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Abstract

Self-adaptive systems typically rely on a closed control loop which de-
tects when the current behavior deviates too much from the optimal one,
determines new optimal values for system parameters, and applies changes
to the system configuration. In decentralized systems, implementing each
of these steps is challenging, especially when nodes need to coordinate their
local configurations. In this paper, we propose a decentralized method to
automatically tune global system parameters in a coordinated manner.
We use gossip-based protocols to continuously monitor system properties
and to disseminate parameter updates. We show that this method applied
to a decentralized resource selection service allows the system to quickly
adapt to changes in workload types and node properties, and only incurs
a negligible communication overhead.
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1 Introduction

Complex distributed systems usually have many internal configuration param-
eters. However, setting parameters to fixed values that work well in all cases is
often impractical or impossible. A common technique to maintain good system
behavior in the presence of changes in the run-time conditions is to control such
parameters using self-adaptation. Conceptually, a self-adaptive system is very
simple: The system continuously (i) detects when behavior deviates too much
from optimal, (ii) derives new parameter values, and (iii) applies these changes.
However, achieving these three steps in practice can be very difficult depending
on the characteristics of the application.

One challenging application domain for self-adaptation is composed of large
scale peer-to-peer (P2P) overlays. Such applications usually exhibit good prop-
erties of scalability and tolerance to failures. However, they also have very
dynamic and complex behavior: computing resources might join or leave the
system at any time; operating systems and software systems might be upgraded;
and application requirements might change over time. To maintain efficient be-
havior in the presence of such changes, applications often need to control a
number of internal parameters. Some parameters may be tuned independently
at each node, such as the number of items stored by each node and the number
of connections maintained with other nodes [1, 13]. However, other parame-
ter tuning requires coordination between a vast majority of nodes to maintain
application correctness.

Most of the self-optimization solutions proposed so far for peer-to-peer over-
lays focus on adjusting local independent parameters and ignore coordinated
parameters. However, such “global” parameters are very common. For ex-
ample, threshold values can be used as criteria to group nodes into smaller
clusters [6]; the periodicity of certain actions is fixed (like exchanging mainte-
nance messages); or the partitioning of a virtual Cartesian space in which the
nodes are placed is shared among all nodes [5]. Currently, these settings are
done by human system administrators and are not amenable to dynamic control
during the system’s lifetime. Long-lived systems, however, can often improve
performance by adapting such global parameters to changes in the run-time
conditions.

This paper addresses self-adaptation in systems that are both: (i) decentral-
ized, where a large number of functionally identical compute nodes collaborate
to realize the system’s functionality; and (ii) coordinated, where the system
requires that all nodes use the exact same set of parameters at any point in
time. The goal is to complement existing applications with a separate control
plane to cheaply, quickly, and automatically adapt their global parameters.

Addressing coordinated self-adaptation in such a context requires ensuring
that a coordinated parameter retains the exact same value through the entire
system. For example a DHT that allows nodes to select the optimal key size au-
tonomously could not work correctly if a fraction of nodes selected an ’optimal’
key size of 128 while some others chose 256. On the other hand, the control
plane should be designed as a decentralized system so as not to jeopardize the
benefits of decentralization of the application itself.
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Our work addresses all three steps of coordinated self-adaptation in such de-
centralized, coordinated systems. In our system, any node may probabilistically
elect itself as the leader to conduct the next round of adaptation. To choose
new parameter values, the leader must monitor the global system behavior. On
one hand, fetching monitoring information from all nodes in the system would
be prohibitively expensive. On the other hand, compact aggregate functions
such as the average of some attribute across the system are easy to generate
but they do not carry much information about the system as a whole. We
claim that estimating the statistical distribution of node attributes across the
overlay represents a reasonable tradeoff between a low aggregation cost and a
high expressiveness to allow for accurate parameter setting. Such distributions
can be obtained efficiently in a decentralized manner [10]. Finally, the decisions
are disseminated through a gossip-based protocol to ensure a fast convergence
of the system to a new state. We can then provide synchronization through a
simple changeover policy when nodes receive the new state.

We demonstrate self-adaptation of global parameters in the context of the
Resource Selection Service (RSS) developed as part of the XtreemOS operat-
ing system for the Grid [3]. The RSS is a scalable, fully decentralized system
to identify resources that match application requirements in large-scale util-
ity computing infrastructures. Resources are organized in a multidimensional
space where each dimension represents a resource attribute. To allow efficient
searching, this multidimensional space is split into cells with arbitrary bound-
aries. Importantly, the search protocol requires that all nodes use identical cell
boundary definitions. The goal of self-adaptation in this case study is to place
cell boundaries in a running system such that queries return correct results
while traversing the lowest possible number of nodes.

