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Abstract 

 

There are many fields in which the available sample volume is the limiting factor for an 

elemental analysis. Over the last ten years, sample introduction systems used in plasma 

spectrometry (i.e., Inductively Coupled Plasma Atomic Spectrometry, ICP-AES, and 

Mass Spectrometry, ICP-MS) have evolved in order to expand the field of applicability 

of these techniques to the analysis of micro and nano samples. A full understanding of 

the basic processes occurring throughout the sample introduction system is absolutely 

necessary to improve analytical performance. The first part of the present review deals 

with fundamental studies concerning the different phenomena taking place from aerosol 

production to analyte excitation / ionization when the liquid consumption rate does not 

exceed 100 µl/min. Existing sample introduction systems are currently far from the 

ideal and a significant effort has been made to develop new and efficient devices. 

Different approaches for continuously introducing small sample volumes (i.e., 

microsamples) have been reviewed and compared in the present work. Finally, 

applications as well as basic guidelines to select the best sample introduction system 

according to the sample particularities are given at the end of this review.  

 

 

Keywords: Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES); 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS); Aerosol transport 

phenomena; Micro sample analysis; Nebulizer; Spray Chamber; Desolvation System. 
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1. Importance of the analysis of microsamples 

  

 The analysis of microsamples through Inductively Coupled Plasma Atomic 

Emission Spectrometry (ICP-AES) and Mass Spectrometry (ICP-MS) is a subject that 

has gained great interest over the past years. Several reasons can be argued to try to 

explain this fact [1,2]: 

1. in some fields (i.e., forensic [3], biological [4], clinical analysis, etc.) the 

sample volume available can be lower than 1 ml; 

2. the optimization of new coupling techniques, such as Capillary 

Electrophoresis (CE) [5] or other chromatographies coupled to ICP-AES (or 

ICP-MS), involves the use of a low sample consumption system;. 

3. the low sample consumption systems improve the analyte transport 

efficiencies afforded by conventional setups; 

4. several interferences caused by the solvent (i.e., polyatomic interferences in 

ICP-MS) can be reduced by working at very low liquid flow rates; 

5. new devices able to provide the concentration of several elements in a cell 

are required [6]; 

6. toxic and radioactive wastes should be minimized.  

Table 1 shows the amount of sample available in several applications [7]. It can 

be observed that in some cases the sample volume is below 100 µl. In other instances, 

the mass of sample available for the analysis is of the order of milligrams. Increasing 

the sample volume is an obvious solution to this problem, although a dilution is 

produced that limits seriously the analysis when the analyte concentration is very low. 

Another way to solve this problem is discrete introduction of the sample. This is an 

acceptable approach that is not within the scope of the present review and has been 

Con formato: Fuente: Sin
Negrita
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considered in studies dealing with flow injection analysis methodology [8]. Finally, 

coupling of chromatographic and non chromatographic separation techniques to ICP 

spectrometry requires work at extremely low liquid flow rates. As will be mentioned 

later, this fact presents some important problems. 

Usually, when analyzing liquid solutions through ICP-AES and ICP-MS, a 

nebulizer (i.e., used to transform the liquid solution into an aerosol) is coupled to a 

spray chamber (i.e., used to remove the aerosol coarsest droplets). The nebulizer is 

operated at a solution delivery rate on the order of 0.5 - 2 ml/min. Taking into account 

the time required to carry out a complete signal reading (1 – 5 min, depending on the 

detection system and the number of elements to be determined), the volume of sample 

required ranges from roughly 1 to 10 ml. The analysis is therefore difficult when 

working with sub millilitre samples (i.e., microsamples). The most simple and direct 

way of performing analyses such as those summarized in Table 1 would be to use a 

conventional liquid sample introduction system operated at low sample delivery rates.  

Basically, under these conditions, a sharp decrease in the sensitivity is produced 

with respect to that found at conventional liquid flow rates. Two different reasons can 

be advanced to account for this fact: (i) the mass of analyte introduced into the sample 

introduction system and, hence, into the plasma is up to 100 times lower and; (ii) as will 

be discussed later, at liquid flow rates on the order of several tens of microliters per 

minute, the aerosols produced by classical nebulizers are too coarse, thus precluding the 

transport of solution through the spray chamber. Furthermore, it is also worth 

mentioning that at these so low liquid flow rates, it is difficult to carry out 

measurements of the aerosol characteristics and of the mass of solution transported to 

the plasma with good precision. Hence, an added drawback is the lack of fundamental 

studies concerning the processes occurring at low liquid flow rates. 

Con formato: Fuente: Sin
Negrita
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It is, therefore, obvious that to perform the analyses included in Table 1, 

dedicated sample introduction systems are required [2]. These systems must be able to 

provide good results while lowering as much as possible the sample consumption. It is 

generally accepted that working at liquid flow rates below 100 – 200 µl/min implies 

changes in the sample introduction system as well as in the extent of the processes 

produced during the aerosol generation and its transport towards the plasma. Therefore, 

a low consumption system could be considered as one being able to work efficiently at 

liquid flow rates below these values.   

 

2. Fundamental studies concerning the analysis of microsamples with common 

micronebulizer-based systems 

 

 A micronebulizer is used to generate stable aerosols at liquid flow rates below 

100 – 200 µl/min. In comparison to conventional nebulizers operating at delivery rates 

of the order of a millilitre/min, the design of micronebulizers must be modified to cope 

with very low delivery rates.  

 

2.1. Aerosol generation 

 

Several micronebulizers have been developed and they have demonstrated better 

performance (i.e., finer aerosols, higher ICP sensitivities and lower limits of detection) 

at low liquid flow rates than conventional nebulizers. Table 2 compares the critical 

dimensions for a set of pneumatic nebulizers and micronebulizers. It can be noted that, 

in general terms, concentric micronebulizers (Figure 1.a) have lower capillary inner 

diameters and wall thickness than conventional ones. Furthermore, for some concentric 
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micronebulizers, the gas exit cross sectional area is also reduced. The modifications in 

these dimensions have several important implications. They can be highlighted by 

taking as reference some of the calculations included in the thorough review published 

in 1988 by Sharp on fundamentals of pneumatic aerosol generation [9]:  

 (i) Once the sample emerges through the nebulizer capillary, the liquid stream 

core remains unaltered over approximately five times the capillary diameter [9]. Taking 

into account the data in Table 2, for a conventional pneumatic concentric nebulizer, this 

distance takes a value of 2000 µm, whereas in the case of a High Efficiency Nebulizer 

(HEN), the liquid vein remains unaffected by the gas stream only for a length of 400 – 

500 µm. Therefore, for the HEN the aerosol generation is produced closer to the gas exit 

(i.e., where the gas has a high kinetic energy) than for a conventional nebulizer.  

(ii) For micronebulizers, the distance (L) outside the nebulizer along which the 

gas stream remains able to generate droplets changes with respect to conventional 

devices. Therefore, the area of the interaction region between the liquid and the high 

velocity gas is modified. For conventional pneumatic concentric nebulizers, we can 

calculate the interaction area by taking into account that the annulus width is typically 

20 – 30 µm [9], hence L is 100 – 150 µm. As the perimeter of the sample capillary is 

1.63 mm, the interaction area is about 0.16 – 0.25 mm2. A similar calculation yields L 

values for micronebulizers (such as the HEN, MCN and MMN) included within the 90 

to 110 µm range, which, for 0.31 to 0.63 mm capillary perimeters, indicates that the gas 

range of action goes from 0.03 to 0.07 mm2. In conclusion, it can be indicated that at a 

given liquid and gas flow rates, the liquid – gas contact area is significantly lower for 

micronebulizers than for conventional ones. This is detrimental from the point of view 

of generation of fine droplets. 



 9

(iii) In pneumatic concentric nebulizers, the liquid emerges from the centred 

capillary and, due to the action of the gas stream, it moves towards the gas exit. This 

effect causes the thickness of the liquid stream moving outwards from the nebulizer 

capillary to decrease [9]. This process is called prefilming. At a given liquid flow rate, 

the thickness of the solution on the front walls of the sample capillary slipping towards 

the gas stream is higher for thin capillaries (i.e., like those used in the case of 

micronebulizers) than for coarser ones. Therefore, from this point of view, the liquid 

and gas interaction is expected to be less efficient in the case of micronebulizers. 

 (iv) At a given volumetric gas flow rate, the energy available to produce aerosol 

depends on the nebulizer gas exit cross-sectional area. Therefore, irrespective of the 

pneumatic nebulizer used, the lower the value of this dimension, the higher the kinetic 

energy of the gas stream as it expands at the nozzle [9]. As can be seen from Table 2, 

for some micronebulizers the gas exit area is lower than for conventional devices. As a 

result, finer aerosols should be produced for the formers. 

(v) Tip blockage can be more severe if the dimensions of the nebulizer capillary 

are reduced. When working with high salt content solutions, pneumatic concentric 

nebulizers become blocked due to the solution re – nebulization. In this case, some 

droplets are deposited on the nebulizer tip walls, from which they are drawn towards the 

gas exit where they are nebulized again. If salty solutions are analyzed, the dry gas 

evaporates a fraction of the solvent high enough to cause crystal formation at the gas 

annulus [9]. As soon as the annulus blocks, even partially, nebulization stops. 

Obviously, this effect would be more severe for nebulizers having a low gas exit cross-

sectional area than for those with high values of this critical dimension. Among the 

different options tested to reduce the significance of the blockage problems, the best one 

appears to be recessing the liquid capillary with respect to the nebulizer nozzle. 

Con formato: Fuente: Sin
Negrita
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(vi) Finally, an implication of using micronebulizers is the reduction in memory 

effects found for a given spray chamber and liquid flow rate as compared with 

conventional nebulizers.. This is mainly due to the fact that capillaries with reduced 

dimensions are used with these devices (Table 2). 

 For conventional pneumatic nebulizers, the dimensions of liquid capillaries (i.e., 

wall thickness and inner diameter) are not appropriate to generate fine aerosols at low 

flow rates. It has been claimed that it is difficult to generate stable aerosols with 

conventional nebulizers at liquid flow rates below 300 µl/min [10]. Nonetheless, 

conventional pneumatic nebulizers are able to produce ‘stable’ though not ‘fine’ 

aerosols at liquid flows as low as 30 µl/min. It is generally accepted that glass 

concentric nebulizers afford their best analytical figures of merit when the liquid flow 

rate is settled at a value close to the free uptake rate. This fact has also been confirmed 

for micronebulizers [11]. Figure 2 shows the variation of the primary aerosol surface 

mean diameter (D3,2) versus the delivery liquid flow rate (Ql) for two different classical 

glass-made pneumatic concentric nebulizers and a micronebulizer. The data presented 

in this figure confirm the assessments made earlier. For the conventional nebulizers, a 

decrease in the liquid flow rate initially leads to a slight drop in D3,2 (i.e., aerosols 

become finer), then this parameter rises as Ql goes down. The decrease in the mean 

diameter can be accounted for by an increase in the gas- to-liquid volume ratio, thus 

favouring the production of small droplets. However, at liquid flow rates below 100 

µl/min, the D3,2 increases as Ql is decreased. The trend found for a micronebulizer 

(MMN) is far different, because the D3,2 decreases as Ql is lowered down to 60 µl/min. 

Below this liquid flow rate, the D3,2 appears to slightly increase. In fact, Sharp has 

explained this increase in D3,2 with Ql according to the following mechanism [9]: as the 

liquid stream emerges from the nebulizer liquid delivery capillary, it trends to move 

Con formato: Fuente: Sin
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outward until it reaches the nebulizer annulus and then it is fractionated into droplets. In 

order for this mechanism to take place in a regular stable way, the liquid stream 

thickness must not be much lower than the gas action length (L), otherwise coarse 

droplets are generated. At low liquid flow rates, therefore, the dimensions of the liquid 

stream are too small to produce a stable aerosol with a conventional pneumatic 

concentric nebulizer. Presumably, the liquid flow rate below which coarse aerosols are 

produced will be lower for micronebulizers (Figure 2) because of the reduced 

dimensions of the capillary. 

Additionally, it should be indicated that, once the aerosol has been generated, at 

low liquid flow rates, the solvent evaporation produced along the sizer measurement 

zone is more significant at low than at high liquid flow rates and for small than for big 

droplets. Therefore, a higher fraction of finest droplets disappears at low than at high 

liquid flow rates. As a result the proportion of coarse droplets is higher at low flow rates 

thus giving rise to the increase in the aerosol mean drop size shown in Figure 2. 

Another reason can be given to explain the data in Figure 2 for the MMN; 

provided that below a given Ql the aerosol liquid volume is very low and taking into 

account that a system based on the Fraunhofer diffraction of a laser beam has been used 

to take the data in Figure 2, it can be said that the total diffracted light energy is low. 

Under these conditions, small changes in the background can seriously affect the results 

finally obtained by increasing the energy apparently scattered by coarse droplets. A shift 

of the results towards aerosols coarser than the actual ones is produced. Furthermore, 

the precision of the measurements is degraded.  

 The effect of the nebulizer gas flow rate (Qg) on the characteristics of the 

aerosols also depends on the liquid uptake rate (Ql) [12]. Thus, for a HEN at low Ql 

values (c.a., 85 µl/min) an increase in Qg did not modify in a significant way the 

Eliminado: Figure 2
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characteristics of the primary aerosols. Note that at conventional liquid flow rates (c.a., 

1-2 ml/min) the higher the Qg, the finer the aerosols produced by a pneumatic nebulizer. 

Therefore, when the solution mass to be nebulized increases, the mass of gas required to 

efficiently produce the aerosol also rises [9,12].  

 

2.2. Aerosol transport 

 

When working at liquid flow rates below approximately 100 µl/min, the relative 

extent of the processes occurring inside the spray chamber changes with respect to the 

situation found at conventional liquid flow rates. On the one hand, solvent evaporation 

is enhanced and, on the other hand, droplet coalescence is dampened in the former 

situation.  

 

2.2.1. Solvent evaporation 

 

A theoretical study can be performed in order to evaluate the extent of solvent 

evaporation and the evolution of the aerosol characteristics as the sample is nebulized at 

low liquid flow rates [13]. 

The variation of the diameter of a droplet with time as a result of solvent 

evaporation can be described according to the following equation [14,15]:  

d3 = d0
3 – E t        (1) 

where d is the drop diameter at a given time t, d0 is the initial drop diameter and E is the 

so-called evaporation factor, which is given by:   

( )2
248

RT
MpDE sv

ρ
σ

=        (2) 
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where Dv is the diffusion coefficient for solvent vapour, σ is the solvent surface tension, 

ps is the saturated vapour pressure, M is the molecular mass of the solvent, ρ is the 

solvent density, R is the gas constant, and T is the absolute temperature. Equations (1) 

and (2) have several simplifying assumptions, the most important being that the aerosol 

inside the chamber is under isothermal conditions and its flow regime is laminar [14]. It 

is also assumed that the liquid and vapour phases of the solvent are in equilibrium and 

the electric charge has a negligible effect on the vapour pressure. It is interesting to 

mention that equations (1) and (2) are valid for droplets with diameters higher than 0.1 

µm and that the drop in the temperature produced as the solvent evaporates does not 

have any significant effect on the droplet evaporation rate [16,17].  

 The sizer used to obtain the data required to carry out the theoretical study (i.e., 

based on the Fraunhofer diffraction of a laser beam) was equipped with a 31 ring 

detector. In this way, the complete drop size distribution was classified into 31 different 

fractions corresponding to 31 different size ranges. The basis of this theoretical 

simulation was to plot in frequency the volume drop size distribution of the aerosol 

generated by the nebulizer. A total of 31 bars was then obtained. Equation (1) was then 

applied to each drop size range such that the evolution of the size ranges with time was 

calculated. For a given drop size range (i), the aerosol liquid volume of the droplets was 

calculated as a function of time according to: 

  3
i 3

4  V iRπ=        

[ ]tEd i −= 3
0i )(

6
1  V π       (3) 

where Ri and (d0)i are the mean radius and diameter for each drop size range, 

respectively. For each initial diameter, (d0)i, the volume was calculated at different 
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times (equation 3). The fraction of solvent not evaporated (NE) for each size range was 

obtained by dividing each one of these volumes by the initial aerosol liquid volume:  

  
i

i

V
VNE

)( 0

=        (4) 

Finally, by multiplying NE by the percentage of liquid volume in the band 

(obtained from the measured drop size distribution) and by the liquid flow rate, the 

aerosol liquid volume flow rate (AL) contained in each size range at a given time is 

obtained: 

  )(%30 bandinNEAL =  

  
( )

)(%130 3
0

bandin
d
EtAL

i ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=     (5) 

 Figure 3 shows the complete absolute drop size distribution curves at three 

different times for water at a 30 µl/min (Figure 3.a) and 1000 µl/min (Figure 3.b) liquid 

flow rate, and for a 2 mol/l nitric acid solution at a 30 µl/min liquid uptake rate (Figure 

3). By integrating these curves at different times, the solvent volume evaporated can be 

calculated as a function of time [13]. At 25ºC, the theoretical data indicated that the 

maximum amount of water that could evaporate to saturate the argon stream was 20 – 

30 mg/(l of argon) [18,19]. The time at which the argon stream was saturated depended 

on the Ql value and the sample matrix. Thus, at 30 µl/min, 6 s after the aerosol 

generation, the argon stream was considered to be saturated with water. This time was 

shortened down to 2 s at 1000 µl/min. In other words, longer residence times inside the 

spray chamber would not promote further solvent evaporation. It is interesting to note 

that, as has been suggested [20], a significant fraction of the solvent could evaporate 

from the solution deposited on the inner walls of the chamber.  

Eliminado: Figure 3
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The simulated drop size distributions are considered at three different times: 0 s, 

which corresponds to the primary aerosols (i.e., the aerosols generated by the 

nebulizer); 1 s, which is roughly the aerosol residence time in a low inner volume spray 

chamber (i.e., ranging from 10 to 20 cm3) and 6 s at 30 µl/min and 2 s at 1000 µl/min, 

which corresponds to the time required to saturate the argon stream. Note that all the 

calculations were performed at a 0.7 l/min nebulizer gas flow rate.  

When plain water solutions were nebulized (Figure 3.a), theoretical calculations 

indicated that, 1 s after the aerosol generation, all droplets with diameters lower than 

about 2 µm were completely evaporated. Droplets with diameters higher than about 9 

µm, in turn, did not modify their diameters in an appreciable way. This expected trend 

confirmed that the small droplets evaporated faster than the bigger ones. By considering 

the time required to saturate the argon stream (grey lines in Figure 3.a) it could be 

concluded that the change in the drop size distribution produced by solvent evaporation 

became remarkable. Thus, for example, the aerosol liquid volume contained in droplets 

with diameters of about 6.7 µm is approximately two times lower 6 s after the aerosol 

generation than 1 s after the nebulization is produced. Furthermore, according to the 

calculations, droplets with diameters lower than 3.4 µm are completely evaporated. The 

implication of these results is quite interesting because, in order to enhance the solvent 

evaporation thus increasing the transport of solution towards the plasma at low liquid 

flow rates, it is very important to use nebulizers able to generate droplets with diameters 

lower than 2 µm.   

Figure 4 shows the accumulated volume drop size distribution curves for several 

pneumatic micronebulizers. The percentages of aerosol liquid volumes contained in 

droplets with diameters below 2 µm were 10.4, 21.6 and 31.6% for the MMN, PFAN, 

and HEN, respectively. From these data, we can conclude that, if low inner volume 

Eliminado: Figure 3
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spray chambers are going to be used, the most appropriate micronebulizer designs 

would be the HEN or the PFAN. As noted previously, under these circumstances, 

droplets with diameters lower than 3.4 µm would disappear. The aerosol liquid volume 

percentages contained in droplets with diameters below 3.4 µm (i.e., those that would 

evaporate completely) are 15.4, 30.4 and 40.2% for the MMN, PFAN and HEN, 

respectively.  

As the liquid flow rate is increased from 30 to 1000 µl/min, the proportion of 

water evaporated to saturate the 0.7 l/min argon stream shifts to lower values. In fact, 

the respective values of this shift are 70% and 2% of the total water mass nebulized, 

respectively. As a result, the time required to saturate the argon stream decreased as Ql 

went up and, consequently, the change in the aerosol characteristics caused by solvent 

evaporation was less significant. These trends can be observed in Figure 3.b. It can be 

seen that, unlike at low liquid flow rates, the aerosol liquid volume contained in droplets 

with diameters close to 6 µm was similar 1 s after the aerosol generation and 2 s after 

the nebulization (both volumes were just a 7% different). 

 The solvent evaporation rate also depends on the solution matrix. For a common 

matrix encountered with ICP techniques such as nitric acid, solvent evaporation is 

dampened mainly as a result of the low vapour pressure and the moderate density of this 

solution. These characteristics lead to a reduction in the value of the evaporation factor 

(equation 2). In fact, the corresponding evaporation factors were 1.5 x 10-2 and 1 x 10-2 

µm3/ms for distilled water and 2 mol/l nitric acid, respectively. The drop size 

distribution changes for nitric acid solutions (Figure 3.c) were less significant than for 

distilled water. Thus, 1 and 10 s after the generation of the aerosol, droplets with 

diameters lower than 1.4 and 2.75 µm were completely evaporated. Remember that for 

water, the calculations indicated that the respective diameters were 2 and 3.4 µm. 

Eliminado: Figure 3
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 The consequence of solvent evaporation is the disappearance of fine droplets 

(i.e., generation of coarse aerosols) until the coarsest droplets start to significantly 

decrease their diameters (i.e., the aerosols become finer) [21]. The median of the 

simulated volume drop size distribution (D50) can be calculated from the data generated 

through the procedure mentioned above. For a 10 s residence time, the calculated D50 

values are about 6 and 11 µm for water and 2 mol/l nitric acid, respectively. As regards 

the experimental data, measured D50 values for the aerosols leaving a double pass spray 

chamber are 3.5 and 1.5 µm for distilled water and 2 mol/l nitric, respectively. 

