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ABSTRACT

2



This paper improves upon an existing extreme precipitation monitoring sys-

tem based on the Tropical Rainfall Measuring Mission (TRMM) daily product

(3B42) using new statistical models. The proposed system utilizes a regional

modeling approach, where data from similar locations are pooled to increase

the quality of the resulting model parameter estimates to compensate for the

short data record. The regional analysis is divided into two stages. First,

the region defined by the TRMM measurements is partitioned into approxi-

mately 28,000 non-overlapping clusters using a recursive k-means clustering

scheme. Next, a statistical model is used to characterize the extreme precipi-

tation events occurring in each cluster. Instead of applying the block-maxima

approach used in the existing system, where the Generalized Extreme Value

probability distribution is fit to the annual precipitation maxima at each site

separately, the present work adopts the peak-over-threshold method of clas-

sifying points as extreme if they exceed a pre-specified threshold. Theoreti-

cal considerations motivate using the Point Process framework for modeling

extremes. The fitted parameters are used to estimate trends and to construct

simple and intuitive average recurrence interval (ARI) maps which reveal how

rare a particular precipitation event is. This information could be used by

policy makers for disaster monitoring and prevention. The new methodol-

ogy eliminates much of the noise that was produced by the existing models

due to a short data record, producing more reasonable ARI maps when com-

pared with NOAA’s long-term Climate Prediction Center ground-based ob-

servations. Furthermore, the proposed methodology can be applied to other

extreme climate records.
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1. Introduction36

The effective monitoring and measurement of extreme precipitation events form an integral com-37

ponent for understanding the underlying nature of extreme climate phenomena, and are crucial for38

evaluating future changes and impacts of precipitation extremes. Many recent studies have found39

a marked increase in the frequency and intensity of extreme precipitation events occurring in the40

last few decades (Donat et al. 2016, Min et al. 2011, Alexander et al. 2006). Changes in the behav-41

ior of extreme precipitation phenomena are among the most important aspects of global climate42

change, with significant implications for human society and the environment. For example, a study43

of the spatial heterogeneity of such changes found that regions where high-intensity precipitation44

is less common are especially prone to increases in precipitation totals and extremes (Donat et al.45

2016); unfortunately, the infrastructure in these regions is particularly ill-adapted to deal with ex-46

treme precipitation. A rise in the frequency and severity of extreme climate events also exacts47

a large human and economic toll. For example, in October 2013, Typhoon Fitow led to record48

winds and flooding throughout eastern China, shutting down roadways, schools, and hospitals,49

and resulting in an estimated $10 billion USD in total damages (ESCAP/WMO 2013). In mid-50

August 2016, a storm system in southern Louisiana resulted in unprecedented precipitation and51

flooding, with some areas receiving in excess of 280 mm of rain in a single day. The storm, which52

brought roughly 3 times as much rain over Louisiana than Hurricane Katrina did in 2005, was53

later described as being an event occurring with 0.2% probability in any given year (Di Liberto54

2016). More recently in October 2016, Hurricane Matthew ravaged the Western Atlantic causing55

widespread power outages and flooding, and causing over $8 billion in total damage. Hurricane56

Matthew led to the deaths of over 500 people in Haiti alone, and was the strongest storm to hit the57

country in over 50 years.58
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Satellite-based retrieval algorithms based on the measurements made by the Tropical Rainfall59

Measuring Mission (TRMM) and the more recent Global Precipitation Measurement (GPM) satel-60

lites have provided a rich source of precipitation data at the global scale. The TRMM Multi-61

satellite Precipitation Analysis (TMPA; Huffman et al. 2007) combines precipitation estimates62

from a variety of satellite systems to provide estimates at fine scales (3 hourly, 0.25◦×0.25◦) with63

quasi-global coverage (50◦S −50◦N); moreover, TMPA estimates are available in both real-time64

