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ABSTRACT

We describe an efficient method of calculating the radiation pressure due to spectral
lines, including all the terms in the velocity gradient tensor. We apply this method to
calculate the two-dimensional, time-dependent structure of winds from luminous disks.
Qualitative features of our new models are very similar to those we calculated including
only the dominant terms in the tensor (Proga, Stone & Drew 1998, hereafter PSD).
In particular, we find that models which displayed unsteady behaviour in PSD are
also unsteady with the new method, and gross properties of the winds, such as mass-
loss rate and characteristic velocity are not changed by the more accurate approach.
The largest change caused by the new method is in the disk-wind opening angle:
winds driven only by the disk radiation are more polar with the new method while
winds driven by the disk and central object radiation are typically more equatorial.
In the closing discussion, we provide further insight into the way the geometry of the
radiation field and consequent flow determines the time properties of the flow.

Key words: accretion discs – hydrodynamics – methods: numerical –stars: mass-loss
– stars: early-type – galaxies: nuclei

1 INTRODUCTION

There has long been an awareness that radiation pressure
due to spectral lines should be capable of driving winds from
luminous disks (e.g., Vitello & Shlosman 1988, Murray et al.
1995). However, the geometry of the case demands a multi-
dimensional treatment that has only recently been under-
taken by Pereyra, Kallman & Blondin 1997) and ourselves
(Proga, Stone & Drew 1998, hereafter PSD). A surprising
outcome of our models was that, in cases where the driving
radiation field is dominated by the contribution from the
disk, the flow is unsteady. Despite the complex structure
of the disk wind in this case, the time-averaged mass loss
rate and terminal velocity fit onto the same scaling with lu-
minosity as do steady flows obtained where the radiation is
dominated by the central object. In fact these relations have
been shown to be similar to those well-established by anal-
ysis for spherically-symmetric stellar winds (Proga 1999).

Our models adopt the method for calculating the line
acceleration for one-dimensional radial flows, first intro-
duced by Castor, Abbott & Klein (1975, hereafter CAK),
that has since been further developed within the context of
stellar winds from hot, luminous OB stars (Friend & Ab-
bott 1986; Pauldrach, Puls & Kudritzki 1986). In order to

extend the CAK method to describe multi-dimensional disk
winds, it is necessary to accommodate the effects of the
three-dimensional velocity field and the direction-dependent
intensity. These effects can lead to qualitatively different re-
sults compared to those obtained from a one-dimensional
treatment (see, for example, Owocki, Cranmer & Gayley,
1996, hereafter OCG, on the case of a rapidly rotating star).

The most difficult aspect of calculating the line force in
a disk wind is in the evaluation of the integral involving the
velocity gradient tensor (Q, which controls the anisotropic
line opacity) over the entire solid angle occupied by radiating
surfaces. In our previous models, we followed the example
of Icke’s (1980) earlier numerical work on disk winds driven
by continuum radiation pressure. In this approach, the in-
tegral was evaluated using an angle-adaptive quadrature to
ensure an accurate result. However, computational limita-
tions required that we simplify the integrand, retaining only
the dominant terms in the velocity gradient tensor. Specif-
ically, we kept only the radial gradient in the evaluation of
the acceleration due to the radiation from the central object,
and the vertical gradient for the acceleration due to the disk.
Moreover, we dropped azimuthal terms that are present in a
rotating flow. In this paper, we introduce a new quadrature
that avoids any simplification of the integrand. This allows
us to evaluate the radiation force for completely arbitrary
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2 D. Proga et al

velocity fields within the context of the CAK formalism. We
can now explore the consequences of the approximations in
our previous work and move onto a more general formula-
tion.

In this paper we recalculate several disk wind models
first presented in PSD. We concentrate on assessing how
gross properties – such as the mass-loss rate, velocity, open-
ing angle and time behaviour of disk winds – change when
Q, the velocity gradient tensor, is treated in full. We de-
scribe our ‘full-Q’ method for a general three dimensional
case in Section 2. Our new method of numerical evaluation
of the line force is described in Section 3. We show our new
results and compare them with those in PSD in Section 4,
and discuss the implications in Section 5.

