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Abstract

We investigate the effect of model specification on the aggregation of (correlated) mar-

ket and credit risk. We focus on the functional form linking systematic credit risk

drivers to default probabilities. Examples include the normal based probit link func-

tion for typical structural models, or the exponential (Poisson) link function for typical

reduced form models. We first show analytically how model specification impacts ‘di-

versification benefits’ for aggregated market and credit risk. The specification effect

can lead to Value-at-Risk (VaR) reductions in the range of 3% to 47%, particularly

at high confidence level VaRs. We also illustrate the effects using a fully calibrated

empirical model for US data. The empirical effects corroborate our analytic results.
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1 Introduction

In this paper we analyze the impact of credit risk model specification on the potential

diversification benefits of integrated market and credit risk. The interaction between credit

and market risk is a focal point of attention for current risk management research within

financial institutions, regulatory agencies, supervisors, and academia. See for example the

overview studies published by the Basle Committee on Banking Supervision (BCBS 2009;

2011).1

One important question is whether the interaction between market and credit risk results

in a reduction or an increase in aggregate capital requirements. As both risk sources may be

affected by the same risk drivers, the aggregated risk measure may be substantially different

from the sum of the separate market and credit risk measures. The direction of the effect is

not clear and may depend on the portfolio under consideration: the aggregate risk measure

may be lower due to diversification benefits or higher as result of compounding effects; see

also BCBS (2009).

We contribute to the existing literature in three ways. First, we provide a detailed

comparative analysis of the effect of model specification on risk aggregation for a large bond

portfolio. In particular, we focus on the effect of different credit risk model specifications,

such as the normal based probit link function for typical structural models, or the exponential

(Poisson) link function for typical reduced form models.2 The effect of different (properly

calibrated) model specifications on aggregate credit and market risk has to our knowledge

not been investigated earlier. Second, we provide semi-analytic results for a special subclass

of models. These analytic results help to characterize the main drivers of model specification

effects and diversification benefits between market and credit risk. Third, we provide an in-

depth analysis of all combined effects for a fully calibrated empirical model based on U.S.

interest rate, default, and credit spread data. The results of this empirical analysis both

confirm and extend the results from our analytical section.

Our model has a two-factor structure with a (latent) market and a (latent) credit cycle

factor. These two factors impact physical default probabilities, discount factors, and credit

spreads via the risk neutral default probabilities at the same time. For example, as the

1See also the special issue of the Journal of Banking and Finance (2010, volume 34), which published a
selection of the papers summarized in BCBS (2009).

2For an overview, see for example Bluhm, Overbeck, and Wagner (2002), Lando (2004), and McNeil,
Frey, and Embrechts (2005).
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general state of the economy deteriorates, defaults will increase. At the same time, the

fraction of bonds that does not default can still depreciate in value if credit spreads increase

due to e.g. worsening of the credit cycle. As a result, credit risk and market risk become

fully intertwined. Even for the special case where we assume discount rates to be constant,

aggregating market and credit risk is a non-trivial exercise. For this special case, we show how

to derive analytic results for an infinitely granular portfolio. The analytic results make clear

that care should be taken in calibrating risk parameters across different model specifications

in order to make a fair comparison. We solve this issue by calibrating the model to empirically

feasible information, such as default probabilities and default correlations; see also Koyluoglu

and Hickman (1998) and Gordy (2000).

For large defaultable bond portfolio, our results show that model specification matters.

This is particularly true at high confidence Value-at-Risk (VaR) levels. The capital levels

for probit link functions are typically substantially smaller than those of exponential or

Poisson link functions, with the logit link function describing the intermediate case. This

is surprising, as the shape of the link function is typically deemed to be less important for

computing capital requirements. Our results show that though these link functions may

behave similarly in the center of their respective supports, it is precisely their different tail

behavior that becomes important at high confidence VaR levels.

In our empirical analysis, we fit the model to U.S. term structure data, Moody’s default

data for different rating categories, and market data for credit spreads. We carefully calibrate

each of the different model specifications to the available data to obtain a fair comparison.

Our empirical results confirm our earlier analytic results. Aggregate credit and market risk

capital levels substantially deviate from the sum of the separate market and credit risk

capital levels. In addition, exponential or Poisson based links between latent risk factors

and default probabilities result in the most convervative capital levels, followed by the logit

and probit link functions, respectively. The conclusions are robust across rating categories.

There are several related studies on the aggregation of market and credit risk, but none

of these studies includes a systematic investigation of the impact of model specification

on capital requirements. Breuer, Jandacka, Rheinberger, and Summer (2010) show that a

top-down aggregation of credit and market risk can underestimate compounding effects in

certain cases, e.g. foreign currency loans. Drehmann, Sorensen, and Stringa (2010) model

the assets and liabilities of a representative bank. Their framework allows them to conduct a

stress test to analyze the impact to the bank’s market and credit risk of simultaneous shocks
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to property prices, inflation, and exchange rates. Alessandri and Drehmann (2010) modify

the framework of Drehmann et al. (2010) to analyze the scope for diversification effects

in the banking book. They find that capital requirements calculated from a stand-alone

approach to credit and market risk is larger compared to an integrated approach. Hartmann

(2010) notes that these findings should be taken with care, as many mitigating effects are

left unmodeled.

Our model set-up is closest to that of Barnhill Jr and Maxwell (2002), Gründke (2005),

Kupiec (2007), and Böcker and Hillebrand (2008). All these papers illustrate the diversifica-

tion effects using a portfolio of zero-coupon bonds and a factor structure for the underlying

risks. Again, however, none of these papers includes a systematic comparison of the model

specification issues discussed in the current paper. The main difference with Böcker and

Hillebrand (2008) is that they follow a top-down approach in modeling the joint loss distri-

bution of aggregated market and credit losses, whereas we follow a bottom-up approach. The

main difference with Kupiec (2007) is that we model credit spreads explicitly as a function

of the unobservable default cycle and the detrended short-term interest rate via the risk-

neutral default probabilities. Kupiec (2007), by contrast, models the correlation between

default risk and market risk through a one-factor model. A related approach is followed by

Gründke (2005), who directly relates default risk to a systematic credit and interest rate risk

factor. In addition, the interaction between credit spreads and the short rate is imposed by

correlated innovations. In our framework, we model the interaction between default risk and

market risk directly through the interaction between the physical and risk-neutral default

probabilities through the (latent) market and (latent) credit risk factor.

The remainder of the paper is set up as follows. We introduce the integrated model in

Section 2. In section 3 we derive an analytic expression for the integrated loss distribution

for an infinitely granular portfolio and deterministic riskfree discount rates. In section 4, we

calibrate our full empirical model and provide aggragate and disaggregate loss distributions

and risk measures based on Monte-Carlo simulation. Section 5 concludes.

2 Theoretical framework

The model consists of three main building blocks. The blocks are linked through a shared

exposure to a common factor structure. We first discuss the credit risk module of the model,

followed by the market risk modules for interest rate and credit spread risk.
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2.1 Credit risk

For the credit risk part of the model, we use a Bernoulli-mixture model. Consider a homoge-

neous portfolio of n exposures at time t. We assume that the default of a specific exposure

over the period [t, t+ h] depends on a vector of state variables ψt+h ∈ R
k, see McNeil, Frey,

and Embrechts (2005) and Gagliardini and Gourieroux (2005). The indicator variables Yi,t+h

for i = 1, . . . , n take the value one if exposure i defaulted before time t+ h with h > 0, and

zero otherwise. In the Bernoulli mixture model, the variables Yi,t+h are conditionally inde-

pendent Bernoulli draws, where the conditioning is done with respect to the (vector of) state

variables ψt+h. The conditional probability of default for exposure i can thus be written as

Pr [Yi,t+h = 1|ψt+h] = pj(ψt+h), (1)

where j is the rating of firm i, and pj(·) is a function pj : R
k → [0, 1] for j = 1, . . . , J , with

J the number of ratings. The common dependence of all exposures i on the same vector of

state variables ψt+h causes defaults to be unconditionally dependent. As a result, the credit

loss distribution at the portfolio level is non-degenerate, even if the number of exposures n

grows indefinitely. Our interest lies in modeling these credit portfolio losses in relation to

any simultaneous market risk that arises in the same portfolio.