Our results demonstrate the usefulness of adapting cell boundaries: intro-
ducing coordinated self-adaptation in our case study reduces query costs by
a factor of 4 compared to an initial human-selected configuration. We also
demonstrate efficient self-adaptation to changes in the distribution of queries
for resources and to long term changes in the distribution of the attributes of
nodes themselves. Finally, we show that the system’s delivery remains high even
during coordinated live reconfiguration from one set of parameters to another.

The rest of this paper is organized as follows. Section 2 describes related
work. Section 3 presents our coordinated self-adaptation model for decentral-
ized systems. Section 4 describes an application of this model to the Resource
Selection Service. Section 5 evaluates the self-adaptation protocol and finally
Section 6 concludes the paper.

2 Related Work

To our surprise, previous work in self-adaptation in large-scale decentralized
systems focuses entirely on tuning parameters at the local level rather than
on “global” coordinated parameters. For example, tuning local node param-
eters can be used for decentralized load balancing [14], load-balancing stor-
age and replication in DHTs [1], adapting the critical exponent of power-
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law networks [12], and maintaining the optimal ratio of super-peers to sub-
groups [11, 13]. Each of these is a difficult problem in itself, and one of the
paramount difficulties of tuning local node parameters is to ensure that the
system converges without coordination to an optimum global state. Our work
instead focuses on directly adapting global parameters requiring coordination
while still maintaining a completely decentralized system. To the best of our
knowledge, this is the first work specifically addressing the self-adaptation of
global parameters in a decentralized setting.

Our work uses a decentralized monitor for P2P systems. Some large-scale
monitoring systems use hierarchical aggregation by building a tree-like topology
to collect data (for example, [15,16]). However, the hierarchical topology is diffi-
cult to construct and maintain in the presence of churn, which is always present
in P2P systems. A different direction builds on fully decentralized gossip-based
aggregation to obtain compact statistical results like averages or total counts.
This method is simple to implement, robust to churn, and provides any node
in the system with the computed statistics. The compact values obtained are
however not always sufficient for optimization tasks. The decentralized monitor
we use in this paper provides the distribution of the values of a parameter at
low cost with all the advantages of other aggregation methods [10].

3 Design Overview

We consider a system consisting of a large number of autonomous nodes that
self-organize into a peer-to-peer overlay. There is no central point of control
of the system; instead, nodes, or peers, communicate through gossip protocols
to achieve a group goal. Each peer knows about a small subset of the other
peers, called neighbors, that form an overlay. Peers periodically exchange lists
of neighbors to maintain the overlay even in the presence of churn wherein
frequently new peers join and old peers leave the system [9].

3.1 Starting a Self-Adaptation Instance

Addressing coordinated self-adaptation for scalable distributed systems requires
finding a sweet spot between a fully decentralized design where each node may
choose its own parameter value autonomously and a centralized one in which
a single leader chooses a global parameter value and imposes it on the rest of
the system. The first design faces the risk that different nodes choose different
values for the same parameter, which contradicts the goal to have a uniform
value across the whole system, while the centralized approach introduces a
single point of failure and a potential performance bottleneck.

To perform efficient coordination our system relies on self-elected leaders,
where each self-elected leader is in charge of carrying out one instance of the
adaptation protocol through the whole system. At each round, each node may
elect itself as a leader with a probability inversely proportional to the num-
ber of nodes in the system. This allows maintaining the average frequency at
which leaders emerge from the system. However, it does not prevent multiple
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adaptation instances from executing simultaneously in the system. We there-
fore impose a global order between protocol instances using a totally ordered
timestamp so that newer instances can supersede older ones. This also allows
nodes to garbage collect old instances whose leader failed before the completion
of its task.

3.2 Choosing New Parameter Values

An adaptation leader needs information about the global system state to select
new parameter values. Here as well, we observe a necessary tradeoff regarding
the quantity of information made available to the leader. On the one hand,
bringing detailed information about each peer may allow the leader to make ac-
curate complex choices, but the costs of gathering such exhaustive information
may be prohibitive, especially in large-scale distributed systems. On the other
hand, distributed aggregation algorithms can efficiently compute functions such
as the average of some attribute value across the system. However, a single ag-
gregate value such as an average might not provide enough detail to optimize
the global configuration. In particular, average values are very sensitive to the
presence of a small number of outliers in the system.

