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A Proximity-Based Method to Identify Genomic Regions 
Correlated with a Continuously Varying Environmental 
Variable
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Abstract: Knowledge of markers in the human genome which show spatial patterns and display extreme correlation with different 
environmental determinants play an important role in understanding the factors which affect the biological evolution of our species. We 
used the genotype data of more than half a million single nucleotide polymorphisms (SNPs) from the data set Human Genome Diversity 
Panel (HGDP-CEPH -CEPH) and we calculated Spearman’s correlation between absolute latitude and one of the two allele frequen-
cies of each SNP. We selected SNPs with a correlation coefficient within the upper 1% tail of the distribution. We then used a criterion 
of proximity between significant variants to focus on DNA regions showing a continuous signal over a portion of the genome. Based 
on external information and genome annotations, we demonstrated that most regions with the strongest signals also have biological 
relevance. We believe this proximity requirement adds an edge to our novel method compared to the existing literature, highlighting 
several genes (for example DTNB, DOT1L, TPCN2, RELN, MSRA, NRG3) related to body size or shape, human height, hair color, and 
schizophrenia. Our approach can be applied generally to any measure of association between polymorphic frequencies and continuously 
varying environmental variables.
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Introduction
From an evolutionary point of view, human bio-
logical variation can result from natural selection, 
genetic drift and demographic processes. In human 
population genetics, several ways have been found to 
highlight genes that may be subject to selective pres-
sures, and in recent years whole genome scanning 
techniques have made it possible to find signatures 
of selection.1–4 The Human Genome Diversity Project 
(HGDP-CEPH) database5 has been repeatedly inves-
tigated in order to identify markers in the human 
genome which show geographical patterns and to 
explain how different selective forces can shape 
human genetic variations across continents. One strat-
egy for the detection of spatial selection signatures is 
the outlier approach.2,6,7 Using genome-wide data sets 
genotyped in different human populations, genetic 
variables—such as single nucleotide polymorphisms 
(SNPs)—that exhibit extreme correlations with lati-
tude or with other environmental determinants are 
identified as candidate targets for selective pressure. 
By “extreme correlation” we mean that the value of a 
certain statistic, measuring the strength of the relation-
ship between allele frequencies and latitude or other 
environmental variables, falls in the tails of the distri-
bution of the same statistic over the whole genome. 
Many choices are possible for the relevant statistic, 
ranging from a simple (either Pearson or Spearman) 
correlation coefficient between the latitude and the 
frequencies of either one or two alleles of a SNP to 
a Bayes factor comparing two models that do and 
do not, respectively, take into account the effect of a 
dichotomous environmental variable on the distribu-
tion of a genetic variant. From a technical point of 
view, the outlier approach is just a reformulation of 
the concept of statistical significance, ie, variation 
with respect to a reference distribution.

The outlier approach has been used to study sodium 
homeostasis balance as an example of adaptation. In 
hot and dry climates, genes influencing salt and water 
retention are favored by selection, explaining in this 
way large inter-ethnic differences in the prevalence 
of salt-sensitive hypertension.8,9 Other important 
research has been conducted to assess the correlation 
between four variables that summarize climate and 
the frequencies of 873 tag SNPs in 82 genes related to 
energy metabolic pathways.6 The outlier approach has 
also been used to demonstrate that allele frequencies 

of a subset of genes coding for blood group antigens 
vary with levels of pathogen richness, supporting the 
idea that these loci affect susceptibility to infectious 
diseases.10 This finding, which is compatible with 
previous evidences on the correlation between HLA 
class I diversity and pathogen richness,11 is important 
for stressing the role of diseases and pathogens, like 
virus protozoa fungi, in shaping human variations.12 
Finally, a very comprehensive article on the 
HGDP-CEPH database (enriched with the Hap Map 
and other human populations databases) has recently 
been published, in which the outlier approach is used 
to highlight polymorphisms and pathways correlated 
with ecoregion membership and diet.13

Our idea is to reinforce the outlier approach by 
considering a criterion of proximity between signif-
icant variants. In the search for targets of selective 
pressure, we believe it is important to focus on those 
DNA regions which repeatedly contain values which 
are labeled as significant by the outlier approach. 
In other words, we look for evidence of a continu-
ous signal over a portion of the genome which can 
strengthen the significance of a cluster of markers 
labeled as significant by the outlier approach alone 
and we built statistical tools.