The Bernoulli mixture model as presented above focusses on credit losses due to defaults

only. In practice, of course, credit losses also arise due to re-rating activity. Regulations

even require capital to be set aside for both default and re-rating risk simultaneously, see

BCBS (2009b). In this paper, we concentrate on default risk for expositional purposes. The

model can easily be complicated further to allow for rating changes, e.g., by replacing the

assumption of a mixture Bernoulli model by a mixture ordered probit or mixture ordered

logit model. Though this increases the absolute level of credit risk arising from the model, it

provides no additional insight into the effect of dependence between credit and market risk

or the effect of aggregating these two sources of risk. As the latter is the prime focus of the

current paper, we do not unnecessarily complicate the model at this stage with an additional

re-rating module.

So far, we have left the functional form of the link function pj(ψt+h) unspecified. The

literature suggests two directions based on either structural or reduced form credit risk

models. Structural models build on the seminal paper of Merton (1974), who uses a brownian

motion process for the asset value of the firm. The link function then becomes a probit link
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function, i.e. pj(ψt+h) = Φ(θ0j+θ
′
jψt+h), with Φ(·) the standard normal distribution function,

and θ0j ∈ R and θj ∈ R
k fixed, unknown parameters for j = 1, . . . , J . This link function also

underlies industry models such as CreditMetrics, see Gupton, Finger, and Bhatia (1997).

A direct alternative for the probit specification is the logit link function as used in for ex-

ample Koopman and Lucas (2008). The logit and probit specifications are generally deemed

to be close, except possibly in the tails. In our current context of default rate modeling,

this might be precisely the relevant area. We therefore include the logit specification in our

comparison when studying the effect of model specification on aggregating market and credit

risk.

The final specification considered here emanates from the reduced form credit risk litera-

ture and industry models such as Creditrisk+, see for example McNeil, Frey, and Embrechts

(2005). In this literature, default times are typically modelled as a doubly stochastic Poisson

process with stochastic default intensity λ. We assume λ is fixed until the time of default,

but depends on the hidden state vector ψt+h. The link function for the probability of default

then becomes pj(ψt+h) = 1 − exp(−λj(ψt+h)), where the default intensity is modelled as

λj(ψt+h) = exp(θ0j + θ′jψt+h) to ensure a non-negative intensity. Examples of this approach

are Koopman, Lucas, and Monteiro (2008), and Duffie, Eckner, Horel, and Saita (2009).

All three link functions above fit the general Bernoulli-mixture model, but with different

mixing distributions. However, Koyluoglu and Hickman (1998), Gordy (2000), and McNeil

et al. (2005, Ch. 8) show that different mixing distributions can result in substantially

different joint default behaviour, even if the alternative model specifications are calibrated

on the same data. This holds particularly if one is interested in the extreme tail behaviour

of the aggregate (portfolio) loss distribution. This is precisely the region of interest for risk

management purposes. The differences can, moreover, also be important for assessing the

diversification benefits between market and credit risk, and more general for assessing model

risk.

2.2 Market risk: interest rates and spreads

In this paper we follow Gründke (2005) and Kupiec (2007), and focus on a large portfolio

of corporate bonds to illustrate the key pattern of market and credit risk interaction. Bond,

loan, and mortgage portfolios are typically the largest parts of the trading and banking

books. Other forms of market risk, however, can also be incorporated in our framework and
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treated in a similar way to what is presented below.

Consider a portfolio of zero-coupon bonds. Recall that we consider homogeneity within

each rating cohort j. The present value of a risky zero-coupon bond issued by firm i with

credit rating j is then defined as

vj(t, T ) = e−(R(t,T )+sj(t,T ))(T−t), (2)

where R(t, T ) is the yield to maturity at time t of a riskless zero-coupon bond with maturity

T − t and sj(t, T ) is the credit spread at tenor T − t for a firm with credit rating j. Note

that the price of a riskless zero-coupon bond is given by

P (t, T ) = E

[
exp

(
−

∫ T

t

rsds

)]
= e−R(t,T )(T−t), (3)

given some stochastic process for the risk-free short-rate rt.

We assume that the term structure of interest rates R(t, T ) follows a mean reverting

one-factor Vasicek (1977) model. Alternative short-rate models could also be used, see for

example Shreve (2004), Baxter and Rennie (2007), or Hull (2009). As our focus in this

paper is more on the effect of different model specifications in the credit risk module of the

analysis, we stick to the current simple short-rate model for illustration purposes.

The short-rate follows the mean-reverting process

dr(t) = κ (r̄ − r(t)) dt+ σrdWr(t), (4)

where κ is the mean-reversion rate, r̄ is the long-term average of the short-rate, σr is the

diffusion parameter, and Wr(t) is a Brownian motion under the real world probability mea-

sure. Under standard no-arbitrage conditions, the term structure of interest rates is given

by

R(t, T ) =
B(t, T )

T − t
r(t)−

A(t, T )

T − t
, (5)

7



where

B(t, T ) =
1− e−κ(T−t)

κ
,

A(t, T ) = R̄
(
B(t, T )− (T − t)

)
−
σ2
r

4κ
B(t, T )2,

R̄ = r̄ + λ
σr
κ

−
1

2

σ2
r

κ2
,

with λ the market price of risk, i.e., the risk premium per unit of volatility, and r̄, κ, and λ

non-negative scalar parameters.

The short-rate r(t + h) at time t + h is put into the vector of state variables ψt+h as

defined above equation (1), together with a factor reflecting the general state of the default

cycle. We thus consider a two-factor (k = 2) structure throughout the remainder of this

paper. Credit risk and market risk can now interact. For example, the (physical) default

probability can depend on the short-rate. At the same time the price of a defaultable bond

may depend on the general default cycle through the interaction of the credit spread with

the general state of the default cycle as a part of ψt+h.

Credit spreads sj(t+ h, T ) vary over time and depend on both elements of ψt+h through

the risk-neutral default probability. We assume that the one-period risk-neutral default

probability at time t + h is given by qj,t+h = q(η0j + η′jψt+h), with η0j ∈ R, ηj ∈ R
k,

and q a function such that q : Rk+1 → [0, 1], where q(·) has the same functional form as

the real world link function p(·). The difference between the risk-neutral and the physical

default probabilities is then given by the difference in parameters: (θ0j, θj) versus (η0j, ηj),

respectively.

To compute the value of the risky zero-coupon bonds at time t + h given the available

information about the state of the economy and the history of default information up to

t+ h, we proceed as follows. If no default occurs before expiration of the bond, the investor

receives the face value of 1 dollar. In case of default, the holder of the defaultable bond

receives a fixed recovery of 1− δ dollars.

