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Abstract 

 

The aim of the work was the quantification of horizontal and vertical solute transport of 

possible contaminants in the close vicinity (<10m) around pumped wells in conurbations. The 

Birmingham Triassic Sandstone aquifer was chosen to build a borehole array of five wells in 

the Wildmoor Sandstone. The five wells of the test site at the University of Birmingham 

approached seven sandstone layers, separated by six mudstone layers, approved with 

geophysical well logging. Specifically constructed packers were used to process tests 

quantifying the hydraulic and solute transport characteristics. Hydraulic conductivities 

between 1.27 m/d and 11.37 m/d were calculated with data of 14 pumping tests. Storage 

coefficients between 1.76x10
-5

 and 1.32x10
-5

 were determined. Average linear velocities of 

six sandstones were determined between 0.156 to 3.28m/d. Corresponding hydraulic gradients 

of 0.033 to 0.288 with up-flow in wells were calculated. Horizontal forced gradient tracer 

tests, being processed in three aquifers, recovered between 48% to 97% rhodamine WT and 

fluorescein. Effective porosity values between 0.00225 and 0.346 were calculated. A new 

setup of vertical forced gradient tracer tests, exploring the connectivity between two 

sandstone layers separated by a mudstone layer, was processed. Groundwater modelling was 

carried out to quantify especially dispersivity values for sandstone and mudstone layers. 

The tests give a full set of quantified hydraulic data for Triassic Sandstone to estimate 

contaminate transport within the area of pumped wells. The importance of fractures for the 

groundwater flow and contaminant transport in Triassic Sandstone, were confirmed by the 

tests.  
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CHAPTER 1: INTRODUCTION 
 

 

1.1 Project Setting and Aim 

The thesis forms part of the URGENT – Urban Regeneration and the Environment – 

Programme, a research programme funded by the National Environment Research Council 

(NERC) with the aim to stimulate the regeneration of the urban environment through 

understanding and managing the interaction of natural and man-made processes. Over 90% of 

the population of the UK lives in conurbations covering 10% of its land area. More than 150 

years of industrialisation and rapid urbanisation have left a legacy of contamination and 

dereliction. URGENT focuses on a limited number of urban conurbations and developed 

generic models and solutions, which should be applicable more widely in the UK and 

internationally. 

An important topic of investigation is the water transport in natural or man-made environment 

and possible mobilization of contaminates, which was dealt with in this thesis. In this context, 

UK‟s Permo-Triassic Sandstone multilayered aquifers, the second most important aquifers in 

the UK with total abstractions of around 900 Mm
3
/a or about 35 % of the groundwater 

abstraction, were considered for further investigations. The Birmingham Triassic Sandstone 

aquifer, as a multilayered aquifer, was chosen for this work to explore problems faced by 

users of single wells when water of usable quality could be sustainably abstracted from the 

urban aquifer. This issue led to the topic of the thesis: “Horizontal and Vertical Transport in a 

Multilayered Aquifer of the Triassic Sandstone, UK – Tracer Tests and Modelling”. The area 

of investigation wass the solute migration at borehole scale around an existing pumped well in 

a distance of less than 10 metre. 
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Tellam and Barker (2006) confirmed the importance of fracture flow near wells. Tests carried 

out in Permo-Triassic multilayered aquifers by Green, 1994, Hamilton, 1995, Betts, 1996, 

Streetly et al., 2002, were processed in horizontal directions within certain aquifer layers. 

However, to confirm the hypothesis of Tellam and Barker (2006), the aim of this thesis was 

to confirm the interaction between layers within a multilayered aquifer with tracer tests both 

in horizontal direction and in vertical direction, an experiment not being explored before. The 

results of the hydraulic quantification should be applicable for similar types of multilayered 

Permo-Triassic sandstone aquifers worldwide. 

 

1.2 Previous Work 

An overview of artificial tracer tests in hydrogeology in Britain was given by Atkinson and 

Smart (1980), while Davis et al. (1985) discussed groundwater tracer applications in detail. 

Hiscock (2005) reported on a few tracer tests processed in sand and gravel, limestone chalk 

aquifer. However, the most appropriate review and guidelines for the use of groundwater 

tracer tests in British aquifers were presented by Ward et al. (1998). Numerous examples for 

experimental tracer tests in limestone were given, but only four locations were selected so far 

where tracer tests were applied in Triassic Sandstone. The first was a forced gradient tracer 

test in the East Midlands using bacteriophages as a tracer. The second was a dewatering test 

between a borehole and a tunnel, in Liverpool, using fluorescein as a tracer (Barker et al., 

1998). The third location is called Heath House, near Hodnet, in Shropshire (Coleby, 1996), 

and the fourth location of tracer tests in Triassic Sandstone in the UK is the Haskayne site 

north of Liverpool, at the Merseysite in NW England (Green, 1994; Hamilton, 1995; Betts, 

1996; Streetly et al., 2002). At each of the latter locations, two forced gradient tracer tests 

were carried out. Semi-quantitative interpretation of the tests at the Haskayne site (Streetly et 
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al., 2002) found values of dispersivity of 1 - 2 m and of kinematic porosity of 0.14 - 0.2. 

Joyce et al. (2006) carried out five field tracer tests in the Birmingham Triassic Sandstone 

Aquifer. From quantitative interpretation of these data, values of 0.7 – 2 m were given for the 

dispersivity and 0.2 - 0.3 for the effective porosity.  

 

1.3 Approach  

The aim of the thesis is the construction of a test site with an array of four boreholes in the 

vicinity of an existing well; the design of a hydrogeological model of the site; its hydraulic 

characterization including the horizontal and vertical transport properties; and the 

development of a hydraulic and transport computer model. To develop such flow and 

transport models the following steps were processed: 

1. Construction of a Test Site in the Triassic Sandstone aquifer of Birmingham 

An area in front of the Earth Science Building of the Birmingham University was chosen as 

test site with an already existing well, BH1, drilled in 1995. The well has a depth of 60 m bgl 

(below ground level) with an iron casing at the top 13 m bgl and is not grouted. The drilling 

log of BH1 defines seven sandstone layers separated by six mudstone layers, all connected by 

BH1 from 13 m bgl to 60 m bgl. Under the expectation of horizontal layered Triassic 

Sandstone four additional boreholes labeled BH2-BH5 were drilled. To have a better chance 

of reaching the same layers at the same depth, the additional four wells were drilled in a 

maximum radius of 7 m around BH1. The distance of 7 m was chosen to be able to account 

for vertical flow around the pumped wells. Two wells were drilled to approach two different 

particularly confined sandstone layers. The third well approached the unsaturated aquifer. 
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2. Development of a Hydrogeological Model of the Test Site 

Experimental information of all the wells gained with different logging methods were applied 

to develop a conceptual model of the Tests Site. A drilling log of BH1 and a core log of BH4 

were available after the drilling campaign. For detailed information of all wells geophysical 

logs were recorded in all wells. The results of the logs were compared for different log types 

recorded in the same well and compared for the same logging method recorded in different 

wells. 

3. Hydraulic Characterization of the Test Site 

Pumping Tests were conducted in all wells to measure hydraulic conductivities, 

transmissivities and storage coefficients for almost each sandstone layer defined by the 

conceptual model. A specially designed double-packer system and a plastic tube (lay flat) 

packer of over 60 m length were used for the test in BH1 to packer off a particular sandstone 

layer or the whole BH1. The drawdown was recorded with pressure transducers in almost all 

wells during the tests. Analysis of the drawdown data was processed with pumping test 

analysis software (Aquifer win32). 

4. Characterization of Horizontal and Vertical Transport Properties of the Test Array 

Three different types of tracer tests with different set ups were processed on the test site to 

simulate solute movement and transport within the layered aquifer of the borehole array. 

Fluorescein and rhodamine WT were applied as tracers. The following three tracer tests were 

chosen:  

 Point dilution tracer tests were conducted in BH1 in almost all sandstone layers. 

The goal of the test was to measure the dilution of the introduced tracer over time 

in the aquifer and to calculate its natural gradient. 
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 Forced gradient tracer tests in horizontal direction in one sandstone aquifer 

were conducted in three different aquifer layers where two wells were available for 

the test set up of an injection and abstraction borehole. The goal was to determine 

values of effective porosities and longitudinal dispersivities in the Triassic 

Sandstone. 

 Forced gradient tracer tests in vertical direction between sandstone aquifers, 

separated by mudstone layers. The set up of forced gradient tracer tests in vertical 

direction between two aquifers separated by a mudstone layer was new. All tests 

were set up in the way that tracer was injected into a confined sandstone aquifer 

for several hours and that water was abstracted in wells in sandstone layers above 

and below the injection layer. The goal was to measure the breakthrough of tracer 

in order to verify whether vertical transport through mudstone layers takes place. 

Furthermore, the mass of tracer breaking through should be quantified. 

 

5. Development of a Computer Model  

At the end of this work all newly gained information of the various tests were used to develop 

a conceptual flow model of the test site, which is based on the simplified geological layered 

sandstone and mudstone structure. The data of the hydraulic characterization were used to 

calibrate the model and the calculated natural hydraulic gradient of the point dilution test was 

used to define the boundaries of the model. Horizontal and vertical forced gradient tracer tests 

were quantified by solute transport modeling. 
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CHAPTER 2: Geology and Hydrogeology 
 

 

2.1 Aim 

The aim of this thesis was to examine the fluid flow and solute transport in horizontal and 

vertical direction in the Triassic Sandstone. The Birmingham Urban Aquifer was considered 

to be typical of the Triassic Sandstones in the Midlands, if not for a wider area of Triassic 

Sandstone in the UK.. The chosen area of the test site lies in the Wildmoor Sandstone of the 

Triassic Sandstone within the campus of the University of Birmingham. Thus, a review of the 

sedimentology, geology and hydrogeology of the Triassic Sandstone on a regional and local 

scale was required, relevant to this project. The focus was laid on matrix flow, fracture flow, 

aquifer properties and results of previously processed tracer tests in the Triassic Sandstone of 

the UK. 

Groundwater flow and solute transport in the Birmingham aquifer are dependant on the 

aquifer properties of the Triassic Sandstone. The properties depend on the sedimentation and 

diagenesis of the aquifer building sandstone, siltstone and/or mudstone. A local, neighbouring 

test site at the University of Birmingham is presented in more detail with respect to the 

detailed facies analysis conducted. Tracer tests carried out at this neighbouring test site are 

presented, as well. 

Finally, the regional geology, local geology and hydrogeology of previous information were 

assigned to the test site built for the purpose of this thesis. 
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2.2. Regional Geology and Stratigraphy of the Birmingham Area 

The Brimingham area is dominated by the geology of the Carboniferous, the Permo-Trias and 

the Quaternary. The Brimingham aquifer consists of Triassic Sandstone sediments. Figure 2.1 

gives an overview of the geology of the Birmingham area after Powell et al. (2000). 

 

Figure 2.1: Geology of Birmingham with the location of the University main Campus (after 

Powell et al., 2000) 

 

University of
Birmingham
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Triassic rocks are lying unconformly on pretended impermeable Carboniferous Coal 

Measures, building the basement of a Triassic sediment basin with an approximate northeast-

southwest strike. The Birmingham basin is bound in the west by the Black Country of the 

Carboniferous South Staffordshire Coalfields and in the east by the Carboniferous 

Warwickshire Coalfields. The filling of the Triassic sediment basin is built by Triassic 

Sandstones and Triassic Mudstones. The Triassic Sandstones built the Birmingham aquifer, in 

the north-western part of the basin, lying north-westerly from the Birmingham fault and 

overlying the Carboniferous strata with a slight angular unconformity, according to Powell et 

al. (2000). Between the Birmingham fault and the Meridian fault (Western Boundary) is the 

Knowle Basin consisting of Triassic Mudstones where the sediments were deposited in an 

extensional setting after Chadwick and Smith (1988). Thus, the boundaries of the 

Birmingham aquifer are Carboniferous deposits along the western margin, towards the base of 

the basin and the Birmingham Fault to the east. This is supported by modelling work of the 

Birmingham aquifer by Knipe et al. (1993). 

Warrington et al (1980) defines three groups of Triassic Sandstone: 

 

1. Sherwood Sandstone Group: Mainly red sandstones 

2. Mercia Mudstone Group: Comprising red mudstones and siltstones 

3. Penarth Group: Mainly marine sediment. 

 

However, the last group was not recorded in the area Birmingham, neither in outcrops nor in 

boreholes. Extensive quaternary sediments can be found on the sediments of the Birmingham 

aquifer and on the surface of the Knowle basin. Glacial deposits, fluvio-glacial deposits and 

locally peat were found also. 
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The stratigraphy of the Birmingham area shows that the Triassic rocks are subdivided into the 

older, mainly arenaceous Sherwood Sandstone Group and the younger, mostly argillaceous 

Mercia Mudstone Group. Table 2.1 shows the general geological succession of the 

Birmingham area.  

Thompson (1970) identified ten lithofacies sequences in the Cheshire Basin, occurring at any 

stratigraphical level. This reflects the general situation during the sedimentation in the 

Worcester, Stafford and Needwood Basins close to Birmingham with graben subsidence and 

the spreading of basin margins. The grain size becomes finer towards the basin centre from 

proximal coarse alluvial sands and gravels, to distal sandy braided river deposits (Audley-

Charles, M.G., 1970, Mader, D., 1992, Wills, L.J, 1976). 

 

Table 2.1: Geological succession of the Birmingham area (Nomenclature after Warrington et 

al. 1980, in brackets previous stratigrahical nomenclature after Eastwood et al. 1925). 

 

          Thickness 

Pleistocene Made ground       up to 20 m 

& Recent 

 

  River alluvium      up to 6 m 

 

  Terrace and fluvioglacial sands and gravels 

  Glacial till, sands and gravels, lake clays   up to 40 m 

 

Triassic Mercia Mudstone Group (Keuper Marl)  

  including Arden Sandstone      up to300 m 

 

  Sherwood Sandstone Group 

   - Bromsgrove Sandstone (Keuper Sandstone) 25 – 120 m 

   - Wildmoor Sandstone (Upper Mottled Sandstone) 0 – 90 m 

   - Kidderminster Sandstone (Bunter Pebble Beds) 0 – 125 m 

 

Permian Hopwas Breccia      0 – 30 m 

 

Carboniferous Coal Measures      600 – 1100 m 
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Warrington et al. (1980) worked on the correlation of the different formations and divided the 

Sherwood Sandstone Group into the Bromsgrove, Wildmoor and Kidderminster Sandstone: 

 

1. Bromsgrove Sandstone builds the younger division of the Sherwood Sandstone 

Group. It consists of medium to coarse grained, usually well cemented sandstone with 

quite variable oxide coatings, giving a red and brown colour with beds of red and blue 

marl. Narrow outcrops are close to the western site of the Birmingham Fault. To the 

east of the fault lies the Bromsgrove Sandstone with a maximum thickness of 120 m 

below the Mercia Mudstone. 

2. Wildmoor Sandstone Formation is built by well sorted, fine grained sandstone which 

is little cemented. It builds bedded, soft, uniform, bright red sandstones of up to 90 m 

thickness with partings and thin bands of marl. Wildmoor Sandstone outcrops are 

found in much of Western Birmingham. 

3. Kidderminster Sandstone is formed by up to 125 m of reddish-brown, medium to 

coarse grained sandstones with abundant pebbles and varying calcite cementation. 

 

The Mercia Mudstone comprises siltstones and mudstones, locally containing dolomitic 

sandstone horizons close to the base. Evaporite beds are observed throughout the mudstone. 

The colour is red with some green and grey sandstone bands and the Mercia Mudstone is up 

to 300 m thick. 

Below the Permo-Triassic strata lies the Coal Measures of interbedded fine sandstone and 

mudstone (with soil and coal horizons) of generally low permeability and storage capacity 

(Warrington et al., 1980, Audley-Charles, M.G., 1970).  
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Figure 2.2: The Triassic geology of the unconfined Birmingham aquifer, west of the 

Birmingham fault (Thomas, 2001) 
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Drift deposits cover wide areas of the sandstone outcrop around Birmingham with thicknesses 

of up to 25 m. Specific areas are examined by Pickering (1957), Kelly (1964) and Horton 

(1974). The glacial deposits consist of a local varying mixture of clay, sand, gravel and 

boulder. Land (1966) and Horton (1974) examine in detail drift deposits at different localities 

in the area of Birmingham. 

Alluvium overlies glacial deposits and sandstone in places, mainly along the rivers Tame and 

Rea (see Figure 2.2, after Thomas 2001). Urbanisation and Industrialisation caused a covering 

with man-made ground in wide areas of Birmingham of up to 20 m. The made ground 

consists of tarmac hardstandings (e.g. in residential areas) or landfill industrial waste 

depending on the area. Made ground constituents depend on the local dominant industry and 

vary in nature. It may consist of ash, clinker, bricks and other demolition materials. Thomas 

(2001) gives land use classifications and their influence on the recharge for the unconfined 

aquifer of Birmingham. Figure 2.2 shows the solid and drift geology of the unconfined part of 

the Birmingham aquifer (after Thomas, 2001). 

 

2.3 Permo-Triassic Sedimentology 

To predict the flow and transport conditions within the Permo-Triassic Sandstone, aquifer 

models should account for the sediment structures at different scales from micro to macro 

scale. The aquifer architecture of permeable pathways and barriers depends on the lithology 

and/or facies and increases with their variability (Miall, 1988). 

 

2.3.1 Facies (Depositional Environment) 

Tellam and Barker (2006) give a detailed description of the depositional environment during 

the Permo-Triassic in the UK in respect to solute movement. The Triassic Sandstone is 
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mainly of fluviatile origin, from a river system comparable with a major braided river system 

like the Saskatchewan river in Canada of today (Allen et al, 1997). During the sedimentation 

the climate was semi-arid to arid. Northward flowing braided river systems from the 

Variscian Mountains in the south (relative to present European geographical orientation) 

transported finer-grained sediments into tectonic active subsiding basins. Rain events caused 

flash floods mobilising debris from the mountains. The fluvial and aeolian environment 

sediment structures comprise plane lamination, cross-lamination, trough and planar tabular 

cross-stratification, water escape structures, debris flows, paleosols and desiccation cracks 

(e.g. Thompson, 1970 and Steel and Thompson, 1983, Tellam and Barker, 2006). The bed 

size varies from few centimetres to more than several metres. Depositional cycles are 

recorded for less than a metre to more than 100 m which is covered by sequence stratigraphy. 

Wills (1970) recognised “microcycles” which represent a wet to dry transition at a scale of a 

few beds. After Wills (1970), microcycles can comprise groups of microcycles up to a 

thickness of about 100 m. “Magnacycles” comprise a group of microcycles or formations. 

Microcycles can indicate energy conditions of the sedimentation as shown for an ideal 

microcycle, according to Thompson (1970) and Wills (1970) (after Tellam and Barker, 2006): 

 

Top Aeolian sandstone        low energy 

Mudstone with desiccation cracks 

Finer-grained plane-laminated sandstone 

Medium-grained cross-laminated sandstone 

Coarse (pebbly) channel deposit     high energy 

Base Erosion surface 
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The sedimentation of the cycle base to top or wet to dry stratigraphy is related world-wide to 

orbital forcing mechanisms (e.g. Mountney and Thompson, 2002). Galloway et al. (1998) 

describes three simplified principle types of facies and their hydrostratigraphic complexity 

which can be found at different scales from a few centimetres to several meters and 

formations of Triassic Sandstone (Figure 2.3): 

 

1. “Layer Cake”: Continuous lateral layers with a gradual change in thickness. They have a 

relatively simple correlation of sheet or lobate geometries of the permeable units.  

2. “Jigsaw puzzle”: A complex compartmentalised system of cross-bedding cycles. Internal 

correlation within one cycle is difficult. Correlation and delineation of general zones of 

higher permeability are relatively easy. 

3. “Labyrinth”: Numerous partials to completely isolated permeable units. External and 

internal correlation of the sand-body distribution and interconnectivity are difficult.  

 

Figure 2.3: Three principle facies types with different hydrostratigraphy applicable for 

Triassic Sandstone (after Weber and van Geuns, 1990). The scale can vary from a few 

centimetres to several metres. 
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2.3.2 Lithology 

The Triassic Sandstones are mostly quartz arenites to lithic arkoses (classification after 

Pettijohn, 1975), mainly composed of quartz with subordinate K-feldspar, albite, mica, 

carbonate clasts and minor ilmenite, zircon, and apatite (Strong, 1993). The grain size can 

vary from fine to coarse sands. Fine sands tend to contain some silt and clay matrix. 

Diagenetic features of the Sherwood Sandstone are similar to those forming today in the red 

beds of the Sonoran Desert, a basin which reaches only shallow burial depth (Walker et al., 

1978, Burley, 1984). Principle diagenetic characteristics are reddening by hematite grain 

coatings, quartz and K-feldspar overgrowths and cements, calcite, dolomites, with minor 

albite overgrowth, and kaolinite, illite, smectite and pyrite. Extensive grain dissolution, 

especially of K-feldspar grains can be traced by oversized pores, residual fragments, hollow 

overgrowth and ferruginous clay veneers (Strong, 1993). The porosities in the sandstones 

appear to be dominated by their primary lithology. Fine grained and muddier rocks generally 

tend to have a lower porosity. Mesogenetic secondary porosity of up to 30 % tends to appear 

in mature quartz arenites after grain and cement dissolution (Burley, 1984, Strong, 1993). 

Diagenetic features, especially the presence of pore filling cement in the Sherwood 

Sandstone, affect the hydraulic properties of the rock. Meteoric water circulating in the 

sandstone resulted in a carbonate cement removal, mainly in the unconfined aquifer. 

Organic carbon contents are less than 0.1% (Steventon-Barnes, 2001; Shepherd et al. 2006).  

Mudstones within the sequence are generally less than 1m thick and have a similar mineral 

composition with clays, quartz, feldspar, mica and hematite.  
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2.3.3 Burial and Diagenesis of Triassic Sandstone 

During the sedimentation of the Permo-Triassic Sandstone sequences the basins often were 

tectonically active (Audley-Charles, 1970), producing basin fills of no more than a few 

kilometres thickness (Burley, 1984). The basins were controlled by reactivating basement 

faults with uplift and inversion at several times since the Jurassic. In general, bedding dips of 

Permo-Triassic basins are typically less than 10° (Tellam and Barker, 2006). Faults can have a 

range of morphologies, deformation bands appear often in swarms and slip surfaces exist 

open or filled with clay or cataclasts (Fisher and Knipe, 1998, Manzocchi et al, 1998, Fowels 

and Burley, 1994). Jointing occurs to varying degrees and fractures become less frequent with 

depth (Gutmanis et al., 1998; Jeffcoat, 2002). Dewatering structures are found rarely as large 

scale dykes. The diagenesis of the sandstones can vary very much locally, but three main 

phases are differentiated generally by Tellam and Barker (2006, see also Burley, 1984; 

Metcalfe et al., 1994; Milodowski et al.; 1999): 

 

1. Early and shallow phase of diagenesis: Grain dissolution, replacement and 

precipitation of authigenic minerals (Burley, 1984). For example sandstones of West 

Cumbria. Burley (1984) suggests that the Midland basins have experienced shallow 

diagenetic conditions. 

 

2. Burial or mesogenetic diagenesis, up to 4 km in the Wessex Basin and the Irish Sea 

basins. The pororsity has been reduced by compaction during deep burial. Early 

cementation of high permeable sandstone units. Sutured grain contacts are common.  
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3. Post-Inversion or telogenetic diagenesis, due to ingress of meteoric waters after 

uplift which the Triassic basins have been exposed to since Jurassic times (Burley 

1984). Dissolution of carbonate and sulphate occurred and weathering of some 

feldspare to clay. An ongoing process which is only in rare cases influencing the 

hydrogeology significantly (Tellam and Barker, 2006). 

 

The cementation of carbonates and feldspars of the Triassic Sandstone is locally dissoluted 

(Burley, 1984), especially in the upper 50m to 100m. The unconfined area of the Birmingham 

aquifer is considered to have a leached zone of around 10 metres at the top, after Knipe et al. 

(1993). 

 

2.4 Flow Characteristics of Triassic Sandstone 

The flow characteristics of an aquifer can be described with aquifer properties: Controls on 

groundwater flow can be distinguished by properties of matrix flow and fracture flow. Flow 

characteristics are described for matrix flow of the Triassic Sandstone at different scales.  

 

2.4.1 Laboratory Studies 

A variety of studies have examined the porosity and permeability in laboratory studies 

(Tellam and Barker, 2006). Core sampling of Triassic Sandstones is described by Reeves et 

al. (1975) and Allan et al. (1997), providing a discussion of core analysis. The latter gives a 

summary of most of the laboratory studies on Triassic Sandstone. Tellam and Barker (2006) 

give a general overview. 

Porosity data measured in the West Midlands vary from 0.02 to 0.36 for Permo-Triassic 

sandstones. Average porosities are similar with arithmetic means between 0.24 to 0.28 and a 
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median of 0.26. (Allen et al., 1997). The porosity mainly depends on the cementation. In 

cemented areas of the Kidderminster formation the porosity is as low as 4 %. Low porosity 

values of the Wildmoor Sandstone are measured in silt and clay rich and cemented layers. 

Low porosity values in the Bromsgrove Formation are corresponding to well cemented, fine 

grained sands. Maximum porosity values of 34% to 36% correspond to well sorted, medium 

to coarse grained, and friable sandstones. 

Measured values of permeabilities are log normal distributed with geometric means in the 

range of 0.1m/d to 10m/d. Campell (1982) recorded some variation in formations and 

between basins. The ratio of horizontal to vertical hydraulic conductivity for the Sherwood 

Sandstone group in the West Midlands varies between 1.1 to 3.7 (Allen et al., 1997). The ratio 

can be up to 50 (Tellam and Barker, 2006). No systematic variation in matrix permeability 

was found by Tellam and Barker (2006) with depth. However, frequent dissolution of 

carbonates from shallow depth is frequently recorded. Mitchener (2003) suggests a sensitivity 

of permeability of some sandstones to change in water chemistry.  

 

2.4.2 Pumping Tests 

The distribution of transmissivity data from pumping tests performed at 763 sites in Triassic 

Sandstone (all the sites on the aquifer properties database of the BGS, Allen et al., 1997) 

nearly forms a log-normal distribution with a geometric mean transmissivity of 189 m
2
/d and 

an interquartile range of 90m
2
/d to 436 m

2
/d. Comparing transmissivity data of core analysis 

with those of pumping tests, Lovelock (1977) found that pumping test transmissivity data 

exceed those of core data. This indicates a non-matrix flow contribution to the aquifer 

transmissivity, caused by fractures for example. Due to the observed combination of matrix 

flow and fracture flow towards a borehole, the Permo-Triassic Sandstone is described as a 
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“dual-permeability” system (Allen et al, 1997). In the West Midlands region pumping test 

data from 88 tests are available on record (Allen et al., 1997). Transmissivity data range from 

2m
2
/d to 5200m

2
/d with an interquartile range of 60m

2
/d to 330m

2
/d and a geometric mean of 

151m
2
/d. A relationship between the length of the pumping tests and the transmissivity values 

was not observed. Bulk hydraulic conductivity data for the Sherwood Sandstone group of the 

West Midlands are given in Table 2.2. 

 

Table 2.2: Bulk hydraulic conductivity of the Sherwood Sandstone in the West Midland 

Region (after Allen et al., 1997) 

 

 

 

The distribution of storage coefficients of Permo-Triassic Sandstones in Britain varies after 

Allen et al. (1997) with very low values of about 10
-8

 in confined aquifers and higher values 

of 10
-2

 to 0.1 in unconfined aquifers. According to Krusemann and de Ridder (1994) the 

geometric mean of the distribution at 10
-3

 with an interquartile range of 3.6x10
-4

 to 3x10
-3 

seems to be resonable. Most of the data come from boreholes in unconfined areas rather than 

in confined areas covered by Mercia Mudstone. Pumping test storage coefficients in the West 

Midlands are given for 11 test sites by Allen et al. (1997). The values range from 2x10
-4

 to 

0.15 with a geometric mean at 2.5x10
-3

. 

The application of borehole packers in wells of Triassic Sandstone in Merseyside has been 

described by Brassington and Wathall (1985). High hydraulic conductivities of up to 2.52m/d 

are correlated with fractured sections and low hydraulic conductivities of about 0.24m/d with 

Range [m/d]

Interquartile

Range [m/d] Median [m/d]

Geometric

Mean [m/d]

Triassic Sandstone

 in the West Midlands 0.014 - 486 1.02 – 9.90 2.93 3

Bromsgrove Sandstone 0.014 - 486 0.53 – 2.71 1.58 1.58

Wildmoor Sandstone 0.77 – 62.6 3.06 – 19.1 12.1 8.06

Kidderminster Sandstone 0.14 – 69.2 1.14 – 33.3 4.79 4.93
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marl bands, confirmed by geophysical logging. Outflow packer tests in Bromsgrove 

Sandstone in Worcestershire described by Ireland (1981) show similar results to those of 

Brassington and Wathall (1985) for sandstones at Merseyside. Lerner (2000) processed some 

outflow packer testing in a borehole at Witton, Birmingham. A double packer system built by 

Owen Baines (University of Bradford) with a packer interval of about 2m was applied. 

Hydraulic conductivities between 0.56m/d and 9.13m/d were measured. 

 

2.4.3 Fracture Flow 

Joints and bedding-plane joints are seen in many outcrops and are often detected in boreholes 

of Triassic Sandstone (Jeffcoat, 2002). Bedding-plane joints may be partly controlled by 

lithology, and are considered to be relatively short (less than tens of metres) and having 

apertures of tens of micrometers up to 10 mm (Allen et al., 1998). Fractures with unfilled 

apertures of millimetre size are considered to have affects in local flows. Tellam and Barker 

(2006) discussed fracture flow evidence obtained from borehole studies and found two 

uncertainties:  

- The zone around the borehole may be atypical for the aquifer as it has been developed 

or clogged during drilling or pumping. 

- The detected fractures may not be connected not even via matrix bridges.  

They concluded that borehole data appear to be overestimating fracture flow, “... at least in 

the sandstones with higher matrix permeabilities” (Tellam and Barker, 2006). In summary, 

fracture flow occurs in sandstone and can be dominating around pumping wells even if 

intergranular permeability is relatively high.  

Antifractures, respectively faults, granulation seems or veins are treated as barriers in porous 

sandstone reservoirs (Edwards et al., 1993). On-shore sequences indicate many faults with 
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restricted permeability perpendicular to the slip plane (Allen et al., 1997). Major examples are 

faults in aquifers of Birmingham and Nottingham (Knipe et al, 1993, see Figure 2.6; Yang et 

al. 1999, Towsdale and Lerner, 2003). However, faults are acting as barriers or, as recorded 

by Tellam (2004) and Allen et al. (1997) as high-permeable pathways. The permeability of 

faults might change along fractures; low permeability at right angles and high permeability 

parallel to faults. Permeabilities along fractures are not uniform and might even be 

channelled. Combinations of faults will also have effects on the effective large-scale 

permeability (Tellam and Barker, 2006). 

 

2.4.4 Vertical Flow in Triassic Sandstone 

Salmon (1990), as well as Rushton and Salmon (1993) examined vertical flow through low 

conductivity zones in the Sherwood Sandstone aquifer at Bromsgrove for an area of about 

52km
2 

with wells of about 400m depth. A multilayered aquifer system model demonstrated 

the effect of low permeable bands on the groundwater flow, controlling vertical head 

gradients in the sandstone. Rushton and Salmon (1993) concluded that the low conductivity 

zones spread the effect of pumping more evenly across the aquifer and that high groundwater 

head gradients are required to move water through the low-conductivity zones.  

Vertical flow in Triassic Sandstone is recorded with a few percent by Brassington (1992) and 

Taylor et al. (2003). Segar (1993) recorded head change across most mudstone beds. 

