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Structural Graph Extraction from Images

Antonio-Javier Gallego-Sanchedorge Calera-Rublpand Damian Lopez

Abstract We present three new algorithms to model images with graiphitpres.
Our main goal is to propose algorithms that could lead to adeouse of graphs,
especially in pattern recognition tasks. The first methatsaters the g-tree repre-
sentation and the neighbourhood of regions. We also praposthod which, given
any region of a g-tree, finds its neighbour regions. The sgtatgorithm reduces the
image to a structural grid. This grid is postprocessed ireotd obtain a directed
acyclic graph. The last method takes into account the skeleftan image to build
the graph. It is a natural generalization of similar workstia@es [8, 12]. Experi-
ments show encouraging results and prove the usefulnelss pfoposed models in
more advanced tasks, such as syntactic pattern recogtasks.

1 Introduction

Many fields take advantage of graph representations, tredde finclude but are not
limited to: biology, sociology, design of computer chipsdaravel related problems.
This is due to the fact that graph are suitable to repressgnkiad of relationships
among data or their components. The expressive power ofignmamitives has been
specially considered in pattern recognition tasks, in otaleepresent objects [7] or
bioinformatics [13]. Therefore, the development of algfors to handle graphs is
of major interest in computer science.

In this paper we present three new methods to model imageg gsaph prim-
itives. The main goal we aim to achieve is to propose algonitithat could lead
to a broader use of graphs. In that way, the work of [4] shoves this kind of
contribution is suitable and interesting.
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The first method we propose (Section 2) takes into accouméighbour paths
within a g-tree [2]. We present algorithms that extend otherks for neighbour-
hood calculations in spatial partition trees [5, 11]. Theseks generally calcu-
late only the 4-neighbours of each region, or use two stepslitulate the cor-
ner neighbours. The proposed method completes these witkanvestimation of
equal complexity for the 8-neighbours at any level of regoiu(equal, higher or
lower level). Moreover, neighbour calculation can helprtgpiove other applica-
tions, speeding up the process to locate the next elemantt,asuin: image repre-
sentation, spatial indexing, or efficient collision deiect

The second method (Section 3) considers a structural gtiteafmnage which is
then postprocessed to obtain the graph model. This methodaire those desider-
able features of g-tree representation, that is: the réealis parametrizable and
allows to reconstruct the image.

The third method (Section 4) extends a similar method usdckes [12, 8]. The
initial image is preprocessed to obtain the skeleton. Thkeseson is then traversed
to build a graph that summarizes the core structure of thgéma

2 Neighbourhood Graphs

Using the tree defined by a g-tree (see Fig. 1) and the prodgedthm for neigh-
bourhood calculation (see section 2.1), a directed acgechph (dag) can be ex-
tracted to represent the sample and to provide informatioh as: neighbourhood,
structural traversal, resolution or thickness, in additoallow its reconstruction.

The graph is created walking top-down the tree, and frontdefight. For each
nonempty node, its 8-neighbours are calculated. It is ingmdithat: 1) Do not add
arcs to processed nodes. 2) If it has to create an arc from gaoioted node to
one that is already pointed: then the direction of the arhénged. These criteria
ensures that the graph is acyclic.
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Fig. 1 Tree obtained from the g-tree of the Fig. 2(c), and its cpwaging neighbour graph.
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2.1 Calculating Neighbours

Binary encoding is used to encode the position of partitishighin the image and
their corresponding traversal path down the g-tree [5]hEfimension is encoded
with 1 bit coordinate, describing the direction as positi¢ or negative (0). A
location array is defined using this encoding (Fig. 2(a))gitiees, this array has
two rows: horizontal and vertical coordinates. Positivediions (up and right) are
represented by a 1, and the negative directions (down at)cbled (Fig. 2(b)). In
general, the location array associated with a given nodefised as the location
array of his father, but adding on the right a new column wishown encoding.
For each new partition, the origin of the reference systemlased in the center
of the area where the subdivision is done. In Fig. 2(c), these level nod& is
represented by thel] of his father, and then adding thé] for its own level.
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Fig. 2 (a) Reference system and location array, (b,c) Q-treestivéltorresponding location ar-
rays, (d) Graphs extracted using different truncate levels

2.1.1 Algorithm

To calculate the neighbours of a given node, the locatioayadescribed above is
used. The proposed algorithm distinguishes two casesnfgigabours (two regions
share more than one point, suchfAsvith B in Fig. 2(c)), and corner neighbours
(they share one poing with | in Fig. 2(c) ).

