
m−1

L
γ+i
i

γ±i+1 − γ−i
γ+
i+1 − γ−i+1

m−1∏
k=i+1

sgn(γ±k )
γ±k+1 − γ

∓
k

γ+
k+1 − γ

−
k+1

(Lk−1

Lk

)γ±k
(2.2.28)

and

C−i =
sgn(γ−i )

γ+
i − γ−i

∑
J±m(b)

Lγ
±
m
m−1

L
γ−i
i

γ±i+1 − γ+
i

γ+
i+1 − γ−i+1

m−1∏
k=i+1

sgn(γ±k )
γ±k+1 − γ

∓
k

γ+
k+1 − γ

−
k+1

(Lk−1

Lk

)γ±k
(2.2.29)

hold for any i = 2, . . . ,m − 1, while using the equalities in (2.2.28)-(2.2.29), we also get from

(2.2.5) that the expression

C+
1 =

1

γ+
2 − γ−2

∑
J±m(b)

Lγ
±
m
m−1

L
γ+1
1

m−1∏
i=2

sgn(γ±i )
γ±i+1 − γ∓i
γ+
i+1 − γ−i+1

(Li−1

Li

)γ±i
(2.2.30)

holds. The sums in (2.2.28)-(2.2.30) as well as in (2.2.34)-(2.2.35) below should be read accord-
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ing to the rule ∑
H(J±m(b), γ±m, γ

∓
m, γ

±
m−1, γ

∓
m−1, . . . , γ

±
1 , γ

∓
1 ) (2.2.31)

≡ H(J+
m(b), γ+

m, γ
−
m, γ

+
m−1, γ

−
m−1, . . . , γ

+
1 , γ

−
1 )

+H(J−m(b), γ−m, γ
+
m, γ

+
m−1, γ

−
m−1, . . . , γ

+
1 , γ

−
1 )

+H(J+
m(b), γ+

m, γ
−
m, γ

−
m−1, γ

+
m−1, . . . , γ

+
1 , γ

−
1 )

+H(J−m(b), γ−m, γ
+
m, γ

−
m−1, γ

+
m−1, . . . , γ

+
1 , γ

−
1 ) + · · ·

+H(J+
m(b), γ+

m, γ
−
m, γ

+
m−1, γ

−
m−1, . . . , γ

−
1 , γ

+
1 )

+H(J−m(b), γ−m, γ
+
m, γ

+
m−1, γ

−
m−1, . . . , γ

−
1 , γ

+
1 )

+H(J+
m(b), γ+

m, γ
−
m, γ

−
m−1, γ

+
m−1, . . . , γ

−
1 , γ

+
1 )

+H(J−m(b), γ−m, γ
+
m, γ

−
m−1, γ

+
m−1, . . . , γ

−
1 , γ

+
1 )

for any measurable function H(J±m(b), γ±m, γ
∓
m, γ

±
m−1, γ

∓
m−1, . . . , γ

±
1 , γ

∓
1 ). Thus, taking into ac-

count the fact that C−1 = 0, we obtain from the system in (2.2.5)-(2.2.6) that the equality

C+
2 (γ+

1 − γ+
2 )L

γ+2
1 = C−2 (γ−2 − γ+

1 )L
γ−2
1 (2.2.32)

is satisfied. Using the expressions in (2.2.28)-(2.2.29), we can therefore conclude that the

equation in (2.2.32) takes the form

J+
m(b)Lγ

+
m
m−1R

+
m = J−m(b)Lγ

−
m
m−1R

−
m (2.2.33)

for K2 ∨ Lm−1 < b ≤ Lm , with

R+
m = sgn(γ+

m)
∑ (γ+

m − γ∓m−1)(γ±2 − γ+
1 )

γ±2 − γ∓1

m−1∏
i=2

sgn(γ±i )(γ±i − γ∓i−1)
(Li−1

Li

)γ±i
(2.2.34)

and

R−m = sgn(γ−m)
∑ (γ−m − γ∓m−1)(γ±2 − γ+

1 )

γ±2 − γ∓1

m−1∏
i=2

sgn(γ±i )(γ±i − γ∓i−1)
(Li−1

Li

)γ±i
(2.2.35)

for every m = 3, . . . , n , while R−2 = γ+
1 − γ−2 , R+

2 = γ+
2 − γ+

1 , R−1 = γ+
1 − γ−1 , and R+

1 = 0.

In order to prove the uniqueness of solution of the equation in (2.2.33), we observe that the

derivatives of the functions in (2.2.25) are given by the expressions

J+
m
′
(b) =

(γ+
m − 1)(γ−m − 1)(b−K2)

bγ
+
m+1

and J−m
′
(b) =

(γ+
m − 1)(γ−m − 1)(K2 − b)

bγ
−
m+1

(2.2.36)

so that J+
m
′
(b) < 0 and J−m

′
(b) > 0 for all 0 < K2,m ∨ Lm−1 < b ≤ Lm , with

K2,m =
γ+
mγ
−
mK2

(γ+
m − 1)(γ−m − 1)

≡ rK2

δm
> K2 (2.2.37)
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so that the function J+
m(b) decreases and the function J−m(b) increases on the interval (K2,m ∨

Lm−1, Lm] . Hence, the equation in (2.2.33) admits a unique solution if and only if the inequal-

ities

J+
m(K2,m ∨ Lm−1)Lγ

+
m
m−1

R−m
>
J−m(K2,m ∨ Lm−1)Lγ

−
m
m−1

R+
m

(2.2.38)

and

J+
m(Lm)Lγ

+
m
m−1

R−m
≤
J−m(Lm)Lγ

−
m
m−1

R+
m

(2.2.39)

hold with R+
m and R−m given by the expressions in (2.2.34)-(2.2.35).

In order to prove the inequalities in (2.2.38)-(2.2.39) above, we first assume that K2,m ≤
Lm−1 < Lm holds. Then, it can be verified by means of the induction principle that the

inequalities R−m > 0, γ+
mR

−
m > −γ−mR+

m and γ+
mR

−
m(Lm)γ

+
m−γ−m > −γ−mR+

m(Lm−1)γ
+
m−γ−m are

satisfied for every m = 1, . . . , n . Hence, it is shown using straightforward computations that

there exists a unique solution b∗m of the equation in (2.2.33) such that Lm−1 < b∗m ≤ Lm if and

only if the relationship λmLm−1 < K2 ≤ λm+1Lm ∧ δmLm−1/r holds with

λm =
(γ+
m − 1)R−m + (γ−m − 1)R+

m

γ+
mR

−
m + γ−mR

+
m

< 1 (2.2.40)

for every m = 1, . . . , n , with R+
m and R−m given by (2.2.34)-(2.2.35). Thus, the assump-

tion Lm−1 < b∗m ≤ Lm can equivalently be replaced by the property λmLm−1 < K2 ≤
λm+1Lm ∧ δmLm−1/r . Observe that the latter inequalities can hold for K2 if either Lm ≤
δmLm−1/(λm+1r) when ξm ≤ 0, or λmLm−1/λm+1 < Lm ≤ δmLm−1/(λm+1r) when 0 < ξm < 1,

or δmLm−1/(λm+1r) < Lm when ξm < 1, where ξm is given by

ξm = −γ
−
m(γ−m − 1)R+

m

γ+
m(γ+

m − 1)R−m
(2.2.41)

for every m = 1, . . . , n . However, the property λmLm−1 < K2 ≤ λm+1Lm ∧ δmLm−1/r does not

hold when either Lm−1 < Lm ≤ λmLm−1/λm+1 and 0 < ξm < 1, or ξm ≥ 1 holds, therefore

there is no solution b∗m of the equation in (2.2.33) in the interval (Lm−1, Lm] .

Let us now assume that Lm−1 < K2,m < Lm holds. In this case, it is shown by means of

straightforward computations and using the relationships between R+
m and R−m referred above

that the equation in (2.2.33) admits a unique solution b∗m such that K2,m < b∗m ≤ Lm if and

only if the relationship

δmLm−1

r
∨ δmνmLm−1

r
< K2 ≤ λm+1Lm ∧

δmLm
r

(2.2.42)

holds with λm given by (2.2.40) and νm = ξm
1/(γ+m−γ−m)I(ξm > 0), for every m = 1, . . . , n , where

ξm has the form of (2.2.41). We also observe that the inequalities in (2.2.42) can hold for K2
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if either Lm > δmLm−1/(λm+1r) when ξm ≤ 1, or Lm > δmνmLm−1/(λm+1r) when ξm > 1.

However, the property of (2.2.42) does not hold if either Lm−1 < Lm ≤ δmLm−1/(λm+1r) when

ξm ≤ 1, or νmLm−1 < Lm ≤ δmνmLm−1/(λm+1r) when ξm > 1, or Lm ≤ νmLm−1 when

ξm > 1 holds. Note that the last two cases are separated due to the fact that the property

δmνmLm−1/r > λm+1Lm excludes δmνmLm−1/r > δmLm/r and vice versa.

Summarising the facts proved above, we can therefore formulate the following algorithm to

specify the location interval (Lm−1, Lm] for the solution b∗ of the equation in (2.2.33), based

on the corresponding relationships between K2 , r , δi , Li , λm , ξm , and νm for i,m = 1, . . . , n .

Without loss of generality, let us thus assume that the strike price satisfies Lk−1 < K2 ≤ Lk

for some 1 ≤ k ≤ n , so that there exist n − k + 1 possible intervals in which the solution b∗

can be located. Note that, after finding a solution Lm−1 < b∗m ≤ Lm of the equation in (2.2.33)

for some m = n, . . . , k + 2 going backwards, we can get another solution Li−1 < b∗i ≤ Li if

ξl > 0 and K2 ≤ λlLl−1 holds for some l = m− 1, . . . , k + 1 and l > i . We further denote by

b∗ the maximum over such solutions b∗m , m = n, . . . , k , whenever they exist, and construct the

corresponding solution V (s; b∗) of the form in (2.2.7), which will dominate the other possible

solutions of the second-order ordinary differential equation in (2.1.8), satisfying the conditions

in (2.1.9)-(2.1.10) with b∗m , m = n, . . . , k . The latter fact can be shown by means of the

arguments similar to the ones used in [97; Chapter VI, Remark 23.2] and [97; Chapter VI,

Theorem 24.1], or by verifying directly.

We can therefore start the following backward procedure started with m = n , so that the

value function associated with the solution Lm−1 < b∗m ≤ Lm of the equation in (2.2.33), which

is obtained first for a certain m = n, . . . , k , dominates all the forthcoming possible solutions.

Hence the possibility of having other solutions Li−1 < b∗i ≤ Li for some i < m − 1, does not

make any impact on the procedure described below:

(n) (searching for a solution in the interval (Ln−1, Ln]):

(I) if δnLn−1/r < K2 holds, then we look for a solution b∗n in the smaller interval

(K2,n, Ln] , thus if

(a) either ξn ≤ 1 or ξn > 1 and δnνnLn−1/r < K2 hold, there exists a solution

K2,n < b∗n ≤ Ln of the equation in (2.2.33) for m = n and the optimal stopping

boundary is given by b∗ = b∗n ,

(b) ξn > 1 and K2 ≤ δnνnLn−1/r hold, proceed with checking whether ξi > 0 and

K2 ≤ λiLi−1 hold for some i = n, . . . , k + 1, and in that case, continue with

step (i-1),

(II) if K2 ≤ δnLn−1/r holds, then we observe that if

(a) λnLn−1 < K2 holds, then there exists a solution K2,n < b∗n ≤ Ln of the equation

in (2.2.33) for m = n and the optimal stopping boundary is given by b∗ = b∗n ,

(b) K2 ≤ λnLn−1 holds, then continue with step (n-1);
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...

(m) (searching for a solution in the interval (Lm−1, Lm] , for m = n− 1, . . . , k + 1):

(I) if δmLm/r < K2 holds, then the interval (Lm−1, Lm] belongs to the continuation

region, and we proceed further, when

(a) λmLm−1 < K2 holds, with checking whether ξi > 0 and K2 ≤ λiLi−1 hold for

some i = m− 1, . . . , k + 1, and in that case, continue with step (i-1),

(b) K2 ≤ λmLm−1 holds, continue with step (m-1),

(II) if δmLm−1/r < K2 ≤ δmLm/r holds, then we check for a solution b∗m in the smaller

interval (K2,m, Lm] , thus if

(a) either ξm ≤ 1 or ξm > 1 and δmνmLm−1/r < K2 hold, there exists a solution

K2,m < b∗m ≤ Lm of the equation in (2.2.33) and the optimal stopping boundary

is given by b∗ = b∗m ,

(b) ξm > 1 and K2 ≤ δmνmLm−1/r hold, proceed with checking whether ξi > 0

and K2 ≤ λiLi−1 hold for some i = m, . . . , k + 1, and in that case, continue

with step (i-1),

(III) if K2 ≤ δmLm−1/r holds, then observe that if

(a) λmLm−1 < K2 holds, then there exists a solution Lm−1 < b∗m ≤ Lm of the

equation in (2.2.33) and the optimal stopping boundary is given by b∗ = b∗m ,

(b) K2 ≤ λmLm−1 holds, then continue with step (m-1);
...

(k) (searching for a solution in the interval (K2,k, Lk]):

(I) if δkLk/r < K2 holds, then the interval (K2, Lk] belongs to the continuation region,

(II) if K2 ≤ δkLk/r holds, then observe that if

(a) either ξk ≤ 1 or ξk > 1 and δkνkLk−1/r < K2 hold, then there exists a solution

K2,k < b∗k ≤ Lk of the equation in (2.2.33) for m = k and the optimal stopping

boundary is given by b∗ = b∗k ,

(b) ξk > 1 and K2 ≤ δkνkLk−1/r hold, then there is no solution in the interval

(K2,k, Lk] .

Observe that the algorithm presented above shows explicitly that there exist possible situations

in which there does not exist any solution of the equation in (2.2.33) in anyone of the intervals

(K2,m ∨ Lm−1, Lm] , for m = n, . . . , k , and in this case we set b∗ = ∞ . For instance, such a

situation can occur at part (I)(b) of step (n), under the conditions λnLn−1 < K2 and ξi < 0,

for all i = n− 1, . . . , k + 1.

However, taking into account the analysis above, we conclude that there are various ways

to guarantee the existence of an optimal stopping time in the case of call option. The simplest

conditions we can impose in order to characterize directly the existence of an optimal stopping
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time are as follows. If 0 < K2 < L1 holds, we can choose the underlying parameters such that

the inequality

r K2 < δ1 L1 (2.2.43)

is satisfied, while if Lk−1 ≤ K2 < Lk holds for some k = 2, . . . , n , we can choose the underlying

parameters such that the inequalities

ξi ≤ 1 and r K2 < δi Li (2.2.44)

are satisfied for all i = k, . . . , n . A violation of the condition in (2.2.43) or one of the conditions

on the right-hand side of (2.2.44) for some i , yields that Li ≤ K2,i holds. This fact means

that it is impossible to have an optimal stopping boundary b∗i in the interval (Li−1, Li] , since it

follows from the free-boundary problem that b∗i ≥ K2,i should hold for all i = k, . . . , n . If the

parameters are such that these conditions are violated, then it is likely not to have an optimal

stopping time for the case of call option, even though δi > 0 for all i = 1, . . . , n . This, of

course, also depends on other conditions as it is shown in the algorithm above.

2.2.4. Some remarks. Let us finally give some comments on the resulting algorithms in

the cases of put and call options.

Remark 2.2.1 In the cases of the put or call option, the algorithms above describe how we

begin from the interval (0, L1] or (Ln−1,∞] , checking whether or not there exists an optimal

stopping boundary a∗1 or b∗n in these intervals, respectively. If such a boundary does not exist,

the procedure moves to the next interval (L1, L2] or (Ln−2, Ln−1] , etc. In any case, while

checking the existence of an optimal stopping boundary a∗i or b∗i in (Li−1, Li] , it may happen

that either a∗i = Li or b∗i = Li occurs. In such a case, it is straightforward to see that the

algorithm for the call option works normally. Moreover, it can be seen that this fact creates

no complication in what follows for the case of put option as well, since we ask for the value

function to be smooth at the levels Lj , j = 1, . . . , n− 1, and thus, the instantaneous-stopping

and smooth-fit conditions are still satisfied for s = a∗i = Li , even though the process has

different coefficients immediately before it exits the continuation region, when s = Li− .

2.3. Main results and proof

Taking into account the facts proved above, let us now formulate the main assertions of the

chapter.

Theorem 2.3.1 Suppose that the price process S of the underlying risky asset is defined by

(2.1.1)-(2.1.2), and let 0 = L0 < L1 < . . . < Ln−1 < Ln = ∞, n ∈ N, be some prescribed
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levels. Then, in the optimal stopping problems of (2.1.3), related to the perpetual American put

and call options with strike prices K1, K2 > 0, the value functions are given by

V ∗(s) =

K1 − s, if s ≤ a∗

V (s; a∗), if s > a∗
or V ∗(s) =

V (s; b∗), if s < b∗

s−K2, if s ≥ b∗
(2.3.1)

where the functions V (s; a) and V (s; b) and the optimal exercise time τ ∗ have the form of

(2.2.7) and (2.1.6), respectively, and the optimal stopping boundaries a∗ and b∗ are specified

as follows:

(i) in the put option case, the boundary a∗ satisfies Lj−1 < a∗ ≤ Lj ∧ K1 for a certain

j = 1, . . . , n, and it is specified as the minimal solution of the arithmetic equation in (2.2.17);

(ii) in the call option case, either the boundary b∗ satisfies K2,m ∨ Lm−1 < b∗ ≤ Lm for a

certain m = 1, . . . , n, and it is specified as the maximal solution of the arithmetic equation in

(2.2.33), or we have m = n and b∗ =∞ and thus there is no optimal stopping boundary.

Since both parts of the assertion formulated above are proved in a similar way, we only give

a proof for the problem related to the more complicated case of the perpetual American call

option. It also follows from the results of the previous section that the value function V ∗(s) of

the put (call) option in (2.3.1) is decreasing (increasing) and convex in every interval (Li−1, Li]

separately, for i = 1, . . . , n , and since it is smooth at every point Li for i = 1, . . . , n , we

conclude that it is decreasing (increasing) on the whole half line (0,∞).

Proof of part (ii). In order to verify the assertion stated above, it remains to show that the

function V ∗(s) defined in the right-hand part of (2.3.1) coincides with the value function in

the right-hand part of (2.1.3), and that the stopping time τ ∗ in the right-hand part of (2.1.6)

is optimal with b∗ either being the maximal solution of the equation in (2.2.33) or b∗ = ∞ .

For this, let us denote by V (s) the right-hand side of the right-hand expression in (2.3.1).

Then, applying the local time-space formula from [91] (see also [97; Chapter II, Section 3.5]

for a summary of the related results as well as further references) and taking into account the

smooth-fit condition in the right-hand part of (2.1.10), we get that the expression

e−rt V (St) = V (s) +Mt (2.3.2)

+

∫ t

0

e−ru (LV − rV )(Su) I(Su 6= Li, i = 1, . . . , n− 1, Su 6= b∗) du

holds, where the process M = (Mt)t≥0 defined by

Mt =

∫ t

0

e−ru V ′(Su) Σ(Su)Su dBu (2.3.3)
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is a continuous square integrable martingale with respect to the probability measure P . The

latter fact can easily be observed, since the derivative V ′(s) and Σ(s) are bounded functions.

By means of straightforward calculations, similar to those of the previous section, it can

be verified that the conditions in the right-hand parts of (2.1.12) and (2.1.13) hold with b∗

either being the maximal solution of the equation in (2.2.33) or b∗ =∞ . It is also shown using

the comparison arguments for solutions of second-order ordinary differential equations that, in

the former case, V (s) represents the maximal solution of the equation in (2.1.8) satisfying the

conditions in the right-hand parts of (2.1.9)-(2.1.10). These facts together with the condition in

the right-hand part of (2.1.11) yield that (LV −rV )(s) ≤ 0 holds for all s 6= Li , i = 1, . . . , n−1,

and s 6= b∗ , as well as V (s) ≥ (s−K2) ∨ 0 is satisfied for all s > 0. Moreover, since the time

spent by the process S at the boundary b∗ as well as at the levels Li , i = 1, . . . , n − 1, is of

Lebesgue measure zero, the indicator which appears in the integral of (2.3.2) can be ignored.

Hence, it follows from the expression in (2.3.2) that the inequalities

e−r(τ∧t) (Sτ∧t −K2) ∨ 0 ≤ e−r(τ∧t) V (Sτ∧t) ≤ V (s) +Mτ∧t (2.3.4)

hold for any stopping time τ of the process S started at s > 0. Then, taking the expectation

with respect to P in (2.3.4), we get by means of Doob’s optional sampling theorem (see, e.g.

[69; Chapter I, Theorem 3.22]) that the inequalities

Es
[
e−r(τ∧t) (Sτ∧t −K2) ∨ 0

]
≤ Es

[
e−r(τ∧t) V (Sτ∧t)

]
≤ V (s) + Es

[
Mτ∧t

]
= V (s) (2.3.5)

hold for all s > 0. Thus, letting t go to infinity and using Fatou’s lemma, we obtain

Es
[
e−rτ (Sτ −K2) ∨ 0

]
≤ Es

[
e−rτ V (Sτ )

]
≤ V (s) (2.3.6)

for any stopping time τ and all s > 0. By virtue of the structure of the stopping time τ ∗ in the

right-hand part of (2.1.6), it is readily seen that the equality in (2.3.6) holds with τ ∗ instead

of τ when s ≥ b∗ .