Therefore, it can be concluded that evaporation is not the most important process 

leading to a change in the characteristics of the aerosols leaving the spray chamber (i.e., 

tertiary aerosols) as a function of the matrix. Other factors, such as removal of coarse 

droplets through impacts against the chamber walls and droplet fission by electrical 

repulsion, may play a key role in terms of matrix effects [22].  Besides, it is important to 

bear in mind that the simulation performed in the present study had some inherent 

approximations [14,15]. 

 From all the above taken considerations, it can be concluded that in order to 

promote complete aerosol solvent evaporation inside the spray chamber, thus favouring 

the transport of solution towards the plasma, two factors should be born in mind: first, 

the mass rate of water nebulized must be lower than 20-30 mg for a 1 l/min argon 

stream and; second, the aerosols produced by the nebulizer must be fine enough. There 

are several evidences of complete solvent evaporation inside the spray chamber when 

very low liquid sample flow rates are used. Thus, for example, Aeschliman et al. [23] 

found that when a 2000 mg/l yttrium solution was introduced into the plasma at 20 

µl/min, the initial radiation zone (IRZ) at the plasma base was located at positions far 

upstream with respect to the observation made at 100 µl/min. Furthermore, high speed 



 18

videos demonstrated that at 100 µl/min there were occasional distortions of the IRZ tip 

as a large red droplet clouds were formed. A second evidence derives from the fact that 

there is not solution drain when working under these circumstances. 

  

2.2.2. Droplet coalescence 

 

Another phenomenon taking place inside the spray chamber is droplet 

coagulation. Droplet recombination can occur according to three different mechanisms 

[21]. The existence of velocity gradients at the exit of the nebulizer, mixing of small 

particles entrained in the turbulent eddies, or different aerosol drop diameters, and 

differences in droplet acceleration, cause an intensification of droplet recombination 

once the aerosol is generated. Coagulation caused by differences in droplet velocity is 

significant mainly near the nebulizer nozzle. Note that in this area differences in droplet 

velocities are highly significant. According to the work performed by Liu and Montaser 

with a Phase Doppler Particle Sizer [12], it was shown that at 1.5 cm from the nebulizer 

exit the droplet velocity distributions were broader than at 11.5 cm from the nebulizer. 

Thus, at 1.5 cm, droplets had velocities from 10 to 65 m/s, whereas at 11.5 cm the 

velocities were included within the approximately 1 to 11 m/s range.  

It has been claimed that, at low liquid flow rates, the transport of solution is 

favoured with respect to that obtained at conventional values of this parameter, because 

coalescence is less frequently produced than if the liquid flow rate rises [21,24,25]. 

According to the calculations made by Sharp [21], for a pneumatic nebulizer and at a 

1.5 ml/min liquid flow rate, the number of collisions between droplets at the exit of the 

nebulizer (i.e., in a cylinder whose diameter and length are 100 µm and 0.1 mm, 

respectively) is about 1020s-1m-3, which indicates the enormous significance of the 



 19

coalescence process. If the calculations made by Sharp are performed at liquid flow 

rates close to 50 µl/min, and the following data are considered: aerosol volume swept 

out, 7.85 x 10-13 m3, time required by the droplets to go through a 0.1 mm distance from 

the nebulizer tip: 5 x 10-6 s, and droplet size: 10 µm, we find that the number of 

particles passing through the swept volume is ca. 9 and the aerosol droplet density is 

about 1013 particles/m3. Note that the number density for a 1.5 ml/min liquid flow rate is 

3 x 1014 particles/m3 [21]. The number of collisions can be calculated in a different way, 

depending on the coagulation mechanism considered. If the coagulation is mainly 

produced by the existence of velocity gradients in the aerosol jet boundary, the number 

of collisions (N) is given by: 

32

3
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where n is the number of droplets per volume unit, Γ is the velocity gradient and a is the 

particle radius. Equation (6) indicates that the number of collisions between droplets 

varies with the square of the aerosol droplet density. This is also accomplished for the 

other two droplet coagulation mechanisms [21]. If, according to Sharp, at 1.5 ml/min 

the number of collisions for 10 µm droplets is 4 x 1019, by lowering the liquid flow rate 

down to 50 µl/min, N will be approximately three orders of magnitude lower (i.e., 4.4 x 

1016). 

Coalescence has a direct effect on droplet diameters. In fact, drop size increases 

as a result of this phenomenon. For monodisperse aerosols, the variation of diameter 

with time d(t) is given by [26]: 

( ) 3/1
00 1)( tKNdtd +=    (7) 

where d0 is the initial diameter, N0 is the initial particle number density and K is the 

coagulation coefficient.  
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 Equation 7 can be applied to determine the change in drop diameter with time. 

The results are presented in Figure 5. Two different liquid flow rates were considered: 

30 µl/min (Figure 5.a) and 1 ml/min (Figure 5.b). The drop diameter was calculated by 

assuming that the aerosol was monodisperse within each drop size range supplied by the 

sizer (a system based on the Fraunhofer diffraction of a laser beam). For most cases, and 

as equation 7 indicates, the drop diameter increased with time as a result of droplet 

coagulation. The x axis scale was extended up to 10 s, which was the estimated aerosol 

residence time in a double pass spray chamber.  

At  30 µl/min, droplets with diameters higher than 1.9 µm did not change their 

diameters in a noticeable way (Figure 6.a), whereas at 1 ml/min the increase of drop 

size for this diameter was quite important. At this high liquid flow rate, the calculations 

indicated that the increase in diameter with time was noticeable even for droplets with 

diameters close to 5 µm. This fact was undoubtedly due to the higher initial droplet 

number density (N0 in equation 7) at high rather than at low liquid flow rates. 

 The above mentioned trends can be made even more obvious by taking into 

account the drop size variations in relative terms. Figure 6 shows the relative change in 

drop diameter as a function of time. The influence of coalescence was more significant 

for small droplets than for coarse ones. The reason for this behaviour seemed to be the 

higher droplet number density (N0) for the finest droplets. The influence of the liquid 

flow rate can also be highlighted in this figure. For 1.41 µm droplets and at 30 µl/min, 

the diameter increased by a factor of just 10% with respect to the initial one (Figure 

6.a). Meanwhile, for the same drop size, at 1 ml/min (Figure 6.b) coalescence resulted 

in an increase in the drop diameter by a factor as high as 57 % (i.e., from 1.41 to 2.21 

µm). To illustrate the importance of coalescence, it may be noted that a conventional 

pneumatic concentric nebulizer operated at 1 ml/min generates 5 times as much primary 
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aerosol volume contained in droplets with diameters lower than 5 µm than a 

micronebulizer operated at 50 µl/min. However, the analyte transport rate is just two 

times higher for the former device than for the latter one. Because of the much higher 

aerosol droplet density at 1 ml/min, fine droplets grow through coalescence and they are 

removed from the aerosol stream inside the spray chamber. 

 The points raised above are useful for deciding whether to use a large or a small 

spray chamber if high sensitivities (or analyte transport efficiencies) are sought. On the 

one hand, solvent evaporation is more significant if the aerosol residence time inside the 

spray chamber is long enough. Nevertheless, on the other hand, as has been illustrated, 

coalescence becomes more significant as the aerosol spends more time in the chamber. 

What these calculations clearly demonstrate is that working at low liquid flow rates can 

be considered as a good approach to improve the analyte transport efficiency. These 

calculations can also help provide an understanding as to why decreasing the liquid flow 

rate by a given factor does not result in a corresponding proportional decrease in the 

emission signal. For example, one of the earlier studies carried out with the HEN by 

Olesik et al. [27] claimed that the HEN operated at a 50 µl/min liquid flow rate afforded 

limits of detection similar to those measured for a conventional pneumatic concentric 

nebulizer operated at a 1 ml/min sample flow rate. Further measurements of the 

efficiency of the analyte transport towards the plasma (εn) indicated that for the HEN 

this parameter took a value close to 60% at 10 µl/min, whereas it dropped down to 8% 

at 120 µl/min [28,29]. At low liquid flow rates (c.a., 2 µl/min) aerosol transport 

efficiencies close to 90% were reported [25].  

A problem that can be observed when working at low liquid flow rates derives 

from the poor precision and discrepancies found when measuring the aerosol transport 

parameters. Thus, for a MCN coupled to a cyclonic spray chamber, the solvent transport 
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efficiency, εs, at a 100 µl/min delivery liquid flow rate and a 1 l/min gas flow rate 

generated values close to 85% [30]. This result was different from the about 20% 

encountered in a different report at a 0.7 l/min gas flow rate [28]. Several reasons could 

be argued in order to try to explain this inconsistency. First, whereas in reference [30] 

an indirect method [31] was employed to measure the mass of solvent leaving the spray 

chamber, reference [28] used a direct method for this purpose [32]. Second, a cyclonic 

spray chamber was used in reference 30, whereas in reference 28 the chamber used was 

a double pass one. Third, provided that very low liquid flow rates are used, a change in 

the temperature at which these experiments were carried out strongly affects the results 

obtained.  

 

2.2.3.- Signal production, plasma thermal characteristics and matrix effects 

 

Olesik et al. [27] observed that the thermal conditions of the plasma were not 

deteriorated as the liquid flow rate decreased. Indeed, the plasma had a higher excitation 

capability when operating at low liquid flow rates with a HEN than in the case of a 

conventional pneumatic concentric nebulizer operated at conventional flow rates. This 

conclusion was reached after measuring the magnesium net ionic emission intensity to 

net atomic emission intensity ratio (MgII/MgI) [33]. An increase in this ratio indicates 

that the plasma increases in robustness. For the HEN operated at 50 µl/min, the 

MgII/MgI ratio was 7.8, whereas in the case of the pneumatic concentric nebulizer, the 

magnesium ratio was 4.8 at 1 ml/min. Accordingly, the argon emission intensity was 

also higher at low rather than at high liquid flow rates [27]. This trend cannot be 

considered as a rule, because if the solvent mass reaching the plasma is too low, its 
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thermal conductivity decreases, thus leading to a poor energy transfer to the sample and, 

therefore, to a deterioration of the thermal characteristics of the plasma [34]. 

 Considerations of solvent evaporation, droplet coagulation and thermal effects of 

the plasma made in the preceding section can be useful to provide insight into the 

experimental changes in the analytical results as a function of the liquid flow rate. Thus, 

Ackley et al. [35] found that, for a MCN, the ICP-MS signal increased with liquid flow 

rate up to 150 µl/min and then decreased significantly beyond this liquid flow rate. 

These results agreed quite well with those obtained in ICP-AES, in which the signal-to-

background ratio at 80 µl/min was similar to that at 160 µl/min. Similar trends have 

been observed for the MMN and HEN. The signals for a conventional pneumatic 

concentric nebulizer steeply increased with Ql in the range 10 – 30 µl/min [28,35]. 

Thus, these results can be explained on the basis that, on the one hand, the aerosols 

generated by the micronebulizers become coarser as Ql is increased, thus slowing down 

solvent evaporation and, on the other hand, because the drop number density is higher at 

high liquid flows, drop coalescence plays a very important role. Both effects make an 

increase in the liquid flow rate by a given factor to lead to a variation in the signal by a 

lower factor. 

 When working at liquid flow rates below about 100 µl/min, interferences caused 

by organic and inorganic concomitants have an impact different from that observed if 

this variable is close to 1 ml/min. Two groups can be distinguished: (i) inorganic 

matrices, comprising acids and salts, and; (ii) organic matrices, such as alcohols and 

some carboxylic acids. 

 For the first group of matrices, the magnitude of the matrix effect is higher at 

lower than conventional Ql values [22,36]. In order to assess the extent of the non 
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spectroscopic interferences, the so-called relative signal (Irel) can be calculated 

according to: 

0I
II rel =     (8) 

where I is the net emission intensity found in the presence of a given matrix and I0 is the 

analytical signal measured in its absence. A value of unity in Irel means that the matrix 

effect can be neglected. 

 In the case of inorganic acids, such as nitric or sulphuric acid, it has been found 

that at room temperature and with double pass or cyclonic spray chambers, the 

interferences become more severe as the liquid flow rate goes down [36,37]. Thus, for 

example, for a 0.9 mol/l nitric solution the ICP-AES emission intensities were 17 and 

47% lower than for a plain water solution at 0.6 ml/min and 30 µl/min, respectively. 

These data were obtained with a MCN coupled to a double pass spray chamber. Similar 

results were obtained with a conventional nebulizer. Therefore, apparently the nebulizer 

design did not play a relevant role in terms of interferences at low liquid flow rates. The 

two possible sources of the interferences caused by inorganic acids in ICP-AES are the 

modification in the aerosol generation and/or transport processes, and the change in the 

thermal characteristics of the plasma [38]. The second factor can be ignored, because 

previous reports claim [27] the MgII/MgI ratio remains unchanged or increases as Ql 

drops. Instead, the aerosol production and its transport towards the plasma appear to be 

responsible for the intensification of matrix effects at low Ql. Because the primary 

aerosol characteristics are modified neither for nitric acid nor for sulphuric acid 

solutions, aerosol transport seems to be the process leading to the observed interferences 

[36]. 

 When inorganic salts are a major component of the sample solution, similar 

trends as for inorganic acids are found [39,40]. For a double pass spray chamber and a 
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HEN operated at 20 µl/min, the signal in the presence of 5000 mg/l sodium was about 

50% lower than the intensity obtained for a plain water solution. In contrast, when Ql 

rose up to 200 µl/min, the drop in the signal caused by the presence of sodium was only 

of 20%. Irel did not change substantially with Ql above this value [22]. Qualitatively 

speaking, the signal drop factors fitted well with those for the analyte mass transported 

to the plasma. 

 A direct consequence of the results found for inorganic matrices is that when the 

available sample volume is the limiting factor to perform an analysis, procedures such 

as matrix matching, internal standardization or standard additions should be more 

carefully taken into account than at liquid flow rates on the order of ml/min. 

Theoretically, the extent of interferences could be eliminated by favouring the 

aerosol transport to the plasma so as the mass of analyte delivered to it would be the 

same irrespectively of the sample matrix. One way to reach this goal is to heat the 

aerosol. This has two beneficial consequences: (i) the mass of solvent that can be 

evaporated before saturating the gas stream increases; and, (ii) the drop size decreases 

and, hence, the evaporation takes place quickly. This is partially the reason why some 

matrix effects can be avoided by using a desolvation system. 

The matrix effects described so far are known as steady-state effects and cause a 

modification in the analytical signal with respect to aqueous solutions. In addition, the 

presence of inorganic matrices (mainly acids) leads to a change in the signal 

stabilization time when switching between solutions of different matrix composition. 

These are the so-called equilibration effects [41] or transient effects [42]. Accordingly, 

on switching from different concentrated nitric acid solutions, the ICP-AES and ICP-

MS signals suffered from either an undershoot or an overshoot, depending on the 

relative change in acid concentration. Then, after a given period of time, the signals 
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reached steady-state values. For example, at a liquid flow rate of 40 µl/min, the time 

elapsed for analytical signal stabilization when switching from a 1 mol/l to a 4 mol/l 

nitric acid concentration was as long as 20 min [37]. The equilibration time was about 

4-5 min when the liquid flow rate increased up to 0.6 ml/min. For inorganic salts, 

transient effects were much less pronounced than for acids. Thus, when introducing 

5000 mg/l sodium matrices after running the system with distilled water, the time for 

signal stabilization was just 20 s longer at 50 µl/min than at 200 µl/min [22].  

 Unlike inorganic concomitants, when organic matrices are present in the solution 

the aerosol generation process is severely modified with respect to plain water solutions. 

For pneumatic nebulizers, the physical properties influencing the aerosol characteristics 

are mainly surface tension and viscosity [9]. Note that organic solvents have lower 

surface tension and, in some instances, lower viscosities than water [43]. As a result, 

finer primary aerosols are produced in the case of organic matrices [44,45]. 

Furthermore, the solvent evaporation inside the spray chamber is much more significant 

than for inorganic acids because either the organic solvent is more volatile than 

inorganic matrices [43] and/or finer droplets are generated for organic compounds [46]. 

Consequently, when an organic solvent is present in the sample, the analyte mass 

leaving the spray chamber per unit of time increases when compared with aqueous 

solutions [47] and, if the thermal characteristics of the plasma are not significantly 

deteriorated, higher sensitivities are obtained in ICP-AES [48].  

In contrast to the situation described for inorganic species, at low liquid flow 

rates the extent of the interferences caused by organic solvents can be less pronounced 

than at conventional values of this parameter [49,50]. For a given sample introduction 

assembly, if the operating conditions are appropriate to allow the complete evaporation 

of an aqueous solution, it will also be possible to completely evaporate more volatile 
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samples (e.g., alcoholic solutions, carboxylic acid solutions). Hence, the mass of analyte 

transported towards the plasma is expected to be similar, irrespective of the volatility of 

the solution and the characteristics of the primary aerosols. There are two factors that 

should be considered in order to completely evaporate an aerosol: first, the aerosol 

generated by the nebulizer must be fine enough and second, the liquid-to-gas volume 

ratio must be sufficiently low.  

The former factor is very important since, as previously mentioned, only small 

droplets evaporate completely before exiting the spray chamber. According to the data 

shown in Figure 3.a, for a plain water solution and a 6 s aerosol residence time inside 

the spray chamber, droplets with diameters lower than 3.4 µm will completely 

evaporate. If the nebulizer is operated at low liquid flow rates (i.e., below 20 µl/min) 

and it generates primary aerosols with maximum diameters below 3.4 µm, the total 

solution will evaporate and will be transported to the plasma for both water and volatile 

solutions. As a result, the interference induced by a volatile organic solvent in terms of 

aerosol transport rate disappears.  

  Because the mass of solvent (or matrix) transported to the plasma is low, oxide 

levels in ICP-MS are much lower at low liquid flow rates than at higher ones [51], thus 

giving rise to higher ionization efficiencies [52,53]. ICP-MS matrix effects caused by 

the presence of ethanol in the solution are also mitigated at low liquid flow rates. Thus, 

for the analysis of undiluted wines in ICP-MS, Augagneur et al. [50] found that at 1 

ml/min the signal for the wine sample decreased by a factor of 2 – 5 with respect to that 

for a plain water standard, while at 30 µl/min, the signal suppression effect disappeared. 

At 10 µl/min, several organic solvents and petroleum may be analyzed directly through 

ICP-MS with the DIHEN [54], not feasible at 50 µl/min [55]. 

 

Eliminado: Figure 3
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3.- Devices used for the introduction of liquid microsamples in ICP techniques 

 

 Generally speaking, sample introduction systems used for the analysis of low 

liquid sample volumes in which the analytical signal is continuously registered can be 

classified into three different groups:  

(i) a nebulizer coupled to a spray chamber;  

(ii) a nebulizer coupled to a desolvation system;  

(iii) a direct injection nebulizer.  

The present section describes these three different possibilities.  

 

3.1.- Micronebulizers coupled to spray chambers  

 

Several micronebulizers have been developed to perform the analysis of 

microsamples (Table 2). The suitability of pneumatic concentric micronebulizers for the 

analysis of microsamples has been demonstrated in ICP-AES as well as in ICP-MS [53, 

56,57]. Among pneumatic concentric micronebulizers we can find the MicroConcentric 

Nebulizer (MCN) [58] and the aforementioned HEN [27], MMN, and PFAN.  

 

3.1.1. High Efficiency Nebulizer (HEN) 

 

Originally introduced in 1992 [59], the HEN is made entirely of glass (Figure 

7.c). Its design is similar to a Meinhard® A type pneumatic concentric nebulizer, but it 

has reduced critical dimensions [5660]. This fact has three important implications: first, 

because of the reduced inner diameter of the capillary, even clean aqueous solutions 

must be filtered to avoid tip blockage caused by the presence of fibres or small particles; 
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second, because of the low cross-sectional area of the gas exit, the gas pressure should 

be rather high (Table 2). This latter factor makes it necessary to use an external 

additional gas cylinder with the consequent requirement for using special high pressure 

adapters and lines for the gas stream [60]; and third, the HEN is a rather fragile device 

[10]. In fact the capillary of this nebulizer can be easily broken when cleaning the HEN 

if it is not carefully used.  

Figure 7.c shows a magnified picture of the nebulizer tip whereas a top view is 

shown in Figure 7.d. In the latter figure, it can be observed that the nebulizer capillary is 

not perfectly centred with respect to the nebulizer orifice. This fact could lead to 

problems associated with unstable aerosol generation. However, as one of the referees 

of the present review verified experimentally, this situation is only found when the gas 

is not flowing through the nebulizer. When a gas stream is introduced, the capillary is 

centred by the action of the argon flow. 

The aerosols obtained at the exit of the spray chamber (tertiary aerosols) with the 

HEN are finer than those found for a conventional pneumatic concentric nebulizer. The 

Sauter mean diameter (D3,2) is approximately 2 – 3 times lower for Ql included within 

the 10 to 1200 µl/min range [12]. In fact, 90-95% of the aerosol volume consists of 

droplets finer than 8 µm [29], which are efficiently vaporized in an Ar ICP [61]. 

Tertiary aerosols for a HEN and a conventional pneumatic nebulizer travel at nearly the 

same velocity although, as for primary aerosols, the droplet velocity distribution is 

significantly narrower for the micronebulizer [12]. As a result, the ICP-MS and ICP-

AES short-term signal precision is better for the HEN than for a conventional pneumatic 

concentric nebulizer [27,29,51]. A further advantage of the HEN is that, at low liquid 

flow rates, the tertiary aerosol droplet number density is much higher for this nebulizer 

than for a conventional concentric one. Thus, at 10 – 20 µl/min, this parameter is up to 
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about 30-fold higher for the HEN, while it is just a 25% lower than the number density 

for tertiary aerosols obtained with a conventional nebulizer operated at 1.2 ml/min [12]. 