Theorem 1 Given above assumptions and, in addition, assuming constant risk-neutral (one-

period) default probabilities from time t + h onwards, i.e., qj(t + h̃) ≡ qj,t+h for h̃ =
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h, h+ 1, . . . , T − h, the value of the defaultable bond at time t+ h is given by

vj(t+ h, T ) = Et+h

[
e−

∫ T

t+h
rsds

(
Ij,{τ>T} + (1− δ)Ij,{τ≤T}

)]

= P (t+ h, T )
[
1− δ ·

(
1− Q̃j(t+ h, T )

)]
(6)

where E[·] is the expectation under the risk-neutral measure, τ is the default time, T is the

bond’s maturity date, Q̃j(t+ h, T ) = (1− qj,t+h)
T−t−h is the risk-neutral survival probability

over the period t+ h to T , and δ is the risk-neutral loss given default rate.

Proof: It follows directly from Lemma 9.9 and Corollary 9.10 in McNeil, Frey, and Em-

brechts (2005) that

vj(t+ h, T ) = Et+h

[
e−

∫ T

t+h
rsds

(
Ij,{τ>T} + (1− δ)Ij,{τ≤T}

)]

= (1− δ)E
[
e−

∫ T

t+h
rsds

∣∣Ft+h

]

+ δIj,{τ>t+h}E

[
e−

∫ T

t+h
rsds

Pr
(
τ > T

∣∣Ft+h

)

Pr
(
τ > t+ h

∣∣Ft+h

)
∣∣∣∣Ft+h

]
.

Now assume that the risk-neutral default probability has a constant term structure, i.e.

qj(t+ h, s) = qj,t+h, then the survival probability is given as

Pr(τ > s|Ft + h) := Q̃j(t+ h, s) = (1− qj,t+h)
s−t−h

and is known at time t + h given the realizations of rt+h and ψt+h, i.e. Q̃j(t + h, s) is

(Ft+h)-measurable. This implies that the price of the defaultable bond follows as

vj(t+ h, T ) = (1− δ)E
[
e−

∫ T

t+h
rsds

∣∣Ft+h

]
+ δ · Q̃j(t+ h, T )E

[
e−

∫ T

t+h
rsds

∣∣Ft+h

]

= P (t+ h, T )
[
1− δ ·

(
1− Q̃j(t+ h, T )

)]

with P (t+ h, T ) := E
[
exp

[
−

∫ T
t+h

rsds
]∣∣∣Ft+h

]
.

The theorem states that even if the risk-neutral default probability depends on the short-

rate via ψt+h, the simplifying assumption of a constant term risk-neutral default probability

from t+h onwards ensures that the price of the risky zero-coupon bond can be decomposed

as the product of a risk free bond and one minus the risk neutral expected loss, see the
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standard result under a recovery of treasury assumption in for example Jarrow and Turnbull

(1995) and Schönbucher (2003). The key to this result is that at time t+ h, ψt+h is known.

At time t, however, both the applicable default rate over [t, t+h] and the default probability

term structure at time t + h are unknown and depend on ψt+h. This allow us to study the

interaction between these two types of risks in a tractable manner.

To operationalize the dependence of the credit spread sj(t + h, T ) on the risk-neutral

default probability qj,t+h, and thus the interest rate, and the default cycle, we combine (2),

(3) and (6) into

sj(t+ h, T ) =
− ln

[
1− δ ·

(
1− Q̃j(t+ h, T )

)]

T − t− h
. (7)

This equation is used later on the calibrate the model’s parameters empirically.

The current model structure is built on the simplifying assumption of a constant term

structure of the risk-neutral default probabilities. This, however, is already sufficiently de-

tailed to study the effect of functional form specification on the interaction between market

and credit risk. It allows us to obtain all key insights at minimum level of analytical com-

plexity.3 Moreover, the current framework is in a certain sense even more flexible by allowing

different functional forms p(·) and q(·) for the relation between default probabilities and state

variables ψt+h. Previous papers typically built on a continuous time framework for credit

risk, thus restricting the attention to either the Poisson or the probit link function. In our

current framework, each of these link functions can easily be included, as can alternative

specifications.

3 Asymptotic loss distribution

The full model as introduced in Section 2 is too complicated to solve analytically. We there-

fore first derive the analytic loss distribution for a special case of the general model. Next,

in Section 4 we obtain our results for the fully calibrated empirical model using simulations.

The analytical results obtained in the current section help us to understand the main drivers

of the empirical results in Section 4.

Consider a setting with a fixed short-rate r(t) ≡ r̄. The vector of state variables ψt+h is

now one-dimensional (k = 1) and can be interpreted as a scalar reflecting the uncertainty

3Alternative, more complicated specifications to link market and credit risk are found in seminal papers
like Jarrow, Lando, and Turnbull (1997), Lando (1998), and Jarrow and Turnbull (2000).
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about the future state of the default cycle. Note that the model still includes both a credit

risk and a market risk component through the random nature of credit spreads, see equation

(7). We assume that the latent factor ψt+h ∈ R has distribution function Fψ(·), and we

consider the loss distribution of an infinitely granular homogeneous portfolio (n → ∞) of

unit-notional zero-coupon bonds that mature at time T .

Using the arguments in Lucas, Klaassen, Spreij, and Straetmans (2001), the total loss on

this portfolio of n names as a percentage of the notional is given by L̂t+h,n = n−1
∑n

i=1 Lt+h,i,

where Lt+h,i is the loss on counter party i at time t+h. Considering the limiting case n→ ∞

of an infinitely granular portfolio, we obtain under the recovery of treasury assumption that

L(ψt+h) = lim
n→∞

L̂n = lim
n→∞

E[Lt+h,i|ψt+h]

=
J∑

j=1

πj ·
[
vj(t, T )− (1− pj(ψt+h)) · vj(t+ h, T )

− pj(ψt+h) · (1− δ) · P (t+ h, T )
]
, (8)

where J is the number of rating categories, and πj the percentage of firms in the portfolio

with rating j for j = 1, . . . , J . We assume that both pj and qj are decreasing in the state

variable ψt+h, as is also the case based on our empirical estimates in Section 4.1. The limiting

loss L(ψt+h) is then a monotonically decreasing function of ψt+h. Values of the state variable

that cause a high default probability over the period [t, t+ h] also cause a high value of the

risk-neutral default probability at time t+h and therefore of the default spreads sj(t+h, T ).

Combined, these two effects result in large credit risk induced losses for the firms that default

over the period [t, t + h], as well as large market risk induced losses for the counter parties

that survive till time t + h. The monotonicity can be exploited directly to derive the total

loss distribution. The next result follows immediately.

Theorem 2 Given the assumptions above, the distribution of the aggregated market and

credit risk loss is given by

FL(ℓ) = Pr [L(ψt+h) < ℓ ] = Pr
[
ψt+h < L−1(ℓ)

]
= Fψ

(
L−1(ℓ)

)
, (9)

where FL(·) and Fψ(·) are the distribution functions of L = L(ψt+h) and ψt+h, respectively,

and L−1(·) is the inverse function L−1(L(ψt+h)) = ψt+h. The probability density function of
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L is given by

fL(ℓ) =
∂

∂ℓ
FL(ℓ) =

∂

∂ℓ
Fψ(L

−1(ℓ)) =
fψ (L

−1(ℓ))

|L′(L−1(ℓ))|
, (10)

where L′(z) = ∂L(z)/∂z.

Evaluating expression (10) in the current one-factor case with monotonic loss function

L(ψt+h) is straightforward. Using a grid of values ψ
(1)
t+h ≤ . . . ≤ ψ

(m)
t+h, we plot fψ(ψ

(g)
t+h)/|L

′(ψ
(g)
t+h)|

against L(ψ
(g)
t+h) for g = 1, . . . ,m. The crucial ingredient in all these computations is the

functional dependence of L on ψ, which is the focus of the present paper.