 

2.4.5 Mudstones in the Triassic Sandstone 

Mudstones found in Triassic Sandstone are very rarely examined for their hydraulic 

properties. Tellam et al. (1981) gave a general overview of onshore non-carbonate mudrocks 

in Britain. Mudrocks are defined as any fine-grained indurated or unindurated sedimentary 
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rock. In general, laboratory hydraulic conductivities are much lower than in situ measured 

values, as given by Tellam et al. (1981) in Table 2.3. Generally, the porosity and permeability 

of Mudstones exponentially decreases with depth and therefore consequently with 

compaction. Tellam et al. (1981) summarised that mudrocks in Britain can be divided into 

two groups, a Pre-Mesozoic group, predominated by fissure flow, and a Postpaleozoic group, 

where interparticle flow may be present and where high rock compressibility may be 

important. 

 

Table 2.3: Typical range of hydraulic properties for the Mercia Mudstone Group (after Tellam 

et al., 1981; values were given for rocks up to 20 m below ground level) 

 

 

 

Laboratory Hydraulic 
Conductivity [m/d] 

Field Hydraulic 
Conductivity [m/d] 

Total 
Porosity [%] 

Laboratory Specific 
Storage[m

-6
] 

Mercia Mudstone Group 10
-4

-10
-6

 10
-1

-10
-3

 20-40 10
-4 

-10
-6

 

 

 

Laboratory measurements of Mudstone permeabilities were processed by Valentim Curião in 

2001, as part of an ERASMUS project under the supervision of John Tellam and Richard 

Greswell (unpublished, see also Tellam and Barker, 2006). The measured values vary 

between 1.1x10
-6

m/d and 8.21x10
-6

m/d for the Kelner outcrop (close to Liverpool) and 

between 1.06x10
-6

m/d and 1.40x10
-5

m/d for the Alderley Edge outcrop (close to Manchester). 

The lateral extension and continuity is uncertain and can vary between a kilometre 

(Thompson, 1970) to no correlation of mudstones within boreholes separated by less than a 

few tens of metres (Tellam and Barker, 2006). Paleosols may have permeabilities similar to 

mudstones (Bouch et al. 2006, Newell 2006).  
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2.5 Solute Transport in Triassic Sandstone  

As stated by Tellam and Barker (2006), less work has been completed on solute movement 

than on flow in Triassic Sandstones. Reacting solute transport mainly describes chemical 

reactions and is discussed in detail by Tellam and Barker (2006). Here, the focus is put on 

non-reacting solute transport, as discussed by both authors at the laboratory scale, respectively 

investigations on core samples, the borehole scale and regional scale.  

 

2.5.1 Borehole Testing – Tracer Tests 

The most appropriate review and guidelines for the use of groundwater tracer tests in British 

aquifers was given by Ward et al. (1998). Four locations are mentioned (see also Chapter 1.2) 

where tracer tests were applied in Triassic Sandstone. The results of seven breakthrough 

curves demonstrated the presence of high permeable pathways along joints in the sandstone, 

allowing very high flow velocities of up to 140m/d over 280m distance (at Liverpool, Barker 

et al., 1998). The results of two test at Hodnet, in Shropshire (Coleby, 1996) are listed Table 

2.4. The distance (radial distance) between the abstraction well and injection well was 20m. 

About 93% of tracer was recovered. 

 

Table 2.4: Summarized tracer test results after Ward et al. (1998) at Heath House, Shropshire 

 

 

Test 1 Test 3

Radial Distance [m] 20 20

Pumping rate  [Ml/d] 3.83 3.89

Kinematic Porosity [%] 14 13.5

Tracer injected 40 g amino-G-acid 250 g amino-G-acid

Tracer mass recovered 93% amino-G-acid 32% amino-G-acid

First breakthrough monitored [h] 48 60

Peak breakthrough [h] 100 105
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More investigations were made at the Haskayne site north of Liverpool, at the Merseysite in 

NW England (Green, 1994; Hamilton 1995; Betts 1996; Streetly et al. 2002). Three 

investigations involving tracer tests using fluorescein, amino-G-acid and bromide tracer were 

carried out in four boreholes with depths between 85 and 168 m. All were completed within 

the Omskirk Sandstone Formation, the local upper unit of the Sherwood Sandstone Group. 

The tracer tests were arranged as forced gradient tracer tests. During Test 1, Green (1994) 

injected tracer in a piezometer at 7m bgl and pumped in an abstraction well at 5m distance, 

packered at 10m bgl, increasing the hydraulic gradient for the tests and considering only the 

top part of the borehole. Water was abstracted with a rate of 0.7l/s at a depth of 7m bgl in the 

injection well. After steady-state conditions were reached, the dissolved tracer was injected 

with a short sudden injection or slug into the aquifer. The tracer monitoring was arranged in 

the abstraction well. The injection well was not monitored. Details are listed in Table 2.5.  

The observations of the second tracer test conducted by Hamilton (1995) were not suitable for 

an interpretation and determination of hydraulic parameters, as it was not possible to fully 

confirm the reason for no clear breakthrough of tracer, but it is believed that the probable 

reasons were a combination of the additional initial dilution, and the low flow velocity past 

the piezometer. The third test was conducted by Betts (1996), set up in a similar way to 

Green‟s test, with the pumped well packered at 23.5m bgl (instead of 10m bgl, Green, 1994). 

Betts (1996) started pumping after injecting the tracer. Details are listed in Table 2.5. 

The Tests of Green (1994) and Betts (1996) multimodal breakthrough, making the 

interpretation of typical transport properties of the sandstone difficult. Streetly et al. (2002) 

separated the peaks on the basis of their pathways. For quantitative interpretation a radial 

transport solution of Moench (1989) with a code of Noy (1993) was applied. First peaks, 
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represented fracture or fast intergranular pathways with dispersivities of less than 10cm. For 

the last peaks on the breakthrough curves of both tests consistent dispersivities of about 1m to 

2m were calculated and a kinematic porosity of 0.14 to 0.2 was determined.  

 

Table 2.5: Observed tracer test results after Green (1994) and Betts (1996) 

 

 

 
 

For the tracer tests conducted Tellam and Barker (2006) confirmed that the importance of 

fracture flow near wells and emphasize that fracture flow can occur over distances of 

hundreds of meters.  

 

2.6  Hydrogeology of the Birmingham Aquifer 

The Permo-Triassic Sandstones are the second most important aquifer in the UK, with about 

25 % of total licensed groundwater abstractions in 1977 (figures from Monkhouse and 

Richards, 1982). Allen et al. (1997) reported variable borehole yields, ranging up to ten 

thousand cubic metres per day depending on the aquifer properties, which are controlled by a 

Test 1 Test 3

Period 9.08.-13.08.1994 4.08.1996 and 6.08.1996

Pumping rate [l/s] 0.7 0.8

Permeability [m/d] 1 (1.3) 1

Tracer injected at [m bgl] 7 21

12 g fluorescein 21 g fluorescein

12 g amino-G-acid 21 g amino-G-acid

72 g potassium bromide 140 g KBr

11% fluorescein

9% fluorescein (8% minus

 background concentration) 

50% amino-G-acid

35% amino-G-acid (17% minus

background concentration) 

nil potassium bromide nil potassium bromide

First breakthrough monitored

fluorescein after about 19 h fluorescein after about 9 h

amino-G-acid after about 16h amino-G-acid after about 9h

Peak breakthrough

Tracer injected

Tracer mass recovered

All tracer in the first minutes all tracer



26 

combination of factors as lithology (mineralogy, grain size, sorting), cementation and 

fracturing. 

Birmingham lies within the West Midlands region of the United Kingdom. Today, 

Birmingham is the second largest city with about 1.016 million inhabitants (and about 2.285 

million including the conurbation, estimated in 2008). Together with the conurbation, 

including Wolverhampton, Dudley, Sutton Coldfield, and Solihull, Birmingham forms one of 

the main urban and industrial centres in Britain. The Birmingham aquifer can be defined into 

an unconfined part to the west of the Birmingham fault, and a confined part to the east of the 

Birmingham fault, lying confined under the Mercia Mudstone.  

The first detailed record of the Birmingham City water supply was recorded by Barclay 

(1898). Land (1966) addressed the hydrogeological character of the sandstones, groundwater 

head distributions and the pattern of abstraction. Before abstraction of groundwater, a simple 

groundwater flow pattern probably existed with recharge dissipated through the aquifer 

towards the main discharge release of the rivers Tame and Rea (Knipe et al, 1993). It is 

assumed that with the beginning of significant abstraction in the unconfined aquifer in the 

1850s the groundwater level rapidly depressed with the Industrialisation. In 1885, abstraction 

also started in the confined aquifer. With the development of cities, the aquifer supplies 

became inadequate and/or polluted (Tellam, 1995). With the increased wealth of the cities 

Manchester, Liverpool and Birmingham the cities switched to surface water sources in the 

late 19th and early 20th century, securing the drinking water supply. Abstraction for public 

supply in Birmingham did not happen before around 1900 when surface water was first 

imported from Wales. Abstraction for industrial purposes has continuously risen until the 

period 1938 – 1950. Since the 1950s, a significant reduction in pumping water caused a 

recovery of the groundwater levels. With decline and transfer of industry, the biggest decrease 
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in pumping happened during the late 1960s and early 1970s. Today, abstraction is lower than 

it was at the turn of the 20th century (Figure 2.4). In some areas, groundwater has risen over 

22m and is within 5 m of the ground surface in some places. This causes potential problems, 

as it can be regarded as posing a threat to foundation stability, may modify the characteristics 

of surface water systems and can mobilise possible contamination in the unsaturated zone. 

Jackson and Lloyd (1983) and Knipe et al. (1993) gave detailed examinations about the 

problems of rising groundwater. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Response of the Birmingham aquifer to groundwater abstraction (Knipe et al., 

1993) 

 

Results of seven “reliable” pumping tests of the Birmingham aquifer were given by Knipe et 

al. (1993). The values for the transmissivity vary between 65m²/d and 370m²/d. Three values 

for the hydraulic conductivity are listed. The lowest is measured at the Queen Elizabeth 

hospital close to the west gate of the University with 1.2m/d. The second K value is given for  
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Figure 2.5: Simplified geological and hydrogeological map showing the Birmingham Aquifer 

(Greswell et al., 2000) 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Simplified schematic cross-section of the groundwater flows in Birmingham after 

Knipe et al. (1993) 
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a well in Aston with 2.95m/d and the third was measured at Witton with a K value of 4.6m/d. 

The simplified natural groundwater flow in the unconfined Birmingham aquifer is towards the 

river Tame (Figure 2.5; Greswell et al., 2000). Observations of the groundwater head 

distribution indicate low permeability of the Birmingham fault perpendicular to the flow 

direction and limited flow across (Knipe et al., 1993; Allen et al. 1997; Tellam and Barker 

2006). 

 

2.7 Local Geology and Hydrogeology 

Within a distance of 100m to the south west of the planed test site of this thesis lies the 

Birmingham Great Hall borehole array (Figure 3.2), comprising three boreholes which were 

constructed in autumn 2001. All boreholes are about 50 m deep, each with a diameter of about 

6 inches, continuously cored (core diameter 4 inches) and cased with solid casing from the 

ground surface to solid rock at a depth between 12.33m bgl and 15.70m bgl (Joyce et al. 

2006). The surface distance between the BH-2 and BH-3 is about 7.55m and the distance of 

both wells to BH-1 is about 20m. The base of the borehole deviates from the vertical by 

1.37m to 2.02m. The overall core recovery was about 80% with poor core recovery at the near 

surface (to about 10m bgl). 

 

2.7.1 Local Facies  

The cores showed typical characteristics of the Wildmoor Sandstone Formation with intra -

formational pebbles and extra-formational clasts. Bouch et al. (2006) described the sandstone 

as typically silty, micaceous, poorly cemented and easily mouldable by hand when 

disaggregated. Sedimentological core logging indicated that the formation comprises massive 

sandstone, planar laminated sandstone, ripple cross-laminated silty sandstone, pebbly 
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sandstone, wind-ripple laminated sandstone, siltstone or claystone and mudstone with 

dolocrete nodules. Fluvial and subaerial facies are interpreted for these lithologies, to be the 

result of sedimentation in a moderate to low-sinuosity braided, fluvial environment. The 

mudstone with dolocrete nodules represents a palaeosol facies. The following facies were 

recognized by Bouch et al. (2006): 

 

I. Fluvial Facies:  

I.a. Channel-lag facies approximately 5% of recovered cores; coarse grained 

pebbly sandstone; expected at channel beds with well-developed to pervasive 

dolomite cement. 

I.b. Channel-fill facies approximately 60%, very fine to coarse-grained, massive, 

planar-laminated or low-angle cross-bedded sandstones in beds at decimetre to metre 

scale, up to 5m thick, poorly cemented and porous. 

I.c. Abandoned channel facies approximately 15% fine grained material, 

lacustrine deposits, ripple cross-laminated sandstones and siltstones. The facies is 

dominated by mudstones which are typically up to approximately 1m and locally up 

to 2.5m thick.  

 

II. Subaerial Facies: 

II.a Aeolian sandsheet facies approximately 15% of recovered cores; fine- to 

medium-grained sandstones, well sorted and round grains; building units of 0.2m-to 

2.5m thickness. 

II.b. Palaeosol (dolocrete) facies approximately 5% 

 

Diagenetic events from early and shallow phase diagenesis (or telogenetic diagenesis) with 

groundwater circulation dissolution were discernible (see Bouch et al., 2006). Hydraulic 

conductivities were measured for core samples in the range from about 10
-11

m/s for clay 

layers to about 10
-4

m/s for sandy layers. 
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2.7.2 Local Fractures 

Logging of fractures was processed on cores and with the optical televiewer. Bouch et al. 

(2006) differentiated between artificial horizontal to low angle fractures, as a result of the 

drilling process, and relatively scare natural fractures. Artificial fractures were mainly 

recognised at lithological boundaries and were not imaged with televiewer, whereas natural 

fractures were clearly imaged on the televiewer logs. Natural fractures were described as 

granulation seams, cemented or filled, and uncemented or unfilled. Natural fractures 

described by Bouch et al. (2006) were high-angle to vertical (20-90°). 

 

2.7.3 Impact of Heterogeneities on Fluid Flow and Contaminant Transport 

The impact of heterogeneities on fluid flow and contaminant transport was described by 

Bouch et al. (2006) for a larger and finer scale which will be important for modelling of 

groundwater flow or contaminant transport: 

 

1. Larger Scale: The abandoned channel and the palaeosol facies had low permeabilities 

due to high clay content and/or dolomite-dominated compositions. These features can 

be up to 1 m thick and have lateral extents of tens of metres, acting as baffles to 

vertical flow supporting perched water tables as observed in outcrops south to 

Birmingham (see Wills, 1976).  

 

2. Finer Scale: Generally sandstone samples of Bouch et al. (2006) are typically lightly 

cemented and have high to moderate porosities (primary intergranular macropore 

volumes of up to 20% modal analysis). Early dolomite and late calcite cements locally 

degrade severely primary macropore volumes and were significant within 
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approximately 2-5% of the cored intervals. The cement in coarser grained sandstones 

of the channel lag facies was prominently developed (0.05 to 0.1m thick). These layers 

seem to be laterally continuously over distances of bedforms for 10‟s to 10‟s of 

metres. The layers might readily be by-passed by horizontal flow, but may act as a 

barrier to vertical flow.  

 

2.7.4 Tracer Test Procedures at the Birmingham Great Hall Borehole Array  

A number of tracer transport tests were processed by the University of Birmingham through 

fractures in half metre intervals of fractured regions, applying packers (unpublished,, see 

Joyce et al 2006). The field tracer test of Joyce et al. (2006) was carried out between July 

2004 and August 2005. Tracer appearance was recorded between a few hours to greater than a 

few weeks. One upwards-directed vertical head gradient of approximately 0.05 was measured.  

A series of field tracer tests was undertaken to determine the migration and survival of 

bacteriophage at a field-scale. During all tests, fluorescein was used as conservative tracer 

together with phages and was added to all tests. In five tests, 2g fluorescein was injected into 

packered intervals of half a metre. Four tests were carried out on non-fractured rocks and the 

fifth on fractured rock. A sixth test examinated a full well by injecting 20g fluorescein. The 

results presented by Joyce et al (2006) showed breakthrough curves, proving that matrix and 

fracture flow pathways do exist in the Sherwood Sandstone for fluorescein. Dispersivity 

values of 0.7m to 2m and effective porosity values between 20-30% were calculated with 

one-dimensional modeling of the tracer tests. 
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2.8. Conclusions Derived for the Local Geology to be Expected 

Constructing the tests site for the purpose of this thesis, Wildmoor Sandstone was to be 

expected, when drilling was conducted on the Campus of the University of Birmingham, 

close to the building of the School of Earth Sciences. Lithologically, sandstones of fluvial and 

subaerial facies and mudstones of paleosol facies should be found. Generally, the sandstones 

are of fine to medium grain size, weakly cemented and mouldable by hand. Some sandstone 

horizons are cemented. Together with mudstones of paleosol facies the cemented sandstone 

horizons result in vertical flow barriers. Regional permeabilities and storage coefficients from 

a variety of core tests and a number of pumping tests in Triassic sandstones were available for 

comparison. Locally, permeability values for core samples were measured. The facies 

analysis of Bouch et al. (2006) concluded that low permeable bands control the vertical flow. 

For the drilling process after Knipe et al. (1993, see also Taylor et al. 2003) a leached zone of 

around 10 metres at the top might cause recovery of only lose sand and no core. 

A few horizontal tracer tests with conservative tracer were successful in Triassic Sandstone 

and most of the tracer could be recovered. Pathways for solute transport exist and was 

regionally differentiated for matrix and fracture flow. Locally, tracer test with phages and 

fluorescein were carried out in packered intervals. All fluorescein tracer tests measured a 

breakthrough and most of the tracer was recovered. 
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CHAPTER 3: Construction of the Test Site 

 
 

3.1 Aim 

For the purpose of this project, it was decided to build a test site around an existing borehole, 

BH1, drilled by the Environment Agency in February 1994 on the Campus of the University 

of Birmingham. Figure 3.1 shows the general location of the test site in the unconfined 

Birmingham aquifer. A map of the University campus and the location of the test site at the 

School of Earth Science, the Great Hall and the Great Hall borehole array is given in Figure 

3.2. Figure 3.3 shows a satellite image of the test site and its location on the lawn next to the 

School of Earth Science with reference surface elevation (AOD). 

BH1 was drilled into the Wildmoor Sandstone formation. Seven sandstone layers (S1 to S7) 

separated by six clay-rich sandstone or mudstone layers (M1 to M6) are defined according to 

the drilling log (Appendix III.3.1). Figure 3.4 gives a schematic cross-section of the test site 

with the existing borehole BH 1. The additional boreholes BH2, BH3, BH4 and BH5 were 

drilled to approach three different sandstone layers. This would allow to process flow and 

tracer tests in particular sandstone layers between a packered BH1 and another new borehole. 

Furthermore, it would be possible to inject a tracer in a packered sandstone layer in BH1 and 

pump a layer above or below this packered sandstone layer. 
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Figure: 3.1: The University of Birmingham and relative location of the test site in the 

unconfined Birmingham aquifer (after Rivett et al., 2005) 

 

 

Figure 3.2: Map of the Campus of the University of Birmingham with the location of the 

School of Earth Science, the test site, the Great Hall and Great Hall borehole array (based on a 

map of the Estates Services of the University of Birmingham, 2001). 
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Figure 3.3: Satellite image of a part of the Campus of the University of Birmingham with the 

location of the School of Earth Science, the test site with BH1 and reference surface 

elevations AOD (red points). Reference surface elevations are digitalized from a map of the 

estates services of the University of Birmingham into the satellite image (© Google Maps). 
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Figure 3.4: Schematic cross-section of BH1. 
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3.2 Drilling and Well Construction 

The wells on the test site were drilled with a rotary drilling rig mounted on a caterpillar. BH4 

was drilled with a double-tube core barrel to recover a full core. BH2, BH3 and BH5 were 

drilled by air drilling with a direct rotary drilling system (Cooper et al., 1977, Driscoll, 1995). 

The core barrel and drilling bits used are shown in Appendix III.3.2 and III.3.3. 

Two grouting methods were applied on the test site. With the first method, the “grout 

placement method” (Driscoll, 1995), grout was pumped through pipes running in the casing. 

A float shoe connected to the drilling rig was elevated to a certain interval in the casing which 

contained prefabricated voids. The interval was sealed above and below the voids with small 

packers and the grout was injected through the voids into the annular space between borehole 

wall and casing. This method was applied in BH 4. However, the grout placement method 

failed. All injected grout flew back into the inner casing and filled the well from 60m bgl to 

about 19m bgl. The drilling crew tried to rescue BH4 for later tracer tests and almost all grout 

was air flushed out of the borehole. As grout cement still covered the borehole wall of S7 in 

BH4, the cleaning of the borehole wall failed, too. Finally the drilling crew tried to pull the 

casing tube, failing again, and the casing ruptured at a depth of about 10m. To secure the top 

of the borehole from its collapse, a new casing with a slightly wider diameter was inserted 

from the top over the remaining eng end of the casing to a depth of about 13m bgl. Because of 

the grout in the well, BH4 was not applicable for the planned tracer tests. However, BH4 was 

used, with restrictions, as observation well which approaches S1, M1 and S2 at the top and S7 

at the bottom. BH5 was drilled as substitute for BH4. 

BH3 and BH5 were grouted with the “tremie pipe outside casing method” (Driscoll, 1995). 

Grout was placed through a small-diameter pipe, the so called tremie or grout pipe which was 

connected outside the casing. Grout was pumped into the annular space and the tremie pipe 
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was withdrawn several times with the rising level of grout in the annular space. BH3 and BH5 

were both drilled over the whole depth to be grouted. The casing was inserted into the 

borehole and the well was grouted. After the grouting of the wells, the uncased parted was 

drilled. BH2 was drilled in the unsaturated zone in S1 and S2 over its whole depth with 

supporting iron casing. The plastic casing of the well was inserted into the borehole and the 

space between the casing and the borehole wall was filled with gravel.  

In summary, Table 3.1 lists drilling diameters, installed casing and grouting depth. Figure 3.5 

shows a schematic cross-section of all wells drilled on the test site and Figure 3.6. gives a 

schematic cross-section of the “man-hole” cover and top covers of the boreholes and the 

distance to the casing of each well. BH4 has no cover and the top elevation is equal to the 

surface elevation. The elevation difference between the borehole casing and the surface 

distance of the boreholes is listed in Table 3.2. 

 

Table 3.1: Drilling diameter (Ø), installed casing and grouting depth of BH1, BH2, BH3, 

BH4, and BH5. 

 

  BH 1  BH 2  BH 3  BH 4  BH 5  

DRILLING           

Ø 203.2mm 0-60 m bgl 0-16 m bgl 0-32 m bgl 0-52 m bgl 0-52 m bgl 

Ø 100mm     32-38.5 m bgl   52-60 m bgl 

Ø 152.4mm corebarrel       0-60 m bgl   

CASING            

Ø 127mm plain Polyethylen   0-8 m bgl 0-32 m bgl 8-52 m bgl 0-52 m bgl 

Ø 127mm slotted Polyethylen   8-16 m bgl       

Ø 203.2mm plain Polyvinylchlorid       0-12 m bgl   

Ø 203.2mm plain steel 13 m bgl         

GROUTING not grouted         

with Tremie Pipe      0-32 m bgl   0-52 m bgl 

Grout Placement       20-60 m bgl   

filled with gravel   0-16 m bgl   15-20 m bgl   
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Figure 3.5: Schematic cross-section of all drilled boreholes, casing and grouting, according to 

the drilling log of BH1. 
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Figure 3.6: Schematic picture of the “man-hole” of BH1 and top covers of BH2, BH3, and 

BH5. 

 

Table 3.2: Elevations of BH1 to BH5. Elevations differences and surface distances between 

the boreholes of the test site. 

 
  BH1  BH2  BH3  BH4  BH5  

Elevation (m AOD) 132,44 132,15 132,22 131,73 131,93 

Difference in Elevation between two boreholes in m 

BH1    0,29 0,22 0,71 0,51 

BH2 -0,29   -0,07 0,42 0,22 

BH3 -0,22 0,07 

 

0,49 0,29 

BH4 -0,71 -0,42 -0,49   -0,20 

BH5 -0,51 -0,22 -0,29 0,20   

Surface Distance between two boreholes in m 

BH1  0,00 4,20 4,00 7,00 6,85 

BH2 4,20   4,90 4,20 6,10 

BH3 4,00 4,90    5,20 3,40 

BH4 7,00 4,20 5,20   3,00 

BH5 6,85 6,10 3,40 3,00   

 

 

3.3 Conclusion 

The construction of the test site with five boreholes was finished successfully in July 1998. 

Figure 3.7 gives an overview of the test site with the surface elevations of the borehole covers 

and topographic lines of interpolated elevations of the surrounding area of the test site (taken 

from a map of the Estates Services, University of Birmingham, 2001). Four additional wells 
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in a surface distance of up to 7m around BH1 were drilled. S2, S5, S7 were approached by a 

pair of two wells, forced gradient tracer tests. The setup of the boreholes was also suitable for 

vertical forced gradient tracer test by injecting tracer in a sandstone aquifer in BH1 (S3, S4, 

S6) and abstract water in the sandstone layers above and below the injection layer in S2 and 

S5 or S5 and S7. The grouting procedure in BH4 failed. However, BH4 could be used as 

observation well with restrictions. 

 

 

Figure 3.7: Test site at the University of Birmingham with elevations of the borehole covers 

of BH1, BH2, BH3, BH4, and BH5, with topographic lines of interpolated elevations of the 

surrounding area of the test site (taken out of a map of the Estates Services of the University 

of Birmingham, 2001; satellite image © Google Maps). 
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CHAPTER 4: Characterization of the Borehole Array 
 

 

4.1. Aim 

The aim of Chapter 4 is to describe the characterization of the borehole array and the location 

of the sandstone and mudstone layers approached with the boreholes of the test site. For the 

development, the drilling logs of BH1 and the core log of BH4 were compared. Hydraulic 

characteristics gained from core data of BH4 are described. The recorded geophysical logs of 

all wells, BH1 to BH5, were used to compare sandstone layers and mudstone layers 

throughout the borehole array. Table 4.1 lists the log type, date and persons who recorded the 

logs in the respective boreholes. 

 

Table 4.1: Logging carried out in the array, boreholes indicating method and date. 

  BH1 BH2 BH3 BH4 BH5 

Drilling Log 
xDrilling Company 

1994         

Core Logging        Mitchener 2002)   

Geophysical Logging:           

Natural Gamma Log x2000     x 1998
 
 x 1998

 
 

Gamma Gamma Log x 2000 x 2000
 
 x 2000

 
 x 2000

 
 x 2000 

Neutron Log x 2000
 
 x 2000

 
 x 2000

 
 x 2000

 
 x 2000

 
 

Resistivity Log (E-Log) x 2000
 
     x 1998 x 1998

 
 

Guards Log x 2000
 
     x 1998

 
   

Calliper Log x 2000
 
     x 1998, 2000

 
 x 1998, 2000

 
 

Temperature Log x 2000
 
     x 1998

 
   

Conductivity Log x 2000
 
     x 1998

 
 x 1998 

Flow Log x 1998
 
 x 1998

 
 x 1998

 
 x 1998

 
 x 1998

 
 

Performed by Ralf Lieb, John Tellam, Richard Greswell, Richard Mitchener and Kevin Shepard, unless otherwise indicated
 
 

 

The schematic cross-section of the test site shown in Figure 3.3 was drawn with the 

information of the drilling log of BH1, suggesting a layered setup of sandstone and mudstone 

layers in the vicinity of BH 1. With the different logs, sections of similar lithology and 
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stratigraphy could be identified for all boreholes. By constructing diagrams with the logs of 

all boreholes, a comparison of the logs and the correlation of layers between different wells 

became easier. The result provided a characterization of the whole test site and a definition of 

sandstone layers as aquifers and mudstone layers as aquitards for later hydraulic tests, tracer 

tests and computer modelling. Finally, the vertical differentiation of the test site into seven 

sandstone and six mudstone layers was confirmed. 

 

4.2 Drilling Log and Core Log 

BH1 was drilled in 1994 and logging was achieved, distinguishing chipped fragments of 

sandstone and mudstone layers which were pumped to the surface during the rotary drilling. 

The information gained from the drilling log BH1 (Appendix III.3.1) was shown as simplified 

log in Figure 4.1. The core recovery of the first 12m bgl was poor and almost no complete 

core was won. This corresponds to information of Knipe et al. (1993), Taylor et al. (2003) that 

the unconfined area of the Birmingham aquifer is considered to have a leached zone of around 

10 metres at the top. 

Logging was undertaken using the core recovered from 12m below ground level (bgl) to 60m 

bgl. The detailed log of BH4 created by Mitchener (2003) describes the colour, grain size, 

cross layers, etc. (Appendix IV 4.1). Using the initial drilling log of BH1, a correlation 

between the identified layers S1 to S7 and M1 to M6 of the drilling log and the information of 

the simplified core log of BH4 was tried, as shown in Figure 4.1.The mudstone layers of the 

drilling log could not be matched one to one with depths given for clayed sandstone or 

mudstone layers of the core log. However, by constructing a diagram between the two logs, 

S1 to S7 and M1 to M6 were identified in both boreholes.  
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Topsoil Sandstone Mudstone Lost Core

(Clayed) Siltstone Clayed or Silty Sandstone

M: Mudstone S: Sandstone Interbedded Sandstone and Mudstone

BH1 BH4
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Sandstone, 
Mudstone

Mudstone

Sandstone
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Clayed Pellets in clayed sand
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M 1

M 2

M 3
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Interbedded
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Clayed Siltstone

Clayed Sandstone

Sandstone, silty

Figure 4.1: Drilling log of BH1 and core log of BH4, comparing sandstone and mudstone 
horizons. 
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4.3 Hydraulic Characteristics of Cores Samples of BH 4 

Hydraulic conductivity tests on cores of borehole BH4 were carried out by Mitchener (2003) 

over the whole length of the core on 45 samples of S1 to S7. Curião et al. (2001) examined 

the permeability of M1, M2, M4, M5 and M6, using 8 core samples from BH4, as well. 

Curião et al. (2001) and Mitchener (2003) determined the hydraulic conductivity by using a 

falling head permeameter (Greswell, 1995). Permeability values of sandstones in the 

horizontal direction varied between 0.564m/d and 5.01m/d. Vertical permeability values of 

sandstones varied between 1.10m/d and 6.47m/d. Measured permeability values for clay rich 

sandstone horizons vary between 1.21x10
-5

m/d and 0.109m/d in the horizontal direction and 

between 6.76x10
-2

m/d and 0.101m/d in the vertical direction. The results for the horizontal 

permeability of mudstone layers vary between 1.08x10
-6

m/d and 4.86x10
-5

m/d. Figure 4.2 

shows a plot of the measured horizontal and vertical permeabilities of sandstone layers by 

Mitchener (2003) and the horizontal permeability values of mudstone layers by Curião et al. 

(2001). 

Mitchener (2003) measured the porosity of 44 core samples from borehole BH4 taken from 

different depths as shown in Figure 4.3. The measured values of porosity of the core samples 

of BH4 vary between 10.20% and 30.84%. For all measurements, an average value for the 

porosity of 24.6% was calculated. 

In addition to the hydraulic parameter the total organic carbon (TOC) and the carbonate 

content was defined by Shepherd (2003) on 27 samples taken from the core of BH4. The 

range of values determined was 0.02% to 0.08%. Mitchener (2003) gives values for the 

carbonate content of less than 10 % for the unconfined aquifer (S1) and 15-20 % for the 

confined aquifers (S2 to S7). 
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Figure 4.2: Hydraulic conductivity values in horizontal and vertical directions, measured on 

core samples of borehole BH4 of the test site (data of Curião et al., 2001; Mitchener, 2003). 

 
 

Figure 4.3: Porosity values, measured on core samples of borehole BH4 of the test site 

(Mitchener, 2003). 
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4.4 Geophysical Data 

Geophysical logging was carried out with a Robertson Geologging Portalog of the early 80‟s. 

