Compact Model for Multiple Independent Gates **Ambipolar Devices**

Stefano Frache, Mariagrazia Graziano, Gianluca Piccinini

Politecnico di Torino, Electronics and Telecommunication Engineering, VLSI Lab

Motivation: Ambipolarity is often suppressed by processing steps; It can be exploited to enhance logic functionality Natural evolution of FinFE Novel approach is needed to takle complex structures

Multiple Gates vs Multi-Gates

In this context, Multiple Gates ≠ Multi-Gate

GAA are Multi-Gate devices, but do not necessarily feature MultipleGates

Present work is about Multiple Independent Multi-Gate devices

Nanoarray-based structures can benefit, as well, of this approach

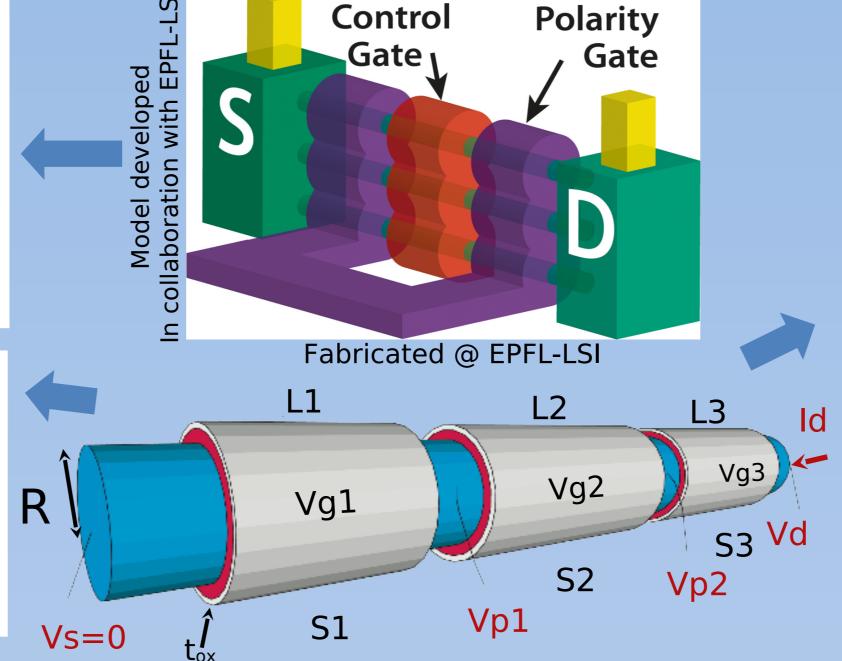
The approach: a collective strategy.

Device is seen as composed by a series of Sections. How to **decompose** it:

Define appropriate sections (S_i) in the overall structure.

Sections need not feature the same parameter set

The study of the complete device is reduced to the study of simpler parts



estimation

calculation

 Q_{D1}

calculation

DS1

calculation

 Q_{S2}

calculation

calculation

requirements

Device section modeling

Idea: to study such devices with these free parameters:

L1, L2, L3 (different length of the sections) VG1, VG2, VG3 (different applied voltages to the gates)

exploiting a charge-based model

R (radius of the nanowire) **tox** (oxide thickness) Idi independently calculated in sections Si

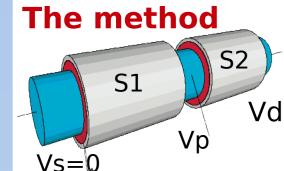
> Hypothesis: no voltage drop at S_i and $S_{(i+1)}$ contacts

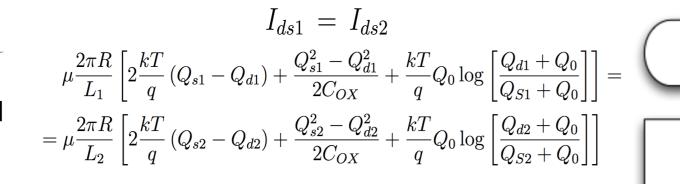
Current in sections

Idi can be calculated independently in each Section Si, provided we know V_{Di} and V_{Si} of all sections V_{Di} = $Vs_{(i+1)}$ $Id_{Si} = Ids_{(i+1)}$

charge density **Potential**

Charge density current





Q_{d1} and Q_{d2} are linked with V_P and V_{DS} through the charge control eq:

$$V_{GS} - \Delta \varphi - V - \frac{kT}{g} \log \left(\frac{8}{\delta R^2} \right) = \frac{Q}{C_{or}} + \frac{kT}{g} \log \left(\frac{Q}{Q_0} \right) + \frac{kT}{g} \log \left(\frac{Q + Q_0}{Q_0} \right)$$