The combination of the primary aerosol size and velocity distributions is likely the 

reason for this result. 

As for other pneumatic nebulizers, for the HEN there is a variability of the 

results from one nebulizer for another. Thus, at 50 µl/min liquid flow rate and 0.7 l/min 

gas flow rate, the median of the primary aerosol volume drop size distribution were 2.8 

and 3.9 µm for two similar HEN designs. 

 

3.1.2. Microconcentric Nebulizer (MCN) 

 

The MCN can be easily adapted to either double pass or cyclonic spray 

chambers by means of special end caps. Figure 7.a shows a schematic of the MCN body 

and a picture of its nozzle. It consists of a polyamide narrow capillary (see Table 2) 

adapted to a tee shaped plastic body. The gas exit cross-sectional area is reduced at the 

exit of the nebulizer by means of a sapphire adapter. As can be observed from the 

picture shown in Figure 7.a, the liquid capillary ends outside the nebulizer. This can be 

considered as a drawback because the aerosol is generated at the exit of the nebulizer 

where the gas stream has lost a fraction of its kinetic energy. Additionally, the capillary 

tip can become long term deteriorated and, consequently, aerosol production is 

degraded. In addition, the position of the polyamide capillary with respect to the 

nebulizer nozzle is a critical variable and small changes in it can lead to noticeable 

modifications in the nebulizer performance [62]. Therefore, the MCN can be considered 

as a rather fragile nebulizer. 
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In ICP-AES, the MCN gives rise to limits of detection similar to or slightly 

higher than those calculated for conventional nebulizers operated at liquid flow rates 

more than ten times higher [63]. This nebulizer provides higher ICP-MS sensitivities 

than conventional pneumatic nebulizers operated at nearly the same rates. Thus, at 50 

µl/min, the intensities for ion lines with the MCN are about 3 times higher than those 

obtained with a cross-flow nebulizer. If the delivery rates take values below 30 µl/min, 

the MCN still gives stable signals while the standard cross-flow does not generate any 

analytical signal [53]. In agreement with these results, at a given liquid and nebulizer 

gas flow rate, the MCN leads to higher oxide ratios (UO+:U+) than the cross-flow. These 

results owe to the higher mass of solution transported to the plasma in the case of the 

micronebulizer. 

The MCN appears to show a high tolerance to high dissolved solids [52,53]. 

Thus, for samples having a salinity up to 3.5%, no blockage problems were observed 

[64]. However, other reports [62] indicated that the MCN became blocked when buffer 

solutions containing 50 mM of tris were nebulized. Because it is entirely made of 

rugged polymeric materials, the MCN shows high tolerance to HF. In this case, the ICP-

MS signal did not change in a significant way when the acid concentration was 

increased from about 1% to 20% [65].  

In contrast, the MCN is in some sense more sensitive to changes in the sample 

salt concentration than a conventional pneumatic concentric device. De Wit and Blust 

[64] determined the signal stability, taken as the standard deviation from a set of 10 

consecutive signal replicates, for solutions containing different salt concentrations. In 

the case of water samples, both nebulizers provided similar stabilities. Nonetheless, 

even for diluted salt solutions the signal stability was significantly poorer (i.e., higher 

standard deviations) for the MCN operated at 100 µl/min than for a conventional 
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pneumatic nebulizer at 1.6 ml/min. Another problem encountered when working with 

the MCN is the different behaviour found between two different MCNs. Thus, 

according to some authors, the precision [62] as well as the matrix effects [66] depend 

to some extent on the MCN used. 

 

3.1.3. MicroMist nebulizer (MMN) 

 

The MMN is a modified glass conventional concentric nebulizer [67]. The most 

important difference with respect to other micronebulizers, such as the MCN and the 

HEN, is that for the MMN the liquid capillary is recessed with respect to the nebulizer 

tip (Figure 7.e). This fact confers to the MMN the ability to work with high salt content 

solutions without suffering from nebulizer tip blockage. Furthermore, the outer wall of 

the inner capillary is a tapered, ground glass piece. This may reduce the variability of 

the results found for two similar MMNs. 

A problem that has been found with the MMN derives from the nebulizer to 

nebulizer dimensional irreproducibility. This point has been illustrated by characterizing 

the free liquid uptake rate for three different MMNs. Thus, according to Yanes and 

Miller-Ihli [68], whereas for one MMN an increase in the gas flow rate led to an initial 

increase and then to a drop in the free liquid uptake rate, for a second one the uptake 

rate did not vary significantly with Qg. For a third MMN, a decrease in the liquid flow 

rate was registered as the gas flow rate increased. Not only the trends with Qg, but also 

the absolute values of the liquid free uptake rate were different, depending on the MMN 

used. Thus, for three nominally identical nebulizers and at Qg = 1.05 l/min, the liquid 

flow rates were roughly 20, 140 and 180 µl/min. 
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3.1.4. PFA micronebulizer (PFAN) 

 

The PFA (tetrafluoroethylene–per-fluoroalkyl vinyl ether copolymer) 

micronebulizer is an HF resistant, all-Teflon concentric nebulizer design. It is also 

useful for the analysis of samples containing high concentrations of organic solvents 

and dissolved solids [69,70].  

Apparently, this nebulizer is identical to a pneumatic concentric nebulizer. 

However, from a close inspection of the nebulizer tip, it can be observed that the liquid 

capillary ends inside the nebulizer (Figure 7.f). The PFAN sample tubing is much more 

recessed than in the case of the MMN (i.e., 6 mm and about 1 mm, respectively). 

Therefore, the aerosol generation mechanism is somewhat different from that for other 

concentric micronebulizers. The liquid stream emerges through this capillary and is 

deposited on the inner walls of the nebulizer. Simultaneously, the gas stream is 

accelerated as it goes along the nozzle. Therefore, the liquid and gas interaction takes 

place inside the nebulizer. As a result, the thickness of the liquid vein attached to the 

inner walls of the nebulizer decreases. This process, known as liquid prefilming, leads 

to a close interaction between the gas and liquid streams and promotes the production of 

fine droplets [71,72]. The prefilming is also produced in conventional pneumatic 

nebulizers although in this case the process takes place at the exit of the nebulizer [9]. 

The PFA nebulizer has been extensively used under free aspiration mode 

[23,73]. This allows the analysis of extremely diluted samples without contamination 

from pump tubing and, at the same time, reduces the signal noise. Unfortunately, 

changes in the solution viscosity can modify the liquid flow rate, thus degrading the 

accuracy of the results. 
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3.1.5. Demountable concentric nebulizers 

 

 One of the problems found with concentric micronebulizers is tip blockage that 

may occur when high salt content solutions, slurries or non-filtered solutions are 

analyzed. A remedy proposed to mitigate this problem is to use a demountable 

pneumatic micronebulizer. In this way, only the damaged component (i.e., generally the 

sample capillary) instead of the entire nebulizer, needs replacement. 

 The Concentric Capillary Nebulizer (CCN) [74] is a demountable pneumatic 

concentric micronebulizer that has a stainless steel body used to adapt a PEEK tube 

containing the sample capillary (Figure 8). A second body is used to adapt the nebulizer 

to a conventional spray chamber. Finally, the system is sealed by means of a Teflon 

ferrule to avoid gas leakage. 

 Characterization of the aerosols reveals that the drop size distribution curves are 

multi modal (i.e., several maxima are found in the distribution represented in band). 

According to Wang et al. [74], most of the droplets produced by the CCN had diameters 

below 10 µm. However aerosol surface mean diameters (D3,2) included within the 7.5 to 

54.9 µm range were obtained. D3,2 values for concentric and cross flow nebulizer were 

about 9 and 16 µm, respectively. Under optimum conditions, tertiary aerosols for the 

CCN were finer and less dispersed than those found for conventional pneumatic 

nebulizers. Thus, for a cyclonic spray chamber CCN tertiary D3,2 values ranged from 2.8 

to 4.1 µm whereas they were 5.8 µm for a pneumatic concentric conventional nebulizer. 

Note that in these experiments the CCN and concentric nebulizer were operated at 

liquid flow rates of 50-500 µl/min and 1 ml/min, respectively. As regards the aerosol 

size dispersion, the CCN span took lower values than unity while for the concentric 
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nebulizer it was >100. The reported solvent transport efficiency for the CCN was close 

to 60% at 50 µl/min liquid flow rate delivery. 

 Another demountable concentric nebulizer (DCN) has been recently 

characterized [75]. The nozzle of the DCN is made from a 100 µl surgical pipette and 

the solution is driven to it by means of fused-silica tubing having 95 or 190 µm inner 

diameters. This assembly is fitted by means of a brass tee. According to O’Brien et al. 

[75], a decrease in the sample capillary inner diameter gave rise to finer primary 

aerosols. Thus, for the DCN equipped with a 95 µm capillary id, at a gas flow rate of 1 

l/min and a liquid flow rate of 0.5 ml/min, 70% of the aerosol mass was contained in 

droplets with diameters less than 10 µm. The good performance of the DCN at low 

liquid flow rates was demonstrated by the fact that with this nebulizer operated at 85 

µl/min, the ICP-MS limits of detection were from 2 to 20 times lower than those for a 

conventional cross-flow nebulizer obtained in a different study by the same authors 

[76]. 

 

3.1.6. High efficiency cross-flow micronebulizer (HECFMN) 

 

The above mentioned micronebulizers are of the concentric type. They have 

several common characteristics and/or drawbacks that should be considered: (i) in some 

cases, the tolerance to dissolved solids is low, thus giving rise to irreversible tip 

blockage; (ii) some of them are fragile; (iii) all of them have a suction created in the 

sample uptake tubing that degrades the separation efficiency in techniques such as 

capillary electrophoresis or µ-HPLC. A cross-flow nebulizer has been adapted to work 

in ICP-MS at liquid flow rates in the range of 5 to 120 µl/min to overcome the 

drawbacks mentioned above [77]. The nebulizer body is made of PTFE whereas a 
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fussed silica sample capillary is used for the sample and a PEEK nozzle is employed for 

the argon stream (Figure 9.a). This nebulizer was made in such a way that the sample 

uptake capillary could be easily replaced. Furthermore, by means of a U-shaped cut 

performed at the end of the gas exit capillary, it was easy to achieve alignment of the 

capillaries in a reproducible way. Table 2 shows a comparison between the critical 

dimensions of the HECFMN and a conventional cross-flow nebulizer. Again, the 

micronebulizer had capillaries with lower inner diameters than the conventional one. 

The dimensions of the sample capillary have an important effect on the ICP-MS signal. 

Thus, it has been observed that for a given outer diameter (i.e., 375 µm) lowering the 

inner diameter from 150 to 75 µm led to an increase in the signal by a factor of up to 2. 

Conversely, for an identical inner diameter, both signal and precision were slightly 

improved (i.e., by a factor lower than 1.3) using capillaries with higher outer diameters. 

Capillaries having 375 µm od and 75 µm id provided the best results in terms of both 

sensitivity and signal RSD.  

In a comparison study, Li et al. [77] estimated that the HECFMN provided finer 

and more uniform primary aerosols than a conventional cross-flow nebulizer. This study 

was carried out by exposing several bands of pH paper to the aerosols produced with a 

diluted nitric acid solution and further observing the marks caused by the droplets. As a 

result, the mass of analyte delivered to the plasma per unit of time was higher (i.e., 

HECFMN analyte transport efficiencies ranged from 23 to 100% as the liquid flow rate 

was varied between 100 and 5 µl/min). By comparison of the ICP-MS limits of 

detection for the HECFMN at 50 µl/min with those obtained for a conventional 

nebulizer operated at 1 ml/min, it was found that they were similar for some elements 

although for others they were up to 4 times lower for the former nebulizer.  
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3.1.7. Parallel Path Micronebulizer (PPMN)  

 

The parallel path microcronebulizer (MiraMist®) has been used for the 

introduction of liquid samples in plasma spectrometry [78,79]. In this particular design, 

the liquid and gas streams are aligned to each other. Figure 9.b shows a scheme of the 

nebulizer nozzle and a picture of the PPMN. The liquid passes through the conduction 

channel (Figure 9.b.1) until it reaches its end. As it emerges through the sample orifice 

the liquid bulk remains unaltered due to surface tension until it enters into contact with 

the gas exit. At this moment, the gas stream transfers a fraction of its initial kinetic 

energy, the liquid is deformed and some droplets are produced (Figure 9.b.2). 

The PPMN is made completely of Teflon and has a relatively large conduit for 

the sample that permits the fitting of a 350 µm od glass capillary to work at liquid flow 

rates on the order of several microliters per minute in CE or microLC applications. As it 

can be seen in Table 2, the gas back pressure is higher than that available in most 

plasma instruments. Therefore, it is necessary to use an extra gas line when this 

nebulizer is being operated. There is another parallel path micronebulizer available to 

work at liquid flow rates higher than 50 µl/min [78]. Due to the fact that the liquid and 

gas outlets are separated, this nebulizer has no suction [80]. For that reason, it is 

compatible with CE – ICP coupling. According to the manufacturer, the PPMN does not 

suffer from blockage when working with high salt content solutions or slurries.  

For the PPN, the liquid passes across a “trench” between the sample tube and the 

gas orifice and then to a spout that sticks out into the middle of the gas orifice. This last 

component is hand made. Although the trench should have an influence on the 

nebulization process, we did not find any published work dealing with this parameter. 
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 A recent study reported that the position of the gas outlet on the nebulizer plays 

a very important role in terms of sensitivity. Thus, Yanes and Miller-Ihli [81] found that 

a change in the orientation of the nebulizer inside the spray chamber led to up to a two-

fold increase in the ICP-MS signal. This was due to the better orientation of the aerosol 

cone inside the spray chamber that made the solution transport more likely. Comparison 

of different PPMNs provided relative signal changes as high as 100%. Therefore, not 

only the nebulizer orientation but also the distance between the gas and the liquid exits 

significantly affected the performance of the system. 

 

3.1.8. Sonic Spray Nebulizer (SSN) 

  

The Sonic Spray Nebulizer (SSN) [82] is a modified version of the Sonic Spray 

Ionization device initially used for ionizing organic compounds in LC/MS [83]. As can 

be seen in Figure 9.c, the SSN consists of a cavity with a final orifice. The end of a 150 

µm od 50 µm id silica capillary is placed in the middle of this orifice. A gas stream is 

introduced into the nebulizer cavity and it is accelerated as it goes through the orifice. 

Simultaneously, the solution is delivered to the nebulizer and reaches the end of the 

capillary, thus giving rise to the aerosol. At 1.0 l/min nebulizer gas flow rate and 50 

µl/min delivery flow rate, the SSN is able to provide ICP-AES sensitivities from 0.5 to 

1 times those obtained for a conventional concentric nebulizer operated at 800 µl/min. 

This fact means that with the SSN, absolute sensitivities for ICP-AES are more than 

five-fold improved with respect to conventional pneumatic nebulizers [84]. According 

to Huang et al. [84], this improvement was due to an increase in the nebulization 

efficiency. 
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3.1.9. Multi Micro Spray Nebulizer (MMSN) 

 

The Multimicrospray Nebulizer (MMSN) [85] presents a way to enhance the 

interaction efficiency between the gas and liquid streams. This device is an improved 

version of the SSN. In this case, the sample solution is divided into three streams 

(Figure 9.d). Each one of the three capillaries employed is centred with three respective 

gas exit orifices. There are thus three aerosol generation points (i.e., ‘nebulization 

units’) behaving like three micronebulizers. As a result, the gas energy is more 

efficiently employed in the aerosol generation. Indeed, it has been demonstrated that the 

analyte transport efficiencies and sensitivities reached by the MMSN were higher than 

those provided by a conventional pneumatic concentric nebulizer and a SSN. 

Furthermore, the sensitivities provided by the MMSN operated at liquid flow rates 

below 200 µl/min were higher than those reported for a conventional pneumatic 

concentric nebulizer operated at liquid flow rates included within the 0.5-1.5 ml/min 

range. The improvement factor was close to two for most of the elements tested. 

 

3.1.10. Oscillating Capillary Nebulizer (OCN) 

 

 Strictly speaking, the Oscillating Capillary Nebulizer (OCN) [86,87] cannot be 

considered as a ‘pure’ pneumatic micronebulizer. It consists of two coaxially mounted 

silica capillaries. Samples travel along the central capillary (40-50 µm id, 105-150 µm 

od) whereas gas flows through the area left between this capillary and an external one 

(250 µm id, 350-510 µm od) [87]. The gas stream induces liquid capillary oscillations. 

A longitudinal standing wave appears along the liquid capillary, which is partially 

responsible for the aerosol generation. Droplets are also produced as a result of the 
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liquid and high velocity gas stream interaction. This device is also demountable and if 

damage is produced on any component, it can be easily replaced. 

The OCN generates fine aerosols and it is able to work properly at liquid flow 

rates as low as 1 µl/min with analyte transport efficiencies approaching 100%. In an 

optimization study, Hoang et al. [87] observed that, in order to obtain fine primary 

aerosols, sample tubes with lower inner diameters and wall thickness were required. 

Interestingly, and unlike conventional nebulizers, with the OCN, aerosols leaving a 

single pass spray chamber were coarser than primary aerosols. According to these 

authors this was due to the enhanced coalescence found in the case of the OCN 

compared to conventional pneumatic nebulizers. The reason for this behaviour could be 

based on the low efficiency in removing coarse droplets presented by the spray chamber 

used (i.e., a single pass spray design) and on the high droplet number density of the 

aerosols generated by the OCN. 

 

In addition to the nebulizers described so far, there are other devices that have 

been used for the introduction of liquid microsamples in ICP techniques, such as the 

Babington, Glass Frit, Micro-ultrasonic nebulizers, the Monodisperse Dried 

Microparticulate Injector and the Electrospray Nebulizer. Over the last years, these 

nebulizers have not been subject to any important developments. The principles of 

operation and the results reached by these additional micronebulizers can be found in 

the literature [88].  

 

3.2. Comparison of  micronebulizers 
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As a result of their critical dimensions (Table 2), the liquid and gas interaction 

takes place more efficiently and finer primary aerosols are generated for the 

micronebulizers than for the conventional ones [28]. By examining some pneumatic 

concentric micronebulizers, it can be concluded that, in general, the gas back pressure 

follows the decreasing order: HEN>MMN>PFAN. The kinetic energy available for 

aerosol generation is higher for the HEN than for the remaining micronebulizers, 

leading to finer primary aerosols. Recalling Figure 4, it can be observed that, for given 

gas and liquid flow rates, the HEN generated the finest primary aerosols among the 

devices tested (i.e., the drop size distribution curves were shifted towards the left with 

respect to the remaining nebulizers). Approximately 89% of the aerosol liquid volume 

generated by the HEN is contained in droplets with diameters less than 10 µm. This 

result was in full agreement with the data reported by Olesik et al. [27] and Liu et al. 

[29]. For the data in Figure 4, the percentage of aerosol liquid contained in droplets with 

diameters less than 10 µm was 93%.  

The results found for the PFAN were highly interesting. It can be seen that the 

gas back pressure is lower than for the MMN. Therefore, the amount of kinetic energy 

required to produce the aerosol is higher for MMN. Nonetheless, coarser primary 

aerosols were reported for the MMN than for the PFAN. This result was explained by 

taking into account the aforementioned liquid prefilming [71,72]. The data obtained 

with ICP-MS are quite similar to those just discussed for ICP-AES, i.e., the sensitivities 

are up to four times higher for the HEN than for the remaining micronebulizers.  

As regards the free liquid uptake rate (Table 3), for a 0.75 l/min gas flow rate, 

this parameter is 40, 290 and 160 µl/min for the HEN, MMN and PFAN 

micronebulizer, respectively [72]. If we compare the data for the HEN with those for the 

MMN or PFAN, it emerges that the narrower the nebulizer capillary, the lower the free 
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liquid uptake rate. Finally, the results for the MMN and PFAN are likely due to both the 

higher backpressure required for the MMN and the capillary recess in the case of the 

PFAN [72]. The nebulizer type also affects the value of the uptake rate (Table 3). Thus, 

it can be observed that the use of a cross-flow design with reduced sample capillary 

dimensions gives rise to a drop in the free uptake rate of liquid with respect to the 

remaining systems. 

Comparison between the MMN and the MCN led to the conclusion that the 

former generates coarser droplets with subsequent loss of sensitivity. Thus, Kuczewski 

et al. [89] found that the 103Rh signal for the MCN was 1.25 to 2 times higher than that 

obtained for the MMN. In concordance with this study Becker et al. [90] reported 230Th 

limits of detection about 3 times lower for the former nebulizer than for the MMN. For 

other isotopes (e.g., 237Np, 238U) similar limits of detection were obtained for both 

nebulizers. Interestingly, as Table 4 shows, the MO+/M+ values found in the literature 

for the different micronebulizers tested are similar irrespective of the ICP-MS 

instrument, liquid and gas flow rates used.  

When dealing with LC-ICP-MS coupling, the mobile phase and the liquid flow 

rate preclude the selection of the best micronebulizer. Thus, for example, for a mobile 

phase consisting of 70% (v/v) methanol and 29% (v/v) water, the MCN provided at Ql = 

200 µl/min higher limits of detection than both a MMN and a conventional pneumatic 

concentric nebulizer [35]. In contrast, if the mobile phase was 10% (v/v) methanol, the 

ICP-MS signal for the MCN at 100 µl/min was slightly lower than that for the MMN 

and about 9-fold higher than that for the conventional nebulizer. These results were 

accompanied by an increase in the mass of solvent (both in liquid and vapour form) 

transported to the plasma in the case of micronebulizers with respect to the conventional 
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one. According to these results, the benefits of low flow nebulizers were only achieved 

when low liquid flow rates (i.e., below 100 µl/min) were used. 