It remains to show that the equality holds in (2.3.6) when τ ∗ replaces τ for s < b∗ . By

virtue of the fact that the function V (s; b∗) and the boundary b∗ satisfy the conditions in the

right-hand parts of (2.1.8) and (2.1.9), it follows from the expression in (2.3.2) and the structure

of the stopping time τ ∗ in the right-hand part of (2.1.6) that the equality

e−r(τ
∗∧t) V (Sτ∗∧t) = V (s) +Mτ∗∧t (2.3.7)

is satisfied for all s < b∗ , where the process M is defined in (2.3.3). Observe that the variable

e−rτ
∗
(Sτ∗−K2)∨0 is equal to zero on the event {τ ∗ =∞} (P -a.s.), and the process (Mτ∗∧t)t≥0

is a uniformly integrable martingale. Therefore, taking the expectations with respect to P and

letting t go to infinity, we can apply the Lebesgue dominated convergence for the expression

in (2.3.7) to obtain the equalities

Es
[
e−rτ

∗
(Sτ∗ −K2) ∨ 0

]
= Es

[
e−rτ

∗
V (Sτ∗)

]
= V (s) (2.3.8)
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for all s < b∗ . The latter, together with the inequality in (2.3.6), implies the fact that V (s)

coincides with the function V ∗(s) from the right-hand part of (2.1.3), and τ ∗ from the right-

hand part of (2.1.6) is an optimal stopping time. �
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Chapter 3

Optimal stopping games in models

with different information flows

In this chapter, we study optimal stopping games associated with perpetual convertible bonds

in an extension of the Black-Merton-Scholes model with random dividends under different

information flows. In this type of contracts, the writers have a right to withdraw the bonds

before the holders can exercise them, by converting the bonds into assets. We derive closed-

form expressions for the value function and the stopping boundaries, in the case of accessible

dividend rate policy, which is modeled by a continuous-time Markov chain. We also present

the analysis of the associated parabolic-type free-boundary problem in the case of inaccessible

dividend rate policy. In the latter case, the optimal exercise times are found as the first times

at which the asset price process hits boundaries depending on the running state of the filtering

dividend rate estimate. Finally, we present explicit estimates for the value function and the

optimal exercise boundaries in the case in which the dividend rate is accessible to the writers

but inaccessible to the holders of the bonds.

3.1. Preliminaries

In this section, we introduce the setting and notation of the optimal stopping game, which

is related to the pricing of perpetual convertible bonds under partial information.

3.1.1. The model. Let us suppose that there exist a standard Brownian motion B =

(Bt)t≥0 on a probability space (Ω,G, P ) as well as a continuous-time Markov chain Θ = (Θt)t≥0 ,

with two states 0 and 1. Assume that Θ has initial distribution {1 − π, π} , for π ∈ [0, 1],

transition probability matrix (1/2) {1 + e−2λt, 1 − e−2λt; 1 − e−2λt, 1 + e−2λt} , for t ≥ 0, and

intensity matrix {−λ, λ;λ,−λ} , for some λ ≥ 0 fixed. Moreover, suppose that the processes
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B and Θ are independent. Let us define the process S = (St)t≥0 , started at some s > 0, by

St = s exp

(∫ t

0

(
r − σ2

2
− δ0 − (δ1 − δ0) Θu

)
du+ σ Bt

)
(3.1.1)

which solves the stochastic differential equation

dSt =
(
r − δ0 − (δ1 − δ0) Θt

)
St dt+ σ St dBt (S0 = s) (3.1.2)

where σ > 0 and 0 < δi < r , for every i = 0, 1, are some given constants.

Assume that the process S describes the risk-neutral dynamics of the market price of a

dividend paying risky asset under a martingale measure P , where r is the interest rate of a

riskless bank account and σ is the volatility coefficient. Suppose that Θ reflects the switching

behavior of the economic state of the firm issuing the asset, from 0 (the firm is in the so-called

good state) to 1 (the firm is in the so-called bad state) and vise versa. In those cases, the asset

pays dividends at the rate δ0 when Θt = 0, and the dividend rate is δ1 when Θt = 1, for any

t ≥ 0. We let the time of each stay be exponentially distributed with parameter λ . Such a

switching model was proposed by Shiryaev [105; Chapter III, Section 4a] for the description of

the interest rate dynamics. Some other models with random dividends were earlier considered

in the literature (see, e.g. Geske [53]), where the possibility of significant stochastic dividend

effects on the rational values of contingent claims was emphasised. We now assume that the

dividend rate regulation process δ0 + (δ1 − δ0)Θ is unknown to small investors trading in the

market, who can only observe the dynamics of the asset price S .

It is shown by means of standard arguments (see, e.g. [79; Chapter IX] or [39; Chapter VIII])

that the asset price process S from (3.1.2) admits the representation

dSt =
(
r − δ0 − (δ1 − δ0) Πt

)
St dt+ σ St dBt (S0 = s) (3.1.3)

on the filtration Ft = σ(Su | 0 ≤ u ≤ t), and the filtering estimate Π = (Πt)t≥0 defined by

Πt = E[Θt | Ft] ≡ P (Θt = 1 | Ft) solves the stochastic differential equation

dΠt = λ (1− 2Πt) dt−
δ1 − δ0

σ
Πt(1− Πt) dBt (Π0 = π) (3.1.4)

for some (s, π) ∈ (0,∞)× [0, 1] fixed. Here, the innovation process B = (Bt)t≥0 defined by

Bt =

∫ t

0

dSu
σSu
− 1

σ

∫ t

0

(
r − δ0 − (δ1 − δ0) Πu

)
du (3.1.5)

is a standard Brownian motion, according to P. Lévy’s characterization theorem (see, e.g. [79;

Theorem 4.1]). It can be verified that (S,Π) is a (time-homogeneous strong) Markov process

under P with respect to its natural filtration (Ft)t≥0 , as a unique strong solution of the system

of stochastic differential equations in (3.1.3) and (3.1.4) (see, e.g. [86; Theorem 7.2.4]).
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3.1.2. The optimal stopping game. Assume that a small investor writes a convertible

bond on the underlying risky asset with the market price S and sells it to another small investor

at time zero. Then, the holder of the bond can decide whether to continue holding it and collect

the coupon payments at the rate c+ ρS , with some c > 0 and ρ ≥ 0 fixed, or to terminate the

contract by converting it into a unit of the asset and thus receive the (discounted) amount

Yt =

∫ t

0

e−ru (c+ ρSu) du+ e−rt St (3.1.6)

from the writer. The latter can recall the bond at some strike K > 0 and, at the same time,

offers the holder an opportunity to convert the bond instantly. In other words, the writer can

terminate the contract by paying the amount max{K,S} ≡ K ∨ S to the holder and thus

deliver the total (discounted) amount

Zt =

∫ t

0

e−ru (c+ ρSu) du+ e−rt (K ∨ St) (3.1.7)

to the holder, at any time t ≥ 0.

Taking into account the fact that the holder looks for a converting time maximising the

expected discounted amount received from the writer, while the latter looks for a recalling time

minimising the same quantity, such a contract can be expressed as a standard game contingent

claim. More precisely, it follows from the results of Kifer [73] and Kallsen and Kühn [68] (see

also [46]) that the rational (or no-arbitrage) price of such a claim coincides with the value of

the optimal stopping game

V∗(s, π) = inf
ζ

sup
τ
Es,π

[
YτI(τ < ζ) + ZζI(ζ ≤ τ)

]
(3.1.8)

= sup
τ

inf
ζ
Es,π

[
YτI(τ < ζ) + ZζI(ζ ≤ τ)

]
where Ps,π is a probability measure of the diffusion process (S,Π) starting at some (s, π) ∈
(0,∞)× [0, 1] and solving the two-dimensional system of equations in (3.1.3) and (3.1.4), while

I(·) denotes the indicator function. The infimum and the supremum in (3.1.8) are therefore

taken over all stopping times ζ and τ of (S,Π). Note that in case c ≥ rK , the solution of

the problem (3.1.8) is trivial, so that we further assume that c < rK . We also suppose that

ρ < δi for both i = 0, 1, since otherwise, the coupon payments for the convertible bond will

exceed the dividend payments of the underlying asset. Some other optimal stopping problems

for essentially two-dimensional diffusion processes were recently studied in [50]-[51] and [45].

3.1.3. The structure of optimal stopping times. By means of the general theory

of optimal stopping problems for Markov processes (see, e.g. [97; Chapter I, Section 2.2]),

it follows from the structure of the lower and upper processes Y and Z in (3.1.6)-(3.1.7),
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respectively, that the optimal stopping times at which the writer and the holder of the bond

should terminate the contract are given by

τ∗ = inf{t ≥ 0 |V∗(St,Πt) = St} and ζ∗ = inf{t ≥ 0 |V∗(St,Πt) = K ∨ St} (3.1.9)

whenever they exist. Then, using the results of general theory of optimal stopping games (see,

e.g. [32], [14]-[15], [40]-[41], [75], [78], and [22]), we may therefore conclude from the structure

of the value function in (3.1.8) that the continuation region has the form

C∗ = {(s, π) ∈ (0,∞)× [0, 1] | s < V∗(s, π) < K} (3.1.10)

and belongs to the rectangle {(s, π) ∈ (0, K) × [0, 1]} . These arguments also imply that only

one of the scenarios, τ∗ < ζ∗ , or ζ∗ < τ∗ , or ζ∗ = τ∗ (Ps,π -a.s.), can be realised for each starting

point (s, π) of the process (S,Π), whenever the optimal stopping times in (3.1.9) exist.

(i) Let us first assume that for (s, π) fixed, the scenario τ∗ < ζ∗ (Ps,π -a.s.) is realised.

Then, applying Itô’s formula (see, e.g. [79; Theorem 4.4]) to the function e−rts , we obtain from

(3.1.3) and (3.1.6) the representation

Yt = s+

∫ t

0

e−ruH(Su,Πu) du+Nt with Nt =

∫ t

0

e−ru σSu dBu (3.1.11)

where we set H(s, π) = c+ (ρ− δ0− (δ1− δ0)π)s , and the process N = (Nt)t≥0 is a continuous

square integrable martingale under Ps,π . Hence, applying Doob’s optional sampling theorem

(see, e.g. [79; Theorem 3.6]), we get from the expression in (3.1.11) that

Es,π Yτ = s+ Es,π

∫ τ

0

e−ruH(Su,Πu) du (3.1.12)

holds for any stopping time τ and all (s, π) ∈ (0,∞)×[0, 1]. It is seen from (3.1.12) and (3.1.10)

that it is never optimal to stop whenever H(St,Πt) > 0 and St < K for any 0 ≤ t < ζ∗ (Ps,π -

a.s.). This shows that all the points (s, π) satisfying 0 < s < b(π), with b(π) = (c/(δ0 + (δ1 −
δ0)π − ρ)) ∧K for π ∈ [0, 1], belong to the continuation region C∗ in (3.1.10).

Let us now fix some (s, π) ∈ C∗ and let τ∗ = τ∗(s, π) denote the optimal stopping time in

the problem of (3.1.8). Then, by means of the results of general optimal stopping theory for

Markov processes (see, e.g. [97; Chapter I, Section 2.2]), we conclude from the structure of the

reward in (3.1.8) under the assumption τ∗ < ζ∗ (Ps,π -a.s.) and the expression in (3.1.12) that

V∗(s, π)− s = Es,π

∫ τ∗

0

e−ruH(Su,Πu) du > 0 (3.1.13)

holds. Hence, taking any s′ such that b(π) < s′ < s < K and using the explicit expression for

the process S through its starting point in (3.1.1), we obtain from (3.1.12) that the inequalities

V∗(s
′, π)− s′ ≥ Es′,π

∫ τ∗

0

e−ruH(Su,Πu) du ≥ Es,π

∫ τ∗

0

e−ruH(Su,Πu) du (3.1.14)
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are satisfied. Thus, taking into account the fact that 0 < δi < r for i = 0, 1, by virtue of the

inequality in (3.1.13), we see that (s′, π) ∈ C∗ . These arguments, together with the convexity

of the function s 7→ V∗(s, π) on (0,∞) under τ∗ < ζ∗ (Ps,π -a.s.), show the existence of a

function b∗(π) such that b(π) ≤ b∗(π) ≤ K holds, and therefore, all the points (s, π) satisfying

0 < s < b∗(π) and π ∈ [0, 1] belong to the continuation region in (3.1.10).

For any (s, π) ∈ C∗ fixed, let us now take π′ such that π < π′ if δ0 > δ1 (or π′ < π if

δ0 < δ1 ), whenever s < K . Then, using the facts that (S,Π) is a time-homogeneous Markov

process and τ∗(s, π) does not depend on π′ , taking into account the comparison results for

solutions of stochastic differential equations, we obtain from (3.1.12) that the inequalities

V∗(s, π
′)− s ≥ Es,π′

∫ τ∗

0

e−ruH(Su,Πu) du ≥ Es,π

∫ τ∗

0

e−ruH(Su,Πu) du (3.1.15)

hold. By virtue of the inequality in (3.1.13), we may conclude that (s, π′) ∈ C∗ , so that the

boundary b∗(π) is increasing (decreasing) on [0, 1], whenever δ0 > δ1 (δ0 < δ1 ).

(ii) Let us now assume that for (s, π) fixed, the scenario ζ∗ < τ∗ (Ps,π -a.s.) is realised.

Then, applying the change-of-variable formula from [92] to the function e−rt(K ∨ s), we obtain

from (3.1.3) and (3.1.7) the representation

Zt = K ∨ s+

∫ t

0

e−ruG(Su,Πu) du+
1

2

∫ t

0

e−ru I(Su = K) d`Ku (S) +NK
t (3.1.16)

where we set G(s, π) = c + ρs − (δ0 + (δ1 − δ0)π)sI(s > K) − rKI(s < K), and the process

`K(S) = (`Kt (S))t≥0 is the local time of S at the point K given by

`Kt (S) = lim
ε↓0

1

2ε

∫ t

0

I(K − ε < Su < K + ε)σ2S2
u du (3.1.17)

as a limit in probability. Here, the process NK = (NK
t )t≥0 defined by

NK
t =

∫ t

0

e−ru I(Su > K)σSu dBu (3.1.18)

is a continuous square integrable martingale under Ps,π . Hence, applying Doob’s optional

sampling theorem, we get from the expression (3.1.16) that

Es,π Zζ = K ∨ s+ Es,π

[ ∫ ζ

0

e−ruG(Su,Πu) du +
1

2

∫ ζ

0

e−ru I(Su = K) d`Ku (S)

]
(3.1.19)

holds for any stopping time ζ and all (s, π) ∈ (0,∞)× [0, 1]. Taking into account the structure

of the reward in (3.1.8) under the assumption ζ∗ < τ∗ (Ps,π -a.s.), it is seen from (3.1.19) and

(3.1.10) that it is never optimal to stop whenever G(St,Πt) < 0 and St < K for any 0 ≤ t < τ∗

(Ps,π -a.s.). This shows that all points (s, π) such that 0 < s < a with a = ((rK − c)/ρ) ∧K
belong to the continuation region in (3.1.10).

57



Let us now fix some (s, π) ∈ C∗ and let ζ∗ = ζ∗(s, π) denote the optimal stopping time in

the problem of (3.1.8). Then, by means of the results of general optimal stopping theory for

Markov processes, we conclude from the structure of the reward in (3.1.8) under the assumption

ζ∗ < τ∗ (Ps,π -a.s.) and the expression in (3.1.19) that

V∗(s, π)−K = Es,π

[ ∫ ζ∗

0

e−ruG(Su,Πu) du+
1

2

∫ ζ∗

0

e−ru I(Su = K) d`Ku (S)

]
< 0 (3.1.20)

holds. Taking into account the structure of the optimal stopping times in (3.1.9), we may

conclude that the indicator and thus the whole second term in the right part of (3.1.20) can be

set to zero. Hence, taking any s′ such that a < s′ < s < K and using the explicit expression for

the process S through its starting point in (3.1.1), we obtain from (3.1.19) that the inequalities

V∗(s
′, π)−K ≤ Es′,π

∫ ζ∗

0

e−ruG(Su,Πu) du ≤ Es,π

∫ ζ∗

0

e−ruG(Su,Πu) du (3.1.21)

are satisfied. Thus, taking into account the fact that 0 < δi < r for i = 0, 1, by virtue of the

inequality in (3.1.20) we see that (s′, π) ∈ C∗ . These arguments, together with the concavity

of the function s 7→ V∗(s, π) on (0, K) under ζ∗ < τ∗ (Ps,π -a.s.), show the existence of a

function a∗(π) such that a ≤ a∗(π) ≤ K holds, and therefore, all the points (s, π) satisfying

0 < s < a∗(π) and π ∈ [0, 1] belong to the continuation region in (3.1.10).

For any (s, π) ∈ C∗ fixed, let us now take π′ such that π′ < π if δ0 > δ1 (or π < π′ if

δ0 < δ1 ), whenever s < K . Then, using the facts that (S,Π) is a time-homogeneous Markov

process and ζ∗(s, π) does not depend on π′ , taking into account the comparison results for

solutions of stochastic differential equations, we obtain from (3.1.19) that the inequalities

V∗(s, π
′)−K ≤ Es,π′

∫ ζ∗

0

e−ruG(Su,Πu) du ≤ Es,π

∫ ζ∗

0

e−ruG(Su,Πu) du (3.1.22)

hold. By virtue of the inequality in (3.1.20), we may conclude that (s, π′) ∈ C∗ , so that the

boundary a∗(π) is decreasing (increasing) on [0, 1], whenever δ0 > δ1 (δ0 < δ1 ).

(iii) Let us finally assume that for (s, π) fixed, the scenario ζ∗ = τ∗ (Ps,π -a.s.) is realised.

Then, according to the arguments of two previous parts above, we may conclude directly from

the structure of the value function in (3.1.8) and the optimal stopping times in (3.1.9) that

a∗(π) = b∗(π) = K and V∗(s, π) = s for all s ≥ K and π ∈ [0, 1], so that the continuation

region in (3.1.10) coincides with the set {(s, π) ∈ (0, K)× [0, 1]} in this case.

Summarising the facts proved above, we are now ready to formulate the following assertion.

Lemma 3.1.1 Suppose that σ > 0 and 0 < δi < r for every i = 0, 1 in (3.1.1)-(3.1.2). Then,

in the optimal stopping game of (3.1.8) with c < rK and ρ < δi , for every i = 0, 1, the optimal

stopping times from (3.1.9) have the structure

τ∗ = inf{t ≥ 0 |St ≥ b∗(Πt)} and ζ∗ = inf{t ≥ 0 |St ≥ a∗(Πt)} (3.1.23)
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so that the continuation region in (3.1.10) takes the form

C∗ = {(s, π) ∈ (0, K)× [0, 1] | s < a∗(π) ∧ b∗(π)} (3.1.24)

where the functions a∗(π) and b∗(π) have the properties

b∗(π) : [0, 1]→ (0, K] is increasing / decreasing if δ0 > δ1 / δ0 < δ1 (3.1.25)

b(π) ≤ b∗(π) ≤ K with b(π) = (c/(δ0 + (δ1 − δ0)π − ρ)) ∧K (3.1.26)

a∗(π) : [0, 1]→ (0, K] is decreasing / increasing if δ0 > δ1 / δ0 < δ1 (3.1.27)

a ≤ a∗(π) ≤ K with a = ((rK − c)/ρ) ∧K (3.1.28)

for all π ∈ [0, 1]. Moreover, stopping the game simultaneously by both the writer and the holder

cannot be optimal as long as the process S fluctuates in the interval (0, K). This fact means

that only one of the scenarios, b∗(π) < a∗(π) = K , a∗(π) < b∗(π) = K , a∗(π) = b∗(π) = K for

all π ∈ [0, 1], can be realised.

3.2. The case of full information

In this section, we formulate the optimal stopping game in the corresponding model with

full information, when both the writer and the holder of the convertible bond have access to

the dividend policy of the issuing firm, which is modeled by the continuous Markov chain Θ.

We derive a closed-form solution to the equivalent free-boundary problem resulting to Theorem

3.2.1.

3.2.1. The optimal stopping game. The associated optimal stopping game in the model

with full information considers the computation of the value function

U∗(s, i) = inf
ζ′

sup
τ ′
Es,i
[
Yτ ′I(τ ′ < ζ ′) + Zζ′I(ζ ′ ≤ τ ′)

]
(3.2.1)

= sup
τ ′

inf
ζ′
Es,i
[
Yτ ′I(τ ′ < ζ ′) + Zζ′I(ζ ′ ≤ τ ′)

]
where Ps,i is a probability measure of the process (S,Θ) started at some (s, i) ∈ (0,∞)×{0, 1} .
The supremum and infimum in (3.2.1) are taken over all stopping times τ ′ and ζ ′ with respect

to the filtration Gt = σ(Su,Θu | 0 ≤ u ≤ t), t ≥ 0. Since the continuous time Markov chain Θ

is observable in this formulation, it follows from Lemma 3.1.1 that the optimal stopping times

for the problem of (3.2.1) should be of the form

τ ′∗ = inf{t ≥ 0 |St ≥ h∗(Θt)} and ζ ′∗ = inf{t ≥ 0 |St ≥ g∗(Θt)} (3.2.2)

for some functions h∗(i) and g∗(i), i = 0, 1, to be determined.
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3.2.2. The free-boundary problem. By means of standard arguments based on the

application of Itô’s formula, it is shown that the infinitesimal operator L(S,Θ) of the process

(S,Θ) from (3.1.1)-(3.1.2) acts on an arbitrary function F (s, i), which is twice continuously

differentiable on (0,∞) for i = 0, 1 fixed, according to the rule

(L(S,Θ)F )(s, i) = (r − δ0 − (δ1 − δ0) i) s Fs(s, i) +
1

2
σ2s2 Fss(s, i) (3.2.3)

+ λ
(
F (s, 1− i)− F (s, i)

)
for all (s, i) ∈ (0,∞) × {0, 1} . Following the way of arguments from [62] (see also [65] for a

more general model), we conclude that the function U∗(s, i) and the boundaries g∗(i) and h∗(i)

solve the coupled second-order ordinary differential free-boundary problem

(L(S,Θ)U − rU)(s, i) = −(c+ ρs) for 0 < s < g(i) ∧ h(i) (3.2.4)

U(s, i)
∣∣
s=h(i)− = h(i) if h(i) ≤ g(i) = K, U(s, i)

∣∣
s=g(i)− = K if g(i) ≤ h(i) = K (3.2.5)

U(s, i) = s for s > h(i), if h(i) ≤ g(i) = K, (3.2.6)

U(s, i) = K ∨ s for s > g(i), if g(i) ≤ h(i) = K (3.2.7)

s < U(s, i) < K ∨ s for 0 < s < g(i) ∧ h(i) (3.2.8)

(L(S,Θ)U − rU)(s, i) < −(c+ ρs) for s > h(i), h(i) ≤ g(i) = K, (3.2.9)

(L(S,Θ)U − rU)(s, i) > −(c+ ρs) for s > g(i), g(i) ≤ h(i) = K (3.2.10)

with g(i) and h(i) instead of g∗(i) and h∗(i) and the additional conditions

U(s, i)
∣∣
s=0+

is finite (3.2.11)

Us(s, i)
∣∣
s=h(i)− = 1 if h(i) < g(i) = K, Us(s, i)

∣∣
s=g(i)− = 0 if g(i) < h(i) = K (3.2.12)

for the relevant cases (see subsection 3.2.3 below). Here, the instantaneous-stopping, natural

boundary, and smooth-fit conditions in (3.2.5), (3.2.11) and (3.2.12), respectively, are satisfied

for every i = 0, 1.