A data file was recorded for later processing and the log was printed on thermo paper. The log 

was recorded by positioning the end of the probe at ground level and recording the 

geophysical data, winching the probe up the borehole. The offset between the top of the probe 

and the sensor within the probe was considered to allow a correlation of different geophysical 

logs recorded in one borehole during later data processing. For correlation of the geophysical 

logs of different boreholes, the top of each log was adjusted to the elevation of BH1 as zero.  

The numerical data output of the logger, was recorded in counts per second per centimetre. 

All recorded data were processed in EXCEL. The recorded data were plotted as values 

derived from a rolling average over 7cm to 12cm to receive a smoother signal (conversion 

factors used as recommended and provided by Robertson Geologging manual for the 

Robertson Geologging Portalog) and to simplify the later visual interpretation. To compare all 

logs, they were adjusted to the same elevation of BH1, set to 0m bgl, using the surface 

elevation measurements from Table 3.2. Nuclear, electrical, conductivity, temperature and 

calliper logs were recorded for all wells. In addition a heat pulse flow meter and a closed 

circuit television (CCTV) were used in the boreholes. An overview of the recorded 

geophysical logs is listed in Table 4.1.  

 

4.4.1 Nuclear Logging 

Nuclear logging includes all techniques that either detect the presence of unstable isotopes or 

that create such isotopes in the vicinity of a borehole. This method can be used regardless of 

the type of fluid in the borehole and is unique because the penetrating capability of the 
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particles and photons permits the detection of isotopes through the casing and grout. Nuclear 

logging techniques include natural gamma, gamma-gamma and neutron logs. 

 

4.4.1.1 Natural Gamma Log 

Natural gamma logs detect the natural gamma radiation in the vicinity of the borehole with a 

scintillation counter and give a qualitative interpretation of the startigraphic correlation. Clay 

minerals and fine particles in shale are enriched with potassium40 and thorium232, a strong 

gamma emitter. Mature sands and gravels contain mainly silica, which is a stable substance 

and therefore emits low levels of radiation. Attenuation of the natural gamma radiation 

intensity can be caused by casing, grouting material and gravel packs between the casing and 

the rock formation. The gamma radiation was plotted in API units (American Petroleum 

Institute). The API gamma ray unit was defined as 1/200 of the difference in deflection of a 

gamma log between an interval of negligible radioactivity in the API standard calibration pit 

(typically of shale). Conversion from cps (counts per second) to API was made according to 

the Robertson Geologging Portalog manual. According to Keys (1989), gamma logs should 

not be interpreted quantitatively by using the amplitude of the gamma response, as Scott et al. 

(1961) demonstrated that the area under the gamma curve is proportional to the layer 

thickness multiplied by the quantity of radioisotopes present. For a quantitative interpretation 

of gamma logs a number possible approaches were described in detail by Killeen (1982). 

Figure 4.4 shows the natural gamma logs for BH1 for the years 1997 and 2000 and for BH5 

for 1998, before and after the setting of the plastic casing. The natural gamma log of BH4 was 

recorded in 1998, before the plastic casing was set. An interpretation of the logs allowed the 

conclusion that high gamma emissions trigger mudstones and low gamma emissions indicate 

sandstone. The mudstone layers were correlated by diagrams. S1 to S7 and M1 to M6 could 
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be connected with diagrams as horizontal layers. Strong natural gamma emission at about 

6.5m bgl to 8m bgl in BH4 and BH5was marked with “M” (for mudstone) in Figure 4.4, 

which was not detected in BH1, and might be another mudstone layer or a clay rich lens in 

loose sandstone. 

 

4.4.1.2 Gamma-Gamma-Log 

An active source of gamma radiation was lowered into the borehole during Gamma-gamma 

logging. The gamma radiation source was cesium137. The source and detector were placed 

about 400mm apart so that the detector could only count the back-scattering gamma radiation. 

The back-scattered radiation depends on the electron density of the particular formation and is 

approximately proportional to the bulk density (Keys, 1989). Porosity values were not 

calculated, as no calibration was made in a representative borehole and because porosity 

values were gained by Mitchener (2003). For the purpose of defining sandstone layers and 

mudstone layers, it was sufficient for the interpretation to know that the higher the porosity of 

water filled the pores, the lower the density of the rock and the back-scattered signal would 

be. High gamma emissions were measured for clay rich mudstone layers and vice versa. 

Figure 4.5 shows the gamma-gamma logs for all boreholes recorded after the plastic casing 

was set. The gamma-gamma radiation was plotted in API units. The mudstone layers were 

correlated between the different wells with diagrams. S1 to S7 and M1 to M6 were identified 

in Figure 4.5 as nearly horizontal layers. As detected in the natural gamma log of BH4 and 

BH5, a high back-scattered radiation was measured in BH5 at about 6m bgl to 8m bgl 

(marked with “M”). 
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Figure 4.4: Natural-Gamma Logs of BH1, BH2, BH3, BH4, and BH5.  
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Figure 4.5: Gamma-Gamma Log of BH1, BH2, BH3, BH4, and BH5. 
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4.4.1.3 Neutron Log 

Neutron logs were used to measure the total porosity under saturated conditions. They are 

used to measure the specific yield in the unsaturated zone or simply to determine lithological 

and stratigraphical correlations. The latter was required for the test site. The neutrons are 

emitted from a plutonium/beryllium radiation source when alpha particles of the plutonium 

strike the beryllium. A detector mounted at a sufficient distance from the source counts the 

neutrons. The biggest energy loss occurs during the collision with hydrogen ions which are 

mainly present in the water in the borehole and in the formation. The log reflects variations in 

the water molecules within the borehole (i.e. depending on the borehole diameter) and in the 

water of the rock formation, both interstitial water and water bound by clay minerals. Figure 

4.6 shows the neutron-neutron logs for all boreholes recorded after casing was installed. The 

neutron-neutron radiation was plotted in counts per second (CPS). High energy loss indicates 

formations of high hydrogen content, e.g. sandstone layers or aquifers. Low energy loss 

indicates formations of low hydrogen content, e.g. aquitards or mudstone layers.M2, M4, M5 

and M6 as well as S5 to S7 could be distinguished in the neutron-neutron logs of Figure 4.6 

and it was possible to correlate the layers recorded in the logs of different boreholes with 

diagrams as horizontal. M1and M3 were not clearly detected by the logs. This applies for S1, 

S2, S3 and S4 as well.  
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Figure 4.6: Neutron-Neutron logs of BH1, BH4, BH5, BH3, and BH2 recorded at the test site. 

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5
0
0

1
0
0
0

depth[m] bgl

C
P

S

B
H

4
 N

e
u

tr
o

n
-N

e
u

tr
o

n

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5
0
0

1
0
0
0

depth[m] bgl

C
P

S

B
H

1
 N

e
u

tr
o

-N
e
u

tr
o

n

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5
0
0

1
0
0
0

depth[m] bgl

C
P

S

B
H

5
 N

e
u

tr
o

n
-N

e
u

tr
o

n

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5
0
0

1
0
0
0

depth[m] bgl

C
P

S

B
H

2
 N

e
u

tr
o

n
-N

e
u

tr
o

n

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5

0
0

1
0

0
0

depth[m] bgl

C
P

S

B
H

3
 N

e
u

tr
o

n
-N

e
u

tr
o

n

S
1

M
1

S
2

S
3

S
4

S
5

S
6

S
7

M
2

M
3

M
4

M
5

M
6

M
1

M
1

M
3



55 

4.4.2 Electrical Logging 

Electrical logs measure the potential differences of the flow of an electrical current in and 

adjacent to a well. Three main effects are important for the interpretation of resistivity logs: 

the borehole diameter, the rock formation and the water quality. The depth of investigation 

depends on the individual physical configuration of the electrical log. Single Point Resistance 

(SPR)-logs have an investigation depth as “short normal” log of about 250mm (16 inches) and 

as “long normal” log of about 400mm (64inches). The University-owned guard log has an 

investigation depth of 2250mm (Driscoll 1995). In boreholes with a diameter of more than 8 

inches (203mm), it was recommended that the sonde is placed close to the borehole wall to 

avoid a dominating influence of the borehole water (Keys, 1989, 1994). In the electrical log it 

was tried to position the sonde in the centre of the borehole during logging. General 

differences in resistivity were recorded for rock formations with different saturation of water. 

Formations with a higher saturation were controlled by the porosity with high porosities, 

showing higher resistivities and vice versa. Low resistivities had clay, silt and clay rich 

sandstones. Low to medium resistivities were shown by silty aquifers with an unusually high 

content of ion concentration in the groundwater (e.g. caused by pollution), whereas sand and 

gravel with fresh water had moderate to high resistivity. The highest resistivity values were 

found in sandstone and limestone saturated with fresh water, as well as in dense igneous and 

metamorphic rocks (Keys, 1989).  

The total dissolved solids (TDS) in the water could be an indicator of the water quality and 

influence the resistivity. Water dissolves minerals on the grain surface which mainly occurs 

on clay minerals. This results in low resistivity measurements of the electrical logs in wet 

clay. In saturated sand formations, water dissolves only very small amounts of minerals which 
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results in high measurable resistivity values. In general, the resistivity varies inversely with 

the TDS contained in the water. 

Three different electrical logs were used:  

 

4.4.2.1 Spontaneous-Potential Log (SP-Log) 

Spontaneous-potential logs or self potential logs record the potential that develops between 

the different rock formations in a borehole, applied by Schlumberger and Doll (Doll, 1927). 

An electrode was lowered down the borehole, and connected to a millivolt-meter at the 

surface which was connected to the second electrode placed at the surface.  

 

4.4.2.2. Single-Point Resistance Log (SPR-Log) 

The single-point resistance log is the simplest setup of an active electrical logging method. 

The configuration of the electrodes is similar to the setup of the spontaneous-potential log. A 

current induced by a battery is guided down the hole to spread in the rock formation. Parts of 

the current return to the surface where the current drop is recorded. The depth of investigation 

is limited, but it has a good vertical resolution, needs only a single conductor cable and is 

relatively inexpensive in operation. It is not possible to calibrate the log for certain formation 

resistivities, because of varying distances between the electrodes. 

 

4.4.2.3. Normal-Resistivity Log  

The arrangement of two electrodes downhole is called normal log or normal-resistivity log. A 

current passing between a ground-surface electrode and an electrode on the sonde is measured 

by its potential difference on a potential electrode on the sonde. Two logs with two distance 

configurations between one current and two potential electrodes on the sonde are common. A 
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separation of 16 inches is called short normal and a separation of 64 inches is called long 

normal. The larger the distance between the electrodes, the greater is the penetration into the 

formation, but the lower is the resolution of the explored rock formation. As radii of 

investigation, Driscoll (1995) lists about 400mm for the short normal logs and about 1630mm 

for the long normal logs. When the normal resistivity log is chosen, the 16 inches 

configuration is used to detect lithological boundaries, while the 64 inches configuration gives 

a better estimation on average formation resistivities (Keys, 1989, 1994). Figure 4.7 shows 

the resistivity logs recorded in BH1 and BH4. The normal resistivity was measured and 

plotted in Ohm metres (Ohm m). 

An interpretation was made by identifying zones of lower resistivity which corresponded to 

mudstone layers and zones of higher conductivity, corresponding with sandstone layers. The 

resistivity logging of BH1 (Figure 4.7) started at a depth of about 19m bgl because an iron 

casing in the top 14m of the well disturbed the “electrical” signal of the log. M2 to M4 were 

detected by the resistivity logs in BH1 and BH4. The resistivity log of BH4 started recording 

after the resistivity log entered the ground water (at about 7.36m bgl) and could be analysed 

from about 10.5m bgl, below the casing set during the drilling process. The measured signal 

corresponded to the top boundary of M1. However, the lower boundary at 13m bgl was 

clearly detected by an increase in resistivity. The record of the resistivity log in BH4, at a 

depth of 31.5 to 32m bgl was disturbed due to interruptions in the electrical circuit. The 

resistivity log of BH5 started recording in the uncased part of the well from 52m bgl to about 

58m bgl. The transition of the mudstone layer to sandstone layer could be assumed to be at or 

above 52m bgl. In conclusion, it was possible to correlate all mudstone layers and sandstone 

layers as horizontal layers with some minor variations in thickness between BH1 and BH4.  
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Figure 4.7: Resistivity logs of BH1 and BH4. 
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twice the electrode spacing (Robertson Research Engineering Ltd, 1982). 

Figure 4.8 shows the recorded guard logs for BH1 and BH4. The resistivity of the guard logs 

was measured and plotted in Ohm metres (Ohm m). The guard logs were interpreted by 
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recorded from about 18.5m bgl in BH1, as the iron casing disturbed the signal in the top part 

of the borehole. Due to the iron casing, M1, S1 and S2 were not detected with the guard log in 

BH1. The identified layers could be correlated between the different wells as horizontal 

layers. 

 

 

 
 

 

Figure 4.8: Guard logs of BH1 and BH4. 
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4.4.3 Temperature Log 

Temperature logs are obtained by lowering a temperature sensor down the borehole. Local 

shallow aquifers can disturb the gradient because of their contribution to the total yield. A 

variety of factors influences the temperature: the depth of the well, background geothermal 

activity at rifts or volcanoes, the thermal conductivity of rocks, and vertical flow caused by 

differences in head, water quality or temperature. Temperature logs of all wells were recorded 

after the setting of the plastic casings. The temperature in BH1 was about 11.5°C at about 7m 

bgl at the top and 10.8°C at 59m bgl. In BH4, the temperature records 11°C at the top (at 

about 8m bgl) and 10.3°C at the bottom of the well at 59.5m bgl. Appendix IV 4.2 shows the 

temperature logs of BH1 and BH4. 

 

4.4.4 Fluid Resistivity Log 

Fluid resistivity logs or conductivity logs monitor the electrical conductivity or resistivity of 

water in the borehole. Changes of the ion concentration are reflected in changes in the fluid 

resistivity. Conductivity profiles are also affected by pumping, dispersion and convection 

movement of groundwater. Because the conductivity varies with temperature, a temperature 

correction is required if temperature changes occur with increasing depth (Keys, 1989). The 

measured conductivity in BH1 (Appendix IV 4.3) was within the range of 338 microS to 347 

microS, remaining constant within this range over the whole depth of the well. The 

conductivity log of BH4 (Appendix IV 4.3) was recorded one day after the well was drilled, 

cased from the ground level to a depth of 52m bgl, grouted and air flushed to wash the grout 

out of the borehole. From the ground level to a depth of 43m bgl, a constant conductivity in 

the range of 325 microS to 337 microS was measured. Below 43m bgl the conductivity rose 

slowly to a value of 358 microS at a depth of 53m bgl and decreased to a value of 325 microS 

at 59.5m bgl. The measured conductivity was caused by an increased ion concentration in the 
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well of the grouting material. The disturbing influence of the failed grouting procedure and air 

flush does not represent the natural conductivity of groundwater in BH4. 

 

4.4.5 Calliper Log 

Calliper logs measure a vertical profile of the borehole diameter. The measurement was made 

by three flexible arms connected to the log which were pushed against the borehole wall. 

Movement of the arms was translated into a variation of a cursor along a resistance which was 

measured as an electrical output. The vertical profile of the borehole diameter can be used to 

standardise, calibrate and interpret the response of other logs or to detect casing and its 

perforation or slotting.  

The average diameter of BH1 was 8.4 inches, varying by about 0.5 inches. The average 

diameter of BH4 in the top ten metres was about 7 inches and 6.2 inches at the bottom of the 

well (measured before casing and grouting). A diameter of about 4.2 inches was measured 

from 51.5m bgl to 59.7m bgl in the uncased zone of BH5. Below the casing in BH 1 at 

15.50m and at 18m depth, the diameter increased to 10 inches and more than 12 inches. A 

similar increase in diameter was detected in BH4 with an increased diameter of more than 12 

inches at 15.5m bgl. A second increase of the diameter up to more than 12 inches was 

measured at 10m bgl. The bigger variations in diameter were reasonable because of the looser 

layers at the top of the well in leached parts of the Triassic Sandstone. The calliper logs of 

BH1, BH4 and BH5 are shown in Appendix IV 4.4. 
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4.5 Closed Circuit Television (CCTV)  
 

CCTV was used to record similarities or differences to the drilling log, core log or 

geophysical logs and to give a possible visual explanation or confirmation of measured values 

or observed differences. The CCTV available could only give a picture of the borehole wall 

and was unable to show the direction of the recorded picture (N, S, E or W) or to measure the 

size, dip direction or angle of certain layers. The CCTV confirmed the depth of mudstone 

layers M1 to M6 and sandstone layers S1 to S7. Three main observations should be 

highlighted: 

 

1. The increased diameter recorded by the calliper log at a depth of 15m bgl and 18m bgl in 

BH1 and at 10m bgl and 15m bgl in BH4 was confirmed. The video recorded a thin clayed 

sandstone or mudstone layer at these depths.  

 

2. M4 was recorded in BH1 and BH4 as a consistent mudstone layer from about 31m bgl to 

33m bgl and from 33m bgl to 35m bgl, alternating fine layers of sandstone and mudstone 

were recorded. 

 

3. Lowering the CCTV to the bottom of the well, a turbulent inflow into the well of small 

particles at the bottom of the well could be recorded. Further inflow could not be recorded on 

video in BH1.  
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4.6 Comparison of Different Logs of one Borehole 

In the following, all recorded logs with different geophysical methods were compared 

concerning one borehole. The goal was to confirm that S1 to S7 and M1 to M6 could be 

identified throughout the borehole array at same or similar depths and that a layered model 

could be characterized for the test site. Diagrams for BH1, BH2, BH3, BH4 and BH5 were 

constructed in Figures 4.9 to 4.13, connecting sandstone and mudstone layers between the 

different geophysical logs recorded in each borehole. All mudstone layers were found at 

similar depths. M4, however, was visibly separated by the CCTV log into an upper mudstone 

part of 2m and a lower part of alternating fine layers of sandstone and mudstone layers. The 

neutron-neutron logs of BH1, BH4 and BH5 show a similar differentiation of M4 into an 

upper part of mudstone with less cps, and a lower part of sandstone with clay and a higher 

cps, marked by the dotted line. The separation into two parts of M4 was also detected by the 

natural gamma logs of these wells. The recorded depths of the top and bottom elevations of 

M1 to M6 in BH1, BH3, BH4 and BH5 are listed in Table 4.2 for each geophysical log. BH2 

was not listed as no layer was identified clearly, due to restrictions of the logging setup and 

the construction with filter gravel. The average depths (arithmetic average) of the top and 

bottom elevations of each mudstone layer of one borehole were calculated with the depths, 

empirically read out from each log type of one borehole, and are listed in the last column of 

Table 4.2 for each well. 
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Figure 4.9: Comparison of the drilling log and different geophysical logs of BH1.  
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Figure 4.10: Comparison of the gamma-gamma and neutron-neutron logs of BH2 and BH3. 
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Figure 4.11: Comparison of the drilling log and different geophysical logs of BH4. 

S
1

0

1
0

2
0

3
0

4
0

5
0

6
0

0
1
0
0

2
0
0

depth[m]

[A
P

I]

B
H

4
 N

a
tu

ra
l 

G
a

m
m

a

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

drawdown[m]

[A
P

I]
G

a
m

m
a-

G
a

m
m

a

G
a

m
m

a
G

a
m

m
a

 B
H

4

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5
0
0

1
0
0
0

depth[m] bgl

C
P

S

B
H

4
 N

e
u

tr
o

n-
N

e
u

tr
o

n

0

1
0

2
0

3
0

4
0

5
0

6
0

0
5
0
0

1
0
0
0

depth[m] bgl

[O
h

m
 m

]

B
H

4
 R

e
s

is
ti

v
it

y
 

L
o

g

6
4

"

1
6

"

0

1
0

2
0

3
0

4
0

5
0

6
0

0
1
0
0

2
0
0

3
0
0

depth[m] bgl

[O
h

m
 m

]

B
H

4
 G

u
a

rd
-L

o
g

M
1

M
3

M
4

M
5

M
6

S
7

S
6

S
5

S
4

S
3

S
2



67 

 
 

Figure 4.12: Comparison of nuclear logs recorded in BH5. The natural gamma logs were 

recorded without casing and after installation of the casing. The gamma-gamma and neutron-

neutron logs were recorded after the casing and grouting was finished. The bottom end of the 

casing was installed to 52m bgl which was recorded with the neutron-neutron log with 

increased values of cps. 
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Table 4.2: The identified depth of the top and bottom elevation of M1 to M6 in BH1, BH3, 

BH4, and BH5 were listed for each geophysical method used. The last column lists the 

average depths (arithmetic average) of the top and bottom elevation of the mudstone layers 

M1 to M6 identified with the different methods for each borehole. 
 

 

BH 1

Depth

 in m bgl E-Log Guard-Log

Neutron-

Neutron Log

Gamma-

Gamma Log

Natural 

Gamma-Log

Average depth (m bgl)

logged for BH 1

M 1 top n.d. n.d. 10,50 11,00 11,00 10,83

bottom n.d. n.d. 13,00 13,00 13,50 13,17

M 2 top 19,00 n.d. 19,00 19,00 19,00 19,00

bottom 21,50 21,25 20,75 21,00 21,00 21,10

M 3 top 26,00 25,50 26,50 26,50 26,00 26,10

bottom 28,25 28,50 28,00 28,00 28,00 28,15

M 4 top 30,50 31,00 30,75 30,75 30,75 30,75

bottom 35,50 35,50 33,50 35,00 35,00 34,90

M 5 top 38,75 38,50 38,75 38,75 38,75 38,70

bottom 40,75 40,50 40,50 40,50 40,50 40,55

M 6 top 50,50 50,50 50,50 50,50 50,50 50,50

bottom 52,50 53,00 52,50 52,50 52,50 52,60

BH 3

Depth

 in m bgl E-Log Guard-Log

Neutron-

Neutron Log

Gamma-

Gamma Log

Natural 

Gamma-Log

Average depth (m bgl)

logged for BH 3

M 1 top 10,50 11,00 10,75

bottom 12,75 13,00 12,88

M 2 top 17,00 18,00 17,50

bottom 21,00 21,25 21,13

M 3 top 26,00 26,00

bottom 28,00 28,00

M 4 top 31,00 31,00

bottom 35,50 35,50

BH 4

Depth

 in m bgl E-Log Guard-Log

Neutron-

Neutron Log

Gamma-

Gamma Log

Natural 

Gamma-Log

Average depth (m bgl)

logged for BH 4

M 1 top 11,00 n.d. n.d. 11,00 12,00 11,33

bottom 13,00 n.d. n.d. 13,00 14,00 13,33

M 2 top 19,00 19,00 17,00 19,00 20,25 18,85

bottom 21,25 20,00 21,50 21,25 21,75 21,15

M 3 top 26,50 27,00 27,50 27,00 26,00 26,80

bottom 28,00 28,50 29,50 29,00 29,50 28,90

M 4 top 30,50 31,00 31,50 30,75 31,70 31,09

bottom 35,00 35,00 34,00 35,50 36,50 35,20

M 5 top 38,50 38,75 39,25 39,00 39,00 38,90

bottom 41,00 41,75 42,00 41,00 40,50 41,25

M 6 top 50,50 49,00 50,50 50,76 51,50 50,45

bottom 52,75 51,00 52,75 52,50 53,00 52,40

BH 5

Depth

 in m bgl E-Log Guard-Log

Neutron-

Neutron Log

Gamma-

Gamma Log

Natural 

Gamma-Log

Average depth (m bgl)

logged for BH 5

M 1 top n.d. 11,50 11,00 11,25

bottom n.d. 13,50 13,50 13,50

M 2 top 17,00 19,00 19,25 18,42

bottom 21,00 21,00 21,25 21,08

M 3 top n.d. 26,25 26,00 26,13

bottom n.d. 29,00 29,00 29,00

M 4 top 31,50 30,75 31,25 31,17

bottom 34,00 35,25 35,25 34,83

M 5 top 38,75 39,00 38,75 38,83

bottom 39,75 40,00 40,00 39,92

M 6 top (50,50) 50,75 51,00 50,88

bottom (52,25) 52,50 52,75 52,63
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4.7 Conclusion - Characterization of the Borehole Array 

To process further hydraulic tests and tracer tests, the test site was characterized by 

distinguishing the main “mudstone” or low permeable layers from high permeable 

“sandstone” layers, by means of a drilling log, a core log and various geophysical logs. 

Laboratory tests on core samples of BH4 of the hydraulic permeability with a mean of 1.5m/d 

and of the porosity with a mean of 25% of the sandstone layers (Mitchener, 2003) were 

plotted for the different depths. In comparison to the values gained for the sandstone layers 

the hydraulic conductivity and porosity, values of the mudstone layers gained by Mitchener 

(2003) and Curião et al. (2001) are plotted. It was shown that the hydraulic conductivities of 

mudstones were more than 10 times smaller than those of sandstones. The porosity, 

determined for cores by Mitchener (2003) for values bigger than 21% seem to be typical for 

sandstone layers and those smaller than 21% seem to be typical for mudstone layers of the test 

site. 

The geophysical logs in BH1 to BH5 confirmed the initial setup of seven sandstone layers (S1 

to S7) and six mudstone layers (M1 to M6), as shown in Figure 4.1. To define the depth of 

mudstone layers for the conceptual model, all average depths calculated for BH1, BH3, BH4 

and BH5 (as calculated in Table 4.2) were listed in Table 4.3 and the average depths of 

mudstone layers according to all geophysical logs were calculated. The last column in Table 

4.3 gives the depth of M1 to M6 of the conceptual model, derived from the drilling log, the 

core log, the average depths of all geophysical logs and the CCTV. Figure 4.13 shows the 

location of the mudstone layers of the conceptual model in relation to their location recorded 

in the geophysical logs, the drilling log and the core log. As the location of the mudstone and 

sandstone layers of the conceptual model was discussed, the location of M1 to M6 was shown 

with the transparent bars over all log profiles. Figure 4.14 shows a schematic cross section of 
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the test site with the location of the mudstones, according to their location of the conceptual 

model, and the construction details (see also Figure 3.2). 

A simplified layered model of the test site with parallel layers of seven sandstone layers, 

separated by six mudstone layers was developed. Thus setup of the borehole array was 

deemed to be acceptable for the development of a conceptual computer model for applications 

of a groundwater flow and transport model of the site.   
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Figure 4.13: Developed simplified log for a conceptual model of the test site, using the 

recorded drilling log (BH1), core log BH4 and log of all geophysical methods with the 

calculated average depths of M1 to M6. The mudstone layers were connected between the 

different generalized logs.  
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Figure 4.14: Schematic cross-section of the test site, showing the location of the wells 

according to the depth and layers. 

 
  

10m

G.L.

20m

30m

40m

50m

60m

BH1                 BH4                        BH 5                           BH 3                           BH 2

v

Mudstone / (Siltstone)      Sandstones Grout/cement Gravel pack

S 1

M 1

M 2

M 3

M 4

M 5

S 2

S 3

S 4

S 5

S 6

S 7

M 6



73 

Table 4.3: The calculated arithmetic average of the depths of the mudstone layers taking into 

consideration all geophysical logs of all wells, by applying the calculated average depths of 

the top and bottom elevation of the mudstone layers M1 to M6 for BH1, BH3, BH4 and BH5 

(Table 4.2). The last column lists the depths of the mudstone layers derived for the conceptual 

model taking into consideration all geophysical logs, the drilling log, core log and CCTV. 

 

Logs: Geophysical Drilling Core All 

Depth derived for the 
conceptual model, 

considering the 
drilling log, core log 

and CCTV survey  
m bgl 

Mudstone 
Layers 

BH1 
Ø  

depth 
 m bgl 

BH3 
Ø 

depth 
m bgl 

BH4 
Ø 

depth 
m bgl 

BH5 
Ø 

depth 
m bgl 

BH 1 to 
BH5  

Ø depth 
 m bgl 

BH1 

depth 
m bgl 

BH4 

depth 
m bgl 

Drilling, 
Core, 

BH1-BH5 
Geophy. 

Ø depth 
m bgl 

M 1 top 10,83 10,75 11,33 11,25 11,04 11,50 11,83 11,46 11,50 

  bottom 13,17 12,88 13,33 13,50 13,22 12,50 12,83 12,85 12,80 

M 2 top 19,00 17,50 18,85 18,42 18,44 19,50 19,83 19,26 19,50 

  bottom 21,10 21,13 21,15 21,08 21,11 21,50 21,83 21,48 21,50 

M 3 top 26,10 26,00 26,80 26,13 26,26 26,50 26,83 26,53 26,50 

  bottom 28,15 28,00 28,90 29,00 28,51 28,00 28,33 28,28 28,00 

M 4 top 30,75 31,00 31,09 31,17 31,00 31,50 31,83 31,44 31,50 

  bottom 34,90 35,50 35,20 34,83 35,11 34,75 35,08 34,98 35,00 

M 5 top 38,70   38,90 38,83 38,81 39,00 39,33 39,05 39,00 

  bottom 40,55   41,25 39,92 40,57 41,25 41,58 41,13 41,00 

M 6 top 50,50   50,45 50,88 50,61 50,75 51,08 50,81 50,50 

  bottom 52,60   52,40 52,63 52,54 52,50 52,83 52,62 52,50 
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CHAPTER 5: Hydraulic Conditions of the Test Site 
 

 

5.1. Aim 

The aim of Chapter 5 is to describe the hydraulic characteristics of the test site:  

1. Rest water levels were measured from August 1998 until November 2000 when no 

tests were conducted. Head differences between S1and S2 in BH2, S5 in BH3 and S7 

in BH5 were observed (Figure 5.1). BH1 recorded an average head of S1 to S7.  

2. Flow logs, conducted in 1998 and 2000 recorded vertical flow in BH1 towards the top 

between 2.1l/s and 5.8l/s. Packer tests undertaken in 2000 measured pressure changes 

above and below a single packer installed in BH1 at the levels of M1 to M6. The 

packer tests recorded a pressure increase below and a pressure decrease above the 

inflated packer in BH1 for each test interval, apart from M1 (Figure 5.2). The pressure 

head changes were used later to define the boundary conditions of the groundwater 

model. 

3. A number of pumping tests was undertaken, applying purpose-tailored packers. 

Curve-fitting analysis were made with AquiferWin32 (Version 1.06, 1997 by 

Environmental Simulations, Inc. (ESI) developed by J. and D. Rumbaugh), 

determining values for transmissivities (T), hydraulic conductivities (K) and storage 

coefficients (S) of S1 to S7. Table 5.1 lists the pumping test details and table 5.2 the 

applied curve-fitting method and calculated values for T, K and S. All calculated 

hydraulic values were used as initial input data for the groundwater flow model. The 

pumping tests could be used for later model calibration. 
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5.2 Rest Water Level Observation 

The water levels in all boreholes were monitored from August 1998 until November 2000. 

During test periods of pumping tests and tracer tests from May until October 1999 and from 

May until November 2000, almost no rest water levels for the wells were considered. The 

hydraulic heads were measured with a dipper or with pressure transducers. As reference point 

a elevation level of 0 m bgl was defined at the top of the casing of BH1. All other 

measurements were adjusted to this elevation level for comparison. The rest water levels were 

plotted in Figure 5.1.  

 

 

 

Figure 5.1: Rest groundwater levels monitored in BH1 to BH5. 

 

The highest heads were monitored in S7 (BH5) and the lowest in S1 and S2 (BH2). About the 
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and S7. For BH1 which connects all sandstone and mudstone layers a slightly lower head than 

in BH4 was monitored.  

The measurements of the rest water levels implied that the deeper the layer approached on the 

test site, the higher was the pressure head in the aquifer. As the rest water level in BH1 and 

BH4 was about the average of BH2 and BH5, a connecting flow in these wells between the 

layers approached by BH2 and BH5 should occur. However, no information was available of 

how much each sandstone layer participated in flow into BH1 or from BH1 into a layer.  