For Capillary Electrophoresis (CE), generally a small sample volume is 

analyzed. Therefore, the challenge for coupling CE to ICP techniques is to develop an 

efficient interface [91]. Several micronebulizers have been extensively used for this 

purpose [92,93,94].  

Despite the fact that the HEN affords better analytical figures of merit, the 

MMN is better suited for CZE-ICP-MS coupling because, unlike the HEN, a make – up 

gas flow (ca, 0.5 l/min) in the spray chamber is not necessary [95]. Note that in this 

study, the HEN was directly connected to the spectrometer gas line. The MMN has also 

been recommended for CE-ICP-MS coupling over the MCN because of simplicity of 

operation and transport efficiency [96,97]. In addition, unlike the MCN, because the 

MMN is made entirely of glass, it is easy to detect the presence of bubbles. Finally, the 

MCN is more vulnerable to tip blockage caused by the crystallization of the buffer salt 

[96]. 

Additionally, the results obtained by Polec et al. [98] with a MCN equipped with 

a reduced inner diameter capillary were better in terms of analytical figures of merit 

(i.e., lower limits of detection and higher sensitivities) than those for a conventional 

MCN [99] or a MMN [100]. Thus, for example, Cd ICP-MS limits of detection were 10 

[98] and 180 ng/ml [99] for the modified and conventional MCN, respectively. As 

regards speciation of mercury, the MCN led to limits of detection similar to other CE-

ICP-MS interfaces [101]. However, the long term stability exhibited by the MCN is 

poorer than that achievable with other nebulizers such as the MMN [¡Error! Marcador 

no definido.]. 
Eliminado: ¡Error! Marcador 
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The majority of the nebulizers used as interfaces between CZE-ICP techniques 

are self-aspirating systems and the separation can be degraded. Even though the MCN 

provides higher sensitivities and lower limits of detection, a cross-flow nebulizer 

affords better CZE-ICP-MS separation efficiencies for metallothioneins [62]. This 

arises because of the higher dead volume for the former (c.a., 640 nl) than for the cross-

flow nebulizer (essentially zero). 

The Oscillating Capillary Nebulizer (OCN) works satisfactorily as an interface 

between HPLC and ICP-MS [86]. With a home made OCN equipped with a gas 

capillary having 250 µm id and 360 µm od, B’Hymer et al. [102] found that it afforded 

higher limits of detection than the HEN for the speciation of four organo-arsenic 

compounds. This was attributed to the lower sensitivity and the higher background 

noise showed by the former device. Nonetheless, the peak efficiencies, defined as the 

number of theoretical plates, were virtually the same for the two devices tested. 

Meanwhile, the precisions reported for the OCN were acceptable for arsenic species 

both in terms of peak height and area.  

The results found by the OCN can be improved by modifying the dimensions of 

the gas capillary. With a 255 µm id and 510 µm od capillary this nebulizer provides 

ICP-MS sensitivities 2.5 to 3 times superior than those measured for a HEN [87]. This 

arises because of the improved analyte transport efficiency. 

 

3.3. Selected Applications of pneumatic micronebulizers 

 

Pneumatic concentric micronebulizers have been successfully applied to the 

determination of samples of different nature. The MCN has been used for the analysis 

of hair, biological samples and peptides by ICP-MS. Multielement analyses have been 
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performed on only 100 µl of sample with recoveries close to 100% [103]. For analysis 

of Certified Reference Materials of biological origin, such as bovine liver, mussel tissue 

and powder milk, satisfactory results were obtained using ICP-AES, although the 

analytical performance was degraded for elements present at levels close to the 

detection limit [64]. Undiluted wine samples have been analyzed by ICP-MS employing 

a MCN with a reduction in the matrix effects and a consequent increase in the 

sensitivity [50]. A method based on the coupling of a flow injection system to a High 

Resolution ICP-MS with the MCN acting as an interface has been particularly efficient 

for the analysis of geological microsamples [104]. A 10 mg silicate sample containing 

less than 10 µg/ml was efficiently analyzed. In some instances, the nebulizer is operated 

under its free aspiration mode. This is done in order to reduce to a minimum both the 

signal fluctuations and the likelihood of contamination of the sample by the pump 

Tygon tubing. Both factors are particularly needed when conducting environmental 

analysis on low sample volumes (c.a., 1 ml) such as those obtained when dealing with 

Alpine snow and ice [105,106]. In ICP-MS, Barbante et al. [105] reported a 3-fold 

increase in sensitivity for the MCN operated at 40 – 80 µl/min with respect to a 

pneumatic concentric nebulizer at 800 µl/min. 

The HEN has been used as an interface between microscale flow injection (µFI) 

– HPLC and ICP-MS showing the following features [107]: (i) limits of detection on the 

femtogram range; (ii) less sample matrix is introduced into the plasma than in 

continuous mode; (iii) its coupling to a conventional spray chamber is simple because 

its external dimensions are equal to those for conventional pneumatic concentric 

nebulizers. These facts, together with the advantages offered by µFI systems (i.e., low 

matrix effects, reduction in the sample and carrier volume and increased sample 

throughput) made this coupling very interesting for speciation studies.  
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Other applications of the HEN include its coupling to a desolvation system for 

the analysis of corrosive samples [108]. At a 200 µl/min delivery flow rate, the reported 

analyte transport efficiency for this kind of samples is close to 50%. This value is 

slightly higher than that found for an Ultrasonic nebulizer (i.e., 40%). The use of the 

HEN for the analysis of biological samples has also been reported [29,109]. 

Liquid Chromatography columns with internal diameters from 0.5 to 2 mm 

(microbore columns) have several important advantages in chromatographic 

applications, such as reduced consumption of mobile phase and their suitability for the 

analysis of microsamples. Note that the sample volume consumed when coupling to 

ICP-MS has been even lower than 1 µl [107]. One of the problems that can be found 

with microbore columns is that the analytical signal is too low, because of the poor 

efficiency of the sample introduction systems. This problem can be overcome by using 

micronebulizers. Additionally, due to their low dead volume, they contribute to 

achieving narrow peaks. The MCN has been used as an interface between liquid 

chromatography and ICP spectrometry. When coupled to an ion exchange column, the 

MCN can be efficiently employed to perform the determination of bromate and bromide 

in waters through ICP-MS [110] or to speciation studies [52,111]. Porous graphitic 

columns have also been used in conjunction with a MCN for the determination of boron 

in urine and blood plasma through ICP-AES and ICP-MS [112]. Because of the low 

sample consumption rates when working with micronebulizers, it is possible to work 

with reversed phase liquid chromatography with carbon containing mobile phases. 

However, this advantage can be partially hampered by the higher solvent transport 

efficiency exhibited by low flow nebulizers. A PFAN has been adapted to a Peltier 

cooled spray chamber and has been successfully used for the chiral speciation of 

selenium compounds [113]. The MMN has been used as an interface between HPLC 
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and ICP-SFMS for arsenic speciation. In order to accommodate the liquid flow through 

the column (i.e., 1.5 ml/min) to the sample uptake of the MMN (i.e., 0.2 ml/min), a 

solvent split at a 1 : 7.5 was used. Even under these conditions, limits of detection for 

the MMN were two-fold lower than those provided with a conventional pneumatic 

nebulizer without liquid flow splitting [114].  

The Parallel Path Micronebulizer is an attractive alternative for coupling µHPLC 

or CE to ICP techniques [80]. Thus, with this system, Yanes and Miller-Ihli [115] 

successfully separated five cobalt species through µHPLC-ICP-MS. Figure 9.b shows a 

schematic of the manifold used by these authors. Because this is a non self-aspirating 

nebulizer, it can be potentially used in CE applications. As for other systems, a make-up 

liquid stream is still required in order to provide electrical connection. 

An ideal capillary electrophoresis ICP-MS interface should fulfil three main 

requirements: (i) it must provide electrical contact for electrophoretic separations; (ii) it 

must adapt the electroosmotic flow to the flow through the nebulizer capillary; (iii) any 

laminar flow inside the CE capillary should be avoided. The suction observed for 

pneumatic concentric micronebulizers causes the appearance of a laminar flow through 

the capillary, giving rise to a loss of separation efficiency. In order to mitigate this, a 

make-up flow is often employed. Another solution consists of the application of a 

negative pressure to the inlet vial [99]. The suction effect has been further mitigated by 

reduction of the capillary inner diameter of the nebulizer [92,116]. CZE-ICP-MS was 

studied by Olesik et al. [117]. In their work, the CZE capillary was directly inserted into 

the nebulizer capillary, while grounding was accomplished by coating a portion of the 

nebulizer liquid conduction with silver paint. A sheathing electrolyte flow was able to 

eliminate the laminar flow in the electrophoresis capillary. In other work, Lu et al. [118] 

used an interface in which the nebulizer CZE capillary position could be varied and the 
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electrical connection was achieved with an electrolyte solution. They also improved the 

separation by applying a negative pressure at the sample inlet to compensate for the 

nebulizer suction effect. The magnitude and direction of the laminar flow can also be 

modified by means of a sheath electrolyte stream [119] or by using sol-gel frits placed 

inside the CE capillary [120,121]. 

The MMN has proven to be very efficient for CE-ICP-MS coupling and it has 

been applied to the separation of different oxidation states of long-lived actinides 

[¡Error! Marcador no definido.] and speciation of arsenic in soils [122]. With a 

method based on large volume sample stacking, Álvarez-Llamas et al. [123] speciated 

metallothioneins through CE-ICP-MS and observed that the use of a HEN as an 

interface provided  limits of detection for 114Cd about four times lower than when a 

Babington nebulizer was used. 

The MCN has been employed as an interface between separation and plasma 

techniques [124,125]. In CE-ICP-AES, sensitivities for the separation and determination 

of Cr2O7
2- and Cr3+ and Cu2+ and Cu(EDTA)2- are higher for the MCN in comparison to 

a conventional pneumatic concentric nebulizer due to the higher analyte transport 

efficiency [126]. Furthermore, provided that the suction action of the MCN is less 

pronounced than that for the conventional nebulizer, the separation becomes more 

efficient in the first case. Note that the sample flow rate used in this study was close to 4 

µl/min, and that for the make up solution about 13 and 34 µl/min for the MCN and 

conventional nebulizer, respectively. In general terms, the limits of detection are lower 

for the former nebulizer. With a modified MCN [98], the pressure in the system was 

regulated by the self-aspirating flow of the make up liquid. Another means used to 

reduce the suction effect consists of the use of a High Efficiency Cross-Flow 

Micronebulizer (HECFMN). Due to the configuration of this device, the suction effect 
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is mitigated with respect to the aforementioned micronebulizers, thus supplying good 

separation efficiencies [127]. 

A modified version of the OCN has been used as a CE-ICP-MS interface [128]. 

In this case, three concentric tubes, instead of two, were used. The innermost capillary 

drove the solution towards the nebulizer nozzle whereas the buffer solution was pumped 

through the space left between this capillary and the intermediate one. Finally, the 

nebulizer gas circulated between the outermost capillary and the intermediate one.  

With pneumatic concentric micronebulizers, interferences caused by the 

presence of other elements can be eliminated by using capillaries with a strong cation 

exchanger retained on their inner surfaces. These capillaries are easily regenerated by 

running a concentrated acid solution through the nebulizer, the interfering cations being 

exchanged by protons. Thus, Riepe et al. [129] used a modified MCN for the 

determination of 103Rh in the presence of interfering species. In order to achieve this 

study, the MCN was equipped with a silica capillary. After activation of this capillary 

with NaOH, the cation exchanger was fixed to the capillary. The interfering elements 

were retained in the capillary and just the analyte was driven towards the spectrometer. 

With this method, no significant differences were found between the calibration lines 

obtained in the presence and in the absence of the interferents.  

 

3.4.- Low inner volume spray chambers 

 

 The design of the spray chamber has a crucial effect on the analytical 

performance of ICP spectrometers. According to Schaldach et al. [130], the spray 

chamber geometry is important mainly when working at low liquid flow rates. Despite 

its importance, relatively few reports dealing with the development of new spray 
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chambers useful for working at liquid flow rates, on the order of several microliters per 

minute, have been published. Basically, efforts have been concentrated on the reduction 

of the inner volume of already existing spray chamber designs so as to shorten the 

wash-out times [131,132,133]. The most commonly used spray chambers are depicted 

in Figure 10. The double pass spray chamber (Figure 10.a) is often the design taken for 

reference. Typically, this chamber has an inner volume of about 100 cm3. In this case, 

the aerosol goes through a tube and then it is forced to modify its trajectory by 180º. 

When working at low liquid flow rates with this chamber, the wash-out times are too 

long, with subsequent drop in analytical throughput. Non-spectroscopic interferences, in 

turn, are severe, thus loosing in terms of analysis accuracy.  

Basically, two categories of spray chambers have been proposed in order to 

efficiently analyze liquid microsamples: the cyclonic spray chambers (Figure 11.b) and 

the single pass ones (Figure 11.c). Chambers of this kind with inner volumes lower than 

5 – 20 cm3 are recommended. 

 

3.4.1. Low inner volume cyclonic spray chamber  

 

More than ten years ago, Hieftje et al. presented a low inner volume rotary spray 

chamber similar to the cyclonic devices [134,135]. More recently, a commercially 

available mini cyclonic spray chamber (called Cinnabar, Figure 11.a) has been used in 

conjunction with a micronebulizer [136]. This chamber typically has a 20 cm3 inner 

volume instead of the approximately 40 cm3 characterizing conventional cyclonic 

designs [67]. The Cinnabar is made of either glass or polyethylene. As Schaldach et al. 

concluded from the simulations performed using computational fluid dynamics [137], 

‘the cyclone spray chamber acts primarily like an impact chamber with regard to the 
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deposition behaviour of aerosol droplets, and not as a typical cyclone used in technical 

areas’. Therefore, in this design, the primary aerosol is tangentially introduced into the 

chamber. A fraction of the aerosol is then lost as it impacts the chamber walls and the 

remaining droplets emerge through the upper exit of the chamber. 

The Cinnabar is an efficient design for removing coarse droplets. Thus, aerosols 

leaving the Cinnabar have similar characteristics to those obtained after using a double 

pass spray chamber [136]. Furthermore, the mass of analyte delivered to the plasma and, 

hence, the ICP-AES sensitivities and limits of detection, are also similar for both 

devices. Moreover, the Cinnabar exhibits important advantages over the double pass 

spray chamber. On the one hand, the wash out times at low liquid flow rates are about 

two times shorter. Thus, at 20 µl/min, this parameter was 34 s and 78 s for the Cinnabar 

and double pass spray chamber, respectively. On the other hand, matrix effects caused 

by mineral acids are less severe for the former design, thus leading to recoveries close to 

100% for certified solid reference materials [22]. Unlike other cyclonic spray chambers, 

the position of the nebulizer inside the Cinnabar spray chamber has no significant effect 

on the ICP-AES analytical figures of merit. 

For ICP-MS, the signals are just slightly enhanced with respect to a double pass 

spray chamber and the wash out times found with the Cinnabar are significantly 

shortened [138]. Due to its simplicity and the small dispersion arising with this spray 

chamber, it has been successfully applied as a CE-ICP-MS interface [139].  

  

3.4.2. Single pass spray chambers 

 

A system based on the use of a single pass spray chamber is the commercially 

available self aspirating interface developed by Prange and Schaummloffel for CE and 
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ICP-MS coupling [140,141]. In their studies, a modified MCN with a narrower capillary 

is used in order to avoid any laminar flow inside the CE capillary. Furthermore, the 

optimization of the nebulization and the CE is carried out independently because the 

interface is divided into two parts: the CE capillary and the nebulizer capillary. A make 

up liquid is used to provide electrical contact and to adapt the nebulizer flow rate to the 

electroosmotic flow. The inner volume of the single pass spray chamber is about 5 – 8 

cm3 [142,143] and, because the liquid flow rate is very low (i.e., 2 – 12 µl/min), the 

solvent totally evaporates inside the spray chamber. As a result, this interface is 

considered as a total sample consumption system and there is no need for an exit drain. 

In a recent modification, the inner volume of the spray chamber has been decreased to 4 

cm3 and the nebulizer capillary inner diameter has been reduced [144]. At low flow 

rates (ca 0.1 µl/min) the modified interface has given rise to higher sensitivity than the 

older one. With this new interface, it has also been demonstrated that the signal does not 

change under gradient conditions. In other words, the sensitivity is not modified as the 

sample matrix changes, which is due to the fact that both the full sample is introduced 

into the plasma and the liquid flow rates used are very low.  

Excellent separation efficiencies have been obtained for arsenic, selenium, 

tellurium and antimony [140]. In addition, this interface has been efficiently applied to 

the separation of metallothioneins in samples having very different matrices [145]. The 

application of this concept to selenopeptide mapping by capillary HPLC (i.e., using 

columns with 300 µm id) coupled to ICP-MS has demonstrated a performance superior 

to the interfaces existing so far in terms of chromatographic resolution and detection 

limits [146]. An octopole reaction cell has been used to permit the determination of 

sulphur [147] and phosphorous [148] in biological samples through a CE-ICP-MS 

system equipped with the above mentioned interface. By using xenon or helium, 
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respectively as collision gases, the interferences caused at the sulphur and phosphorous 

masses have been mitigated. 

Low inner volume single pass spray chambers provide a simplified means to 

transport primary aerosols towards the plasma. These designs are perfect for working at 

low liquid flow rates. Figure 11.b shows a picture of a low inner volume (i.e., 8 cm3) 

single pass spray chamber. This device is operated vertically when the torch is also 

vertical and the nebulizer is adapted to the chamber base. The aerosol follows a direct 

path until it reaches the chamber exit. 

If the primary aerosol is fine enough and the liquid-to-mass volume ratio is low 

enough, the totality of the solvent contained in the aerosol will evaporate before the 

droplets reach the walls of the chamber. The chamber acts, therefore, as an interface to 

promote solvent evaporation before the aerosol enters the plasma, instead of being used 

as a drop size selection system. Single pass spray chambers have been used in ICP-AES 

at low liquid flow rates [149]. Compared to double pass and conventional cyclonic 

spray chambers, single pass designs with inner volumes included within the 8 to 20 cm3 

range provide about two times higher emission intensities. This is likely due to the fact 

that the aerosol path inside the chamber is very simple and the inertial droplet losses are 

less significant, thus favouring the transport of solution towards the plasma. In contrast, 

single pass spray chambers can degrade the signal stability, since coarse droplets can be 

introduced into the plasma. The simplicity of the aerosol trajectory inside the chamber 

also leads to a shortening of the wash-out times. If sample throughput must be 

increased, the inner volume of the spray chamber can be further lowered. Nevertheless, 

the use of smaller spray chamber with an inner volume of c.a. 4 cm3 can lead to a severe 

drop in the analytical signal [149,150,151]. This fact is mainly due to the aerosol losses 

of produced by impacts against the front chamber inner walls. 

Eliminado: Figure 11
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 It is recognized that the spray chamber is an important source of matrix effects 

in ICP techniques [152]. Inorganic acids [153] and dissolved salts [154] can cause a 

signal depression with respect to a plain water standard. The extent of the interferences 

caused by these inorganic species is strongly dependent on the design of the spray 

chamber. Thus, for a Cinnabar spray chamber, the signal drop induced by either 

sulphuric or nitric acid solutions was less significant than for a double pass spray 

chamber. The single pass spray chambers, in turn, were able to mitigate, or even to 

eliminate the interferences caused by these acids [149].  

The simplicity of the spray chamber and the torch configuration has made it 

possible to integrate both components into the so-called Torch Integrated Sample 

Introduction System (TISIS) [155]. Figure 12 shows a schematic of the TISIS. As can 

be seen in Figure 12.a, two Teflon pieces are used: one to adapt the nebulizer to the base 

of the torch and another employed to fit the injector torch. The TISIS can be operated 

either in a vertical or horizontal position. The nebulizer produces the mist at low liquid 

flow rates inside the cavity left between the two Teflon adapters. Because the liquid-to-

gas volume ratio is very low, the chamber acts as an evaporation cavity instead of 

working as a drop size selection device. In fact, it has been visually observed that at 

liquid flow rates below 20 – 30 µl/min, the spray chamber walls remain dry. Under 

these circumstances, there is no need for a drain. At liquid flow rates above this value, 

the spray chamber walls become wet and it is necessary to draw out the accumulated 

waste solution. 

The versatility of the system allows easy modification of the inner volume of the 

spray chamber in order to optimize the analytical figures of merit [156]. This is 

achieved by adapting an easy-to-adjust polyethylene cylindrical body at the torch base. 

Large cavities (c.a., 20 cm3 inner volume) are preferred to obtain high sensitivities 

Eliminado: Figure 12
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whereas small ones (c.a., 5 cm3) provide short wash-out times. Compared to a double 

pass spray chamber and a Cinnabar, the TISIS ICP-AES emission intensities are 

enhanced up to five times [156,157]. With a low inner volume cavity, memory effects 

for the TISIS are less severe than those for a Cinnabar spray chamber [156,157]. 

Moreover, the steady-state and transient matrix effects caused by organic as well as 

inorganic concomitants are less severe for the TISIS than for Cinnabar and double pass 

spray chambers. The recoveries obtained for certified reference materials with 

calibration with plain water standards are close to 100% for the TISIS both in 

continuous [156] and discontinuous mode [158]. 

A modification of the TISIS has been tested for use in ICP-MS by Cairns et al. 

[159]. In their report, a make-up gas line has been adapted to the base of the TISIS 

cavity. In summary, the new system afforded the following advantages over a 

conventional sample introduction system: (i) a 30-fold shortening of wash out time; (ii) 

a three-fold lower signal depression caused by seawater matrices; and (iii) higher 

absolute sensitivities. A further advantage of the TISIS over other systems, such as 

direct injection nebulizers or direct injection high efficiency nebulizers, is the lower 

oxide ratios. 