In this paper we therefore adopt a search-
and-confirm approach which integrates the outlier 
approach by identifying regions of the genome where 
not just one, but a significant number of SNPs are 
located in the tails of the distribution of the relevant 
statistic, when compared to the number of SNPs origi-
nally genotyped in the same region. This is done in the 
following three steps, which are further illustrated in 
the complete workflow process diagram in Figure 1:

1.	 The outlier method: We identify 1% significant 
SNPs as having an absolute value of the Spearman 
correlation coefficient with latitude above its 99th 
percentile;

2.	 The proximity-based algorithm: Using the methods 
described in detail in the Materials and Methods 
section, we select candidate regions in the genome 
which exhibit the strongest signals, ie, the regions 
where the significant SNPs identified above are 
present at a significantly higher rate when compared 
to the number of originally genotyped SNPs;

3.	 Biological relevance: We investigate the biological 
relevance of the strongest signals by comparing our 
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data with results from Genome Wide Association 
studies (GWAs),14 by studying the canonical path-
way processes through gene-annotation enrich-
ment analysis15 and by comparing our analysis with 
previously published genomic scans for selective 
sweep.3,16

Materials and Methods
We describe here our methods with reference to the 
three-step process described in the Introduction.

Step 1: Our data and the outlier method
We used a data set of 660,832 SNPs genotyped in 
51 human populations distributed worldwide from 
the HGDP-CEPH panel.1 As underlined by a previ-
ous article,17 within the HGDP-CEPH panel there are 
some closely-related individuals; in order to over-
come this possible source of bias we excluded one 
member of each relative pair and we used 938 HGDP-
CEPH individuals. Information about sample sizes 
and latitudes of the populations can be found on the 

CEPH homepage http://www.cephb.fr/en/hgdp/table.
php.5 Only 22 autosomes are included in our analysis; 
we also removed SNPs with more than 10% of miss-
ing genotypes and the ones that failed the Hardy-
Weinberg equilibrium test in at least one population. 
After filtering, we use 545,209 SNPs. 

Statistical analysis is performed using R.18 We calcu-
lated Spearman’s correlation (the correlation coefficient 
between the ranks of two variables) between absolute 
latitude and one of the two alleles of each SNP and, using 
the outlier approach, we identified those SNPs which 
have an absolute Spearman’s correlation coefficient fall-
ing in the upper 1% tail of the distribution (Fig. 2).

Step 2: The proximity-based algorithm
For each chromosome, we now have two sequences 
of serial positions: one for all genotyped SNPs and 
one for the significant SNPs, the latter of which are 
included in the former. Each chromosome is indexed 
by the sequence of base pairs: as an approximation, 
we can view a chromosome as a linear segment and 

HGDP-CEPH data: 660,832 SNPs genotyped in 51 human populations
(autosomes only, filtered for unrelated, no missing and HW)

Calculate spearman’s correlation ρ between absolure latitute and each SNP frequency.
Selected those SNPs fallng in the upper 1% tail of the distribution of the absolure value of ρ

Apply the proximity-based algorithm: obtain U for each pair of SNPs more than 3 SNPs
apart and within 1000 Kb

Select 1000 SNPs in regions corresponding to highest U

Literature search for the biological relevance of those regions

Testing the robustness of the method by varying the parameter set

S
T
E
P
1

S
T
E
P
2

S
T
E
P
3

Figure 1. Graphical workflow process for the study.
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Figure 2. (Panel A) Histogram of the values of Spearman’s correlation coefficient over all the SNPs and theoretical approximate density of the Spearman’s 
correlation coefficient under the hypothesis of population null correlation. (Panel B) Histogram of the absolute values of Spearman’s correlation coefficient 
over all the SNPs. Using the outlier approach, we identify significant SNPs in the 1% upper tail of this distribution. 