We argue that a reasonable tradeoff consists of estimating the statistical
distribution of some attribute across the system. As discussed in Section 4, a
statistical distribution captures essential information about the system: it shows
the full spectrum of node characteristics in the system, and the proportion in
which they exist. This allows nodes to make complex decisions where a balance
between multiple contradictory requirements is often involved.

Estimating the statistical distribution of some attribute across a large-scale
distributed system can be realized both accurately and inexpensively. In this
paper we use our own Adam2 algorithm which efficiently approximates node
attribute distributions in a fully decentralized manner [10]. Using successive
rounds of gossip protocols, Adam2 collects and refines attribute distribution
approximations, quickly converging at all nodes to an accurate distribution
estimation.

3.3 Coordinated System Reconfiguration

Relying on self-elected leaders for adaptation allows the system to take un-
ambiguous decisions regarding the values that coordinated parameters should
have. However, to achieve our goal we must also apply these reconfigurations
such that all nodes receive the same new configuration and transition to the
new configuration in a coordinated manner, without the need to stop the ap-
plication.

New configurations are disseminated through the system using the same
gossip-based protocol as in Adam2. In this manner, a single decision can be
propagated consistently to all nodes in the system (probabilistically) within a
few gossip cycles. Live reconfiguration of the system is however not trivial. For
example, in our case study, the system needs to continuously route user queries
which requires all nodes to use consistent configurations in order to avoid loops
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and other routing errors. For this reason, nodes temporarily maintain multiple
configurations during adaptation, and associate each query with an identifier of
the configuration that should be used to process it. Outdated configurations are
eventually dropped after a timeout that is longer than the expected propagation
delay for a new configuration. Since configurations are spread exponentially
using gossip, the propagation delay is sensitive only to the log of the system
size.

4 Case Study: Resource Selection Service

In this section we describe the application of our self-adaptation framework to
the Resource Selection Service (RSS) [4]. The RSS is a vital component of the
XtreemOS Grid operating system: It provides the fundamental lookup primi-
tive that takes a specification of resource attributes required by an application,
and returns a list of machines suitable for running the concerned application.
The RSS is designed according to a fully decentralized design. Compute nodes
themselves are fully responsible for managing their own attributes and collab-
oratively answering lookup queries.

Each node n in the RSS is assigned a sequence of D static attributes,
A1(n), A2(n), . . . AD(n), which define the node’s relevant properties such as
the CPU architecture, operating system version, amount of installed RAM, li-
brary versions, etc. The system allows nodes to submit multidimensional range
queries based on these attributes to find nodes whose attributes satisfy the query
constraints. In order to quickly route these queries to the relevant nodes, all RSS
nodes participate in a structured P2P overlay network generated using the D-
dimensional attribute Cartesian space (see Figure 1). Node n is thus represented
in the overlay network as a point with coordinates (A1(n), A2(n), . . . AD(n)).

Queries over ranges of attributes are represented in the same space as
nodes to enable efficient routing. A query q is defined as a sequence of D
ranges ((qmin

1 , qmax
1 ), (qmin

2 , qmax
2 ), . . . (qmin

D , qmax
D )) and corresponds to a hyper-

rectangle (i.e., Cartesian product of intervals) in the virtual space. By this
definition, all nodes that belong to the query hyper-rectangle satisfy the query
requirements.

To determine neighbor connections and organize query routing in the P2P
overlay, the virtual space is partitioned into (K + 1)D cells using a multidimen-
sional grid consisting of K cell boundaries in each dimension. Nodes maintain
a list of neighbors that are located in a hierarchical set of cells. To handle a
query, an RSS node first identifies all cells in the system that intersect with
the query hyper-rectangle, and forwards the query to a node in each of these
cells using a hierarchical routing protocol that is bounded by O(D log K) mes-
sages [4]. Finally, nodes in the respective cells use a simple sequential flooding
protocol to route the query to the rest of the nodes in the cell.