(3B42-RT) and post-real-time (3B42) data products.65

One of the most common approaches for modeling extreme values of hydrological variables66

is to adopt the framework of statistical extreme value theory, where precipitation intensities are67

assumed to be random draws from an underlying probability distribution, and characterizing ex-68

treme value behavior is equivalent to characterizing the upper tail of this distribution (Leadbetter69

et al. 1983, Katz et al. 2002, Shane and Lynn 1964, Chan et al. 2014). Although physical models70

can quite accurately describe the processes generating precipitation, from a probabilistic point of71

view, the true data generating process producing precipitation intensities is almost never known in72

practice. Thus, one typically uses a set of data to select a distribution from a pre-specified fam-73

ily of distributions that describe the tail behavior. To translate the estimates of the fitted model74

parameters to terms easily understood by policy makers and the general public, one can construct75

average recurrence intervals (ARIs) that describe the rarity of precipitation events. For example, a76

precipitation event with an ARI of 10 years means that it occurs on average once every 10 years.77

The amount of precipitation corresponding to the 10 year ARI is referred to as the 10 year return78

level. Note that a 10 year ARI does not mean that the event will occur once every 10 years; it79

simply means that in any given year, there is a 10% probability of such an event occurring, and80

that the occurrence of the event in one year does not preclude it from occurring in another year.81

Extreme value distributions (EVDs) like the Generalized Extreme Value (GEV) and Generalized82
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Pareto (GP) distributions have commonly been used for the modeling of precipitation and temper-83

ature extremes. EVDs have been used to analyze trends and changes in daily temperature (Brown84

et al. 2008), to project changes in seasonal precipitation extremes using ensembles of climate mod-85

els (Kharin et al. 2007, Fowler and Ekström 2009), and to study the spatial and spatio-temporal86

behavior of extreme precipitation (Wang et al. 2017, Schindler et al. 2012). Serinaldi and Kilsby87

(2014) used the GP distribution to model precipitation extremes, focusing specifically on the im-88

pact of threshold selection on the tail behavior of the fitted GP distributions. Using a point process89

model, Heaton et al. (2011) discovered significant increases in the intensity of extreme weather90

in parts of the continental United States (CONUS). Schindler et al. (2012) modeled extreme pre-91

cipitation across the UK using an inhomogeneous Poisson point process, accounting for annual92

cycles using a sinusoidal model for the location and scale parameters of the corresponding GEV93

distribution. The point process approach to extreme value analysis has also been used to detect94

trends in ozone levels (Smith 1989), as well as to generate stochastic climate scenarios to facilitate95

the modeling of precipitation extremes (Furrer and Katz 2008).96

The extreme precipitation monitoring system proposed in Zhou et al. (2015) uses measurements97

taken from the TMPA data series to construct ARI maps for the purpose of disaster preparation98

and monitoring. While the TRMM extreme precipitation monitoring system is a highly effective99

framework in general, the statistical modeling of the system Zhou et al. (2015) used suffers from100

several limitations. First, data from each of the grid points in the TMPA domain are considered to101

be independent, an assumption that is questionable in practice. Second, only the annual maxima102

values for each grid location are considered to be extreme, meaning that only 16 data points are103

available for model fitting at each location. As a result, there is a high degree of uncertainty in the104

parameter estimates and resulting ARI maps. Furthermore, the annual maxima approach cannot105

accommodate multiple extreme events occurring during the same year, for example during differ-106
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ent seasons.107

In this paper, we propose an alternative methodology for the statistical modeling of the TRMM108

extreme precipitation monitoring system that overcomes the above limitations. In section 2, we109

outline the two stages of our proposed algorithm which first partitions the map into disjoint clus-110

ters of similar sites, then fits an appropriate statistical model to the pooled data in each cluster.111

In section 3, we present the results of our methodology when estimating return levels and trends112

in extreme precipitation, and compare the return level estimates to those in Zhou et al. (2015).113