the position of a SNP as a point of that linear segment. 
Based on the two sequences of points, we can define 
two cumulative counts depending on a generic point 
l, known in statistics as counting processes:

S(l) = �number of SNPs with a position smaller than 
or equal to l

S.01(l) = �number of significant SNPs with a position 
smaller than or equal to l

with l varying from 1 (the first bp in the chromosome) 
to the position of the last bp of the chromosome. As 
an example, the two counting processes are plotted for 
chromosome 1 in Figure 3. Cumulative counts are a 
convenient way to compare the incidences of the dif-
ferent kinds of SNPs over different genomic regions 
(a simple dot plot would not do it, due to the sheer 
number of SNPs involved). If, over a certain segment 
of the chromosome, there is a greater-than-usual inci-
dence of significant SNPs, then the relative increment 
of S.01(l) over that segment will be greater than the 
relative increment of S(l) over the same segment. In 

other words, the graph of the S.01(l) counting process 
will be steeper than S(l), up to a proportionality fac-
tor. Our proposal is to identify those genome regions 
which exhibit extreme concentrations of outlying 
SNPs.

We could formalize this search as a change-point 
problem for counting processes: in certain intervals to 
be estimated, the intensity of the S(l) point process—a 
function modelling the instantaneous rate of incidence 
of the process—would be higher than in other regions. 
Due to the size of the problem and to the approximate 
nature of our search- and -confirm approach, we pre-
fer a simpler proximity-based algorithm as follows.

For each pair of significant SNPs located at points 
l1 and l2, with l1 , l2 on the chromosome, we define

	
U l l

S l S l

S l S l
( , )

( ) ( )

( ) ( )
. .

1 2
01 2 01 1

2 1

=
−
−

ie, the observed incidence rate of significant SNPs per 
original SNP. This statistic over the sliding window 
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Figure 3. Counting process representation of the location of the candidate regions of chromosome 1. 
Notes: The thicker step function represents cumulative counts of all originally genotyped SNPS and refers to the main ordinate scale, on the left. The thin-
ner step function represents cumulative counts of significant SNPs and refers to the ordinate scale on the right. Sixteen regions identified by our method 
are shown as small vertical segments on the abscissa axis. The zooming box on the upper left part of the graph shows two of them (gray bands) located 
around position 202500 kb, as guided by the arrows.

(l1, l2) plays a central role in our proximity-based 
algorithm.

As a technical note, it would probably be a good 
idea to penalize large windows, for example by 
dividing the U(l1, l2) statistic above by a penalty term 
(l2–l1)

g with g equal to some number between 0 and 
1. The final results would not change a lot (results 
not shown) and it would be difficult to commit to a 
specific g; therefore we decide to use the U(l1, l2) sta-
tistic without a penalty term.

For each chromosome and for each significant 
SNP in position l1, we computer U(l1, l2) for each of 
the other significant SNPs in position l2 within a dis-
tance of 1000 Kb from the original one. This is done 
to reduce the problem to a manageable size, under the 
assumption that relevant proximities are smaller than 
1000 Kb.

We built the new reference distribution of all U(l1, l2) 
values over all chromosomes, excluding from the 

analysis all U(l1, l2) values relative to intervals (l1, l2) 
which included fewer SNPs than a threshold s, which 
has been chosen to be equal to 3 in this work. This is 
done to avoid very high automatic values of U(l1, l2) 
when two significant SNPs happen to be adjacent. 
We selected the first 1000 SNPs contained in regions 
corresponding to the highest U(l1, l2) values. A fixed 
number, rather than a fix tail area, was chosen to facil-
itate the discussion of the robustness of our method to 
varying parameters (see end of section Results).