2 METHOD

To compute the structure and evolution of a line-driven wind
from a luminous disk, we solve the equations of hydrody-
namics

Dρ

Dt
+ ρ∇ · v = 0, (1)

ρ
Dv

Dt
= −∇(ρc2

s) + ρg + ρFrad (2)

where ρ is the mass density, v the velocity, g the gravita-
tional acceleration of the central star, and Frad the total
radiation force per unit mass. The gas in the wind is taken
to be isothermal with a sound speed cs.

We adopt the same geometry and assumptions to com-
pute the radiation field from the disk and central star as
in PSD. That is, we consider the disk to be flat, Keplerian,
geometrically-thin and optically-thick. The radiation field of
the disk is specified by assuming that the temperature fol-
lows the radial profile of the so-called α-disk (Shakura &
Sunyaev 1973), and therefore depends only on the mass ac-
cretion rate in the disk, Ṁa, and the mass and radius of the
central star, M∗ and r∗. In models where the central star is
also radiant, we take into account the stellar irradiation of
the disk, assuming that the disk re-emits all absorbed en-
ergy locally and isotropically. See PSD and below for further
details.

As in PSD, we approximate the radiative acceleration
due to lines (line force, for short) using a modified CAK
method. The line force at a point W defined by the position
vector r is

F
rad,l (r) =

∮

Ω

M(t)

(

n̂
σeI(r, n̂)dΩ

c

)

(3)

where I is the frequency-integrated continuum intensity in
the direction defined by the unit vector n̂, and Ω is the solid
angle subtended by the disk and star at the point W. The
term in brackets is the electron-scattering radiation force,
σe is the mass-scattering coefficient for free electrons, and
M(t) is the force multiplier – the numerical factor which
parameterises by how much spectral lines increase the scat-
tering coefficient. In the Sobolev approximation, M(t) is a
function of the optical depth parameter

t =
σeρvth

|dvl/dl|
, (4)

where vth is the thermal velocity, and dvl

dl
is the velocity

gradient along the line of sight.

We adopt the CAK analytical expression for the force
multiplier as modified by Owocki, Castor & Rybicki (1988,
see also PSD)

M(t) = kt−α

[

(1 + τmax)(1−α) − 1

τ
(1−α)
max

]

(5)

where k is proportional to the total number of lines, α is the
ratio of optically thick to optically-thin lines, τmax = tηmax

and ηmax is a parameter related to the opacity of the most
optically thick lines. The term in the square brackets is
the Owocki, Castor & Rybicki correction for the satura-
tion of M(t) as the wind becomes optically thin even in
the strongest lines, i.e.,

lim
τmax→0

M(t) = Mmax = k(1 − α)ηα
max.

In the generalized Sobolev method dvl

dl
may be written

as dvl

dl
= n̂ · ∇(n̂ · v), or as in Rybicki & Hummer (1978)

(see also PSD)

dvl

dl
= Q ≡

∑

i,j

1

2

(

∂vi

∂rj
+

∂vj

∂ri

)

ninj =
∑

i,j

eijninj (6)

where eij is the symmetric rate-of-strain tensor, and vi, ri,
and ni are the components of v, r, and n̂ respectively. In the
generalized 3D case, the flow velocity along n̂ may not be
monotonic, resulting in radiative coupling between distant
parts of the flow and making t a non local quantity. Here
we do not take into account the non local effects on t but
rather concentrate on taking into account all terms of Q.

As in PSD, we use the ZEUS-2D code to numerically
integrate the hydrodynamical equations 1 and 2. We de-
scribe our numerical algorithm for evaluating the line force
in the next section. For a rotating flow, there may be an
azimuthal component to the line force even in axisymmetry.
In contrast to the approximate method used in PSD, the
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Line-driven disk wind models 3

full-Q formulation used here allows us to treat the effects of
a non-zero azimuthal component to the radiation force on
the wind self-consistently. We examine these effects in detail
in section 4.

3 NUMERICAL EVALUATION OF THE LINE

FORCE

The disk line force is a complicated integral in which the
dependences on geometry, the radiation field and local op-
tical depth are not separable. In practice, this integral must
be evaluated over the whole computational domain at every
time step of the hydrodynamical calculations. A fast numer-
ical integration scheme is therefore essential.

We perform our calculations in spherical polar coor-
dinates (r, θ, φ) with r = 0 at point C, the center of the
central star. We measure colatitude, θ, from the rotation
axis of the disk and assume axial symmetry about this axis.
Azimuth, φ, is measured from a plane perpendicular to the
disk plane, containing the point C and a point W above
the disk. We define the position of a wind point, W, and
of a disk point, D, by the vectors r = (r, θ, φ = 0o) and
rD = (rD, θD = 90o, φD), respectively.

