
Structural Graph Extraction from Images

Antonio-Javier Gallego-Sánchez1, Jorge Calera-Rubio1, and Damián López2

Abstract We present three new algorithms to model images with graph primitives.
Our main goal is to propose algorithms that could lead to a broader use of graphs,
especially in pattern recognition tasks. The first method considers the q-tree repre-
sentation and the neighbourhood of regions. We also proposea method which, given
any region of a q-tree, finds its neighbour regions. The second algorithm reduces the
image to a structural grid. This grid is postprocessed in order to obtain a directed
acyclic graph. The last method takes into account the skeleton of an image to build
the graph. It is a natural generalization of similar works ontrees [8, 12]. Experi-
ments show encouraging results and prove the usefulness of the proposed models in
more advanced tasks, such as syntactic pattern recognitiontasks.

1 Introduction

Many fields take advantage of graph representations, these fields include but are not
limited to: biology, sociology, design of computer chips, and travel related problems.
This is due to the fact that graph are suitable to represent any kind of relationships
among data or their components. The expressive power of graph primitives has been
specially considered in pattern recognition tasks, in order to represent objects [7] or
bioinformatics [13]. Therefore, the development of algorithms to handle graphs is
of major interest in computer science.

In this paper we present three new methods to model images using graph prim-
itives. The main goal we aim to achieve is to propose algorithms that could lead
to a broader use of graphs. In that way, the work of [4] shows that this kind of
contribution is suitable and interesting.

1 Departamento de Lenguajes y Sistemas Informáticos, University of Alicante, Spain, e-mail:
{jgallego,calera}@dlsi.ua.es ·
2 Departamento de Sistemas Informáticos y Computación, Technical University of Valencia, Spain,
e-mail:dlopez@dsic.upv.es

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16373342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Javier Gallego et al.

The first method we propose (Section 2) takes into account theneighbour paths
within a q-tree [2]. We present algorithms that extend otherworks for neighbour-
hood calculations in spatial partition trees [5, 11]. Theseworks generally calcu-
late only the 4-neighbours of each region, or use two steps tocalculate the cor-
ner neighbours. The proposed method completes these works with an estimation of
equal complexity for the 8-neighbours at any level of resolution (equal, higher or
lower level). Moreover, neighbour calculation can help to improve other applica-
tions, speeding up the process to locate the next element, such as in: image repre-
sentation, spatial indexing, or efficient collision detection.

The second method (Section 3) considers a structural grid ofthe image which is
then postprocessed to obtain the graph model. This method maintains those desider-
able features of q-tree representation, that is: the resolution is parametrizable and
allows to reconstruct the image.

The third method (Section 4) extends a similar method used ontrees [12, 8]. The
initial image is preprocessed to obtain the skeleton. This skeleton is then traversed
to build a graph that summarizes the core structure of the image.

2 Neighbourhood Graphs

Using the tree defined by a q-tree (see Fig. 1) and the proposedalgorithm for neigh-
bourhood calculation (see section 2.1), a directed acyclicgraph (dag) can be ex-
tracted to represent the sample and to provide information such as: neighbourhood,
structural traversal, resolution or thickness, in addition to allow its reconstruction.

The graph is created walking top-down the tree, and from leftto right. For each
nonempty node, its 8-neighbours are calculated. It is important that: 1) Do not add
arcs to processed nodes. 2) If it has to create an arc from a non-pointed node to
one that is already pointed: then the direction of the arc is changed. These criteria
ensures that the graph is acyclic.

Fig. 1 Tree obtained from the q-tree of the Fig. 2(c), and its corresponding neighbour graph.

Structural Graph Extraction from Images 3

2.1 Calculating Neighbours

Binary encoding is used to encode the position of partitionswhithin the image and
their corresponding traversal path down the q-tree [5]. Each dimension is encoded
with 1 bit coordinate, describing the direction as positive(1) or negative (0). A
location array is defined using this encoding (Fig. 2(a)). Inq-trees, this array has
two rows: horizontal and vertical coordinates. Positive directions (up and right) are
represented by a 1, and the negative directions (down and left) by 0 (Fig. 2(b)). In
general, the location array associated with a given node is defined as the location
array of his father, but adding on the right a new column with its own encoding.
For each new partition, the origin of the reference system isplaced in the center
of the area where the subdivision is done. In Fig. 2(c), the second level nodeK is
represented by the

[

1
1

]

of his father, and then adding the
[

1
0

]

for its own level.