Step 3: Biological relevance  
of the strongest signals
To accomplish step 3 as outlined in the Introduction, 
we proceeded to the biological cross-validation of 
our findings, which insofar had been based mainly on 
statistical grounds. We focused on the genes tagged 
by the SNPs we found, since our goal was to detect 
continuous signals coming from proximal groups of 
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SNPs belonging to the same gene. To link our findings 
to the results of genome wide data, we first compared 
our gene list with the June 2012 update of the Cata-
log of Publish ed GWAs.14 Next, we scanned our gene 
list using a bioinformatic enrichment tool named 
Genecodis 2.015 to obtain a summary of the most 
enriched biological processes or pathways. Finally, 
we compared our analysis with previously published 
genomic scans for selective sweep in order to find 
possible overlaps in signals. 

Results
We calculated Spearman’s correlation between abso-
lute latitude and one of the two alleles of the SNPs 
found in the HGDP-CEPH panel and, following the 
outlier approach, we identified those SNPs which have 
an absolute Spearman’s correlation coefficient falling 
in the upper 1% tail of the distribution. The histogram 
of Spearman’s correlations ρ’s is plotted in Figure 2A. 
Its null distribution for 51 pairs of numbers has been 
overlaid on the same graph (Fig. 2A). It is a normal 
distribution with variance 1/50 due to a well-known 
result.19 The discrepancy between the two distribu-
tions is due to SNPs which are correlated with lati-
tude for reasons other than chance alone, for example 
due to environmental selection factors. Following the 
outlier approach, the upper 1% of the distribution of 
the absolute value of ρ, corresponding to |ρ| . 0.606, 
is identified in the histogram of the absolute value 
of ρ (Fig. 2B). It corresponds to 5452 outlying SNPs 
in the tails of the ρ distribution.

The candidate regions and the annotations emerg-
ing from the application of Step 2 described in the 
Introduction are contained in Additional 1  in the 
online supporting information. As an example, can-
didate regions which were identified in chromosome 
1 are shown in Figure 3. The 1000 top SNPs emerg-
ing from the proximity-based algorithm enabled us to 
identify 467 intergenic and 533 genic SNPs, harbor-
ing 146 genes. We found 23 coding non synonymous 
(NS) changes and 6 coding synonymous changes. 372 
were intronic and 107 were on the mRNA 3′UTR.

Finally, we gathered the biological knowledge 
of the strongest signals by comparing them to the 
Catalog of Published Genome-Wide Association 
Studies updated to June 2012. The genes which appear 
on this Catalog and additionally appear in candidate 
regions according to our proximity-based algorithm, 

are shown in Additional file 2. A short list of the most 
interesting signals are shown in Table 1. Several genes 
shown in that table are associated with metabolism-
related phenotypes (like celiac disease for IL21 inter-
leukin 21, Gene id 59067)20 and adiposity (MSRA 
Gene id4482) or variants associated with hair color 
in Europeans, like TPCN2 gene (two pore segment 
channel 2, gene ID 219931)21 and several with schizo-
phrenia. At the same time, we compared our gene list 
with genes reported in OMIM. Several of our genes 
which show a correlation with latitude also implied 
some traits. For example, DOT1L gene (DOT1-like, 
histone H3  methyltransferase Saccharomyces cer-
evisiae) gene ID 84444 is associated with height22 
or DTNB gene dystrobrevin, beta ID 1838 which is 
affecting adult human height.23 A complete table with 
the genes reported also in OMIM Disease database is 
in Additional file 3.