To specify directions n̂ about W we use a second spher-
ical polar coordinate system which has an origin at W, co-
latitude, θ1, measured from the direction C toward W, and
azimuth, φ1, measured from a plane perpendicular to the
disk plane, and containing C and W. The components of n̂
in the (r, θ, φ) system expressed in terms of θ1 and φ1 are

n̂ = (nr, nθ, nφ) = ( cos θ1, sin θ1 cos φ1, sin θ1 sin φ1).(7)

and an element of the solid angle is

dΩ = sin θ1dθ1dφ1. (8)

Note the transformation between this second coordinate sys-
tem (on which we evaluate the radiative acceleration) and
the original (which defines the hydrodynamical grid) is a
combination of a displacement of the origin by r and rota-
tion by θ.

In the disk plane at r = rD, I(r, n̂) is the local isotropic
disk intensity:

ID(rD) = 3GM∗Ṁa

8π2r3
∗

{

r3

∗

r3

D

(

1 −
(

r∗
rD

)1/2
)

+ x
3π

(

arcsin r∗
rD

− r∗
rD

(

1 −
(

r∗
rD

)2
)1/2

)}

, (9)

We include the effects of the irradiation of a disk by a star
for x > 0 where x is defined as the ratio between the stellar

luminosity L∗ and the disk luminosity, LD (PSD). The co-
ordinates of rD in the system defining the hydrodynamical
grid, expressed in the second coordinate system centered on
W, are:

rD = (r2 + d2
D − 2rdD cos θ1)

1/2 (10)

θD = 90o (11)

φD = arcsin
dD sin θ1 sin φ1

(r2 + d2
D − 2rdD cos θ1)1/2

(12)

where dD = r cos θ/(cos θ cos θ1 − sin θ sin θ1 cos φ1) is
the distance between D and W. For radiation from the star,
the intensity may be written:

I∗ =
L∗

4π2r2
∗

= x
GM∗Ṁa

8π2r3
∗

. (13)

The precise location on the star of the point of emission is
not relevant because we assume that the stellar surface is
isothermal.

We split the integration of the line force over Ω (see eq.
3) into the integration over the stellar solid angle, Ω∗ and
the disc solid angle, ΩD. We take into account the effects
due to shadowing of the disk by the star, and occultation
of the star by the disk, by properly defining the limits of
integration for each. The contributions to the line force due
to the disk and star are respectively

F
rad,e
D =

∮

ΩD

M(t)
(

n̂
σeIDdΩ

c

)

(14)

and

F
rad,e
∗ =

∮

Ω∗

M(t)
(

n̂
σeI∗dΩ

c

)

. (15)

The actual variables we use in the integration are µ and φ1

for the radial line force, µ and νs for the latitudinal line force,
and µ and νc for the azimuthal line force, where µ = cos θ1,
νs = sin φ1 and νc = cos φ1. Using these new variables we
can write n̂dΩ in eqs (14) and (15) as

n̂dΩ = (− µdµdφ1,−
√

1 − µ2dµdνs,
√

1 − µ2dµdνc). (16)

Note the force multiplier M(t) in equations 14 and 15 de-
pends on the rate of strain tensor eij via equations 4 through
6. The components of this tensor in spherical polar coordi-
nates are given, e.g., in Batchelor (1967). We evaluate these
from the velocity components on the hydrodynamical grid
by using finite-difference approximations to the terms in eij .
The ZEUS-2D code uses a staggered grid such that scalars
and the components of vectors and tensors are centered at
different locations on the grid. For example, discrete values
for the density are stored at zone centers, vr values are stored
at zone interfaces in the radial direction, and vθ components
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4 D. Proga et al

are stored at zone interfaces in the latitudinal direction (see
Stone & Norman 1992 for details). Subsequently different
components of the line force (and therefore corresponding
M(t) and eij) are also defined at different locations on the
grid. To properly evaluate eij at a given location we have
to calculate discrete values of the appropriate variables at,
and variable differences around, this location. We take sim-
ple means of variable pairs if we need to calculate a value
mid-way between hydrodynamic grid points.