3.2.3. Solution of the free-boundary problem. In order to simplify the exposition and

without loss of generality, we further assume that δ0 > δ1 . Then, applying the same arguments

as in Subsection 2.3 above, we thus conclude that the inequality U∗(s, 0) ≤ U∗(s, 1) holds for

the value function in (3.2.1) implying the inequalities h∗(0) ≤ h∗(1) and g∗(1) ≤ g∗(0) for the

optimal exercise boundaries. By means of straightforward computations, we obtain that the

general solution of the two-dimensional system of second-order ordinary differential equations

in (3.2.4) is given by

U(s, i) =
4∑
j=1

Cj(i) s
βj + Ai(s) with Ai(s) =

(2λ+ δ1 − (δ1 − δ0)i)ρ

(δ0 + λ)(δ1 + λ)− λ2
s+

c

r
(3.2.13)
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for 0 < s < g(1) ∧ h(0) and i = 0, 1, as well as

U(s, i) =
2∑
j=1

Dj(i) s
γi,j +Bi(s) with Bi(s) =

ρ+ λi

δi + λ
s+

c+ λK(1− i)
r + λ

(3.2.14)

for g(1−i)∧h(1−i) < s < g(i)∧h(i) ≤ K , where i is uniquely chosen such that this interval for

s exists, whenever such a situation is realised. Here Cj(i), j = 1, 2, 3, 4, and Dk(i), k = 1, 2,

are some arbitrary constants, β4 < β3 < 0 < β2 < β1 are the roots of the corresponding

characteristic equation

Q0(β)Q1(β) = λ2 with Qi(β) = r + λ− β(r − δi)−
1

2
β(β − 1)σ2 (3.2.15)

and γi,2 < 0 < 1 < γi,1 are explicitly given by

γi,k =
1

2
− r − δi

σ2
− (−1)k

√(
1

2
− r − δi

σ2

)2

+
2(r + λ)

σ2
(3.2.16)

for every i = 0, 1 and k = 1, 2. Observe that we should have Cj(i) = 0, j = 3, 4, in (3.2.13),

since otherwise U(s, i) → ±∞ as s ↓ 0, that must be excluded by virtue of the obvious fact

that the value function in (3.2.1) is bounded under s ↓ 0. The latter fact also follows from the

property that 0 cannot be reached by the process S in a finite time, that is expressed by the

condition of (3.2.11).

We further derive closed-form solutions for the free-boundary problem of (3.2.4)-(3.2.12)

under four possible ordered combinations of optimal exercise boundaries g(i) and h(i), i = 0, 1,

that can be realised.

(i) Suppose that the combination h(0) ≤ h(1) ≤ K = g(0) = g(1) is realised. Then,

applying the conditions of (3.2.5) and (3.2.12) to the functions in (3.2.13), under the assumption

that Cj(i) = 0, j = 3, 4, and to the function in (3.2.14) for i = 1, we obtain that the equalities

Cj(0)Q0(βj) = Cj(1)λ for j = 1, 2 (3.2.17)

as well as

2∑
j=1

Cj(0)hβj(0) + A0(h(0)) = h(0),
2∑
j=1

Cj(0) βj h
βj(0) + h(0)A′0(h(0)) = h(0) (3.2.18)

and

2∑
j=1

Dj(1)hγ1,j(1) +B1(h(1)) = h(1),
2∑
j=1

Dj(1) γ1,j h
γ1,j(1) + h(1)B′1(h(1)) = h(1) (3.2.19)
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hold. Observe that, since the inequality h(0) ≤ h(1) holds, the function in (3.2.13)-(3.2.14) for

i = 1, when the process Θ is in the state 1, should be continuously differentiable and thus the

equalities

2∑
j=1

Cj(1)hβj(0) + A1(h(0)) =
2∑
j=1

Dj(1)hγ1,j(0) +B1(h(0)) (3.2.20)

and

2∑
j=1

Cj(1) βj h
βj(0) + h(0)A′1(h(0)) =

2∑
j=1

Dj(1) γ1,j h
γ1,j(0) + h(0)B′1(h(0)) (3.2.21)

are satisfied for 0 < h(0) < K . Hence, solving the system in (3.2.18)-(3.2.21), we obtain that

the solution of the free-boundary problem in (3.2.4)-(3.2.5) and (3.2.11)-(3.2.12) is given by

U(s, 0;h∗(0)) = C1(0;h∗(0)) sβ1 + C2(0;h∗(0)) sβ2 + A0(s) (3.2.22)

and

U(s, 1;h∗(0), h∗(1)) = C1(1;h∗(0), h∗(1)) sβ1 + C2(1;h∗(0), h∗(1)) sβ2 + A1(s) (3.2.23)

for 0 < s < h∗(0), as well as

U(s, 1;h∗(1)) = D1(1;h∗(1)) sγ1,1 +D2(1;h∗(1)) sγ1,2 +B1(s) (3.2.24)

for h∗(0) ≤ s < h∗(1), where

Cj(0;h∗(0)) =
(1− β3−j)r(A0(h∗(0))− h∗(0))− c

(β3−j − βj)rh
βj
∗ (0)

(3.2.25)

Cj(1;h∗(0), h∗(1)) (3.2.26)

=
2∑

k=1

(β3−j − γ1,k)Dk(1;h∗(1))h
γ1,k
∗ (0)

(β3−j − βj)h
βj
∗ (0)

+
(β3−j − 1)(r + λ)r(B1(h∗(0))− A1(h∗(0)))− cλ

(β3−j − βj)(r + λ)rh
βj
∗ (0)

and

Dj(1;h∗(1)) =
(1− γ1,3−j)(r + λ)(B1(h∗(1))− h∗(1))− c

(r + λ)(γ1,3−j − γ1,j)h
γ1,j
∗ (1)

(3.2.27)

for j = 1, 2, and the functions Ai(s), i = 1, 2, and B1(s) are given in (3.2.13)-(3.2.14). Here,

the couple h∗(0) and h∗(1) is determined as the unique solution of the system of equations in

(3.2.17), having the form

Cj(0;h(0))Q0(βj) = λCj(1;h(0), h(1)) (3.2.28)
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for j = 1, 2, where Q0(βj) is given by (3.2.15). It is shown by means of standard arguments

that the system in (3.2.28) is equivalent to

I1,1(h(0)) = J1,1(h(1)) and I1,2(h(0)) = J1,2(h(1)) (3.2.29)

with

I1,k(s) =
2∑
j=1

(−1)j
(
c

r
γ1,3−k β3−j

(
Q0(βj)−

λ2

λ+ r

)
− c

r
β1 β2Q0(βj) s

−γ1,k (3.2.30)

+
(δ0 + δ1 − 2ρ)λ+ δ1(δ0 − ρ)

(δ0 + λ)(δ1 + λ)− λ2
(β3−j − 1) (βj − γ1,3−k)

(
Q0(βj)−

λ2

λ+ δ1

)
s1−γ1,k

)
and

J1,k(s) =
λ(β1 − β2)(γ1,1 − γ1,2)

sγ1,k

(
(1− γ1,3−k)

ρ− δ1

δ1 + λ
s− γ1,3−k

c

r + λ

)
(3.2.31)

for k = 1, 2. It follows from the inequality in (3.2.9) that c/(δ1 − ρ) < h(1) ≤ K and

c/(δ0 − ρ) < H∗(h(1)) < h(0) ≤ h(1) ≤ K holds, where H∗(h(1)) denotes the unique solution

of the equation

λ(U(H, 1;h(1))−H) = (δ0 − ρ)H − c (3.2.32)

and U(s, 1;h(1)) is given by (3.2.24), for every h(1) fixed. The existence of a unique solution

of the latter equation on the interval (c/(δ0− ρ), h(1)) follows from the facts that the function

U(s, 1;h(1))− s is nonnegative and decreasing and satisfies U(h(1), 1;h(1))− h(1) = 0, while

the function (δ0 − ρ)s − c is increasing, with the range (0, (δ0 − ρ)h(1) − c). Therefore, the

case h(0) ≤ h(1) ≤ K = g(0) = g(1) can only be realised if c/(δ1 − ρ) < K holds, that also

guarantees that H∗(h(1)) < K holds, under the assumption that δ0 > δ1 .

Let us now proceed with the analysis of the system of equations in (3.2.29). For this, we

observe from the expressions for the derivatives of the functions in (3.2.30)-(3.2.31), together

with the facts that 1 < β2 < γ1,1 < β1 , Q0(β1) < 0 < Q0(β2), and λ2/(δ1 + λ) < Q0(β2) hold,

that the function I1,1(s) is increasing on (0, µ1,1), with I1,1(0+) = −∞ and I1,1(µ1,1) > 0, and

decreasing on (µ1,1,∞), with I1,1(∞) = 0+. Moreover, it is shown that the functions J1,k(s)

are decreasing on (0, c/(δ1 − ρ)), with J1,1(0+) = ∞ , J1,2(0) = 0, and J1,k(c/(δ1 − ρ)) < 0,

k = 1, 2, and increasing on (c/(δ1− ρ),∞), with J1,1(∞) = 0− and J1,2(∞) =∞ . We further

distinguish the three subcases generated by the shape of the function I1,2(s) and specified by

the location of the point Q0(β2) with respect to the points ((γ1,1−1)L1(δ1)+(β2−1)L2)/(β1−1)

and (γ1,1L1(r) + β2L2)/β1 , where the function L1(δ) and the constant L2 are defined by

L1(δ) =
λ2

δ + λ

β1 − β2

γ1,1 − β2

> 0 and L2 = Q0(β1)
γ1,1 − β1

γ1,1 − β2

> 0 (3.2.33)
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for all δ > 0. For instance, let us assume that the property (γ1,1L1(δ1) + β2L2)/β1 < Q0(β2)

holds, and the two other subcases are analysed using arguments similar to the ones that follow.

It is shown that the function I1,2(s) is increasing on (0, µ1,2), with I1,2(0) = 0 and I1,2(µ1,2) > 0,

and decreasing on (µ1,2,∞), with I1,2(∞) = −∞ , where µ1,k is the unique point at which the

function I1,k(s) attains its maximum, for k = 1, 2.

Taking into account the shape of the functions in (3.2.29) as well as the fact that h(0) ≤
h(1) ≤ K holds in this case, we obtain from the equation on the left-hand side of (3.2.29)

that, for every h(1) ∈ ((c/(δ1− ρ))∨H1, K] , there exists a unique h(0) ∈ (H1(0; (c/(δ1− ρ))∨
H1), H1(0;K)], while from the equation on the right-hand side of (3.2.29) that, for every h(1) ∈
((c/(δ1−ρ))∨H2, K∧H̃] , there exists a unique h(0) ∈ [H2(0;K∧H̃), H2(0; (c/(δ1−ρ))∨H2)),

where

Hi(0; s) = sup{h(0) ≤ s | I1,i(h(0)) = J1,i(s)}

and H i and H̃ are the unique solutions of the equations

I1,i(s) = J1,i(s) and I1,2(µ1,2) = J1,2(s)

for i = 1, 2, respectively.

Therefore, the equations in (3.2.29) uniquely define an increasing function h+(1;h(0)) on

(H1(0; (c/(δ1 − ρ)) ∨H1), H1(0;K)), with the range ((c/(δ1 − ρ)) ∨H1, K), and a decreasing

function h−(1;h(0)) on (H2(0;K ∧ H̃), H2(0; (c/(δ1−ρ))∨H2)), with the range ((c/(δ1−ρ))∨
H2, K∧H̃). The curves associated with these functions can have at most one intersection point

which has the coordinates h∗(0) and h∗(1) such that H1(0; (c/(δ1−ρ))∨H1)∨H2(0;K ∧ H̃) <

h∗(0) < H1(0;K)∧H2(0; (c/(δ1−ρ))∨H2) and (c/(δ1−ρ))∨H1∨H2 < h+(1;h∗(0)) = h∗(1) =

h−(1;h∗(0)) < K ∧ H̃ holds.

(ii) Suppose that the combination h(0) ≤ K = h(1) = g(0) = g(1) is realised. Then,

applying the conditions of (3.2.5) and (3.2.12) to the function in (3.2.13), under the assumption

that Cj(i) = 0, j = 3, 4, we obtain that the equalities in (3.2.17)-(3.2.18) hold, while applying

(3.2.5) to the function (3.2.14) for i = 1, when the process S hits the level K , we obtain that

the equality

D1(1)Kγ1,1 +D2(1)Kγ1,2 +B1(K) = K (3.2.34)

holds as well. Observe that, since the inequality h(0) ≤ K holds, the function in (3.2.13)-

(3.2.14) for i = 1, when the process Θ is in the state 1, should be continuously differentiable,

and thus, the equalities in (3.2.20)-(3.2.21) hold. Hence, solving the system in (3.2.18), (3.2.34)

and (3.2.20)-(3.2.21), we obtain that the solution of the free-boundary problem in (3.2.4)-(3.2.5),

(3.2.11) and (3.2.12) for i = 0, is given by U(s, 0;h∗(0)) in (3.2.22) and

U(s, 1;h∗(0), K) = C1(1;h∗(0), f(1)) sβ1 + C2(1;h∗(0), f(1)) sβ2 + A1(s) (3.2.35)
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for 0 < s < h∗(0), as well as

U(s, 1;K) = f(1) sγ1,1 + ((K −B1(K))K−γ1,2 − f(1)Kγ1,1−γ1,2) sγ1,2 +B1(s) (3.2.36)

for h∗(0) ≤ s < K , where Cj(1;h∗(0), f(1)), j = 1, 2, admits the representation of (3.2.26) with

D1(1;h∗(1)) = f(1) and D2(1;h∗(1)) = (K − B1(K))K−γ1,2 − f(1)Kγ1,1−γ1,2 , for an arbitrary

variable f(1), and the functions A1(s) and B1(s) are given by (3.2.13)-(3.2.14). Here, the

couple f∗(1) and h∗(0) is determined as the unique solution of the system of equations in

(3.2.17), having the form

Cj(0;h(0))Q0(βj) = λCj(1;h(0), f(1)) (3.2.37)

where Q0(βj) is given by (3.2.15), for j = 1, 2. It is shown by means of standard arguments

that the system in (3.2.37) is equivalent to

I1,1(h(0)) = J2,1(f(1)) and I1,2(h(0)) = J2,2(f(1)) (3.2.38)

with I1,k(h(0)), k = 1, 2, given by the equation in (3.2.30), as well as

J2,1(f(1)) = λ (β1 − β2) (γ1,1 − γ1,2) f(1) (3.2.39)

and

J2,2(f(1)) = λ (β1 − β2) (γ1,1 − γ1,2) (Kγ1,1−γ1,2 f(1) + (B1(K)−K)K−γ1,2). (3.2.40)

It follows from the inequality in (3.2.9) and the corresponding analysis presented in part (i)

above that c/(δ0 − ρ) < H∗(f(1)) < h(0) ≤ K holds, where H∗(f(1)) denotes the unique

solution of the equation

λ(U(H, 1;K)−H) = (δ0 − ρ)H − c (3.2.41)

with U(s, 1;K) given by (3.2.36), for every f(1) fixed. Therefore, the case h(0) ≤ K = h(1) =

g(0) = g(1) is realised if c/(δ0−ρ) < K holds, under the assumption that δ0 > δ1 . In particular,

this case is the only possible combination for the boundaries when c/(δ0− ρ) < K ≤ c/(δ1− ρ)

holds and can also occur when c/(δ1 − ρ) < K holds and the system of equations in (3.2.29)

does not have a solution.

Let us now proceed with the analysis of the system of equations in (3.2.38). The prop-

erties of the function I1,1(s) in (3.2.30) are analysed in part (i) of this subsection, while the

functions J2,k(s), k = 1, 2, in (3.2.39)-(3.2.40) are linear and increasing. We further consider

a structurally different subcase, generated by the shape of the function I1,2(s) and specified

by the location of the point Q0(β2) with respect to ((γ1,1 − 1)L1(δ1) + (β2 − 1)L2)/(β1 − 1)

and (γ1,1L1(r) + β2L2)/β1 , than the related one studied in part (i) above. Namely, assume
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that Q0(β2) < ((γ1,1 − 1)L1(λ) + (β2 − 1)L2)/(β1 − 1) holds, where L1(δ) and L2 are given

in (3.2.33), and the two other subcases are analysed using arguments similar to the ones that

follow. It is shown that I1,2(s) is decreasing on (0, µ1,2), with I1,2(0) = 0 and I1,2(µ1,2) < 0,

and increasing on (µ1,2,∞), with I1,2(∞) = ∞ , where µ1,2 is the unique point at which the

function I1,2(s) attains its minimum.

Taking into account the shape of the functions in (3.2.38) as well as the fact that h(0) ≤
K holds in this case, it can be shown that the equation on the left-hand side of (3.2.38)

implies that, for every f(1) ∈ (−∞, F1(1;K)], there exists a unique h(0) ∈ (0, K] when

K ≤ µ1,1 or, for every f(1) ∈ [F1(1;K), F1(1;µ1,1)], there exists a unique h(0) ∈ [µ1,1, K]

when µ1,1 < K . Moreover, the equation on the right-hand side of (3.2.38) implies that, for

every f(1) ∈ (F2(1;K), F 1] , there exists a unique h(0) ∈ (0, K] when K ≤ µ1,2 or, for every

f(1) ∈ [F2(1;µ1,2), F2(1;K)], there exists a unique h(0) ∈ [µ1,2, K] when µ1,2 < K , where

F 1 = (δ1 − ρ)K1−γ1,1/(δ1 + λ) + cK−γ1,1/(r + λ)

and Fi(1; s) is a unique solution of the equation

I1,i(s) = J2,i(Fi)

for i = 1, 2.

We may therefore conclude that if c/(δ0−ρ) < K ≤ µ1,1∧µ1,2 holds, the equations in (3.2.38)

uniquely define an increasing function h+
1 (0; f(1)) on (−∞, F1(1;K)] and a decreasing function

h−1 (0; f(1)) on [F2(1;K), F 1), with the same range (0, K] . The curves associated with these

functions can have at most one intersection point which has the coordinates f∗(1) and h∗(0)

such that F2(1;K) ≤ f∗(1) ≤ F1(1;K) ∧ F 1 and 0 < h+
1 (0; f∗(1)) = h∗(0) = h−1 (0; f∗(1)) ≤ K

holds.

Furthermore, if K > µ1,1 ∨ µ1,2 ∨ c/(δ0 − h) holds, the equations in (3.2.38) uniquely

define a decreasing function h−2 (0; f(1)) on [F1(1;K), F1(1;µ1,1)], with the range [µ1,1, K] ,

and an increasing function h+
2 (0; f(1)) on [F2(1;µ1,2), F2(1;K)], with the range [µ1,2, K] . The

curves associated with these functions can have at most one intersection point which has the

coordinates f∗(1) and h∗(0) such that F1(1;K) ∨ F2(1;µ1,2) ≤ f∗(1) ≤ F1(1;µ1,1) ∧ F2(1;K)

and µ1,1 ∨ µ1,2 ≤ h−1 (0; f∗(1)) = h∗(0) = h+
2 (0; f∗(1)) ≤ K holds.

Moreover, the arguments above imply that, when (c/(δ0−ρ))∨µ1,1 < K ≤ µ1,2 or (c/(δ0−
h))∨µ1,2 < K ≤ µ1,1 holds, the curves associated with the functions h−1 (0; f(1)) and h−2 (0; f(1))

or h+
1 (0; f(1)) and h+

2 (0; f(1)), respectively, can have several intersection points, with h(0) ∈
(H∗(f(1)), K] . In that case, we take the couple f∗(1) and h∗(0) such that F1(1;K)∨F2(1;K) ≤
f∗(1) ≤ F 1 ∧F1(1;µ1,1) and µ1,1 ≤ h−1 (0; f∗(1)) = h∗(0) = h−2 (0; f∗(1)) ≤ K holds or such that

F2(1;µ1,2) ≤ f∗(1) ≤ F1(1;K) ∧ F2(1;K) and µ1,2 ≤ h+
1 (0; f∗(1)) = h∗(0) = h+

2 (0; f∗(1)) ≤ K

holds, respectively, where h∗(0) is chosen as the largest second coordinate among all possible
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intersection points. The resulting solution f∗(1) and h∗(0) generates the value function which

dominates the ones associated with other possible intersection points. This property agrees

with the fact that the function H∗(f(1)) = H∗(f(1);K) is decreasing in the variable f(1), as

well as increasing in the parameter K , which puts h∗(0) close to K .