Using (8), the derivative L′(·) is given by

L′(ψt+h) =
J∑

j=1

πj ·

[
(T − t− h) · (1− pj(ψt+h)) · vj(t+ h, T )

∂sj(t+ h, T )

∂ψt+h

+
(
vj(t+ h, T )− (1− δ)P (t+ h, T )

)
·
∂pj(ψt+h)

∂ψt+h

]
, (11)

where both ∂sj/∂ψt+h and ∂pj/∂ψt+h depend on the functional specification chosen for the

link function in the credit risk part of the model. Recall that P (t + h, T ) is deterministic

since we keep the term structure of riskfree interest rates fixed. We can now study the effect

of market risk and credit risk separately, as well as their interaction. In the case of only

market risk, we have pj(ψt+h) = 0 and ∂pj/∂ψt+h = 0, such that (11) simplifies to

L′(ψt+h) =
J∑

j=1

πj · (T − t− h) · vj(t+ h, T )
∂sj(t+ h, T )

∂ψt+h
. (12)

An analogous result holds if we only consider credit risk, in which case vj(t+ h, T ) = v̄j,t+h

is non-stochastic and ∂sj/∂ψt+h = 0. Equation (11) then simplifies to

L′(ψt+h) =
J∑

j=1

πj ·
(
v̄j,t+h − (1− δ)P (t+ h, T )

)
·
∂pj(ψt+h)

∂ψt+h
. (13)

If both types of risk are present, (11) cannot be simplified further.

As an illustration, we plot the asymptotic loss densities and the tail of the loss distribu-

tions for credit risk, market risk, and aggregated risk in Figures 1 and 2. In Figure 1, we

consider a credit portfolio of low quality and assume that the real world and risk-neutral

default probabilities are 18%, thus abstracting from any market risk premium. The real

world and risk-neutral default correlations are set to 4%, implying a joint default probability

12
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Figure 1: Loss distributions for a low-quality portfolio
The upper left panel shows the asymptotic loss density of credit, market and aggregated risk in a credit
portfolio for the probit-mixture distribution. The other panels show the tail of the distribution functions of
credit, market and aggregated risk for the probit-, logit- and Poisson-mixture distributions. In this example,
it is assumed that the unconditional real world and risk-neutral default probability is 18%. The assumed
default correlation is set to 4% implying a joint default probability of 5%.

of 5%. In Figure 2, we consider a portfolio of medium credit quality. The real world and

risk-neutral default probabilities are set to 5% and 10%, respectively, implying a risk pre-

mium factor of 2. The real world and risk-neutral default correlations are 2.5% and 1.25%,

respectively, implying joint default probabilities of 0.4% and 1.1%.4

To make the different model specifications mutually comparable, the model parameters

are calibrated as follows. For each model, i.e., probit, logit, or Poisson link function, we

set θ and η such that the unconditional default probability, default correlation, and the

pairwise default probability are the same; see the appendix for further details. The resulting

parameters are shown in Table 1. We assume a portfolio of zero-coupon bonds with T = 3

years to maturity, a risk horizon of h = 1 year, a constant and flat term structure of interest

rates at r̄ = 4%, and a loss given default rate of δ = 60%. The credit spread specified in

equation (7) is a function of the risk-neutral default probability. At time t = 0 the risk-

neutral default probability is set to its expected value, i.e. 18% and 10% in examples one and

two respectively. For measuring credit risk (without market risk), the same term structure

of credit spreads is used at time t = 0 and at the risk horizon t = h.

4Hull, Predescu, and White (2005) show that the market risk premium increases with credit quality.
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Figure 2: Loss distributions for a medium-quality portfolio
The upper left panel shows the asymptotic loss density of credit, market and aggregated risk in a credit
portfolio for the probit-mixture distribution. The other panels show the tail of the distribution functions of
credit, market and aggregated risk for the probit-, logit- and Poisson-mixture distributions. In this example,
the real world and risk-neutral default probabilities and correlations are different. The unconditional real
world and risk-neutral default probabilities are respectively 5% and 10% implying a risk premium of 2.
The real world and risk-neutral default correlations are respectively 2.5% and 1.25% implying joint default
probabilities of 0.4% and 1.1% respectively.

Table 1: Calibrated model parameters

Parameters of real world (θ0, θ1) and risk-neutral (η0, η1) link functions. The param-
eters are calibrated such that the unconditional (joint) default probabilities and de-
fault correlations are the same for the probit, logit and Poisson mixture distributions.
Two examples are considered. In Example I, it is assumed that p = q = 18% and
ρp = ρq = 4%. In Example II, it is assumed that p = 5%, q = 10%, ρp = 2.5% and
ρq = 1.25%. See the main text for further details on the parameters.

Example I Example II
θ0 = η0 θ1 = η1 θ0 θ1 η0 η1

Probit -0.956 -0.301 -1.732 -0.330 -1.305 -0.192
Logit -1.603 -0.529 -3.150 -0.684 -2.251 -0.370
Poisson -1.703 -0.469 -3.171 -0.654 -2.304 -0.348
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Both in Figure 1 and 2, the loss density for aggregated market and credit risk has a

fatter tail compared to the loss densities for credit or market risk only. The effect is more

pronounced for the low-quality portfolio in Figure 1. It is also clear that loss quantiles for

combined credit and market risk are not simply the sum of the separate credit risk and

market risk quantiles. This is due to the dependence between the two types of risk, and the

non-linear relationship between the common risk factor and the aggregate loss expression.

The remaining panels in Figures 1 and 2 present the differences in tail behaviour for

the different model specifications. For all cases considered, the loss quantiles of the Poisson

distribution are farther out than those of the logit specification, which in turn are farther

out than the probit loss quantiles. Differences increase the further we go into the tail. This

holds for market, credit, and aggregated risk alike. Up to 90% or even 99% confidence levels,

the effect of the different model specifications is modest. At the 99% confidence level, the

VaR increases by 5%-10% if the probit specification is replaced by the Poisson specification

for the low-quality portfolio (example I), and by about 5% for the medium-quality portfolio

(example II), see Table 2. If we move further out into the tails, the impact of the functional

form increases substantially. At the 99.99% level, the credit loss VaR is 29% higher for the

Poisson than for the probit specification. For market and aggregated risk, the difference is

somewhat smaller at 14% or 15%, respectively, but still substantial, particularly because the

magnitude of the aggregated VaR is larger than that of the credit loss quantile.

In Table 3 we consider the effect of model specification on VaR reductions from aggregat-

ing market and credit risk. The further we move into the tail, the larger the VaR reductions

become. These reductions are the largest for the Poisson mixture distribution. For a low-

quality credit portfolio the benefits of aggregating market and credit risk vary between 16%

to 45% for the Poisson link function compared to 16% to 39% for the probit link function.

The benefits of the Poisson specification are 5% to 14% larger compared to the probit spec-

ification. For the medium-quality credit portfolio we obtain similar results. Aggregation

benefits range between the 5% to 21% for the probit specification and 5% to 26% for the

Poisson specification, where the Poisson specification results in 5% to 24% larger benefits.

The results for the logit specification are in between those of the probit and the Poisson

specification. Summarizing, model specification has a clear impact on the VaR reductions

of aggregating market and credit risk, and that the differences become more pronounced the

further we look into the tail of the loss distribution.
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Table 2: Asymptotic loss distribution characteristics

This Table shows the expected loss, EL; and the V aR1−α at different confidence levels α
for credit, market and aggregated risk and different mixing distributions. Two examples
are considered. In Example I, a low-quality credit portfolio, it is assumed that p =
q = 18% and ρp = ρq = 4%. In Example II, a medium-quality credit portfolio, it is
assumed that p = 5%, q = 10%, ρp = 2.5% and ρq = 1.25%. See the main text for
further details on the parameters.