 

3.5. Desolvation systems 

 

The main goals of a desolvation system are to decrease the plasma solvent load, 

on the one hand, and to increase the analyte transport efficiency on the other. In order to 

do this, the aerosol can be first heated (Figure 13.a), either by a conduction mechanism 

or a radiation one [160]. As a result, the aerosol solvent is evaporated. Then a second 

step can be used to remove the solvent initially evaporated from the aerosol stream. 

Eliminado: Figure 13
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Aerosol desolvation improves the performance of ICP spectrometers. At low liquid flow 

rates, Nam et al. [51] found that the ICP-MS limits of detection were generally lower 

for a desolvation system placed after a double pass spray chamber than for the spray 

chamber alone. This analytical parameter was not affected by the liquid flow rate in the 

10 to 1200 µl/min range. 

 Porous [161,162] as well as non-porous [163,164] membranes have been used in 

ICP-AES and ICP-MS for solvent elimination. In the case of porous membranes, the 

solvent evaporated in the first step of the desolvation system is removed as it diffuses 

through the membrane pores, whereas analyte and residual droplets remain in the carrier 

stream. The non-porous membranes eliminate the vapour solvent as a result of their 

affinity for it. The solvent moves through the membrane as a consequence of the 

established concentration gradient across the membrane. Both membrane types require 

an additional dry sweep gas stream to maintain large concentration gradients.  

At liquid flow rates below 100 µl/min, desolvation systems equipped with 

membranes provide excellent performance in ICP-AES and ICP-MS. In the so-called 

High Efficiency Sample Introduction System (HESIS) [165,166], a pneumatic 

micronebulizer is coupled to a heated single pass spray chamber. A hot argon stream is 

introduced longitudinally to the spray chamber. As a consequence, aerosol solvent 

evaporation is enhanced and analyte transport efficiencies close to 100% are obtained. 

A membrane dryer is finally used to remove the solvent vapour.  

Two commercially available modifications of the HESIS have appeared [65]. In 

the so-called AridusTM (Figure 13.b) a fluoropolymer micronebulizer is adapted to a 

plastic single pass spray chamber heated at about 75ºC. This chamber has an exit drain 

that enables the system to work at liquid flow rates up to 100 µl/min. A heated (160ºC) 

fluoropolymer membrane is set up at the chamber exit. A sweep argon stream is 

Eliminado: Figure 13
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introduced to remove the solvent vapour. Finally, a nitrogen stream can be added to the 

aerosol in order to enhance the energy transfer inside the plasma, thus increasing the 

sensitivity. However, it has been observed that this signal enhancement is due to 

dynamic flow effects originating in the membrane [167]. In addition, even though the 

use of a nitrogen make-up stream reduces oxide production, it can generate new spectral 

interferences. The other membrane based desolvation system is the MCN6000. It is 

similar to the AridusTM but it does not have an exit drain in the spray chamber. Unlike 

the AridusTM, the spray chamber of the MCN6000 is vertically adapted to about a 2-m 

desolvating microporous Teflon membrane. 

With these desolvation systems, ICP-MS limits of detection are enhanced by 

more than one order of magnitude with respect to those indicated in the already existing 

ICP-MS based methods [168,169]. Under certain conditions, the AridusTM provides 

limits of detection even lower than an ultrasonic nebulizer equipped with a membrane 

desolvation system [170]. However, it has been suggested that, due to the large surface 

areas of the system (note that this system has an about 400 cm3 inner volume) the 

memory effects should be more severe for the MCN6000 than for conventional sample 

introduction systems [168]. Unexpectedly, according to Ma et al. [171], lower wash-in 

and wash-out times are reported for the former systems. ICP-MS interferences caused 

by oxide formation are minimized by using these devices. The reported CeO+/Ce+ ratios 

for a conventional liquid sample introduction system and the AridusTM were about 3% 

and 0.05%, respectively [65]. Meanwhile, and with a guard electrode placed at the torch 

top, both systems provided similar sensitivities. Therefore, according to the work by 

Prohaska et al. [167], the only interest in using an MCN6000 was the fact that 

polyatomic interferences were reduced in ICP-MS with respect to a MCN. In fact, this 

device provided lower hydride [172] and oxide [168] formation yields than other 
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sample introduction systems. This feature made it possible to use the MCN6000 for 

such determinations as Pu isotopes in seawater [173] or arsenic in steels [174] with 

good precisions. As regards the long term stability of the ICP-MS signal, the MCN6000 

was able to provide only a 10-15% drift over a three day period of operation [175]. The 

determination of 239Pu and the 240Pu/239Pu isotopic ratio are problematic due to the 

interference caused by 238UH+ and the tailing of the uranium peak. By using an 

AridusTM, this kind of analysis can be efficiently performed in urine samples without 

suffering from the problem of hydride generation [176,177]. In fact, the degree of 

formation of this hydride was reduced by a factor of ten with respect to a conventional 

liquid sample introduction system [170]. Non-spectroscopic interferences caused by the 

presence of organic compounds (e.g., methanol) are also mitigated when using a 

membrane based desolvation system. This point is highly interesting for HPLC ICP-MS 

coupling, particularly when the mobile phase composition changes with time. This 

situation is often found when working with gradient elution [178]. 

A problem that can be observed when using membrane based desolvation 

systems emerges when high salt content or highly viscous solutions are introduced 

[179]. These analyses can cause membrane blockage and, in order to prevent it, the 

membrane should be rinsed after every 10 samples. Despite this, Field et al. [180] used 

the MCN6000 for the analysis of very low seawater volumes. These authors claimed 

that one of the advantages of this desolvation assembly was that, if the nebulizer 

becomes blocked, it can be removed from the system and cleaned without shutting 

down the plasma. Note that the MCN6000 has proven to be efficient for the analysis of 

samples containing suspended solid particles [168].  

Apart from this drawback, when working with porous membranes and with the 

analyte present as a volatile species, a fraction of it may be not transported towards the 
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plasma and is lost as it diffuses through the membrane pores. Results supporting this 

phenomenon have been presented for elements such as copper [181] and selenium 

[178]. In the case of organo – chlorine, -bromine, or –iodine compounds, it has been 

observed that they are also partially lost in the membrane [11]. A potential problem of 

these membranes is that if the sample solution concentration is very low, the particle 

that remains after the solvent evaporates may be small enough to also potentially pass 

through the pores and be lost. 

Another reported shortcoming of the MCN6000 is the appearance of signal 

spikes caused by the droplet formation at the nebulizer tip. In order to overcome this, 

the original nebulizer and spray chamber have been replaced by PFAN systems [175]. 

In this way, it is possible to increase the aerosol heating temperature from 75ºC to 

105ºC, thus enhancing droplet evaporation. This allowed working properly at liquid 

flow rates on the order of 100 µl/min, whereas at higher rates (i.e., 150 µl/min) signal 

spikes were found. From all these observations, Field and Sherrell [175] concluded that 

the MCN6000 worked most efficiently when the delivery liquid flow rate matched the 

desolvator capability. By working in this way and cleaning the system with appropriate 

acid solutions, the blanks and limits of detection were reduced. In fact, these authors 

were able to analyze up to 60 Lake Superior water samples per day containing analyte 

concentrations in the ppq – ppt range. Note that the wash-out times were also shortened 

when switching from Teflon to PFA. Thus, Regelous et al. [182] found that to achieve 

an accurate determination of protactinium, the wash solution (i.e., 0.6 mol/l HCl and 

0.02 mol/l HF) had to be aspirated between samples for 20 and 30 min when PFA and 

Teflon chambers were used, respectively. 

An interesting application of the AridusTM is the determination of ultra – low 

traces of Ir and Pt in polar ice through ICP-SF-MS. Working under clean conditions, 
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Gabrielli et al. [183] were able to determine sub ppq concentrations of these metals in 

ice. This was possible because of the high sensitivity of the instrument, the low 

instrumental background, the low sample consumption (i.e., the liquid flow rate being < 

100 µl/min) and the reduction of spectral interferences. With this desolvation system, 

Regelous et al. [182] analyzed silicate rock samples with a multicollector ICP-MS and 

reported limits of detection for protactinium close to 200 ag/ml. Only 6 ng of Th were 

required to achieve a precise isotopic thorium analysis on silicate rock samples with an 

AridusTM followed by a multicollector ICP-MS [184]. By a precise uranium isotopic 

analysis, Christensen et al. [185] were able to find the source of uranium contamination 

in an area used to store high level radioactive wastes. This assembly was also applied to 

conduct quantitative analysis with laser ablation. The sample was ablated with the laser 

beam, whereas standards were introduced via either the AridusTM [181] or the 

MCN6000 [186]. By working in this way, the thermal characteristics of plasma were 

matched for these sample introduction methods because in both cases dry plasma 

conditions were achieved. 

More recently, a new desolvation system has been used for the analysis of liquid 

samples with ICP techniques. This system, commercially available as the Apex 

[187,188], is based on the use of a heated cyclonic spray chamber coupled to a multiple 

step condensation unit. The cyclonic spray chamber is heated to a temperature ranging 

from 120 to 140ºC whereas the Peltier-cooled multipass condenser is set either at 5ºC or 

at -2ºC. A N2 stream is added so the sensitivity is increased [189]. This system can also 

be equipped with a Nafion membrane to remove the solvent vapour [190]. Compared 

with a conventional sample introduction system with a micronebulizer operated at liquid 

flow rates from 50 to 70 µl/min, the APEX generated ICP-MS signals for Fe which 

were 4 to 6 times higher [191]. In other studies, it was claimed that the 226Ra ionic 
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intensity improvement factor was as high as 12 [192]. Unlike other desolvation systems, 

no signal spikes were found when the APEX was operated long term. Wash out times 

were rather short (i.e.¸ about 80 seconds were required to reduce the 56Fe signal to 

background levels) [191]. This desolvation system is recommended for applications in 

which HF is used such as geochemistry and semiconductor analysis [188]. 

A double membrane desolvation system has also been used with ICP-AES and 

ICP-MS. In this system, a heated (i.e., 80 ºC) double pass spray chamber with a MCN is 

coupled to a two PTFE concentric membrane tubes having a 3.5 µm maximum pore size 

(70% porosity). The membranes were placed in such a way that the solvent elimination 

took place using two countercurrent argon flows. The solvent vapour diffused through 

the membrane pores and a dry aerosol was introduced into the plasma. A 

characterization of this assembly was done by Sung and Lim using ICP techniques for 

the analysis of isopropyl alcohol [193]. An increase in the sweep gas flow gave rise to a 

drop in the ICP emission intensity for all the elements tested, thus indicating that the 

analytes were likely retained on the membrane. Simultaneously, it was observed that the 

carbon emission decreased sharply with this gas flow rate, thus demonstrating the 

efficiency of the membranes to remove organic solvents.  

Finally, it is worth mentioning that the use of membrane based desolvation 

systems are beneficial for mitigating non-spectral interferences in ICP-AES caused by 

inorganic acids [66,194]. Al low liquid flow rates, for matrices containing acids like 

hydrochloric and nitric the interferences are eliminated even for concentrated solutions. 

Sulphuric acid solutions show a more conspicuous matrix effect, although with this kind 

of desolvation system, the extent of the interference is less significant than in the case of 

a conventional sample introduction system [66]. 
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3.6. Aerosol Direct Injection  

 
The use of an aerosol transport system to interface the nebulizer with the torch 

has been considered as a source of problems. This is because spray chambers or 

desolvation systems suffer from the following drawbacks: (i) appearance of memory 

effects; (ii) intensification of steady-state as well as transient matrix effects; (iii) signal 

noise; (iv) removal of a high proportion of the analyte nebulized with subsequent loss of 

sensitivity, mainly when working at liquid flow rates above 20 µl/min; (v) waste 

generation and (vi) post-column broadening effects when separation methods are 

coupled to ICP techniques. Furthermore, these components represent an added 

complexity to the sample introduction system. 

An obvious way of reducing these problems would be the removal of the aerosol 

transport system and the direct introduction of the primary aerosol inside the plasma. 

This solution was first tried by Greendfiled et al. in the 1960s [2] and by Fassel and co-

workers twenty years ago [195,196]. These authors introduced the so called direct 

injection nebulizer (DIN). The load that can be accepted by the plasma with the 

operating conditions currently used (i.e., a power less than 1.5 kW) is usually in the 

range of 20 to 40 mg/min. Therefore, aerosol direct injection is perfectly adapted to 

work at low liquid flow rates. As a result of the introduction of primary aerosols at the 

plasma base, the analyte transport efficiency is virtually 100%. This fact leads to the 

advantage of improved absolute sensitivity with respect to conventional nebulizer – 

spray chamber combinations. Nonetheless, there are several constraints, such as the 

requirement of generating a fine enough primary aerosol and the need for a robust 

system in order to reduce signal noise and matrix effects. 

 

3.6.1. Direct Injection Nebulizer (DIN) 
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The DIN has been extensively used in ICP-AES and ICP-MS [2]. An external 

ceramic/stainless tube is adapted into the torch and a narrow (i.e., about 120 µm od, 60 

µm id) [66] sample capillary is inserted into this ceramic body. The gas flows through 

the annulus left between both tubes (i.e., typically 15 µm wide). In a study concerning 

the dimensions of the external tube, Tangen et al. [197] observed that, with a 0.7 mm id 

tube, a noisy signal was obtained, whereas the signal was stable for a 0.5 mm id one. 

According to these authors, the sample capillary had a tendency to vibrate when the 

wide tube was used, thus disturbing the nebulization process. The aerosol production 

can be optimized by modifying the position of the capillary end. According to Wiederin 

et al. [198] the best mist was produced when the capillary extended about 100 µm 

beyond the nebulizer body. The sample solution is injected into the line through a 

computer controlled six-port valve and delivered to the nebulizer by a gas displacement 

pump. The operation of this pumping system requires high pressures (ca, 40 - 50 bar) to 

reach liquid flow rates ranging from 50 to 100 µl/min. In this way, excellent signal 

stabilities are obtained. The gas is supplied by means of a cylinder. Due to the low gas 

flow rates used with this nebulizer (ca, 0.2-0.5 l/min) an additional ∼ 0.3 l/min argon 

stream is introduced in order to efficiently inject the aerosol into the plasma central 

channel. Therefore, the total gas flow inside the plasma channel can be optimized 

independently of the nebulizer gas flow.  

An important variable is the distance between the nebulizer and the plasma base. 

The DIN tip is normally placed about 1 mm below the torch central tube to produce a 

nebulizer nozzle – initial plasma radiation zone gap close to 4 mm. Shum et al. [199] 

studied the change in mean drop diameter versus the aerosol cone axial position. They 
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found that at 4 mm from the nebulizer nozzle, the aerosols produced by the DIN were 

generally finer than those measured just at the exit of the nebulizer.  

Because of its characteristics, the DIN provides finer primary aerosols and a 

narrower drop size distribution than conventional pneumatic concentric nebulizers. 

Thus, at 0.5 l/min nebulizer gas flow rate, the Sauter mean diameters (D3,2) were 7.1 and 

12.0 µm for the DIN and the conventional nebulizer, respectively. The reason given was 

that because the sample capillary inner diameter and wall thickness were lower for the 

DIN, the liquid and gas interaction was closer, thus producing fine droplets [200]. In 

contrast, if a double pass spray chamber was used in conjunction with the classical 

nebulizer, the D3,2 decreased down to 4.1 µm. These findings revealed that the aerosols 

introduced into the plasma with a DIN were coarser than those leaving a spray chamber. 

Spatially speaking, as for other pneumatic concentric nebulizers, for the DIN the 

coarsest droplets were preferentially found at the aerosol cone edges, whereas the finest 

ones were located at the cone centre [201]. 

As mentioned earlier, the DIN is a system that should be operated at low liquid 

flow rates. As regards the effect of this variable, Wiederin et al. [198] noticed that the 

ICP-MS signal increased linearly with Ql and it peaked at about 120 µl/min. A dramatic 

decrease in the sensitivity was found above this rate, which was attributed to the 

increase in solvent loading or in the mean drop size. A similar trend was found in ICP-

AES but the signal peaked at 160 µl/min [195].  

Due to the blockage problems encountered with the DIN, several modifications 

were proposed, such as an increase in the sheathing gas flow rate, a decrease in the 

injector tube inner diameter and extension of the sample capillary 0.5 mm past the end 

of the metal nebulizer tip [202]. The nebulization process was degraded if the DIN was 
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overheated. This problem was observed by Powell et al. [203] when the RF power was 

increased above 1.3 kW.  

As expected, the wash-out times with the DIN were markedly shorter than those 

for conventional sample introduction systems. Because the inner volume can be even 

lower than 1 µl [¡Error! Marcador no definido.], the wash-out times for mercury 

solutions were as short as 15 s. Note that for a classical system, this parameter extended 

to more than 10 min [198]. The DIN has also been used with reduced memory effects 

for the determination of analytes such as boron [204]. The very low dead volume of the 

DIN makes it suitable for flow injection analysis [202]. This feature allows steady 

signals to be obtained even when injecting less than 100 µl sample volumes [202,205].  

Considering matrix effects with the DIN, it has been found that because there is 

no spray chamber, interferences related to the aerosol transport are eliminated and, by 

carefully controlling the plasma thermal characteristics, the signal could be the same 

irrespective of the sample matrix. Indeed, experiments carried out with ICP-AES 

demonstrated that interferences caused by mineral acids such as hydrochloric, nitric or 

sulphuric were less severe for the DIN than for a MCN coupled to a double pass spray 

chamber [66]. This was mainly true at low liquid flow rates (i.e., 5 – 10 µl/min). 

However, for concentrated nitric and diluted sulphuric acid solutions, there was a 

residual interference. The reason for this was found to be the pumping system. Note that 

the pressure, instead of the liquid flow, was controlled with the gas displacement pump. 

Therefore, an increase in the solution viscosity led to a drop in the effective liquid flow 

rate. As a result, the actual value of this parameter in the case of concentrated nitric acid 

and diluted sulphuric acid solutions was lower than that for water, which caused a signal 

drop. MIP-MS signals obtained with the DIN dropped when concentrated sodium 

solutions were analyzed [206]. Nonetheless, no nebulizer clogging was observed. 

Eliminado: ¡Error! Marcador 
no definido.
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An interesting modification of the DIN developed to eliminate the mass 

interferences caused by YO+ and ArCu+ when determining 105Pd has been reported by 

García et al. [207]. In this modified version of the direct injection nebulizer, a strong 

cation modifier was covalently bonded to the inner surface of a silica capillary that was 

finally adapted to the DIN. The sample went through the capillary with the interfering 

elements (i.e., Cu and Y) being initially retained, permitting the Pd signal to be 

registered free of these interferents. The retained elements were finally eluted with a 

hydrochloric acid solution. Good recoveries were obtained for the analysis of car 

exhausts and road dust. The use of these activated silica capillaries in combination with 

the DIN also mitigated the interferences caused by HfO+ for the determination of Pt 

[208]. With a similar approach, García-Sánchez et al. [209] carried out speciation of 

lead in rainwater samples. With a capillary containing a strong anion exchanger, the 

interferences caused by ClO+ ions on 51V were virtually eliminated, and two vanadium 

oxidation states (i.e., V(IV) and V(V)) were separated [210]. This methodology presents 

advantages over other methods for correcting this kind of interference, such as 

simplicity, reduction in consumed reagents, improved precision and automation.  

The hyphenation between HPLC and ICP-MS has been carried out by means of 

a laboratory-constructed DIN [211]. Provided the low dead volume and the absence of a 

spray chamber, post-column band broadening was minimized. However, the DIN could 

only be efficiently used under isocratic conditions, because if a gradient was applied, 

the signal changed as a function of the mobile phase composition [11]. The use of 

organic solvent solutions (e.g., methanol) as mobile phases made the optimum operating 

conditions different with respect to those for the analysis of plain water samples. Thus, 

it was found that for 30% methanol – water mixtures, the optimum nebulizer gas flow 
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rate was 0.15 l/min and the RF power was 1.5 kW instead of 0.2 l/min and 1.3 kW for 

aqueous solutions [212]. 

Because it does not show any significant suction, the DIN is also suitable for CE 

– ICP coupling [213,214]. In order to accomplish this, the CE capillary was placed 

inside the fused silica nebulizer capillary. The make up liquid stream used to establish 

the continuous electrical contact was pumped through the nebulizer capillary. By doing 

so, the nebulization and the separation processes could be optimized separately. At 

liquid flow rates below 10-15 µl/min, the signal started to pulse [213,215]. Therefore, a 

laboratory made DIN with a lower gas exit cross-sectional area was developed [215]. It 

was found that by recessing the sample capillary about 1 mm with respect to the 

nebulizer body, the system was able to work properly within the desired liquid flow rate 

range. In fact, the signal increased linearly from 1 to 7 µl/min. By extending the liquid 

capillary 1 mm beyond the nebulizer tip, the system was suitable for work at liquid flow 

rates ranging from 9 to 15 µl/min. 

 

 Figure 14.a shows a comparison between the ICP-AES emission intensities 

found for several elements with the DIN and MCN6000. The results are compared 

against those measured for a MCN coupled to a double pass spray chamber. The MCN 

provided lower intensities than the DIN, thus indicating that a fraction of the analyte 

was lost either in the aerosol heating chamber or in the membrane. The signal 

improvement factor was included within the 2.8 to 3.7 range. This result was 

undoubtedly due to the higher analyte transport efficiency in the case of the DIN. In 

fact, at the liquid flow rate tested, this parameter was about 3 times lower for the MCN 

than for the DIN (i.e., 30% and 100%, respectively). As a result, limits of detection, 

calculated as 3 times the standard deviation of ten consecutive blank readings, were 

Eliminado: Figure 14
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lower for the DIN than for the other two sample introduction systems evaluated (Figure 

14.b).  