We apply the trapezoidal method to integrate the line
force due to both the star and disk. We find that a dozen
quadrature points for µ and for φ1 (or νs or νc) are sufficient
to achieve a satisfactory accuracy of the disk and stellar line
force even for W near the disk plane and stellar surface.
This represents a considerable reduction in the number of
quadrature points compared to the original discretization of
solid angle used in PSD. This reduction is possible because
of the simple form of the n̂dΩ factor (see eq. 16) in the full-Q
method used here in comparison to the method implemented
in PSD. For example, in the disk contribution to the radial
component of the line force, we here have nrdΩ = − µdµdφ1

as compared with the form in PSD:

nrdΩ =
r − rD sin θ cos φD

dD

r cos θ

d3
D

rDdrDdφD (17)

where dD = (r2
D+r2−2rDr sin θ cos φD)1/2 (see Appendix A

in PSD).

To ensure proper cancellation of the contributions to
the net value of the line force from regions of the disk corre-
sponding to negative (positive) nr, we break the integration
over µ into sub-intervals for negative (positive) µ. Similarly,
we break the integration over φ1 into sub-intervals for neg-
ative (positive) φ1, corresponding to negative (positive) in-
tervals for both νs or νc.

To afford a full recalculation of the line force for all
locations at every time step we need not only a relatively
low number of quadrature points, but also a short compu-
tational time per quadrature point. We reduce the latter by
computing all the terms in brackets in eqs 14 and 15 at the
beginning of each model, as they depend only on the radia-
tion field geometry. We then use these precalculated factors
throughout the time evolution. Thus, to evaluate eqs 14 and
15 at every hydrodynamical grid point and every time step,
we have to (i) calculate M(t), (ii) multiply it by the precal-
culated geometric factors for all quadrature points (122 in
this case), and (iii) sum up the products. The price to pay
for this reduction in computation is an increase in memory
because we have to store all pre-calculated geometric factors
for all grid points, quadrature points and line force compo-
nents.

4 RESULTS

4.1 Comparison between new and previous

models

Using our new ‘full-Q’ method to compute the line force,
we have recomputed five models using the same parameters
as runs 2, 3, 8, 12 and 14 in PSD. This range of models
illustrates the dependence of the disk wind on the disk and
stellar luminosity. Table 1 summarises the gross properties
of our new calculations in comparison to PSD including the
mass-loss rate, Ṁw, characteristic velocity at 10r∗, vr(10r∗)
and flow opening angle, ω.

PSD found that radiatively driven winds from disks fall
into two categories: 1) intrinsically unsteady with large fluc-
tuations in density and velocity, and 2) steady with smooth
density and velocity distributions. Which type of flow is pro-
duced depends on the geometry of the radiation field, pa-
rameterised by x: the flow is unsteady if the radiation field
is dominated by the disk (x < 1), and steady if dominated
by the star (x >∼ 1). The geometry of the radiation field
also controls the geometry of the flow; the wind becoming
more polar as x decreases. On the other hand, the mass-loss
rate and terminal velocity are insensitive to geometry and
depend more on the system luminosity, LD + L∗.

Figure 1 compares the density in the wind in two models
computed using the method of PSD (top panels), the full-Q
formalism described here but setting the velocity gradient
tensor elements which depend on the rotational velocity to
zero (middle panels), and the full-Q formalism retaining all
terms (bottom panels). The calculations in which erφ and
eθφ are set to zero (middle panels) are designed to test the
effect of terms related to shear in the rotational velocity.
At the same time, this removes the azimuthal force term
altogether. The left column shows the results for a model
in which Ṁa = 10−8M⊙ yr−1 and x = 0, the right column
corresponds to Ṁa = π × 10−8M⊙ yr−1 and x = 3. The
former corresponds to the fiducial unsteady wind model dis-
cussed in detail in PSD. The latter gives a steady wind in
which the force multiplier is well below Mmax and hence
should be strongly sensitive to the velocity gradient tensor
representation.

First, we consider the changes seen in the x = 0 wind
model (left-hand panels). This model remains unsteady in all
three treatments of the line force. Details of the properties
of the wind are changed, however. For example, the opening
angle is increased from 42o to 50o between the PSD (top)
and full-Q (bottom) results. In Table 1, it may be seen that
the mass-loss rate increases by ∼20 per cent between these
two cases, while the characteristic velocity is the same. On
the smaller scale of the flow substructure, we do find some
subtle differences. Most notably, the slow, dense, complex
portion of the wind extends further above the disk plane
with full-Q case as compared in PSD.