 

5.3 Vertical Flow in BH1 

Vertical flow measurement in BH1 was performed with the Robertson Geologging heat pulse 

flow meter, as schematically shown in Figure 5.2 (Keys, 1989). Triggered at the surface, a 

short pulse of electric current heats the wire heat grid, which was located between two 

thermistors. The heated water layer moves towards one of the thermistors under the effect of 

vertical flow in the well. The arrival of the heat pulse was recorded on a chart recorder 

running on time drive (Figure 5.3). The heat pulse flowmeter used for the measurements 

could measure vertical velocities in a range of 0.0005m/s to 0.11m/s. or vertical flow between 

0.32l/s to 70.22l/s (Roberson Geologging Manual, 1982, Keys, 1989). It was taken into 

account, that the heat pulse flow meter with a diameter of about 0.06m was moved in the 

wells with a diameter of 0.1m (BH2 to BH5) or 0.2m (BH1), any movement upwards or 

downwards in the well could cause turbulence in the fluid column causing large errors at slow 

vertical flow velocities. Two logs of the heat pulse flowmeter were shown in Figure 5.4. The 

logs were recorded in an interval of more than two years. Both logs had the same shape and 

similar values were repeatedly recorded, but the log 2000 recorded slightly lower up-flow 

velocities.  
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Figure 5.2: Schematic picture of the technical setup  Figure 5.3: Analog record of a 

of a heat pulse flowmeter (Keys, 1989) heat pulse from a thermal 

flowmeter (Keys, 1989) 

 

 

Figure 5.4: Heat pulse flowmeter measurements in BH1 with BH1 I recorded in 1998 and 

BH1 II recorded in 2000.  
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The up-flow was measured from the bottom of BH1 up to a depth of 16m bgl with vertical 

flow velocities varying between 0.0033m/s (about 0.107l/s) and 0.0091m/s (about 0.295l/s). 

Two flow measurements detected a down-flow in BH1 at 16 m bgl with a velocity of about 

0.0028m/s (about 0.091l/s). Variations of the measured up-flow in BH1 at different depths 

were caused by the different pressure heads of the different aquifer layers approached. The 

vertical flow measured with the heat pulse flow meter was caused by vertical head differences 

between the individual sandstone layers S1 to S7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Hydraulic head changes due to packered mudstone horizons in BH1. 

Measurements were taken above and below the packered mudstone layers. Positive values 

show a head reduction and negative values an increased head.  
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By introducing a packer into BH1, head changes in BH1 above and below the installed packer 

were measured with pressure transducers. Figure 5.5 shows the pressure head changes above 

and below the packer, measured with pressure transducers after the packer was inflated. For 

each sealed section, a decrease of the head above the inflated packer was observed and vice 

versa. The head changes and the vertical flow in BH1 were taken into account for the setup of 

the boundary conditions of the later groundwater model. 

 

5.4 Equipment Applied for the Pumping Tests 

In the following, the equipment available for the pumping tests was applied. All equipment 

was owned by the School of Earth Sciences of the University of Birmingham. 

 

5.4.1 Pumps 

Three pumps were used: 

1. Godwin F43 FC9 4 inch submersible pump with a 2900 rpm electric motor (415V, 

50Hz, rated at 1.5kW) with a maximum discharge capacity of 5l/s. 

2. Godwin F43 FC9 4 inch submersible pump with a 2900rpm electric motor (230V,  

50Hz, rated at 1.5kW) with a maximum discharge capacity of 1l/s. 

3. Submersible Grundfos MP1 with a maximum discharge capacity of 1l/s. 

The discharge capacity of the two Godwin pumps was applicable in an on/off modus. 

Discharge could be adjusted with valves connected to the pump before the tests were started. 

The discharge capacity of the Grundfos MP1 was electronically adjustable from 0-1l/s with a 

control box and could be changed during the process of the test.  
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5.4.2 Transducer 

The hydraulic heads in the wells and pressure heads below packers were monitored during 

pumping tests and tracer tests with Geokon Model 4500 Vibrating Wire Piezometers 

(GEOKON, Inc., 1989).Two data read out boxes were used during the tests. One was portable 

with a plug for one transducer, mainly applied for calibration. The other one contained a hard 

disk and could connect 16 transducers. This read out box was used to record the signal of all 

connected transducers in an interval of 10 seconds. The power supply was maintained by a 

regular car battery. 

 

5.4.3 Packer 

Different packers were applied for the pumping tests and tracer tests. The following packers 

were used: 

- Bigsock 

The term “bigsock” was used for the temporary packer system that sealed the entire borehole 

wall over the whole depth of borehole BH1. The packer was built from a double skin of 

polythene “lay-flat” tubing (Figure 5.6). The tube, approximately 65m long, was hung into the 

borehole BH1 and filled with water, thus inflating the tube in the borehole. The water in the 

tube pressed the double skin of polythene against the borehole wall, causing the “lay-flat” 

tubing to seal off BH1. In order to have a higher pressure in the packer than in the 

surrounding media, a positive head of about 0.2-0.25 bar was tried to be maintained in the 

packer by filling the water in the bigsock up to 2-2.5m. The hydraulic connection between the 

aquifer layers through the borehole (S 1 to S 7) was interrupted after the “bigsock” was 

installed in BH1. The “bigsock” was removed after pumping tests in BH2, BH3 and BH5were 

finished. 
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Figure 5.6: Picture of the test site with the “Bigsock” before the installation in BH1. The 

dotted ring encloses the sewer cover used for discharge. 

 

- Single-Packer 

A commercial packer was used in BH4 to interrupt the connecting effect between S1, S2 and 

S7. The packer was suitable for application in wells with a diameter of 5 inches and could be 

inflated by pumping water into the inflatable sleeve via a small water tank with a manual hand 

pump. The inflated state could be controlled by a pressure gauge on the surface. The single 

packer was always in place during the hydraulic tests and tracer tests in order to interrupt the 

connection in BH4 between the bottom and top aquifer layer of the test site. 

 

- Double-Packer 

A double or dual packer system was designed and constructed by Richard Greswell (in 1999 

at the University of Birmingham) to be applied in BH1. This double-packer was convenient 
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for two persons to handle in a well of 8 inches diameter (Figure 5.7 and Figure 5.8). The 

design considerations included the practicalities of construction, ease of use and cost 

(Greswell, 1999). Commonly available ABS pipework and fittings were used. The advantages 

of this material were the light weight, that it may be solvent welded, and that a large range of 

components was available that could be adapted for use in packer construction. The inflatable 

sleeve was a crucial component. It expanded against the borehole wall to form a seal and thus 

prevented a vertical flow. A 6mm thick natural rubber sleeving was specified and custom-

made.  

 

  

 

Figure 5.7: A: 1 Bottom packer, 2. Godwin pump (discharge capacity 5 l/s), 3. Geokon 

Transducer; B: Dual packer system on the surface. 
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Figure 5.8: Schematic picture of the used dual packer system (Greswell, 1999). 

 

The upper packer housed the submersible pump. The design was such that either of the two 

available Godwin pumps (1l/sand 5l/s) could be used without modification. Placing the pump 

within the packer would allow the system to be handled and installed more easily than in 

separate units. Stainless steel tie rods within the packer bodies were attached to lifting eyes. 

To these the support cables were tied that suspended the packer/pump module from the 
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surface. Altering the length of the support cable between the packers allowed the test interval 

between the packers to be modified. Air lines to inflate the packers, the rising main, the power 

cable for the pump and transducer cables ran through the plate of the top packer and had to be 

adequately sealed to prevent water flow. The inflated state was controlled by pressure gauges 

on the surface. A pressure of about 1 bar to 1.5 bar above the hydrostatic pressure on top of 

the tested interval was maintained with a compressor or compressed air and a decompression 

valve. The packer system was connected with a cable and a safety rope to a scaffolding frame 

above BH1 allowing the lifting of the system with an electric winch or by hand. 

 

5.4.4 Discharge 

During all pumping tests, the rising main consisted of one or several lengths of PVC lay-flat 

hoses with a diameter of 50 mm. Enough space was available during all test for the hose at the 

well head to bend gently on the surface, ensuring that the diameter of the hose was not 

reduced and the discharge of the pumped water was not disturbed or interrupted. In addition, 

50mm lay-flat hoses were used for the discharge on the surface to a sewer. An analogue 

flowmeter was installed between the discharge hoses on the surface to measure the discharge 

rate. Throughout the pumping tests, the water was discharged through a sewer (see Figure 

5.6) which discharged into the Bourn Brook River at the south boundary (at the western south 

gate) of the University Main Campus. 

 

5.5 Pumping Test Setup  

The purpose of undertaking pumping tests was to describe the aquifer characteristics and 

receive data for the transmissivity (T), hydraulic conductivity (K) and storage coefficient (S) 

of all aquifer layers approached by the test site. During all pumping tests, a packer was 
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installed in BH4 to interrupt the connection of S7 to S1 and S2, and vice versa. Fourteen 

pumping tests were carried out on the test site, between May to October 1999 and May to 

November 2000: Table 5.1 lists the pumping test details such as pumped well, discharge rate, 

packered section etc..  

 

Table 5.1: Pumping test details of Test 1 to Test 14. Test 13 and 14 were pumped in two 

different wells with a section in BH1 being packered (see Figure 5.12). 

 

Pumping Tests 1-3 were undertaken to receive hydraulic information of particular sandstone 

layers approached by BH2, BH3 and BH5 without having BH1 as connecting well of S1 to 

S7. To interrupt this connection, the “bigsock” was installed in BH1. The pump was placed in 

the middle of the slotted casing interval or the uncased interval of BH3 and BH5. Transducer 

monitored the test in BH2 to BH5. Figure 5.9 shows a schematic cross-section of the test site 

and setup of Pumping Tests 1-3. 

Pumping Tests 4–9 were carried out in BH1 used as pumping well. The aim was to receive 

data of the aquifer characteristics of each sandstone layer, S1 to S7. Test 7 and Test 9 were 

undertaken during horizontal forced gradient tracer tests. The double packer system was used 

Top Bottom

1 BH2 62.99 2h 25min 7.92m bgl 14.50m bgl 13.57m bgl

13 BH2 199.58 178h 7.85m bgl 19.50-21.50m bgl 30.50-32.50m bgl 14m bgl 16.06m bgl

4 BH1 61.09 46 hours 8.67m bgl 19.50-21.50m bgl 26.50-28.50m bgl 21m bgl 13.19m bgl

5 BH1 61.34 141h 45min 8.71m bgl 19.50-21.50m bgl 26.50-28.50m bgl 21m bgl 12.60m bgl

S3 6.5m 6 BH1 66.44 3h 54min 7.87m bgl 19-21m bgl 27.50-29.50m bgl 20.50m bgl 19.73m bgl

2 BH3 62.99 4h 25min 7.10m bgl 36m bgl 17.84m bgl

7 BH1 66.44 4h 7.06m bgl 30.50-32.50m bgl 38-40m bgl 32m bgl 32.72m bgl

11 BH3 95.04 45min 7.10m bgl 36m bgl dipped

13 BH3 61.34 308h 6.97m bgl 19.50-21.50m bgl 30.50-32.50m bgl 36m bgl 26.47m bgl

14 BH3 61.34 119h 6.90m bgl 40-42m bgl 50-52m bgl 51.50m bgl 23m bgl

S6 9m 8 BH1 66.44 3h 45min 6.59m bgl 39.50-41.50m bgl 50.50-52.50m bgl 41m bgl 43.48m bgl

3 BH5 62.99 6h 6.91m bgl 55m bgl 22.05m bgl

9 BH1 252.95 20h 6.02m bgl 50-52m bgl 51.50m bgl 54.75m bgl

12 BH5 246.24 25min 6.91m bgl 55m bgl 30.31m bgl

14 BH5 190.94 93.5 h 6.90m bgl 40-42m bgl 50-52m bgl 51.50m bgl 23.90m bgl

S1 to S7 53.07m 10 BH1 272.16 17h 30min 6.93m bgl 35m bgl 13,25m bgl
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Figure 5.9: Schematic cross-section of the test site and the test setups of pumping tests Test 1 

to Test 3. 
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to seal the mudstone layers at the top and at the bottom of the tested sandstone layer. In Tests 

4, 5 and 9 only one packer of the double packer system was applied to seal to the bottom or to 

the top. Figure 5.10 shows a schematic setup of the tests with the location of the packers and 

the pumped section of the corresponding tests. The pump was installed in the upper packer of 

each test, apart from Tests 4 and 5 where the pump was hung into BH1 in the middle of S2. 

All pumping tests were monitored with transducers in the observation wells and in the 

pumping well with a transducer placed above, between and below the packered section. The 

pumping test of S4 failed, as the packers were set inappropriatly in BH1. 

Pumping Tests 10, 11 and 12 were carried out without the application of packers. Test 10 

pumped all aquifer layers at once in BH1 (Figure 5.11). Transducers monitored the test in all 

boreholes. Tests 11 and 12 were pumped only a few minutes in BH3 and BH5. 

Pumping Tests 13 and 14 were set up so that water was abstracted in two wells (BH2 and 

BH3 or BH3 and BH5) and injected into a packered interval in BH1. The arrangement of 

packer and pump was chosen to run vertical tracer tests. The pump was placed in the middle 

of the slotted casing interval or the uncased interval of BH3 and BH5. Recharge occured 

through the top packer of the packered layer in BH1. Transducers monitored pressure changes 

in BH2, BH3, BH5 and BH1, above, between and below the packer. Figure 5.12 shows the 

setup of the corresponding pumping tests. Pumping two wells, it was tried to pump both wells 

at a similar pumping rates to avoid the creation of different gradients in the pumped layers. 

Due to the restrictions of equipment, the Godwin pump with a maximum pumping rate of 5 l/s 

was installed in BH 2 (Test 13) and BH5 (Test 14). To reduce the pumping rate of 5 l/s, in 

comparison to the other available pump with a pumping rate of 1 l/s, discharged water was 

diverted back into the pumping well where the 5 l/s pump was installed. To recharge the 

pumping well, water was just flushed through a hose at the top of the well. 
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Figure 5.10: Schematic cross-section of the test site and the test setups of pumping tests Test 

4 to Test 9. In Test 6 to Test 9, pumps were installed in the upper packer of the test layer. 
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Figure 5.11: Schematic cross-section of the test site and the test setups of pumping tests Test 

10, Test 11, and Test 12. 
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Figure 5.12: Schematic cross-section of the test site and the test setups of pumping tests Test 

13, and Test 14. 
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5.6 Analysis of the Pumping Test 

A detailed overview of analysing methods for pumping tests was given by Kruseman and de 

Ridder (1994). Two aquifer categories are distinguished: unconsolidated and consolidated. 

However, with respect to the test site, apart from the topmost unconsolidated unconfined 

aquifer layer only unconsolidated confined aquifer layers were expected. Figure 5.13 shows 

log-log and semi-log plots of the theoretical time-drawdown relationship which can be used to 

get a first estimation of the pumping tests conducted. In the following possible methods for 

the interpretation and effects for the interpretation of the performed pumping tests are 

described. 

 

 

Figure 5.13: Log-log and semi-log plots of the theoretical time-drawdown relationships of 

unconsolidated aquifers: Parts A and A‟: Confined aquifer; Parts B and B‟: Unconfined 

aquifer; Parts C and C‟: Leaky aquifer (Kruseman and de Ridder, 1994) 

 

5.6.1 Theis Method (1935) 

Theis (1935) was the first to develop a formula for unsteady-state flow to a well taking into 

consideration the aquifer storativity, radial distance, and time in function. Theis also 
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introduced the „curve-fitting method‟ to determine aquifer storativity and transmissivity from 

time-drawdown response. The assumptions and conditions underlying the Theis equation are:  

 

1) The aquifer is confined. 

2) The aquifer has a seemingly infinite areal extent. 

3) The aquifer is homogeneous, isotropic, and of uniform thickness over the area 

influenced by the test. 

4) Prior to pumping, the piezometric surface is horizontal over the area influenced by the 

test. 

5) The pumping well discharge rate is constant. 

6) The pumping well penetrates the entire thickness of the aquifer, inducing horizontal 

flow towards the well. 

 

The unsteady-state equation (or Theis equation) can be expressed as: 

 

s
Q

KD
W u

4
( ) ,        (Equation 5.14) 

 

s  is the drawdown (m) measured in an observation well at a radial distance r (m) from 

the pumping well .  

Q  is the constant discharge (m
3
/day) of the abstraction well 

KD  is the transmissivity (m
2
/day), where K is the hydraulic conductivity (m/d) and D (m) 

is the uncased and not grouted length of the pumped well.  

where S is the aquifer storativity (dimensionless)  
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2

4

r

KDtu
S           (Equation 5.15) 

 

and t is the time since the start of pumping (in d=days as applied in this thesis). 

The well function or Theis well function of u is an exponential integral: 

 


 


u

y

y

dye
W(u)         (Equation 5.16) 

W is a function of u [expressed W(u)] ( Kruseman & de Ridder, 1994) and indicated as 

“dimensionless drawdown” and “dimensionless time”. 

 

As 
KD

Q

4
in equation 5.14 and 

S

KD4
in equation 5.15 are constant, the relation of log s and 

)/²log( tr is similar to the relation between log W(u) and log(u). Plotting s against r²/t and 

W(u) against u on the same log-log paper, the resulting curves will be of the same shape. By 

matching the data curve and the type curve, the coordinates of an arbitrary matching point are 

the related values of s, r²/t, u and W(u) to calculate KD and S. Instead of using the “normal 

type curve”, it is more convenient to apply the “reversed type curve” and plot W(u) against 

1/u and s versus t/r². The assumptions and conditions underlying the Theis equation apply for 

Theis‟s curve-fitting method. In addition, the following condition is required: that the flow of 

the well is in unsteady state, i.e. the drawdown differences with time are not negligible, nor is 

the hydraulic gradient constant with time. 
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5.6.2 Jacob’s Method  

The Jacob method (Cooper and Jacob, 1946) is based on the Theis formula: Jacob‟s straight-

line method can be applied for the following three situations: 

1. r  = constant 

2. t = constant 

3. 2/ rt are used in the data plot 

However the following assumptions and conditions should be satisfied: 

1. The assumptions listed for pumping tests as for Theis (1935) 

2. The flow to the well is in unsteady state 

3. The values of u are small  01.0u , i.e. r is small and t is sufficiently large. 

Krusemann and de Ridder (1990) visually inspected the graphs in the range of 01.0u and 

1.0u  and concluded that it is impossible to indicate precisely where field data start to 

deviate from the straight line relationship. For practical purposes they suggest using values of 

1.0u as a condition for Jacob‟s method. Due to the conditions Jacobs only considers late 

time drawdown data. 

 

5.6.3 Leaky Aquifers 

Leaky aquifers are more usual in Triassic Sandstone aquifers than perfectly confined or 

unconfined aquifers. As shown in Figure 5.13, three general principle facies types with 

different hydrostratigraphy (Weber and van Geuns, 1990) can be expected for the Triassic 

Sandstone. For the University Test Site, we assume a layered model, as described in Chapter 

4. Leaky aquifer can be generally described as aquifer, overlying and/or underlying by a 

mudstone which is usually leaking to some extent. When the well in the confined aquifer is 

pumped, the hydraulic head will drop and create a hydraulic gradient not only in the pumped 
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confined aquifer, but also in the aquitards confining the aquifer. The induced flow is assumed 

to be horizontal in the aquifer and vertical in the aquitard. 

The assumptions and conditions underlying the methods for leaky aquifers as described by 

Kruseman and de Ridder (1990) are: 

1) The aquifer is leaky. 

2) The aquifer has a seemingly infinite areal extent. 

3) The aquifer and the aquitard are homogeneous, isotropic, and of uniform thickness 

over the area influenced by the test. 

4) Prior to pumping, the piezometric surface is horizontal over the area influenced by the 

test. 

5) The aquifer is pumped at a constant discharge rate. 

6) The pumping well penetrates the entire thickness of the aquifer and thus receives water 

by horizontal flow. 

7) The flow in the aquitard is vertical. 

8) The drawdown in the unpumped aquifer (or in the aquitard, if there is no unpumped 

aquifer) is negligible. 

And for unsteady-state conditions it is assumed that: 

9) The water removed from storage in the aquifer and the water supplied by leakage from 

the aquitard is discharged instantaneously with decline of head. 

10) The diameter of the well is very small, i.e. the storage in the well can be neglected. 

 

5.6.4 Walton’s Method 

Walton (1962) describes the drawdown in a leaky aquifer under the consideration that the 

effects of aquitard storage are negligible (Hantush and Jacob 1955). The method can be used 
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if the assumptions and conditions listed for leaky aquifers are satisfied and if the following 

assumptions and conditions are fulfilled: 

1) The flow in the well is in an unsteady state; 

2) The aquitard is incompressible and changes in the aquitard storage are negligible. 

The unsteady-state equation (or Theis equation) can be expressed as: 
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Walton (1962, in Kruseman and de Ridder, 1994) developed a modification of the Theis 

curve-fitting method. Instead of using one type curve, Walton uses a type curve for each value 

of r/L where the leakage factor L is 

KDcL           (Equation 5.20) 

with  

'/' KDc   the hydraulic resistance of the aquitard in [d]    (Equation 5.21) 

and with 

'D   the saturated thickness of the aquitard in [m] 

'K   hydraulic conductivity of the aquitard for vertical flow in [m/d]. 
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5.6.5 Unconfined Aquifers  

The pumping of an unconfined aquifer underlain by an aquiclude, causes a dewatering of the 

aquifer and creates a cone of depression in the water table. As the length of the pumping test 

is increased, the flow towards the well shows clear vertical components. The three major 

differences between pumped unconfined and confined aquifers are (Kruseman and de Ridder, 

1990): 

1. A confined aquifer is not dewatered during pumping, but remains fully saturated and 

the pumping process creates a drawdown in the piezometric surface. 

2. The pumped water of a well in a confined aquifer comes from the expansion of the 

water in the aquifer due to reduction of the water pressure, and from the compaction of 

the aquifer due to increased effective stresses. 

3. The flow in a confined well is and remains horizontal, provided that the well is a fully 

penetrating one. No vertical flow components occur in such an aquifer. 

According to Kruseman and de Ridder (1990), for pumped unconfined aquifers which do not 

show a delayed watertable response, the time-drawdown curve only follows the late-time 

segment of the S-shaped curve at this stage. The response to pumping has entered the third 

phase or the unconfined response (Allen et al., 1997) and approximates to the Theis curve. 

Because the flow pattern around the well is identical to that of an unconfined aquifer, the 

Theis method (1935) and the Jacobs method (Cooper and Jacob, 1946) can be used to 

interpret the pumping tests. 
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5.6.6 Single-Well Tests 

Single-well tests are tests with no observation wells or piezometers available or used. The 

water-level change during the pumping test is measured only in the pumped well itself. The 

drawdown in the pumped well is influenced by well losses, skin effect and well-bore storage. 

Well losses are separated into linear and non-linear head losses. Linear well losses are caused 

during the drilling and construction of the well, as head losses due to compaction of the 

aquifer material during drilling, due to plugging of the aquifer with drilling mud, head losses 

in the gravel pack and head losses in the screen. Non-linear well losses are friction losses, 

occurring inside the well and the rising main or suction pipe where the flow is turbulent, and 

head losses, occurring in the zone adjacent to the well where the flow is usually turbulent 

(Krusemann and de Ridder, 1990). These well losses cause a greater drawdown in the well 

than expected on theoretical grounds. The concept of “skin effect” describes the head losses in 

the vicinity of a well. It is assumed that the head losses are concentrated in a thin, resistant 

skin against the wall of the borehole. A positive skin effect is measured if the effective radius 

of the well is larger than the real radius of the borehole. A negative skin effect is measured if 

the well is poorly developed or its screen is clogged (De Marsily, 1986). A more detailed 

discussion of effects in well during pumping tests is given by Driscoll (1995). 

In the hydraulics of well flow, the well-bore storage can be neglected, as the well is 

considered to be a line source or line sink with an infinitesimal radius. However, in reality 

wells have finite radius and thus a certain storage volume. Well-bore storage effects exist if 

the early-time drawdown (drawdown versus pumping time) plot is a unit-slope straight line in 

a log-log plot. Papadopulos and Cooper (1967) observed that the influence of well-bore 

storage on the drawdown decreases with time. Well-bore storage becomes negligible at  
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KD

r
t c

225
           (Equation 5.22) 

where 
cr the radius of the unscreened part of the well 

The bigger T gets, the smaller t becomes and the earlier well-bore storage becomes negligible. 

Table 5.2 gives example calculations for t if the well-bore storage becomes negligible. 

 

Table 5.2: Example calculations applying equation 5.20 to calculate t if the well-bore storage 

becomes negligible (Papadopulos and Cooper, 1967). r of BH 1 to BH 5 is applied. For T a 

lower value of 20 m²/d and a higher value of 140 m²/d were taken into consideration. 

 

 

 

5.6.7 Analyse of Pumping Tests with Curve-Fitting Methods 

In the following, the drawdown data of the pumping tests were analysed with curve-fitting 

methods applying the student version of AquiferWin32 (Version 1.06, 1997 by 

Environmental Simulations, Inc. (ESI) developed by J. and D. Rumbaugh). Curve-fitting was 

possible with the non-linear least-squares technique when it was considered to be reasonable, 

using an application offered by Aquifer Win 32. Otherwise, manual curve-fitting was 

processed in Aquifer Win32. Each test is discussed with reference to the relevant aquifer or 

sandstone layer in which the test was conducted. Table 5.2 lists the results of the curve-fitting 

analysis and the calculated values for T, K and S.  

 

5.6.7.1 Sandstones Layer S1 and S2 

S1, S2 and M1 were approached by BH2 where Test 1 and Test 13 were carried out. As there 

was no appropriate analytical solution derived for a multilayered aquifer system with an 

BH1 BH2- BH5 BH1 BH2- BH5

r [m] 0.1016 0.0625 0.1016 0.0625

KD [m²/d] 20 20 140 140

t > [d] 0.013 0.0049 0.0018 0.0007
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unconfined top layer and a confined bottom layer separated by an aquitard, an attempt was 

made to analyse Test 1 and Test 13 with the Theis method (1935). For the interpretation, the 

following assumptions were made: First of all, S1, M1 and S2 were one aquifer and the layers 

were pumped in BH2 together. Secondly, S2 was fully penetrated by BH2, and thirdly, S1, 

M1 and S2 were acting as a confined aquifer with a horizontal flow towards the well. 

Figure 5.14 shows the curve fitting result of Test 1 after Theis (1935). Even though the 

optimized curve-fitting method in AquiferWin32 was applied, the Theis curve and the 

drawdown curve of Test 1 do not match very well. The observation wells BH4 and BH5 in 

Test 1 showed no response to the abstraction. 

 
 

Figure 5.14: Interpretation of Test 1(in S1 and S2), using the Theis method (1935). The 

residual mean of the optimised fit was 0.043 m (ESI, 1997). 

 

After 6 minutes, the drawdown increased again and a delayed yield was recorded. Water in 

layers S1 and S2 seemed not to have been discharged instantaneously at the same rate over 

both layers for the first minutes. However, after 6 minutes the drawdown increased again and 

towards the end of the test the drawdown curve flattened, getting a shape similar to those of 
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the drawdown of leaky aquifer. The interpretation of Test 13 was made under the same 

assumptions and conditions as for Test 1. However, due to the test setup in which BH2 was 

pumped and water was injected into the well again (see Chapter 5.5) the early-time drawdown 

oscillated continously towards the end of the tests. Figure 5.15 shows the curve fitting of Test 

13 with Theis (1935).  

 
 

Figure 5.15: Interpretation of Test 13 using the Theis method (1935). The residual mean of 

the optimised fit was 0.032 m (ESI, 1997). 

 

 

Comparing the interpretations of Test 1 and Test 13, the curve fitting of the Theis method 

(1935) with the drawdown data of Test 13 seems to fit in a better way than the data of Test 1. 

The storativity S of Test 13 is realistic, compared to the results of Test 1, and within a realistic 

range given by Kruseman and de Ridder (1994). However, the calculated T and S values of 

Test 13 have to be regarded carefully, due to the test setup. Test 1 does not fit well with Theis 

(1935) as late time drawdown data show “severe” effects of leakage (Kruseman and de 

Q Q 
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Ridder, 1994). Unfortunately, they do not fit with Walton (Hantush and Jacob, 1955), either, 

considering leakage.  

 

5.6.7.2 Sandstone Layer S2 

Test 4 and Test 5 were conducted in sandstone layer S2. BH1 was used as abstraction well. 

The pumped section of BH1, the section below the packer in BH1, and observation well BH4 

were monitored with transducers, but showed only response within 5 to 10 cm. BH2 was not 

monitored as it was used for tracer injection and the transducer signal was disturbed by other 

electrical equipment on site. This caused also disturbance of the first three drawdown 

measurements (90 seconds) during the test which could not be consider for later analysis. 

 

 

 

Figure 5.16: Interpretation of Test 4 using the Theis method (1935). The residual mean of the 

optimised fit was 0.053 m (ESI, 1997). 
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As leaky conditions were expected, it was tried to use fitting methods for leaky aquifers after 

Hantush (1960) and Walton (Hantush and Jacob, 1955). However, no fit could be generated. 

Therefore, Theis (1935) curve-fitting method was used to analyse Test 4 and 5. Only the 

analysis for Test 4 gave a fit for the late-time drawdown data (Figure 5.16), delivering a 

reasonable transmissivity value. The calculated value for the storage coefficient is very small 

but realistic compared to values given by Kruseman and de Ridder (1994). 

 

5.6.7.3 Sandstone Layer S3 

The interpretation of Test 6 with the Theis curve fitting methods for confined aquifers (Theis, 

1935) is shown in Figure 5.17. The observation wells show nearly no drawdown. Applied 

curve fitting methods for leaky aquifers after Hantush (1960) and Walton (Hantush and Jacob, 

1955) do not fit with the drawdown data of the test.  

 

 

Figure 5.17: Interpretation of Test 6 using the Theis method (1935). The residual mean of the 

optimised fit was 0.032 m (ESI, 1997). 
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As described for Test 4, only the late-time drawdown data gave a reasonable optimized fit, 

delivering a transmissivity value. 

 

5.6.7.4 Sandstone Layer S5 

Sandstone layer S5 was approached on the test site by BH1 and BH3. Three pumping tests 

were carried out in S5: 

 Test 2 was processed in BH3. 

 Test 7 was undertaken in BH1 (S5 packered) with BH3 used as observation well. 

 Test 10 was undertaken in BH1 (not packered) with BH3 as observation well. 

Test 2 showed no fit using Waltons or Theis-Method (1935). Figure 5.17 shows the curve-

fitting of the drawdown data of the pumped well BH1 of Test 7 with Theis (1935). The initial 

drawdown after the first measurement is 6.21 m. For the first 7 minutes, the drawdown 

increased slowly and plotted nearly as a straight line. After 7 minutes, the drawdown 

increased again. With the first drawdown record well-bore storage was measured followed by 

“leakage effects” of the pumped section, possibly because of negative skin effects caused by a 

poorly developed layer S5 in BH1. As a section of BH3 was possibly clogged, the drawdown 

increased again. Clogging of S5 in BH1 was slightly removed during the test and the 

drawdown increased only slightly towards the end of the test. The late time drawdown neither 

fit with the method of Papadopulos and Cooper (1967), considering well-bore storage, nor 

with Walton (1962, Hantush and Jacob 1955). The best fit was with Theis (1935), as shown in 

Figure 5.18, giving reasonable values for T and S.  

Figure 5.19 shows the curve-fitting for the observation well BH3 of Test 7 with Walton 

(1962; Hantush and Jacob 1955), giving reasonable values but smaller values for T and S, 

compared to Figure 5.18. 
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Figure 5.18: Interpretation of Test 7 using the Theis method (1935) for drawdown data of 

BH1. The residual mean of the optimised fit was 0.106 m (ESI, 1997). 

 

 

 
 

Figure 5.19: Interpretation of Test 7 observation well BH3, using the method of Walton 

(1962; Hantush and Jacob 1955). The residual mean of the optimised fit was 0.046 m (ESI, 

1997). 
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The analysis of Test 10 with the drawdown data collected from observation well BH3, 

applying Theis method (1935) is shown in Figure 5.20. The first drawdown record was made 

after 5.5 minutes, as the connection to the transducer was interrupted when the test was 

started. However, the drawdown data show the best fit with the Theis (1935) compared to the 

the curve-fitting results of the observation well BH3 of Test 5.  