 $V_{s1} < V_{d1} \equiv V_P$ $V_{s2} \equiv V_P < V_{ds}$ Qd1 and Qd2 can be neglected in calculating $Q_{d1} < Q_{s1}$ and $Q_{d2} < Q_{s2}$ $I_{ds1} = I_{ds2}$

Q_{s20} can be calculated as solution of: $\frac{1}{2C_{OX}L_2}Q_{s2}^2 + \frac{2V_{th}}{L_2}Q_{s2} - \frac{Q_{s1}^2}{2C_{OX}L_1} - \frac{2V_{th}Q_{s1}}{L_1} = 0$

V_P can be calculated substituting Q_{s20} in the charge control equation: l

$$V_{G2} - \Delta\varphi \left(V_P\right) + \frac{kT}{q} \log\left(\frac{8}{\delta R^2}\right) = \frac{Q_{s20}}{C_{ox}} + \frac{kT}{q} \log\left(\frac{Q_{s20}}{Q_0}\right) + \frac{kT}{q} \log\left(\frac{Q_{s20} + Q_0}{Q_0}\right)$$

The estimate of V_P can be used to calculate Q_{d1}:

$$Q_{d1} = C_{OX} \left(-\frac{2C_{OX}V_{th}^2}{Q_0} + \sqrt{\left(\frac{2C_{OX}V_{th}^2}{Q_0}\right)^2 + 4V_{th}^2 \log^2\left(1 + \exp\left(\frac{V_{G1} - V_T + \Delta V_T - V_P}{2V_{th}}\right)\right)} \right)$$

Knowing Q_{d1} it is possible to calculate the current:

$$I_{DS1} = \mu \frac{2\pi R}{L_1} \left[2 \frac{kT}{q} \left(Q_{s1} - Q_{d1} \right) + \frac{Q_{s1}^2 - Q_{d1}^2}{2C_{OX}} + \frac{kT}{q} Q_0 \log \left[\frac{Q_{d1} + Q_0}{Q_{S1} + Q_0} \right] \right]$$

$$I_{ds1} = I_{ds2} \quad \frac{1}{2C_{OX}}Q_{s2}^2 + 2V_{th}Q_{s2} - \frac{I_{ds1}L_2}{2\pi\mu R} \frac{Q_{s1}^2}{2C_{OX}L_1} - 2V_{th}Q_{d2} - \frac{Q_{d2}^2}{2C_{OX}} + V_{th}Q_0 \log \left(\frac{Q_{d2}^2 + Q_0}{Q_{s20} + Q_0}\right) = 0 \quad \text{Done}$$

V_P can now be calculated through the charge control equation:

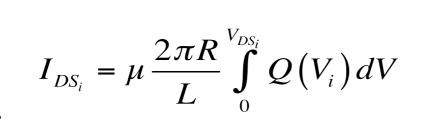
$$V_P = V_{G2} - \Delta \varphi - \frac{kT}{q} \log \left(\frac{8}{\delta R^2} \right) - \frac{Q_{s2}}{C_{ox}} - \frac{kT}{q} \log \left(\frac{Q_{S2}}{Q_0} \right) - \frac{kT}{q} \log \left(\frac{Q_{s2} + Q_0}{Q_0} \right)$$

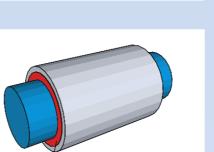
If requirements are not met it is possible to iterate the process. As a rule of thumb, the more the gates, the more iterations.

Up to three gates one iteration is enough, as will be shown in the results section. Else the process ends.

Single selection modeling

Charge-based model is used at Single Section level to obtain current information .Drain current calculated as:

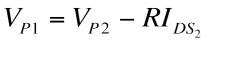




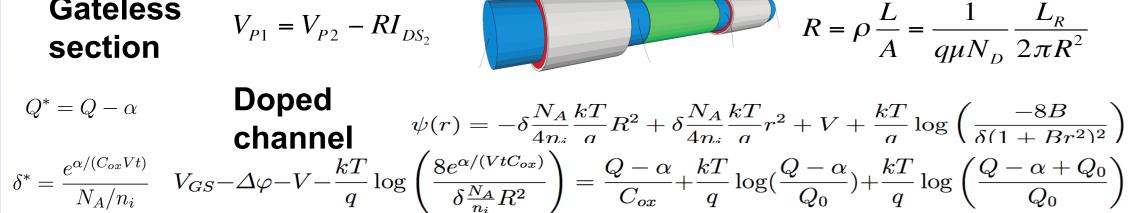
Extensions

Same nature of the problem, same approach, slight modifications

 $Q^* = Q - \alpha$



Doped



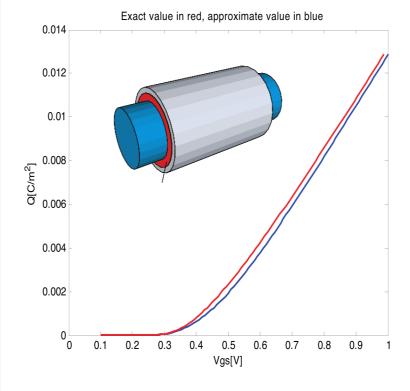
$$\frac{1}{2C_{OX}L_{i}}Q_{si0}^{2} + \frac{2V_{th}}{L_{i}}Q_{si0} - \frac{Q_{s1}^{2}}{2C_{OX}L_{1}} - \frac{2V_{th}Q_{s1}}{L_{1}} = 0$$