In the steady wind models (right hand panels of Fig-
ure 1), similar fractional changes in the mass-loss rate are ob-
served between the PSD and full-Q formulations and, again,
the characteristic flow speeds are much the same. The main
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Line-driven disk wind models 5

Figure 1. The density maps in two models computed using the method of PSD (top panels), the full-Q method but with erφ = eθφ = 0
(middle panels), and the full-Q method retaining all terms (bottom panels). The left column shows the results for the unsteady model A
while the right column shows results for the steady model D (see table 1, and section 4.1 for discussion).

c© 0000 RAS, MNRAS 000, 000–000



6 D. Proga et al

Figure 2. Maps of poloidal velocity for a range of models. The top two panels, a and b, are both models with x = 0 but with

Ṁa = 10−8 M⊙ yr−1 (model A) and Ṁa = π × 10−8 M⊙ yr−1 (model B), respectively. The bottom two panels, c and d, are results for
models both with Ṁa = π × 10−8 M⊙ yr−1, but with x = 1 (model C) and x = 3 (model D). The top two panels show the effect on
the outflow geometry of increasing the disk luminosity alone, while the top right and bottom two panels show the effect of adding in an
increasingly larger stellar component (x = 0, 1 and 3) to the radiation field. Adding in an increasingly large stellar component causes the
outflow to become more equatorial. Note that we suppress velocity vectors in regions of very low density (i.e., ρ less than 10−20 g cm−3).
The choice of input parameters for the models shown is the same as in Figure 10 of PSD.

difference is in the wind opening angle: in the full-Q case,
the opening angle is distinctly smaller than in PSD. This is
because the latitudinal component of the stellar line force
gains more from the inclusion of the extra terms than either
the radial component, or any of the disk contributions. The
effect is stronger here than it happens to be in the unsteady
wind models illustrated because the higher total luminosity
of the system ensures that the general level of the force mul-
tiplier remains below saturation (i.e., M(t) <∼ 0.5 Mmax).

In both the steady and unsteady wind models, the im-
pact of the rotational shear terms is not very significant.
The comparison between the middle and lower panels of
Figure 1 reveals that the inclusion of these terms slightly in-
creases the flow opening angle. We examined the origins of

this and found that this change is due to enhancing various
components of the line force mainly in the inner disk.

In summary, our finding that the mass-loss rate and
velocity are similar in the approximate PSD and full-Q cases
can be explained by the fact that the terms in the velocity
gradient tensor used by PSD are indeed dominant.

4.2 Overview of trends in the full-Q models

Figure 2 plots the poloidal velocity in four models com-
puted with the full-Q method. Panels a and b compare the
flow pattern from two models, with x = 0 in which the

c© 0000 RAS, MNRAS 000, 000–000



Line-driven disk wind models 7

Table 1. Summary of results for disc winds with α = 0.6, k = 0.2, and Mmax = 4400.

run Ṁa x ṀD vr(10r∗) ω

(M⊙ yr−1) (M⊙ yr−1) (km s−1) degrees

our
A 10−8 0 5.5 × 10−14 900 50
B π × 10−8 0 4.0 × 10−12 3500 60
C π × 10−8 1 2.1 × 10−11 3500 32
D π × 10−8 3 7.1 × 10−11 5000 16
E π × 10−8 10 3.2 × 10−10 7000 8

PSD’s
2 10−8 0 4.8 × 10−14 900 42
3 π × 10−8 0 4.7 × 10−12 3500 55

8 π × 10−8 1 2.1 × 10−11(a)
3500 37

12 π × 10−8 3 6.3 × 10−11(b)
5000 28

14 π × 10−8 10 3.1 × 10−10 7000 24

a) We found a typographical error in PSD table 2 b) We calculated this model for longer than PSD did and we found that the flow
settles at a higher mass-loss rate.

mass accretion rate and hence the disk luminosity LD is
increased: specifically, Ṁa is raised from 10−8M⊙ yr−1 to
π × 10−8M⊙ yr−1. By contrast, panels b, c, and d compare
the flow pattern from three models in which the mass ac-
cretion rate is held fixed at Ṁa = 10−8M⊙ yr−1 while the
stellar luminosity is varied using, x = 0, 1, and 3. This di-
agram presents models with the same input parameters as
those shown in Figure 10 in PSD, with the difference that
here full-Q is implemented in their calculation and we plot
poloidal velocity vectors instead of density.