 

3.6.2. Direct Injection High Efficiency Nebulizer (DIHEN) 

 

 The use of the DIN has been restricted by both its fragility and its high cost. 

Furthermore, it is complicated to use and a high pressure auxiliary gas line and gas 

displacement pump are required. In order to mitigate these problems, a relatively low 

cost version of the DIN was introduced by Montaser and coworkers: the so-called 

Direct Injection High Efficiency Nebulizer (DIHEN) [¡Error! Marcador no definido.]. 

The DIHEN is commercially available [60] and it is entirely made of glass or quartz (Q-

DIHEN). This nebulizer is similar to a HEN, but it is longer (200 mm instead of the 75 

mm for the HEN) in order to be easily fitted into the torch (Figure 15.a). Generally, this 

nebulizer is placed 3 mm upstream of the torch central tube, at about 5 mm from the 

plasma base. DIHEN critical dimensions are slightly larger than those for the HEN (see 

Table 2). A support tube is used for the sample capillary in order to reduce the capillary 

damage caused by the oscillations induced by the gas stream, thus enhancing the 

nebulizer robustness. These oscillations were highlighted when the aerosol drop size 

distributions were measured, because multimodal curves were obtained. The oscillations 

were more obvious at low than at high gas flow rates [¡Error! Marcador no definido.]. 

Unlike the DIN, the DIHEN does not require a high pressure pumping system and for 

moderate liquid flow rates (ca, 80 µl/min) a peristaltic pump can be used. Nonetheless, 

this can cause severe variations in the signal with time due to the pulses [216,217], and 

a syringe pump is advisable when the spray chamber is removed from the sample 

introduction system [226]. The dead volume of the DIHEN (i.e., 55 µl) is much larger 
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than that for the DIN (below 1 µl). Nonetheless, by inserting a PTFE tube, the inner 

volume can be reduced down to 10 – 15 µl [218,219]. The early studies performed using 

ICP-MS with the DIHEN revealed that the optimum signals were obtained at high RF 

power values (i.e., 1.4 - 1.5 kW) and low nebulizer gas flow rates (i.e., 0.16 - 0.25 

l/min). In fact, it was found that the signal increased steeply by either increasing the 

former variable or decreasing the latter one [¡Error! Marcador no definido.]. The drop 

in sensitivity with the nebulizer gas flow rate was attributed to the fact that the axial and 

radial drop size distributions became wider as Qg went up. As a result the aerosol was 

more confined within the plasma central channel at low than at high liquid flow rates. 

Another variable influencing the performance of the DIHEN is the RF frequency. Thus, 

with an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS), 

the sensitivity doubled as the frequency decreased from 40 to 27 MHz [218]. The 

increase in the secondary discharge observed with the DIHEN at the lower frequency 

was also responsible for the higher background values with respect to a conventional 

liquid sample introduction system. 

 As for conventional pneumatic nebulizers, different results were reported when 

two different DIHENs were compared [220]. Thus the optimum signal values were 40% 

(for 226Ra) and 30% (for 238U) different, depending on the particular DIHEN used. Not 

only the sensitivities, but also the optimum nebulizer gas flow rate slightly differed (i.e., 

0.16 and 0.18 l/min) for two DIHENs. Minnich and Montaser [221] also recognized this 

fact and for two DIHENs the optimum gas flow rates were 0.14 and 0.2 l/min. These 

differences arose due to slight changes in the sample capillary dimensions and in the gas 

annulus area. Langlois et al. [222] used four different DIHENs and found that the gas 

backpressures were significantly different. Thus, in order to reach a 0.3 l/min gas flow 
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rate, this variable took values ranging from 3.4 to 4.4 bars, depending on the particular 

nebulizer used. 

 The aerosols produced by the DIHEN are coarser than the tertiary aerosols 

leaving a spray chamber [223]. In fact, it has been shown that only 45% of the aerosol 

volume produced by the DIHEN is contained in droplets whose diameters are lower 

than 10 µm [224]. Studies of the measurement of the spatial distribution of aerosols 

generated by this nebulizer demonstrated that droplets with diameters as high as 30 µm 

were located at the outermost aerosol cone regions [225]. Note that these very coarse 

droplets are introduced into the plasma when the DIHEN is used. As a consequence, 

signal deteriorates and noise and matrix effects are intensified. In the aerosol cone 

edges, satellite droplets or aggregates were projected, which were likely produced 

because of the rotational movement of the aerosol [226]. Furthermore, it has been 

recently shown that, with this nebulizer, the radial motion of droplets leads to a 

dispersion of the aerosol across the torch [227]. These could be the reasons why the 

analytical performance was not as good as expected. In fact, only 30% of the aerosol 

generated by the DIHEN was introduced into the plasma central channel and hence, 

contributed efficiently to the analytical signal. The aerosol spread has been attributed to 

the large cone of the DIHEN aerosol. At 50 mm from the nebulizer tip, the aerosol cone 

diameter was around 30 mm [226]. Due to differences in aerosol drop size and velocity, 

the number of surviving droplets after the plasma observation zone was much higher for 

the DIHEN than for a nebulizer-spray chamber combination [227]. In fact, according to 

the simulation study performed by Benson et al. [228], a large fraction of the aerosol 

liquid volume (i.e., that consisting of coarse droplets) persisted in the plasma at 

distances higher than 4 mm. This, and the presence of gas flows with velocities higher 



 71

than 50 m/s in the central channel, which accelerated the aerosol droplets, hampered the 

aerosol desolvation. 

 At a given liquid flow rate (85 µl/min), the ICP-MS limits of detection obtained 

with a DIHEN were similar to those encountered for a HEN coupled to a double pass 

spray chamber. According to McLean et al. [¡Error! Marcador no definido.], this fact 

demonstrated that the detrimental solvent effects did not have an appreciable influence 

on the plasma thermal characteristics. Becker et al. [220] demonstrated that the DIHEN 

afforded ICP-QMS sensitivities 3 to 5 times higher than those measured for a MMN 

coupled to a Cinnabar spray chamber. Thus, it was possible to carry out determinations 

of long-lived radionuclides in aqueous solutions at ng/l levels while working at liquid 

flow rates as low as 1 µl/min. The same authors used the DIHEN for uranium isotope 

ratio measurements and found the precisions of the ratios were better than those 

obtained with the MMN. The short term precision exhibited by the DIHEN was 

generally better than that found for conventional sample introduction systems using a 

spray chamber. This fact derived from the elimination of noise sources associated with 

the aerosol transport system [220]. Similar conclusions could be drawn from the studies 

carried out using ICP-TOF-MS by Westphal et al. [218]. In this case, the absolute limits 

of detection were found to be one order of magnitude lower than those for a 

conventional pneumatic concentric nebulizer coupled with a cyclonic spray chamber. 

With an ICP-MS equipped with a hexapole collision cell, the DIHEN provided 

sensitivities 2 to 9 times higher than the MMN coupled to a Cinnabar chamber, although 

the limits of detection were similar for both assemblies [219]. In this study, it was 

reported that the use of a shielded torch improved more significantly the sensitivities for 

the DIHEN than for the MMN. Shielding was more important when a double-focusing 

sector field ICP-MS was used. Thus, whereas for a MMN the shield caused an increase 
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in the signal, for the DIHEN the sensitivity was lower with than without a shield [229]. 

The reason argued to try to explain this result was the higher solvent plasma load 

observed in the case of the DIHEN caused a drop in plasma temperature and electron 

number density. Therefore, it was concluded that the main advantage of the DIHEN was 

the lower sample mass consumed. Despite this, it was found that the DIHEN provided 

higher absolute sensitivities than either an AridusTM or a MMN coupled to a Cinnabar 

for two different instruments: an ICP-QMS and an ICP-SF-MS [230]. In the case of the 

SF-MS spectrometer equipped with a torch shield, the DIHEN provided absolute 

sensitivities about 7-fold higher than a PFAN [231]. The guard electrode design was 

further modified by McLean et al. [232]. In this case, the electrode was always 

positioned between the load coil and the torch and it was electronically switched on and 

off. The sensitivity found for the DIHEN with the new configuration was six-fold 

higher than that for the initial design. This was achieved at RF power values lower (i.e., 

1.1 kW) than those required in other studies (i.e., 1.5 kW). In ICP-AES, the DIHEN 

proved to be superior to a HEN when coupled to a cyclonic spray chamber in terms of 

sensitivity, limits of detection and precision [223]. 

 Because the totality of the nebulized solvent is introduced into the plasma, with 

the DIHEN the molecular ion intensities are significantly higher as compared with those 

provided by systems based on the use of a spray chamber. This is especially true for 

oxide ions, for which the intensities are 2 – 3 times higher for the DIHEN (see Table 4). 

Within the direct injection nebulizer category, the DIHEN provides higher oxide ion 

ratios than the DIN (Table 4). In general terms, for the DIHEN [220], the oxide ratio 

increased at low RF power values (i.e., < 1.3 kW) and low (i.e.¸< 0.14 l/min) and high 

(i.e., > 0.16 l/min) gas flow rates. Under cool plasma conditions, achieved by decreasing 

the RF power [221], the 38ArH+, 40Ar+ and 40Ar16O+ ionization was so poor that the most 
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abundant isotopes of K, Ca and Fe were successfully measured with the DIHEN [218]. 

However, for strong oxides (e.g., CeO+ with 8.8 eV bond strength), a huge increase in 

the oxide-to-ion ratio was noticed under cool plasma conditions (i.e., at 0.8 kW RF 

power). Thus, the CeO+/Ce+ ratio was 4200, meaning that 99.9% of Ce was present in 

the oxide form [218]. In this case, and others such as V, Y, La, Tb, Ho, Th and U, the 

measurement should be taken either by measuring the elemental ion intensities under 

normal plasma conditions or by registering the oxide signals if cool plasma conditions 

are selected [221]. With a double focusing ICP-MS, the DIHEN afforded higher oxide 

ratios than a MMN (Table 4) [233]. The ThO+/Th+ ratio was about two times higher for 

the former device. The use of collision/reaction cells appears very interesting, 

particularly in the case of direct injection nebulizers. Thus, the oxide ratio found for 

CeO+/Ce+ with the DIHEN decreased (see Table 4) when instruments fitted with a 

collision cell [219] were used. For oxides with lower bond strengths (e.g., YbO+ with 

3.8 eV) the respective oxide ratios were 3 and 0.4% without and with a collision cell, 

respectively. Compared with an AridusTM, the DIHEN provided hydride ratios (i.e., 

UH+/U+) about one order of magnitude higher.  

 Non-spectroscopic interferences have been found with the DIHEN when 

inorganic as well as organic matrices are introduced. Thus, for instance, Björn and 

Frech [234] reported a drop in the ICP-MS signal when sulphuric instead of nitric acid 

solutions were analyzed. The presence of methanol in the sample also induced a drop in 

the sensitivity for elements with low as well as high ionization potentials (IP). These 

authors underlined the importance of spatial effects. Thus, in the case of elements with 

low IP, for nitric acid an enhancement in the signal was found on plasma axis, whereas 

a drop was produced off the plasma axis with respect to plain water solutions. However, 

provided that finer and less dense droplets were introduced into the plasma for methanol 
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when compared to water, the aerosol was spread over a larger volume. Concomitantly, 

an on-axis signal suppression and an off-axis signal enhancement was produced as 

compared with water. Of course, this trend was gas flow rate dependent and, at high gas 

flow rates (i.e., 0.5 l/min) the magnitude of the interference was less dependent on the 

plasma sampling zone. According to Björn and Frech, the matrix induced spatial aerosol 

redistribution effects were more likely for the DIHEN than for systems based on the use 

of a spray chamber. In fact, for a nitric acid solution, these authors encountered ICP-MS 

matrix effects more severe in the case of the DIHEN than for the MCN matched to a 

cyclonic spray chamber. In ICP-AES, it has been pointed out that for the DIHEN, 

attention should be paid to the thermal characteristics of the plasma. In fact, the 

MgII/MgI ratio for the DIHEN was lower than that for a sample introduction system 

that used a spray chamber [223,235]. This fact indicated that the plasma was less robust 

when the aerosol was directly introduced via the DIHEN than when a conventional 

liquid sample introduction system was used. This trend was confirmed in both axially 

and radially observed plasmas [237]. Thus, at liquid flow rates below 20-30 µl/min, 

satisfactory performance was observed for the DIHEN and matrix effects were 

mitigated with respect to the situation found at higher Ql values [223]. This behaviour 

was later confirmed by O’Brien et al. [237]. Clearly, the interferences for the DIHEN 

arose from deterioration of the plasma. Under some circumstances, non-spectroscopic 

interferences were more remarkable for this nebulizer than for a HEN coupled to a 

cyclonic spray chamber. In order to increase the plasma robustness when the DIHEN 

was used, a small fraction of oxygen and helium was added to the outer plasma gas 

stream. In this way, Chirinos et al. found that the MgII/MgI ratios were insensitive to 

changes in the matrix composition [235] and, consequently, matrix effects caused by 

sodium were mitigated [237]. To the contrary, the addition of a molecular gas to the 
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plasma led to a downward shift in its position, which made nebulizer tip damage more 

likely. 

 The low nebulizer dead volumes and the absence of a spray chamber led to short 

wash-out times for the DIHEN, which makes it perfectly amenable for achieving fast 

transient analysis [218]. Compared with a double pass spray chamber, it was observed 

that the wash out times for mercury, boron and iodide solutions were respectively 8, 4 

and 100 times shorter for the DIHEN. For example, in the case of mercury the wash-out 

times were 6 and 48 s for the DIHEN and for a nebulizer - spray chamber combination, 

respectively [236]. As transient matrix effects originate in the spray chamber, they were 

much less significant for the DIHEN than for a conventional system. Björn and Frech 

[234] reported that the time required for signal equilibration when switched from a 0.22 

mol/l to a 2.22 mol/l nitric acid solution was 3.5 and 0.3 minutes for a MCN coupled to 

a cyclonic spray chamber and the DIHEN, respectively. This fact is also very important 

when attempting to increase sample throughput. 

An additional theoretical advantage of the DIHEN is that volatile analytes are 

not preferentially transported to the plasma. In a study of the effect of the chemical form 

of iodine on sensitivity with an ICP-SF-MS, Langlois et al. [222] concluded that, if a 

Cinnabar spray chamber was used, the signal found when this element was present as 

iodomethane was 4 – 6 times higher than that measured when iodide was present as 

iodine. For the DIHEN, the signal was expected to be the same irrespective of the 

chemical form of the iodine. Nonetheless, the signal for CH3I was from a 20 to 40% 

lower than that for I-. Further experiments were conducted to verify that this problem 

was not due to changes in the analyte spatial distribution within the plasma, depending 

on its chemical form. Similar results have been obtained with different selenium species 

for a laboratory made direct injection nebulizer. This system has proved to be less 
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sensitive to changes in the selenium species volatility than others based on the use of a 

spray chamber or desolvation assembly [178]. 

 As regards the drawbacks of the DIHEN, it is important to indicate that, 

depending on the nebulization conditions, droplets with diameters higher than 10 - 20 

µm can be introduced into the plasma [223]. Moreover, the interferences caused by 

inorganic acids may be similar to or even more severe than those for a micronebulizer 

coupled to a spray chamber [234]. Due to the somewhat coarse aerosols and the high 

solvent plasma load, the RF power must be high (i.e., about 1.5 kW) to obtain optimum 

analytical performance [¡Error! Marcador no definido.]. Furthermore, the DIHEN is 

costly and care should be taken in order to prevent the nebulizer tip melting, which can 

be easily produced due to the proximity of the nebulizer tip to the plasma [218,236] 

and/or the very low gas flow rate used that reduces the gas cooling action [223]. A 

recommendation to protect the nebulizer tip from excessive heating is to increase the 

intermediate gas flow up to 1.2 l/min [235]. The tip melting can be more problematic 

during the plasma ignition step. Therefore, it is also recommended to use high values of 

both the coolant and the auxiliary gas streams (i.e., 20 and 4 l/min, respectively) and, 

once the plasma has been ignited, to decrease these variables to the values used for the 

signal measurement (i.e., 15 and 2 l/min, respectively) [237]. All these are probably the 

reasons why this nebulizer is not widely used for routine analysis despite its advantages. 

Another drawback of the DIHEN is that it is prone to tip blockage because of the 

narrow capillary used [218]. Thus, Chirinos et al. [235] indicated that the DIHEN tip 

became clogged when a 1% sodium chloride solution was analyzed. If some organic 

solvents such as ethanol were nebulized at liquid flow rates from 25 to 100 µl/min, a 

carbon deposit was observed at the nebulizer tip [55]. This produced an asymmetric 

aerosol with a subsequent loss in sensitivity. This was a serious problem because the 
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treatment required to clean the nebulizer tip was too aggressive and after three repeated 

blockages and cleaning procedures, the nebulizer was virtually broken. For that reason, 

a new version of the DIHEN has been developed; the so – called Large Bore Direct 

Injection Nebulizer (LB-DIHEN) [224]. In this new design, the sample capillary and the 

gas annulus area have been enlarged with respect to the initial DIHEN version. As 

regards the effect of the nebulization conditions on the ICP-MS sensitivities, it has been 

found that the signal peaked at higher gas flow rates for the LB-DIHEN (i.e., ∼ 0.35 

l/min) than for its precursor (i.e., ∼ 0.15 - 0.25 l/min). A similar comment can be made 

concerning the liquid flow rate, because the optimum value of this parameter was about 

110 µl/min. Due to its dimensions, the LB-DIHEN provides coarser aerosols than the 

DIHEN. Thus the respective percentages of aerosol liquid volume contained in droplets 

smaller than 8 µm were 3 and 35%. In contrast, aerosols generated by the LB-DIHEN 

had lower average velocities than those produced by the DIHEN, thus increasing the 

analyte residence time in the plasma. In general, it can be said that the former device 

provided lower ICP-MS sensitivities [249] and more severe matrix effects [234] than 

the latter one. Furthermore, the precision reached with the LB-DIHEN was worse than 

that afforded by a pneumatic nebulizer coupled to a spray chamber [224]. The LB-

DIHEN is suitable for the analysis of high salt content solutions [238] and slurries, and 

for this reason it has been applied to the analysis of biological samples [239] having a 

high concentration in cell agglomerations with diameters ranging from 16 to 18 µm. In 

order to improve the liquid and gas generation while preventing the nebulizer tip 

blockage, the inner diameter of the sample capillary has been reduced from 320 to 205 

µm [238]. With this modification of the LB-DIHEN, good precisions and accuracies 

were obtained when U was determined in synthetic urine samples.  
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The DIHEN is a good interface between separation techniques and ICP 

spectrochemistry. Acon et al. [240] employed connections with reduced dead volume to 

couple the DIHEN as an interface between microbore HPLC and ICP-MS. The total 

dead volume of the interface was just 13 µl. With this setup, naturally occurring 

cobalamines were successfully separated. With the introduction of a 20 µm id and 90 

µm od capillary inside the DIHEN, it has been used for micro and nano HPLC-ICP-MS 

coupling. Wind et al. [241] found that, although the sensitivities were similar for a 

DIHEN and a PFAN coupled to a low inner volume spray chamber, the peak resolution 

was much better for the former. This allowed the separation of peaks of phosphopeptide 

compounds which otherwise appeared together when the spray chamber was used. 

Furthermore, low dead volume DIHEN was demonstrated to provide better precision 

and to be less sensitive to changes in the mobile phase composition than the 

conventional sample introduction system and did not require the use of a make-up liquid 

stream.  

 Due to its characteristics, the DIHEN has also been used as a CE-ICP-MS 

interface. The main advantages against an interface consisting of a cross-flow nebulizer 

coupled to a double pass spray chamber are [242]: (i) the peaks are sharper and more 

symmetrical; and, (ii) provided that the amount of buffer is lower, lower background 

levels are obtained. An interesting application combined anodic stripping voltammetry 

(ASV) with ICP-MS wherein the DIHEN served as an efficient interface [243]. The 

ASV-ICP-MS hyphenation was very interesting for the determination of metals at sub-

ppt levels with a reduction in the memory and matrix effects and an improvement in the 

analytical figures of merit with respect to the MCN.  

The DIHEN has been applied to the direct analysis of biological samples [244]. 

Samples containing organic solvents have also been analyzed with this nebulizer. The 
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introduction of the totality of the solution nebulized into the plasma led to a 

deterioration of the thermal characteristics of the plasma, especially when organic 

solvents were present [55]. A microemulsion with Triton X-100 was prepared to carry 

out the analysis of gasoline samples by ID-ICP-MS in conjunction with a DIHEN [245]. 

This method was more appropriate and faster than the classical sample microwave-

assisted digestion and subsequent analysis. Nonetheless, the inhomogeneities of the 

micro-emulsions were responsible for the degradation in the method precision. Finally, 

four times higher limits of detection were found with the DIHEN as compared with a 

PFAN coupled with a double pass spray chamber but operated at a liquid flow rate eight 

times higher (i.e., 25 and 200 µl/min for the DIHEN and PFAN, respectively). 

Petroleum samples dissolved in xylene were also analyzed using the DIHEN by means 

of a segmented injection methodology [¡Error! Marcador no definido.]. Factorial 

design indicated that the optimum operating conditions for the analysis of organic 

solvents were different from those for the analysis of aqueous specimens. In order to 

reduce the problems potentially caused by the solvent plasma load and deposition of 

carbon at the nebulizer tip, the liquid flow rate was very low (i.e., 10 µl/min). Because 

of the easy-to-rinse system, a signal approaching steady-state one was obtained by 

injecting just 20 – 50 µl sample volumes. Limits of detection were higher for organic 

samples than for aqueous ones, although they were comparable to those found for a 

DIN. With this methodology, recoveries close to 100% were obtained for spiked 

samples. 