4.1 Self-Adapting the RSS

The RSS is a very good candidate to study self-adaptation of the global con-
figuration of a decentralized system: the query routing overhead can be sig-
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Figure 1: RSS query routing in two dimensions. Every node is placed in a
multidimensional space according to its attributes, and queries are represented
by hyper-rectangles of the attribute space.

node

query

-inf

+ i n f

A (n)1

A (n)2

q 1
min q 1

max

q 2
min

B (0)1 B (1)1 B (2)1

B (0)2

B (1)2

B (2)2

q 2
max

Figure 2: Optimum boundary placement for a given query forms a single cell
coincident with the query.
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nificantly reduced by tuning the location of cell boundaries, and changing the
cell boundaries requires coordination. With respect to coordination, queries
and node management in the RSS are entirely decentralized but rely on the
global configuration represented by the cell boundaries in the attribute space
for routing. Since the routing and query space are intertwined, if two nodes do
not agree on the placement of boundaries, then they will disagree on routing.
This can lead to queries not being routed to some of the matching nodes or
even to routing loops. Hence, all nodes must agree on the global configuration
of cell boundaries to produce correct query results.

The performance of RSS can be improved by adjusting the cell bound-
aries, as the query routing overhead depends directly on the placement of these
boundaries. Figure 2 shows how the sample system depicted in Figure 1 could
have been configured to reduce the overhead of handling the sample query. The
overhead of a query consists of the costs of routing the query to all cells that
overlap the query and routing among nodes within each cell. To minimize both
costs, an optimal location for the boundaries for any given query are exactly
the ranges of the query itself. In Figure 1, a large query overlaps four different
cells that might have to be explored, parts of which do not match the query. In
these cells the query can be forwarded to many nodes that might not match it.
In Figure 2, the query is routed to only one cell where all nodes are matching.
The performance can also be improved by adjusting the cell boundaries such
that the nodes be evenly distributed across cells. This is because, as there is no
structure within a cell, the routing overhead inside the cell becomes significant
when there is a large number of nodes belonging to it.

The system cannot reconfigure its boundaries for each query, or whenever
a node joins or leaves, because the overhead of restructuring the overlay would
be prohibitive. As discussed later, we initiate reconfigurations at certain time
intervals. The goal of our adaptation algorithm in the RSS is therefore to
configure cell boundaries to minimize the overhead for handling queries as both
the distribution of queries and nodes change over time in the system.

We modify the RSS slightly to implement our self-adaptation approach: The
system should maintain query throughput during reconfiguration, requiring a
live change to the global configuration. Specifically, we extend the gossip proto-
col used to maintain the RSS overlay, by adding reconfiguration information to
the messages. We introduce the notion of a configuration consisting of a unique,
totally-ordered timestamp and the cell boundaries of the multidimensional at-
tribute space used for routing in the P2P overlay. The same timestamps are
used to annotate queries so that every query is associated with the configu-
ration containing the same timestamp. Finally, neighbor lists are also locally
associated with a configuration. Every node associates a different neighbor list
with each configuration that it receives (or creates) although only the list of
neighbors corresponding to the most recent configuration is maintained.

The following sections describe the main steps in our adaptation algorithm:
a leader gathers sufficient information to improve the boundary configuration,
then calculates new boundaries if necessary, and finally disseminates the new
configuration across all nodes in the running system.
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4.2 Monitoring

To minimize query overhead over time with changes in both the distribution
of queries and nodes, current nodes need to coordinate a reconfiguration of
the cell boundaries in the RSS. Knowledge of all the previous queries and all
current nodes in the system can of course be used to calculate the best expected
configuration going forward. However, full global knowledge is not scalable in
large systems. For this reason, we monitor instead the statistical distributions
of recent queries and node attributes. As discussed later, we use the distribution
of node attributes to evenly divide the number of nodes between the cells in
the virtual space, and we use the query distributions to overlap cell boundaries
with the most frequent query ranges.

We monitor node attribute and query range distributions using Adam2 [10],
a fully decentralized aggregation protocol for the statistical distributions of val-
ues. Adam2 approximates distribution functions by estimating their values in
a few carefully selected points and interpolating between these known points.
Each distribution approximation is produced by a sequence of aggregation in-
stances composed of a fixed number of gossip rounds. Instances iteratively
refine the interpolation point placement. Adam2 is also able to tune its own
approximation accuracy during the refinement process.

In the self-adaptive RSS, instances of Adam2 are continuously initiated by
self-elected leaders. A leader maintains two distribution approximations for
each dimension d: the node attribute distribution Attrd, and the query range
distribution Queryd. The attribute distribution is a function Attrd : R → R
defined such that Attrd(x) is equal to the fraction of nodes in the system that
have a value for attribute Ad below x. This distribution provides the leader
enough information to place cell boundaries to balance the number of nodes in
each cell.