Our new models confirm PSD’s result that the flow be-
comes more equatorial as the contribution of the central star
to the radiation field increases. However the scale of the
changes in the flow geometry is greater for the full-Q case
than in the approximate Q case – the models for low x are
more polar here than in PSD, whereas the models for high
x are more equatorial. PSD found that the reduction of the
opening angle of the disk wind slows appreciably for x >∼ 3.
With full-Q, this slowing is deferred until x >∼ 5. For exam-
ple, we calculated the model for x = 10 and found ω = 8o,
rather than ω = 24o for PSD’s corresponding model, run 14.
Despite this geometric change, the gross wind properties as
listed in Table 1 are scarcely any different.

The two models illustrated in Figure 1 showed that the
model presented in PSD remains unsteady when recalcu-
lated using full Q, and that the originally steady model is
still steady. We can generalise this further in that we find
no noticeable shift in the value of x (= L∗/LD) at which
the change from unsteady to steady occurs. This is a fur-
ther respect, to add to the mass-loss rate and characteristic
flow speed, in which the full-Q models continue to closely
resemble PSD’s models.

5 DISCUSSION AND SUMMARY

The efficient algorithm described here has allowed us to ex-
amine the effects of all terms in the velocity gradient tensor
on the structure of line-driven winds from disks. We find that
the qualitative features of such winds are not changed by
the more accurate algorithm used here. In particular, models
which displayed unsteady behavior in PSD are also unsteady
with the full-Q method. This indicates the approximations
adopted in PSD indeed captured the dominant terms in the
line force.

On generalizing the line force, we determine the geom-
etry and strength of the line force in an exact way for a con-
stant geometry of the radiation field. We continue to find, as
in PSD, that the mass-loss rate and characteristic velocity
do not depend on either of these two geometries but primar-
ily on the total system luminosity. This is in keeping with
the conclusion reached by Proga (1999) who showed that the
mass-loss rate of even a simple spherically-symmetric stellar
wind is of the same order of magnitude as that of a pure
disk wind of the same total luminosity.

The dependence of the disk mass-loss rate on the total
system luminosity, LD + L∗, indicates that the irradiation
due to the central star can power disk mass loss as does the
disk radiation. Indeed we have already shown that the radia-
tion from the luminous central star can drive a wind from an
optically-thick disk of negligible intrinsic luminosity, i.e., for
x = 300 and LDMmax << LEdd, where LEdd = 4πGM∗/σe

is the Eddington luminosity (Drew, Proga & Stone 1998).
The significance of irradiation has also been studied by Gay-
ley, Owocki & Cranmer (1999). They also find, on the basis
of a quite different formulation of the problem for an irradi-
ated planar slab atmosphere, that the irradiation enhances
or even induces the mass loss.

c© 0000 RAS, MNRAS 000, 000–000



8 D. Proga et al

Whilst the radiation field geometry typically controls
the geometry of the flow in the way described here and in
PSD, there is a complicating effect that comes into play
at low luminosities that has so far gone unremarked. When
LDMmax <∼ a few LEdd, we find that the upper bound, Mmax

on the force multiplier exerts an influence on the geometry
of the disk wind. In particular for x = 0, our models show
that the higher Mmax, the higher the wind opening angle
becomes. Proga (1999) calculated a few models for x = 0
without saturation of M(t) (his models in the CAK&FD
case) and found that ω ≈ 90o regardless of disk luminosity.
Calculation using our full-Q method confirm this result.

The changes caused by the full-Q treatment in disk
winds are not so serious as in winds around rapidly rotating
oblate stars. OCG’s treatment of the rotating stellar wind
case was a big step forward in that their inclusion of all terms
in Q introduced latitudinal and azimuthal components of the
line force where, before, only the radial component had been
considered. They found that (i) the latitudinal component is
poleward and unopposed by any other force and hence is dy-
namically significant in inhibiting the equatorward drift of
the wind; (ii) the azimuthal line force acts against the sense
of rotation and is less significant because it causes only a
modest spin-down of the wind rotation. In the disk wind
case, however, there is only one qualitative change with re-
spect to our own earlier treatment (PSD) when all Q terms
are included: there is now a non-zero azimuthal line force.
Again, as in the rotating stellar wind case, this is rather
weak as compared to the other components and is not of
great importance. The importance of this azimuthal term
is further weakened by the fact that it can spin-down or
spin-up the wind rotation depending on location and time.
Its sign may change in disk winds because the wind veloc-
ity field is complex and so the contribution of all Q terms
symmetric in φ can be positive or negative (even dvr/dr is
negative in some regions of disk winds).