2.1.2 Face Neighbours

To calculate the face neighbour of a given node, the algoritieeds to know its
location array 1), and the dimensiodim and the directiowlir in which the neigh-
bour has to be calculated. The algorithm (see Sec. 2.1.i8 each bit of the loca-
tion array M) in the given dimension from right to left, and negates ths bntil
the result is equal to the explored direction (1: positiveyéative).
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As an example, the horizontal neighbout dfig. 2(c)) in the positive direction
(1) is calculated. The algorithm begins with the locatioragrand negates each bit
in the top row (dim 1) from right to left (indicated with a bantil reaching the halt
condition: the result is equal to the explored direction.

-y~ y- (Y-

2.1.3 Corner Neighbours

In the case of corner neighbours, the algorithm has to mdb#ytwo dimensions
of the location array. As for the face neighbours, it begirith the location array
M, but in this case it receives as input an amdaywith both horizontal and vertical
directions. Below is the complete algorithm to compute fae corner neighbours:
function GetNeighbour( M, dim, dir )

level := |MJ[0]| // Level isequal to the number of columns
if(|dirl==1){ //Faceneighbours

do {
M[dim][level] := ! M[dim][level]
level :=level —1
} while( level > 0AMI[dim][level] = dir )
}else{ //|dir| ==2— Corner neighbours
flagl := false ; flag2:= false
do {
if(!flagl)
M[O][level] := I M[O][level]
if(M[O][level] ==dir[0] ) flagl:=true
if(!flag2)
M[1][level] := ! M[1][level]
if(M[1][level] ==dir[1] ) flag2:=true
level :=level —1
} while(level >0 (!flaglV !flag2))
}
return M

As example, the corner neighboursh{Fig. 2(c)) are calculated:

v=lor] = 0 = [ -2 | v-foi] = [5d]-e

2.1.4 Type of Nodes

It is important to differentiate the type of a node within tteucture (Fig. 1). The
function TypeOfNode(M) returns this type, it can béeaf-node (the node exists and
has no children)nner-node (the node exists and has childrenyornode (the node
does not exist). If the location array isl@af-node the algorithm ends. If it is an
inner-node, then the algorithm has to calculate the higher-level reagins (Sec.
2.1.6). If the node does not exist, the algorithm has to ¢afeuhe lower-level
neighbours (Sec. 2.1.5).
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2.1.5 Lower Resolution Neighbours

In this case, the algorithm first calculates the same rasolaeighbour using/ :=
GetNeighbour( M, dim, dir ); and then eliminates the final column/s (on the right
side) until it finds deaf-node:

function GetLowerLevel( M)
do{
Mzyn <= M2xn-1
} while( TypeOfNode( M ) == no-node)
return M

Example: regio in Fig. 2(c).

D= 116:> 111 = 101:>no—node:> 101 = 10 =C
111 111 111 111 11

2.1.6 Higher Resolution Neighbours

The algorithm first calculates the neighbour at the samd [&vieesolution using
M := GetNeighbour (M, dim, dir). If M corresponds to amner-node, then the
higher-level neighbour/s is/are calculated. It is wortmtde that, face neighbours
may have two or more neighbours (eLgwith H andl in Fig. 2(c)), whereas corner
neighbours only have one neighbour. In this process, caltarmadded on the right
side of the matrixM until reaching deaf-node. These columns are created in the
opposite direction of the dimension/s of interest. See #eigocode below:
function GetHigherLevel( M, dim,dir )
& =(@&) Il Result set of higher-level neighbours
if(|dirjl==1){ // Face neighbours
for(i=1;i<2,++i){
Ni[dim][0] :=!dir ; N;[!dim][0]:=i—1
Mi:=Ma&N
if ( TypeOfNode( M; ) ==leaf-node) .Z < M;
else .Z « GetHigherLevel( M;,dim,dir)

}else{ //|dir| ==2— Corner neighbours
do{
N[O][O] :=!dir[0] ; NI[1][0] :=!dir[1]
M:=M&N
} while( TypeOfNode( M ) = leaf-node )
ZL<+~M
}
return .