(iii) Suppose that the combination g(1) ≤ g(0) ≤ K = h(0) = h(1) is realised. Then,

applying the conditions of (3.2.5) and (3.2.12) to the function in (3.2.13), under the assumption

that Cj(i) = 0, j = 3, 4, and to the function (3.2.14) for i = 0, we obtain that the equalities

2∑
j=1

Cj(1) gβj(1) + A1(g(1)) = K,

2∑
j=1

Cj(1) βj g
βj(1) + g(1)A′1(g(1)) = 0 (3.2.42)

and

2∑
j=1

Dj(0) gγ0,j(0) +B0(g(0)) = K,
2∑
j=1

Dj(0) γ0,j g
γ0,j(0) + g(0)B′0(g(0)) = 0 (3.2.43)

hold. Observe that, since the inequality g(1) ≤ g(0) holds, the function in (3.2.13)-(3.2.14) for

i = 0, when the process Θ is in the state 0, should be continuously differentiable and thus the

equalities

2∑
j=1

Cj(0) gβj(1) + A0(g(1)) =
2∑
j=1

Dj(0) gγ0,j(1) +B0(g(1)) (3.2.44)

and

2∑
j=1

Cj(0) βj g
βj(1) + g(1)A′0(g(1)) =

2∑
j=1

Dj(0) γ0,j g
γ0,j(1) + g(1)B′0(g(1)) (3.2.45)

are satisfied for some 0 < g(1) < K . Hence, solving the system in (3.2.42)-(3.2.45), we obtain

that the solution of the free-boundary problem in (3.2.4)-(3.2.5) and (3.2.11)-(3.2.12) is given

by

U(s, 1; g∗(1)) = C1(1; g∗(1)) sβ1 + C2(1; g∗(1)) sβ2 + A1(s) (3.2.46)

and

U(s, 0; g∗(1), g∗(0)) = C1(0; g∗(1), g∗(0)) sβ1 + C2(0; g∗(1), g∗(0)) sβ2 + A0(s) (3.2.47)

for 0 < s < g∗(1), as well as

U(s, 0; g∗(0)) = D1(0; g∗(0)) sγ0,1 +D2(0; g∗(0)) sγ0,2 +B0(s) (3.2.48)
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for g∗(1) ≤ s < g∗(0), where

Cj(1; g∗(1)) =
r(β3−j − 1)A1(g∗(1)) + c− rβ3−jK

r(βj − β3−j)g
βj
∗ (1)

(3.2.49)

Cj(0; g∗(1), g∗(0)) = (3.2.50)

2∑
k=1

(γ0,k − β3−i)Dk(0; g∗(0))g
γ0,k
∗ (1)

(βj − β3−j)g
βj
∗ (1)

+
(β3−j − 1)(r + λ)r(A0(g∗(1))−B0(g∗(1)))− λ(rK − c)

(r + λ)r(βj − β3−j)g
βj
∗ (1)

and

Dj(0; g∗(0)) =
((γ0,3−j − 1)λ+ γ0,3−jr)(B0(g∗(0))−K)− rB0(g∗(0)) + c

(r + λ)(γ0,j − γ0,3−j)g
γ0,j
∗ (0)

(3.2.51)

for every j = 1, 2, and the functions Ai(s), i = 1, 2, and B0(s) are given by (3.2.13)-(3.2.14).

Here, the couple g∗(0) and g∗(1) is determined as the unique solution of the system of equations

in (3.2.17), having the form

Cj(0; g(1), g(0))Q0(βj) = λCj(1; g(1)) (3.2.52)

where Q0(βj) is given by (3.2.15), for j = 1, 2. It is shown by means of standard arguments

that the system in (3.2.52) is equivalent to

I3,1(g(1)) = J3,1(g(0)) and I3,2(g(1)) = J3,2(g(0)) (3.2.53)

with

I3,k(s) =
2∑
j=1

(−1)j
(
λ(rK − c)

r
βj (β3−j − γ0,3−k)Q0(βj)

(
Q0(β3−j)

λ+ r
− 1

)
s−γ0,k (3.2.54)

+
(βj − 1)(δ0 + 2λ)λρ

(δ0 + λ)(δ1 + λ)− λ2
Q0(βj)

(
β3−j − γ0,3−k − (1− γ0,3−k)

Q0(β3−j)

λ+ δ0

)
s1−γ0,k

)
and

J3,k(s) =
Q0(β1)Q0(β2)(β1 − β2)

sγ0,k

(
(γ0,3−k − 1)ρ

δ0 + λ
s− γ0,3−k (rK − c)

r + λ

)
(3.2.55)

for k = 1, 2. It follows from the inequality in (3.2.10) that (rK − c)/ρ < G∗(g(0)) ≤ g(1) ≤
g(0) ≤ K holds, where G∗(g(0)) denotes the unique solution of the equation

λ(U(G, 0; g(0))−K) = rK − ρG− c (3.2.56)

where U(s, 0; g(0)) is given by (3.2.48), for every g(0) fixed. The existence of a unique solution

of the latter equation on the interval ((rK− c)/ρ, g(0)) follows from the facts that the function

λ(U(s, 0; g∗(0))−K) is increasing and satisfies U(g∗(0), 0; g∗(0)) = 0, while the function rK −
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ρG − c is linear and decreasing, with the range (rK − ρg(0) − c, 0). Therefore, the case

g(1) ≤ g(0) ≤ K = h(0) = h(1) can only be realised, if c/r < K < c/(r − ρ) holds, regardless

of whether the assumption δ0 > δ1 holds or not.

Let us now proceed with the analysis of the system of equations in (3.2.53). The deriva-

tives of the functions in (3.2.54)-(3.2.55), together with the relations between the parame-

ters indicated in the previous parts of this subsection, imply that the function I3,1(s) is in-

creasing on (0, µ3,1), with I3,1(0+) = −∞ and I3,1(µ3,1) > 0, and decreasing in (µ3,1,∞),

with I3,1(∞) = 0+. Moreover, it is shown that the functions J3,k(s), k = 1, 2, are in-

creasing on (0, (rK − c)/ρ), with J3,1(0+) = −∞ , J3,2(0) = 0, and J3,k((rK − c)/ρ) > 0,

k = 1, 2, and decreasing in ((rK − c)/ρ,∞), with J3,1(∞) = 0+ and J3,2(∞) = −∞ .

We further distinguish the three subcases generated by the shape of the function I3,2(s) and

specified by the location of the point (β2 − β1)Q0(β1)Q0(β2) > 0 with respect to the points

((β1 − 1)L3(δ0) + (β2 − 1)L4(δ0))/(γ0,1 − 1) > 0 and (β1L3(r) + β2L4(r))/γ0,1 > 0, for the

function Li+2(δ) defined by

Li+2(δ) = (−1)i (δ + λ) (γ0,1 − β3−i)Q0(βi) > 0 (3.2.57)

for all δ > 0 and i = 1, 2. For instance, we assume that the property (β2− β1)Q0(β1)Q0(β2) >

((β1− 1)L3(r) + (β2− 1)L4(r))/(γ0,1− 1) holds, and the two other subcases are analysed using

arguments similar to the ones that follow. It is shown that I3,2(s) is decreasing in (0, µ3,2),

with I3,2(0) = 0 and I3,2(µ3,2) < 0, and increasing in (µ3,2,∞), with I3,2(∞) = ∞ , where

µ3,k is the unique point at which the function I3,k(s) attains its maximum and minimum, for

k = 1, 2, respectively.

Taking into account the shape of the functions in (3.2.53) as well as the fact that g(1) ≤
g(0) ≤ K holds in this case, it can be shown that the equation on the left-hand side of (3.2.53)

implies that, for every g(0) ∈ (G1(0;µ3,1 ∨ ((rK − c)/ρ)) ∧ G1(0; (rK − c)/ρ) ∧ G1, (G1 ∨
G1(0; (rK − c)/ρ)) ∧ K] , there exists a unique g(1) ∈ ((G1 ∧ G1(1;K)) ∨ ((rK − c)/ρ)) ∨
µ3,1I(µ3,1 < G1), G1(1;G1 ∧ K) ∨ G1(1;K)], while the equation on the right-hand side of

(3.2.53) implies that, for every g(0) ∈ [G2, G2(0; (rK − c)/ρ) ∧ K] , there exists a unique

g(1) ∈ [((rK − c)/ρ) ∨G2(1;K), G2] , where

Gi(0; s) = sup{g(0) ≥ s | I3,i(s) = J3,i(g(0))} , Gi(1; s) = sup{g(1) ≤ s | I3,i(g(1)) = J3,i(s)}

and

Gi = sup{s > 0 | I3,i(s) = J3,i(s)}

for i = 1, 2.

We may therefore conclude that the left-hand equation in (3.2.53) uniquely defines an in-

creasing function g+
1 (1; g(0)) on (G1(0;µ3,1 ∨ ((rK − c)/ρ)) ∧ G1, G1 ∧ K] , with the range

(G1 ∨ ((rK − c)/ρ) ∨ µ3,1, G1(1;G1 ∧K) ∨ G1(1;K)], or a decreasing function g−1 (1; g(0)) on
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(G1, G1(0; (rK − c)/ρ)∧K] , with the range (G1(1;K)∨ ((rK − c)/ρ), G1] , and the right-hand

equation in (3.2.53) uniquely defines a decreasing function g−2 (1; g(0)) on [G2, G2(0; (rK −
c)/ρ) ∧ K] , with the range [((rK − c)/ρ) ∨ G2(1;K), G2] . These facts directly imply that,

when the function g+
1 (1; g(0)) is defined, the curves associated with the functions g+

1 (1; g(0))

and g−2 (1; g(0)) can have at most one intersection point which has the coordinates g∗(0) and

g∗(1) such that G1(0;µ3,1 ∨ (rK − c)/ρ ∧G1) ∨G2 < g∗(0) ≤ G2(0; (rK − c)/ρ) ∧ Ĝ1 ∧K and

G1 ∨ ((rK − c)/ρ) ∨ µ3,1 ∨ G2(1;K) < g+
1 (1; g∗(0)) = g∗(1) = g−2 (1; g∗(0)) ≤ (G1(1;G1 ∧K) ∨

G1(1;K)) ∧G2 holds.

On the other hand, when the function g−1 (1; g(0)) is defined, the curves associated with the

functions g−1 (0; g(1)) and g−2 (0; g(1)) can have several intersection points. In that case, we take

the couple g∗(0) and g∗(1) such that G1∨G2 < g∗(0) ≤ G1(0; (rK−c)/ρ)∧G2(0; (rK−c)/ρ)∧K
and G1(1;K)∨ ((rK − c)/ρ)∨G2(1;K) < g−1 (1; g∗(0)) = g∗(1) = g−2 (1; g∗(0)) ≤ G1 ∧G2 holds,

where g∗(0) is chosen as the largest second coordinate among all possible intersection points.

The resulting solution g∗(0) and g∗(1) generates the value function which dominates the ones

associated with other possible intersection points. This property agrees with the fact that the

function G∗(g(0)) = G∗(g(0);K) is increasing in the variable g(0) as well as increasing in the

parameter K , which puts g∗(1) close to g∗(0).

(iv) Suppose that the above system of equations in (3.2.53) does not have g(0) and g(1)

as a solution, and thus, the combination g(1) ≤ K = g(0) = h(0) = h(1) is realised. Then,

applying the conditions of (3.2.5) and (3.2.12) to the function in (3.2.13), under the assumption

that Cj(i) = 0, j = 3, 4, we obtain that the equalities (3.2.17) and (3.2.42) hold, while using

the condition of (3.2.5) to the function (3.2.14) for i = 0, when the process S hits the level K ,

we obtain that the equality

D1(0)Kγ0,1 +D2(0)Kγ0,2 +B2(K) = K (3.2.58)

holds as well. Observe that, since the inequality g(1) ≤ K holds, the function in (3.2.13)-

(3.2.14) for i = 0, when the process Θ is in the state 0, should be continuously differentiable

and thus the equalities in (3.2.44)-(3.2.45) hold. Hence, solving the system in (3.2.42), (3.2.58)

and (3.2.44)-(3.2.45), we obtain that the solution of the free-boundary problem in (3.2.4)-(3.2.5),

(3.2.11) and (3.2.12) for i = 1, is given by the function U(s, 1; g∗(1)) in (3.2.46) and

U(s, 0; g∗(1), K) = C1(0; g∗(1), f(0)) sβ1 + C2(0; g∗(1), f(0)) sβ2 + A0(s) (3.2.59)

for 0 < s < g∗(1), as well as

U(s, 0;K) = f(0) sγ0,1 + ((K −B0(K))K−γ0,2 − f(0)Kγ0,1−γ0,2) sγ0,1 +B0(s) (3.2.60)

for g∗(1) ≤ s < K , where Cj(0; g∗(1), f(0)), j = 1, 2, admits the representation of the equation

in (3.2.50) with D1(0; g∗(0)) = f(0) and D2(0; g∗(0)) = (K−B0(K))K−γ0,2−f(0)Kγ0,1−γ0,2 for
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an arbitrary variable f(0), and the functions A0(s) and B0(s) are given by (3.2.13)-(3.2.14).

Here, the couple f∗(0) and g∗(1) is determined as a unique solution of the system of equations

in (3.2.17) given by

Cj(0; g(1), f(0))Q0(βj) = λCj(1; g(1)) (3.2.61)

where Q0(βj) is given by (3.2.15), for j = 1, 2. It is shown by means of standard arguments

that the system in (3.2.61) is equivalent to

I3,1(g(1)) = J4,1(f(0)) and I3,2(g(1)) = J4,2(f(0)) (3.2.62)

with I3,k(g(1)), k = 1, 2, given by the equation in (3.2.54), as well as

J4,1(f(0)) = Q0(β1)Q0(β2) (β1 − β2) f(0) (3.2.63)

and

J4,2(f(0)) = Q0(β1)Q0(β2) (β1 − β2) (Kγ0,1−γ0,2 f(0) + (B0(K)−K)K−γ0,2). (3.2.64)

It follows from the inequality in (3.2.10) and the relevant analysis presented in part (iii) above,

that (rK − c)/ρ < G∗(f(0)) < g(1) ≤ K holds, where G∗(f(0)) denotes the unique solution of

the equation

λ(U(G, 0;K)−K) = rK − ρG− c (3.2.65)

and U(s, 0;K) is given by (3.2.60), for every f(0) fixed. Therefore, this case can only occur

when c/r < K < c/(r − ρ) holds and the system of (3.2.53) does not have a solution.

Let us now proceed with the analysis of the system of equations in (3.2.62). The properties

of the function I3,1(s) in (3.2.54) are analysed in part (iii) of this subsection, while the functions

J4,k(f(0)), k = 1, 2, in (3.2.63)-(3.2.64) are linear and increasing. We further consider the same

structural subcase for the function I3,2(s) as in part (iii) above, and the two other subcases are

analysed using arguments similar to the ones that follow.

Taking into account the shape of the functions in (3.2.62) as well as the fact that g(1) ≤ K

holds in this case, it can be shown that the equation on the left-hand side of (3.2.62) implies that,

for each f(0) ∈ [F1(0;K),∞), there exists a unique g(1) ∈ (0, K] when K ≤ µ3,1 or, for every

f(0) ∈ [F1(0;µ3,1), F1(0;K)], there exists a unique g(1) ∈ [µ3,1, K] when µ3,1 < K . Moreover,

the equation on the right-hand side of (3.2.62) implies that, for every f(0) ∈ (F 0, F2(0;K)],

there exists unique g(1) ∈ (0, K] when K ≤ µ3,2 or, for every f(0) ∈ [F2(0;K), F2(0;µ3,2)],

there exists a unique g(1) ∈ [µ3,2, K] when µ3,2 < K , where

F 0 = K−γ0,1((λ(r − ρ) + r(δ0 − ρ))K/(δ0 + λ)− c)/(r + λ)

and F1(0; s) is the unique solution of the equation

I3,i(s) = J4,i(f(0))
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for i = 1, 2.

We may therefore conclude that if c/r < K ≤ µ3,1∧µ3,2∧ (c/(r−ρ)) hold, the equations in

(3.2.62) uniquely define a decreasing function g−1 (1; f(1)) on [F1(0;K),∞) and an increasing

function g+
2 (1; f(1)) on (F 0, F2(0;K)], with the same range (0, K] . The curves associated with

these functions can have at most one intersection point which has the coordinates f∗(0) and

g∗(1) such that F1(0;K)∨F 0 ≤ f∗(0) ≤ F2(0;K) and 0 < g−1 (1; f∗(0)) = g∗(1) = g+
2 (1; f∗(0)) ≤

K holds.

Furthermore, if µ3,1 ∨µ3,2 ∨ (c/r) < K < c/(r− ρ) holds, the equations in (3.2.62) uniquely

define an increasing function g+
1 (1; f(0)) on [F1(0;µ3,1), F1(0;K)], with the range [µ3,1, K] ,

and a decreasing function g−2 (1; f(0)) on [F2(0;K), F2(0;µ3,2)], with the range [µ3,2, K] . The

curves associated with these functions can have at most one intersection point which has the

coordinates f∗(0) and g∗(1) such that F1(0;µ3,1) ∨ F2(0;K) ≤ f∗(0) ≤ F1(0;K) ∧ F2(0;µ3,2)

and µ3,1 ∨ µ3,2 ≤ g+
1 (1; f∗(0)) = g∗(1) = g−2 (1; f∗(0)) ≤ K holds.

Moreover, it follows from the arguments above that, when either (c/r) ∨ µ3,2 < K ≤ µ3,1

or (c/r) ∨ µ3,1 < K ≤ µ3,2 holds, the curves associated with the functions g−1 (1; f(0)) and

g−2 (1; f(0)) or g+
1 (1; f(0)) and g+

2 (1; f(0)), respectively, can have several intersection points,

with g(1) ∈ (G∗(f(0)), K] . In that case, we take the couple f∗(0) and g∗(1) such that F1(0;K)∨
F2(0;K) ≤ f∗(0) ≤ F2(0;µ3,2) and µ3,2 ≤ g−1 (1; f∗(0)) = g∗(1) = g−2 (1; f∗(0)) ≤ K holds or

such that F1(0;µ3,1) ∨ F 0 ≤ f∗(0) ≤ F1(0;K) ∧ F2(0;K) and µ3,1 ≤ g+
1 (1; f∗(0)) = g∗(1) =

g+
2 (1; f∗(0)) ≤ K holds, respectively, where g∗(1) is chosen as the largest second coordinate

among all possible intersection points. The resulting solution f∗(0) and g∗(1) generates the

value function which dominates the ones associated with other possible intersection points.

(v) Suppose that the combination K = g(0) = g(1) = h(0) = h(1) is realised. Then,

applying the condition of (3.2.5) to the function in (3.2.13) under the assumption that Cj(i) = 0,

for j = 3, 4, we obtain that the equality (3.2.17) as well as

C1(i)Kβ1 + C2(i)Kβ2 + Ai(K) = K (3.2.66)

holds for i = 0, 1. Hence, solving the system in (3.2.17) and (3.2.66), we obtain that the

solution of the free-boundary problem in (3.2.4)-(3.2.5) and (3.2.11) is given by

U(s, i;K) = C1(i) sβ1 + C2(i) sβ2 + Ai(s) (3.2.67)

for 0 < s < K and i = 0, 1, where

Cj(i) =
Qi(β3−j)Ai(K)− λA1−i(K)− (Qi(β3−j)− λ)K

(Qi(βj)−Qi(β3−j))Kβi
(3.2.68)

for j = 1, 2 and i = 0, 1 and the functions Ai(s), i = 0, 1, are defined in (3.2.13).

Taking into account the inequalities in (3.2.9)-(3.2.10), it is shown by means of straightfor-

ward calculations that the case K = h(0) = h(1) = g(0) = g(1) is the only possible combination
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for the boundaries, when c/(r − ρ) ≤ K ≤ c/(δ0 − ρ) holds, under the assumption δ0 > δ1 ,

and can also occur when either c/(δ0− ρ) < K and the systems in (3.2.29) and (3.2.38) do not

have a solution, or K < c/(r − ρ) holds and the systems in (3.2.53) and (3.2.62) do not have

a solution.

We are now ready to formulate that main result of this section, concerning the solution

of the convertible bond pricing problem under full information. This assertion can be proved

using similar arguments as the proof of Theorem 3.3.1 below.

Theorem 3.2.1 Let the process S be given by (3.1.1)-(3.1.2) and assume that 0 < δ1 < δ0 < r

and 0 < c < rK holds. Then, the value function of the optimal stopping game in (3.2.1) admits

the representation

U∗(s, i) =



U(s, i; g∗(1− i) ∧ h∗(1− i), g∗(i) ∧ h∗(i)),

if 0 < s < g∗(1− i) ∧ h∗(1− i) < g∗(i) ∧ h∗(i)

U(s, i; g∗(i) ∧ h∗(i)), if either g∗(1− i) ∧ h∗(1− i) ≤ s < g∗(i) ∧ h∗(i)

or 0 < s < g∗(i) ∧ h∗(i) ≤ g∗(1− i) ∧ h∗(1− i)

s, if s ≥ h∗(i) and h∗(i) ≤ g∗(i)

K ∨ s, if s ≥ g∗(i) and g∗(i) < h∗(i)

(3.2.69)

and the optimal stopping times τ ′∗ and ζ ′∗ have the form of (3.2.2), where the functions

U(s, i; g∗(1 − i) ∧ h∗(1 − i), g∗(i) ∧ h∗(i)) and U(s, i; g∗(i) ∧ h∗(i)) as well as the boundaries

g∗(i) and h∗(i), for every i = 0, 1, are specified as follows:

(i) if c < (δ0 − ρ)K holds, then we have c/(δi − ρ) ≤ h∗(i) ≤ g∗(i) = K and the function

U(s, 0;h∗(0)) is given by (3.2.22) while the functions U(s, 1;h∗(0), h∗(1)) and U(s, 1;h∗(1))

are given by (3.2.23)-(3.2.24) when c < (δ1 − ρ)K holds and the system in (3.2.29) admits

a unique solution with h∗(0) and h∗(1), otherwise by (3.2.35)-(3.2.36) with h∗(1) = K when

the system in (3.2.38) admits a unique solution with h∗(0), and otherwise by (3.2.67) with

h∗(0) = h∗(1) = K ;

(ii) if (r−ρ)K < c < rK holds, then we have (rK−c)/ρ ≤ g∗(i) ≤ h∗(i) = K and the func-

tion U(s, 1; g∗(1)) is given by (3.2.46) while the functions U(s, 0; g∗(1), g∗(0)) and U(s, 0; g∗(0))

are given by (3.2.47)-(3.2.48) when the system in (3.2.53) admits a unique solution with g∗(0)

and g∗(1), otherwise by (3.2.59)-(3.2.60) with g∗(0) = K when the system in (3.2.62) admits

a unique solution with g∗(1), and otherwise by (3.2.67) with g∗(0) = g∗(1) = K ;

(iii) if (δ0 − ρ)K ≤ c ≤ (r − ρ)K holds, then we have g∗(i) = h∗(i) = K and the function

U(s, i;K) is given explicitly by (3.2.67), for i = 0, 1.
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3.3. The case of partial information

Let us now recall the original optimal stopping problem, which consists of the computation

of the value function in (3.1.8) and the optimal stopping boundaries a∗(π) and b∗(π) from

(3.1.23), satisfying the conditions (3.1.25)-(3.1.28) in Lemma 3.1.1.