Section 4 demonstrates that our procedure is general enough to be used to analyze extreme climate114

events other than precipitation; in this case, we analyze surface air temperature data. We conclude115

with a discussion covering several possible extensions of our work.116

2. Methodology117

To overcome the above-mentioned shortcomings of the existing TRMM extreme precipitation118

monitoring system, we implement a two-stage methodology that 1) partitions the map into rela-119

tively homogeneous non-overlapping regions, and 2) fits an appropriate statistical distribution to120

the data from each of the regions from the first stage. We are not proposing a completely novel121

methodology for extreme-value analysis, but rather an alternative framework for modeling the122

TRMM data that improves upon the methodology of Zhou et al. (2015). All of the results in this123

paper are based on the TRMM 3B42 daily precipitation record (NASA GES DISC 2016).124

a. Regional clustering125

The idea of pooling similar sites into one common region has a rich history in the hydrological126

literature (Cunnane 1989, Hosking et al. 1985, Hosking and Wallis 1988), has also been utilized in127

precipitation analysis (Buishand 1991), and fits into the broader framework of regional frequency128
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analysis (Hosking and Wallis 1993, Hosking and Wallis 1997).129

There are two general approaches for clustering sites in a regional analysis of extreme climate130

events. In the first approach, regions are clustered based on their site characteristics (e.g. loca-131

tional and topographic information), not at-site statistics such as the time series of annual maxima132

or threshold exceedances, i.e. Smithers and Schulze (2001), Satyanarayana and Srinivas (2008),133

Wang et al. (2017), and Hosking and Wallis (1997). An alternative framework for regional par-134

titioning is to use the data themselves as input into the clustering algorithm. For example, the135

location similarity measures in Bernard et al. (2013) and Bador et al. (2015) use the time series136

of annual maxima themselves as variables in the clustering algorithm, the goal being to achieve137

max-stability within each cluster. Despite the merits of these clustering methods, there are two po-138

tential drawbacks with this approach. First, using the same data to both form the regional clusters139

and to test for homogeneity within those clusters will almost certainly lead to a biased assessment140

of homogeneity (Hosking and Wallis 1997). Furthermore, the clustering results will change every141

time data are added to the model, e.g. if data from the GPM IMERG data product were to be added142

to the statistical model.143

With these considerations, here we adopt a clustering scheme based on site characteristics using144

a recursive k-means clustering algorithm with spatial location (longitude, latitude), topography145

(derived from 5’ National Geophysical Data Center [NGDC] TerrainBase Global DTM Version146

1.0 [Row III and Hastings 1994], and binned into 0.25◦ resolution), and the 90th percentile of147

precipitation values (all variables standardized) as input to the algorithm. The k-means algorithm148

seeks to partition the data (here, the map) into k non-overlapping groups (where the number of149

clusters k is pre-specified) so as to minimize the sum of squared distances from each data point150

to its assigned cluster’s center in feature space. See Hastie et al. (2009) for more details about151

k-means clustering and its implementation.152
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Our recursive k-means algorithm first partitions the map into approximately 30 large clusters;153

each cluster is further partitioned into another set of 30 clusters, resulting in about 900 clusters in154

total. This process is repeated a final time for each of the resulting regions; if there are less than 30155

grid points in a particular region, we skip this final step for that region. This entire process yields156

28,221 non-overlapping regions, for an average of about 20 grid points per cluster, which follows157

the guidelines set forth in Hosking and Wallis (1997). Figure 1 illustrates the idea behind the re-158

cursive clustering scheme. Note that the region a given cluster covers need not be contiguous, and159

one can weight the inputs of the algorithm to adjust their relative importance. The results of our160

algorithm are displayed in Figure 2 for the first two clustering operations.161

Next, we implement the homogeneity test given in Viglione et al. (2007) which combines162

the “Hosking and Wallis heterogeneity statistic” (Hosking and Wallis 1997) with the bootstrap163