The symbolp denotes the concatenation of a matvhwith a vectorN:
won= [42] o [7] 442

e b T b
Below is an example of higher-level neighbours calculatsee Fig. 2(c)):

10 11 . 110 . (110 _
C:Ll}:{ll}:mner-node:<{lll}:D, {110}_F>
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2.1.7 Neighbourhood of Border Regions

When a region is on the border of the structure, do not presgighbours on that
border side. In this case, the algorithm ends without regtiie halt condition. E.g.
nodeA (horizontal-left):

00 01 11
A= L 1} = L 1} = {1 1} = border

3 Structural Grid Graph

We here propose an algorithm to model images using graplhitwés: The main

goal of this new proposal is to maintain the better propexfay-trees but introduc-
ing higher variability in the incoming and outgoing degre€kus, the properties
to fulfill are: 1) The model should consider the resolutioragsrameter, allowing
higher and lower resolution representations. 2) The remtetion should contain
enough information to reconstruct the original image.

Without loss of generality, we will consider directed adyajraphs and two
colour imagesbackground andforeground colours. Starting from the top-left cor-
ner, the algorithm divides the image into squared regiores gien sizek. Those
regions with foreground colour will be considered the noafdlhe graph. The edges
are defined from a foreground region (node) to those adjegoeaground regions to
the east, south and southeast. Figure 3 shows an example.

| A
L
S |

Fig. 3 Some examples of the grid graph modeling are shown. Thosenegvith at least 20%
black pixels are considered foreground. Root nodes areadarkgray.

4 Skeleton Graphs

The last method models the graph using the skeleton thatedetfire shape of the
figure. It is a natural extension of the algorithms proposedrees in [8, 12]. First,
a thinning process is applied to the image [1], and then thplyis generated as:

1. The top left pixel of the skeleton is chosen as the rootefiraph.

2. Every node in the graph will have as many children as unathmnkighbour pixels
has the current pixel. For each child, an arc is createdviatig that direction
until one of the following criteria is true:
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a. The arc has the maximum fixed parameter size (window paeane
b. The pixel has no unmarked neighbours (terminal node).

c. The pixel has more than one unmarked neighbour (inteosgct

d. The pixel is marked (existing node).

3. A new node is assigned to every end of arc pixel obtainedeytevious step
(a,b,c), oritis joined with the corresponding node (d)hE hode has unmarked
neighbours, then go to step 2, otherwise it terminates.

f /22 / L? g
L % o a ;
,rﬂ ;,/ (
Fig. 4 Skeleton and graph results.

5 Experimentation

This section aims to demonstrate the usefulness of the peapmodels. For this
reason, it uses simple classification methods, withouthststic layer and using
only the structure of graphs (without labels). Results prthe correct separation
of classes, in addition to be a baseline for future research.

To perform the experiments, 5 thousand images of digits [d€ses), with reso-
lution of 64x64 pixels, from the NIST dataset are used. Gsdpve been extracted
using the three proposed methods, but varying the parasn@tencate level, size
of cells, and window size) (see Fig. 5). Six methods are usgzétform the clas-
sification: First, a feature vector is calculated using thep degree distribution
[10], and then classified using Naive Bayes, Random For&4¥] 8nd k-NN [6].
The 75% of the dataset is used for training and the rest forAegreliminar error
correcting distance is also defined to test the proposedadsitiit is a simple algo-
rithm with linear complexity. For this distance, the cldissition is performed using
leaving-one-out. A semi-structural method of Flow Comiileis also used [3]. It
analyzes the structure of the graph based on feature seledt spectral analysis
and complexity.

Neighbour Graph Grid Graph Skeleton Graph

30%
4 15 16 7 B 2x2 3 4xd 5x5 6xG 8x8 10x10 w2 w5 wio wis w20
4 Naive Bayes € Ramdom Forest ¥ SVM & K-NN - Pseudo-distance 4 Flow complexity

Fig. 5 Results using different classification methods.
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6 Conclusions

This paper presents three methods for extracting graphsifrages. The obtained
graphs introduce a variability that should create new attaristic features in the
modelling of the classes of a pattern recognition task, huosl it should ease a syn-
tactic approach. Experiments show encouraging resultstwiriove the usefulness
of the proposed models, the correct separation of clagsaddition to be a baseline
for future work.

The first method creates neighbourhood paths or segmemgatithin the g-tree,
providing more data and creating new possibilities of ofi@na and applications.
The second algorithm maintains the features of g-tree septation, that is: the
resolution is parametrizable and allows to reconstrucbtiginal image. The third
method takes into account the skeleton of the shape to gldraph, summarizing
the core structure of the image.
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