Monitoring the distribution of queries is trickier than monitoring node at-
tributes because queries are composed of ranges in each dimension. As we
discuss next, for the placement of cell boundaries, the leader is interested only
in the distribution of the endpoints of query ranges. We thus define the query
distribution for dimension d as a function Queryd : R→ R such that Queryd(x)
is equal to the fraction of all the endpoints of query ranges (upper or lower)
for dimension d. In order to reduce the influence of old queries and to reduce
bookkeeping, nodes cache received queries for only T time units to form the
query distribution.

4.3 Optimizing

Using the distributions of node attributes and query ranges obtained from
Adam2, the leader of the instance creates a configuration consisting of a new
unique, totally-ordered timestamp and (possibly new) cell boundaries. The new
configuration is then installed by the leader and will then be spread by gossip
as discussed shortly. Note that the leader installs a new configuration even
if it differs only slightly from the previous configuration because the precise
placement of cell boundaries is important to reduce query overhead.
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Figure 3: The boundary calculation algorithm first finds (k0, . . . , k3) to balance
the number of nodes in each partition (above), and then places a boundary B
in each partition at the largest grouping of query endpoints (below).
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To create a configuration with good expected performance, the leader must
solve an online optimization problem with future queries assumed to be simi-
lar to recent past queries. As discussed previously, the optimal placement of
boundaries for a particular query creates a cell precisely the same size as the
query to minimize routing costs to only one cell and within the cell all nodes
match the query. A larger cell than the query runs the risk of routing to some
nodes within the cell that do not match the query, while smaller cells than the
query result in higher routing overhead between all the cells that overlap the
query. The tradeoffs in cell size are complex and interdependent.

We use two heuristics to simplify the calculation of cell boundaries: (i) we
attempt to balance the number of nodes in each cell to prevent the formation of
overly large or small cells; and (ii) we attempt to place the boundaries of the cells
coincident with the endpoint of query ranges. Specifically, the cell boundary
algorithm calculates a new set of K cell boundaries Bd(0), Bd(1), ...Bd(K − 1)
for each dimension d independently. The calculation follows our two heuristics
in order as shown in Figure 3. In the first step, the node attribute distribution
is used to define initial intervals for boundary values such that the nodes are
roughly balanced between all cells. Specifically, K + 1 points are calculated,
k0, k1, ...kK , such that Attrd(ki) = i

K . The calculation of ki points is straight-
forward since Attrd is a non-decreasing function approximated by line segments,
which can be easily inverted. The final value for each Bd(i) boundary is later
chosen such that ki ≤ Bd(i) < ki+1 so that the cell determined by any two
consecutive boundaries Bd(i) and Bd(i + 1) contains at most 2

K of all nodes.
In the second step, precise cell boundaries are calculated using the query

distribution. The goal of this phase is to place cell boundaries specifically at
the most frequent query range endpoints. We choose the simple location of the
most frequent endpoints instead of using more complex clustering of endpoints
not for simplicity. The benefits of reducing routing overhead only appear if the
cell boundaries are exactly those of the query: A small overlap of the query
with another cell can force the query to be routed to all nodes in the other
cell. Hence, precise placement of cell boundaries is very important to reducing
routing overhead in the RSS.

The most frequent range endpoints are easily identified by the point of the
largest change in Queryd. The height of each change in the query distribu-
tion function is by definition equal to the frequency of the corresponding query
endpoint. Boundary Bd(i) is placed at the greatest change in the query dis-
tribution between points ki and ki+1 as shown in the bottom of Figure 3. If
Queryd does not change between points ki and ki+1, boundary Bd(i) is simply
defined as ki+ki+1

2 . By aligning cell boundaries with common query ranges we
reduce both the hierarchical routing overhead since queries intersect with fewer
cells, and the intra-cell routing overhead since fewer non-matching nodes have
to be visited when exploring partially overlapping cells.

4.4 Reconfiguring

Every node has a current configuration containing cell boundaries and an associ-
ated timestamp, and an associated list of neighbors based on the configuration’s
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set of boundaries. When a node first joins the P2P system, it starts with a de-
fault configuration. If a node installs a new configuration, it associates a new
neighbor list corresponding to the new cell boundaries.

In order to spread the new set of boundaries from the leader to the rest of the
system, we extend the periodic gossip messages used to maintain neighbor lists
in the overlay. During this gossip, nodes exchange their current timestamps.
If a node discovers that its neighbor has a higher timestamp, it requests the
corresponding configuration from this neighbor, installs the new configuration,
and creates a new, local corresponding neighbor list. Thus, each new configu-
ration spreads epidemically between the nodes, quickly reaching all nodes even
in very large systems.