Anderson-Darling statistic (Scholz and Stephens 1987) to decide if the distributions of extreme164

precipitation intensity for different sites within each cluster are the same. 21,112 of 28,221 re-165

gions were identified as being acceptably homogeneous. We did not correct for multiple testing166

since the Hosking and Wallis statistic is not a formal test statistic, and therefore the number of het-167

erogeneous regions is almost certainly overestimated. Since regional analysis will produce more168

accurate statistical estimates than a single-site analysis even with slight or moderate degrees of169

homogeneity (Hosking and Wallis 1997), we do not expect our results to be greatly affected by the170

heterogeneity in some clusters.171

b. Statistical modeling172

The next stage is to fit an appropriate probability distribution to the pooled extreme precipita-173

tion data in each resulting cluster. The estimated parameters of the fitted distributions will then174

characterize the underlying behavior of extreme precipitation events in that region.175
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1) CHOICE OF AN APPROPRIATE DISTRIBUTION176

We begin by reviewing some of the common approaches to extreme value modeling, motivating177

our choice to adopt the Point Process (PP) framework to model precipitation extremes.178

To model extreme values, Zhou et al. (2015) utilize the block maxima approach where only the179

largest annual precipitation values are considered to be extreme, and where the Generalized Ex-180

treme Value (GEV) distribution is used to model the resulting extreme values. See Leadbetter et al.181

(1983) for the theoretical justification for using the GEV distribution to model sample maxima.182

The GEV cumulative distribution function is given by183

FGEV (x; µ,σ ,ξ ) =


exp
{
−
[
1+ ξ (x−µ)

σ

]− 1
ξ

}
if ξ 6= 0

exp
{
− exp

(
−x−µ

σ

)}
if ξ = 0,

(1)

where µ is the location parameter, σ > 0 is the scale parameter, and ξ is the shape parameter.184

Extreme value modeling using block maxima to fit the GEV distribution has widely been used for185

modeling hydrological extreme data (see, e.g., Katz et al. 2002 and the references therein), but186

has the obvious limitation that a large number of observations are discarded, resulting in a short187

data record. One approach for dealing with this limitation of the block maxima approach is to188

adopt the peak-over-thresholds (POT) method, where observations are considered extreme if they189

exceed a pre-specified threshold (Todorovic and Zelenhasic 1970, Davison and Smith 1990). For190

large enough thresholds, the distribution of threshold exceedances will approximately follow the191

Generalized Pareto (GP) distribution (Leadbetter et al. 1983).192

The framework of point processes (PP) unifies the two approaches discussed above (see Cox and193

Isham 1980 for the general theory of point processes; some applications to environmental model-194

ing via the PP approach can be found in Smith 1989 and Smith and Shively 1995). According to195

PP theory, the occurrence time and intensity of an event which exceeds a pre-specified threshold196
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will approximately follow a Poisson PP (assuming the threshold is sufficiently large). Moreover,197

the intensity function of the PP is parameterized by a GEV(µ,σ ,ξ ) distribution corresponding to198

the annual maximum distribution of the observed process (Leadbetter et al. 1983, Coles 2001).199

Using the PP framework offers the advantage that its likelihood is parameterized in terms of the200

GEV parameters in (1), since these parameters are invariant to the choice of threshold. Further-201

more, this parameterization allows non-stationarity to easily be incorporated into the model by202

modeling the GEV parameters as functions of time or other covariates. These parameters are often203

easier to interpret than those of the corresponding GP models. See Coles (2001) for more details204

regarding the equivalence of the GP and PP approaches to extreme value modeling.205

With the above considerations in mind, we proceed using the PP framework. Several practical206

considerations must be addressed before proceeding to fit a model to the data.207

2) THRESHOLD SELECTION208

The problem of selecting the threshold ω in both the GP and PP approaches is an instance of209

the bias-variance tradeoff commonly encountered in statistics; a threshold that is too low may210

lead to model bias, while a threshold that is too large may yield larger variability in the resulting211

parameter estimates. See Serinaldi and Kilsby (2014) for more on the issue of threshold selection212

in POT models and methods to correct for model bias due to short data records.213