 

 
 

Figure 5.20: Interpretation of observation well BH3, Layer 5, Test 10 using the method of 

Theis (1935). The residual mean of the optimised fit was 0.016 m (ESI, 1997). 

 

5.6.7.5 Sandstone Layer S6 

Test 8 was conducted in BH1, exploring aquifer layer S6. The late-time drawdown data 

flatten and leaky conditions, but the fit with Walton was not successful. The test was analysed 

with Theis method (1935) and the applied curve fitting is shown in Figure 5.21.  
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Figure 5.21: Interpretation of Test 8 using Theis method (1935). The residual mean of the 
optimised fit was 0.026 m (ESI, 1997). 

 

5.6.7.6 Sandstone Layer S7 

Sandstone layer S7 was approached by BH1 and BH5. Test 9 and Test 14 were carried out in 

BH1 as pumping well. Test 3 was processed in BH5.For the interpretation of sandstone layer 

S7, it should be considered that the aquifer was partially penetrated by BH1 and BH5. Only 

the top boundary of S7 was identified. The results of Test 3 could not be matched with 

available curve-fitting methods. Test 9 matched not well with Theis (1935) or Walton. The 

best curve-fit could be gained with the results of Test 14, using the Theis (1935) and Waltons 

(1962) curve-fitting method. However, both methods delivered unrealistic values calculated 

for S (see Figure 5.22 and 5.23 for Test 14). The drawdown values oscillated during the 

whole tests, as the pumping rate of the installed pump with a maximum pumping rate of 5 l/s 

was reduced with a valve to a pumping rate of 2.2 l/s. The oscillation was caused by the 

pump, as it pumped against the valve with inconsistent rates trying to maintain its maximum 

pumping rate (the pump had to be repaired after Test 14). 
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Figure 5.22: Interpretation of Test 14 using the Theis method (1935). The residual mean of 

the optimised fit was 0.027 m (ESI, 1997). 

 

 
 

Figure 5.23: Interpretation of Test 14, using the method of Walton (1962; Hantush and Jacob 

1955). The residual mean of the optimised fit was 0.026m (ESI, 1997). 
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5.6.7.7 All Sandstone Layers (S1 - S7) 

In Test 10, water was abstracted from borehole BH1 with no application of packers other than 

in BH4. S1 to S7 were pumped together, BH2, BH3 and BH5 were used as observation wells. 

The drawdown data of the pumping well BH 1 were analysed using the Theis method (1935) 

and Jacob‟s method (Cooper and Jacob, 1946). The latter was applied since the calculated 

value for S with Theis (1935) was small (Figure 5.24 and 5.25).  

 

 

Figure 5.24: Interpretation of Test 10 using Theis (1935). The residual mean of the optimised 

fit was 0.014 m (ESI, 1997). 
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Figure 5.25: Interpretation of Test 10 using Copper and Jacob (1946) straight line method. 

The residual mean of the optimised fit was 0.014 m (ESI, 1997). 

 

 

5.7 Conclusion of the Pumping Tests 

Pumping tests were undertaken and curve-fitting methods of Theis (1935), Walton (1962; 

Hantush and Jacob, 1955) and Jacob (“Jacob‟s method”, Cooper and Jacob, 1946) were 

applied successfully. Aquifer characteristics could be determined for the aquifer layers S1 to 

S7. The calculated values for T and S of the curve-fitting methods are listed in Table 5.2. The 

values of T were in the range of transmissivities given by Allen et al. (1997) for Triassic 

Sandstone. S values were not always within the range of 5x10
-3

 to 5x10
-5

 as proposed by 

Kruseman and de Ridder (1996), because of difficulties in matching the drawdown data with 

the different methods. The bolt marked values of T and S in Table 5.1 were used as first input 

for the groundwater flow-model. The drawdown data of the tests were used for calibration of 

the hydraulic flow model. 
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Table 5.2: Applied curve-fitting method and calculated T, K and S values of S1 to S7 gained 

from the pumping test data of Test 1 to Test 14. The column Borehole lists the pumped wells 

of the pumping tests when no observation wells were marked (“ob. well”). Bold marked tests 

were chosen as the curve-fitting gave the best fit. Cursive marked tests were not shown as the 

curve-fitting figures do not match very well.  

 

Aquifer 

layer 

Test Borehole Max. 

Drawdown 

Curve-

Fitting  

Method 

T[m²/d] K[m/d] S 

 

S1 and 

S2 

1 BH2 2.35m Theis 56.76 4.68 3.62x10-6 

10 ob. well BH2 0.79m Theis 135.95 2.43 7.83x10
-2

 

13 BH2 1.98m Theis 37.87 4.59 7.41x10
-5

 

S2 

 

4 BH1 2.81m Theis 62.53 11.37 2.22x10
-12

 

5 BH1 2.76m Theis 49.18 8.94 1.16x10-8 

S3 6 BH1 3.46m Theis 34.15 6.21 1.72x10
-7

 

 

 

 

S5 

2 BH3 13.50m Walton 0.79 0,14 0.25 

7 BH1 11.00m Theis 6.99 1.27 9.30x10
-5

 

      Walton 5.05 0,92 1.76x10
-3

 

  

ob. well 

BH3 5.94m Theis  9.99 1.81 9,30x10
-5

 

      Walton 3.06 0.56 4.3x10-4 

10 

ob. well 

BH3 2.19m Theis 100.58 1.90 3.23x10
-4

 

14 BH3 8.64m Theis 11.08 1.94 1.1x10-4 

S6 8 BH1 3.46m Theis 42.44 4.72 1.59x10
-11

 

 

 

 

 

S7 

3 BH5 1.19m Walton 27.42 3.43 3.92x10
-3

 

9 BH1 6.75m Walton 37.17 4,65 1.83x10
-3

 

      Theis 91.32 11.42 5.68x10-10 

  ob. well BH5 4.51m Walton 81.49 10,19 3.59x10
-9

 

      Theis 120.35 15.04 9.49x10-12 

14 

 

BH5 

 

1.49m 

 

Walton 68.09 8.51 4.95. 

Theis 100.03 12.50 1.13 

10 

ob. well 

BH5 2.19m Theis 128.61 2.43 5.98x10
-8

 

S1 - S7 

 

10 BH1 3.52m Theis 135.69 2.56 5.12x10
-6

 

      

Cooper and 

 Jacob 135.46 2.55 1.32x10
-5
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5.8 Conclusion 

Chapter 5 describes the hydraulic conditions of the test site. Rest water level observations 

detect vertical flow in BH1 and BH4. Heat pulse flowmeter measurements quantified the up-

flow in BH1 and packer tests in BH1 measured the relative head changes between the 

different aquifer layers by inflating a packer on the level of each mudstone layer, M1 to M6. 

The relative head changes could be used for later adjustment of the boundaries of the 

groundwater model.  

Pumping tests were carried out in all sandstone layers, S1 to S7. The purpose-tailored double-

packer system (Greswell, 1999) was successfully used to run the tests which were performed 

up to a period of about 13 days (Test 13 in BH 3). Curve-fitting methods were successfully 

applied to the drawdown data of the processed tests and values of the transmissivity T, the 

hydraulic conductivity K and the storage coefficients S for the aquifer layers S 1 to S7 were 

calculated (Table 5.2). T and K values of the pumping tests lay within the range of parameters 

given by Allen et al. (1997) and Tellam and Barker (2006) for the Triassic Sandstone in the 

U.K. In a few tests calculated S values were very small and below the range for storage 

coefficients generally defined by Kruseman and de Ridder (1994). However, the values of T 

and K, and – with restriction – the values of S were applicable as first input data for the 

hydrogeological computer model of the test site. The drawdown data of the pumping tests 

could be applied to calibrate the groundwater flow model. 
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CHAPTER 6: Characterization of Horizontal and Vertical 

Transport Properties with Tracer Tests 
 
 

6.1 Objective 

The aim of this chapter was to process tracer tests to gain values of natural linear groundwater 

velocities, effective porosities and dispersivities of the Triassic Sandstone, UK. Three 

different types of tracer tests were chosen to be appropriate to achieve data to quantify these 

values: 

1. Point Dilution Tracer Tests were carried out to calculate natural linear 

groundwater velocities and the natural hydraulic gradient of the sandstone layers 

S1 to S6. 

2. Horizontal Forced Gradient Tracer Tests were chosen to define values of the 

effective porosity and dispersivity of sandstone layers. 

3. Vertical Forced Gradient Tracer Tests were carried out to quantify values of the 

effective porosity and dispersivity of mudstone layers. 

All tests were successful, as tracer breakthrough could be detected. Breakthrough curves for 

almost all tests were recorded. During the horizontal and vertical forced gradient tracer tests, 

the tracer concentration in the injection well was monitored for all tests, showing strong 

correlations between concentrations in the injection well and the pumped well for certain 

tests. 

 

 

 



114 

6.2 General Tracer Application and Detection 

The use of different tracers throughout the history in hydrology and hydrogeology was 

described by Käss (1998). First, dye tracer tests were carried out at the end of the 19th 

century, using discovered fluorescein together with slate oil and NaCl (Germany; Knopp 

1875, 1878). A variety of tracer experiments were also carried out in France and Italy during 

the 19th and 20th century to find sources of typhus epidemics (Flury and Wai 2003, Käss, 

1998). The amount of tracer injected was chosen mainly to find a connection between two 

points and to receive a visible confirmation at the point of observation by coloured water. 

Later, image analysis techniques were used to receive detailed spatial resolution of tracer 

concentrations, e.g. two-dimensional imaging of fluorescent dyes in soil profiles (Aeby et al., 

2001; Vanderborght et al., 2002). Collecting dye tracers with active charcoal or cotton strips 

was first recorded in the late 1950’s (Flury and Wai, 2003). This method allows detection of 

lower concentrations of dyes and measurement of the tracer concentration over a specific 

period of time. Fluorescence spectroscopy and fiber optic sensors offer the possibility of 

detecting low concentrations of dye tracer and measuring the tracer concentrations in situ.  

Fluorescent dyes make ideal groundwater tracers as they have very low detection limits, may 

be measured over a concentration range of several orders of magnitude and can be simply 

analysed using online equipment. Reviews on the use and characteristics of groundwater dye 

tracers were given by a variety of authors (Drew, 1968; Smart and Laidlaw, 1977; Davis et al, 

1985; Mull et al., 1988; Viriot and André, 1989; Flury and Wai, 2003; Käss, 2004). Flury and 

Wai (2003) listed recommended dye tracers on the basis of solubility, sorption, mobility, and 

stability for different chemical environments: fluorescein (Na-flourescein, uranine) (Trillat, 

1899), sulforhodamine G (Moser and Sagl, 1967), rhodamine WT, liassamine yellow FF, and 

amino-G-acid (Smart and Laidlaw, 1977) as well as rhodamine WT and rhodamine B (Wilson 
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et al., 1986). The toxicology and ecotoxicology of tracers has been explored by Smart (1984), 

the German Federal Environmental Agency (Umweltbundesamt, 1997) and Behrens et al. 

(2001).  

 

6.3 Theory of Flow and Solute Transport  

The theory of flow and solute transport which could be expected on the test site was given by 

Scheidegger (1961), Bear (1961a/b, 1972), Bear and Buchlin (1991), Batu (2006) and 

Maloszewski (2007). A detailed discussion contaminant transport can be found in Fetter 

(1994 and 1999). 

 

6.4 Introduction to Tracer Tests 

Tracer tests were useful tools to measure and understand hydrogeological properties. Ward et 

al. (1998) define properties which can be determined by six different tracer tests methods, as 

shown in Table 6.1: 1. laboratory tests, 2. single borehole dilution tests, 3. natural gradient 

tests (without a borehole), 4. natural gradient tests (multi-well), 5. drift (or injection) and 

pump-back tests, and 6. forced gradient tests (multi-well).  

- Single borehole dilution tests, “method 2”, were conducted by Hiscock (1982, see also 

Hiscock 2005, p191) in Chalk aquifer. Ward et al. (1998) did not record any existing dilution 

test in the Triassic Sandstone of the U.K. Single borehole dilution tests are part of this thesis 

and are further discussed under 6.5. 

- Forced gradient (multi-well) tracer tests “method 6” were carried out in a sand and 

gravel aquifer by Bateman et al. (2001, see Hiscock 2005, p192) to establish a connection 

between a road soakaway and a well in Wales. Ward et al. (1998) listed four tracer tests 

processed in Triassic Sandstone of the U.K. (discussed in 2.5.1).  
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Table 6.1: Hydrogeological properties which can be measured using tracer tests (after Ward et 

al., 1998). 

 

Property to be determined Suitable test methods 

Measurement of flow paths:  

       Connection between two or more points 3, 4, 6 

       Direction of flow 3, 4 

Measurement of velocity:  

       Average linear water velocity 3, 4, 5, 6 

       Specific discharge/darcy velocity 2 

       Contaminant migration velocity 3, 4, 6 

Measurement of aquifer properties:  

       Hydraulic Conductivity 2 

       Effective porosity 5 

       Heterogeneity 4 

       Fracture Characterization 4 

       Matrix Diffusion 1, 4, 6 

Measurement of solute/contaminant transport properties:  

       Dispersion 3, 4, 5, 6 

       Sorption 1, 4 

       Dilution 3, 4, 6 

Measurement of recharge/groundwater catchments 3, 4 

Measurement of groundwater age 3, 4 

 

Apart from the tracer tests listed above, Hiscock (2005) and Atkinson et al. (1980) gave an 

overview of tracer tests applied in the UK, which were mainly processed in limestone or 

Chalk aquifers. Further important test sites where tracer test were carried out are: 

- Borden: Extensive field experiments were conducted at the Canadian Air Force Base 

Borden, Ontario, Canada, to investigate the transport of organic tracers under natural gradient 

conditions (e.g. Mackay et al., 1986; Freyberg, 1986; Curtis et al., 1986; Roberts et al., 1986; 

Sudicky, 1986). 

- Cap Cod test site running natural gradient tests (multi-well “4”, after Ward et al., 1998) were 

conducted by LeBlanc et al. (1991), Garabedian et al. (1991), and by Hess et al. (1992). 
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- Drigg: Radial injection experiments were performed in a shallow, confined sandy aquifer at 

the Drigg British Nuclear Fuels site in Cumbria, England (e.g. Williams et al, 1985).  

- Moffett: Experiments at a site located within the Moffett Naval Air Station, California. 

Induced- or forced-gradient tracer tests were conducted using bromide and chlorinated 

organic chemicals as tracers (Roberts et al. 1990, Semprini et al., 1990). 

Fracture flow was explored at different sites with tracer tests. At Tono (Japan; Iwatsuki et al., 

2002), Äspo (Sweden; Pedersen et al. 1997) and for the Triassic Sandstone in Sellafield 

(Cumbria, UK; Milodowski et al., 1999; Bath et al., 2000) and for Triassic Sandstone in 

Derbyshire-Leicestershire (UK; Bouch et al., 2004) fracture flow and the relationship of 

groundwater chemistry, calcite chemistry and calcite morphology were taken into account. 

 

6.5 Tracers Applied 

The dyes fluorescein and rhodamine WT (RWT) were selected for the tracer tests discussed in 

the thesis. Table 6.2 gives details for both tracers. They can be used  

 

Table 6.2: Details of the dye tracers fluorescein and rhodamine WT (RWT) used as tracers on 

the University test site (Käss, 1998 and 2004).  

 
  Fluorescein  

(Uranine/Na-
Fluorescein) 

Rhodamine WT (RWT) 

Color Index Number 45350   

Color Index Name Acid Yellow 73 Acid Red 388 

Molecular formula C20H12Na2O5 C29H29O5N2Na2Cl 

Molecular weight 376.276 566.5 

Solubility in Water 600 g/l (20°C) 180 g/l 

Maximum Excitation 491 nm 555 nm 

Maximum Emission 512 nm 580 nm 

Minimum Detection 10
-12

 g/l (0.001 ppb) 1.3 x 10
-11

 g/l (0.013 
ppb) 

Visibility 10
-8

 g/l (10 ppb) ≈10
-8

 g/l (10 ppb) 

Sorption low (pH < 5.5 high) high 
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simultaneously, having their fluorescence maximum at different wavelengths. This allowed 

additional flexibility in the timing of experiments as more than one dye could be measured in 

the system at any time without detriment.  

RWT is not present in nature, whereas fluorescein can be present in nature. However, 

fluorescein is used to dye different products, e.g. shampoos. It was also used for 

entertainment, for example to dye the Chicago River green on an annual basis on St. Patricks 

Day. In 1962, about 45 kg and in 2005, about 16 kg of fluorescein were introduced into the 

Chicago River to colour the river green (http://de.wikipedia.org/wiki/Fluorescein (2007)). 

Such sources of fluorescein can significantly influence the background concentration. 

Fluorescein shows lower fluorescence in water with pH of less than 5 (Olsen and Tenbus. 

2004; Sabatini and Austin, 1991 and Mull et al., 1988). However, for pH values above 5 and 

aquifers with low clay and organic content, fluorescein showed low sorption and was 

considered as a conservative tracer (Käss, 1998). According to Mitchener (2003) and 

Shepherd (2002) the pH value of groundwater in the Triassic Sandstone was above 5. 

Laboratory batch and column experiments using Triassic Sandstone in conjunction with dyes 

had shown that fluorescein behaved conservatively (Bashar, 1997). The fluorescence intensity 

of RWT was not affected by changes in pH for values above 6 in the water (Smart and 

Laidlaw, 1977). A number of studies showed that RWT sorbs during field-scale groundwater 

tracer tests (Ptak and Schmidt, 1996), laboratory column and batch experiments (Sutton and 

Kabala, 2001). Bashar (1997) reported that RWT was sorbed by the Triassic Sandstone in 

laboratory batch and column experiments. Hofstraat et al. (1991) and Shiau (1993) isolated 

two RWT isomers and showed that they had different sorption properties. Sutton et al. (2001) 

recommended the application of RWT as a conservative tracer for the first isomer as this 

exhibits only a small affect of sorption. The second isomer was not recommended as a tracer 
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because it sorbs to a relatively large extent. For simplicity, Derouane and Dassargues (1998) 

considered RWT as a conservative tracer with a negligible sorption. This was supported by 

experiments of Käss (1998) who recorded a small sorption for RWT. From tracer experiments 

with chloride and RWT as tracers, Pang et al. (1998) concluded that RWT behaves as a 

conservative tracer, as well. 

Most dyes will be absorbed on fine particulate material including organic fragments and clays 

as discussed by Davis et al. (1985) and reported by Smart and Laidlaw (1977). Table 6.3 

shows the absorbed dye depending on the amount of clay or, in this case, Kaolinite in water.  

 

Table 6.3: Adsorption of dyes on Kaolinite, results of experiments (Smart and Laidlaw, 1977; 

Davis et al. 1985). 

 

 

 

The results shown in Table 6.3 support the idea of conducting the tracer experiments using a 

mixture of both fluorescein and RWT so that possible insight might be gained into 

geochemical differences between the sandstone units and their clay content revealed by the 

relative retardation of RWT. 

 

6.6 Estimating Tracer Mass Requirements 

For single borehole dilution tests Ward et al. (1998) recommended a quantity of tracer which 

raises the concentration in the injection borehole 100 to 1000 times the background 

concentration; For radial convergent flow or combined pumping and tracer test a tracer 

5 10 15 20

Fluorescein 6 12 17 18

Rhodamine WT 11 19 25 31

Kaolinite Concentration in g/lAbsored Tracer

Amount in [%]
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injection which results in a peak of 10 to 100 times the background concentration at the 

sampling point was proposed.  

For point to point tracer tests it must be taken into account that too little tracer injected would 

not raise the tracer concentration enough and breakthrough could not be measured if it was 

below the detection limit. On the other hand, too much tracer injected causes coloured water, 

influencing the water supply and might cause health problems, depending on the tracer used. 

Equation 6.1, based on the one-dimensional Fickian dispersion term, was used to estimate the 

minimum mass of tracer required in natural gradient tests: 

rAcM m 4         (Equation 6.1) 

with 

α estimate of dispersivity, e.g. 1/10 of the distance between injection and sampling 

point; 

A the cross-sectional area of injection pulse; 

r distance between injection and sampling points; 

cm maximum peak concentration expected; 

M mass of tracer. 

The calculation of the required mass of tracer (M) might underestimate the effects of radial 

flow for radial converging tests. To determine an upper limit for M2 required for a radial test, 

the following equation should be applied: 











d

Rn
MM e 2

2         (Equation 6.2) 

with 

α estimate of dispersivity; 

A the cross-sectional area of injection pulse; 
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r distance between injection and sampling points; 

R distance between injection well and sampling point; 

d diameter of the injection well. 

Another method to define the mass of tracer was described by Lenda and Zuber (1970) (see 

also Malozewski, 2007). Ward et al. (1998) listed a Monte Carlo approach for estimating 

tracer quantities if few of the relevant physical parameters controlling the movement of the 

tracer could be ascribed without confidence. 

 

6.7 Setup of Tracer Injection 

The tracer was injected over the whole thickness of the aquifer in all tracer tests. In BH2 

tracer was injected over the whole depth of the slotted casing. In all tests, the tracer was 

injected at the top of the tested interval and pumped continuously at the bottom of the test 

interval in a recirculating loop, back to the surface and injection point, and down to the top of 

the test interval again. Continuously mixing the water in the test interval was performed to 

deliver the same tracer concentration over the full thickness of the tested aquifer layer. 

Brouyère et al. (2005) described and modelled tracer injection and well-aquifer interaction. 

Brouyère (2003) and Brouyère et al. (2005) concluded that the chosen tracer injection in the 

well aquifer system acts similar to a double porosity system. The injection of tracer could 

influence the tracer test results due to the capture of tracer in the well bore and gradual release 

into the aquifer leading to enhanced concentration attenuation and recorded tailing of tracer 

concentration in the breakthrough curve of the observation well.  
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6.8 Tracer Detection 

The tracer concentrations in the injection wells were usually measured with a fluorescence 

spectroscope on water samples taken over time, or with fluorometers using optical sensors. 

The tracer concentrations within the system at the discharge well were determined with a 

fluorometer, using optic sensors. Such detected tracer in the injection and observation wells 

was calibrated against water samples analysed with the fluorescence spectroscope and vice 

versa. Three fluorometers were used to analyse the tracer concentration:  

1. Perkin Elmer 204-A fluorescence spectrophotometer: a laboratory based fluorometer 

with a sensing head where the concentration of the tracer was measured. As the 

detection sensitivity for fluorescein and RWT was >10
-11

 g/ml, the samples had to be 

diluted before the concentration measurement. The significant photo-decay of 

fluorescein and amino-G-acid has been explored by Streetly et al. (2002). Two 

separate 250 ml samples of 10 mg/l for each tracer were prepared. One was exposed to 

the sunlight and the other was wrapped into aluminium foil and stored in a dark 

cupboard. The sample exposed to sun light showed significantly lower tracer 

concentrations in the measurements, compared to the concentration measured in the 

sample stored in the dark. To avoid photodegradation, samples and tracer solutions 

were stored in the dark, and exposure to sunlight was kept to a minimum. For the 

detection of the tracers, the samples needed to be diluted before measurement. Any 

sediment in the samples appeared to have negligible affects on the fluorescence 

measured with the Perkin Elmer 204-A fluorescence spectrophotometer, as unshaken 

and shaken samples gave indistinguishable results (Streetly et al., 2002) 

2. A GGUN-FL 20 (Geomagnetism Group University of Neuchâtel) (Schnegg and 

Doerflieger, 1992) or “Schnegg fluorometer”, comprising a sensing head where the 
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concentration of the tracer was measured and a data-logger that records the data 

reading every 10 seconds or every 4 minutes. The head was originally designed for 

down-hole use but was adapted to work as an in-line device with a take-off pipe from 

the rising main of the pump. The fluorometer was linked to a PC to allow observation 

of the current reading and to store the data. The Schnegg fluorometer could detect 

different tracers and the sediment concentration simultaneously. Three groups of two 

tracers could be detected:  

Group I (excitation with blue light): Uranin (fluorescein) and pyranin 

Group II (excitation with green light): Amido rhodamine G (acid red 

50), amido rhodamine G (acid red 52), rhodamine B, rhodamine WT 

Group III (excitation with UV light): Naphtionate, Tinopal CBS-X. 

Two tracers could be selected among the three groups, one from each group. The 

sensitivity for fluorescein was 10
-9

 g/ml. The detection threshold for fluorescein was  

10
-11

 g/ml. 

3. A constructed fluorometer by Richard Greswell in 2000, “Schneggli”, comprising a 

sensing head where the concentration of the tracer was measured and a data-logger 

that was applied to record the data reading every 60, 120 and 300 seconds. The head 

was connected to an in-line device with a take-off pipe from the rising main of the 

pump. The fluorometer was linked to a PC to allow observation of the current reading 

and to store the data. The Schneggli fluorometer did not measure as accurately as the 

other two fluorometers. However, it was able to detect a concentration range of up to a 

maximum of five orders of magnitude. The “Schneggli” fluorometer was applied 

during the vertical tracer tests to detect the tracer concentration of fluorescein in one 

of two abstraction wells and to detect the fluorescein concentration in the packered 
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injection section of the vertical tracer tests. The sensitivity of the Schneggli was 10
-5

 

g/ml (fluorescein) and the detection threshold at 10
-6

 to 10
-7

 g/ml (fluorescein). 

All spectrophotometers were zeroed using pre-tracer test groundwater samples, as the natural 

groundwater fluoresces, albeit at low intensities. 

 

6.9 Point Dilution Tests  

6.9.1 Introduction to Point Dilution Tests 

The borehole dilution or point-dilution method was developed in the USSR in the late 1940’s 

(Freeze and Cherry, 1979). A point dilution test can be performed in a single well over a short 

period of time. Velocities of the groundwater can be estimated using the rate of dilution of a 

tracer added to the tested well. The theory of point dilution tests was well described by 

Halevy et al. (1967), Drost et al. (1968), Freeze and Cherry (1979), and Gasper (1987). Moser 

and Neumaier. (1957), Neumaier (1960), Moser and Sagl. (1967), Halevy et al. (1967) and 

Drost et al. (1968), for example, applied radioactive tracers in different point dilution tests in 

porous media of column experiments in the laboratory and in wells at different depths. Lloyd 

et al. (1979) used point dilution methods and applied fluorescein to determine permeabilities 

of land-fill materials. Kearl et al. (1988) considered the point dilution method as one method 

to measure groundwater velocities in unconfined aquifers. Lamontagne et al. (2002) described 

the successful application of point dilution techniques in soft sediments of riparian zones in 

Australia (Wollombi Brook, NSW) using saline tracers. Pitrak et al. (2007) applied borehole 

dilution techniques in a Tertiary sandstone aquifer near Leipzig (Germany) to measure the 

horizontal groundwater flow with the food colour Brilliant Blue FCF (Euro code E-133). 
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6.9.2 Point Dilution Theory 

The method aims to relate the observed dilution of a tracer introduced into a well to the rate of 

undisturbed groundwater flow in the aquifer. The theory of the point dilution method requires 

that the following assumptions were met (Freeze and Cherry, 1979): 

1) The borehole dimensions were well known, particularly the cross-section through 

which groundwater flow could occur. 

2) The tracer concentration is homogeneous at any particular time in the flow section. 

3) Measurements of tracer concentration were performed under steady groundwater flow 

conditions. 

4) The vertical hydrodynamic potential had no gradient (Dupuit’s Assumption). 

Goal of the point dilution test was to know the average linear velocity v of the sandstone 

aquifer or the rock adjacent to the well which was calculated as follows (Freeze and Cherry, 

1979): 

en

v
v

*
          (Equation 6. 3) 

en  is the effective porosity of the rock formation around the well; 

   is an adjustment factor that depends on the geometry of the well screen and on the 

radius of the sand or gravel pack around the well screen; 

v* apparent velocity (Freeze and Cherry, 1979) in the tested well which could be 

calculated by measuring the concentration versus time: 













0

ln*
C

C

At

V
v         (Equation 6.4) 

V   volume of the borehole open section with radius r and height h; 

A  cross-section of the tested well section perpendicular to the direction of the 

groundwater flow. 
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The factor   is a correction factor or well-shape factor and takes into consideration the flow 

field of the well distortion. This factor depends on the geometry and hydraulic conditions of 

the well screen and the sand or gravel pack around the well screen. In the introduction to 

Point Dilution Tests, the authors mentioned, listed well-shape factors for a variety of rocks 

and well setups. Drost et al. (1968), for example, gave values for   of 0.5 to 4 in sand and 

gravel aquifers, and of 2.35 and 3.21 for wells with well screens and gravel packs with a 

diameter of 4 inches. Gasper and Oncescu (1972) assumed that  = 1, which seems to be 

reasonable for boreholes with a diameter of up to 100 mm (Lloyd et al., 1979). Applying  = 

1 for wells with larger diameters might lead to inaccuracy considering the effect of hydraulic 

distortion by the construction of boreholes. Under the assumption that the flow was laminar, 

the following formula (Drost et al., 1968) was used to calculate  of SPD 6: 
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          (Equation 6.5) 

where 

1r   inside radius of the well screen; 

2r   outside radius of the well screen; 

3r  radius of boring (well, well screen and gravel pack); 

1K   well-screen permeability; 

2K  permeability of the gravel pack and 

3K   permeability of the aquifer. 
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For wells with a single filter zone (e.g. only with a well screen and no gravel pack),   could 

be estimated from Ogilvi’s formula (Ogilvi, 1958; cited in Halevy et al., 1967, and Drost et 

al., 1968), used to calculate  of SPD 1 to SPD 5: 
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       (Equation 6.6) 

The equations listed above are valid for groundwater velocities in the range of 0.01 to 15 m/d 

(Gasper 1987). Under laminar flow conditions in the adjacent rock (Domenico and Schwartz, 

1998), Darcy’s law could be written as follows  

Kiv                   (Equation 6.7) 

v as average linear velocity according to Freeze and Cherry (1979). 

Rearranging equation 6.5, the hydraulic or groundwater gradient i  could be calculated as 

follows: 

 
K

v
i           (Equation 6.8) 

 

6.9.3 Setup of the Point Dilution Tests 

Figure 6.1 shows the schematic setup of the six point dilution tests processed on the test site 

during the summer and early autumn 2000. The water in the tested interval was constantly 

recirculated at flow rates of 0.167 l/s to 0.217 l/s. This test setup maintained approximately a 

constant concentration of tracer in the water column over the whole packered test interval. For 

each point dilution test, Table 6.4 lists, the length of the tracer test, tracer amount and volume 

injected, recirculating pumping rate of the water in the test interval and discharge rate of the 

test interval after the test was finished. Test SPD 6 in BH 2 considered S1, M1 and S2 

intersected by the well. The Grundfos MP 1 pump was installed at the bottom of BH2. Tests 
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SPD 1 to 5 were carried out in BH1 in the packered layers S3, S4, S5, and S6. The pump was 

installed at the bottom of each test interval in BH1. Diluted in previously pumped 

groundwater of the test interval, the tracer was injected through a small valve into the 

recirculating main at the surface. The tracer concentration was measured during all tests with 

the GUNN-FL 20 fluorometer. After each dilution test, the water was discharged until the 

RWT concentration in the packered section reached a concentration of C < 5x10
-5

g/l (Figure 

6.2). In Figure 6.3, the processed dilution tests SPD 1 to 6 were drawn as a semi-log plot of 

the RWT concentration over time. The recirculating cycle was switched on prior to the 

injection of the tracer so that an undisturbed natural steady state groundwater flow field 

developed before the start of each test. 

 

Table 6.4: Point dilution tests: Length of the tests, tracer amount, and volume injected, 

recirculating pumping rate of the water in the test interval and discharge rate applied to 

withdraw the tracer from the test interval after the dilution test was finished. 