Example I - Low quality Example II - Medium quality
Risk metric in % Ratio to probit Risk metric in % Ratio to probit
probit logit Poisson logit Poisson probit logit Poisson logit Poisson

Credit Risk

EL -2.6 -2.6 -2.6 1.00 1.00 -5.3 -5.3 -5.3 1.00 1.00

VaR10
−1

3.9 3.9 3.8 1.00 0.98 2.0 1.9 1.9 0.96 0.94

VaR10
−2

8.1 8.5 8.9 1.04 1.09 5.3 5.6 5.6 1.05 1.06

VaR10
−3

11.5 12.2 13.4 1.06 1.16 8.4 9.5 9.9 1.12 1.18

VaR10
−4

14.3 15.3 17.4 1.07 1.21 11.5 13.6 14.8 1.18 1.29

VaR10
−5

16.7 17.8 20.8 1.07 1.25 14.5 17.6 20.0 1.21 1.38

Market Risk

EL -9.7 -9.7 -9.7 1.00 1.00 -7.6 -7.6 -7.6 1.00 1.00

VaR10
−1

9.2 9.2 9.1 1.00 0.99 4.4 4.4 4.4 1.00 0.99

VaR10
−2

17.5 18.2 18.8 1.04 1.07 9.1 9.4 9.6 1.04 1.06

VaR10
−3

23.1 24.2 25.8 1.05 1.12 12.8 13.6 14.1 1.07 1.10

VaR10
−4

27.1 28.3 30.7 1.05 1.13 16.0 17.3 18.2 1.08 1.14

VaR10
−5

29.9 31.1 33.8 1.04 1.13 18.8 20.6 22.0 1.10 1.17

Aggregated Risk

EL -3.4 -3.4 -3.4 1.00 1.00 -5.4 -5.4 -5.4 1.00 1.00

VaR10
−1

11.0 11.0 10.9 1.00 0.99 6.1 6.0 6.0 0.99 0.98

VaR10
−2

19.3 19.8 20.4 1.03 1.06 12.9 13.4 13.6 1.04 1.05

VaR10
−3

23.9 24.7 25.9 1.03 1.08 18.3 19.7 20.3 1.07 1.11

VaR10
−4

26.7 27.5 28.9 1.03 1.08 22.7 24.9 26.2 1.10 1.15

VaR10
−5

28.5 29.1 30.3 1.02 1.07 26.4 29.2 31.2 1.11 1.18
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Table 3: Tail area reductions in VaR

This table presents the ’diversification benefits’ (in %) at different confidence levels
α, measured as the percentage by which the aggregate loss VaR is smaller than the
sum of the separate credit risk and market risk VaRs. The results are shown for two
examples: a low-quality and a medium-quality credit portfolio. See for further details
the caption of Table 2 and the main text.

Benefits (in %) Ratio to probit
1− α probit logit Poisson logit Poisson

Example I - Low quality

10−1 15.8 15.8 15.7 1.00 0.99
10−2 24.9 25.6 26.3 1.03 1.05
10−3 30.9 32.1 33.9 1.04 1.10
10−4 35.4 36.8 39.9 1.04 1.13
10−5 38.9 40.5 44.5 1.04 1.14

Example II - Medium quality

10−1 4.8 4.7 4.7 0.99 0.98
10−2 9.8 10.1 10.3 1.04 1.05
10−3 13.8 14.9 15.4 1.08 1.12
10−4 17.4 19.3 20.6 1.11 1.18
10−5 20.7 23.5 25.6 1.14 1.24

4 Empirical Results

In this section we consider the portfolio loss distribution for an empirically calibrated model

with all three risk factors operating simultaneously: interest rate risk, default risk, and

spread risk. The state variable ψt+h ∈ R
2 now contains both the default cycle and the short-

rate. Note that the (one-factor) term structure is now fully stochastic and possibly correlated

with the default cycle. Due to its complexity, the full model is too complicated to handle

analytically. Therefore, we derive the loss distributions using Monte Carlo simulation.

4.1 Parameter Calibration

4.1.1 Term structure of interest rates

The parameters of a one-factor Vasicek model are estimated using a state space representa-

tion of equations (4) and (5). See Durbin and Koopman (2001) for an advanced treatment of

state space models, and Bolder (2001) for an implementation of the state space framework

for multi-factor term-structure models. The observation equation for the one-factor Vasicek

17



Table 4: Interest rate model 1996–2010: empirical estimates

The superscript a, b, and c denotes significant at the 1%, 5%, 10% significance level.

One-factor Vasicek model
Estimate Standard error

r̄ 0.011a 0.000
κ 0.180a 0.008
σr 0.012a 0.001
λ 0.795a 0.000
Log-likelihood 2294.32
Observations 540

model is given by




R(t, T1)

R(t, T2)
...

R(t, Tm)



=




−A(t,T1)
T1−t

−A(t,T2)
T2−t
...

−A(t,Tm)
Tm−t



+




B(t,T1)
T1−t

B(t,T2)
T2−t
...

B(t,Tm)
Tm−t



r(t) +




u1(t)

u2(t)
...

um(t)



,

with state equation

r(t+ h) = r̄(1− e−κh) + e−κhr(t) + εr(t),

where the m-dimensional vector u(t) ∼ N(0, H), H = diag(σ2
1, ..., σ

2
j ), and the random

variable εr(t) ∼ N(0, σ2
ε), where σ

2
ε =

σ2
r

2κ

(
1−e−2κ∆t

)
. The parameters r̄, κ, λ, σ2

r , σ
2
ε , and the

covariance matrix H can be estimated by standard maximum likelihood using the Kalman

filter. The distribution of the initial state is set equal to its unconditional distribution.

Once the parameters are estimated, the estimates r̂(t) and ε̂r(t) of the short-rate and its

disturbance, respectively, follow directly from the Kalman smoother.

The data used for this part of the model are 1996–2010 US treasury yields for maturities

3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y, and 20y. The data are downloaded from the Federal Reserve

Economic Data (FRED) database. Table 4 shows the main results. All parameters are

significant at the 1% level. The long run average short-rate r̄ is estimated at around 1.1%.

This clearly reflects the downward trend in interest rates over the sample. The average rate

under the risk neutral measure is r̄ + λσr/κ ≈ 6.4%.

Figure 3 plots the smoothed estimates of the short-rate together with the 3-month and

the 20-year Treasury yield. The short-rate follows the 3-month Treasury yield closely. The

figure also illustrates one of the short-comings of the Vasicek model, which is the probability

to generate negative short-rates. In our sample, the short-rate was negative and close to

zero during 2010 as result of the ongoing uncertainty in the financial markets and sluggish
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Figure 3: short-rate estimates
Estimated short-term interest rate (solid blue line) for the one-factor Vasicek model and the observed 3m
and 20y US Treasury yields (dashed red lines).

economic growth prospects.

Another important feature that emerges from Figure 3 is the structural decline in the

short-rate. To prevent any spurious relation between default probabilities and short-rates

due to such trends, we use the detrended short-rate r̃t = r̂t − r̂HPt when modeling the

dependence between short-rates and default probabilities. The trend r̂HPt is computed using

the Hodrick-Prescott (HP) filter, where the HP parameter is set to its usual value of 1,600

for quarterly data. The filtered trend and cyclical component of the short-rate are shown in

Figure 4.