The configuration propagation protocol is fast and efficient, but it can cause
temporary inconsistencies between nodes with different configurations. In or-
der to enable live system reconfiguration without losing queries, nodes cache
and reuse configurations. When a node receives a new configuration, it caches
old configurations along with their corresponding neighbor lists. The cached
neighbor lists are not maintained ; only the most recent neighbor list is actively
maintained. Overlay maintenance overhead therefore does not increase when
nodes cache different configurations. The cached configurations and neighbor
lists are eventually discarded after a timeout.

In order to handle a query correctly, all nodes involved in query processing
must use the same configuration. For this reason, when a query is generated by
a node, it is associated with the timestamp of the node’s current configuration.
However, to allow time for new neighbor lists to be generated, queries still use
the previous configuration’s timestamp for a short period after a new config-
uration is installed. When a node receives a query, it checks to see whether
the timestamp corresponds to the current or one of the cached configurations
held by the node. If a configuration is found, the node can process the query
using the standard RSS protocol. If the configuration is cached, the neighbor
list can be outdated, and the query might return incomplete results. If there is
no corresponding configuration found, the node requests the configuration from
the node that it received the query from. When the node receives the configu-
ration, it starts building a new list of neighbors; in most of the cases, when the
shifts in the boundaries are not significant, many of the previous neighbors can
be reused for the new list. Finally, the query can return incomplete results as
with cached configurations due to using outdated neighbor lists.

We discuss briefly concerns about multiple, simultaneous leaders. Although
they might generate multiple different new configurations, the total order on
timestamps will ensure only one becomes the latest configuration across the
system as only the latest configuration is disseminated. However, in the interim,
queries created at nodes using the slightly older configurations can begin to
propagate. These queries can experience higher latency due to the need to
propagate the configuration along with the query and can return incomplete
results as discussed above when configurations received with the query are used
to process a query.
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5 Evaluation

The evaluation of our self-adaptation protocol aims to estimate the performance
improvement that this protocol brings to the RSS. We evaluate our protocol
in PeerSim, a simulator for peer-to-peer systems [8] which allows us to model
systems with large numbers of nodes. We compare two versions of the RSS:
one which uses our self-adaptation protocol, and one which does not.

We consider two test cases in our evaluation: an adaptation to changes in
the node population, and an adaptation to changes in query workloads. In
both test cases, we simulate two types of changes: sudden changes (e.g., an
addition of a new computing cluster to the system, or a switch from one type
of application to another), and gradual changes (e.g., a system in which old
machines are gradually replaced by new machines, or a slow transition in the
type of jobs that users tend to run in the system).

We assess the improvement in the RSS performance by measuring the RSS
routing overhead, defined as the average number of nodes traversed by a query.
This metric captures both the query routing cost and query latency, since RSS
queries traverse nodes sequentially. We also investigate the impact of our self-
adaptation protocol on the RSS responsiveness by measuring the query delivery
rate, defined as the average fraction of nodes correctly discovered by a query.
Finally, we measure the extra maintenance cost introduced in the RSS by our
self-adaptation protocol.

5.1 Experimental Setup

Although we evaluate our system through simulation, we use real-world data to
initialize node attribute values and several types of queries that closely resemble
the workloads from current Grid systems. Specifically, we obtained descriptions
of over 300,000 machines that participated in the the BOINC volunteer com-
puting project between 2004 and 2008 [2]. Based on these machine descriptions,
we initialize the following four node attributes in the RSS: measured CPU per-
formance in FLOPS, measured downstream bandwidth, amount of installed
memory, and amount of installed disk space.

We exercise the system with several types of synthetic query workloads that
have similar characteristics to the workloads observed in real Grid systems. Al-
though a number of job traces from Grid systems are available [7], we could
not use them directly in our experiments because they mostly contain informa-
tion about job runtime characteristics (e.g., total running time, amount of used
memory) and give very little information about node characteristics required
for job execution. In our experiments, we use the following three workload
types:

• bag-of-tasks: a workload in which a few specific queries appear very fre-
quently. This corresponds to the “bag-of-tasks” type of jobs, that contain
a large number of very similar tasks (and thus, a large number of identical
job submission queries).
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• coarse-grained: a workload which simulates user-generated queries. In
such queries, attribute ranges are specified in course-grained units. For
example, the amount of RAM is specified in multiples of 512 MB.