 

 
 

  

Test

Tested Aquifer

 Layer BH 1

RWT

 injected

Injected

 Fluid

Injection

Time

Recycling 

Pumping Rate

Discharge

 Rate

Length of the

Dilution Test

S 6 0.21 g 50l 47 min 0.217 l/s  45h 50min

discharge 0.217 l/s 1h 28.5min

S 3 0.21 g 10l 35min 0.2127 l/s  43h 35min

discharge 0.2127 l/s 1h 15min

S 6 0.21 g 10l 52min 0.1669 l/s 45h 18min

discharge 0.1669 l/s 6h 30min

S 5 0.21 g 10l 40min 0.1669 l/s 11h 22min

discharge 0.1669 l/s 2h 25min

S 4 0.21 g 10l 48min 0.1669 l/s 22h

discharge 0.1669 l/s 1h 24min

SPD6 S1 & S 2 in BH2 0.21g 10l 40min 0.1669 l/s 15h 45min

SPD5

SPD1

SPD2

SPD3

SPD4
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Figure 6.1: Schematic cross-section of the Single-Point Dilution Test Setups.
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Figure 6.2: RWT concentration over time in BH1 after the termination of the single-point 

dilution tests (SPD). Each test interval was pumped for at least one hour to abstract as much 

as possible tracer injected. 

 

 

 

 

Figure 6.3: Semi-log plot of the measured RWT concentration over time of the single-point 

dilution tests SPD 1 to SPD 6. 
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6.9.4 Interpretation of the Point Dilution Tests 

The assumptions 1 to 4 described above required for the theory of point dilution tests were 

fulfilled. However, it became obvious that assumption 2) was not met during the initial part of 

the tracer tests. The measured tracer concentration of all tests oscillated for few hours after the 

test had started (Figure 6.3). The same oscillation of the tracer concentration was observed 

when the pump had to be restarted due to an electricity breakdown during test SPD 1 after 18 

hours and SPD 2 after approximately 21 hours. The oscillating shape of the tracer 

concentration over time was caused by the mixing procedure of the injection interval. The 

water volume of the test interval was pumped through a commercial garden hose up to the 

surface where the tracer was injected, and pumped down through the garden hose back into 

the packered section. The oscillating intervals of the measured tracer concentration over time, 

however, did not match with the time intervals which were necessary to pump the volume of 

the injection interval plus the volume of the garden hose up to the surface to the injection 

point and back into the test interval again. Nevertheless, the oscillation of the tracer 

concentration during the first 3 hours of the tests was assumed to be caused by the mixing of 

the tracer in the injection interval. After about 3 hours, the oscillation of the tracer 

concentration decreased, and the concentration of RWT tracer in the injection interval seemed 

to be constant. This so-measured mixing effect of tracer in an injection interval was not 

described previously. 

The apparent velocity v*, the linear groundwater velocity v, and the hydraulic gradient i are 

listed in Table 6.6. Values of the effective porosity en were not measured for core samples of 

the test site. Values gained for the porosity from examined cores from BH4 (Mitchener, 2003) 

were considered as first estimate to calculate the average linear velocity v  of the sandstone 
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aquifer or adjacent. The hydraulic conductivity K was taken from the pumping test results 

calculated for S1 to S7. The well-shape factor  of test SPD 6 was calculated according to 

equation 6.5 (Table 6.5). Well-shape factors  of the tests SPD 1-5, as listed in Table 6.6, 

were calculated according to equation 6.6 under the assumption that r1 = r2 and K1 = K3, as 

borehole BH 1 was drilled in the sandstone without the installation of a wellscreen or gravel 

pack.  

 

Table 6.5: Well-shape factor  of SPD 6, calculated according to Equation 6.3. 

 

 

 

Table 6.6: Calculated values of the hydraulic gradient i after Freeze and Cherry (1979). 

Porosity values after Mitchener (2003) were listed under n* and K values as calculated for the 

pumping tests. K value for S4 was taken from Test 10. Test SPD 6 was processed in BH2 all 

other tests in BH1. 

 

Aquifer Layer Test  v* [m/d] K [m/d] n* α v [m/d] v/K=i 

S1 + S2 SPD6 2.778 11.41 0.246 3.44 3.282 0.288 

S3 SPD2 0.253 6.21 0.260 2 0.488 0.079 

S4 SPD5 0.147 2.55 0.252 2 0.293 0.115 

S5 SPD4 0.166 1.9 0.239 2 0.349 0.183 

S6 SPD3 0.088 4.72 0.280 2 0.156 0.033 

S6 SPD1 0.101 4.72 0.280 2 0.180 0.038 

 

The calculated apparent and linear groundwater velocities v* and v, as well as the hydraulic 

gradient i listed in Table 6.6, decrease with increasing depth of the tested aquifer layer. 

Hydraulic gradients in the range of i = 0.01 to i = 0.1 within the Triassic Sandstone of the UK 

were considered to be typical by Tellam and Barker (2006). Thus typical values were 

calculated for S3 and S6. The hydraulic gradients of S1+S2, S4 andS5 were higher than those 

proposed by Tellam and Barker (2006). A calculated value 0.278 for the natural hydraulic 

gradient in layer S1 and S2 should have a different reason, as the value is much higher than 

r1 [m] r2 [m] r3 [m] K1 [m/d] K2 [m/d] K3 [m/d] α

SPD 6 0.0635 0.0675 0.1016 302* 539** 8.53 3.44

*K1 well screen permeability applied by Dorst et al. (1968) 0.35 cm/s

**K2 given by Driscoll (1995) 539 m/d



133 

those proposed by Tellam and Barker (2006). One possible reason for such a high value 

seems to be vertical up-flow in BH2 from S2 towards S1. Up flow was measured in BH1 but 

not in these layers as those were cased. Up-flow was also measured in the wells of the Great 

Hall borehole array (Figure 3.2). 

 

6.9.5 Conclusion of the Point Dilution Tests 

In conclusion, six point dilution tests were carried out successfully on the test site. Aquifer 

layers S3 to S6 were tested as single layer in BH1, applying the double packer system of 

Greswell (1999). S1 and S2 were tested in BH2. Aquifer layer S7, unfortunately, was not 

tested due to lack of time. The calculated values for the average linear velocity v of the 

sandstone aquifers were achieved by using the porosity values measured by Mitchener (2003), 

as no other data for the effective porosity were available for the test site. The calculated 

average linear velocity v and hydraulic gradient i, as listed in Table 6.6 were considered to be 

higher if lower values for the effective porosity were available than those measured for the 

porosity by Mitchener (2003). The calculated hydraulic gradients in Table 6.6, however, were 

considered to be acceptable to define boundary conditions of the aquifer layers for a computer 

model of the test site. 

The mixing process of the injected RWT in the injection or test interval was observed for the 

first time. An oscillating tracer concentration of tracer during the first hours could be 

measured for the point dilution tests. 
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6.10 Horizontal Convergent Flow Tracer Tests 

 

6.10.1 Test Setup of the Horizontal Convergent Flow Tracer Tests 

Five horizontal convergent flow tracer tests were conducted in S2 (injection in S1 and S2), S5 

and S7. The tests were set up as forced gradient or combined pumping and tracer tests. The 

pumped well created a convergent radial flow field into which a tracer was injected. 

Fluorescein and RWT were chosen as tracers. BH1 was the pumping well for all tests. For 

each test, the double packer system of Greswell (1999) was applied to packer off S2, S5 and 

S7 in BH1. BH2, BH3 and BH5 were used as injection wells. Tracer was injected after about 

half an hour of pumping, assuming that the heads in the wells had reached steady state. 

During the tests, the heads were monitored with transducers. The concentration in the 

pumping well, BH1, was measured with the GGUN-FL 20 (Schnegg and Doerflieger, 1992) 

in intervals of 10 seconds. The concentration of tracer in the injection well was measured with 

water samples taken at different intervals. Later, the samples of the injection well were 

analysed in the laboratory using the Perkin-Elmer fluorometer. Figure 6.4 gives a schematic 

overview of the setup of the horizontal convergent flow tracer tests TT1 to TT5. TT3 was a 

repetition of TT2 and TT5 was a reptition of TT4. 

The horizontal tracer tests were started by a rapid or slug injection of tracer into a 

recirculation loop which entered the aquifer layer of the injection wells. For the slug injection, 

the tracer was diluted in less than half a litre of previously pumped ground water. Injecting 

the diluted tracer and flushing the injection equipment required about 3 litres of solute in total, 

which were injected into the recirculating loop. The same in-hole recirculation method 

employed for the point dilution tests was adopted for the injection well for the horizontal 

gradient tracer testing. Table 6.7 lists the horizontal convergent flow tracer test pumping rates, 
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pumping times, total discharges, and injected mass of tracers, as well as recovered and not 

recovered mass of tracers However, TT2 is not discussed any further as records of the 

fluormeter were disturbed by different problems of the test setup (e.g. air in the hose 

connected to the GGUN-FL 20 (Schnegg and Doerflieger, 1992, generator failure, pump 

failure). 

 

 

Table 6.7: Details of the horizontal tracer tests. Discharge well was BH1 at all times. 

 

 

Fluorescein RWT Fluorescein RWT Fluorescein RWT

TT 1 S 7 BH 5 224.64 0.77 172.41 2 2 1.84 2 0.16 0

TT 2 S 5 BH 3 66.44 3.19 211.64 0.5 1 - - - -

TT 3 S 5 BH 3 61.71 2.37 146.22 3 1 1.73 0.48 1.27 0.52

TT 4 S 1 &  S 2 BH 2 65.92 1.66 109.43 1 1 0.72 0.75 0.28 0.25

TT 5 S 1 &  S 2 BH 2 65.66 4.34 284.91 4 - 3.73 0.27 -
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Figure 6.4: Schematic cross-section of the test setup of the horizontal convergent flow tracer 

tests. 
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6.10.2 Tracer Test 1 (TT 1) 

In Figure 6.5, the tracer concentrations (C in g/l) over time were plotted for the injection well, 

BH5, and for the pumping well, BH1. The concentration curve of the injection well showed a 

rapid increase of tracer concentration and four peaks for fluorescein and RWT. About 66 

minutes after the injection had started, a concentration of less than 1x10
-6

g/l tracer 

(fluorescein and RWT) was detected in the injection well and nearly all tracers had left the 

injection well BH5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Concentration versus time of the tracer concentrations in the injection well BH5 

(Fluorescein Inj and RWT Inj) and in the pumping well BH1 of TT 1. The first appearance of 

the tracers on the breakthrough-curves in BH1 is marked with Carrival. Four peaks for each 

tracer in the injection well (Fluorescein 1inj to 4inj, RWT 1ainj to 4ainj) and pumping well 

(Fluorescein 1 to 4, RWT 1a to 4a) were distinguished. Lower tracer concentrations plotted 

for the injection well shall be considered as relative values, as the reason for lower tracer 

concentrations compared to higher concentrations in the pumped well are unresolved (see also 

6.10.2.1 TT 1 - Discussion and Interpretation). 

 

The shape of the breakthrough-curve was very similar to the shape of the tracer concentration 

versus time, as printed for the injection well BH1. The detection limit of the GGUN-FL 20 
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fluorometer for fluorescein was exceeded for Peak 1 and Peak 2. Table 6.8 lists tracer test 

details and calculated values for varrival and vpeak for each peak of each tracer. 2g of RWT were 

recovered 3 hours after TT 1 had started. At the same time, 1.68g of fluorescein was 

recovered. Concentrations above the detection limit of Peak 1 and Peak 2 were not recorded 

and were considered to include the missing 0.32g fluorescein, being listed as not recovered 3 

hours after the test had started. 

 

Table 6.8: TT 1 – Tracer concentrations C and time t of peak concentrations measured in the 

injection well, BH5, and tracer concentrations C and time t of arrival and peak concentrations 

in the pumping well BH1 (S7). For Peak 1 and Peak 2 of fluorescein in the discharge well, the 

time interval is listed when the detection limit has been reached. Distance BH1 to BH5 is 

6.85m. 

 

TT 1    Injection Well BH5 

Tracer Injection C [g/l] t [h]          t [d] 

Fluorescein Peak 1inj 1.54 x 10
-3
 0.15        0.006 

  Peak 2inj 5.83 x 10
-4
 0.216        0.009 

  Peak 3inj 2.94 x 10
-4
 0.283        0.012 

  Peak 4inj 1.7 x 10
-4
 0.35        0.015 

RWT Peak 1ainj 1.54 x 10
-3
 0.166        0.007 

  Peak 2ainj 7.59 x 10
-4
 0.233        0.010 

  Peak 3ainj 3.82 x 10
-4
 0.3        0.013 

  Peak 4ainj 2.25 x 10
-4
 0.35        0.015 

TT 1    Discharge Well BH1 (S7) 

Tracer Breakthrough C [g/l] t [h] t [d] v [m/d] 

Fluorescein Carrival 1.91 x 10
-6
 0.41 0.017 403 

  Peak 1 6.74 x 10
-3
 0.44 0.018-0.019 - 

  Peak 2 6.74 x 10
-3
 0.514 0.021-0.022 - 

  Peak 3 4.55 x 10
-4
 0.59 0.025 274 

  Peak 4 2.61 x 10
-4
 0.68 0.028 244 

RWT Carrival 1.12 x 10
-6
 0.41 0.017 420 

  Peak 1a 1.80 x 10
-3
 0.45 0.019 361 

  Peak 2a 8.53 x 10
-4
 0.52 0.022 311 

  Peak 3a 4.55 x 10
-4
 0.59 0.025 274 

  Peak 4a 2.61 x 10
-4
 0.68 0.028 244 
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6.10.2.1 TT 1 Discussion and Interpretation 

The tracer was injected more than 30 minutes after pumping had started, assuming that nearly 

steady state and radial flow conditions adjusted in S7 on the test site. The injection interval 

was pumped in a recirculating loop for more than 30 minutes before tracer injection, too. 

Tracer was injected in one slug into the injection interval of the injection borehole. Despite 

the attempts to mix the tracer concentrations homogenously over the injection interval, the 

tracer in the injection well was not homogenously mixed and four injection peaks were 

observed in BH5 instead of one expected peak of a slug injection. The reason for such an 

oscillation is that the tracer was not instantaneously mixed. The time between the measured 

four peak concentrations in the injection well, BH5, was 0.066h to 0.067h, with one 

exemption of 0.05h between Peak 3ainj and Peak 4ainj (Table 6.9). This time interval was 

shorter than pumping the volume of the test interval from the bottom of the test interval up to 

the surface and back to the top of the injection interval (about 0.0967 hours). The tracer was 

injected into the test interval with one part of the tracer probably entering S7 and the rest 

being pumped through the hoses and the injection interval in BH5. This happened four times 

until about all tracer was transported out of BH5 in the direction of BH1. The same oscillation 

of tracer concentrations, as measured in the point-dilution tests was observed for the slug 

injection. 

For TT1 (see Figure 6.5), the shape of the tracer concentration curves imply that less tracer 

was injected than breaking through: However, it was expected that the measured tracer 

concentrations of the injection well would be higher than those measured in the pumped well, 

by about one order of magnitude. After rechecking the data files no obvious mistakes were 

found for the calibration of the flurometer and measurements taken in the abstraction well. 

The same applies for the injection well. The manual sampling procedure for later analysis 
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seemed not to be the reason for any wrong measurements. Tracer concentrations of the 

samples taken at the injection well could have been decayed due to influence of daylight or 

storage failure, although all samples were stored in bottles in dark boxes and later in 

cupboards in the laboratory. A sufficient explanation for such lower tracer concentrations in 

the injection well was not found and the problem remains unresolved. Therefore the measured 

data of the injection well should be considered as relative rather than absolute values and the 

shape of the tracer concentration curve can be considered for discussion. The data of the 

pumped well recorded for fluorescein and rhodamine concentrations are considered to be 

reasonable and therefore can be taken as absolute values. 

Even though, the time intervals tpeak to peak between the peak concentrations of the tracers in the 

injection well (Peak 1inj to Peak 4inj, and Peak 1ainj to Peak 4ainj) and the correlating peaks of 

the breakthrough curve in the pumped well (Peak 1 to Peak 4, and Peak 1a to Peak 4a) were 

used to calculate travel velocity vpeak to peak for each slug injection of tracer, as listed in Table 

6.9. Similar time intervals and travel velocities were calculated for the tracer to travel through 

the fracture from BH5 to BH1 for Peak 1 to Peak 4.  

 

Table 6.9: TT 1 – Tracer concentrations C of peak concentrations measured in the injection 

well BH5 and in the pumping well BH1. Calculated tpeak to peak and vpeak to peak are given between 

the recorded peak concentrations in the injection and discharge well. 

Tracer Injection Breakthrough Cinjection BH 5 [g/l] Cdischarge BH 1 [g/l] tpeak to peak [d] vpeak to peak [m/d] 

Fluorescein Peak 1inj Peak 1 1.54 x 10
-3
 6.74 x 10

-3
 0.0120 571 

  Peak 2inj Peak 2 5.83 x 10
-4
 6.74 x 10

-3
 0.0124 552 

  Peak 3inj Peak 3 2.94 x 10
-4
 4.55 x 10

-4
 0.0128 535 

  Peak 4inj Peak 4 1.7 x 10
-4
 2.61 x 10

-4
 0.0138 496 

RWT Peak 1ainj Peak 1a 1.54 x 10
-3
 1.80 x 10

-3
 0.0118 581 

  Peak 2ainj Peak 2a 7.59 x 10
-4
 8.53 x 10

-4
 0.012 571 

  Peak 3ainj Peak 3a 3.82 x 10
-4
 4.55 x 10

-4
 0.012 571 

  Peak 4ainj Peak 4a 2.25 x 10
-4
 2.61 x 10

-4
 0.0138 496 
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According to Lenda and Zuber (1970), the effective porosity, ne, was calculated with Equation 

6.9 for a combined pumping-tracer (radial) flow experiment (1D-solution), assuming a 

horizontal bedded layer or fracture: 

Hx

Qt
ne

²

0


          (Equation 6.9) 

with x being the distance between injection and pumping well and H being the mean aquifer 

thickness of S2. Values of ne  were between 0.225% to 0.263% for S7 (Table 6.10).  

Table 6.10: TT 1 – Calculation of the effective porosity ne with the mean transient time, t0 = 

tpeak to peak (after Lenda and Zuber, 1970). 

 

Tracer Test Tracer Breakthrough t0 mean transient time [d] ne 

TT 1 RWT Peak 1 0.012 0.00229 

    Peak 2 0.012 0.00236 

    Peak 3 0.013 0.00244 

    Peak 4 0.014 0.00263 

TT 1 Fluorescein Peak 1 0.0118 0.00225 

    Peak 2 0.012 0.00229 

    Peak 3 0.012 0.00229 

    Peak 4 0.0138 0.00263 

 

Superimposing test data on the Sauty-type curves allowed to determine the peclet number, P, 

and to calculate the longitudinal dispersivity, αL (Sauty, 1984) by superimposing 

breakthrough on Sauty-type curves. For analysis, radial flow was assumed as well as an 

instant tracer injection. The longitudinal dispersivity, αL for peak 1 of RWT is <0.00725m. 

 

6.10.3 Tracer Test 3 (TT 3) 

The tracer concentrations (C in g/l) over time are plotted in Figure 6.6 for the injection well 

(BH3) and in Figure 6.7 for the pumping well (BH1). Table 6.12 lists the tracer concentration 

(C [g/l]) at the beginning of the test, and the peak concentrations measured in the injection 

and pumping well.  
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For the first 45 minutes, a sample of the injection well was taken every 5 minutes. The sample 

intervals were gradually increased and the last sample was taken 23 hours after injection had 

started. In total, 37 samples were taken. The fuorescein samples were not diluted enough to 

measure the actual concentrations of the samples which was above 10
-3

g/l, as shown in Figure 

6.6. The samples were already lost after the measurements and repetition was not possible. 

However, it was assumed that the shape of the fluorescein injection curve had a shape similar 

to that of RWT. 

The breakthrough curves of fluorescein and RWT of TT 3 are shown in Figure 6.24. Both 

breakthrough curves had a similar shape. Three peaks were defined on each breakthrough 

curve. A forth peak was defined for the fluorescein breakthrough curve, resembling a plateau 

rather than a peak. The tracer test details and calculated values for varrival and vpeak are listed in 

Table 6.11. Remaining tracers in the system of TT 2 were detected between the start of TT 3 

and Carrival. 

 

 

 

Figure 6.6: TT 3 – Tracer concentrations of fluorescein and RWT in the injection BH3. 
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Figure 6.7: TT 3 – Tracer concentrations of fluorescein and RWT measured in S5 in BH1. 

The first appearance of the tracers on the breakthrough curve is marked with Carrival. Four 

peaks of fluorescein (1-4) and 3 of RWT (1a-3a) were distinguished. The recorded data are 

plotted as running average of 4 minutes. The purple curve, RWT x 3, is the tracer 

concentration of RWT multiplied by 3 to compare the breakthrough of fluorescein and RWT  

for the same calculated mass of tracer injected. 

 

The breakthrough curve of RWT recorded lower concentrations than the fluorescein 

breakthrough curve as 1g RWT was injected instead of 3g Fluorescein. To explore whether 

the breakthrough concentrations of RWT matched those of Fluorescein, the recorded 

concentrations of the RWT breakthrough curve were multiplied by 3 (RWTx3) and plotted in 

purple in Figure 6.7. If both tracers were injected with the same concentration and both were 

to travel through the same pathways, the breakthrough curves should be of the same shape. 

However, the purple RWTx3 tracer concentration curve in Figure 6.24 had the same shape as 

the breakthrough curve of Fluorescein, but at much lower concentrations. Only after about 37 

hours towards the end of TT 3, the fluorescein and RWTx3 concentrations became nearly 

identical.  

 

1 

Carrival 

Fluorescein 

Carrival 

RWT 

2 

3a 

2a 1a 

3 

4 

TT 3 ( S 5)

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

0 6 12 18 24 30 36 42 t [h]

C
 [
g
/l]

Fluorescein

RWT

RWT x 3



144 

6.10.3.1 TT 3 Discussion and Interpretation 

Compared to TT 1, the tracer concentration in TT 3 took much longer to reach the pumping 

well and the tracer concentration between peak concentrations varied smoothly over several 

hours instead of oscillating tracer concentration changes within minutes. 57.66% of 

fluorescein and 48% RWT were recovered in BH1 during TT 3.  

According to Lenda and Zuber (1970), the effective porosity, ne, was calculated with equation 

6.9 for a combined pumping-tracer (radial) flow experiment (1D-solution), assuming a 

horizontal bedded layer or fracture, as for TT 1 (Table 6.12). Values of ne  of S5 were between 

11.5% to 29.4% for S7. 

 

Table 6.11: TT 3 – Tracer concentrations C and time t of peak concentrations measured in the 

injection well BH3 and tracer concentrations C and time t of arrival and peak concentrations 

in the pumping well BH1 (S5). Peak 4a is no identified peak value but the measured RWT 

concentration is listed to compare with Peak 4 of the fluorescein breakthrough curve. Distance 

between BH1 and BH3 is 4m. 

 

TT 3    Discharge Well BH3 (S5) 

Tracer Breakthrough C [g/l] t [h] t [d] v [m/d] 

Fluorescein start 8.77 x 10-7 0.00 0.000 - 

  Carrival 2.65 x 10-6 9.39 0.391 10.23 

  Peak 1 2.56 x 10-5 12.61 0.526 7.61 

  Peak 2 2.61 x 10-5 15.30 0.638 6.27 

  Peak 3 1.92 x 10-5 21.78 0.907 4,41 

  Peak 4 1.57 x 10-5 31.59 1.316 3.04 

  End of Test 1.55 x 10-5 40.65 1.694 - 

RWT start 7.02 x 10-7 0.00 0.000 - 

  Carrival 1.20 x 10-6 9.03 0.376 10.90 

  Peak 1a 6.18 x 10-6 12.39 0.516 7.94 

  Peak 2a 6.74 x 10-6 14.87 0.620 6.62 

  Peak 3a 5.04 x 10-6 21.08 0.878 4.67 

  Peak 4a 4.58 x 10-6 31.59 1.316 3.12 

  End of Test 5.00 x 10-6 40.65 1.694 - 
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Table 6.12: TT 1 – Calculation of the effective porosity, ne, after Lenda and Zuber (1970). For 

Peak 4a the RWT concentration was listed to compare with Peak 4 of the fluorescein 

breakthrough curve. 

 

 

Tracer Test Tracer Breakthrough 

t0 mean  

transient time ne 

TT 3 Fluorescein Peak 1 0.526 0.117 

(S5)   Peak 2 0.638 0.142 

    Peak 3 0.907 0.203 

    Peak 4 1.316 0.294 

  RWT Peak 1a 0.516 0.115 

    Peak 2a 0.620 0.138 

    Peak 3a 0.878 0.196 

    Peak 4a 1.316 0.294 

 

Even after TT 3 was terminated a concentration of 2.15x10-4g fluorescein and 9.5x10-5g 

RWT still could be measured in the injection well BH3. Figure 6.8 shows the RWT 

concentration over time when BH3 was pumped to withdraw tracer from S5 after TT 3 was 

terminated. The pumping rate was the same as applied during the tracer test. However, the 

tracer concentration in BH3 could not be reduced significantly. 

 

Figure 6.8: TT 3, BH3 discharge – Tracer concentrations in BH3 measured during pumping of 

BH3. Start of discharge about 24 hours after TT 3 has ended.  
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6.10.4 Tracer Tests 4 (TT 4) 

The tracer concentration during TT 4 in the injection well BH2 rapidly increased to its 

maximum within about 0.5 hours after the slug injection and continuously decreased until the 

end of the tracer test (Figure 6.9).  

 

Figure 6.9: Tracer concentrations of fluorescein and RWT of TT 4 measured in the injection 

well BH2. 

 

The breakthrough curve of the tracers in BH1 is shown in Figure 6.10. Two peaks on the 

breakthrough curves of fluorescein and RWT were marked. Tracer test details and calculated 

values for varrival and vpeak for each peak are listed in Table 6.13. Both tracer breakthrough 

curves had similar shapes, but RWT was recorded about 18 minutes earlier than fluorescein at 

BH1. Furthermore, the RWT breakthrough curve showed irregular amplitudes with high 

RWT concentrations during the first 6 hours and after 25 hours, until the end of the test. 

These sudden increased values of RWT concentration corresponded with the measured 

turbidity values in BH1, which were recorded with the GGUN-FL 20 fluorometer (Schnegg 
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55.62 % of RWT were recovered in BH1 after 27.50 hours. 
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Figure 6.10: TT 4 –Breakthrough curve of fluorescein and RWT measured in S2 of BH1. The 

first appearance of the tracers on the breakthrough curves is marked with Carrival. Two peaks 

for fluorescein (1 and 2) and for RWT (1a and 2a) were distinguished. The recorded data are 

plotted as running average of 4 minutes. The light orange curve is the measured turbidity in 

Nephelometric Turbidity Units (NTU). 

 

 

Table 6.13: TT 4 – Tracer concentrations C and time t of arrival and peak concentrations in 

the pumping well BH1 (S2). 

 

TT 4    Discharge Well BH1 (S1& S2) 

Tracer Breakthrough C [g/l] t [h] t [d] v [m/d] 

Fluorescein start 4.47 x 10-7 0.00 0.000 - 

  Carrival 1.87 x 10-7 6.67 0.278 15.11 

  Peak 1 1.91 x 10-5 13.17 0.549 7,29 

  Peak 2 1.87 x 10-5 15.44 0.643 6,22 

  End of Test 3.9 x 10-6 40.65 1.694 - 

RWT start 1.28 x 10-6 0.00 0.000 - 

  Carrival 1.55 x 10-7 6.79 0.283 14,13 

  Peak 1a 1.95 x 10-5 12.48 0.520 7.69 

  Peak 2a 1.91 x 10-5 14.41 0.600 6.66 

  End of Test 3.80 x 10-6 27.85 1.160 - 
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6.10.4.1 TT 4 Discussion and Interpretation 

RWT showed a lower maximum peak than fluorescein in the injection well and seemed to 

have remained slightly longer in the injection well with higher concentrations measured than 

fluorescein during the first 2.5 hours. The setup of TT 4, as shown in Figure 6.18, illustrates 

the injection of tracer into S1, S2 and M2 in BH2, because of the construction of the slotted 

casing and gravel pack around BH2. Discharge happened only in S2, as BH1 only approached 

this aquifer layer. This could be a reason for the different remaining times of the injected 

tracer in BH2. However, the difference in concentrations in the injection well seemed to be 

more likely a problem of accuracy of measurement of the RWT concentration than a sorbtion 

of RWT to the borehole wall of the injection well or the pipe work to inject tracer into the test 

interval. 

The recorded RWT breakthrough during the first 6 hours and after 25 hours (Figure 6.27), 

until the end of the test, had the same shape as the measured NTU. It is probable that the 

scattering of light caused by the sediment falsely influenced the RWT sensor of the GGUN-

FL 20 fluorometer (Schnegg and Doerflieger, 1992), as the detector and emitter filters were 

fairly crude with overlapping transmission wavelengths. In contrast, the fluorescein filters 

seemed to separate the excitation and emission wavelength more effectively. The measured 

turbidity particles could be caused by silt or clay particles, typically occurring in S5, 

according to the core analysis of Mitchener (2003). As the NTU concentration was abstracted 

from the recorded data after the test was finished, no representative samples turbidity particles 

were taken for confirmation. 

According to Lenda and Zuber (1970), the effective porosity, ne, was calculated as described 

for TT 2 (Table 6.14). The effective porosity, ne, of Peak 1 and Peak 2 of both tracers were 
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very close together. It is likely that Peak 1 represented one pathway and Peak 2 could be 

neglected. 

 

Table 6.14: TT 4 – Calculation of the effective porosity, ne, (after Lenda and Zuber, 1970).  

 

Tracer Test Tracer Breakthrough t0  ne 

TT 4 Fluorescein Peak 1 0.549 0.112 

(S 1 & S 2)   Peak 2 0.643 0.130 

  RWT Peak 1a 0.520 0.121 

    Peak 2a 0.600 0.139 

 

BH2 was pumped after TT 4 was finished to discharge the remaining tracer in S2. The 

discharge period started about 24 hours after TT 4 was finished and lasted for 46.53 hours. At 

the end of the discharge period, tracer concentrations of 3 x 10
-6

 g/l fluorescein and  

6 x 10
-6

g/l RWT were measured. 

 

 

6.10.5 Tracer Tests 5 (TT 5) 

TT 5 was a repetition of TT 4 which was terminated after 1.66 days. The goal of TT 5 was the 

measurement of the final tail of the breakthrough curve. This was also the reason to run the 

test for 4.34 days. To receive better signal than in TT 4, 4g fluorescein were injected. RWT 

was not injected because of concerns that the breakthrough concentration values might be 

disturbed by turbidity. 

 



150 

 

Figure 6.11: Tracer concentration curve of fluorescein of TT 5, measured in the injection well 

BH2. 

 

The breakthrough of fluorescein of TT 5 in BH1 is shown in Figure 6.12. The shape of the 

breakthrough curve was similar to those of TT 4. The first peak was identified at about the 
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breakthrough record were observed between 14.34 hours and 22.99 hours and between 37.12 

hours and 37.46 hours. These gaps were caused by air and particle clogging of the 

fluorometer and the connecting hose to the rising main, and by total power failures of the 

generator providing the test site with electricity. The power failure problem with the generator 

continued during the whole test campaign and was corrected manually. At the end of TT 5, 

after 104.14 hours, 3.73g (93.44%) of fluorescein were recovered. Table 6.15 lists tracer test 

details and calculated values for varrival and vpeak for the peaks. 
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Figure 6.12: TT 5 –Breakthrough of fluorescein measured in S2 of BH1. The first appearance 

of the tracer is marked with Carrival. Two peaks for fluorescein (1 and 2) were distinguished. 

The recorded data are plotted as running average of 4 minutes.  

 

Table 6.15: TT 5 – Tracer concentrations C and time t of arrival and peak concentrations in 

the pumping well BH1 (S2).. 