4.1.2 Physical default probabilities

To estimate the parameter vector θj in (1), we use Moody’s rating data of 13,229, predom-

inantly US, firms covering 16 years from January 1995 to December 2010. At a quarterly

frequency we count the number of defaults per rating cohort during the previous year. We

construct a quarterly time-series of annual default frequencies using time-series for the annual

number of defaults yt,j and the number of exposures nt,j for rating cohort j at time t. These

time-series are used in estimating the parameters of the physical annualized conditional de-

fault probabilities pj,t = pj(ψt). To account for the problem of overlapping observations, we

compute Newey-West corrected standard errors based on four lags, see Andrews (1991). The

results are robust to using twelve lags as well. The conditional default probabilities directly

determine the unconditional default probabilities πj, the pairwise joint default probabilities

πj,2, and the default correlation ρπ,j .

We estimate θj using a conditional maximum likelihood procedure, where we condition

on the estimate of the (detrended) short-rate ψ2,t = r̃t obtained from Section 4.1.1. We
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Figure 4: Interest rate components
Trend, cyclical component, and year-on-year change of the short-term interest rate. Panel a) shows the level
and the trend of the short-rate. Panel b) shows the year-on-year change (solid blue line) in the short rate,
and the detrended short-rate (dashed red line).

maximize

L
(
θj|ψ̂2,t

)
=

∏

t

∫ k∏

j

(
nj,t
yj,t

)
p
yj,t
j,t (1− pj,t)

nj,t−yj,tφ(ψ1,t)dψ1,t, (14)

such that all rating cohorts j are subject to the same latent factor ψ1,t. Furthermore, the la-

tent factor ψ1,t is assumed to be independently and identically standard normally distributed.

The latter may not hold in practice due to the cyclical nature of systematic default risk.

However, in our current setting we are more interested in the unconditional variation of sys-

tematic risk factors, for which (14) provides a sensible estimation strategy. Concentrating

on the unconditional variation in credit and market risk factors is also sensible given the

regulatory focus in Basel III on through-the-cycle credit risk for capital requirements.

Due to the limited number of investment grade defaults we group all investment grade

ratings Aaa–Baa into one rating category IG. Similarly, we group the ratings Caa–C into one

rating category because long time-series for credit spreads are only available for this broader

category. Aggregated annual default rates for the four rating categories are shown in Figure

5. The figure clearly shows the familiar bursts in default activity after the collapse of the

dotcom bubble and in the aftermath of the recent financial crisis.

Table 5 shows the estimated parameters together with the estimated unconditional de-
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Figure 5: Default rates per rating cohort
Default rate (in percentages) per rating cohort for the period 1996–2010. IG includes the investment grade
ratings Aaa to Baa.

fault probability π̂, the pairwise joint default probability π̂2, and the default correlation ρ̂

for the different link functions under consideration. The unconditional (joint) default prob-

abilities are computed by numerical integration of (A2) in the Appendix with respect to

the bivariate latent factor ψt+h. The default correlations can then be computed given the

unconditional (joint) default probabilities according to equation (A1) in the Appendix.

The last columns of the table show that the different link functions all produce similar

unconditional (joint) default probabilities for the different rating cohorts. As seen earlier,

the clustering appears somewhat stronger for the Poisson than for the probit specification.

We come back to these results in Section 4.1.3 when we compare risk-neutral and physical

probabilities of default.

The estimated coefficients for the latent factor and the detrended short-rate have the

expected negative sign and are all significant at the 1% or 5% level. An increase in the

latent factor ψ1,t reflects better economic and business conditions and therefore lower default

probabilities. The (detrended) short-rate factor ψ2,t has a negative marginal effect on the

probability of default. A possible explanation for this is the opportunity cost of capital: an

increase in the risk-free rate increases the expected rate of return on the investments of a

firm, and thus lowers the probability of default, see the arguments in Jarrow and Turnbull

(2000).
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Table 5: Parameter estimates: physical probabilities

Estimated parameters for the link functions of the real world default probabilities pt
specified as pt+h = p(θ0 + θ1ψ1,t+h + θ2ψ2,t+h), where ψ1,t+h is the default cycle, and
ψ2,t+h is the detrended short-rate. Standard errors are based on Newey-West correction
using 4 lags. The superscript a, b, and c denotes significant at the 1%, 5%, and 10%
significance level.

θ0 θ1 θ2 Implied (in %)
Est. S.e. Est. S.e. Est. S.e. π̂ π̂2 ρ̂π

Probit LogLik -709.61
IG -3.27a 0.09 -0.28a 0.07 -0.23a 0.04 0.11 0.00 0.25
Ba -2.52a 0.04 -0.27a 0.04 -0.12a 0.03 0.78 0.01 0.56
B -1.93a 0.02 -0.36a 0.01 -0.10a 0.01 3.49 0.21 2.48
Caa-C -0.96a 0.03 -0.27a 0.02 -0.18a 0.02 18.09 3.96 4.68

Logit LogLik -709.74
IG -7.59a 0.32 -1.00a 0.27 -0.82a 0.13 0.12 0.00 0.40
Ba -5.16a 0.12 -0.75a 0.12 -0.35a 0.07 0.79 0.01 0.68
B -3.65a 0.04 -0.85a 0.04 -0.25a 0.02 3.53 0.23 3.06
Caa-C -1.62a 0.05 -0.49a 0.03 -0.33a 0.03 18.07 4.00 4.99

Poisson LogLik -709.48
IG -7.60a 0.32 -1.01a 0.28 -0.82a 0.13 0.12 0.00 0.43
Ba -5.17a 0.12 -0.75a 0.12 -0.35a 0.07 0.79 0.01 0.71
B -3.67a 0.04 -0.84a 0.04 -0.25a 0.02 3.56 0.24 3.27
Caa-C -1.72a 0.05 -0.44a 0.03 -0.30a 0.02 18.07 4.05 5.29

4.1.3 Risk-neutral default probabilities

We estimate the parameter vector ηj linking the risk-neutral default probabilities qj(ψt) to

the state variable ψt by non-linear least squares using the relation

sj(t, T ) = −
ln
[
1− δ ·

(
1− (1− qj,t)

T−t
)]

T − t
, (15)

where the state vector ψt includes the estimated (detrended) short-rate and default cycle as

obtained from the interest rate model and default rate model in Sections 4.1.1 and 4.1.2,

respectively.

The data consist of daily US credit spreads for ratings Aaa to Caa as obtained from

the FRED database for 1996–2010. We observe so-called option adjusted credit spreads

as constructed by the Bank of America Merrill Lynch. These are defined as the spread at

which a benchmark security would be trading if it had no embedded optionality. Daily data

are transformed into quarterly averages. For the investment grade (IG) spread, we take a

weighted average of Aaa-Baa credit spreads using the number of firms in each rating category

as weights. The differences between using unweighted versus weighted averages are small.
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The advantage of option-adjusted credit spreads is that reasonably long time-series are

available for parameter estimation. To use these data in the non-linear regression (15),

however, we need to make an assumption about the average maturity in each rating bucket.

We therefore subtract the spreads from the corporate bond yields, which are also provided in

the FRED database by Bank of America Merrill Lynch. We matched the resulting estimate

of the bond-implied risk free rates to different maturity US Treasury yields. The best fit

was obtained for five to seven year maturities. Therefore, we set the maturity T in the

non-linear regressions (15) to six years. Moreover, we set the loss given default rate δ to

60%, which is broadly in line with the average rates observed during 1996 to 2010: averages

of 62.6%, 61.1%, 57.4%, and 56.8% for rating categories IG, Ba, B and Caa-C, respectively,

see Moody’s (2011).

The results are shown in Table 6. The implied (joint) default probabilities and default

correlation are again similar across all model specifications due to the calibration on the same

data set. Furthermore, the coefficients for the credit cycle and the short-rate all have the

expected negative sign. The negative short-rate coefficient η2 implies a negative correlation

between the credit spreads and the short-rate, which is in line with other earlier empirical

studies (see Jarrow and Turnbull (2000)). The coefficients η1 and η2 for the credit cycle and

short-rate, respectively, become larger in absolute value for lower credit rating categories.