3.3.1. The free-boundary problem. By means of standard arguments based on the

application of Itô’s formula, it is shown that the infinitesimal operator L(S,Π) of the process

(S,Π) from (3.1.3)-(3.1.4) acts on an arbitrary bounded function F (s, π) from the class C2,2

on the set (0,∞)× (0, 1) according to the rule:

(L(S,Π)F )(s, π) =

(
(r − δ0 − (δ1 − δ0) π) s Fs +

1

2
σ2s2 Fss − (δ1 − δ0) s π(1− π)Fsπ (3.3.1)

+ λ (1− 2π)Fπ +
1

2

(
δ1 − δ0

σ

)2

π2(1− π)2 Fππ

)
(s, π)

for all (s, π) ∈ (0,∞)× (0, 1).

In order to find analytic expressions for the unknown value function V∗(s, π) from (3.1.8)

and the boundaries a∗(π) and b∗(π) from (3.1.23)-(3.1.24), we apply the results of general

theory of optimal stopping problems for continuous time Markov processes (see, e.g. [58] and

[97; Chapter IV, Section 8]) to formulate the associated free-boundary problem

(L(S,Π)V − rV )(s, π) = −(c+ ρs) for 0 < s < a(π) ∧ b(π) (3.3.2)

V (s, π)
∣∣
s=b(π)− = b(π) if b(π) ≤ a(π) = K, V (s, π)

∣∣
s=a(π)− = K if a(π) ≤ b(π) = K (3.3.3)

V (s, π) = s for s > b(π) if b(π) ≤ a(π) = K (3.3.4)

V (s, π) = K ∨ s for s > a(π) if a(π) ≤ b(π) = K, (3.3.5)

s < V (s, π) < K ∨ s for 0 < s < a(π) ∧ b(π) (3.3.6)

(L(S,Π)V − rV )(s, π) < −(c+ ρs) for s > b(π) if b(π) ≤ a(π) = K (3.3.7)

(L(S,Π)V − rV )(s, π) > −(c+ ρs) for s > a(π) if a(π) ≤ b(π) = K (3.3.8)

and the additional conditions

V (s, π)
∣∣
s=0+

is bounded (3.3.9)

Vs(s, π)
∣∣
s=b(π)− = 1 if b(π) ≤ a(π) = K, Vs(s, π)

∣∣
s=a(π)− = 0 if a(π) ≤ b(π) = K (3.3.10)

Vπ(s, π)
∣∣
s=b(π)− = 0 if b(π) ≤ a(π) = K, Vπ(s, π)

∣∣
s=a(π)− = 0 if a(π) ≤ b(π) = K (3.3.11)

with a(π) and b(π) instead of a∗(π) and b∗(π). Here, the instantaneous-stopping, natural

boundary, and smooth-fit conditions in (3.3.3), (3.3.9) and (3.3.10), respectively, are satisfied

for all π ∈ [0, 1].
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Note that, unlike the system in (3.2.3)-(3.2.10) with (3.2.11)-(3.2.12) from the previous

section, the partial differential free-boundary problem formulated above cannot, in general, be

solved explicitly. The existence and uniqueness of classical as well as viscosity solutions of the

variational inequalities associated with such free-boundary problems and their connection with

the optimal stopping problems have been extensively studied in the literature (see, e.g. [41],

[16], [75] or [86]). It particularly follows from the results of [41; Chapter XVI, Theorem 11.1] as

well as [75; Chapter V, Section 3, Theorem 14] with [75; Chapter VI, Section 4, Theorem 12]

that the free-boundary problem of (3.3.1)-(3.3.8) with (3.3.9)-(3.3.11) admits a unique solution.

However, it follows from the results of Theorem 3.2.1 that we can find a closed-form solution

of the free-boundary problem formulated above under certain relations between the parameters

of the model. More precisely, if (δ0 + (δ1− δ0)π− ρ)K ≤ c ≤ (r− ρ)K holds, then the function

V (s, π;K) defined by

V (s, π;K) = U(s, 0;K) (1− π) + U(s, 1;K) π (3.3.12)

for all (s, π) ∈ (0, K] × [0, 1], with U(s, i;K), i = 0, 1, from (3.2.67)-(3.2.68), surprisingly

solves the partial differential equation in (3.3.1)-(3.3.2) and satisfies the conditions of (3.3.3).

We can now formulate and prove the main result of this section concerning the solution of

the convertible bond pricing problem under partial information.

Theorem 3.3.1 Let the processes S and Π solve the stochastic differential equations in (3.1.3)

and (3.1.4) and assume that that 0 < δ1 < δ0 < r and 0 < c < rK holds. Suppose that the

monotone boundaries a∗(π) and b∗(π) satisfying the conditions in (3.1.25)-(3.1.28) are continu-

ous. Then, the value function of the optimal stopping game in (3.1.8) admits the representation

V∗(s, π) =


V (s, π; a∗(π) ∧ b∗(π)), if 0 < s < a∗(π) ∧ b∗(π)

s, if s ≥ b∗(π) and b∗(π) < a∗(π)

K ∨ s, if s ≥ a∗(π) and a∗(π) ≤ b∗(π)

(3.3.13)

and the optimal stopping times τ∗ and ζ∗ have the form of (3.1.23), where the function

V (s, π; a∗(π) ∧ b∗(π)) and the continuous and monotone boundaries a∗(π) and b∗(π), for each

(s, π) ∈ (0,∞)× [0, 1], are specified as follows:

(i) if c < (δ0+(δ1−δ0)π−ρ)K holds, then we have c/(δ0+(δ1−δ0)π−ρ) ≤ b∗(π) ≤ a∗(π) = K

and V (s, π; b∗(π)) with b∗(π) are determined by the left-hand system of (3.3.2)-(3.3.3) with

(3.3.4), (3.3.6) and (3.3.9)-(3.3.11);

(ii) if (r − ρ)K < c < rK holds, then we have (rK − c)/ρ ≤ a∗(π) ≤ b∗(π) = K

and V (s, π; a∗(π)) with a∗(π) are determined by the right-hand system of (3.3.2)-(3.3.3) with

(3.3.5)-(3.3.6) and (3.3.9)-(3.3.11);

(iii) if (δ0 + (δ1 − δ0)π − ρ)K ≤ c ≤ (r − ρ)K holds, then we have a∗(π) = b∗(π) = K and

the function V (s, π;K) is explicitly given by (3.3.12).
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Proof. Let us denote by V (s, π) the right-hand side of the expression in (3.3.13). Hence,

applying the change-of-variable formula with local time on surfaces from [92] to e−rtV (s, π)

with a∗(π) ∧ b∗(π) and taking into account the smooth-fit conditions in (3.3.10), we obtain

e−rt V (St,Πt) = V (s, π) +N∗t (3.3.14)

+

∫ t

0

e−ru (L(S,Π)V − rV )(Su,Πu) I(Su 6= a∗(Πu), Su 6= b∗(Πu), Su 6= K) du

+
1

2

∫ t

0

e−ru
(
Vs(Su+,Πu)− Vs(Su−,Πu)

)
I(Su = K) d`Ku (S)

where the process `K(S) is defined in (3.1.17) and the process N∗ = (N∗t )t≥0 given by

N∗t =

∫ t

0

e−ru Vs(Su,Πu) I(Su 6= K)σSu dBu (3.3.15)

is a continuous square integrable martingale with respect to Ps,π , being the probability measure

under which the process (S,Π) solving (3.1.3) and (3.1.4) starts at (s, π) ∈ (0,∞)× [0, 1].

It follows from the system in (3.3.2)-(3.3.5) and (3.3.7)-(3.3.8) that (L(S,Π)V − rV )(s, π) ≤
−(c+ ρs) for 0 < s < a∗(π), while (L(S,Π)V − rV )(s, π) ≥ −(c+ ρs) for 0 < s < b∗(π) and all

π ∈ [0, 1]. It also follows from the condition (3.3.6) that s ≤ V (s, π) ≤ K ∨ s for all (s, π) ∈
(0,∞) × [0, 1]. Since the monotone boundaries a∗(π) and b∗(π) satisfying (3.1.25)-(3.1.28)

are assumed to be continuous, we conclude from the structure of the stochastic differential

equations in (3.1.3) and (3.1.4) that the time spent by the process S at the boundaries a∗(Π)

and b∗(Π) as well as at the constant level K is of Lebesgue measure zero. This implies that the

indicators which appear in the first integral of (3.3.14) and in the expression of (3.3.15) can be

ignored. Moreover, the integral with respect to the local time `K(S) is equal to zero, since the

process S will only hit the level K at most once. Hence, the expression in (3.3.14) together

with the structure of the stopping times τ∗ and ζ∗ in (3.1.23) yield that the inequalities

Yζ∗∧τ∧t ≤
∫ ζ∗∧τ∧t

0

e−ru (c+ ρSu) du+ e−r(ζ∗∧τ∧t) V (Sζ∗∧τ∧t,Πζ∗∧τ∧t) (3.3.16)

≤ V (s, π) +N∗ζ∗∧τ∧t

and

Zζ∧τ∗∧t ≥
∫ ζ∧τ∗∧t

0

e−ru (c+ ρSu) du+ e−r(ζ∧τ∗∧t) V (Sζ∧τ∗∧t,Πζ∧τ∗∧t) (3.3.17)

≥ V (s, π) +N∗ζ∧τ∗∧t

hold for any stopping times ζ and τ of the process (S,Π) started at (s, π) ∈ (0, K]× [0, 1], and

all t ≥ 0. Then, taking the expectations with respect to the probability measure Ps,π in (3.3.16)

76



and (3.3.17), by means of Doob’s optional sampling theorem, we get that the inequalities

Es,π
[
Yτ∧tI(τ ∧ t < ζ∗) + Zζ∗I(ζ∗ ≤ τ ∧ t)

]
(3.3.18)

≤ Es,π

[∫ ζ∗∧τ∧t

0

e−ru (c+ ρSu) du+ e−r(ζ∗∧τ∧t) V (Sζ∗∧τ∧t,Πζ∗∧τ∧t)

]
≤ V (s, π) + Es,πN

∗
ζ∗∧τ∧t = V (s, π)

and

Es,π
[
Yτ∗I(τ∗ < ζ ∧ t) + Zζ∧tI(ζ ∧ t ≤ τ∗)

]
(3.3.19)

≥ Es,π

[∫ ζ∧τ∗∧t

0

e−ru (c+ ρSu) du+ e−r(ζ∧τ∗∧t) V (Sζ∧τ∗∧t,Πζ∧τ∗∧t)

]
≥ V (s, π) + Es,πN

∗
ζ∧τ∗∧t = V (s, π)

hold for all (s, π) ∈ (0, K]× [0, 1]. According to the structure of the lower and upper processes

in (3.1.6) and (3.1.7) and the stopping times in (3.1.9), it is obvious that the property

Es,π sup
t≥0

Y(ζ∗∨τ∗)∧t ≤ Es,π sup
t≥0

Z(ζ∗∨τ∗)∧t <∞ (3.3.20)

holds for all (s, π) ∈ (0, K]× [0, 1], and the variables Yζ∗∨τ∗ and Zζ∗∨τ∗ are bounded on the set

{ζ∗ ∨ τ∗ = ∞} . Hence, letting t go to infinity and using Fatou’s lemma, we obtain that the

inequalities

Es,π
[
YτI(τ < ζ∗) + Zζ∗I(ζ∗ ≤ τ)

]
≤ V (s, π) ≤ Es,π

[
Yτ∗I(τ∗ < ζ) + ZζI(ζ ≤ τ∗)

]
(3.3.21)

are satisfied for any stopping times ζ and τ and all (s, π) ∈ (0, K] × [0, 1], from where the

desired assertion follows directly. Actually, inserting ζ∗ in place of ζ and τ∗ in place of τ into

the expression of (3.3.21), we obtain that the equality

Es,π
[
Yτ∗I(τ∗ < ζ∗) + Zζ∗I(ζ∗ ≤ τ∗)

]
= V (s, π) (3.3.22)

holds for all (s, π) ∈ (0, K]× [0, 1]. �

3.3.2. Solution of the free-boundary problem in a particular case. Let us assume

until the end of this section that λ = 0 and δ0 + δ1 = 2r − σ2 holds. The first equality means

that Θt = Θ0 for all t ≥ 0, where Ps,π(Θ0 = 1) = π and Ps,π(Θ0 = 0) = 1 − π for π ∈ [0, 1].

Such a situation happens when the issuing firm does not change the dividend policy which is

unknown to small investors during the whole infinite time interval. In this case, we can define

the process Q = (Qt)t≥0 by

Qt =
S−ηt Πt

1− Πt

with η =
δ0 − δ1

σ2
(3.3.23)
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for all t ≥ 0. By means of Itô’s formula, we get that the process Q admits the representation

dQt =

(
λ(1− S2η

t Q
2
t )

SηtQt

− η

2
(2r − δ0 − δ1 − σ2)

)
Qt dt

(
Q0 = q(s, π) ≡ s−ηπ

1− π

)
(3.3.24)

for any (s, π) ∈ (0,∞)×(0, 1). Moreover, the second-order linear partial differential equation in

(3.3.1)-(3.3.2) degenerates into an ordinary one and the general solution of the latter equation

takes the form

V (s, π) = Ṽ (s, q(s, π))

=
2∑
j=1

C̃j(q(s, π)) sγ0,j F (ψj1, ψj2;ϕj;−sη q(s, π)) + P (s, q(s, π)) (3.3.25)

where C̃j(q(s, π)), for j = 1, 2, are some arbitrary twice continuously differentiable functions,

P (s, q(s, π)) is a particular solution of the second-order ordinary differential equation resulting

from (3.3.1)-(3.3.2) under the assumptions λ = 0 and δ0 + δ1 = 2r − σ2 , and we set

ψkl =
γ0,k − γ1,l

η
and ϕk = 1 +

2

η

(
γ0,k −

1

2
+
r − δ0

σ2

)
(3.3.26)

for every k, l = 1, 2, where γ0,j is given by the equation in (3.2.16) with λ = 0. Here

F (α, β; γ;x) denotes Gauss’ hypergeometric function, which is defined by means of the ex-

pansion

F (α, β; γ;x) = 1 +
∞∑
m=1

(α)m(β)m
(γ)m

xm

m!
(3.3.27)

for γ 6= 0,−1,−2, . . . and (γ)m = γ(γ + 1) · · · (γ + m − 1), m ∈ N , where Γ denotes Euler’s

Gamma function. Note that the series in (3.3.27) converges under all |x| < 1, and the appro-

priate analytic continuation into (certain parts of) the complex plane can be obtained through

the same representation for any α, β, γ ∈ R given and fixed. Moreover, the function in (3.3.27)

admits the integral representation

F (α, β; γ;x) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tx)−α dt (3.3.28)

whenever γ > β > 0 (see, e.g. [1; Chapter XV] and [7; Chapter II]).

Taking into account the fact that γ0,2 < 0 < 1 < γ0,1 , we observe that C̃2(q(s, π)) = 0

should hold in (3.3.25) under the assumption of δ0 > δ1 , since otherwise V (s, π) → ±∞ as

s ↓ 0, that must be excluded by virtue of the obvious fact that the value function in (3.1.8)

is bounded under s ↓ 0, for any π ∈ (0, 1) fixed. Note that the same conclusion can be

made based on the argument that 0 is a natural boundary for the process S , as in (3.3.9)

in this case. Then, applying the conditions of (3.3.3) and (3.3.10) to the function in (3.3.25)

with V (s, π) = Ṽ (s, q(s, π)) at the boundaries ã∗(q(s, π)) and b̃∗(q(s, π)) which are uniquely
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specified by the equations ã(q) = a∗(q/(ã
−η(q) + q)) and b̃(q) = b∗(q/(̃b

−η(q) + q)), as well as

C̃2(q) = 0, we get that the equalities

C̃1(q) ãγ0,1(q)F (ψ11, ψ12;ϕ1;−ãη(q) q) + P (ã(q), q) = K and (3.3.29)

C̃1(q) (−η) ãγ0,1+η(q) q
ψ11ψ12

ϕ1

F (1 + ψ11, 1 + ψ12; 1 + ϕ1;−ãη(q) q) (3.3.30)

+ C̃1(q) γ0,1 ã
γ0,1(q)F (ψ11, ψ12;ϕ1;−ãη(q) q) + ã(q)Ps(ã(q), q) = 0 , (3.3.31)

hold if ã(q) ≤ b̃(q) = K , or

C̃1(q) b̃γ0,1(q)F (ψ11, ψ12;ϕ1;−b̃η(q) q) + P (̃b(q), q) = b̃(q) and (3.3.32)

C̃1(q) (−η) b̃γ0,1+η(q) q
ψ11ψ12

ϕ1

F (1 + ψ11, 1 + ψ12; 1 + ϕ1;−b̃η(q) q) (3.3.33)

+ C̃1(q) γ0,1 b̃
γ0,1(q)F (ψ11, ψ12;ϕ1;−b̃η(q) q) + b̃(q)Ps(̃b(q), q) = b(q) , (3.3.34)

hold if b̃(q) ≤ ã(q) = K , or

C̃1(q)Kγ0,1 F (ψ11, ψ12;ϕ1;−Kη q) + P (K, q) = K , (3.3.35)

holds if ã(q) = b̃(q) = K , for each q > 0 fixed. Hence, solving the system of (3.3.29)-(3.3.30),

we get that in case (r − ρ)K < c < rK holds, the solution of the free-boundary problem of

(3.3.2) with the right-hand sides of (3.3.3) and (3.3.9)-(3.3.11) is given by

Ṽ (s, q; ã∗(q)) =
(
K − P (ã∗(q), q)

) ( s

ã∗(q)

)γ0,1 F (ψ11, ψ12;ϕ1;−sηq)
F (ψ11, ψ12;ϕ1;−ãη(q)q)

+ P (s, q) (3.3.36)

for all 0 < s < ã∗(q), where ã∗(q) is determined as a unique solution of the equation

F (1 + ψ11, 1 + ψ12; 1 + ϕ1;−ãη(q)q)
ϕ1F (ψ11, ψ12;ϕ1;−ãη(q)q)

=
ã(q)Ps(ã(q), q) + γ0,1(K − P (ã(q), q))

ψ11ψ12ηq(K − P (ã(q), q))ãη(q)
(3.3.37)

for any q > 0 fixed. Then, solving the system of (3.3.32)-(3.3.33), we get that in case c <

(δ0 + (δ1 − δ0)π − ρ)K holds, the solution of the free-boundary problem of (3.3.2) with the

left-hand sides of (3.3.3) and (3.3.9)-(3.3.11) is given by

Ṽ (s, q; b̃∗(q)) =
(̃
b∗(q)− P (̃b∗(q), q)

) ( s

b̃∗(q)

)γ0,1 F (ψ11, ψ12;ϕ1;−sηq)
F (ψ11, ψ12;ϕ1;−b̃η∗(q)q)

+ P (s, q) (3.3.38)

for all 0 < s < b̃∗(q), where b̃∗(q) is determined as a unique solution of the equation

F (1 + ψ11, 1 + ψ12; 1 + ϕ1;−b̃η(q)q)
ϕ1F (ψ11, ψ12;ϕ1;−b̃η(q)q)

=
b̃(q)(Ps(̃b(q), q)− 1) + γ0,1(̃b(q)− P (̃b(q), q))

ψ11ψ12ηq(̃b(q)− P (̃b(q), q))̃bη(q)
(3.3.39)

for any q > 0 fixed. The uniqueness of solutions of the equations in (3.3.37) and (3.3.39),

which are implied by the smooth-fit conditions from (3.3.10)-(3.3.11), as well as the validity
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of the inequalities in (3.3.6)-(3.3.8) follow from the uniqueness of the solution of the system

in (3.3.2)-(3.3.8) with (3.3.9)-(3.3.11) above, and can also be verified using the properties of

Gauss’ hypergeometric function from (3.3.27). Finally, solving the equation in (3.3.35), we get

that in case (δ0 + (δ1 − δ0)π − ρ)K ≤ c ≤ (r − ρ)K holds, the solution of the free-boundary

problem of (3.3.2) with (3.3.3) and (3.3.9) is given by

Ṽ (s, q;K) =
(
K − P (K, q)

) ( s
K

)γ0,1 F (ψ11, ψ12;ϕ1;−sηq)
F (ψ11, ψ12;ϕ1;−Kηq)

+ P (s, q) (3.3.40)

for all 0 < s < K and any q > 0 fixed.