 

TT 5    Discharge Well BH1 (S2) 

Tracer 

Breakthroug

h 

distance BH2 

 to BH1 [m] C [g/l] t [h] t [d] v [m/d] 

Fluorescei

n start 4.1 4.57 x 10-6 0.00 0.000 - 

  Carrival 4.1 2.05 x 10-6 6.51 0.271 15.12 

  Peak 1 4.1 7.78 x 10-5 13.79 0.575 7.14 

  Peak 2 4.1 1.62 x 10-5 40.36 1.682 2.44 

  End of Test 4.1 1.25 x 10-6 104.14 4.339 - 

 

6.10.5.1 TT 5 Discussion and Interpretation 

Injection of tracer was carried out into S1, S2 and M2. S1 and S2 were only partially 

penetrated by BH2. Discharge occurred only in S2, as BH1 only approached this aquifer 

layer. The water in the injection interval was constantly mixed during the test, but analogue to 

TT 4, it is most likely that the tracer travelled down in BH2 into S2 and there towards the 

pumped well BH1. 
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Figure 6.13 shows the breakthrough curves of the tracers in TT 4 and TT 5. To compare the 

graphs, the fluorescein concentration of TT 5 was divided by 4. The breakthrough curves of 

fluorescein of TT 5 came close to match with the breakthrough curve of TT 4, from Carrival 

until peak 1 was reached. The recorded tracer concentration after peak 1 in TT 5 deviated 

from the breakthrough curve of fluorescein in TT 4, caused by the failures of the generator, 

but had a similar shape.  

 

Figure 6.13: TT 5 compared with TT 4 – Tracer concentration of fluorescein and RWT of TT 

4, and ¼ of the measured tracer concentration of TT 5 recorded in BH1. The recorded data are 

plotted as running average of 4 minutes. 

 

Table 6.16: TT 5 – Calculation of the mean transient time, t0, and effective porosity, ne, (after 

Lenda and Zuber, 1970). 

 

Tracer Test Tracer Breakthrough t0 mean transient time [d] ne 

TT 5 Fluorescein Peak 1 0.575 0.128 

(S 1 & S 2)   Peak 2 1.682 0.346 

 

According to Lenda and Zuber (1970), the effective porosity, ne, was calculated as described 

for TT 2 (Table 6.16). 
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6.10.6 Conclusion of the Horizontal Tracer Tests 

Four forced gradient tracer tests were successfully carried out in three aquifer layers of the 

test site. Rapid flow pathways and slower pathways through which the bulk of the tracer 

moved were identified in the Triassic Sandstone between the wells of the test site. Velocities 

and first calculated porosity values, assuming radial flow in horizontal layers, were newly 

gained for particular layers in Triassic Sandstone, (UK). A fast pathway was identified in TT 

1 which seemed to be the fracture or group of fractures as identified with the CCTV, 

connecting the injection and discharge hole of the forced gradient tracer test. The 

measurements matched porosity values of Streetly et al. (2002) calculated with a 1 -D tracer 

test model in Triassic sandstone north of Liverpool, where effective porosity values of ne = 

0.002 for early peaks on the breakthrough curves of fractured sandstone aquifers and matrix 

flow dominated sandstone aquifers.  

For the first time, the very close relationship of tracer injection and breakthrough in TT 1 was 

measured in such an obvious relation that the tracer concentration curve in the injection well 

came close to match the breakthrough. TT 1 underlined that the injection well should be 

observed with the same intensity and time intervals as the breakthrough in the discharge well. 

If the injection well had not been monitored, four different fast pathways of fractured 

sandstone would have been identified, instead of one. 

Tracer tests could be repeated successfully in the same sandstone layer measuring the same 

shape of breakthrough curve for TT 4 and TT 5. Fluorescein, as a conservative tracer, could 

be confirmed by comparing the breakthrough curves of both tests.  
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6.11  Vertical Tracer Tests (VTT) 

6.11.1 Setup of the Vertical Convergent Flow Tracer Tests  

The aim of the vertical tracer tests was to explore vertical pathways between aquifer layers, 

which were separated by mudstone layers. Tracer was injected in BH1 into a sandstone layer, 

confined by mudstone layers. Water was pumped from the sandstone layers above and below 

the injection layer. Three vertical tracer tests VTT 1 to VTT 3 were conducted on the test site 

during summer and autumn 2000. Tracer was injected after about two hours pumping, 

assuming that the heads in the well had reached steady state. The heads were monitored with 

transducers (Geokon Model 4500 Vibrating Wire Piezometers, see Chapter 5.3.2). The 

recorded signal, however, was heavily disturbed by electrical current interferences with other 

electrical equipment run on the test site. The concentration of tracer was logged with the 

GGUN-FL 20 fluorometer (Schnegg and Doerflieger, 1992) in one pumping well. In the other 

pumping well, a self constructed fluorometer (“Schneggli” by Richard Greswell in 2000) was 

applied to measure the fluorescein concentration. The concentration of tracer in the injection 

well was measured with a Perkin-Elmer fluorometer (at water samples taken) or with the self 

constructed fluorometer mentioned above (Greswell, 2000). The setup of the vertical tracer 

tests, VTT 1 to VTT 3, is schematically shown in Figure 6.14. The recirculation loop, mixing 

the tracer over the whole depth of the injection layer in the injection well, was constructed 

with a hose of one centimetre diameter. The recirculated water was injected at the top of the 

test interval in BH1. The Grundfos MP1 pump was connected to the hose or the recirculating 

loop and placed at the bottom end of the test interval. Water was pumped up to the well top 

and down into the well, releasing the water through the hose at the top elevation of the 

injection interval with a recirculation loop of 18.75 m³/d. 
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Figure 6.14: Schematic setup of the vertical tracer tests VTT 1, VTT 2 and VTT 3. The 

injection interval in BH1 was constantly mixed during the tests. The tracer was injected in the 

injection layers in BH5 and breakthrough was observed in the discharge layers in BH2, BH3, 

and BH5. 
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A deviation to a fluorometer as well as a deviation to take samples or inject tracer was 

installed on the surface of the test interval. Table 6.17 gives an overview of the pumping rate, 

pumping time and injected mass of tracer. The tracer concentration in the injection well and 

discharge wells was measured with online fluorometers and by taking water samples which 

were later analysed in the laboratory. 

 

Table 6.17: Details of the vertical tracer tests: Injected tracer amount, injection layer, injection 

length, pumping rates, and length of the vertical tracer test are listed. 

 

Tracer 
Test 

Injection  Pumping 

Recovered 
Tracer Layer Tracer Period [h] Well/Layer 

Rate 
[m³/d] Period [h] 

VTT 1 S6 57 g Fluorescein 79.83 BH3 / S5 61.34 184.40 2.32g 4.07% 

        BH5 / S7 190.99 16.93 1.075g 1.89% 

VTT 2 S3 57 g Fluorescein 81.3 
BH2 / 
S1&S2 55.30 120.76 9.49g 16.65% 

        BH3 / S5 61.34 309.00 n.a. 

VTT 3 S6 57 g Fluorescein 64.5 BH3 / S5 61.71 117.75 n.a. 

      
 

BH5 / S7 115.77 93.50 4.34g 7.61% 

 

6.11.2 Forced Tracer Injection during the Vertical Tracer Tests 

Processing the vertical tracer tests, it was expected that the aquifer layers were leaky aquifers 

and that connections in the mudstones between the aquifers existed functioning as pathways 

for tracers. Tracer was injected into the injection layer over the whole depth of the injection 

interval in BH1. The tracer was forced into the injection layer by recharge. In an ideal 

homogenous injection layer, the tracer plume should have a disk shape over the whole depth 

of the injection layer with the same radius in all directions around the injection well BH1. 

However, flow was measured in the injection layer, and water was abstracted in the aquifer 

above and below the recharge layer. It was expected that such an injected tracer plume would 
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not be as sensitive to the natural flow fields induced by the natural gradient as a slug injected 

tracer and would therefore remain within the area of the pumped wells and the created head 

differences by pumping the sandstone layers above and below the injection layer. The goal in 

each vertical tracer test was to inject a plume of tracer over the whole thickness of the aquifer 

around the injection well BH1. During all vertical tracer tests, BH3 was pumped and the 

water was used as recharge for the injection interval in BH1. 57g of fluorescein tracer, diluted 

in 216 litres of prior pumped groundwater, were injected at a constant concentration level 

over several hours into the recirculation loop in the injection well with a peristaltic pump. The 

tracer mass to be injected was dimensioned in such a way that under perfect conditions a 

minimum and evenly distributed tracer concentration of 1 x 10
-5

 g/l in the injection layer was 

maintained, high enough to be detectable by the applied flurometer in the abstraction wells. 

The injection of tracer was started after about one hour pumping when nearly steady state had 

been reached in the pumped and recharged aquifer layers. The tracer concentration in the 

injection well was monitored by taking water samples for later analysis in the laboratory.  

A first estimation of the dimension and radii of the injected tracer plumes created in the 

injection layer were calculated by applying the porosity values defined by Mitchener (2003) 

listed in Table 6.18, assuming no flow in the layers and no abstraction of water in the 

borehole array. The used porosity values of Mitchener (2003) for the calculation were 

presumably higher than the effective porosity (ne) into which the tracer was forced by the 

injection. Applying values for ne half the size of those from Mitchener (2003), but as 

calculated for S5 and S2 for horizontal tracer tests, would double the size of the injection 

plume and vice versa. Using values ne as of TT 1 for a fracture or high permeable zone in the 

Triassic Sandstone would result in a radius of tracer injection between 600m and 800m. 

However, using values for ne in the range of 14% to 28% to calculate the radius of the 
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injected tracer plumes confirmed that the tracer was forced into the injected layer, above or 

below the pumped boreholes in neighbouring aquifer layers. 

 

Table 6.18: Radius of injected tracer plume in the injection layers S3 and S6 ascalculated for 

VTT 1, VTT 2, and VTT 3 (applying values n of Mitchener (2003)). 

 

Tracer 
Test 

Injection  

Rate 
[m³/d] 

Injection 
Time [d] 

Injection 
Layer 

Thickness 
[m] 

Porosity 
n 

Rock 
Volume  

Recharged 
[m³] 

Injected 
Area in  

Sandstone 
[m²] 

Tracer Plume 
Radius [m] 

VTT 1 61.34 3.32 9 0.28 727.32 80.81 4.79 

VTT 2 61.34 3.39 6.5 0.26 799.78 123.04 6.14 

VTT 3 61.34 2.69 9 0.28 589.30 65.48 4.31 

 

6.11.3 Vertical Tracer Test VTT 1 

During the first vertical tracer test, VTT 1, tracer was injected in the aquifer layer S6 in 

borehole BH1. Mudstone layers M5 and M6 were packered in BH1 with the double packer 

system (Greswell, 1999). Water was abstracted at the same time in S7 (BH5) and in S5 (BH3) 

(Table 6.18). All pumped water of S5 was used as recharge for S6 and was injected together 

with the tracer through BH1. The schematic test setup of the VTT 1 is shown in Figure 6.14. 

 

6.11.3.1 VTT 1 – S6 towards S7 

Tracer was injected over about 80 hours. The tracer concentration was observed with the 

Perkin-Elmer flurometer, using water samples, taken during the first 16 hours (Figure 6.15). 

The initial oscillation of the injected tracer concentration in S6 of BH1 was caused by 

different pumping rates of a peristaltic pump used to inject the tracer. During the test 

differences in the pumping rate of the peristaltic pump were observed caused by electrical 

current differences in the electrical supply system including the generator and the connected 

pumps. The pumping rate of the peristaltic pump was adjusted manually. 
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Figure 6.15: VTT 1 – fluorescein concentration versus time in the injection well BH1 (S6) 

during the first 16 hours, when BH5 was pumped. Two peaks were marked with 1 and 2 to be 

compared with the breakthrough in BH5. 

 

 

 

 
 

Figure 6.16: VTT 1 - Breakthrough of fluorescein tracer in the pumped well BH5 in S7. The 

first appearance of the tracers on the breakthrough curves in BH5 is marked with Carrival. Two 

peaks marked with 1 and 2 could be compared with peaks recorded for the tracer 

concentration in the injection well. 
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The fluorescein tracer breakthrough curve in S7 (BH5) is shown in Figure 6.16. Pumping of 

BH5 was stopped after about 17 hours, as breakthrough in BH5 was recorded. At the 

termination of VTT 1 in BH5, 1,075g (1.9%) of tracer were recovered. 

 

6.11.3.2 VTT 1 – S6 towards S7 Discussion  

The test recorded a rapid breakthrough in BH5. Details are listed in Table 6.19. The drop of 

fluorescein concentration on the breakthrough curve after the first peak correlated with the 

drop of tracer concentration on the injection curve after about 1.25 hours (Figure 6.15). On 

the tracer concentration curve of the injection well, the tracer concentration increased again 

correlating with the increasing tracer concentration of the breakthrough curve towards peak 2. 

Following peak 2 on the breakthrough curve, no higher concentration than peak 2 was 

detected. If another pathway existed, it was to be expected that the tracer concentration had 

increased above the concentration of peak 2 (Figure 6.16). Because of the rapid breakthrough, 

it was assumed that the tracer travelled through a vertical fracture or a group of vertical 

fractures in the mudstone from the injection layer, S6, towards the pumping layer (S7). 

As first estimation, average linear velocities for the peaks and peak to peak velocities (as for 

TT 1) were calculated under the assumption that the tracer travelled directly between BH1 

and BH5 and through M5 in vertical direction (Table 6.19). 
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Table 6.19: VTT 1 – BH5 (S7): Measured tracer concentrations C, peak concentrations and 

time. Distance BH1 to BH5 is 6.85 m and the thickness of M6 is 2m. 

 

VTT 1    Discharge Well BH5 (S7) 

Breakthrough C [g/l] t [h] t [d] v [m/d] tpeak to peak [d] vpeak to peak [m/d] 

start 6.8 x 10-8 0.00 0.000 - - - 

Carrival 2.16 x 10-7 0.67 0.028 330.26 - - 

Peak 1 6.36 x 10-6 1.38 0.057 161.13 0,0179 494 

Peak 2 1.12 x 10-5 2.50 0.104 88.80 0,0299 296 

End of Test 5.5 x 10-6 16.94 0.706 - - - 

 

 

6.11.3.3 VTT 1 – S6 towards S5 

BH5 was stopped after about 17 hours because no further changes in breakthrough towards 

BH5 were expected and also to increase the vertical head difference between the S6 and S5 

pumped in BH3, where no tracer arrival was recorded at that time. The GGUN-FL 20 

fluorometer (Schnegg and Doerflieger, 1992) was connected to measure the tracer 

concentration of BH3 after BH5 was switched off. At the same time BH 1 was connected to a 

self constructed fluorometer (“Schneggli” by Richard Greswell in 2000) to monitor the tracer 

concentration in the injection well (Figure 6.17). The measured tracer concentration of BH3 

could not be interpreted as the recorded data were disturbed due to equipment failure. Steps in 

the concentration curve of Figure 6.17 were caused by different data download intervals of the 

self constructed fluorometer. After each interval the recorded data started at different 

concentrations. To avoid this a calibration of the “Schneggli” should have been processed 

prior to every start of a measurement interval. However, the recorded tracer measurements 

could be used as general observation data of the tracer concentration in the injection well. The 

tracer injection and recharge of water into S6 was stopped after 79.83 hours (Figure 6.17). 

After 83.68 hours, the maximum concentration was measured in the injection well. The 
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breakthrough curve for BH3 is shown in Figure 6.18. 2.32g fluorescein (4.1%) of the injected 

tracer could be recovered in BH3 after 175 hours. 

 

Figure 6.17: VTT 1 – fluorescein concentration in the injection well BH1 (S6) during the 

whole test. 

 

 

Figure 6.18: VTT 1 – Breakthrough of fluorescein in the pumped well BH3 in S5. The first 

appearance of the tracers on the breakthrough curves in BH3 is marked with Carrival. Three 

peaks (1, 2 and 3) were distinguished. 
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6.11.3.4 VTT 1 – S6 towards S5 Discussion 

Compared to VTT 1 in BH5, tracer breakthrough in BH3 was recorded much later with a 

three times smaller pumping rate (Table 6.20). Peak 2 was recorded before the recharge was 

stopped, and the tracer concentration started to decrease before the recharge was finished. 

Peak 3, however, was recorded a few hours after the maximum concentration in the injection 

well was measured. Under the assumption that the tracer travelled directly between BH1 in S6 

and BH3 in S5, the average linear velocities for the peaks were calculated. 

 

Table 6.20: VTT 1 – BH3 (S5): Measured tracer concentrations C, peak concentrations and 

time, and the calculated velocities for tracer arrival (Carrival) of the peaks are listed. Distance 

BH1 to BH3: 4.90 m. Thickness of M5: 2m. 

 

VTT 1    Discharge Well BH3 (S5) 

Breakthrough C [g/l] t [h] t [d] v [m/d] 

start* GGUN-FL 
20 1.23 x 10-6 16.12 0.672 - 

Carrival 1.25 x 10-6 22.59 0.941 6.38 

Peak 1 5.84 x 10-6 57.32 2.388 2.51 

Peak 2 1.03 x 10-5 77.28 3.220 1.86 

Peak 3 8.22 x 10-6 86.92 3.622 1.66 

End of Test 4.20 x 10-6 175.08 7.295 - 

 

6.11.4 Vertical Tracer Test VTT 2 

VTT 2 was processed over 309 hours. BH2 was pumped for 127.87 hours. BH2 was switched 

off, after breakthrough of tracer could be recorded and to also increase the head difference 

between the injection layer and BH3. BH3was continuously pumped until the end of the 

tracer test VTT 2. The schematic test setup of VTT 2 is shown in Figure 6.14.  

During the first 127.78 hours, the tracer concentration in the injection well was measured by 

taking water samples for later analysis in the laboratory. Figure 6.19 shows the tracer 

concentration in the injection well. The fluorescein concentration decreased after 6, 24 and 74 

hours caused by power failure and the interruption of tracer injection. The sharp increase after  
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Figure 6.19: VTT 2 - Development of the fluorescein concentration in the injection well BH1 

in S3 over 128 hours. 

 

 

 

Figure 6.20: VTT 2 – Breakthough of fluorescein in the pumped well BH2 in S2. The first 

appearance of the tracers on the breakthrough-curves in BH2 is marked with Carrival. Three 

peaks were distinguished. 
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70 hours caused by increased injection of tracer with the peristaltic pump, due to problems 

with the stability of the power supply. However, both problems were recognized and could be 

solved so that the tracer concentration was recorded at about 3 x 10
-5

g/l during the first 130 

hours of the test. The tracer injection and recharge of water into S3 was stopped after 81.30 

hours (Figure 6.17). 

 

6.11.4.1VTT 2 – S3 towards S2 

The breakthrough curve for BH2 is given in Figure 6.20. The concentration of fluorescein 

increased slowly over 38 hours towards peak 1, or rather a shoulder, of the curve towards the 

highest concentration measured at peak 2. Between approximately 56 hours and 70 hours, the 

tracer concentration could not be measured as the fluorometer was blocked by air in the 

detection cell. It was assumed, however that the tracer concentration continuously rose during 

that time towards peak 2. A slight rise in tracer concentration was marked with peak 3. After 

120.76 hours, 12.30g (21.70%) of the injected fluorescein were recovered in BH2. 

 

Table 6.21: VTT 2 – BH2 (S1 & S2): Measured tracer concentrations C, peak concentrations 

and time, and the calculated velocities, v, for tracer arrival (Carrival) of peak 1, peak 2, and  

peak 3 are listed. Distance BH1 to BH2: 4.2 m. Thickness of M6: 2m. 

 

VTT 2    Discharge Well BH2 (S1 & S2) 

Breakthrough C [g/l] t [h] t [d] v [m/d] 

start 2.22 x 10-6 0.00 0.000 - 

Carrival 7.28 x 10-7 9.08 0.378 16.40 

Peak 1 6.6 x 10-5 47.29 1.970 3.15 

Peak 2 9.39 x 10-5 79.67 3.320 1.87 

Peak 3 5.57 x 10-5 99.63 4.151 1.49 

End of Test 4.95 x 10-6 120.76 5.032 - 
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6.11.4.2 VTT 2 – S3 towards S2 Discussion 

The highest tracer concentration listed for peak 2 was measured shortly before recharge was 

stopped. The closest distance between BH1 and BH2, equal to the horizontal distance 

between the injection and pumping well plus the thickness of M2 was used to calculate the 

average linear velocities for three peaks observed in BH2, as listed in Table 6.21. 

 

6.11.4.3 VTT 2 – S3 towards S5 

The breakthrough of tracer in BH3 delivered only poor data, due to sediments in the detection 

chamber of the self constructed fluorometer (“Schneggli” by Richard Greswell in 2000) 

during the first 130 hours. Despite cleaning and maintenance of the used equipment, the tracer 

concentration measured consisted of three blocks with decreasing steps in tracer concentration 

from one block to the other. The data are not discussed any further. 

 

6.11.5  Vertical Tracer Test VTT3 

The setup of the vertical tracer test VTT 3 was analysed to VTT 1 as schematically shown in 

Figure 6.14. The tracer test was processed for about 120 hours. During the tracer injection of 

the first 62 hours, the concentration of fluorescein in borehole BH1 varied between 2.25x 10
-4

 

g/l and 3.25 x 10
-4

 g/l (Figure 6.21). After injection of tracer and recharge in BH1 was 

stopped (after 64.5 hours) the tracer concentration dropped to about 7.5 x 10
-5

 g/l. 

 



167 

 

Figure 6.21: VTT 3 - Development of the tracer concentration versus time in the injection 

well BH1 in S5. 

 

 

 

Figure 6.22: VTT 3 – Concentration versus time of fluorescein tracer in the pumped well BH5 

in S7. The first appearance of the tracers on the breakthrough-curves in BH2 is marked with 

Carrival. Two peaks were distinguished. 
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6.11.5.1 VTT 3 – S6 towards S7 

The tracer concentration in BH5 was measured with the GGUN-FL 20 fluorometer (Schnegg 

and Doerflieger, 1992). The pumping rate was 115.77m³/d, about 40% lower than in VTT 1. 

A lower pumping rate was applied to avoid such a rapid breakthrough as in VTT 1. The 

breakthrough was continuously recorded. The only interruption was after 72 hours to read out 

data and to change the power supply of the logger box. The tracer concentration rose nearly 

continuously to peak 1 dropped slightly and rose again to peak 2 after 65.44 hours.  

 

6.11.5.2 VTT 3 – S6 towards S7 Discussion 

The breakthrough recorded in BH5 (S7) was quite different from the breakthrough curve 

recorded for the same test setup in BH5 (S7) of VTT 1. The breakthrough started not before  

6 ½ hours and not after a few minutes. The different shape of the breakthrough curve was 

caused by the 40% reduced pumping rate. Furthermore, the new test setup and placement of 

the packers in BH1 might have blocked the connection to the pathway detected in VTT 1 and 

in VTT 3. A different connection between S6 and S7 was observed. Under the assumption 

that the tracer travelled directly between BH1 and BH5 as assumed for VTT 1, but for 

different connection, the average linear velocity could be calculated in Table 6.22. 

 

Table 6.22: VTT 3 – BH5 (S7): Measured tracer concentrations C, peak concentrations and 

time, and the calculated velocities, v, for tracer arrival (Carrival) and Peak 1 to Peak 2 are listed. 

Distance BH1 to BH5: 6.85 m. Thickness of M6: 2m. 

 

VTT 3    Discharge Well BH5 

Breakthrough C [g/l] t [h] t [d] v [m/d] 

start 4.26 x 10-8 0.00 0.000 - 

Carrival 8.27 x 10-8 6.09 0.254 34.84 

Peak 1 1.90 x 10-5 51.37 2.14 4.14 

Peak 2 2.05 x 10-5 65.44 2.73 3,24 

End of Test 4.22 x 10-6 93.57 3.90 - 
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6.11.5.3 VTT 3 – S6 towards S5 

The breakthrough in BH3 was measured with the self constructed fluorometer (Greswell, 

2000). The same problems as described for the breakthrough in BH3 of VTT2 occurred. The 

vertical tracer test between S6 in BH1 and S5 in BH3 was considered as failed, as one third of 

the data was recorded below the detection limit and the recorded data above the detection 

limit were not reliable. 

 

6.11.6 Conclusion of the Vertical Tracer Tests 

Three different vertical tracer tests were carried out in the Triassic Sandstone. Breakthrough 

could be monitored in all abstraction wells. Vertical hydraulic connections for solute transport 

of a conservative tracer between two sandstone layers, separated by a mudstone layer, were 

found from: 

 S3 to S2, through M3. 

 S6 to S5, through M5. 

 S6 to S7, through M6. 

Between 1.89% and 16.65% of the injected 57g fluorescein tracer were recovered during the 

test in the pumped wells. As a first assumption, velocities between the injection well and the 

pumped wells were calculated. A strong relationship between the tracer concentration in the 

injection well and the breakthrough curve was observed. Changes of tracer concentration in 

the injection well could be measured in tracer concentration changes of the breakthrough. The 

termination of the recharge could be observed with a corresponding rapid decrease of tracer 

concentration in the observation wells, however, measured with different delays on the 

breakthrough curve. Tracer tests could be repeated, although different pumping rates were 

applied. The breakthrough curve of the repeated tests (VTT 1 – S5 towards S7 and VTT 3 – 
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S6 towards S7) had different shapes and different quantities of tracer recovered. It is assumed 

that different pathways were detected by the repetition.  

 

6.12 Tracer Tests Conclusion 

A number of tracer tests could be carried out successfully on the test site in the Triassic 

Sandstone of the UK.:  

 Point Dilution Tracer Tests delivered first linear groundwater flow velocities for six 

aquifer layers. A first assumption of the hydraulic gradient of these six layers could be 

calculated. 

 Horizontal convergent flow tracer tests were carried out successfully in three different 

sandstone layers approached by the borehole array. Rapid breakthrough and slower 

breakthrough curves were recorded. First values for the effective porosity could be 

gained. The strong correlation between the concentration measured in the injection 

well and the breakthrough curve was approved to be very important, as for one 

horizontal tracer test, for example, four different ways might defined instead of one 

path of solute transport. 

 Vertical convergent flow tracer tests were carried out for the first time, injecting tracer 

in one sandstone layer and pumping in sandstone layers above and below the injection 

layer. The tests were successful and tracer could be recovered and quantified in almost 

all pumped wells and was quantified (recovered tracer 1.89% to16.65% of the injected 

tracer).  

For further interpretation, modelling of the horizontal and vertical tracer tests was required to 

quantify values of effective porosities and dispersivities for the sandstone and mudstone 

layers.  
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CHAPTER 7: Computer Modeling 
 

 

 

7.1 Aim 

The computer modeling of the test site is necessary to characterize its hydraulic conditions, 

solute movement and transport conditions, in addition to the analytical interpretations 

described in the chapters above. The computer codes MODFLOW (Harbaugh, A.W. and 

McDonald, M.G., 1996a and b, Harbaugh et al. 2000) and MT3D (Zheng, C., 1990, 1996) 

were chosen to set up a computer model of the test site and to run simulations of the pumping 

tests and tracer tests carried out. 

The following chapter describes the: 

 

 The setup of the conceptual model. 

 

 The hydraulic modelling of the: 

o upflow conditions, taking the calculated natural gradient into account  

o pumping tests of the sandstone layers. 

 

 The solute movement and transport modeling of the: 

o horizontal forced gradient tracer tests and  

o vertical forced gradient tracer tests. 

 

Measurements taken during various test were entered into a computer model or were taken 

into consideration to calibrate the model. 



172 

7.2 Groundwater Modeling Software and Code Used 

The groundwater modeling software Processing Modflow for WINdows (PMWIN; Chiang 

and Kinzelbach, 2001; PMWINpro7, Chiang, 2005) was used to model the flow and solute 

transport measured in various tests on the borehole array of the test site. PMWINpro7 is a pre- 

and postprocessor initially developed for the groundwater flow code MODFLOW (Harbaugh, 

A.W. and McDonald, M.G., 1996a and b, Harbaugh et al. 2000). MODFLOW is a block-

centered finite difference method (FDM) and was originally designed to simulate saturated 

three-dimensional groundwater flow through porous media. To solve further specific 

problems related to groundwater flow and solute transport, PMWIN handles a variety of 

MODFLOW related codes (Chiang, 2005). One of those is the modular three-dimensional 

transport model, MT3D (Zheng, C., 1990, 1996). MT3D was chosen to model the solute 

transport of the tracer tests. MT3D is a transport model which uses a mixed Eulerian-

Lagrangian approach to solute the three-dimensional advective-dispersive-reactive transport 

equation. MT3D is based on the assumption that changes in the concentration field will not 

affect the flow field significantly. This allows the setup and the calibration of a flow model 

independently. After a flow simulation is complete, MT3D simulates solute transport by using 

the calculated hydraulic heads and various flow terms saved by MODFLOW. MT3D was 

used to simulate changes in concentration of tracer concentrations in groundwater considering 

advection, dispersion but no chemical reactions.  

 

7.3 Conceptual Computer Model of the Test Site 

Anderson and Woessner (1991) gave an overview of groundwater flow and transport 

modeling. Further discussions and descriptions can be also found in Zheng and Bennett 

(1995) or Spitz and Moreno (1996). 
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Setting up the conceptual model, the block-centred finite difference grid in MODFLOW 

replaced the test site by a discretised domain consisting of an array of nodes and associated 

finite difference blocks (or cells). The sandstone and mudstone layers and their location were 

spatially discretised in terms of layers, rows, and columns (PMWIN: pro index notation 

[Layer, Row, Column]) for each cell. To represent the flow around wells it was decided to 

create a square mesh of rows and columns, with a wider mesh (cell diameter) at the 

boundaries and a gradually finer mesh towards the centre. The grid cell setup in the centre 

was built by a square mesh with cells of the same size of 0.15m width. The central part should 

be considered by a small sized cell setup to especially represent the boreholes with diameters 

of about 0.1m to 0.2m and to model the vertical flow of the borehole array. One cell 

represents a well. This was assumed to be acceptable for later hydraulic and transport 

modeling (Figure 7.1). According to the conceptual model, S1 to S7 and M1 to M6 were set 

up in 40 layers to mirror the thickness of these layers. The surface elevation in the model was 

considered to be flat. Table 7.1 lists the details of the grid setup of the conceptual model 

(Appendix VII.1 shows the size of each layer, row and column). 

 

Table 7.1: Details of the grid geometry of the conceptual model setup in MODFLOW 

Horizontal grid geometry 

Number of cells 90 rows and 90 columns 

Grid size 197.24m x 197.24m 

Maximum cell size 20.91m 

Minimum cell size 0.15m 

Number of cells in the center covering the test 
site 

50 rows and 50 columns 

Grid size covering the  test site 7.5m x 7.5m 

Cell size covering the  test site 0.15m (uniform cell size) 
Vertical grid geometry 

Vertical grid geometry  

Number of Layers 40 

Top Elevation 60m 

Bottom Elevation 0m 
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Figure 7.1: Grid setup of the University test site. A shows the boundaries of the grid. The 

circle marks the area of B with the central test site and the location of the boreholes BH1 to 

BH5. 
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7.4 Hydraulic Properties 

The hydraulic properties achieved from the pumping test and from core data were used as 

initial input for the conceptual model of the layers S1 to S7 and M1 to M6. Table 7.2 lists the 

hydraulic parameters used for the initial groundwater flow model. Wells were defined by 

cells.  

Table 7.2: Hydraulic input parameter to the initial groundwater model. Values for the 

porosity, n, were taken from Mitchener (2003) and Curião et al. (2001). Kh – horizontal 

hydraulic conductivity, Kv – vertical hydraulic conductivity, Sc – specific storage, Sy specific 

yield.  
 