This is very interesting, as it is entirely opposite to the result obtained for the physical

probabilities in Table 5. There, the higher rating categories obtained the higher systematic

risk loadings, similar to the approach taken in the Pillar I Basel regulatory framework. The

result implies that defaults of high-quality firms have a larger systematic component, but

the price of default risk has a larger systematic component for low-quality firms.

Table 7 shows the implied risk premia by computing the ratio of the unconditional risk

neutral and real world probabilities of default from Tables 5 and 6. The ratios are similar

across the different link functions for the rating cohorts B and Caa-C, but differ substantially

between rating cohorts. The ratio declines from approximately 23 for rating cohort IG to 2

for rating cohort Caa-C. Not surprisingly, we find somewhat larger ratios compared to earlier

empirical results due to the financial crisis being part of our data set. For example, Hull,

Predescu, and White (2005) found ratios ranging from 16.8 for credit rating Aaa to 1.3 for

credit rating Caa and lower based on a sample from December 1996 to July 2004, see Hull

(2009).

The real world and risk neutral default correlations reported in Tables 5 and 6 are sum-
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Table 6: Parameter estimates: risk neutral probabilities

Estimated parameters for the link functions of the real world default probabilities qt
specified as qt+h = q(η0 + η1ψ1,t+h + η2ψ2,t+h), where ψ1,t+h is the default cycle, and
ψ2,t+h is the detrended short-rate. The parameters are estimated assuming a loss given
default rate of 60% and a maturity of 6 years. Standard errors are based on a Newey-
West correction using 4 lags. The superscript a, b, and c denotes significant at the 1%,
5%, and 10% significance level.

η0 η1 η2 Implied (in %)
Est. S.e. Est. S.e. Est. S.e. q̂ q̂2 ρ̂q

Probit

IG -1.95a 0.07 -0.04 0.05 -0.08c 0.05 2.62 0.07 0.12
Ba -1.50a 0.07 -0.08c 0.05 -0.12a 0.05 6.86 0.51 0.66
B -1.25a 0.07 -0.11b 0.05 -0.13a 0.05 10.88 1.30 1.21
Caa-C -0.49b 0.27 -0.41b 0.18 -0.28c 0.17 32.85 13.52 12.37

Logit

IG -3.63a 0.17 -0.08 0.12 -0.18c 0.12 2.62 0.07 0.12
Ba -2.65a 0.15 -0.16c 0.11 -0.25a 0.09 6.86 0.51 0.67
B -2.15a 0.14 -0.22b 0.11 -0.27a 0.10 10.88 1.31 1.24
Caa-C -0.82b 0.44 -0.69a 0.29 -0.47c 0.31 32.76 13.55 12.79

Poisson

IG -3.65a 0.17 -0.08 0.12 -0.18c 0.12 2.62 0.07 0.12
Ba -2.68a 0.14 -0.16c 0.11 -0.24a 0.09 6.86 0.51 0.68
B -2.20a 0.13 -0.21b 0.10 -0.24a 0.09 10.89 1.31 1.26
Caa-C -1.02a 0.37 -0.61a 0.24 -0.41c 0.28 33.64 14.80 15.61

Table 7: Ratio and difference physical and risk neutral default probabilities

The table presents the ratios of the unconditional risk-neutral default probability over
the real world default probability as computed in Tables 5 and 6 and the difference
between both.

Ratio Difference (in bps)
Probit Logit Poisson Probit Logit Poisson

IG 24.1 22.5 22.2 251 250 250
Ba 8.8 8.7 8.6 608 607 607
B 3.1 3.1 3.1 739 735 735
Caa-C 1.8 1.8 1.9 1476 1469 1556
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Table 8: Estimated default correlations (in %) for different rating cohorts

This Table summarizes the results for the real world and risk-neutral default correla-
tions reported in Tables 5 and 6.

Real world Risk-neutral
Probit Logit Poisson Probit Logit Poisson

IG 0.25 0.40 0.43 0.12 0.12 0.12
Ba 0.56 0.68 0.71 0.66 0.67 0.68
B 2.48 3.06 3.27 1.21 1.24 1.26
Caa-C 4.68 4.99 5.29 12.37 12.79 15.61

marized in Table 8. For the real world correlations, the probit specification departs from the

other two model specifications. In particular, by imposing a probit link, less clustering is im-

plied for all rating categories considered. This is in line with the lower levels of capital for the

probit model when using the simplified analytic model in Section 3. The relative differences

are largest for the rating cohort IG. The difference for the different model specifications is

absent for the risk neutral correlations. We also see that the risk neutral default correlations

are in most cases lower than their real world counterparts. This implies there would be less

of a premium for default clustering. The effect of lower default correlations, however, has

to be off-set against the higher values of risk neutral default probabilities (compared to the

physical probabilities) to compute the total effect on pricing. Also, note that we have not

used basket products to calibrate risk neutral default correlations directly, as is done in for

example Hull and White (2006). The difference should therefore be interpreted with some

care.

4.2 Monte Carlo Results for the Complete Model

We now combine all parts of the model and obtain loss distributions using Monte Carlo

simulation for the different model specifications. We assume that each rating cohort consists

of 1,000 defaultable zero-coupon bonds with a maturity of three years (T = 3). The risk

horizon at which we compute the loss distributions, the expected losses, and the Value-at-

Risk is set at one year (h = 1), leaving a remaining maturity of the defaultable zero-coupon

bonds of two years at the risk horizon. The loss given default rate is set to δ = 60%.

At time t = 0, we assume that the default cycle and detrended short-rate are both zero:

ψ1,t = ψ2,t = 0. Default losses are calculated under the recovery of treasury assumption. We

simulate 100,000 scenarios for computing the loss distribution at the risk horizon t+h. The

VaR is calculated for the confidence levels 97.5%, 99.0%, 99.9%, and 99.99%. The results

are shown in Tables 9 and 10.
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Table 9: Loss distribution characteristics

The table shows the expected and median losses, and the 99% Value-at-Risk (VaR)
for credit risk, market risk and aggregated risk. These statistics are computed using
different link functions for the real world and risk-neutral default probabilities.

Credit Risk Market Risk Aggr. Risk
Mean Median VaR Mean Median VaR Mean Median VaR

Probit link function

IG -4.0 -4.1 0.5 -4.0 -4.1 3.1 -4.0 -4.0 3.1
Ba -5.4 -5.5 1.4 -5.6 -5.7 3.5 -5.2 -5.4 4.7
B -5.6 -6.0 5.2 -6.8 -7.1 7.4 -5.3 -5.9 11.1
Caa-C -5.2 -5.6 7.0 -10.2 -10.3 23.1 -6.3 -5.7 20.5

Logit link function

IG -4.0 -4.1 0.7 -4.0 -4.1 3.1 -4.0 -4.0 3.1
Ba -5.4 -5.5 1.7 -5.5 -5.6 3.8 -5.1 -5.4 5.3
B -5.5 -6.0 6.5 -6.7 -7.1 7.9 -5.1 -5.9 12.5
Caa-C -5.1 -5.6 7.7 -9.8 -10.3 23.4 -5.9 -5.7 20.9

Poisson link function

IG -4.0 -4.1 0.7 -4.0 -4.1 3.1 -4.0 -4.0 3.1
Ba -5.4 -5.5 1.8 -5.5 -5.6 3.9 -5.1 -5.3 5.4
B -5.5 -6.0 6.8 -6.6 -7.1 8.3 -5.1 -5.9 13.1
Caa-C -5.0 -5.6 8.7 -9.2 -10.3 25.2 -5.4 -5.7 21.9

Ratio Logit to Probit link function

IG 1.00 1.00 1.29 1.00 1.00 1.01 1.00 1.00 1.01
Ba 1.00 1.00 1.21 0.99 0.99 1.09 0.98 0.99 1.12
B 0.99 1.00 1.23 0.98 0.99 1.08 0.97 1.00 1.13
Caa-C 0.98 1.00 1.10 0.96 1.00 1.02 0.94 1.00 1.02

Ratio Poisson to Probit link function

IG 1.00 1.00 1.29 1.00 1.00 1.01 0.99 1.00 1.01
Ba 0.99 1.00 1.24 0.98 0.99 1.13 0.98 0.99 1.15
B 0.98 1.00 1.30 0.98 0.99 1.12 0.96 1.00 1.18
Caa-C 0.97 1.00 1.24 0.90 1.00 1.09 0.86 1.00 1.07

Table 9 reports the expected and median losses and the 99% quantile for credit, market,

and aggregated risk. At first glance, the results for the different link functions are similar.