We analyzed Kyoto Encyclopedia of Genes 
and Genomes pathways (KEGG) using as refer-
ence set  all genes in the Entrez-gene database and, 
as a statistical test, the hypergeometric one with a 
Benjamini-Hochberg correction for multiple testing at 
significance level equal to 0.05. Several KEGG path-
ways reached significance. The first was the extra-
cellular matrix (ECM) receptor interaction (KEGG 
number: hsa04512) for the following genes: RELN 
reelin gene ID 5649; ITGB6 integrin beta 6 gene ID 
3694; COL6A3 collagen, type VI, alpha 3  gene ID 
1293. This pathway reaches a raw P-value of the 
hypergeometric test equal to 0.0011 and a P-value 
adjusted for multiplicity around 0.01. In order to 
look for overlaps with scans of the human genome 
for signals of positive natural selection, we compared 
our results with SNPs with significant composite of 
multiple signals (CMS) but only one intersection 
was found between the two gene lists concerning 
rs2256670 and rs2711853 both on RELN reelin, gene 
ID 5649.16 A variety of choices were made in the actual 
implementation of the proximity-based algorithm 
described in Step 2 in the previous section. The two 
most important parameters set to reasonable values 
are (a) the maximum distance over which we search, 
which is set to 1000 Kb in Step 2, and (b) the mini-
mum number of consecutive SNPs required, which is 
set to 3 in Step 2. In order to study the robustness of 
our method with respect to different values of these 
parameters, we varied the maximum distance and 
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noticed (not shown) that the results where unchanged 
for distances down to 100 Kb.

The algorithm is instead sensitive to the minimum 
number of consecutive SNPs required: if we increase 
it from 3 to 5, for example (it would not make sense 
to consider a minimum much higher than 5), different 
SNPs and regions turn out to be significant, as shown 
in Table 2. For example, the number of selected SNPs 
shared when applying a minimum of 5 and when apply-
ing a minimum of 3 is 64%. This made us consider what 
would happen for varying this threshold. The changes 
are not dramatic (Table 2) but some interesting genes, 
like AGT, ADCY9 and WWOX would come out from 
the analysis with a threshold equal to 5.

Discussion
In this paper we examined the HGDP-CEPH data 
again by integrating the outlier approach with a novel 
proximity-based algorithm.

Only latitude was used for ecological conditions, 
rather than using a multiplicity of variables as in 
Hancock et  al6 for example. We made this choice 
for the sake of simplicity, since latitude is correlated 
with different variables like short wave radiation flux, 
mean winter and summer temperatures, rainfall and 
pathogen richness. It should therefore provide a good 
proxy for the selective pressures that shaped variation 
in our genome. Even though we use a simple correla-
tion measure such as Spearman’s ρ with latitude only, 
we emphasize that the resulting signal should be a 
continuous and persistent proportion of background 
information, represented by all originally genotyped 
SNPs. We believe this proximity requirement adds an 
edge to our novel method when compared to exist-
ing literature. Our approach is applicable to any mea-
sure of association between polymorphic frequencies 
and environmental variables. It could be applied, for 
example, to complex statistics such as the minimum 
rank statistic, based on Bayes Factors and on rank 
transformations, of Hancock et al.13

With our method we identifed different genes, 
some of them already reported in the literature, deal-
ing with different traits or diseases. GWAs include 
the scanning of all or most of the genes of different 
individuals aimed at finding susceptibility loci for 
traits or diseases. GWAs, so far, have allowed the 
identification of more than 7688 associated SNPs in 
humans. We compared our list of genes with GWAs 
results. Some interesting signals can be pointed out, 
for instance the correlation between skin pigmenta-
tion and latitude. It is well known that two coding 
variants in TPCN2 are associated with hair color in 
Europeans.21 At the same time MSRA (methionine sul-
foxide reductase A gene) is related to the melanin for-
mation in the hair follicle melanocyte.24 Remarkably, 
MSRA gene is also related to schizophrenia25,26 but 
also with adiposity27 and hypertension.28

Several other genes in our list (see Additional 
file 1) can be associated with vitamin D related genes, 
known to show a latitude driven cline.7 An example 
is SMARCA2, (SWI/SNF related, matrix associated, 
act in dependent regulator of chromatin, subfamily 
a, member 2), described as a component of a human 
multiprotein complex that that interacts directly with 
the vitamin D receptor. Schizophrenia genes are cor-
related with latitude and in our list several schizophre-
nia genes appear, like GRID1,29,30 MAGI2,31 NRG3,32 
NRXN3,33 RARB and RELN.34

Region CYP19A1 in our list is known from GWAs 
to exhib it association with adult height35,36 whose 
distribution is related to latitude. Two more genes 
in our list, DOT1-like, histone H3 methyltransferase 
(S. cerevisiae)22,35 and dystrobrevin, beta23 are reported 
in OMIM to be related with height.