    Layer Kh [m/d] Kv [m/d] Sc Sy n 

S1   1-5 11.41 1.141 2.43x10-4 0.2 0.246 

M1   6+7 10-3 10-3 10-3 0.01 0.01 

S2   8-11 11.41 1.141 2.43x10-4 0.2 0.246 

M2   12+13 10-3 10-3 10-3 0.01 0.01 

S3   14-16 6.21 0.621 10-4 0.2 0.246 

M3   17+18 10-3 10-3 10-3 0.01 0.01 

S4   19-21 2.55 0.255 1.32x10-3 0.2 0.246 

M4   22-24 10-3 10-3 10-3 0.01 0.01 

S5   25-27 1.9 0.19 3.23x10-4 0.2 0.246 

M5   28+29 10
-3

 10
-3

 10
-3

 0.01 0.01 

S6   30-34 4.72 0.472 10-4 0.2 0.246 

M6   35+36 10-3 10-3 10-3 0.01 0.01 

S7   37-40 12.13 1.213 9.58x10-5 0.2 0.246 

BH1 cased well 1-7 10-6 106 10-6 1 1 

  open well 8-40 100 10
6
 10

-6 

1 1 

BH2 cased well 1-3 10-6 106 10-6 

1 1 

  slotted casing 4-9 100 10
6
 10

-6 

1 1 

BH3 cased well 1-22 10-6 106 10
-6 

1 1 

  open well 23-26 100 106 10-6 

1 1 

BH4 ruptured casing 1-7 10 10
6
 10

-6 

1 1 

  cased part 8-36 10-6 106 10
-6 

1 1 

  grouted /flushedl 37-40 100 106 10-6 
1 1 

BH5 cased well 1-36 10-6 106 10-6 

1 1 

  open well 37-40 100 10
6
 10

 

1 1 

Packer BH4   33 10-6 10-6 10
-6 

10-6 10-6 

Packer    
 

10
-6

 10
-6

 10
-6

 10
-6

 10
-6
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7.5 Boundary Conditions 

It was assumed that the natural groundwater flow occurred from North to South (see Bouch et 

al., 2006), or from the left side of the model towards the right side (Figure 7.1). The boundary 

conditions were defined for the up-flow and down-flow boundaries at the left and the right 

side of the model, using the natural hydraulic gradient defined with the point dilution test. The 

ground water level at the boundaries of the different aquifer layers was calculated with the 

natural hydraulic gradient in wells, defined with the point dilution tests as shown in Appendix 

VII.2. 

 

7.6 Applying Up-flow in BH1 in the Initial Model 

The initial model was used to calibrate the boundary conditions against the measured 

hydraulic head changes in borehole BH1 due to up-flow. The head changes were calculated 

by sealing of M1 to M6 in the computer model under steady-state flow conditions. The values 

were compared with the measured head changes of the test site. Adjustment of the up-flow in 

BH1 was achieved by moving the heads at the boundaries up or down. After empirical 

adjustment of the boundary conditions, the calculated model head differences in BH1, as 

shown in Figure 7.2, appeared to be reasonable and could be used as definition of the mean 

heads in the boundaries of the model, taking the natural hydraulic gradient and upflow within 

the borehole array into account (Appendix VII.2). Figure 7.3 shows the up flow conditions 

with an open BH1 and Figure 7.4 shows an onview of Layer 11 with an open BH1. Figure 7.5 

shows the cross-section with interrupted up-flow conditions with an installed packer in M2 of 

BH1. In Figure 7.6 the same set up with a packer in M2 is shown, but for a cross-section in 

flow direction. 
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Figure 7.2: Modelled head increase and head decrease above and below the packered 

mudstone layer compared to the measured data.  
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Figure 7.3: Flow conditions of the test site with an open-borehole BH1. Cross-Section at 

column 22.  

 
Figure 7.4: Overview on Layer 11 with an open-borehole BH1.  
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Figure 7.5: Flow conditions of the test site with a packered M2 in BH1. Cross-Section at 

column 22 (BH1). 

 

Figure 7.6: Flow conditions of the test site with a packered M2 in BH1. Cross-Section at row 

43 (BH1).Blue areas are up-flow and down-flow boundaries of the different layers. 
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7.7 Model Calibration with Pumping Test Data 

The pumping tests Test 1 to Test 9 and Test 11 to Test 14 were used to calibrate the flow 

model in the particular sandstone layers. The calibrated hydraulic data are listed in Table 7.3. 

Figure 7.7 a/b shows onviews of the test site and Figure 7.8 shows a two-dimensional cross-

section during Test 7 in BH1. In Appendix VII.3, the drawdown graphs of the pumping tests 

fitted against the drawdown graphs of the model results are printed.  

Table 7.3: Calibrated hydraulic input parameter for the groundwater model. 

Aquifer layer 

Test Borehole K[m/d] S 

S1 and S2 1 BH2 4.5 4x10
-4

 

13 BH2 3.75 6x10
-4

 

S2 

 

4 BH1 3.32 5x10
-4

 

5 BH1 3.25 6x10
-5

 

S3 6 BH1 4.35 9.5x10
-5

 

 

S5 
2 BH3 1.475 2.5x10

-5
 

7 BH3 1.525 2.5x10
-4

 

11 BH3 1.7 2.5x10
-4

 

12 ob. well BH3 3.4 2.25x10
-4
 

S6 8 BH1 1.98 3x10
-5

 

 

S7 
9 BH1 5.74 1.75x10

-4
 

14 BH5 12 3x10
-3

 

 

 

Figure 7.7 a: Overview of Test 7 pumping BH1 in S5. 
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Figure 7.7 b: Detailed overview of Test 7 pumping BH1 in S5. 

 

Figure 7.8: Cross-section column 22 of Test 7 pumping BH1 in S5. 
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7.8 Model Calibration of the Horizontal Forced Gradient Tracer 

Tests 

TT1, TT2 and TT3 were used to calibrate the model and to calculate values of effective 

porosity and dispersivity. for S7, S5 and S2. In the advection package applied whenusing 

MT3D in PMWIN, the solution scheme for the advection term MOC method of 

characteristics was used. MOC is virtually free of numerical dispersion, however it can be 

slow and requires a large amount of computer memory when a large number of particles is 

required. Further, the computed concentrations can show artificial oscillations. The 1st order 

Eulerian approach was used to solve the transport.  

As artificial oscillations were calculate during the computer modeling applying the prior 

described flow model, a simple three-dimensional model with the same grid setup, but only 

two layers was applied. One layer represented the aquifer layer and a layer on top functions as 

confining layer. For all test, a correlation 1:10 of longitudinal to transversal and vertical 

dispersion was applied. 

 

7.8.1 Model Calibration of TT 1 

Figure 7.9: shows the computer calibration of TT 1 in S7. As the transport is very fast it was 

difficult to match enough time steps to match the first peak of measured the breakthrough 

curve. A mass of 2g of tracer was injected. Calculated values of the effective porosity and 

dispersivity were listed in Table 7.4. The first peak of TT 1 was calibrated, because the other 

peaks reflect the mixing process of the tracer in the injection well (see Chapter 6). The results 

are similar to those calculated as first assumption (Lenda and Zuber, 1970; Sauty, 1984).  
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Figure 7.9: Calibration of TT 1 with MT3D.  

 

 

 

Figure 7.10: Calibration of TT 3 with MT3D. 48% of the injected tracer were applied as 

initial concentration for the computer model.  
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7.8.2 Model Calibration of TT 3 

Figure 7.10: shows the computer calibration of TT 3 in S5. Entering the initial tracer 

concentration injected of 1g RWT, breakthrough curves of much higher concentration were 

computed than measured. As only 48% of tracer were recovered in TT3, 48% of tracer were 

injected as inital injection. The results seem to be reasonable, as the computed peak matches 

the peak of the breakthrough curve (Figure 7.11). Calculated values of the effective porosity 

and dispersivity were listed in Table 7.4. 

 

7.8.3 Model Calibration of TT 5 

Figure 7.11: shows the computer calibration of TT 3 in S1 and S2. As described above, a 

simple 2 layer model was applied, thus, calibrating TT5 only S2 was taken into consideration 

as aquifer layer. 4 g were injected as initial tracer concentration. The results were considered 

to be reasonable. Calculated values of the effective porosity and dispersivity were listed in 

Table 7.4. 

 
Figure 7.11: Calibration of TT 5 with MT3D.  
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Table 7.4: Details of the calibrated horizontal forced gradient tracer tests with MT3D 

 TT1 TT3 TT5 

Initially Injected Tracer Concnetartion 2 g 0.48g 4g 

ne used in MT3D 0.00289 0.2 - 0.21 0.128 

αL (longitudinal dispersivity) used in MT3D 0.00525 - 0.00625 m  1.2 m 0.13 - 0.18 m 

 

7.9. Model Calibration of the Vertical Forced Gradient Tracer Test 

As described for the horizontal forced gradient tracer test, artificial oscillation applying 

MT3D occurred. Despite attempts in reducing the number of layers, the test could not be 

modelled. 

 

7.10 Conclusion Computer Modeling 

A computer model was successfully set up with MODFLOW (Harbaugh, A.W. and 

McDonald, M.G., 1996a and b, Harbaugh et al. 2000) using the groundwater modelling 

software PMWINpro7 (Chiang, 2005). A detailed flow model was set up, taking the upflow 

into account and using the natural hydraulic gradient to define the boundaries. The flow 

model could be calibrated against the pumping tests carried out in S1 to S3 and S5 to S7. Test 

10, could not be calibrated and would have required adjustment of the hydraulic parameters in 

all seven aquifer layers. However, the calibrated individual layers were considered to be 

sufficient to calibrate the horizontal forced gradient tracer tests.  

MT3D (Zheng, C., 1990, 1996) was used as transport model to calibrate the horizontal forced 

gradient tracer tests. As artificial oscillations occurred using the model with 40 layers, a 

simplified model with the same mesh, but only two layers was applied to model the solute 

transport. TT 1 and TT 5 could be matched reasonable. TT 3 was difficult to match as only 
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48% of tracer broke through. The quantified values of ne and αL are considered to be 

reasonable. 
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CHAPTER 8: Discussion and Conclusion 
 

 

 

8.1 Discussion 

The study was setup to examine the solute transport in horizontal and vertical direction within 

a sandstone aquifer at the borehole scale within a radius of less than 10m around a pumping 

well. Due to the rising groundwater issue in conurbations, especially Birmingham, the vertical 

flow around pumping wells is important. The values to be studied were hydraulic parameters 

describing the flow filed and transport parameters describing the solute transport.  

Geophysical logging of the five boreholes of the test site confirmed a good correlation 

between the different wells and methods applied to conclude that the borehole array was 

drilled into a horizontally layered part of the Wildmoor Sandstone. A core taken (Mitchener, 

2003) and drilling log of BH1 confirmed the geophysical measurements.  

The natural hydraulic gradients calculated according to the measured concentration decreases 

in S1 to S6 on the test site, recorded with point dilution tracer test, gave higher values than 

those generally proposed by Tellam and Barker (2006) for the Triassic Sandstone. One reason 

for higher hydraulic gradients could be the surface elevation of the area around the test site 

and the close location to the Birmingham fault.  

The measured upflow corresponds to those reported by Taylor et al. (2003), Joyce et al. 

(2006), and Tellam and Barker (2006). It could be measured and was considered in the flow 

model of the test site.  

The fourteen pumping test were used to calibrate the flow model for the individual sandstone 

layers. The especially build double-packer system (Greswell, 1999) was successfully applied. 

The results gained were analytically analysed and entered the calibration of the flow model. 
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The big packer, consisting of a plastic tube filled with water when it was used successfully, 

when introduced into BH1, sealing this borehole off. Pumping tests, analysed with curve-

fitting methods, delivered week results, however, the flow model delivered reasonable to 

good results, supporting the application of such a big packer. 

Three horizontal tracer tests were successfully carried out, recording breakthrough of RWT 

and fluorescein. Both tracers showed no retardation and behaved conservative. During TT 3, 

the RWT concentration record was disturbed by particles or turbidity, causing the flurometer 

to record higher RWT concentrations. The tracer was injected instantaneously and pumped 

from a second well. In TT 1 (S7) the mixing procedure in the injection well instigated an 

injection of four pulses of tracer. A connecting fracture between BH1 and BH5, initiated by 

the drilling process, which caused a “blow out” (verbal confirmation of Richard Greswell) 

was detected, resulting in a fast breakthrough. The opposite represents TT3 (S5) with 

remaining tracer in the injection well of about 50% and a slower break through. TT5 (S1&S2) 

seems to be on peak breakthrough with an intermediate decrease of tracer in the injection well 

and a smooth breakthrough in the pumped well. All quantified values received from 

calibration of the horizontal tracer test with the computer modeling are similar to those of 

Streetly et al. (2002), Coleby (1996) an Joyce et al. (2006).  

 

8.2 Conclusion 

Hydraulic and solute transport properties could be quantified for the unconfined Birmingham 

aquifer in the Triassic Sandstone. The values measured and interpreted with analytical 

calculations and computer modelling were in the range of property values expected by Tellam 

and Barker (2006) or Allen et al. (1998): 

 Hydraulic conductivity values and storage coefficients were defined. 
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 Point dilution test were newly carried out in the Triassic Sandstone aquifer 

 Average linear flow velocities of sandstone layers were calculated. 

 Effective porosity values and dispersivity values could be quantified 

 Fast to slow solute transport pathways could be defined by the horizontal forced 

gradient tracer test 

 Newly carried out vertical forced gradient tracer test could confirm the existence of 

vertical connection in mudstone layers, connecting sandstone layers of different 

levels. 

 The importance of measuring the tracer injection as accurate as the breakthrough was 

shown and possible misinterpretations were discussed. 

As proposed by Tellam and Barker (2006), fracture flow in the vicinity of pumped wells was 

proven to be important for contaminate transport in horizontal direction within sandstone 

layers, as shown in TT1. Simulated with tracer, it took only a few minutes for the tracer to 

travel over distances of a few metres. All vertical forced gradient tracer tests confirmed the 

existence of vertical connections through the mudstone layers. In some vertical tracer test, 

tracer required only a few hours to pass vertical distances of a few metre of mudstone. The 

findings can be used for future calculations of catchment areas around pumped well for 

example. The calculated values of effective porosities and dispersivity values can be used for 

the prediction of travel times of contamination at a certain point towards a pumped well in 

Triassic Sandstone and vice versa. 
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8.3 Future Work 

Future work would be: 

 Quantification of the correlation of injection and breakthrough of tracer, according to 

the test setups of this work. 

 A quantification of the vertical tracer migration using other particle tracing methods, 

giving a quantification of the effective porosity and dispersivity of the mudstone 

layers 
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Appendix III.3.3: Core Bits applied to drill Borehole BH 4 
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TOPSOIL
 Red-brown course sand, clay and silt with some organic matter CLAY
AND SAND
NO RECOVERY

 moderate reddish brown (10-R-4/6) course grained, well sorted, very poorly
cemented, no structures visible. Less than 5% white mica present. COURSE
SAND
NO RECOVERY

 pale reddish brown (10-R-5/4) course grained. some speckling with darked
red coloration. No cementation, 5% white mica present COURSE SAND
NO RECOVERY

 pale reddish brown (10-R-5/4) course grained. some speckling with darked
red coloration. No cementation, 5% white mica present COURSE SAND
NO RECOVERY
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 Dark reddish brown (10-R-3/4)  medium grained well sorted, well
cemented. 5% white mica. MEDIUM SANDSTONE
NO RECOVERY

dark reddish brown (10-R-3/4) CLAY with bands of greenish grey
(5-G-6/1) SILTY SANDSTONE

grey MUDSTONE
red with silty bands MUDSTONE

grey CLAYEY SANDSTONE
moderate reddish brown (10-R-4/6) with minor clays FINE SANDSTONE
moderate reddish brown (10-R-4/6) very friable MEDIUM SANDSTONE

moderate reddish brown (10-R-4/6) wel cemented with white mica
COURSE SANDSTONE
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very dusky red (10-R-2/2) (Manganese rich) with minor silt and white mica
FINE SANDSTONE
dark reddish brown (10-R-3/4) MEDIUM SANDSTONE
 Mottled, moderate red (5-R-5/4) and dark reddish brown (10-R-3/4) with
minor silt and small hard, well rounded red pebbles MEDIUM
SANDSTONE
 heavily fractured, mottled, dark reddish brown (10-R-3/4) MEDIUM
SANSTONE with minor small pebbles MEDIUM SANDSTONE
moderate pink (5-R-7/4) well sorted medium-course grained COURSE
SANDSTONE
moderate red (5-R-7/4) well cemented fine-medium grained. Hard pale band
at 16.71 at 45 degrees MEDIUM SANDSTONE
dark reddish brown (10-R-3/4) with mica MEDIUM SANDSTONE
moderate red (5-R-4/6) poorly cemented FINE SANDSTONE
moderate red (5-R-4/6) MUDSTONE
 moderate red (5-R-5/4), well sorted clean FINE SANDSTONE
 dark reddish brown (10-R-3/4) well sorted, clean MEDIUM SANDSTONE
dark reddish brown (10-R-3/4) laminated SILTY MUDSTONE
dark reddish brown (10-R-3/4) laminated SILTSTONE
moderate reddish brown (10-R-4/6) MEDUIM SANDSTONE
moderate red (5-R-4/6) well cemented MEDIUM SANDSTONE
dusky red (5-R-3/4) MUDSTONE
dusky red (5-R-3/4) uncemented SAND
 grey, sand fine-grained ARENACEOUS MUDSTONE
 dark reddish brown (10-R-3/4), hard. Grey weathering along fractures
SILTSTONE

 moderate red (5-R-4/6) well sorted, clean well cementedMEDIUM
SANDSTONE

pale reddish brown (10-R-5/4) Paler harder bands seen at 22.01-22.05 m
and 23.4 - 23.5 m COURSE SANDSTONE
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Greyish Red (5-R-4/2) Hard bands at 24.4 -24.5 m and 24.6 - 24.7 m
COURSE SANDSTONE

moderate red (5-R-4/6) COURSE SANDSTONE. Clay content increasing
downwards

MUDSTONE
Moderate red (5-R-4/6) course grained ARGILLACEOUS SANDSTONE

Moderate red (5-R-4/6) MEDIUM SANDSTONE
uncemented fine-grained GRAVEL
Moderate red (5-R-4/6) MEDIUM SANDSTONE
MUDSTONE
Moderate red (5-R-4/6) MEDIUM SANDSTONE
MUDSTONE
Moderate red (5-R-4/6) MEDIUM SANDSTONE
 Dark reddish brown (10-R-3/4) broken, hard MUDSTONE
moderate red (5-R-4/6) well sorted COURSE SANDSTONE

Moderate red (5-R-4/6)ARENACEOUS MUDSTONE
dark reddish brown (10-R-3/4) with small micas and dark minerals
MEDIUM SANDSTONE
 Moderate red (5-R-5/4) fine-medium grained at top coursening downwards
to course-medium grained. Fine lighter bands below 28.66 m, darker (very
dark red (5-R-2/6))  1 mm bands below 29.30 m MEDIUM SANDSTONE

moderate red (5-R-5/4) soft CLAY
moderate red (5-R-5/4) SANDY SILTSTONE
moderate red (5-R-5/4) COURSE SANDSTONE
moderate red (5-R-5/4) fine -medium grained CLAYEY SANDSTONE
Moderate red (5-R-5/4) very course grained ( some 3 mm  quartz clasts)
SILTY SANDSTONE
Moderate reddishy brown (10-R-4/6) heavily broken CLAYEY
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SILTSTONE
Moderate reddish brown (10-R-4/6) SANDY SILTSTONE
Moderate Reddish Brown (10-R-4/6) heavily broken SILTSTONE
moderate red (5-R-4/6) FINE SANDSTONE
 moderate red (5-R-4/6) finely laminated, fine grained SILTY SANDSTONE
 Moderate reddish brown (10-R-4/6) well sorted, clean medium-course
grained COURSE SANDSTONE
Moderate reddish brown (10-R-4/6) SILTY MUDSTONE
moderate red (5-R-4/6) very fine grained FINE SANDSTONE
Dusky red (5-R-3/4) finely interbedded SANDSTONE AND SILTSTONE
 Moderate red (5-R-4/6, heavily broken below 33.70 m MEDIUM
SANDSTONE
dark reddish brown (10-R-3/4) FINE SANDSTONE
Dark reddish brown (10-R-3/4) fine grained. bands of very dark red
(5-R-2/6). CLAYEY SANDSTONE

Dark reddish brown (10-R-3/4) with fine bands of greyish green (5-G-5/2)
SILTY CLAYSTONE
Dark reddish brown (10-R-3/4) with ~5% clay lenses below 36.04 m
COURSE SANDSTONE

 Dark reddish brown (10-R-3/4) well rounded micaceous fine-medium
grained, coursening downwards to course-medium grained. MEDIUM
SANDSTONE

 dark reddish brown (10-R-3/4) some grains very heavily stained with Mn.
Darker, clay-rich bands at ~5cm intervals MEDIUM SANDSTONE

dark reddish brown (10-R-3/4) poorly cemented fine-medium grained
reduced to greenish grey (5-G-6/1) below 38.63 m MEDIUM SANDSTONE

dark reddish brown (10-R-3/4) course grained CLAYEY SANDSTONE
pale red (5-R-6/2) COURSE SANDSTONE
 Dark reddish brown (10-R-3/4) MUDSTONE. Pale red (5-R-6/2) bands at
39.12 - 29.15 m and 39,22 - 39.35 m. Highly broken below 39.30 m
MUDSTONE
 moderate reddish brown (10-R-4/6) well sorted, clean MEDIUM
SANDSTONE
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Dusky red (5-R-3/4) clean uncemented COURSE SAND

dark reddish brown (10-R-3/4) CLAY PELLETS in uncemented CLAYEY
SAND
dark reddish brown (10-R-3/4) clean MEDIUM SANDSTONE
dark reddish brown (10-R-3/4) with minor small clay lenses COURSE
SANDSTONE
Dusky red (5-R-3/4) MUDSTONE
Dark reddish brown (10-R-3/4) medium grained CLAYEY SANDSTONE

Moderate red (5-R-5/4) with fine clay bands (Moderate reddish brown
(10-R-4/6)) above 42.00 m. Course bands present below this.FINE
SANDSTONE

 Dark reddish brown (10-R-3/4) fine-grained, very clayey CLAYEY
SANDSTONE
dark reddish brown (10-R-3/4) clean COURSE SANDSTONE

 Moderate red (5-R-4/6) well cemented course-medium grained. Heavily
broken bands at 44.39 - 44.42 m, 46.21 - 46.42  and 46.67 - 46.82 m.
MEDIUM SANDSTONE

Moderate red (5-R-4/6) well cemented course-medium grained with fine Mn
rich banding. MEDIUM SANDSTONE

Moderate red (5-R-4/6) well cemented micaceous course MEDIUM
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SANDSTONE
Grey MUDSTONE
Moderate red (5-R-4/6) well cemented micaceous course-medium grained
MEDIUM SANDSTONE

Dark reddish brown (10-R-3/4) partially cemented micaceous (white and
dark) fine - medium grained.CLAYEY SANDSTONE
Dark reddish brown (10-R-3/4) partially cemented micaceous (white and
dark) fine - medium grained with clay pellets CLAYEY SANDSTONE
Dark reddish brown (10-R-3/4) partially cemented micaceous (white and
dark) fine - medium grained. Broken band at 49.65 - 49.69 m CLAYEY
SANDSTONE
Pale reddish brown (10-R-5/4) clean well cemented meduim grained
coursening downwards to very course grained at base COURSE
SANDSTONE
moderate reddish brown (10-R-5/4) very broken and micaceous to 50.60 m
SILTY MUDSTONE

greenish grey (5-GY-6/1) FINE SANDSTONE

Very dark red (5-R-2/6) COURSE SANDSTONE

dark reddish brown (10-R-3/4) well sorted very-fine grained FINE
SANDSTONE
Greenish grey (5-G-6/1) FINE SANDSTONE
 dark reddish brown (10-R-3/4) well sorted, very fine grained FINE
SANDSTONE
 dark reddish brown (10-R-3/4) well sorted, very course grained. silty lenses
between 54.40 and 54.70 m COURSE SANDSTONE

 Very dark red (5-R-2/6) poorly cemented. medium grained sand particles.
Becoming more silty and finer grained  downwards to 55.50. Becoming
more sorted below this, and colour grading to moderate reddish brown
(10-R-4/6). Micas  appearing. -56.00 SILTY SANDSTONE
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Moderate reddish brown (10-R-4/6) medium grained. Sub vertical very hard
band presen SILTY SANDSTONE
moderate reddish brown (10-R-4/6) very course. Cross bedded. Good
channel base at bottom COURSE SANDSTONE
moderate reddish brown (10-R-4/6) fine grained. Fining downwards to very
silty sandstone SILTY SANDSTONE
 moderate reddish brown (10-R-4/6)cross bedded, some dark mineralsFINE
SANDSTONE

moderate reddish brown (10-R-4/6) fine grained. Course ( up to 2 mm)
grains present singly and in bands SILTY SANDSTONE
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Appendix IV 4.2: Temperature Logs 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BH1 2000 Temperature

0

10

20

30

40

50

60

0 5 10 15 20

[C]

d
e
p
th

[m
]

BH4 98 Temperature

0

10

20

30

40

50

60

0 5 10 15 20

[C]

d
e
p
th

[m
]



Appendix IV 4.3: Conductivity Logs. 
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Appendix IV 4.4: Caliper Logs  
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Appendix VII.1  a

Row and Column No. Mesh Size (m) Row and Column No. Mesh Size (m)

1 20.91 46 0.15

2 16.33 47 0.15

3 12.76 48 0.15

4 9.97 49 0.15

5 7.79 50 0.15

6 6.08 51 0.15

7 4.75 52 0.15

8 3.71 53 0.15

9 2.9 54 0.15

10 2.27 55 0.15

11 1.77 56 0.15

12 1.38 57 0.15

13 1.08 58 0.15

14 0.84 59 0.15

15 0.66 60 0.15

16 0.52 61 0.15

17 0.4 62 0.15

18 0.31 63 0.15

19 0.25 64 0.15

20 0.19 65 0.15

21 0.15 66 0.15

22 0.15 67 0.15

23 0.15 68 0.15

24 0.15 69 0.15

25 0.15 70 0.15

26 0.15 71 0.19

27 0.15 72 0.25

28 0.15 73 0.31

29 0.15 74 0.4

30 0.15 75 0.52

31 0.15 76 0.66

32 0.15 77 0.84

33 0.15 78 1.08

34 0.15 79 1.38

35 0.15 80 1.77

36 0.15 81 2.27

37 0.15 82 2.9

38 0.15 83 3.71

39 0.15 84 4.75

40 0.15 85 6.08

41 0.15 86 7.79

42 0.15 87 9.97

43 0.15 88 12.76

44 0.15 89 16.33

45 0.15 90 20.91



 

 

 

Appendix VII.1  b

Layer No. Layer in [m] Depth bgl [m] Top Elevation Bottom Elevation

1 3 3 60 57

2 3 6 57 54

3 2 8 54 52

4 2 10 52 50

5 1.5 11.5 50 48.5

6 0.75 12.25 48.5 47.75

7 0.75 13 47.75 47

8 1.5 14.5 47 45.5

9 1.75 16.25 45.5 43.75

10 1.75 18 43.75 42

11 1.5 19.5 42 40.5

12 1 20.5 40.5 39.5

13 1 21.5 39.5 38.5

14 1.5 23 38.5 37

15 2 25 37 35

16 1.5 26.5 35 33.5

17 0.75 27.25 33.5 32.75

18 0.75 28 32.75 32

19 1 29 32 31

20 1.5 30.5 31 29.5

21 1 31.5 29.5 28.5

22 1 32.5 28.5 27.5

23 1 33.5 27.5 26.5

24 1.5 35 26.5 25

25 1.5 36.5 25 23.5

26 1.5 38 23.5 22

27 1 39 22 21

28 1 40 21 20

29 1 41 20 19

30 1.5 42.5 19 17.5

31 2 44.5 17.5 15.5

32 2.5 47 15.5 13

33 2 49 13 11

34 1.5 50.5 11 9.5

35 1 51.5 9.5 8.5

36 1 52.5 8.5 7.5

37 1.5 54 7.5 6

38 2 56 6 4

39 2 58 4 2

40 2 60 2 0



Appendix VII.1c 

 Layer Row Column 

BH1 1 - 40 43 22 

BH2 1 - 9 63 44 

BH3 1 - 27 31 46 

BH4 1 - 40 55 69 

BH5 1 - 40 33 69 

 



Natural Gradient transferd to model input data Initial Head Conditions at the Boundary

Natural Gradient and Up-Flow in BH1Aquifer Layer S1& S2 BH2 average head (rest water levels) 7.75 [m] bgl

84.64distance to boundary [m] 91.54distance to boundary [m] Head MODFLOW Boundary

Head MODFLOW Boundary

Natural Gradient and Up-Flow in BH1

head up-flow end of the model area head down-flow end of the model area Column 1 Column 90 Column 1 Column 90

i head increase [m] total head increase [m] head decrease [m] total head decrease [m] up-flow boundary down-flow boundary up-flow boundary down-flow boundary

0.288 24.35 16.60 26.33 34.08 76.60 25.92 94.08 34.08

Adjusted 18.88distance to boundary [m] 38.13distance to boundary [m] Column 7 Column 85 Column 7 Column 85

i head increase [m] total head increase [m] head decrease [m] total head decrease [m] up-flow boundary down-flow boundary up-flow boundary down-flow boundary

0.288 5.43 -2.32 10.97 18.72 57.68 41.28 78.72 18.72

Aquifer Layer S3 BH1 average head (rest water levels) 7.15 [m] bgl

84.64distance [m] 88.54distance [m] Head MODFLOW Boundary Head MODFLOW Boundary

head up-flow end of the model area head down-flow end of the model area Column 1 Column 90 Column 1 Column 90

i head increase [m] Total head [m bgl] head decrease [m] Total head [m bgl] up-flow boundary down-flow boundary up-flow boundary down-flow boundary

0.079 6.65 -0.50 6.96 14.11 59.50 45.89 74.11 14.11

Aquifer Layer S4 BH1average head (rest water levels) 7.15 [m] bgl

84.64distance to boundary [m] 91.54distance to boundary [m] Head MODFLOW Boundary Head MODFLOW Boundary

head up-flow end of the model area head down-flow end of the model area Column 1 Column 90 Column 1 Column 90

i head increase [m] total head increase [m] head decrease [m] total head decrease [m] up-flow boundary down-flow boundary up-flow boundary down-flow boundary

0.115 9.71 2.56 10.50 17.65 62.56 42.35 77.65 17.65

51.475distance to boundary [m] Column 3 Column 3

i head increase [m] total head increase [m] up-flow boundary up-flow boundary

0.115 5.90 -1.25 58.75 60.00

Aquifer Layer S5 BH1average head (rest water levels) 7.15 [m] bgl

84.64distance to boundary [m] 91.54distance to boundary [m] Head MODFLOW Boundary Head MODFLOW Boundary

head up-flow end of the model area head down-flow end of the model area Column 1 Column 90 Column 1 Column 90

i head increase [m] total head increase [m] head decrease [m] total head decrease [m] up-flow boundary down-flow boundary up-flow boundary down-flow boundary

0.183 15.53 8.38 16.80 23.95 68.38 36.05 83.95 23.95

31.23distance to boundary [m] Column 5 Column 5

i head increase [m] total head increase [m] up-flow boundary up-flow boundary

0.183 5.73 -1.42 58.58 60.00

Aquifer Layer S6 BH1average head (rest water levels) 7.15 [m] bgl

84.64distance to boundary [m] 91.54distance to boundary [m] Head MODFLOW Boundary Head MODFLOW Boundary

head up-flow end of the model area head down-flow end of the model area Column 1 Column 90 Column 1 Column 90

i head increase [m] total head increase [m] head decrease [m] total head decrease [m] up-flow boundary down-flow boundary up-flow boundary down-flow boundary

0.036 3.01 -4.14 3.26 10.41 55.86 49.59 70.41 10.41

Appendix VII.2: It is assumed that the flow on the Test site is from the right side of the model to the left side of the model (nearly North_South direction). The 

head increase at the up-flow and down-flow boundaries is calculated with the gradients i gained with the dilution tracer tests. The total head increase at the up-

flow and down-flow boundaries is the head increase minus the average head of BH1 (S3 to S6) or BH2 (S1&S2) and vice versa for the total head decrease. The 

head of the Modflow boundary at the up-flow end is 60 m (the top elevation of the model) plus the total head increase. The head of the Modflow boundary at 

the down-flow end is 60 m (the top elevation of the model) minus the total head decrease.
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Appendix VII.3, the drawdown graphs of the pumping tests fitted against the drawdown 

graphs of the model results. 
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