• random: a workload in which all the queries specify random intervals
for attribute values. We use this workload as a base for comparison with
the other workloads.

5.2 Adaptation to Changes in Node Properties

The statistical distribution of node properties may change dramatically when
new machines are added to the system, or when they replace older ones. To
simulate such situations, we use two sets of node properties based on the BOINC
traces from years 2004 and 2008. For this particular experiment we replaced
one node attribute (available downstream bandwidth) with the installed kernel
version: this attribute suffers much more changes across the years, and allows
to stress our system better.

The case when a new computing cluster is added to the system creates a
sudden change in the statistical distribution of node properties. We simulated
this case by starting the RSS with 5,000 nodes with attribute values obtained
from the 2004 traces. After 300 gossip cycles, we added 5,000 more nodes with
attribute values from the 2008 trace. The query routing overhead, with and
without the self-adaptation protocol running, is shown in Figure 4.

The first part of Figures 4(a) and 4(b) show the effect of self-configuration
in the RSS. Both systems start with the same set of query boundaries chosen by
the human operator, and experience a query cost in the order of 800 messages
per query. In the adaptive system, these costs drop by a factor 4 after the first
system reconfiguration. At time 300, both systems see a cost increase. Part
of this increase is due to the fact that the size of the system is doubled, and
therefore the number of nodes matching the queries also roughly doubles. The
adaptive system also sees an additional cost increase due to the fact that its
configuration is suddenly ill-suited to the workload. It however quickly adapts
to this new situation and returns to an average cost four times lower than the
non-adaptive system.

Figure 5 presents similar simulation results for a situation in which the node
properties gradually change from one distribution to another. We create this
change by starting with 5,000 nodes from the 2004 BOINC trace, and subse-
quently replacing a few nodes at each gossip cycle with new ones drawn from
the 2008 trace. Again, the adaptive system shows much better performance
than the non-adaptive one. The non-adaptive system sees a relative perfor-
mance improvement until cycle 250. This is explained by the fact that, in that
phase of the experiment, there is a balance between the number of old and new
machines, and the nodes are distributed more evenly into cells. The adaptive
system, on the other hand, issues several relatively minor reconfigurations, and
maintains a constant performance despite the workload variations.
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Figure 4: Routing overhead for a sudden change in the node properties.
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Figure 5: Routing overhead for gradual changes in the statistical distribution
of node properties.
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Figure 6: Routing overhead for sudden changes in query workloads.

5.3 Adaptation to Varying Query Workloads

We now evaluate RSS adaptation to variations in the query workloads it re-
ceives. We simulated 10,000 nodes, with attributes drawn from the 2008 BOINC
trace.

We first consider sudden workload changes, by switching the query workload
from one type to another at some point of time. We start the experiment
with random queries, then switch to bags-of-tasks (where three frequent queries
account for 25% of the workload each, and the last 25% of queries are random).
We then switch to a coarse-grained workload, and finally another bags-of-tasks
workload (similar to the first one, but with a different set of frequent queries).

Figure 6 shows the performance of the RSS in the adaptive and non-adaptive
cases. The non-adaptive system observes no significant cost difference between
workloads, except for the coarse-grained workload. This workload can in fact
be considered as a best case for the manual configuration of the system, since
the query ranges are aligned to the same values as the cell boundaries.

We can observe that here as well the self-adaptation protocol brings a sig-
nificant cost improvement. When the workload changes at gossip cycle 600 and
900, we see a small cost increase due to the fact that the previous configuration
does not work best with the new workload. However, the costs quickly decrease
again thanks to self-adaptation. In particular, for the coarse-grained workload,
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we can see that the self-adaptation algorithm finds a configuration very close
to the manually-configured “optimal” one from the non-adaptive system.

In order to evaluate the system’s behavior for a (more realistic) gradual
change of workload, we model a slow transition from the coarse-grained work-
load to a bag-of-tasks. Figure 7 shows the results of this experiment. In the first
100 gossip cycles, all the queries submitted to the system are coarse-grained.
Then, we introduce bag-of-tasks queries with an increasing frequency besides
the coarse-grained queries, until the last 100 gossip cycles when all the queries
are bag-of-tasks. At the beginning of the experiment both systems use the
same “optimal” set of boundaries so their performance is similar. When the
workload starts to change, however, the non-adaptive system sees its costs in-
crease twofold while the adaptive system efficiently controls reconfigurations
and maintains a constant performance.