The fact that the unsteady behavior observed in our
models has not changed with a more accurate treatment of
the radiation force indicates it is indeed a robust property of
line driven winds from disks. Why does increasing the radial
component of the radiation force ’organize’ the wind into a
steady state? Let r′ and z′ define position along a streamline
in the wind in cylindrical coordinates. An increase of the
vertical component of the gravity,

gz ∝ −
z′

(r′2 + z′2)3/2
(18)

with height at a fixed radius r′ is the main driver of the
unsteady flow. However this increase of the gravity can be
significantly reduced if the streamlines are directed outwards
from purely vertical (i.e., r′ increases with z′). At the same
time, this tilt also brings into play an increase of the hori-
zontal effective gravity, gr, along each streamline:

gr ∝
rf

r′3
−

r′

(r′2 + z′2)3/2
, (19)

where rf is the radius on a Keplerian disk at which a stream-
line originates. However the increase of gr with r′ is slower
than the increase of gz with z′ because of the decaying cen-
trifugal term. In other words, the line force can more easily
maintain domination over gravity if the flow climbs the gen-
tler gravitational hill in the horizontal direction as compared
with the vertical direction. Furthermore, driving material
along streamlines outward from the vertical causes density
to decline as 1/r′ as required by geometrical dilution – this,
very usefully, tends towards increasing the line force, thereby
facilitating a better match with trends in gravity.

Despite our progress in developing realistic models for
line-driven disk winds, limitations obviously remain. For ex-
ample we calculate the line-force using the Sobolev approx-
imation. It is questionable if this approximation is valid in
cases where the wind is slow and/or highly structured. Even
if the Sobolev approximation is locally valid in those cases,
our full-Q method does not account for non-local effects in
line transfer. For example, our line force is potentially over-
estimated in upper parts of the flow because of neglect of
self-shadowing. Our models also assume axisymmetry – in
particular that the disk plane is flat and perpendicular to
the rotational axis whereas in reality disks may be tilted or
twisted. We also simplify the thermal structure of the disk
wind by assuming that it is isothermal. In our models, the
disk is not isothermal to start with, and we need also to
calculate of the ionization structure and energy balance to
properly model the wind thermodynamics and the radiation
pressure.

Another aspect of our models to date that will need to
be revisited in future is the prescription for the reemission of
disk irradiation. We have assumed thus far that the disk re-
emits all absorbed energy locally and isotropically. Gayley et
al. (1999) have opted for more or less the opposite prescrip-
tion appropriate to purely scattering atmospheres. Strictly,
detailed NLTE photoionization calculations of externally-
irradiated disks need to be performed on a case-by-case ba-
sis as it is not obvious a priori what prescription should be
used in any one situation.

Models of line-driven winds from luminous disks show
promise of being able to explain mass loss phenomena asso-
ciated with e.g., cataclysmic variables, massive young stellar
objects and extreme Be objects (e.g., PSD , Drew, Proga &
Stone 1998, Oudmaijer et al. 1998). Our further progress
in understanding those winds requires a direct, quantita-
tive comparison between observations and model predic-
tions. Therefore we plan to use our three-dimensional disk
wind structure to calculate synthetic line profiles – initial
work is underway. We also plan to further develop our disk
wind models. For example, we intend to calculate the pho-
toionization structure of the wind that will allow to take
into account changes of the line force with local ionization.
With such improvements our models will be readily applica-
ble to the systems with a very wide dynamical range such as
AGN. An outcome of the present study has been to confirm
the unsteady behaviour in predominantly disk-illuminated
models, first identified in the more approximate calculations
due to PSD. To test this, we have obtained an allocation of
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Hubble Space Telescope time to carry out a high time- and
spectral-resolution study of 3 nova-like variables – objects in
which we expect disk winds to be driven primarily by disk
radiation. If winds in these systems are unsteady then we
hope to see evidence of this in the form of time-variable fine
structure in blueshifted absorption features.
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