Corollary 3.3.2 Suppose that the assumptions of Theorem 3.3.1 are satisfied with λ = 0 and

δ0 + δ1 = 2r− σ2 . Then, the value function of the optimal stopping game in (3.1.8) admits the

representation of (3.3.13), where the function V (s, π; a∗(π)∧ b∗(π)) = Ṽ (s, q(s, π); ã∗(q(s, π))∧
b̃∗(q(s, π))) with the boundaries a∗(π) and b∗(π) uniquely specified by the equations a(π) =

ã∗(a
−η(π)π/(1− π)) and b(π) = b̃∗(b

−η(π)π/(1− π)) are determined as follows:

(i) if (r − ρ)K < c < rK holds, then we have (rK − c)/ρ ≤ a∗(π) ≤ b∗(π) = K and

Ṽ (s, q; ã∗(q)) is given by (3.3.36) and the boundary ã∗(q) is uniquely determined by the equation

in (3.3.37);

(ii) if c < (δ0+(δ1−δ0)π−ρ)K holds, then we have c/(δ0+(δ1−δ0)π−ρ) ≤ b∗(π) ≤ a∗(π) =

K and Ṽ (s, q; b̃∗(q)) is given by (3.3.38) and the boundary b̃∗(q) is uniquely determined by the

equation in (3.3.39);

(iii) if (δ0 + (δ1 − δ0)π − ρ)K ≤ c ≤ (r − ρ)K holds, then we have ã∗(q) = b̃∗(q) = K and

the function Ṽ (s, q;K) is given explicitly by (3.3.40).

3.4. The case of asymmetric information

In this section, we consider the appropriate optimal stopping game in a model such that the

writer of the convertible bond has access to the dividend rate policy of the issuing firm, which

remains inaccessible by the holder of the bond.

3.4.1. The optimal stopping game. It follows from the arguments above that the

rational price of the perpetual convertible bond in the model with asymmetric information is

given by the value of the optimal stopping game

W∗(s, π) = inf
ζ′

sup
τ
Es,π

[
YτI(τ < ζ ′) + Zζ′I(ζ ′ ≤ τ)

]
(3.4.1)

= sup
τ

inf
ζ′
Es,π

[
YτI(τ < ζ ′) + Zζ′I(ζ ′ ≤ τ)

]
where the infimum and supremum are taken over all stopping times ζ ′ and τ with respect to

the filtrations (Gt)t≥0 and (Ft)t≥0 , respectively. This means that the continuous-time Markov
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chain Θ is observable by the writer but not by the holder of the bond in this formulation.

Observe that the structure of the original (Bayesian) model with full information allows us to

express the value function of (3.4.1) in the form

W∗(s, π) = inf
ζ′

sup
τ

1∑
i=0

Es,i
[
YτI(τ < ζ ′) + Zζ′I(ζ ′ ≤ τ)

](
iπ + (1− i)(1− π)

)
(3.4.2)

= sup
τ

inf
ζ′

1∑
i=0

Es,i
[
YτI(τ < ζ ′) + Zζ′I(ζ ′ ≤ τ)

](
iπ + (1− i)(1− π)

)
for (s, π) ∈ (0,∞)× [0, 1]. The additive representation of (3.4.2) and the analysis presented in

the previous sections allows us to formulate the following assertion.

Corollary 3.4.1 Suppose that the assumptions of Theorems 3.2.1 and 3.3.1 hold with 0 < δ1 <

δ0 < r and 0 < c < rK . Then, the value function W∗(s, π) of the optimal stopping game in

(3.4.1) takes the form of W∗(s, π) = U∗(s, 0)(1−π)+U∗(s, 1)π when (r−ρ)K < c < rK holds,

and W∗(s, π) = V∗(s, π) when c ≤ (r − ρ)K is satisfied, for each s > 0 and π ∈ [0, 1], as well

as the optimal stopping times ζ ′∗ and τ∗ have the form of (3.2.2) and (3.1.23), respectively.

3.4.2. Concluding remarks. The results stated above concern the pricing of the con-

vertible bond in a model in which the writer has additional information about the dividend

rate policy of the firm issuing the asset. It is seen that in this case, the value of the convertible

bond would generally exceed the corresponding value in the model in which both the writer and

the holder have the same information about the dynamics of the underlying asset only. More

precisely, if the scenario ζ ′∗ < τ∗ (Ps,π -a.s.) is realised, then the inequality W∗(s, π) ≤ V∗(s, π)

holds, while if the scenario τ∗ ≤ ζ ′∗ (Ps,π -a.s.) is realised, then the equality W∗(s, π) = V∗(s, π)

is satisfied. Therefore, we can interpret the difference V∗(s, π) −W∗(s, π) as the profit of the

writer due to the additional information about the dividend rate policy of the issuing firm, for

each starting point (s, π) ∈ (0, K]× [0, 1] of the process (S,Π).
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Chapter 4

Optimal stopping problems in

diffusion-type models with running

maxima and drawdowns

In this chapter, we study optimal stopping problems related to the pricing of perpetual Amer-

ican options in an extension of the Black-Merton-Scholes model in which the dividend and

volatility rates of the underlying risky asset depend on the running values of its maximum

and maximum drawdown. The optimal stopping times of exercise are shown to be the first

times at which the price of the underlying asset exits some regions restricted by certain bound-

aries depending on the running values of the associated maximum and maximum drawdown

processes. We obtain closed-form solutions to the equivalent free-boundary problems for the

value functions with smooth fit at the optimal stopping boundaries and normal reflection at

the edges of the state space of the resulting three-dimensional Markov process. We derive

first-order nonlinear ordinary differential equations and arithmetic equations for the optimal

exercise boundaries of the perpetual American call, put and strangle options.

4.1. Preliminaries

In this section, we introduce the setting and notation of the three-dimensional optimal

stopping problems which are related to the pricing of certain perpetual American options and

formulate the equivalent free-boundary problems.

4.1.1. Formulation of the problem. For a precise formulation of the problem, let us

consider a probability space (Ω,F , P ) with a standard Brownian motion B = (Bt)t≥0 . Assume
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that there exists a process X = (Xt)t≥0 given by

Xt = x exp

(∫ t

0

(
r − δ(Su, Yu)−

σ2(Su, Yu)

2

)
du+

∫ t

0

σ(Su, Yu) dBu

)
(4.1.1)

where σ(s, y) > 0 and 0 < δ(s, y) < r are continuously differentiable bounded functions on

[0,∞]2 . It follows that the process X solves the stochastic differential equation

dXt = (r − δ(St, Yt))Xt dt+ σ(St, Yt)Xt dBt (X0 = x) (4.1.2)

where x > 0 is given and fixed. Here, the associated with X running maximum process

S = (St)t≥0 and the corresponding running maximum drawdown process Y = (Yt)t≥0 are

defined by

St = max
0≤u≤t

Xu ∨ s and Yt = max
0≤u≤t

(Su −Xu) ∨ y (4.1.3)

for arbitrary 0 < s− y ≤ x ≤ s , so that X is a diffusion-type process representing a unique so-

lution of the stochastic differential equation in (4.1.2) (see, e.g. [79; Chapter IV, Theorem 4.6]).
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Figure 1. A computer drawing of the state space of the process

(X,S, Y ), for some s fixed, which increases to s′ .
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Figure 2. A computer drawing of the state space of the process

(X,S, Y ), for some y fixed, which increases to y′ .

The main purpose of the present chapter is to derive a closed-form solution to the optimal

stopping problem for the time-homogeneous (strong) Markov process (X,S, Y ) = (Xt, St, Yt)t≥0

given by

V∗(x, s, y) = sup
τ
Ex,s,y

[
e−rτ

(
(L−Xτ )

+ ∨ (Xτ −K)+
)]

(4.1.4)

for any (x, s, y) ∈ E3 , where the supremum is taken over all stopping times τ with respect to

the natural filtration of X , and 0 ≤ L < K ≤ ∞ are some given constants. Here Ex,s,y denotes

the expectation under the assumption that the (three-dimensional) process (X,S, Y ) defined

in (4.1.1)-(4.1.3) starts at (x, s, y) ∈ E3 , and E3 = {(x, s, y) ∈ R3 | 0 < s − y ≤ x ≤ s} is the

state space of the process (X,S, Y ). We assume that the process X describes the price of a
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risky asset on a financial market, where r is the riskless interest rate, σ(s, y) is the volatility

rate, and δ(s, y) is the dividend rate paid to stockholders. The value of (4.1.4) is then actually

a rational (or no-arbitrage) price of a perpetual American strangle option with payoff function

(L − x)+ ∨ (x −K)+ , where the expectation is taken under the (unique) martingale measure

(see, e.g. [105; Chapter VII, Section 3g]). In particular, when either L = 0 or K = ∞ holds,

the resulting payoff functions (x−K)+ and (L− x)+ correspond to the ones of the perpetual

American call and put options, respectively.

4.1.2. The structure of the optimal stopping times. It follows from the general theory

of optimal stopping problems for Markov processes (see, e.g. [97; Chapter I, Section 2.2]) that

the optimal stopping time in the problem of (4.1.4) is given by

τ∗ = inf{t ≥ 0 |V∗(Xt, St, Yt) = (L−Xt)
+ ∨ (Xt −K)+}. (4.1.5)

Taking into account the structure of the payoff function in (4.1.4), we further assume that the

optimal stopping time from (4.1.5) takes the form

τ∗ = inf{t ≥ 0 |Xt /∈ (a∗(St, Yt), b∗(St, Yt))} (4.1.6)

for some functions 0 ≤ a∗(s, y) < L < K < b∗(s, y) ≤ ∞ to be determined. This assumption

means that the set

C ′ = {(x, s, y) ∈ E3 | a∗(s, y) < s− y and s < b∗(s, y)} (4.1.7)

belongs to the continuation region for the optimal stopping problem of (4.1.4) which is given

by

C∗ = {(x, s, y) ∈ E3 | a∗(s, y) < x < b∗(s, y)} (4.1.8)

and the corresponding stopping region is the closure of the set

D∗ = {(x, s, y) ∈ E3 |x < a∗(s, y) or b∗(s, y) < x}. (4.1.9)

4.1.3. The free-boundary problem. By means of standard arguments based on the

application of Itô’s formula, it is shown that the infinitesimal operator L of the process (X,S, Y )

acts on a function F (x, s, y) from the class C2,1,1 on the interior of E3 according to the rule

(LF )(x, s, y) = (r − δ(s, y))x ∂xF (x, s, y) +
σ2(s, y)

2
x2 ∂2

xxF (x, s, y) (4.1.10)

for all 0 < s−y < x < s . It follows from the fact that the payoff function (L−x)+∨(x−K)+ is

convex that the value function V∗(x, s, y) is convex in the variable x , and thus, it is continuous

in x on the interval (0,∞). In order to find analytic expressions for the unknown value function

V∗(x, s, y) from (4.1.4) and the unknown boundaries a∗(s, y) and b∗(s, y) from (4.1.6), let us
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build on the results of general theory of optimal stopping problems for Markov processes (see,

e.g. [97; Chapter IV, Section 8]). We can reduce the optimal stopping problem of (4.1.4) to

the equivalent free-boundary problem for V∗(x, s, y) with a∗(s, y) and b∗(s, y) given by

(LV )(x, s, y) = r V (x, s, y) for (x, s, y) ∈ C (4.1.11)

V (x, s, y)
∣∣
x=a(s,y)+

= L− a(s, y) and V (x, s, y)
∣∣
x=b(s,y)− = b(s, y)−K (4.1.12)

V (x, s, y) = (L− x)+ ∨ (x−K)+ for (x, s, y) ∈ D (4.1.13)

V (x, s, y) > (L− x)+ ∨ (x−K)+ for (x, s, y) ∈ C (4.1.14)

(LV )(x, s, y) < r V (x, s, y) for (x, s, y) ∈ D (4.1.15)

where C and D are defined as C∗ and D∗ in (4.1.8) and (4.1.9) with a(s, y) and b(s, y) instead

of a∗(s, y) and b∗(s, y), respectively, and the instantaneous-stopping conditions in (4.1.12) are

satisfied, when s − y ≤ a(s, y) and b(s, y) ≤ s , respectively, for each 0 < y < s . Observe

that the superharmonic characterization of the value function (see [31] and [97; Chapter IV,

Section 9]) implies that V∗(x, s, y) is the smallest function satisfying (4.1.11)-(4.1.14), with

the boundaries a∗(s, y) and b∗(s, y). Moreover, we further assume that the smooth-fit and

normal-reflection conditions

∂xV (x, s, y)
∣∣
x=a(s,y)+

= −1 and ∂sV (x, s, y)
∣∣
x=s− = 0 (4.1.16)

hold, when s− y ≤ a(s, y) < s < b(s, y), and the normal-reflection and smooth-fit conditions

∂yV (x, s, y)
∣∣
x=(s−y)+

= 0 and ∂xV (x, s, y)
∣∣
x=b(s,y)− = 1 (4.1.17)

hold, when a(s, y) < s − y < b(s, y) ≤ s , for each 0 < y < s . Otherwise, the smooth-fit

conditions in the left-hand part of (4.1.16) and in the right-hand part of (4.1.17) hold at a(s, y)

and b(s, y), when s − y ≤ a(s, y) < b(s, y) ≤ s , while the normal-reflection conditions in the

right-hand part of (4.1.16) and in the left-hand part of (4.1.17) hold, when a(s, y) < s − y <
s < b(s, y), for each 0 < y < s .

Note that, when δ(s, y) = δ(s) and σ(s, y) = σ(s) holds in (4.1.1)-(4.1.2), the value function

V∗(x, s, y) = U∗(x, s) with the boundaries a∗(s, y) = g∗(s) and b∗(s, y) = h∗(s) satisfy the

system of (4.1.11)-(4.1.15). Moreover, the smooth-fit and normal-reflection conditions

∂xU(x, s)
∣∣
x=g(s)+

= −1 and ∂sU(x, s)
∣∣
x=s− = 0 (4.1.18)

hold, when 0 < g(s) < s < h(s), and the natural-boundary and smooth-fit conditions

U(x, s)
∣∣
x=0+

= 0 and ∂xU(x, s)
∣∣
x=h(s)− = 1 (4.1.19)
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hold, when 0 = g(s) < K < h(s) ≤ s , for each s > 0. Otherwise, the smooth-fit conditions

in the left-hand part of (4.1.18) and in the right-hand part of (4.1.19) hold at g(s) and h(s),

when 0 < g(s) < h(s) ≤ s , while the normal-reflection and natural-boundary conditions in

the right-hand part of (4.1.18) and in the left-hand part of (4.1.19) hold respectively, when

g(s) = 0 < s < h(s), for each 0 < y < s .

4.2. Solution of the free-boundary problem

In this section, we obtain closed-form expressions for the value functions V∗(x, s, y) in (4.1.4)

for the payoffs of standard call, put, and strangle options, and derive explicit expressions and

ordinary differential equations for the optimal exercise boundaries a∗(s, y) and b∗(s, y) from

(4.1.6), as solutions to the free-boundary problem of (4.1.11)-(4.1.17).

4.2.1. The general solution of the free-boundary problem. We first observe that

the general solution of the equation in (4.1.11) has the form

V (x, s, y) = C1(s, y)xγ1(s,y) + C2(s, y)xγ2(s,y) (4.2.1)

where Ci(s, y), i = 1, 2, are some arbitrary continuously differentiable functions and γ2(s, y) <

0 < 1 < γ1(s, y) are given by

γi(s, y) =
1

2
− r − δ(s, y)

σ2(s, y)
− (−1)i

√(
1

2
− r − δ(s, y)

σ2(s, y)

)2

+
2 r

σ2(s, y)
(4.2.2)

for all 0 < y < s . Hence, applying the instantaneous-stopping conditions from (4.1.12) to the

function in (4.2.1), we get that the equalities

C1(s, y) aγ1(s,y)(s, y) + C2(s, y) aγ2(s,y)(s, y) = L− a(s, y) (4.2.3)

C1(s, y) bγ1(s,y)(s, y) + C2(s, y) bγ2(s,y)(s, y) = b(s, y)−K (4.2.4)

hold, when s − y ≤ a(s, y) and b(s, y) ≤ s , respectively, for each 0 < y < s . Moreover, using

the smooth-fit conditions from the left-hand part of (4.1.16) and the right-hand part of (4.1.17),

we obtain that the equalities

C1(s, y) γ1(s, y) aγ1(s,y)(s, y) + C2(s, y) γ2(s, y) aγ2(s,y)(s, y) = −a(s, y) (4.2.5)

C1(s, y) γ1(s, y) bγ1(s,y)(s, y) + C2(s, y) γ2(s, y) bγ2(s,y)(s, y) = b(s, y) (4.2.6)

hold, when s− y ≤ a(s, y) and b(s, y) ≤ s , respectively, for each 0 < y < s . Finally, applying

the normal-reflection conditions from the right-hand part of (4.1.16) and the left-hand part of
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(4.1.17) to the function in (4.2.1), we have that the equalities

2∑
i=1

(
∂sCi(s, y) sγi(s,y) + Ci(s, y) ∂sγi(s, y) sγi(s,y) ln s

)
= 0 (4.2.7)

2∑
i=1

(
∂yCi(s, y) (s− y)γi(s,y) + Ci(s, y) ∂yγi(s, y) (s− y)γi(s,y) ln(s− y)

)
= 0 (4.2.8)

hold, when a(s, y) < s− y and s < b(s, y), respectively, for each 0 < y < s . Here, the partial

derivatives ∂sγi(s, y) and ∂yγi(s, y) take the form

∂sγi(s, y) = ϕ(s, y)− (−1)i
ϕ(s, y) (γ1(s, y)− γ2(s, y))σ3(s, y)− 2 r ∂sσ(s, y)

σ2(s, y)
√

(γ1(s, y)− γ2(s, y))2 σ2(s, y) + 2 r
(4.2.9)

∂yγi(s, y) = ψ(s, y)− (−1)i
ψ(s, y) (γ1(s, y)− γ2(s, y))σ3(s, y)− 2 r ∂yσ(s, y)

σ2(s, y)
√

(γ1(s, y)− γ2(s, y))2 σ2(s, y) + 2 r
(4.2.10)

for i = 1, 2, and the functions ϕ(s, y) and ψ(s, y) are defined by

ϕ(s, y) =
σ(s, y) ∂sδ(s, y) + 2 (r − δ(s, y)) ∂sσ(s, y)

σ3(s, y)
(4.2.11)

ψ(s, y) =
σ(s, y) ∂yδ(s, y) + 2 (r − δ(s, y)) ∂yσ(s, y)

σ3(s, y)
(4.2.12)

for 0 < y < s .

4.2.2. The solution to the problem for the two-dimensional process (X,S). We

begin with the case in which δ(s, y) = δ(s) and σ(s, y) = σ(s) holds in (4.1.1)-(4.1.2), and thus,

we can define the functions βi(s) = γi(s, y), i = 1, 2, as in (4.2.2). Then, the general solution

V (x, s, y) = U(x, s) of the equation in (4.1.11) has the form of (4.2.1) with Ci(s, y) = Di(s)

and γi(s, y) = βi(s), for i = 1, 2, and the stopping time takes the form of (4.1.6) with the

boundaries a∗(s, y) = g∗(s) and b∗(s, y) = h∗(s). We further denote the state space of the

two-dimensional (strong) Markov process (X,S) by E2 = {(x, s) ∈ R2 | 0 < x ≤ s} and its

diagonal by d2 = {(x, s) ∈ R2 | 0 < x = s} , as well as recall that the second component of

(X,S) can only increase at d2 , that is, when Xt = St for t ≥ 0.

(i) The call option. Let us first consider the call option case L = 0 in which we have

g∗(s) = 0 for all s > 0. In this case, taking into account the fact that β2(s) < 0 < 1 < β1(s),

we observe that D2(s) = 0 should hold in (4.2.1), since otherwise U(x, s)→ ±∞ as x ↓ 0, that

must be excluded by virtue of the obvious fact that the value function in (4.1.4) is bounded

at zero. The same property can equivalently be explained by the fact that the process X

cannot reach zero, which is given by the natural boundary condition on the left-hand side of

(4.1.19). Hence, solving the system of equations in (4.2.4) and (4.2.6) for the unknown function
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C1(s, y) = D1(s) with C2(s, y) = D2(s) = 0, we conclude that the function V (x, s, y) = U(x, s)

in (4.2.1) admits the representation

U(x, s;h∗(s)) =
h∗(s)

β1(s)

( x

h∗(s)

)β1(s)

with h∗(s) =
β1(s)K

β1(s)− 1
(4.2.13)

for 0 < x < h∗(s) ≤ s and s > K .

In this case, we set s̃0 = ∞ and define a decreasing sequence (s̃n)n∈N such that the

boundary h∗(s) from (4.2.13) exits the region E2 at (s̃2l−1, s̃2l−1) and returns back to

E2 at (s̃2l, s̃2l) downwards. Namely, we define s̃2l−1 = sup{s < s̃2l−2 |h∗(s) > s} and

s̃2l = sup{s < s̃2l−1 |h∗(s) ≤ s} , k ∈ N , whenever they exist, and put s̃2l−1 = s̃2l = 0

otherwise. Note that K < s̃2l < s̃2l−1 <∞ , l ∈ N , by construction. Then, the candidate value

function admits the representation of (4.2.13) in the regions

R̃2
2l−1 = {(x, s) ∈ E2 | s̃2l−1 < s ≤ s̃2l−2} (4.2.14)

for l ∈ N .