 Because of the fragility of the DIHEN and in order to reduce its cost, a 

demountable Direct Injection Nebulizer has been developed. Figure 15.b shows a 

schematic of the demountable direct injection high efficiency nebulizer initially used by 

Bendahl et al. [246]. The sample capillary and the nebulizer shield are adjusted by 
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means of a PEEK piece. In this way, if the nebulizer is melted, it is easy to replace the 

damaged part. Because it has mobile parts, the nebulization process can be optimized by 

adjusting the position of the sample capillary. The aerosol was fine and centred with the 

external torch tube when the capillary extended 0.1-0.2 mm beyond the nozzle surface 

[246,247,248]. Under these circumstances, better ICP-MS analytical figures of merit 

were obtained compared to the  conventional DIHEN [246]. The reasons given for these 

results were the reduced dimensions of the demountable direct injection nebulizer with 

respect to the classical one (see Table 2). With the latter device, a decrease in the 

nebulizer flow rate yielded a rise in the ICP-MS sensitivity. However, if this variable 

was too low (i.e., < 0.17 l/min) a drop in the signal was observed that was attributed to 

the generation of coarse droplets [247]. More recently, an adjustment vernier has been 

used in order to precisely modify the position of the liquid capillary [249]. In this case, 

the nebulizer dead volume is just 11 µl and it is not necessary to use any special 

capillary to further lower it. Comparative studies have demonstrated that the 

demountable DIHEN generates aerosols slightly finer than a conventional DIHEN. 

Since both nebulizers have similar critical dimensions, different aerosols are produced 

because the liquid and gas interaction takes place more efficiently with the former 

design. Thus, according to the work by Westphal and coworkers [249], 49% of the 

aerosol liquid volume was contained in droplets with diameters lower than 8 µm for the 

demountable DIHEN, whereas for the conventional one the corresponding percentage 

was 35%. Due to its optimized design, ICP-MS sensitivities obtained under optimum 

conditions were about 2.4 times higher for the demountable DIHEN than for the 

classical one. At liquid flow rates below 10 µl/min, the magnitude of the improvement 

in analytical figures of merit was even higher. The demountable DIHEN provided lower 
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oxide ratios than the conventional one, likely due to the fineness of the aerosols 

produced, (see Table 4).  

The demountable DIHEN was first used as a CE-ICP-MS interface for 

speciation of selenium [246]. Wang and Hansen used a demountable DIN with a 1.2 µl 

dead volume as an interface between sequential injection preconcentration and ICP-MS 

[247,248]. By means of a cation exchanger bead suspension, ICP-MS interferences 

caused by alkaline earth and alkaline metals were virtually eliminated. In a different 

approach, a sequential injection scheme was designed to carry out metal determinations 

at ultratrace levels after preconcentration following a solvent extraction back extraction 

procedure [250] 

 

3.6.3. Vulkan Direct Injection Nebulizer 

 

 A new version of direct injection nebulizer is commercially available [67] and 

has been recently characterized for use in ICP-AES [251]. This nebulizer is similar to 

the DIHEN in the sense that it is fitted to the torch by means of a special adapter and its 

tip it positioned at 2 – 3 mm from the plasma base. Two principal differences can be 

found between these direct injection nebulizer: (i) unlike for the DIHEN, in the case of 

the Vulkan DIN, the sample capillary ends 0.7 – 0.8 mm behind the nebulizer nozzle; 

and, (ii) the sample capillary is thicker for the latter design. These two modifications 

confer to the Vulkan DIN a higher robustness than for the DIHEN. 

 When operated the Vulkan DIN at a 90 µl/min delivery flow rate it has been 

observed that the ICP-AES signal enhances 2-3 times with respect to that found in the 

case of a MCN coupled to a cyclonic spray chamber. This was found for lines having 

Esum values (i.e., sum of ionization and excitation potentials) lower than 3 eV. On the 
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contrary, when the Esum of the lines increased, the sensitivities found for the MCN were 

1 to 4 times higher than those measured for the Vulkan DIN. Further studies led to the 

conclusion that in the case of the Vulkan the energy transfer efficiency from the 

induction region to the species was poor. This fact was in agreement with the 

observation that the plasma ionization temperature was 300 – 1100 K lower for the 

Vulkan DIN than for a MCN coupled to a cyclonic spray chamber. Ion number density 

and MgII/MgI ratios were lower for the former nebulizer. This facts led to the existence 

of non spectroscopic matrix effects for this direct injection nebulizer [251]. 

 

3.6.4. Reduced length torch 

 

The two general approaches described above for the direct introduction of 

aerosol into the plasma pose several problems due to their high cost and fragility. A 

novel alternative for directly introducing very low liquid sample volumes into the 

plasma has been recently suggested [252,253,254,255,256,257,258,259]. This new 

approach consists of the modification of the torch design. Instead of using a 

conventional torch and an extended micronebulizer such as the DIHEN, it is possible to 

reduce the length of the torch so as to replace the DIHEN by a commercially available 

micronebulizer by simply using a PTFE adapter. In the reduced length torch, the critical 

dimensions (i.e., the intermediate to external tube gap, the distance between the coolant 

gas inlet and the end of the intermediate tube and the overall torch diameter) are similar 

to those of a conventional design. In contrast, its length has been shortened. With this 

setup, the position of the nebulizer can be easily modified by moving it up or down. The 

new torch has, therefore, three main advantages: (i) a low cost conventional 

micronebulizer can be used to introduce the sample into the plasma; (ii) a nebulizer 
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more resistant to the work at high temperatures and less prone to tip blockage than the 

DIHEN can be used; and, (iii) a single torch can be operated for working with a spray 

chamber or in a direct injection mode.  

Figure 15.c shows a picture of the reduced length torch and a conventional one. 

The distance between the external and intermediate tubes should be at least ten times the 

space between the two tubes in order to achieve a laminar flow. This space is usually in 

the range 0.7-1.0 mm, which means that a useful length of 10 mm is then sufficient. The 

overall torch diameter was equal to that for a conventional torch (i.e., 18 mm).  

  So far, this system has been used in conjunction with a MMN [¡Error! 

Marcador no definido.] and it has proven to be suitable for the analysis of 

microsamples. Nonetheless, due to the fact that the aerosols generated by the 

micronebulizer used were too coarse, the sensitivities obtained were similar to those 

found for a micronebulizer coupled to a double pass spray chamber. Further benefits of 

the reduced length were the reduced ICP-AES non- spectroscopic matrix effects 

compared to conventional systems. 

 

4.- Applications of microsample introduction systems 

 

 The above described systems have been applied to the analysis of samples of 

diverse nature. Table 6 summarizes a representative list with more than eighty 

applications of low sample consumption systems. The comments made at the beginning 

of the present review can be verified with this table. Thus the micronebulizers have 

been extensively used for elemental determinations in samples in which the sample size 

is an important factor due to several reasons (sample availability, toxicity,…). It can be 

verified that the sample volume consumed can be as low as several tens of nanoliters, 
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but, in general terms, in most of the cases this variable is typically in the 0.1-1 ml range. 

In order to achieve this, either the sample is injected via a valve or stable pumping 

devices (i.e., HPLC, gas displacement pumps and syringe pumps) are used. Liquid 

flows as low as 0.5 µl/min can be achieved. 

From the list in Table 6, four large groups of samples can be found: (i) 

environmental; (ii) biological; (iii) foods; and (iv) radioactive analytes. Among them, 

the two former groups appear to have received more attention than the latter two (65% 

of the studies are related with these two application groups). Only a 10% of the reports 

deal with radioactive samples. This fact is likely due to the lack of availability of these 

specimens. In any case, the usefulness of a low sample consumption system for the 

analysis of radioactive wastes is more than justified. Note that with such a device, it is 

possible to carry out precise analyses requiring just 1 ml or several milligrams of 

sample. The situation found for foods (i.e., just 11% of the studies) is due to the fact that 

the amount of sample is not a limiting factor.  

 According to the literature, micronebulizers have been widely applied for the 

analysis of biological samples. It is worth mentioning that of the biological samples, 

those of human origin have been the subject of many studies. Almost 50% of biological 

samples analysed involved determinations of human fluids (mainly urine). In some 

instances, a low sample consumption system is used because the available sample 

volume or mass is very low. Nonetheless, in other cases, the analysis must be performed 

through the use of separation techniques (e.g., capillary electrophoresis) requiring work 

at very low liquid flow rates to enhance analyte separation or matrix removal. 

Therefore, in these cases, it is compulsory to use a system able to operate efficiently at 

liquid flow rates on the order of several microliters per minute. Similar comments can 

be made in order to try to explain the high number of reports dealing with the analysis 

Con formato: Fuente: Sin
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of environmental samples using a micronebulizer with or without an additional aerosol 

transport device. 

 

5.- Summary and future developments 

 

The application of ICP-AES and ICP-MS to the analysis of small sample 

volumes has required the modification of the liquid sample introduction system, since 

several new analytical problems have to be solved. 

Nebulizers aimed at working at low liquid flow rates (i.e., micronebulizers) such 

as the HEN and PFAN are very promising and they provide better results than other 

systems (MCN and MMN). The results found for the former two are similar, in spite of 

the fact that for a given gas flow rate, the pressure applied to the argon stream is about 3 

times lower. This fact could be accounted for by considering that liquid sample 

prefilming produced at the tip of the nebulizer promotes an enhancement in the liquid 

and gas interaction. An advantage of the PFAN is that it can be adapted to the 

spectrometer gas line, whereas a high pressure gas line should be used for the HEN. The 

use of some pneumatic micronebulizers is not restricted to low liquid flow rates, but 

also to conventional values, making it possible to apply them to routine analysis. 

 The incorporation of the prefilming effect into the aerosol generation mechanism 

is beneficial in order to achieve a closer and more efficient gas – liquid interaction. The 

prefilming leads to a decrease in the liquid vein thickness. Hence, it is possible to 

increase the nebulizer liquid capillary inner diameter without disturbing the aerosol 

generation process. Of course, it should be taken into account that if the capillary of the 

nebulizer has too large an inner diameter, memory effects will increase. Nevertheless, a 
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compromise id can be used, thus avoiding capillary tip blockage without increasing the 

severity of memory effects.  

The best nebulizer characteristics also depend on the particular application. 

Thus, in the case of capillary electrophoresis, besides the analytical figures of merit, the 

suction effect is an important issue. Apart from using other devices, such as the highly 

efficient cross-flow micronebulizer or the parallel path micronebulizer, the suction can 

be mitigated by lowering the velocity of the gas stream at the liquid – gas interaction 

point. In this way, the pressure drop responsible for solution aspiration would decrease. 

This could be achieved by recessing the nebulizer sample capillary. In the case of the 

PFAN nebulizer, the end of the liquid capillary is located 7 mm from the nebulizer tip. 

Apparently, this recess is not sufficient to eliminate the solution suction effect (Table 3).  

In general terms, low inner volume spray chambers provide better analytical 

figures of merit than conventional devices. With a spray chamber, several aspects can 

be improved: (i) the sensitivities; (ii) the memory effects; (iii) matrix effects. In this 

field, the operating conditions together with simple chamber designs facilitate solvent 

evaporation. Therefore, the chamber role switches from a droplet selection device to an 

evaporation cavity, allowing the transfer of the totality of the analyte to the plasma. 

Single pass spray chambers are a good example of the evolution of the aerosol transport 

device towards evaporation cavities. With this kind of device, it is possible to analyze 

several tens of nanoliters of radioactive samples with good analytical figures of merit 

[260]. 

The use of a desolvation system improves the sensitivity and can reduce the 

extent of the matrix effect with respect to a conventional sample introduction apparatus, 

although in general terms memory effects are enhanced. Indeed, according to studies 

found in the literature, these devices are used when extremely low limits of detection 
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are required for elements suffering from serious ICP-MS polyatomic interferences 

caused by the solvent. 

 In the authors’ opinion, there is a current trend towards total consumption 

systems that do not use any aerosol transport device [261]. The latest studies performed 

with a demountable DIHEN have been very promising. Better results are expected to be 

obtained with a nebulizer having reduced dimensions and liquid flow rates on the order 

of several nl/min [249]. In fact, theoretically, a device close to the ideal one would be a 

robust direct injection nebulizer able to provide micrometric or sub-micrometric 

droplets. 

 After exposing all the points treated in the present review a question still 

remains: what would be the ideal low sample consumption introduction system? The 

answer to this question is not obvious. However, it is possible to make a selection of the 

best micronebulizer and aerosol transport device for a given application. In order to try 

to illustrate this, a couple of schemes have been included in Figure 16. According to 

these two flow charts, the points that should be considered to select the nebulization 

device are whether the sample contains suspended or dissolved solids or if it contains 

hydrofluoric acid. The presence of organic solvents, in turn, would preclude the 

selection of the aerosol transport device. 

Eliminado: Figure 16
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Table 1. Available sample volumes for various metal determinations.* 

 

Types of analysis 
Available sample volume, 

mass or flow rate 
Analytes 

Cells 20 µl 
Na, Mg, K, Fe, Cu, Zn, Cd, 

Se 

Suspended nanoparticles 100 µl Fe 

Brain 1 mg Fe, Ca, K 

Metalloproteins 50 µl Fe, Cu, Zn 

Dust 5 mg B, Mg, Si, Mn, Sr, Zn 

CE Speciation nl/min As, Se, Fe, Cr 

* Taken from ref. [7] 
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Table 2  

Dimensions of pneumatic nebulizers used for working with low (below 100 – 200 
µl/min range) liquid flow rates. Comparison with conventional nebulizers. 
 

Nebulizer Gas exit 
cross-

sectional 
area 

(mm2) 

Liquid 
capillary 

inner 
diameter 

(µm) 

Liquid 
capillary 

wall 
thickness 

(µm) 

Gas back 
pressure at 1 
l/min argon 

(psig) 

Nebulizer 
dead 

volume 
(µl) 

Conventional nebulizers (optimum for liquid flow rates ∼ 0.5 – 1.0 ml/min) 
Concentric 
nebulizer ∼ 0.028 400 60 30-40 ∼100 

Cross-flow 
nebulizer 0.02 500 200 30-40  

Parallel path 
nebulizer 

(conventional 
flow rates) 

0.03 425 ----- 30-40 

 

Micronebulizers (suitable for liquid flor rates < 100 – 200 µl/min) 
High Efficiency 
Nebulizer (HEN) 

[12] 
 

0.007 - 
0.008 80 - 100 30 150 

 

MicroMist 
(MMN) [28] 0.018 140 50 50  

PFA Nebulizer 
[72] (PFAN) 0.021 270  40 

 
 

Microconcentric 
Nebulizer 

(MCN) [28] 

0.017 100 30 
50 

0.64 

Parallel path 
micronebulizer 
(low flows) [78] 

∼0.015 75 -- 90-110  

Sonic Spray 
Nebulizer 

[82] 

0.019 150 50 72  

Oscillating 
Capillary 

Nebulizer [102] 

------ 50 50 120-200  

Demountable 
concentric 

nebulizer DCN 
[75] 

0.032 95 50   

Direct Injection 
Nebulizer 
(DIN) [65] 

 60 30 
45/70* <1, 

2 pl [107] 

Direct Injection 
High Efficiency 

0.0094 104 20 155 10-55 
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Nebulizer 
(DIHEN) 
[¡Error! 

Marcador no 
definido.] 
Large Bore 

Direct Injection 
High Efficiency 
Nebulizer [224] 
(LB-DIHEN) 

0.0371 318 16 36  

Demountable 
DIHEN [246] 

0.005 40 5-10 70# 1.2 

Demountable 
DIHEN [249] 

0.008 100 21 20# 11 

 *Pressures required to reach 0.25 and 0.6 l/min gas flow rates, respectively. 
# Gas flow rate 0.2 l/min. 

Con formato: Inglés (Reino
Unido)
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Table 3 

Values of the free aspiration uptake rate for different nebulizers.* 

 

Nebulizer Free aspiration uptake rate (µl/min) / Gas flow rate (l/min) 
[Reference] 

HEN 40/0.75[72] 

MMN 290/0.75[72] 

150/0.75[68] 
230/0.75[68] 

MMN 290/0.75[72] 

150/0.75[68] 
230/0.75[68] 

MCN 28/0.8[62] 

PFAN 160/0.75[72] 

HECFMN 8.9/1.0[77] 

Mira Mist 0/1.0[78] 

OCN 5/0.7[121] 

Laboratory made DIN 10/0.2 [246] 

Conventional 
concentric 1100/0.75[72] 

Conventional cross 
flow 1930/1.0[77] 

* Elestroosmotic flow in CE is on the order of 1 µl/min 
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Table 4 

Comparison between the oxide ion ratio (MO+/M+) obtained for several micronebulizers 
with ICP-MS.* 
 

Nebulizer Ql (µl/min) Qg (l/min) Oxide ion ratio (%) 
   CeO+/Ce+ BaO+/Ba+ UO+/U+ 

HEN/double pass 
spray chamber [51] 

85 1 1.3 0.06  

HECFMN/double 
pass spray chamber 

[77] 

70 0.9 3.3 0.8  

MCN/double pass 
spray chamber [53] 

50 0.9   0.016 

MCN/double pass 
spray chamber [99] 

100 0.9 0.7   

MMN/Cinnabar 
spray chamber 

[220] 

   3.1  

Conventional 
Cross-flow 

nebulizer / double 
pass spray chamber 

[99,220] 

700 0.9 0.9  2.7 

MCN6000 [168] 100 0.93 0.01 0.0008  
MCN and double 

membrane 
desolvator [193] 

110 1.5 0.05   

DIN [202] 75 1 8   
DIHEN [¡Error! 

Marcador no 
definido.,220] 

 

85 0.25 48 1.1 5.1 

DIHEN with 
hexapole collision 

cell [219] 

60 0.18 20   

DIHEN [249] 
 

85 0.18 7.6   

DIHEN DF-ICP-
MS [233] 

85 0.18   No torch 
shielding: 

10.4 
Torch 

shielding: 
28.3 

Micromist DF-ICP-
MS [233] 

85 1.067   No torch 
shielding: 

4.0 
Torch 

shielding: 
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15.0 
MMN DF-ICP-MS 

[233] 
85 1.067   No torch 

shielding: 
4.0 

Torch 
shielding: 

15.0 
Demountable 
DIHEN [249] 

85 0.16 3.8   

*Unless otherwise stated, the results are obtained with an ICP quadrupole MS with 
neither collision nor reaction cell. 
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Table 5 

Limits of detection obtained in CE-ICP-MS using different nebulizers as interfaces. 

Reference Nebulizer used for 
the interface 

Element Limit of detection 
(ng/ml) 

[101] 
 

MCN Hg(II) 
CH3-Hg 
C2H5-Hg 

170 
80 
100 

[118] Concentric 57Fe 
114Cd 

2500 
55 

[99] MCN 114Cd 
66Zn 

110 
470 

[262] Concentric nebulizer 
Cross-flow nebulizer 

114Cd 
114Cd 

2360 
210 

[263] Ultrasonic nebulizer As(III) 
DMA 
As(V) 
Se(IV) 
Se(VI) 

84 
158 
95 
606 
2080 

[96] MCN & MicroMist As(III) 
MMA 
DMA 
As(V) 

2.1 
1.6 
1.7 
1.3 

[213] Direct Injection 
Nebulizer 

As(III) 
As(V) 
Se(IV) 
Se(VI) 
Cd2+ 

0.1 
0.02 
0.3 
0.1 
0.06 

MCN & 
 

CH3-Hg 
Hg2+ 

13.6 
6.0 
 

[125] 

Cross-flow CH3-Hg 
Hg2+ 

149 
112 

HEN 114Cd 454 [123] 
Babington 114Cd 104 

[147] Modified MCN 
coupled to a single 
pass spray chamber 
(ICP-MS with 
octopole reaction 
cell) 

32S 
34S 
56Fe 
114Cd 

3.2 
1.3 
0.4 
0.4 
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Table 6 

Some applications of widely employed low sample consumption systems.  
 

Sample 

introduction system

Application/Technique Comments Reference 

MCN + Single pass 
spray chamber 

Selenium speciation in selenized yeast / size 
exclusion chromatography and capillary zone 
electrophoresis – ICP-QMS 

Five selenium compounds were baseline separated 
with LODs within the 7 to 18 ng/l range with a 20 nl 
injection. 

[143] 

MCN + double 
pass spray chamber 

Rh in particulate car exhaust fumes / ICP-
QMS 

The injected volume was 2.5 µl and the nebulizer was 
operated at 50 µL/min. 

[129] 

MCN + double 
pass spray chamber 

Mercury speciation in contact lenses 
solutions / CE – ICP-MS 

 [101] 

MCN + cyclonic 
spray chamber 

Mercury speciation in biological certified 
materials / CZE – ICP-QMS 

170 nl of solution was injected into the system 
yielding LODs of 13.6 and 6.0 ng/ml for CH3Hg+ and 
Hg2+, respectively 

[125] 

MCN  Main matrix elements and trace elements in 
plant reference samples / ICP-AES 

 [63] 

MCN + double 
pass spray chamber 

Rare earth elements in wine / ICP-MS Multielement determinations were carried out by 
consuming just 100 µl of sample at a liquid flow rate 
of 30 µL/min 

[50] 

MCN + double 
pass spray chamber 

Rh, Pd and Pt in snow and ice / ICP-DFMS The LODs were 0.02, 0.08 and 0.008 pg/g for Rh, Pd 
and Pt, respectively whereas the sample consumption 
volume was only 40 – 80 µl/min. 

[105] 

MCN + double 
pass spray chamber 

Trace elements in snow and ice / ICP-DFMS All the procedures had to be carried out under ultra 
clean conditions 

[106] 

MCN Total sulphur in soils, sediments, waters and 
a meteorite / ID ICP-SFMS 

Sulphur is oxidized to sulphate. The determined 
concentrations were from 5.25 µg/g to 2% and the 

[104] 
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required sample size was just 13-40 mg. 
MCN + double 
pass spray chamber 

Metals in milk powder (BCR CRM 63), 
bovine liver (BCR CRM 185) and mussel 
tissue (BCR CRM 278) / ICP-AES 

At 100 µl/min liquid flow rate, the LODs were within 
the 0.13 to 174 µg/l range. 