There are many reasonable, data-driven methods for selecting the threshold ω . For instance,214

one can set ω equal to some large percentile of the data, e.g. the 95th or 99th percentile of daily215

precipitation values. Another approach is to model the threshold as a time-varying function (Coles216

2001), e.g. as a step function217

ω(t) = ωi if t ∈ Ti, (2)

11



where the Ti are disjoint sets indexing time, and where the ωi are pre-determined constants. In218

our analysis, we adopt the threshold function in (2) where we let Ti, i = 1, ...,12 correspond to the219

different months and where the ωi in each region correspond to the 99th percentile of precipitation220

values for the pooled data in that region and month. Since the function in (2) has abrupt jumps at221

the end of each component, we smooth the threshold function in (2) via cubic splines.222

3) SPATIAL AND TEMPORAL DEPENDENCE223

Since extreme precipitation events tend to occur in temporal clusters (e.g. spans of 2-3 days at a224

time), in practice, the assumption of independent observations underlying the PP framework will225

be violated. To deal with this problem, we adopt a commonly used declustering procedure that first226

partitions the threshold exceedances at each site into separate temporal clusters, then only retains227

the cluster maxima for subsequent model fitting. Here, we add data points (precipitation values)228

to each temporal cluster until 5 consecutive points fall below the (99th percentile) threshold. For229

more details on this particular declustering scheme, see, e.g., section 5.3.2 in Coles (2001).230

There is also the problem of likely spatial dependence arising from the regional clustering proce-231

dure. It is not always clear how to effectively incorporate spatial dependence into an extreme-value232

based statistical model. Even recent attempts at incorporating spatial dependence into a regional233

analysis (see, e.g., Wang et al. 2014) require a subjective specification of a dependence structure.234

Misspecification of this dependence structure can introduce significant bias into the model, defeat-235

ing the purpose of modeling such dependence in the first place. As pointed out in Katz et al. (2002)236

and Hosking and Wallis (1988), inter-site correlation introduces little bias (if any) into point esti-237

mates of quantiles, but results in underestimation of the standard errors of model parameters. For238

these reasons, we do not attempt to model the spatial dependence in this work.239
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4) MODEL FITTING240

Several methods, such as maximum likelihood estimation (MLE) (Ferguson 1996), L-moments241

(Hosking 1990, 2006), and Bayesian estimation can be used for model fitting and parameter es-242

timation, though we found the Bayesian framework to be too computationally intensive for our243

analysis. When experimenting with these different model fitting techniques, we found there to244

be a minimal difference overall in the parameter estimates due to the relatively large sample sizes245

obtained as a result of the clustering step. Furthermore, the only way to obtain confidence intervals246

for parameter estimates in the L-moment framework is to apply the parameteric bootstrap, making247

this approach relatively computationally expensive. Because of these considerations, we decided248

to proceed using the MLE approach. All model fitting was carried out using the “extRemes”249

package available in the R computing environment (Gilleland and Katz 2016).250

5) NON-STATIONARITY251

Under the assumption of stationarity in the time series, finding the return levels and recurrence252

intervals is straightforward. In the case of non-stationarity, however, the situation is more com-253

plicated since the properties of the underlying distribution vary with time (we take the term “non-254

stationary” to refer to any statistical model whose parameters are expressed as a function of time).255

Risk forecasts based on stationary models will ignore time-dependent changes in the distribution256

of extreme precipitation intensity, leading to potentially unrealistic estimates of risk. Several mea-257

sures have been recently proposed to address this difficulty: these include the effective return level258

(Katz et al. 2002, Cooley 2013), the Design Life Level (Rootzén and Katz 2013), and the Non-259