Several others genes are related to Celiac Dis-
ease (CD) which strongly correlates with latitude. 
Infectious agents are implicated in the pathogenesis of 
many autoimmune diseases like CD. This observation 
may imply that there is a relationship between one or 
more infectious agents, latitude related environmental 
exposure to gluten and others genetic susceptibility 
loci, and the development of this disease. For a com-
plete review see Plot and Amital, 2009.37 The RUNX3 
gene and IL21, in our list, are implicated with CD.38 
In the same paper, another gene FRMD4B previously 
known as GRSP1, appearing in our Table  1 is also 
associated with CD.38 RUNX3 gene is also required 
for CD8 T cell development during thymopoiesis.39

Table 2. Percentage of common SNPs when varying the 
minimum number of consecutive SNPs required.

% concordance 3 SNPs 4 SNPs 5 SNPs
3 SNPs 100.00% 74.70% 64.00%
4 SNPs 100.00% 80.80%
5 SNPs 100.00%
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One of the most interesting genes highlighted by 
our work is ANK2 (ankyrin 2, neuronal) which is 
implicated in cardiac arrhythmias due to abnormal 
variations in QT interval.40 

Finally, the enrichment of genes in the KEGG path-
way called extracellular matrix (ECM) receptor interac-
tion (KEGG number: hsa04512) is note worth because 
these molecules are exploited by a number of patho-
genic micro-organisms as receptors for cell entry. This 
can be interpreted as a signal of different forces played 
by pathogens on living cells in different environments.

Conclusions
Our study complements the growing body of knowl-
edge surrounding scans for natural selection in humans 
using a method that uses the proximity criterion in 
addition to the outlier approach. Our findings support 
the hypothesis that latitudinal genetic diversity gradi-
ents are present in humans and reflect genetic adapta-
tions to different environmental pressures that have 
shaped the human genome.
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##########################################################################
#
# proximity.R – by MU and MG, November 2012
# 	 R programs to analyze the HGDP-CEPH data according to
# 	 the proximity-based method in Di Gaetano et al.
#
##########################################################################

# the following instructions assume that data have been read from the
# text files from the web page http://hagsc.org/hgdp/files.html
# via, for example, read.table(“HGDP_Map.txt”) or read.csv2(“id2.csv”, 
sep = “,”)
# into a dataframe called “data”

### function to compute allele’s frequencies

freqfun<- function(data){
k<-0
freq <- namefreq <- NULL

for (i in dimnames(data)[[2]][-(1:3)]){

### do the frequency table
tav <- table(data[,3],data[,i])
### we exclude the tables with dim 1 or 2, in which
### there is no variation

### heterozygous, all homozygous and missing
if (dim(tav)[[2]]==4) {
# search of allele with greatest frequency
allmagg <- c(sum(tav[,2]),sum(tav[,4]))
if (allmagg[1] > allmagg[2]) magg <- 2 else magg <-4
freq <- cbind(freq, round((tav[,magg]+tav[,3]/2)/(tav[,2]+tav[,3]+tav[,4]),3))
# use the variable name for the table
namefreq <- c(namefreq,i)
}

### heterozygous, all homozygous and no missing
if (dim(tav)[[2]]==3 & (dimnames(tav)[[2]][1]!=“--”)) {
# search of allele with greatest frequency
allmagg <- c(sum(tav[,1]),sum(tav[,3]))
if (allmagg[1] > allmagg[2]) magg <- 1 else magg <-3

freq <- cbind(freq, round((tav[,magg]+tav[,2]/2)/(tav[,1]+tav[,2]+tav[,3]),3))
# use the variable name for the table
namefreq <- c(namefreq,i)
}
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dimnames(freq)[[2]] <- namefreq
cat(k <- k+1,”\n”)