5.4 Impact on the Query Delivery

We now evaluate the impact of a runtime reconfiguration on the query delivery
– that is, the number of nodes found by the RSS divided by the total number
of nodes that actually match the query.

When the system starts, it takes 100 to 200 gossip cycles for each node to
build a full set of neighbors. In a system with no churn nor runtime reconfigu-
ration, the query delivery converges to 100%. When a reconfiguration occurs,
each node needs to rebuild a new list of neighbors according to the new cell
boundaries. However, when the reconfiguration is small, most of the previous
neighbors can be reused in the new list. Only very few neighbors need to be
found anew.

Reconfigurations have a second type of impact on query delivery: once a
query is submitted to the system the routing algorithm assumes that all nodes
use a single consistent set of cell boundaries. When a node receives a query
that refers to an old set of boundaries that it does not maintain any more, all
it can do is terminate the query, leading to poor query delivery.

Figure 8 shows the query delivery during the same experiment as in Fig-
ure 7: the workload gradually changes from coarse-grained queries to bags-of
tasks. We show two cases: one in which each node immediately forgets its
previous configuration when it receives a new one, and the case where nodes
maintain a read-only cache of recent configurations. When previous configura-
tions are not cached, the system experiences a large drop in query delivery at
each adaptation. This is due to the fact that most queries present in the system
at the time of reconfiguration will be terminated prematurely due to configura-
tion inconsistencies. Figure 8(b) shows that this effect disappears when using
the caching policy. In this case, delivery decreases only at the times of major
reconfigurations when nodes need to seek for new neighbors. In all cases, even
during reconfiguration, delivery remains high, which should remain sufficient
for ensuring continuous service of the RSS within the computing grid.
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Figure 7: Routing overhead for a gradual change in the query workload.
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Figure 8: Query delivery rate, without (a) and with (b) caching older configu-
rations.
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5.5 Self-Adaptation Cost

An important goal of the adaptation algorithm is to incur only a small cost
overhead compared to the system that is optimizing. The most important part
of this overhead is the protocol’s communication cost, which we estimate as
follows.

The two main protocol phases that involve communication among nodes are
the attribute CDF estimation through the Adam2 protocol and the dissemina-
tion of new boundary sets. As shown in [10], an Adam2 aggregation instance
with 25 gossip rounds typically requires sending and receiving 40 kB of data per
attribute at each node. If we consider a periodicity of one round per second,
during the aggregation phase of one attribute distribution each node would need
an average upstream bandwidth of 1.6 kB/s for each attribute, and a similar
average downstream bandwidth. For an overlay with 4 attributes, as the one
used in our tests, the needed bandwidth during aggregation is 12.8 kB/s for each
node. The dissemination of new boundary sets has a significantly lower com-
munication overhead. In order to decide whether it is necessary to reconfigure
the boundary sets, the nodes periodically exchange their current timestamps of
the sets. This information can be added to the regular gossip messages used to
maintain the overlay, increasing their size with only 4 B. When a new boundary
set is issued, each node receives it only once; for one attribute, the size of the
set is normally less than 150 B.

According to our evaluations, 3 or 4 aggregation instances are usually suffi-
cient to generate an accurate distribution approximation. Taking into account
the time needed to propagate the new boundary sets after they are calculated,
it takes from 100 to 200 gossip cycles to effectively reduce the routing overhead
after a change in the system. If we start a gossip cycle per second, the system
will be properly reconfigured within less than 200 seconds. In case such a fast
reconfiguration is not necessary, gossip cycles can be initiated less frequently,
resulting in a lower bandwidth consumption at the nodes.

6 Conclusions

This paper addresses coordinated self-adaptation in a large, decentralized sys-
tem. It introduces a protocol that allows live adaptation of the global config-
uration shared by all nodes in a decentralized system in spite of the need for
all the nodes to maintain configuration consistency. We demonstrate the use of
this self-adaptation protocol in the Resource Selection Service (RSS), a peer-to-
peer system for resource node discovery using multidimensional range queries.
Our protocol allows the RSS to adapt its configuration to both gradual and
abrupt changes in node properties and query workloads, decreasing the routing
overhead up to four times and only marginally reducing the query delivery rate
during configuration transitions. Even though we present only one case study,
we believe our self-adaptation protocol is generic and can be successfully ap-
plied to other large-scale decentralized systems that use statically configured or
hard-coded global settings.
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