V_{Pi} obtained through the charge control equation:

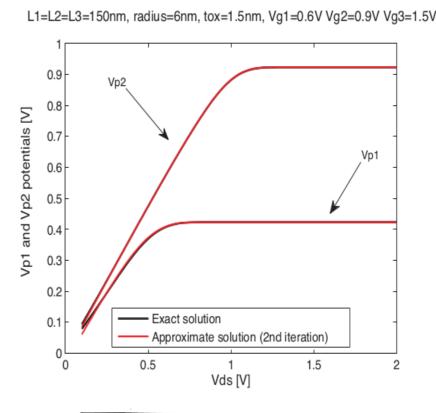
Arbitrary Num. of gates $V_{Gi} - \Delta \varphi - V_{Pi} - \frac{kT}{q} \log \left(\frac{8}{\delta R^2} \right) = \frac{Q_{si0}}{C_{ox}} + \frac{kT}{q} \log \left(\frac{Q_{Si0}}{Q_0} \right) + \frac{kT}{q} \log \left(\frac{Q_{si0} + Q_0}{Q_0} \right)$ Q_{si0} can be

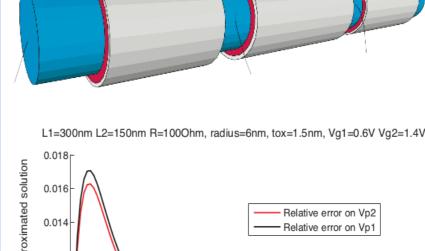
determined as positive root of: $Q_{di} = C_{OX} \left(-\frac{2C_{OX}V_{th}^2}{Q_0} + \sqrt{\left(\frac{2C_{OX}V_{th}^2}{Q_0}\right)^2 + 4V_{th}^2 \log^2\left(1 + \exp\left(\frac{V_{Gi} - V_T + \Delta V_T - V_{Pi}}{2V_{th}}\right)\right)} \right)$

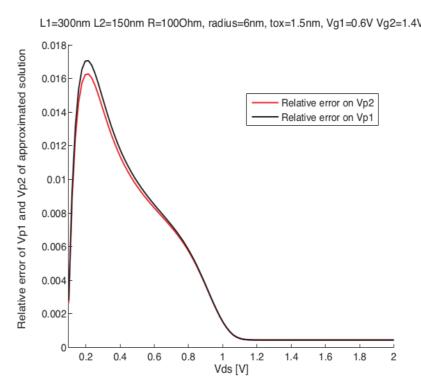
Results: single section



Results: triple section







Validation

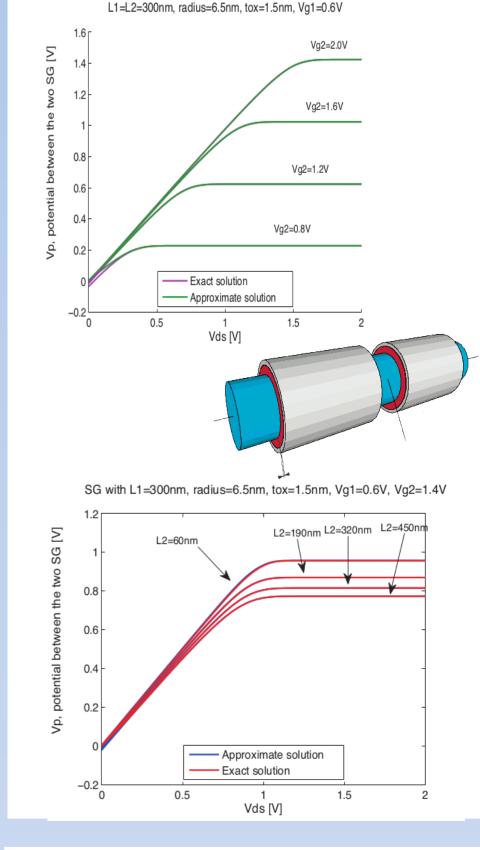
Theoretical: numerical simulations TCAD (Silvaco Atlas)

Experimental: at this stage of development, we still did not perform this kind of verification

Conclusions

Fast (second vs. hours) and accurate (max err negligible) simulation

Results: double section



Results: triple section, one gateless