}
freq
}

n_min = 5
finestra = 1000000

### Computation of U for chrom 1

ovr1_sig <- ovr1[ovr1[,”Lsig01”] == “sig01”,]
matrice_rappovr1 <- NULL

# loop over all significant SNPs

for (i in 1:(dim(ovr1_sig)[1]-1) ) { #last SNP is automatically processed

# p = number of subsequent snps to that processed
p <- n_min-1
while ( (i+p)<= dim(ovr1_sig)[1] & (ovr1_sig[i+p,4]-ovr1_sig[i,4])<= finestra )
{

iniz <- ovr1_sig[i,4]
fin <- ovr1_sig[i+p,4]
u <- (ovr1_sig[i+p,9]-ovr1_sig[i,9]+1)/(ovr1_sig[i+p,7]-ovr1_sig[i,7]+1)
x <- c(i,p+1,1,iniz,fin,u)
matrice_rappovr1 <- rbind(matrice_rappovr1,x)
p <- p+1

}

}
dimnames(matrice_rappovr1)[[2]] <- c(“SNP”,”n SNP”, “chrom”, “reg in”, “reg 
fin”,”U”)

### Selection of SNP
N = 1000

# union of results of all chromosomes
matrice_totale = rbind(matrice_rappovr1,matrice_rappovr2,matrice_rappovr3,

matrice_rappovr4,matrice_rappovr5,matrice_rappovr6, 
matrice_rappovr7,

matrice_rappovr8,matrice_rappovr9,matrice_rappovr10,matrice_rappovr11,

matrice_rappovr12,matrice_rappovr13,matrice_rappovr14,matrice_rappovr15,
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matrice_rappovr16,matrice_rappovr17,matrice_rappovr18,matrice_rappovr19,
matrice_rappovr20,matrice_rappovr21,matrice_rappovr22)

matrice_totale <- data.frame(matrice_totale)
# decreasing order
matrice_totale <- matrice_totale[order(matrice_totale$U,decreasing = TRUE),]

# loop to extract result
ovr_sig <- list(ovr1_sig,ovr2_sig,ovr3_sig,ovr4_sig,ovr5_sig,ovr6_sig,ovr7_sig,

ovr8_sig,ovr9_sig,ovr10_sig,ovr11_sig,ovr12_sig,ovr13_sig,ovr14_sig,
ovr15_sig,ovr16_sig,ovr17_sig,ovr18_sig,ovr19_sig,ovr20_sig,
ovr21_sig,ovr22_sig)

z = 1
selezione <- NULL
n_SNP = 0

while (n_SNP < N )
{
a = matrice_totale[z,1]
b = matrice_totale[z,2]
c = matrice_totale[z,3]

sel <- cbind( ovr_sig[[c]][a:(a+b-1),1], rep(c,b) )
selezione <- rbind(selezione, sel)

z <- z+1

# test to obtain unique solutions
selezione <- unique(selezione)

n_SNP <- dim(selezione)[1]
}

dimnames(selezione)[[2]] <- c(“name_SNP” , “chrom” )
selezione <- selezione[1:N,]
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Additional Files
Additional file 1: SNPs and regions from the prox-
imity-based algorithm.

Additional file 1 in the online supporting informa-
tion contains all regions selected by the proximity-
based method, duly annotated.

Additional file 2: The complete list of genes 
reported in previously published GWAs and show-
ing continuous correlation signals with our proximity 
based method.

Additional file 3: The complete list of genes 
reported in OMIM and showing continuous correla-
tion signals with our proximity based method.

Additional file 4: R scripts.
Additional file 4  in the online supporting infor-

mation contains R scripts to perform the necessary 
calculations.
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