On the other hand, the candidate value function V (x, s, y) = U(x, s) takes the form of

(4.2.1) with C1(s, y) = D1(s) solving the first-order linear ordinary differential equation in

(4.2.7) and C2(s, y) = D2(s) = 0, in the regions

R̃2
2l = {(x, s) ∈ E2 | s̃2l < s ≤ s̃2l−1} (4.2.15)

for l ∈ N , which belong to C ′ in (4.1.7). Note that, the process (X,S) can pass from the

region R̃2
2l in (4.2.15) to the region R̃2

2l−1 in (4.2.14), only through the point (s̃2l−1, s̃2l−1), for

l ∈ N . Thus, the candidate value function should be continuous at the point (s̃2l−1, s̃2l−1), that

is expressed by the equality

D1(s̃2l−1) (s̃2l−1)β1(s̃2l−1) = U(s̃2l−1+, s̃2l−1+;h∗(s̃2l−1+)) (4.2.16)

where the right-hand side is given by (4.2.13). Hence, solving the first-order linear ordinary

differential equation in (4.2.7) for the unknown function C1(s, y) = D1(s) with C2(s, y) =

D2(s) = 0 and using the condition of (4.2.16), we obtain that the candidate value function

V (x, s, y) = U(x, s) in (4.2.1) admits the expression

U(x, s; s̃2l−1) = exp

(
−
∫ s̃2l−1

s

β′1(q) ln q dq

)
(s̃2l−1)1−β1(s̃2l−1)

β1(s̃2l−1)
xβ1(s) (4.2.17)

in the regions R̃2
2l given by (4.2.15), for l ∈ N .

(ii) The put option. Let us now consider the put option case K =∞ in which we have

h∗(s) = ∞ for all s > 0. Then, solving the system of equations in (4.2.3) and (4.2.5) for
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the unknown functions Ci(s, y) = Di(s), i = 1, 2, we conclude that the function V (x, s, y) =

U(x, s) in (4.2.1) admits the representation

U(x, s; g∗(s)) = D1(s; g∗(s))x
β1(s) +D2(s; g∗(s))x

β2(s) (4.2.18)

for 0 < g∗(s) < x ≤ s , with

Di(s; g∗(s)) =
(β3−i(s)− 1) g∗(s)− β3−i(s)L

(βi(s)− β3−i(s)) g∗(s)βi(s)
(4.2.19)

for all s > 0 and i = 1, 2. Hence, assuming that the boundary function g∗(s) is continuously

differentiable, we apply the condition of (4.2.7) to the functions Ci(s, y) = Di(s; g∗(s)), i = 1, 2,

in (4.2.19) and obtain that g∗(s) satisfies the first-order nonlinear ordinary differential equation

g′(s) =
2∑
i=1

((β3−i(s)− 1) g(s)− β3−i(s)) g(s)

(βi(s)− 1) (β3−i(s)− 1) g(s)− βi(s) β3−i(s)L
(4.2.20)

×
(

1

β3−i(s)− βi(s)
+

(s/g(s))βi(s) ln(s/g(s))

(s/g(s))βi(s) − (s/g(s))β3−i(s)

)
β′i(s)

when 0 < g(s) < s , for s > 0, where the derivatives β′i(s) = ∂sγi(s, y), i = 1, 2, are given by

(4.2.9) with (4.2.11). Taking into account the fact that βi(s), i = 1, 2, and the boundary g∗(s)

are continuously differentiable functions in the neighborhood of infinity, we observe that the

function in (4.2.18) should satisfy the property U(x, s; g∗(s))→ U(x,∞; g∗(∞)) as s→∞ , for

each x > g∗(s). Thus, using the fact that β2(s) < 0 < 1 < β1(s), we obtain the expressions

U(x,∞; g∗(∞)) =
g∗(∞)

β2(∞)

( x

g∗(∞)

)β2(∞)

and g∗(∞) =
β2(∞)L

β2(∞)− 1
(4.2.21)

for x > g∗(∞). The form of the function U(x,∞; g∗(∞)) and the boundary g∗(∞) in (4.2.21)

follows from the fact that U(x,∞; g∗(∞))→ ±∞ should not hold as x→∞ , since the value

function in (4.1.4) is bounded at infinity. Observe that the expressions in (4.2.21) coincide with

the ones of the value function in the corresponding continuation region and the exercise bound-

ary of the perpetual American put option in the Black-Merton-Scholes model with constant

coefficients (see, e.g. [105; Chapter VIII, Section 2a]).

Let us now consider the maximal solution g∗(s) of the first-order ordinary differential equa-

tion in (4.2.20) with starting value g∗(∞) from (4.2.21) as s ↑ ∞ , which stays strictly below the

line x = L , whenever such a solution exists. Let us now put ŝ0 = ∞ and define a decreasing

sequence (ŝn)n∈N such that the solution g∗(s) of the equation in (4.2.20) exits the region E2 at

the points (ŝ2k−1, ŝ2k−1) and enters E2 downwards at the points (ŝ2k, ŝ2k). Namely, we define

ŝ2k−1 = sup{s ≤ ŝ2k−2 | g∗(s) > s} and ŝ2k = sup{s ≤ ŝ2k−1 | g∗(s) ≤ s} , k ∈ N , whenever

they exist, and put ŝ2k = ŝ2k−1 = 0 otherwise. Note that 0 < ŝ2k < ŝ2k−1 < L , k ∈ N ,
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by construction. Then, the candidate value function takes the form of (4.2.18)-(4.2.19) in the

regions

Q̂2
2k−1 = {(x, s) ∈ E2 | ŝ2k−1 < s ≤ ŝ2k−2} (4.2.22)

for k ∈ N and the boundary function g∗(s) provides the maximal solution of the equation

in (4.2.20) staying strictly below the level L and satisfying g∗(∞) given by (4.2.21). Finally,

we note that the candidate value function should be given by the condition of (4.1.13) in the

regions

Q̂2
2k = {(x, s) ∈ E2 | ŝ2k < s ≤ ŝ2k−1} (4.2.23)

for k ∈ N , which belong to the stopping region D∗ in (4.1.9).

(iii) The strangle option. Let us finally consider the strangle option case 0 < L < K <∞
in which we have 0 < g∗(s) < h∗(s) <∞ for all s > 0. Then, solving the system of equations

in (4.2.3)-(4.2.4) and (4.2.5)-(4.2.6) for the unknown functions Ci(s, y) = Di(s), i = 1, 2, we

conclude that the function V (x, s, y) = U(x, s) in (4.2.1) admits the representation

U(x, s; g∗(s), h∗(s)) = D1(s; g∗(s), h∗(s))x
β1(s) +D2(s; g∗(s), h∗(s))x

β2(s) (4.2.24)

for 0 < g∗(s) < x < h∗(s) ≤ s and s > K , with

Di(s; g∗(s), h∗(s)) =
(L− g∗(s))hβ3−i(s)

∗ (s)− (h∗(s)−K) g
β3−i(s)
∗ (s)

g
βi(s)
∗ (s)h

β3−i(s)
∗ (s)− hβi(s)∗ (s) g

β3−i(s)
∗ (s)

(4.2.25)

for all s > 0. Here, the boundaries g∗(s) and h∗(s) provide a unique solution to the system of

algebraic equations

I1(g(s); s) = J1(h(s); s) and I2(g(s); s) = J2(h(s); s) (4.2.26)

for all s > K , where the functions Ii(x; s) and Ji(x; s) are defined by the expressions

Ii(x; s) =
(1− β3−i(s))x+ β3−i(s)L

(−1)i xβi(s)
and Ji(x; s) =

(β3−i(s)− 1)x− β3−i(s)K

(−1)i xβi(s)
(4.2.27)

for all 0 < x ≤ s and i = 1, 2, and the uniqueness of the solution of the system in (4.2.26) is

proved in [47; Section 4].

Let us put s̃0 =∞ and consider the decreasing sequence (s̃n)n∈N as in part (i) above which

is now associated with h∗(s) as a solution of the system in (4.2.26). Then, the candidate value

function takes the form of (4.2.24)-(4.2.25) and the boundaries g∗(s) and h∗(s) provide the

unique solution of the system of equations in (4.2.26) in the regions R̃2
2l−1 , for l = 1, . . . , l̃ ,

given by (4.2.14), where we put l̃ = sup{l ∈ N | s̃2l−1 > K} . Moreover, we put ŝ0 = s̃2l̃−1

and consider the decreasing sequence (ŝn)n∈N as in part (ii) above. Then, the candidate value

function admits the representation in (4.2.18)-(4.2.19) in the regions R̃2
2l , for l = 1, . . . , l̃ , or

90



Q̂2
2k−1 , for k ∈ N , given by (4.2.15) and (4.2.22), respectively, and the boundary g∗(s) provides

a unique solution of the equation in (4.2.20) with starting value g∗(s̃2l−1) in each region R̃2
2l , for

l = 1, . . . , l̃−1, and g∗(s̃2l̃−1) in all Q̂2
2k−1 , for k ∈ N . The value of g∗(s̃2l−1) is given by g(s̃2l−1)

from the solution of (4.2.26), for l = 1, . . . , l̃ . To see this, observe that the process (X,S) can

move from the region R̃2
2l in (4.2.15) to the region R̃2

2l−1 in (4.2.14), for l = 1, . . . , l̃ − 1 and

from Q̂2
1 to R̃2

2l̃−1
only through the point (s̃2l−1, s̃2l−1), for l = 1, . . . , l̃ , respectively, and the

candidate value function is continuous at the point (s̃2l−1, s̃2l−1), satisfying

U(s̃2l−1, s̃2l−1; g∗(s̃2l−1)) = U(s̃2l−1+, s̃2l−1+; g∗(s̃2l−1+), h∗(s̃2l−1+)) ≡ (s̃2l−1 −K)+ (4.2.28)

where the left-hand side is given by (4.2.18)-(4.2.19) with g∗(s̃2l−1) from the solution of (4.2.26),

for every l = 1, . . . , l̃ .

4.2.3. The solution to the problem for the three-dimensional process (X,S, Y ).

We now continue with the general form of the coefficients δ(s, y) and σ(s, y) in (4.1.1)-(4.1.2),

and thus, of the functions γi(s, y), i = 1, 2, from (4.2.2). We denote the border planes of the

state space E3 by d3
1 = {(x, s, y) ∈ R3 | 0 < x = s} and d3

2 = {(x, s, y) ∈ R3 | 0 < x = s − y} ,
as well as recall that the second and third components of the process (X,S, Y ) can increase

only at the planes d3
1 and d3

2 , that is, when Xt = St and Xt = St − Yt for t ≥ 0, respectively.

(i) The call option. Let us first consider the case of the standard call option L = 0 in

which we have a∗(s, y) = 0 for all 0 < y < s . Then, solving the system of equations in (4.2.4)

and (4.2.6), we conclude that the function in (4.2.1) admits the representation

V (x, s, y; b∗(s, y)) = C1(s, y; b∗(s, y))xγ1(s,y) + C2(s, y; b∗(s, y))xγ2(s,y) (4.2.29)

for 0 < s− y ≤ x < b∗(s, y) ≤ s and s > K , with

Ci(s, y; b∗(s, y)) =
(γ3−i(s, y)− 1) b∗(s, y)− γ3−i(s, y)K

(γ3−i(s, y)− γi(s, y)) b∗(s, y)γi(s,y)
(4.2.30)

for all 0 < y < s and i = 1, 2. Hence, assuming that the boundary function b∗(s, y)

is continuously differentiable, we apply the condition of (4.2.8) to the functions Ci(s, y) =

Ci(s, y; b∗(s, y)), i = 1, 2, in (4.2.30) to obtain that b∗(s, y) solves the first-order nonlinear

ordinary differential equation

∂yb(s, y) =
2∑
i=1

((γ3−i(s, y)− 1) b(s, y)− γ3−i(s, y)K) b(s, y)

(γi(s, y)− 1) (γ3−i(s, y)− 1) b(s, y)− γi(s, y) γ3−i(s, y)K
(4.2.31)

×
(

1

γ3−i(s, y)− γi(s, y)
+

((s− y)/b(s, y))γi(s,y) ln ((s− y)/b(s, y))

((s− y)/b(s, y))γi(s,y) − ((s− y)/b(s, y))γ3−i(s,y)

)
∂yγi(s, y)

for 0 < y < s , where the partial derivatives ∂yγi(s, y), i = 1, 2, are given by (4.2.10) with

(4.2.12).
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Since the functions δ(s, y) and σ(s, y) are assumed to be continuously differentiable and

bounded, it follows that the limits δ(s, s−) and σ(s, s−) exist for each s > 0. Then, the limits

γi(s, s−) can be identified with the functions βi(s), i = 1, 2, from Subsection 3.2 above, and

the function in (4.2.29) should satisfy the property V (x, s, y; b∗(s, y)) → V (x, s, s−; b∗(s, s−))

as y ↑ s , for each s− y ≤ x < b∗(s, y). Thus, taking into account the fact that γ2(s, y) < 0 <

1 < γ1(s, y), we conclude that the equalities

V (x, s, s−; b∗(s, s−)) = U(x, s; b∗(s, s−)) and b∗(s, s−) = h∗(s) (4.2.32)

hold for 0 < x < b∗(s, s−) and s > K , with U(x, s;h∗(s)) and h∗(s) given by (4.2.13), since

otherwise V (x, s, s−; b∗(s, s−))→ ±∞ as x ↓ 0, that must be excluded by virtue of the obvious

fact that the value function in (4.1.4) is bounded at zero.

For any s > K fixed, let us now consider the solution b∗(s, y) of (4.2.31) started from

the value h∗(s) given by (4.2.13) at y ↑ s . Then, we put ỹ0(s) = s and define a decreasing

sequence (ỹn(s))n∈N such that ỹ2l−1(s) = sup{y < ỹ2l−2(s) | b∗(s, y) > s} and ỹ2l(s) = sup{y <
ỹ2l−1(s) | b∗(s, y) ≤ s} , whenever they exist, and put ỹ2l−1(s) = ỹ2l(s) = 0, l ∈ N , otherwise.

Moreover, we can also define a decreasing sequence (ŷn(s))n∈N such that the boundary b∗(s, y)

exits the region E3 from the side of d3
2 at the points (s − ŷ2k−1(s), s, ŷ2k−1(s)) and enters

E3 downwards at the points (s − ŷ2k(s), s, ŷ2k(s)). Namely, we put ŷ0(s) = s and define

ŷ2k−1(s) = sup{y < ŷ2k−2(s) | b∗(s, y) < s−y} and ŷ2k(s) = sup{y < ŷ2k−1(s) | b∗(s, y) ≥ s−y} ,
whenever such points exist, and put ŷ2k−1(s) = ŷ2k(s) = 0 otherwise, for k ∈ N . Note that

0 < ŷ2k(s) < ŷ2k−1(s) < s−K , k ∈ N , by construction. Therefore, the candidate value function

admits the expression in (4.2.29)-(4.2.30) in either the region

R̃3
2l−1 = {(x, s, y) ∈ E3 | ỹ2l−1(s) < y ≤ min

k∈N
{ŷ2k−2(s) | ỹ2l−1(s) < ŷ2k−2(s)} ∧ ỹ2l−2(s)} (4.2.33)

or

R̂3
2k−1 = {(x, s, y) ∈ E3 | ŷ2k−1(s) < y ≤ min

l∈N
{ỹ2l−1(s) | ỹ2l−1(s) < ŷ2k−2(s)}∧ŷ2k−2(s)} (4.2.34)

for k, l ∈ N , and the boundary b∗(s, y) provides the unique solution of the equation in (4.2.31)

started from the value b∗(s, s−) = h∗(s) from (4.2.13) (see Figure 3 below).

On the other hand, the candidate value function takes the form of (4.2.1) with Ci(s, y),

i = 1, 2, solving the linear system of first-order partial differential equations in (4.2.7) and

(4.2.8), in the regions

R̃3
2l = {(x, s, y) ∈ E3 | ỹ2l(s) < y ≤ ỹ2l−1(s)} (4.2.35)

for l ∈ N , which belong to C ′ in (4.1.7). Note that, the process (X,S, Y ) can enter the

region R̃3
2l in (4.2.35) from one of the regions R̃3

2l+1 in (4.2.33) or R̂3
2k−1 in (4.2.34), for some

k ∈ N , only through the point (s− ỹ2l(s), s, ỹ2l(s)) and can exit the region R̃3
2l passing to the
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region R̃3
2l−1 only through the point (s− ỹ2l−1(s), s, ỹ2l−1(s)), by hitting the plane d3

2 , so that

increasing its third component Y . Thus, the candidate function should be continuous at the

points (s− ỹ2l(s), s, ỹ2l(s)) and (s− ỹ2l−1(s), s, ỹ2l−1(s)), that is expressed by the equalities

C1(s, ỹ2l(s)+) ((s− ỹ2l(s))−)γ1(s,ỹ2l(s)+) + C2(s, ỹ2l(s)+) ((s− ỹ2l(s))−)γ2(s,ỹ2l(s)+) (4.2.36)

= V (s− ỹ2k(s), s, ỹ2k(s); b(s, ỹ2k(s)))

C1(s, ỹ2l−1(s)) (s− ỹ2l−1(s))γ1(s,ỹ2l−1(s)) + C2(s, ỹ2l−1(s)) (s− ỹ2l−1(s))γ2(s,ỹ2l−1(s)) (4.2.37)

= V ((s− ỹ2k−1(s))−, s, ỹ2k−1(s)+; b∗(s, ỹ2k−1(s)+))

for s > K and l ∈ N , where the right-hand sides are given by (4.2.29)-(4.2.30) with

b∗(s, ỹ2k−1(s)+) = b∗(s, ỹ2k(s)) = s . However, if b∗(s, s−) = h∗(s) > s holds with h∗(s)

given by (4.2.13), then we have ỹ1(s) = s− and the condition of (4.2.37) for l = 1, changes its

form to C2(s, s−) = 0 for s > K , since otherwise V (x, s, y) → ±∞ as x ↓ 0, that must be

excluded by virtue of the obvious fact that the value function in (4.1.4) is bounded at zero.

In addition, the process (X,S, Y ) can exit the region R̃3
2l in (4.2.35) passing to the stopping

region D∗ from (4.1.9) only through the point (s(y), s(y), y), by hitting the plane d3
1 , so that

increasing its second component S until it reaches the value s(y) = inf{q > s | b∗(q, y) ≤ q} .
Since the boundary b∗(q, y) provides a solution of the equation in (4.2.31) with starting value

b∗(q, q−) = h∗(q), for each q ≤ s(y), the candidate value function should be continuous at the

point (s(y), s(y), y), that is expressed by the equality

C1(s(y)−, y) (s(y)−)γ1(s(y)−,y) + C2(s(y)−, y) (s(y)−)γ2(s(y)−,y) (4.2.38)

= V (s(y), s(y), y; b∗(s(y), y)) ≡ s(y)−K

We can therefore conclude that the candidate value function admits the representation

V (x, s, y; s(y), ỹ2l−1(s), ỹ2l(s)) (4.2.39)

= C1(s, y; s(y), ỹ2l−1(s), ỹ2l(s))x
γ1(s,y) + C2(s, y; s(y), ỹ2l−1(s), ỹ2l(s))x

γ2(s,y)

in the regions R̃3
2l given by (4.2.35), where Ci(s, y; s(y), ỹ2l−1(s), ỹ2l(s)), i = 1, 2, provide a

unique solution of the two-dimensional system of first-order linear partial differential equations

in (4.2.7)-(4.2.8) with the boundary conditions of (4.2.36)-(4.2.38), for l ∈ N . Finally, we

observe that the candidate value function should be given by the condition of (4.1.13) in the

regions

R̂3
2k = {(x, s, y) ∈ E3 | ŷ2k(s) < y ≤ ŷ2k−1(s)} (4.2.40)

for k ∈ N , which belongs to the stopping region D∗ in (4.1.9).
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Figure 3. A computer drawing of the state space of the process (X,S, Y ),

for some s fixed, which increases to s′ , and the boundary function b∗(s, y).

(ii) The put option. Let us now consider the case of standard put option K = ∞ in

which we have b∗(s, y) =∞ for all 0 < y < s . Then, solving the system of equations in (4.2.3)

and (4.2.5), we conclude that the function in (4.2.1) admits the representation

V (x, s, y; a∗(s, y)) = C1(s, y; a∗(s, y))xγ1(s,y) + C2(s, y; a∗(s, y))xγ2(s,y) (4.2.41)

for 0 < s− y ≤ a∗(s, y) < x ≤ s , with

Ci(s, y; a∗(s, y)) =
(γ3−i(s, y)− 1) a∗(s, y)− γ3−i(s, y)L

(γi(s, y)− γ3−i(s, y)) a
γi(s,y)
∗ (s, y)

(4.2.42)

for all 0 < y < s and i = 1, 2. Hence, assuming that the boundary function a∗(s, y) is

continuously differentiable, we apply the condition of (4.2.7) for the functions Ci(s, y) =

Ci(s, y; a∗(s, y)), i = 1, 2, in (4.2.42) to obtain that a∗(s, y) solves the first-order nonlinear

ordinary differential equation

∂sa(s, y) =
2∑
i=1

((γ3−i(s, y)− 1) a(s, y)− γ3−i(s, y)) a(s, y)

(γi(s, y)− 1) (γ3−i(s, y)− 1) a(s, y)− γi(s, y) γ3−i(s, y)L
(4.2.43)

×
(

1

γ3−i(s, y)− γi(s, y)
+

(s/a(s, y))γi(s,y) ln(s/a(s, y))

(s/a(s, y))γi(s,y) − (s/a(s, y))γ3−i(s,y)

)
∂sγi(s, y)

for 0 < y < s , where the partial derivatives ∂sγi(s, y), i = 1, 2, are given by (4.2.9) with

(4.2.11).
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Since the functions δ(s, y) and σ(s, y) are assumed to be continuously differentiable and

bounded, the limits δ(y+, y) and σ(y+, y) exist for each y > 0. Then, the limits γi(y+, y)

can be identified with the functions βi(y), for i = 1, 2, from Subsection 3.2 above, and the

function in (4.2.41) should satisfy the property V (x, s, y; a∗(s, y)) → V (x, y+, y; a∗(y+, y)) as

s ↓ y , for each s− y ≤ a∗(s, y) < x ≤ s . Thus, we conclude that the equalities

V (x, y+, y; a∗(y+, y)) = U(x, y; a∗(y+, y)) and a∗(y+, y) = g∗(y) (4.2.44)

hold for 0 < a∗(y+, y) < x ≤ y and U(x, s; g∗(s)) given by (4.2.18) with g∗(s) obtained in part

(ii) of Subsection 3.2. To see this, we observe that the candidate value function evaluated at

s ↓ y in (4.2.44) satisfies the normal reflection condition only at the diagonal d3
3 = {(x, s, y) ∈

R3 | 0 < x = s = y} of the plane d3
1 , and thus, the function a∗(y+, y) = g∗(y) is the maximal

solution of the equation in (4.2.20) with the boundary condition a∗(∞,∞) = g∗(∞) of (4.2.21)

as y = s→∞ , which stays strictly below the plane x = L .