(b) (c) (d)

Fig. 2 (a) Reference system and location array, (b,c) Q-trees withthe corresponding location ar-
rays, (d) Graphs extracted using different truncate levels.

2.1.1 Algorithm

To calculate the neighbours of a given node, the location array described above is
used. The proposed algorithm distinguishes two cases: faceneighbours (two regions
share more than one point, such asA with B in Fig. 2(c)), and corner neighbours
(they share one point,A with I in Fig. 2(c)).

2.1.2 Face Neighbours

To calculate the face neighbour of a given node, the algorithm needs to know its
location array (M), and the dimensiondim and the directiondir in which the neigh-
bour has to be calculated. The algorithm (see Sec. 2.1.3) visits each bit of the loca-
tion array (M) in the given dimension from right to left, and negates the bits until
the result is equal to the explored direction (1: positive, 0: negative).

4 Javier Gallego et al.

As an example, the horizontal neighbour ofI (Fig. 2(c)) in the positive direction
(1) is calculated. The algorithm begins with the location array and negates each bit
in the top row (dim 1) from right to left (indicated with a bar)until reaching the halt
condition: the result is equal to the explored direction.

I =

[

0 1̄
1 0

]

⇒

[

0̄ 0
1 0

]

⇒

[

1 0
1 0

]

= J

2.1.3 Corner Neighbours

In the case of corner neighbours, the algorithm has to modifythe two dimensions
of the location array. As for the face neighbours, it begins with the location array
M, but in this case it receives as input an arraydir with both horizontal and vertical
directions. Below is the complete algorithm to compute faceand corner neighbours:

function GetNeighbour(M,dim,dir)
level := |M[0]| // Level is equal to the number of columns
if (|dir|== 1) { // Face neighbours

do {
M[dim][level] := ! M[dim][level]
level := level−1

} while(level ≥ 0∧M[dim][level] != dir)
} else{ // |dir|== 2→ Corner neighbours

f lag1 := f alse ; f lag2 := f alse
do {

if (! f lag1)
M[0][level] := ! M[0][level]
if (M[0][level] == dir[0]) f lag1 := true

if (! f lag2)
M[1][level] := ! M[1][level]
if (M[1][level] == dir[1]) f lag2 := true

level := level−1
} while(level ≥ 0∧ (! f lag1∨ ! f lag2))

}
return M

As example, the corner neighbours ofN (Fig. 2(c)) are calculated:

N =

[

1 1̄
0 1̄

]

⇒

[

1 0
0̄ 0

]

⇒

[

1 0
1 0

]

= J N =

[

1 1̄
0 1̄

]

⇒

[

1 0
0 0

]

= O

2.1.4 Type of Nodes

It is important to differentiate the type of a node within thestructure (Fig. 1). The
functionTypeOfNode(M) returns this type, it can be:leaf-node (the node exists and
has no children),inner-node (the node exists and has children) orno-node (the node
does not exist). If the location array is aleaf-node the algorithm ends. If it is an
inner-node, then the algorithm has to calculate the higher-level neighbours (Sec.
2.1.6). If the node does not exist, the algorithm has to calculate the lower-level
neighbours (Sec. 2.1.5).

Structural Graph Extraction from Images 5

2.1.5 Lower Resolution Neighbours

In this case, the algorithm first calculates the same resolution neighbour usingM :=
GetNeighbour(M, dim, dir); and then eliminates the final column/s (on the right
side) until it finds aleaf-node:

function GetLowerLevel(M)
do {

M2×n←M2×n−1
} while(TypeOfNode(M) == no-node)
return M

Example: regionD in Fig. 2(c).