[64] 

MCN + double 
pass spray chamber 

Metals in polymers / ICP-QMS The polymer samples were received as methanol 
solutions and the analysis was possible with the 
consumption of just 90 µl of sample. 

[264] 

MCN Cd and Zn in mouse and rabbit liver proteins 
/ CZE – ICP-QMS 

The number of peaks appeared on the 
electropherogram depended on the Cd:Zn 
concentration ratio 

[265] 

MCN + double 
pass spray chamber 

Multi-element analysis in hair (NIES No. 5) 
and peptides 

Analyses were carried out continuously with a sample 
consumption always lower than 100 µl. 

[103] 

MCN / MMN + 
Cinnabar spray 
chamber 

Thorium and Uranium isotope ratio 
measurement in radioactive wastes / ICP-
QMS 

For a concentration close to 1 µg/l, the precision of 
isotope ratio measurement was even lower than 1%. 
The time required for an analysis was just 3 min and 
the consumed sample volume was about 0.3 ml. 

[¡Error! 
Marcador no 
definido.] 

MCN Bromate in drinking waters / Flow Injection 
ICP-QMS 

With an anion exchanger and at 140 µl/min the LOD 
was 0.13 µg/l (injected volume: 500 µl) the sample 
throughput was high (6 h-1) and the precision was 
good (RSD < 2%). 

[110] 

MCN + double 
pass spray chamber 

Simultaneous speciation of two selenium and 
arsenic species in spiked groundwater / IC – 
ICP-QMS 

At a liquid flow rate of 100 µl/min, the LODs were 1 
and 4 ng/ml for As and Se, respectively. 

[52] 

MMN + Cinnabar 
spray chamber 

Separation of plutonium oxidation states in 
natural groundwater samples / CE – ICP-
QMS 

Pu (VI) concentrations as low as 10-5 mol/l were 
easily detected 

[¡Error! 
Marcador no 
definido.] 

HEN Cd, Cu and Zn speciation metallothioneins in 
eel liver cytosols / CE – ICP-QMS 

 [123] 

HEN + double pass 
spray chamber 

Trace elements in oyster tissue (NIST SRM 
1566) bovine liver (NIST SRM 1577a) and 

 [29] ICP-
AES 
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orchard leaves (NIST SRM 1571) / ICP-AES 
and ICP-QMS 

[109] ICP-
QMS 

HEN + double pass 
spray chamber 

Ni, Zn, V, Ba and Pb in certified ground 
water (NIST SRM 1643 c) / ICP-QMS 

At a 85 µl/min liquid flow rate good concordance 
between measured and certified concentrations were 
found 

[51] 

MMN + cyclonic 
spray chamber 

Arsenic speciation in soils / CE- ICP-SFMS 
and High Performance ionic chromatography 
(HPIC) – ICP-SFMS 

HPIC and CE allowed for the separation of 5 and 6 
arsenic species, respectively. For HPIC, LODs were 
in the 0.04-0.08 ng/g range, whereas for CE they were 
100 times higher. 

[122] 

PFAN + Peltier 
cooled spray 
chamber 

Absolute configuration of selenomethionine 
in Antarctic krill / Reversed phase HPLC-
ICP- QMS 

The enantiomers of selenomethionine were 
derivatized into diastereomeric isoindole compounds. 
The achieved LOD for Se was 4 µg/l. 

[113] 

PFAN + Double 
pass spray chamber 

Phosphorous in yeast lipid extracts / HPLC 
ICP-QMS 

Spray chamber cooling was used for removal of 
interference. The absolute LODs for the different 
compounds ranged from 0.21 to 1.2 ng. The injected 
sample volume was 2 µl and seven different 
compounds were baseline resolved. 

[266] 

PFAN + Teflon 
spray chamber 

Phosphorylation degree of α and β-caseins / 
ICP-QMS with dynamic reaction cell 

The method can be used for determinations in the 10 
to 1000 fmol/µl concentration range. 

[73] 

MM + Cinnabar Iodide in food samples / ID ICP-MS The short wash out times allow for the determination 
of I in food samples without the need for adding 
oxidizing agents. The isotope dilution technique was 
applied by measuring the 129I intensity. 

[138] 

MM / HEN + 
double pass spray 
chamber 

Cadmium and zinc speciation in rabbit liver 
metallothioneins / CE – ICP-QMS and CE – 
ICP-DFMS 

For the MM, the LOD obtained for each Cd isoform 
was 2 pg. 

[95] 

DCN + double pass 
or cyclonic spray 
chamber 

Trace elements in water (NIST SRM 1643c) 
and spinach (NIST SRM 1570) / ICP-QMS 

Recoveries close to 100% were found for all the 
elements tested except for Zn 

[75] 

Single pass spray Sulphur in metalloproteins from bream liver / Limits of detection were 1.3 µg/l and 3.2 µg/l for 32S [147] 
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chamber CE – ICP-QMS with an octopole reaction 
cell 

and 34S, respectively. 

Single pass spray 
chamber 

Phosphorous in enzymatically digested calf 
thymus DNA / CE and HPLC - ICP-QMS 
with an octopole reaction cell 

The four monophosphorylated deoxynucleotides 
present in the DNA chain were successfully resolved. 
Absolute limits of detection for P were 0.6 pg and 
0.03 ng with CE and HPLC, respectively. 

[148] 

Single pass spray 
chamber 

Determination of the 235U/238U ratio in urine 
and 242Pu in water / nano-flow injection – 
ICP-SFMS 

At a 7 µl/min liquid flow rate 54 nl samples were 
analyzed. Plutonium was determined at the sub-
femtomolar level. 

[260] 

Single pass spray 
chamber 

Selenopeptide mapping in a selenium 
containing protein / Reversed-Phase HPLC – 
ICP-QMS with and without collision cell 

The liquid flow rate ranged from 0.5 to 7.5 µl/min 
and just 200 nl of sample was injected. LODs were 
about 200 fg Se. Resolution was sharply increased 
with respect to conventional HPLC-ICP-MS 

[146] 

Single pass spray 
chamber 

Metallothioneins in human brain cytosols / 
CZE – ICP-SFMS 

 [145] 

MCN6000 Rear earth elements in marine particulate 
matter / ICP-SFMS 

Detection limits were 1-40 ppq which, when 
combined with the low liquid flow rate (100 µl/min) 
yielded 1-20 fg absolute LODs. 

[168] 

MCN6000 Arsenic in steel / ICP-QMS The background equivalent concentration was 25 
times lower than for a conventional sample 
introduction system. At 60 µl/min the limit of 
quantification was 0.12 µg/g. 

[174] 

MCN6000 P, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Mo, Cd, 
Re, Tl and Pb in lake waters / ICP-SFMS 

Elements were detected at levels below 1 ppb or ppt 
(Re). 

[175] 

MCN6000 239Pu and 240Pu in seawater / Sequential 
injection ICP-SFMS 

3-10 l of sample were preconcentrated to 7 ml thus 
affording LODs of 0.64 and 0.19 fg/ml for 239Pu and 
240Pu, respectively. 

[173] 

MCN6000 V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in 
seawater samples 

This analysis was carried out using only 50 µl of 
sample without suffering from the interferences 
usually present in this kind of sample 

[180] 
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MCN6000 / MCN Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Cu, As, 
Ag, Pt, Au, Pb in human milk / ICP-SFMS 

 [167] 

MCN6000 Isotopic analysis of uranium in tree bark / 
ICP-QMS 

Very low 238U limits of detection (0.004 ng/l) and 
good 235U/238U precisions (0.4-3.1% RSD) were 
achieved by operating the system at 80 µl/min 

[171] 

AridusTM Protactinium in silicate rock / Multicollector 
ICP-MS 

A few tens of femtograms of Pa are sufficient to yield 
good precisions and accuracies 

[182] 

AridusTM / MMN Anionic and cationic arsenic compounds in 
freshwater fish / HPLC ICP-SFMS 

Conventional HPLC (1.5 ml/min) was coupled to a 
micronebulizer system by applying a 1:7.5 splitting 
factor. 100 µl of sample was injected. 

[114] 

AridusTM Determination of uranium isotope ratios in 
groundwater samples / Multicollector ICP-
MS 

The radioactive contamination sources are 
unequivocally detected 

[185] 

AridusTM Ir and Pt / preconcentration ICP-SFMS Limits of detection achieved were 0.02 ppg and 0.08 
ppq for Ir and Pt, respectively. 

[183] 

AridusTM Mo isotope composition / Multicollector ICP-
MS 

Mo isotope variations can be determined to a 
precision of 0.2 ‰  

[267] 

AridusTM Fe isotopic composition / Multicollector ICP-
MS 

The isotopic composition of Fe can be measured with 
a precision of 0.2 (parts per 10000) 

[268] 

AridusTM/DIN Drug substances containing chlorine, 
bromine and iodine / Revered phase HPLC 
ICP-MS 

DIN was less sensitive to analyte structure than the 
AridusTM 

[11] 

AridusTM Uranium isotopic ratios in geological samples 
/ Multicollector ICP-MS 

A precise 234U/238U analysis was carried out with 200 
ng of sample. The precision (2 σ) of the isotopic 
measurements was 0.8 ‰ 

[269] 

AridusTM Uranium and plutonium in soils / ICP-SFMS By working at a 100 µl/min liquid flow rate, limits of 
detection were 0.2 pg/l and 0.04 pg/g for uranium and 
plutonium, respectively 

[177] 

AridusTM Si isotope ratios in silica, diatomite and 
sponges / Multicollector ICP-MS 

Variations in the 28Si/29Si are determined with 
precisions better than 0.1 ‰. This procedure requires 

[169] 
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only 3 µg Si. 
AridusTM 236U/238U ratios in uranium minerals / ICP-

SFMS 
With a 100 µl/min sample consumption rate, the 
uranium isotope ratio was measured down to the level 
of 10-7. 

[170] 

AridusTM with a 
PFAN 

239Pu in urine / ICP-SFMS For a sample with a Pu concentration as low as 7.6 
pg/l, the error with respect to the expected value was 
lower than 2%. 

[176] 

AridusTM/ MMN/ 
DIHEN 

236U/238U isotope ratio in soil simples / ICP – 
QMS with an hexapole reaction cell, ICP – 
SFMS and Multicollector ICP-MS 

These experiments can be carried out with uranium 
levels as low as fg/g 

[230] 

AridusTM Thorium isotopic measurements in volcanic 
rocks / Multicollector ICP-MS 

A liquid flow rate moderately low (i.e., 0.5 ml/min) 
was used. 

[184] 

Demountable DIN Nickel and bismuth in sediments / 
preconcentration lab-on-valve ICP-MS 

With a 2.0 ml sample volume consumed, the LODs 
obtained were 15 and 4 ng/l for Ni and Bi, 
respectively. 

[247] 

DIHEN / MMN Uranium, thorium and plutonium isotope 
ratios in radioactive wastes and uranium 
isotope ratios in soils / ICP-QMS 

The 240Pu/239Pu ratio was measured for concentrations 
as low as 12 ng/L. 

[220] 

DIHEN / MM Concentration and isotope ratios for long-
lived radionuclides in radioactive wastes 

Polyatomic interferences were removed by extracting 
the analytes (e.g., U, Th and 99Tc) through a liquid 
extractant or by means of a solid exchanger 

[229] 

DIHEN / MMN Concentration and isotope ratios for long-
lived radionuclides in radioactive wastes 

Polyatomic interferences were removed by extracting 
the analytes (e.g., U, Th and 99Tc) through a liquid 
extractant or by means of a solid exchanger 

[229] 

DIHEN  Sn and Cr isotopes in human lung fibroblast 
cells/ ICP-TOF MS 

Precise isotope ratios can be obtained by measuring 
simultaneously fast (12.75 ms) transient signals for 
several isotopes 

[218] 

Demountable DIN  Selenium speciation in human urine samples 
/ ion pairing ICP- Quadrupole MS 

Four identified selenium compounds and an 
unidentified one were separated and detected working 
at 50 µl/min and injecting 3 µl of sample. 

[212] 
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Demountable DIN/ 
MMN + cyclonic 
spray chamber   

Selenium speciation in human urine samples 
/ reversed phase, ion pairing LC- and CE- 
ICP- Quadrupole MS 

Two selenium metabolites were identified at 50 
µl/min and injecting 3 µl of sample. 

[214] 

DIN Boron in undigested blood plasma and urine 
samples /isotope dilution ICP-Quadrupole 
MS 

The total sample volume required was 1 ml and the 
injected volume was 50 µl. 94% of the carbon was 
removed by  protein precipitation. 

[204] 

MCN 6000 /DIN / 
MCN + cyclonic 
spray chamber 

Enriched 77Se yeast samples / Reversed 
Phase LC – ICP-Quadrupole MS 

More than 30 selenium containing compounds were 
separated by consuming just 3 µl of sample and 
working at a 50 µl/min liquid flow rate. 

[178] 

dDIHEN / DIHEN Trace metals in urine samples / ICP-QMS No nebulizer clogging was observed for 1:5 diluted 
urine samples and good recoveries are achieved 

[218] 

LB-DIHEN Trace metals in herbal extracts / ICP-QMS The sample volume required was 20 µl. A standard 
additions methodology was applied. 

[224] 

DIHEN Cd2+ in seawater samples / Anodic stripping 
voltammetry – ICP-QMS 

The obtained concentration (26 ± 4 ppt) was in accord 
with the actual one (25 ± 3 ppt). 

[243] 

DIHEN / MMN Long lived radionuclides in radioactive 
wastes / ICP-DFMS 

With a 20 µl of waste sample it was possible to 
determine 237Np concentrations as low as 10 ng/l with  
good precision (i.e., RSD 2.0%, n=5). 

[229] 

Demountable 
DIHEN 

Ni and Bi in river sediments (CRM 320) and 
urine samples 

Matrix elimination and analyte preconcentration were 
carried out by means of a ‘lab-on-valve’ 
methodology. The aspirated sample volume of 2.0 ml  
was reduced to 60 µl through the preconcentration 
step. Limits of detection were on the order of ng/l. 

[247] 

Demountable 
DIHEN 

Cd and Pb in urine samples / Sequential 
injection ICP-QMS 

Matrix was removed and the analytes preconcentrated 
by means of a suspension of PTE beads. 3 ml of 
sample were aspirated and the retained analyte was 
eluted with 40 µl of a nitric acid solution. The LODs 
were 2.9 and 6.0 ng/l for Cd and Pb, respectively. 

[248] 

DIHEN 31P in a phosphopeptide mixture and 127I in a 
synthetic tryoxine / micro- and nano-LC-ICP-

Eleven phosphorous compounds were separated and 
detected by injecting 5 µl of sample the liquid flow 

[241] 
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SFMS rate being just 4 µl/min. Absolute LOD for 127I was 
40 fmol. 

DIHEN Hg in freeze-dried urine (NIST SRM 2670), I 
and B in bovine muscle (NIST SRM 8414), 
Hg and I in seahorse genital tonic pills and B 
in rodent liver samples / Flow injection ICP-
QMS 

Good recoveries were found for the determination of 
these memory prone elements 

[236] 

DIHEN Na, Mg, K, Ca, Fe , Mg in homeopathic 
nerve tonic tablets / ICP-QMS under cool 
conditions 

Unlike under normal conditions, when operated under 
cool conditions, the background levels were low 
enough to allow the precise analysis of these kinds of 
samples. 

[221] 

DIHEN 56Fe, 52Cr, 59Co, 64Cu, 208Pb, 27Al, 55Mn, 65Zn, 
108Ag, 88Sr in silicon wafer surfaces / ICP-
QMS with hexapole collision cell 

A 100 µl drop scanned the sample surface and 
dissolved the contaminants. It was then diluted to 2 
ml and analyzed by the method of standard additions. 
The analytes surface concentration range was 0.49 to 
6.5 * 109 atoms / cm-2. 

[219] 

DIHEN Sn and Cr in human fibroblast cells / ICP-
TOFMS 

Only 10 µl of sample allowed for a precise 
determination of isotopic ratios. 

[218] 

DIHEN Cr bound to human lung DNA / microscale 
flow inyection analysis (µFIA) ICP-QMS 

Using a 20 µl injection loop, the achieved LOD was 
980 fg/injection 

[¡Error! 
Marcador no 
definido.] 

DIN Ba, Cu, Pb and Zn in undigested honey 
samples / ID ICP-QMS 

A 50 µl diluted sample aliquot was injected into the 
system and results were in good agreement with those 
obtained with a conventional digestion based method  

[205] 

DIN Lead speciation in rainwater / ICP-QMS At a 40 µl/min delivery liquid flow rate, limits of 
detection for inorganic lead and triethyllead were 90 
and 200 ng/l, respectively. 

[209] 

DIN / MCN Palladium in road dust and car exhaust fumes 
/ ICP-QMS 

The injected sample volume ranged from 1.5 to 5 µl, 
the Pd concentration being on the order of 20 µg/l. 

[207] 

DIN Chromium speciation in freeze dried urine The injected volume was 2.5 µl and the liquid flow [211] 
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(NIST SRM 2670) / HPLC – ICP-QMS rate was 100 µl/min. 
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Figures and Captions 

Figure 1 

Schematic of different pneumatic aerosol generation principles. (a) Concentric 

nebulizer; (b) cross-flow nebulizer. 

 

 

Figure 2 

Variation of the aerosol surface mean diameter (D3,2) with the liquid flow rate (Ql) for 

three different pneumatic nebulizers: conventional concentric nebulizer type A (A), 

conventional concentric nebulizer type K (B) and micromist (C). Nebulizer gas flow 

rate, Qg: 0.8 l/min. 

 

Figure 3 

Simulation of the evolution of the drop size distribution with time caused by solvent 

evaporation. (a) Distilled water Ql = 30 µl/min; (b) distilled water Ql = 1000 µl/min; (c) 

2 mol/l nitric acid Ql = 30 µl/min. Qg = 0.7 l/min. Dotted line: primary aerosol 

distribution; continuous line: simulated aerosol distribution 1 second after the aerosol 

generation; grey line: aerosol distribution 6 seconds after the aerosol production for (a) 

and (c) and 2 seconds after the aerosol generation for (b). Nebulizer: PFA. All 

calculations have been performed at 25ºC. 

 

Figure 4 

Drop size distributions for different pneumatic micronebulizers. (1) High Efficiency 

Nebulizer, HEN; (2) PFA micronebulizer; (3) MicroMist. Qg = 0.75 l/min; Ql = 300 

µl/min. 
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Figure 5 

Change in the drop diameter with time caused by droplet coagulation for several initial 

droplet diameters at 30 µl/min (a) and 1 ml/min (b). Nebulizer: PFA. Gas flow rate: 0.7 

l/min. Initial drop diameters, in µm: (A) 1.41; (B) 1.64; (C) 1.9; (D) 2.95. 

 

Figure 6 

Relative change of the drop diameter caused by coalescence versus time for the data 

presented in Figure 5. 

 

Figure 7 

Different pneumatic micronebulizers. (a) Microconcentric Nebulizer, MCN; (b) High 

Efficiency Nebulizer, HEN; (c) detailed top view of the HEN nozzle; (d) Micromist, 

MM; (e) PFA nebulizer. 

 

Figure 8 

Schematic of the concentric capillary nebulizer (CCN). Taken from ref. 74 with 

permission. 

 

Figure 9 

Schematic of the high efficiency cross-flow micronebulizer, HECFMN, reprinted with 

permission from ref. 77, © 2001 American Chemical Society (a); Burgener parallel path 

micronebulizer, PPMN, Mira Mist (b); Sonic Spray Nebulizer, SSN (c); Multi Micro 

Spray Nebulizer, MMSN (d). 

Con formato: Fuente: Sin
Negrita

Eliminado: Figure 5
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Figure 10  

Spray chambers used for the analysis of microsamples coupled with ICP techniques. (A) 

double pass; (B) cyclonic; (C) single pass. 

 

Figure 11 

Pictures of two low inner volume spray chambers. (a) cyclonic spray chamber 

(Cinnabar); (b) single pass spray chamber;  

 

Figure 12 

Schematic of the Torch Integrated Sample Introduction System (TISIS). Design and 

dimensions of the TISIS. (a) different components of the TISIS; (b) complete mounted 

system. (1) nebulizer; (2) evaporation cavity and aerosol; (3) PTFE adapter for the 

nebulizer; (4) drain exit; (5) PTFE adapter for the injector; (6) plasma injector; (7) torch 

main body; (8) plasma. Taken from reference 155.  

 

Figure 13 

(a) Two step desolvation system. (1) nebulizer; (2) spray chamber; (3) thermocouple; 

(4) source; (5) drain; (6) Liebig condenser. (b) schematic of the AridusTM desolvation 

assembly. 
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Figure 14 

ICP-AES emission signal (a) and limits of detection (b) measured for three different 

sample introduction systems. Liquid flow rate: 55 µl/min. Black bars: direct injection 

nebulizer, nebulizer gas flow rate: 0.25 l/min; White bars: MCN6000, aerosol heating 

temperature: 70ºC, membrane temperature: 160ºC, nebulizer gas flow rate: 0.87 l/min; 

Grey bars: MCN coupled to a double pass spray chamber, nebulizer gas flow rate: 0.7 

l/min. 

 

Figure 15 

Layout of the direct injection high efficiency nebulizer, DIHEN (a) scheme of a 

demountable DIHEN taken from ref. 249 with permission  (b) and reduced length torch 

(c). 

 

Figure 16 

Flow chart illustrating how to select a micronebulizer and an aerosol transport device to 

carry out a given application. 
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