Both the expected losses due to credit and market risk are negative, i.e., a gain is expected

instead of a loss. In both cases the losses are offset by the upward drift in the price of the

defaultable zero-coupon bond as the remaining maturity decreases between time t ane time

t+ h. This upward effect diminishes for the higher grade bonds.

Looking at the 99% VaRs for the aggregated risk measure in Table 9, we see that the Pois-

son link function results in somewhat larger VaRs compared to the other two link functions.

Comparing the probit 99% VaR to the Poisson one, we see that the VaR is slightly higher

for the Poisson case by about 1% for investment grade bonds to 18% for B rated bonds.
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Table 10: VaR and VaR reductions of aggregating credit and market risk.

The Table shows the Value-at-Risk (VaRs) and VaR reductions of aggregating credit
and market risk at different confidence levels. These statistics are computed for differ-
ent link functions.

Value-at-Risk (in %) VaR Reductions (in %)
97.50% 99.00% 99.90% 99.99% 97.50% 99.00% 99.90% 99.99%

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Probit link function

IG 2.5 3.1 4.1 4.8 12.8 16.2 22.7 31.8
Ba 3.6 4.7 7.4 10.0 2.9 3.9 5.8 10.2
B 8.9 11.1 16.4 20.6 9.4 11.9 15.4 22.0
Caa-C 19.3 20.5 21.9 22.6 28.2 31.7 37.4 41.1

Logit link function

IG 2.6 3.1 4.1 5.3 14.3 19.6 32.0 47.3
Ba 3.9 5.3 8.8 12.7 3.3 4.5 7.9 13.6
B 9.7 12.5 19.6 25.3 9.7 13.3 19.0 24.5
Caa-C 19.8 20.9 22.1 22.8 29.3 33.1 39.2 42.7

Poisson link function

IG 2.6 3.1 4.1 5.6 14.2 19.6 33.1 47.1
Ba 4.0 5.4 9.2 13.5 3.6 4.7 7.8 14.8
B 10.0 13.1 21.3 28.1 9.9 13.5 19.7 26.5
Caa-C 21.1 21.9 22.8 23.4 31.3 35.4 42.0 46.6

Ratio Logit to Probit link function

IG 1.01 1.01 1.01 1.10 1.11 1.21 1.41 1.49
Ba 1.08 1.12 1.18 1.26 1.12 1.14 1.35 1.34
B 1.09 1.13 1.19 1.23 1.04 1.12 1.23 1.11
Caa-C 1.02 1.02 1.01 1.01 1.04 1.04 1.05 1.04

Ratio Poisson to Probit link function

IG 1.01 1.01 1.01 1.15 1.11 1.21 1.46 1.48
Ba 1.10 1.15 1.24 1.34 1.22 1.21 1.34 1.45
B 1.13 1.18 1.30 1.37 1.06 1.14 1.27 1.20
Caa-C 1.09 1.07 1.04 1.04 1.11 1.12 1.12 1.13

For market risk, the differences are smaller, averaging at around 10% across non-investment

grade ratings. For credit risk, however, the functional form again has a substantial effect,

with the VaR of the Poisson link function being 24% (Caa-C) to 30% (IG) higher than its

probit counterpart. This underlines the typical defect of credit risk portfolio models based

on the normal distribution if we are interested in tail events: the normal distribution implies

too little clustering in general, which causes an under-estimation of risk quantiles.

Table 10 reports the VaRs and VaR reductions at different confidence levels from aggre-

gating market and credit risk. The reductions in the VaR from aggregating risks vary from

3% to 47% depending on the rating cohort, confidence level, and link function. The VaR
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reductions are U-shaped across rating categories, with the smallest reductions observed for

rating class Ba, and the largest for Caa-C. In terms of the effect of model specification, the

largest benefits are obtained under the Poisson link function, followed by the logit and probit

link, respectively. The observed differences between the diversification benefits computed for

the three link functions are most pronounced when we move further out into the tails of the

loss distribution. For quantiles such as 97.5%, percentage benefits range from 3% to 31%

whilst the percentage benefits range from 6% to 42% at the 99.99% confidence level. This is

in line with our analytical results shown in Section 3. The largest differences are observed

for the investment grade (IG) rating class. This result is largely explained by the observed

differences for the real world default correlations, which are largest for credit rating IG (see

Table 8). Because of the relatively larger default correlations found for the Poisson and logit

mixtures, the scope for VaR reductions is larger.

5 Conclusion

Recent studies have analyzed the size of diversification benefits from an aggregated approach

towards modeling and quantifying risk in a bond portfolio. Most studies assume a probit

link function within an exchangeable Bernoulli framework for modeling credit risk. The

question we raise in this paper is whether the model choice for the link function affects

the diversification benefits and whether substantial differences can be observed when other

popular link functions such as the logit and Poisson link functions are used instead of the

probit link function.

To answer this question, we presented a comprehensive framework including a stochastic

default cycle and a risk-free short-rate as the the main risk drivers for credit and market risk.

We implemented a consistent calibration approach for comparing the potential diversification

benefits resulting from the different possible link functions. In addition, we provided an

analytic approach for a special case of the general model. In both settings, we found that

the different link functions result in differ loss distributions and risk measures, particularly

at high confidence levels (such as 99.9% and higher). On average, the logit and the Poisson

link functions result in larger diversification benefits than the probit link function. The

differences are largest for the investment grade rating class.

The current analysis clearly shows that details in the specification of the model, such

as the specification of link functions, can have substantial effects on risk measures and
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risk aggregation benefits, particularly in the tail areas. The current model can easily be

generalized further, for example, by taking a more dynamic perspective on the evolution of

state variables. We do not expect such changes to materially affect our results, however, and

therefore leave them for further research.
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Appendix: Moment Matching

In Section 3 the parameters θ and η of the real world and risk-neutral link functions are calibrated such

that the unconditional default probability π and the default correlation ρπ are the same for all three mixing

distributions; compare Section 8.4.1 of McNeil, Frey, and Embrechts (2005). The default correlation is given

as

0 ≤ ρπ =
π2 − π2

π − π2
≤ 1, (A1)

where π2 = ρππ + (1− ρπ)π
2 is the probability of a joint default of two counterparties. We compute θ0 and

θ1 for fixed π and π2 (and thus for fixed ρπ by solving the two-equations system

π = E[p(θ0 + θ1ψt+h)] (A2)

π2 = E[p(θ0 + θ1ψt+h)
2].

This can be done numerically. A similar approach is taken vor η0 and η1, replacing p(·) by q(·) and π and

π2 by their risk neutral equivalents.
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