D =

[

1 1 0̄
1 1 1

]

⇒

[

1 1̄ 1
1 1 1

]

⇒

[

1 0 1
1 1 1

]

⇒ no-node⇒

[

1 0 6 1
1 1 6 1

]

⇒

[

1 0
1 1

]

=C

2.1.6 Higher Resolution Neighbours

The algorithm first calculates the neighbour at the same level of resolution using
M := GetNeighbour(M, dim, dir). If M corresponds to aninner-node, then the
higher-level neighbour/s is/are calculated. It is worth tonote that, face neighbours
may have two or more neighbours (e.g.L with H andI in Fig. 2(c)), whereas corner
neighbours only have one neighbour. In this process, columns are added on the right
side of the matrixM until reaching aleaf-node. These columns are created in the
opposite direction of the dimension/s of interest. See the pseudocode below:

function GetHigherLevel(M,dim,dir)
L := 〈∅〉 // Result set of higher-level neighbours
if (|dir|== 1) { // Face neighbours

for (i = 1; i≤ 2,++ i) {
Ni[dim][0] :=!dir ; Ni[! dim][0] := i−1
Mi := M⊕Ni

if (TypeOfNode(Mi) == leaf-node) L ←Mi

else L ← GetHigherLevel(Mi,dim,dir)
}

} else{ // |dir|== 2→ Corner neighbours
do {

N[0][0] :=!dir[0] ; N[1][0] :=!dir[1]
M := M⊕N

} while(TypeOfNode(M) != leaf-node)
L ←M

}
return L

The symbol⊕ denotes the concatenation of a matrixM with a vectorN:

M⊕N =

[

x1
0 x1

1
x2

0 x2
1

]

⊕

[

y1

y2

]

=

[

x1
0 x1

1 y1

x2
0 x2

1 y2

]

Below is an example of higher-level neighbours calculation(see Fig. 2(c)):

C =

[

1 0̄
1 1

]

⇒

[

1 1
1 1

]

⇒ inner-node⇒

〈[

1 1 0
1 1 1

]

= D;

[

1 1 0
1 1 0

]

= F

〉

6 Javier Gallego et al.

2.1.7 Neighbourhood of Border Regions

When a region is on the border of the structure, do not presentneighbours on that
border side. In this case, the algorithm ends without reaching the halt condition. E.g.
nodeA (horizontal-left):

A =

[

0 0̄
1 1

]

⇒

[

0̄ 1
1 1

]

⇒

[

1 1
1 1

]

⇒ border

3 Structural Grid Graph

We here propose an algorithm to model images using graph primitives. The main
goal of this new proposal is to maintain the better properties of q-trees but introduc-
ing higher variability in the incoming and outgoing degrees. Thus, the properties
to fulfill are: 1) The model should consider the resolution asa parameter, allowing
higher and lower resolution representations. 2) The representation should contain
enough information to reconstruct the original image.

Without loss of generality, we will consider directed acyclic graphs and two
colour images:background andforeground colours. Starting from the top-left cor-
ner, the algorithm divides the image into squared regions ofa given sizek. Those
regions with foreground colour will be considered the nodesof the graph. The edges
are defined from a foreground region (node) to those adjacent-foreground regions to
the east, south and southeast. Figure 3 shows an example.

Fig. 3 Some examples of the grid graph modeling are shown. Those regions with at least 20%
black pixels are considered foreground. Root nodes are marked in gray.

4 Skeleton Graphs

The last method models the graph using the skeleton that defines the shape of the
figure. It is a natural extension of the algorithms proposed for trees in [8, 12]. First,
a thinning process is applied to the image [1], and then the graph is generated as:

1. The top left pixel of the skeleton is chosen as the root of the graph.
2. Every node in the graph will have as many children as unmarked neighbour pixels

has the current pixel. For each child, an arc is created following that direction
until one of the following criteria is true:

Structural Graph Extraction from Images 7

a. The arc has the maximum fixed parameter size (window parameter).
b. The pixel has no unmarked neighbours (terminal node).
c. The pixel has more than one unmarked neighbour (intersection).
d. The pixel is marked (existing node).

3. A new node is assigned to every end of arc pixel obtained by the previous step
(a,b,c), or it is joined with the corresponding node (d). If the node has unmarked
neighbours, then go to step 2, otherwise it terminates.

Fig. 4 Skeleton and graph results.