For any y > 0 fixed, let us now consider the solution a∗(s, y) of (4.2.43) started from

the value a∗(y+, y) = g∗(y), which is the maximal solution of (4.2.20) satisfying a∗(∞,∞) =

g∗(∞) from (4.2.21) and staying strictly below L , whenever such a solution exists. Then, we

put s̃0(y) = y and define an increasing sequence (s̃n(y))n∈N such that the boundary a∗(s, y)

exits the region E3 from the side of the plane d3
1 at the points (s̃2l−1(y), s̃2l−1(y), y) and

enters E3 upwards at the points (s̃2l(y), s̃2l(y), y). Namely, we define s̃2l−1(y) = inf{s >

s̃2l−2(y) | a∗(s, y) > s} and s̃2l(y) = inf{s > s̃2l−1(y) | a∗(s, y) ≤ s} , l ∈ N , whenever they

exist, and put s̃2l−1(y) = s̃2l(y) = ∞ otherwise, for l ∈ N . Note that y < s̃2l−1(y) < s̃2l(y) ≤
L , l ∈ N , by construction. Moreover, we put ŝ0(y) = y and define an increasing sequence

(ŝn(y))n∈N such that ŝ2k−1(y) = inf{s > ŝ2k−2(y) | a∗(s, y) < s − y} and ŝ2k(y) = inf{s >
ŝ2k−1(y) | a∗(s, y) ≥ s − y} , k ∈ N , whenever they exist, and put ŝ2k−1(y) = ŝ2k(y) = ∞
otherwise. Note that y ≤ ŝ2k−2(y) < ŝ2k−1(y) < L + y , by construction, for k = 1, . . . , k̂ ,

where k̂ = sup{k ∈ N | ŝ2k−1(y) < L + y} . Therefore, the candidate value function admits the

expression in (4.2.41) in either the region

Q̂3
2k−2 = {(x, s, y) ∈ E3 | ŝ2k−2(y) ≤ s < min

l∈N
{s̃2l−1(y)| s̃2l−1(y) > ŝ2k−2(y)}∧ŝ2k−1(y)} (4.2.45)

or

Q̃3
2l−2 = {(x, s, y) ∈ E3 | s̃2l−2(y) ≤ y < min

k∈N
{ŝ2k−1(y) | ŝ2k−1(y) > s̃2l−2(y)}∧ s̃2l−1(y)} (4.2.46)

for k = 1, . . . , k̂ and l ∈ N , and the boundary function a∗(s, y) provides the unique solution

of (4.2.43) starting from the value a∗(y+, y) = g∗(y), which is the maximal solution of (4.2.20)

satisfying a∗(∞,∞) = g∗(∞) from (4.2.21) and staying strictly below L (see Figure 4 below).

On the other hand, the candidate value function takes the form of (4.2.1) with Ci(s, y),

i = 1, 2, solving the linear system of first-order partial differential equations in (4.2.7) and
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(4.2.8), in the regions

Q̂3
2k−1 = {(x, s, y) ∈ E3 | ŝ2k−1(y) ≤ s < ŝ2k(y)} (4.2.47)

for k = 1, . . . , k̂ , which belong to C ′ in (4.1.7). Note that, the process (X,S, Y ) can enter

Q̂3
2k−1 in (4.2.47) from one of the regions Q̂3

2k−2 in (4.2.45) or Q̃3
2l−2 in (4.2.46), for some l ∈ N ,

only through the point (ŝ2k−1(y), ŝ2k−1(y), y) and can exit Q̂3
2k−1 passing to Q̂3

2k only through

the point (ŝ2k(y), ŝ2k(y), y), by hitting the plane d3
1 and increasing its second component S .

Thus, the candidate value function should be continuous at the points (ŝ2k−1(y), ŝ2k−1(y), y)

and (ŝ2k(y), ŝ2k(y), y), that is expressed by the equalities

C1(ŝ2k−1(y), y) (ŝ2k−1(y))γ1(ŝ2k−1(y),y) + C2(ŝ2k−1(y), y) (ŝ2k−1(y))γ2(ŝ2k−1(y),y) (4.2.48)

= V (ŝ2k−1(y)−, ŝ2k−1(y)−, y; a∗(ŝ2k−1(y)−, y))

C1(ŝ2k(y)−, y) (ŝ2k(y)−)γ1(ŝ2k(y)−,y) + C2(ŝ2k(y)−, y) (ŝ2k(y)−)γ2(ŝ2k(y)−,y) (4.2.49)

= V (ŝ2k(y), ŝ2k(y), y; a∗(ŝ2k(y), y))

for y > 0 and k = 1, . . . , k̂ − 1, where the right-hand sides are given by (4.2.41)-(4.2.42) with

a∗(ŝ2k−1(y)−, y) = (ŝ2k−1(y)−y)− and a∗(ŝ2k(y), y) = ŝ2k(y)−y , respectively. However, in the

region Q̂3
2k̂−1

we have ŝ2k̂(y) =∞ and the condition of (4.2.49), for k = k̂ , changes its form to

C1(∞, y) = 0 for y > 0, since otherwise V (x,∞, y) → ±∞ as x ↑ ∞ , that must be excluded

due to the fact that the value function in (4.1.4) is bounded at infinity, while the condition of

(4.2.48) holds for k = k̂ as well.

In addition, the process (X,S, Y ) can exit Q̂3
2k−1 in (4.2.47) passing to the stopping region

D∗ in (4.1.9), only through the point (s − y(s), s, y(s)), by hitting the plane d3
2 , so that

increasing its third component Y until it reaches the value y(s) = inf{z > y | a∗(s, z) ≥ s− z} .
Since the boundary a∗(s, z) provides a solution of the equation in (4.2.43) with starting value

a∗(z+, z) = g∗(z) from (4.2.20), for each z < y(s), the candidate value function should be

continuous at the point (s− y(s), s, y(s)), that is expressed by the equality

C1(s, y(s)−) ((s− y(s))+)γ1(s,y(s)−) + C2(s, y(s)−) ((s− y(s))+)γ2(s,y(s)−) (4.2.50)

= V (s− y(s), s, y(s); a∗(s, y(s))) ≡ L− (s− y(s))

We can therefore conclude that the candidate value function admits the representation

V (x, s, y; ŝ2k−1(y), ŝ2k(y), y(s)) (4.2.51)

= C1(s, y; ŝ2k−1(y), ŝ2k(y), y(s))xγ1(s,y) + C2(s, y; ŝ2k−1(y), ŝ2k(y), y(s))xγ2(s,y)

in the regions Q̂3
2k−1 in (4.2.47), where Ci(s, y; ŝ2k−1(y), ŝ2k(y), y(s)), i = 1, 2, provide a unique

solution of the two-dimensional system of linear partial differential equations in (4.2.7)-(4.2.8)
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with the boundary conditions (4.2.48)-(4.2.50), for k = 1, . . . , k̂ . Finally, we note that the

candidate value function should be given by the condition of (4.1.13) in the regions

Q̃3
2l−1 = {(x, s, y) ∈ E3 | s̃2l−1(y) ≤ s < s̃2l(y)} (4.2.52)

for l ∈ N , which belong to the stopping region D∗ from (4.1.9).

-
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Figure 4. A computer drawing of the state space of the process (X,S, Y ),

for some y fixed, which increases to y′ , and the boundary function a∗(s, y).

4.3. Main results and proof

In this section, we formulate and prove the main results of the chapter, using the facts

proved above. We recall that the process (X,S, Y ) is given by (4.1.1)-(4.1.3).

Proposition 4.3.1 In the perpetual American call option case L = 0, the value function of

the optimal stopping problem (4.1.4) has the expression

V∗(x, s, y) =


V (x, s, y; b∗(s, y)), if s− y ≤ x < b∗(s, y) ≤ s

V (x, s, y; s(y), ỹ2l−1(s), ỹ2l(s)), if s− y ≤ x ≤ s < b∗(s, y)

x−K, if b∗(s, y) ≤ x ≤ s

(4.3.1)
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and the optimal stopping time is given by (4.1.6) with a∗(s, y) = 0, where the functions

V (x, s, y; b∗(s, y)) and V (x, s, y; s(y), ỹ2l−1(s), ỹ2l(s)) as well as the boundary b∗(s, y) are spec-

ified as follows:

(i) in the particular case δ(s, y) = δ(s) and σ(s, y) = σ(s), the function V (x, s, y; b∗(s, y)) =

U(x, s;h∗(s)) and the boundary b∗(s, y) = h∗(s) are given by (4.2.13), for (x, s) ∈ R̃2
2l−1 defined

in (4.2.14), and V (x, s, y; s(y), ỹ2l−1(s), ỹ2l(s)) = U(x, s; s̃2l−1) is given by (4.2.17), whenever

(x, s) ∈ R̃2
2l defined in (4.2.15), for l ∈ N;

(ii) in the general case for δ(s, y) and σ(s, y), the function V (x, s, y; b∗(s, y)) is given by

(4.2.29)-(4.2.30) and the boundary b∗(s, y) provides the unique solution of the equation in

(4.2.31) started from the value b∗(s, s−) = h∗(s) from (4.2.13), for (x, s, y) ∈ R̃3
2l−1 ∪ R̂3

2k−1

defined in (4.2.33) and (4.2.34), respectively, and V (x, s, y; s(y), ỹ2l−1(s), ỹ2l(s)) is given by

(4.2.39), whenever (x, s, y) ∈ R̃3
2l defined in (4.2.35), with Ci(s, y; s(y), ỹ2l−1(s), ỹ2l(s)), i =

1, 2, solving the system of equations in (4.2.7)-(4.2.8) and satisfying the conditions of (4.2.36)-

(4.2.38), for k, l ∈ N, where (4.2.37) changes its form to C2(s, s−) = 0, for the case l = 1, if

b∗(s, s−) = h∗(s) > s holds.

Proposition 4.3.2 In the perpetual American put option case K = ∞, the value function of

the optimal stopping problem (4.1.4) has the expression

V∗(x, s, y) =


V (x, s, y; a∗(s, y)), if s− y ≤ a∗(s, y) < x ≤ s

V (x, s, y; ŝ2k−1(y), ŝ2k(y), y(s)), if a∗(s, y) < s− y ≤ x ≤ s

L− x, if s− y ≤ x ≤ a∗(s, y)

(4.3.2)

and the optimal stopping time is given by (4.1.6) with b∗(s, y) = ∞, where the functions

V (x, s, y; a∗(s, y)) and V (x, s, y; s̃2l−1(y), s̃2l(y), y(s)) as well as the boundary a∗(s, y) are spec-

ified as follows:

(i) in the particular case δ(s, y) = δ(s) and σ(s, y) = σ(s), the function V (x, s, y; a∗(s, y)) =

U(x, s; g∗(s)) is given by (4.2.18)-(4.2.19) and the boundary a∗(s, y) = g∗(s) provides the max-

imal solution of the equation in (4.2.20) started at g∗(∞) from (4.2.21) and staying strictly

below the line x = L, whenever such a solution exists, for (x, s) ∈ Q̂2
2k−1 defined in (4.2.22)

and k ∈ N;

(ii) in the general case for δ(s, y) and σ(s, y), the function V (x, s, y; a∗(s, y)) is given

by (4.2.41)-(4.2.42) and the boundary a∗(s, y) provides the unique solution of the equation

in (4.2.43) started from the value a∗(y+, y) = g∗(y) given by the maximal solution of the

equation in (4.2.20) started at g∗(∞) from (4.2.21) and staying strictly below the line x = L,

whenever such a solution exists, for (x, s, y) ∈ Q̂3
2k−2 ∪ Q̃3

2l−2 defined in (4.2.45) and (4.2.46),

respectively, and V (x, s, y; ŝ2k−1(y), ŝ2k(y), y(s)) is given by (4.2.51), whenever (x, s, y) ∈ Q̂3
2k−1
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defined in (4.2.47), with Ci(s, y; ŝ2k−1(y), ŝ2k(y), y(s)), i = 1, 2, solving the system of equations

in (4.2.7)-(4.2.8) and satisfying the conditions of (4.2.48)-(4.2.50), k = 1, . . . , k̂ and l ∈ N,

where (4.2.49) changes its form to C1(∞, y) = 0, for the case k = k̂ .

Proposition 4.3.3 In the perpetual American strangle option case 0 < L < K < ∞ in the

particular case δ(s, y) = δ(s) and σ(s, y) = σ(s), the value function V∗(x, s, y) = U∗(x, s) of

the optimal stopping problem (4.1.4) has the expression

U∗(x, s) =


U(x, s; g∗(s), h∗(s)), if 0 < g∗(s) < x < h∗(s) ≤ s

U(x, s; g∗(s)), if 0 < g∗(s) < x ≤ s < h∗(s)

(L− x)+ ∨ (x−K)+, if 0 < x ≤ g∗(s) or h∗(s) ≤ x ≤ s

(4.3.3)

and the optimal stopping time is given by (4.1.6) for the boundary functions a∗(s, y) = g∗(s)

and b∗(s, y) = h∗(s), which are specified together with the functions U(x, s; g∗(s), h∗(s)) and

U(x, s; g∗(s)), as follows:

The function U(x, s; g∗(s), h∗(s)) is given by (4.2.24)-(4.2.25) and the boundaries g∗(s)

and h∗(s) are uniquely determined by (4.2.26)-(4.2.27), for (x, s) ∈ R̃2
2l−1 defined in (4.2.14),

and the function U(x, s; g∗(s)) is given by (4.2.18)-(4.2.19) and the boundary g∗(s) provides

the unique solution of the equation in (4.2.20) started at g∗(s̃2l−1) from (4.2.26), for (x, s) ∈
R̃2

2l ∪ Q̂2
2k−1 defined in (4.2.15) and (4.2.22), respectively, l = 1, . . . , l̃ and k ∈ N.

Since all the parts of the assertion formulated above are proved using similar arguments, we

only give a proof for the three-dimensional optimal stopping problem related to the perpetual

American put option in part (ii) of Proposition 4.3.2, which represents the most complicated

and informative case.

Proof of Proposition 4.3.2 (ii). In order to verify the assertion stated above, it remains

to show that the function defined in (4.3.2) coincides with the value function in (4.1.4) and

that the stopping time τ∗ in (4.1.6) is optimal with b∗(s, y) = ∞ and the boundary a∗(s, y)

specified above. For this, let a(s, y) be the unique solution of (4.2.43) starting from the value

a(y+, y) = g(y), being any solution of (4.2.20) starting from a∗(∞,∞) = g∗(∞) in (4.2.21)

and satisfying g(s) < L for all s . Let us also denote by Va(x, s, y) the right-hand side of

the expression in (4.3.2) associated with this a(s, y). It then follows using straightforward

calculations and the assumptions presented above that the function Va(x, s, y) solves the system

(4.1.11)-(4.1.13), while the normal-reflection and smooth-fit conditions are satisfied in (4.1.16)

and (4.1.17). Hence, taking into account the fact that the function Va(x, s, y) is C2,1,1 and the
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boundary a(s, y) is assumed to be continuously differentiable for all 0 < y < s , by applying

the change-of-variable formula from [92; Theorem 3.1] to e−rt Va(Xt, St, Yt), we obtain

e−rt Va(Xt, St, Yt) = Va(x, s, y) +Mt (4.3.4)

+

∫ t

0

e−ru (LVa − rVa)(Xu, Su, Yu) I(Xu 6= Su − Yu, Xu 6= a(Su, Yu), Xu 6= Su) du

+

∫ t

0

e−ru ∂sVa(Xu, Su, Yu) I(Xu = Su) dSu +

∫ t

0

e−ru ∂yVa(Xu, Su, Yu) I(Xu = Su − Yu) dYu

where the process M = (Mt)t≥0 given by

Mt =

∫ t

0

e−ru ∂xVa(Xu, Su, Yu) I(Xu 6= Su − Yu, Xu 6= Su)σ(Su, Yu)Xu dBu (4.3.5)

is a square integrable martingale under Px,s,y . Note that, since the time spent by the process

X at the boundary surface {(x, s, y) ∈ E3 |x = a(s, y)} as well as at the planes d3
1 and d3

2 , is

of Lebesgue measure zero, the indicators in the second line of the formula (4.3.4) as well as in

the formula (4.3.5) can be ignored. Moreover, since the process S increases only at the plane

d3
1 and the process Y increases only at the plane d3

2 , the indicators in the third and fourth line

of (4.3.4) can also be set equal to one.

By using straightforward calculations and the arguments from the previous section, it is

verified that (LVa−rVa)(x, s, y) ≤ 0 for all (x, s, y) ∈ E3 such that x 6= a(s, y), x 6= s−y , and

x 6= s . Moreover, it is shown by means of standard arguments that the property (4.1.14) also

holds, which together with (4.1.12)-(4.1.13) implies that the equality Va(x, s, y) ≥ (L − x)+

is satisfied for all (x, s, y) ∈ E3 . It therefore follows from the expression (4.3.4) that the

inequalities

e−rτ (L−Xτ )
+ ≤ e−rτ Va(Xτ , Sτ , Yτ ) ≤ Va(x, s, y) +Mτ (4.3.6)

hold for any finite stopping time τ with respect to the natural filtration of X .

Taking the expectation with respect to Px,s,y in (4.3.6), by means of the optional sampling

theorem (see, e.g. [69; Chapter I, Theorem 3.22]), we get

Ex,s,y
[
e−r(τ∧t) (L−Xτ∧t)

+
]
≤ Ex,s,y

[
e−r(τ∧t) Va(Xτ∧t, Sτ∧t, Yτ∧t)

]
(4.3.7)

≤ Va(x, s, y) + Ex,s,yMτ∧t = Va(x, s, y)

for all (x, s, y) ∈ E3 . Hence, letting t go to infinity and using Fatou’s lemma, we obtain that

for any finite stopping time τ the inequalities

Ex,s,y
[
e−rτ (L−Xτ )

+
]
≤ Ex,s,y

[
e−rτ Va(Xτ , Sτ , Yτ )

]
≤ Va(x, s, y) (4.3.8)

are satisfied for all (x, s, y) ∈ E3 . Taking first the supremum over all stopping times τ and

then the infimum over all a , we conclude that

Ex,s,y
[
e−rτ∗ (L−Xτ∗)

+
]
≤ inf

a
Va(x, s, y) = Va∗(x, s, y) (4.3.9)
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where a∗(s, y) is the unique solution of (4.2.43) starting from the value a∗(y+, y) = g∗(y),

being the maximal solution to (4.2.20) starting from a∗(∞,∞) = g∗(∞) in (4.2.21) and staying

strictly below the level L . Recalling that Va(x, s, y) is decreasing in the function a < L , we see

that the infimum in (4.3.9) is attained over any sequence of solutions (an(s, y))n∈N to (4.2.43)

starting from the value an(y+, y) = gn(y), solving (4.2.20) such that gn(y) ↑ g∗(y) and thus

an(s, y) ↑ a∗(s, y) as n → ∞ . Since the inequalities in (4.3.8) holds also for a∗(s, y), we see

that (4.3.9) holds for a∗(s, y) and (x, s, y) ∈ E3 , as well. Note that, Va(x, s, y) in (4.3.7) is

superharmonic for the Markov process (X,S, Y ) on E3 . Recalling that Va(x, s, y) is decreasing

in a < L and that Va(x, s, y) ≥ (L − x)+ for all (x, s, y) ∈ E3 , we observe that the selection

of the maximal solution a∗(s, y), which stays strictly below the plane x = L , whenever such a

choice exists, is equivalent to invoking the superharmonic characterization of the value function

(smaller superharmonic function dominating the payoff function, see also [97; Chapter 1] or

[90]).

To prove that a∗(s, y) is optimal on E3 , we consider the sequence of stopping times τn

defined as in (4.1.6) with an(s, y) instead of a∗(s, y), where an(s, y) is the unique solution of

(4.2.43) starting from the value an(y+, y) = gn(y), solving (4.2.20) starting from a∗(∞,∞) =

g∗(∞) in (4.2.21), such that gn(sn) = L , for some sn ↓ 0 as n→∞ . By virtue of the fact that

the function Van(x, s, y) from the right-hand side of the expression in (4.3.2) associated with

this an(s, y), satisfies the system (4.1.11)-(4.1.14) with (4.1.17) and taking into account the

structure of τn given by (4.1.6) with an(s, y) instead of a∗(s, y), it follows from the equivalent

expression of (4.3.4) that the equalities

e−r(τn∧t) (L−Xτn∧t)
+ = e−r(τn∧t) Van(Xτn∧t, Sτn∧t, Yτn∧t) = Van(x, s, y) +Mτn∧t (4.3.10)

hold for all (x, s, y) ∈ E3 . Observe that, τn ↑ τ∗ and the variable e−rτ∗(L−Xτ∗)
+ is bounded

on the set {τ∗ = ∞} . Taking into account the fact that the boundary a∗(s, y) is bounded, it

is easily seen that the property Px,s,y(τ∗ <∞) = 1 holds, for all (x, s, y) ∈ E3 . Hence, letting

t and n go to infinity and using the conditions of (4.1.12) and (4.1.17) as well as the fact that

τn ↑ τ∗ , we can apply the Lebesgue dominated convergence theorem for (4.3.10) to obtain the

equality

Ex,s,y
[
e−rτ∗ (L−Xτ∗)

+
]

= Va∗(x, s, y) (4.3.11)

for all (x, s, y) ∈ E3 , which together with (4.3.9) directly implies the desired assertion. �
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