5 Experimentation

This section aims to demonstrate the usefulness of the proposed models. For this
reason, it uses simple classification methods, without stochastic layer and using
only the structure of graphs (without labels). Results prove the correct separation
of classes, in addition to be a baseline for future research.

To perform the experiments, 5 thousand images of digits (10 classes), with reso-
lution of 64x64 pixels, from the NIST dataset are used. Graphs have been extracted
using the three proposed methods, but varying the parameters (truncate level, size
of cells, and window size) (see Fig. 5). Six methods are used to perform the clas-
sification: First, a feature vector is calculated using the graph degree distribution
[10], and then classified using Naive Bayes, Random Forest, SVM and k-NN [6].
The 75% of the dataset is used for training and the rest for test. A preliminar error
correcting distance is also defined to test the proposed methods. It is a simple algo-
rithm with linear complexity. For this distance, the classification is performed using
leaving-one-out. A semi-structural method of Flow Complexity is also used [3]. It
analyzes the structure of the graph based on feature selection via spectral analysis
and complexity.

Fig. 5 Results using different classification methods.

8 Javier Gallego et al.

6 Conclusions

This paper presents three methods for extracting graphs from images. The obtained
graphs introduce a variability that should create new characteristic features in the
modelling of the classes of a pattern recognition task, and thus, it should ease a syn-
tactic approach. Experiments show encouraging results which prove the usefulness
of the proposed models, the correct separation of classes, in addition to be a baseline
for future work.

The first method creates neighbourhood paths or segmentations within the q-tree,
providing more data and creating new possibilities of operations and applications.
The second algorithm maintains the features of q-tree representation, that is: the
resolution is parametrizable and allows to reconstruct theoriginal image. The third
method takes into account the skeleton of the shape to build the graph, summarizing
the core structure of the image.

Acknowledgments

This work is partially supported by Spanish MICINN (contract TIN2011-28260-
C03-01, contract TIN2009-14205-C04-C1) and CONSOLIDER-INGENIO 2010
(contract CSD2007-00018).

References

1. J. M. Cychosz. Thinning algorithm from the article: Efficient binary image thinning using
neighbourhood maps.Graphics Gems IV. Academic Press, p. 465–473, 1994.

2. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry,
pages 291–306. Springer-Verlag, 2000.

3. F.Escolano, D.Giorgi, E.R.Hancock, M.A.Lozano, and B.Falcidieno. Flow complexity: Fast
polytopal graph complexity and 3d object clustering.GbRPR, 2009.

4. M.Flasinski, S.Myslinski. On the use of graph parsing forrecognition of isolated hand pos-
tures of Polish Sign Language.Pattern Recognition, 43:2249–2264, 2010.

5. M. Goodchild. Quadtree algorithms and spatial indexes.Technical Issues in GIS, NCGIA,
Core Curriculum, (37):5–6, 1990.

6. M.Hall, E.Frank, G.Holmes, B.Pfahringer, P.Reutemann,I.H.Witten. The WEKA Data Min-
ing Software: An Update.SIGKDD Explorations, 11(1):10–18, 2009.

7. J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma. Image annotation via graph learning.Pattern Recog-
nition, 42:218–228, 2009.

8. D. López and I. Piñaga. Syntactic pattern recognition by error correcting analysis on tree
automata.Advances in Pattern Recognition, LNCS 1876, p. 133–142, 2000.

9. R. G. Luque, J. ao L.D. Comba, and C. Freitas. Broad-phase collision detection using semi-
adjusting bsp-trees. InACM i3D, pages 179–186, 2005.

10. M.E.J.Newman. The structure and function of complex networks. SIAM, 45. 2003.
11. J. Poveda and M. Gould. Multidimensional binary indexing for neighbourhood calculations

in spatial partition trees.Comput. Geosci., 31(1):87–97, 2005.
12. J.R.Rico-Juan, L.Micó. Comparison of AESA and LAESA search algorithms using string and

tree edit distances.Pattern Recognition Letters, 24:1427–1436, 2003.
13. H. Shin, K. Tsuda, and B. Schölkopf. Protein functionalclass prediction with a combined

graph.Expert Systems with Applications, 36:3284–3292, 2009.