Stationary Extreme Value Analysis (NEVA) framework of Cheng et al. (2014). Here we have260

chosen to use the effective return level, though the other two methods can also be used depending261

on one’s goals.262
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As a first approximation appropriate to many locations, we model the location and scale param-263

eters of the PP model with the first-order sinusoidal functions264

µ(t) = α0 +α1 · sin
(

2πt
365.25

)
+α2 · cos

(
2πt

365.25

)
(3)

logσ(t) = β0 +β1 · sin
(

2πt
365.25

)
+β2 · cos

(
2πt

365.25

)
; (4)

the annual periodicity of these functions ensures that the effective return levels need only be com-265

puted for each day of the year (e.g. for t = 1, ...,365 as opposed to each day in the entire time266

series), yielding one return level map for each day of the year for any specified ARI.267

For thoroughness, we compared the model defined by (3) alone, i.e. assuming time-dependent268

location parameter and constant scale and shape parameters, to the model defined by both (3) and269

(4). The latter model better explains the data in 74% of the regions according to both the Akaike270

information criterion (AIC) and Bayesian information criterion (BIC) (it is worth noting that the271

AIC can result in model overfitting, while the BIC, which penalizes additional parameters, can272

lead to underfitting). Furthermore, both the AIC and BIC indicate the non-stationary model de-273

fined by (3) and (4) is superior to the stationary model in 94% of the regional clusters. Therefore,274

we adopt the non-stationary model defined by (3) and (4) throughout the rest of the paper unless275

stated otherwise.276

3. Results277

In this section, we discuss the return level and trend estimates of the non-stationary PP model.278

a. Return level estimates279

After fitting a distribution to the data in each region, the resulting parameter estimates are used280

to construct return level maps that convey the rarity of precipitation events. It is important to note281
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that due to the short data record, estimates of lower probability are subject to high uncertainty.282

As remarked in Parzybok et al. (2011), ARI results obtained from extreme value analysis are283

expected to be reliable for twice the data length. Since we are using 16 years of TRMM data in284

our analysis, the model will be able to identify a 32-year ARI event relatively accurately.285

Some examples of the return level maps for CONUS are given in Figure 3. Comparing the maps286

for January 1 and July 1 reveals that there can be significant variability in the severity of extreme287

events throughout the year. For example, much of the west coast has substantially higher return288

levels in January than in July, whereas the return levels are relatively stable among these 2 dates289

for much of the east coast. Our findings are consistent with the results of Agel et al. (2015), who290

found that the intensity on extreme days in the Northeast is relatively invariant to the season.291

Figures 4a and 4b show model diagnostic plots for the data from the cluster containing Los292

Angeles. To produce the QQ plot in 4a, the parameters of the fitted PP model are converted to the293

equivalent GP distribution (the quantiles are from threshold excesses of the data). The QQ plot in294

4a indicates a reasonable model fit, with the empirical data distribution having a thicker upper tail295

than the fitted distribution. The Z-plot in 4b is yet another gauge of model fit tailored specifically296

for the PP model fit (Smith and Shively 1995). Under the PP model, the waiting times between297

events should follow a mean-one exponential distribution. Therefore, the Z-plot is a QQ plot that298

compares the quantiles of empirical waiting times against the quantiles of a mean-one exponential299

distribution. Figure 4b does not indicate any obvious departures from model assumptions.300

301

Figure 4c shows some of the fitted return level curves for several extreme precipitation events302

which occurred in Los Angeles in late 2004 - early 2005. The threshold for extreme events varies303

from around 1 mm in the summer (not surprising if you have ever spent a summer in Los Angeles)304

to about 38 mm in February. According to our model, one event crosses the 100-year return305
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level curve, corresponding to an event that occurs in any given year with about 1% probability (as306

always, one should interpret such estimates after considering sampling variability, for example,307

via confidence bands for the return level curves). In fact, the 2004-2005 winter season proved to308

be one of the wettest seasons on record for Los Angeles county.309

Finally, to capture the uncertainty in the parameter estimates used to make the return level maps,310

we calculate 95% normalized confidence ranges (NCR) following the procedure in Zhou et al.311

(2015). For each region and for a given ARI (in years), we compute the difference between312

the upper and lower limits of the 95% confidence interval for the return levels, then divide this313

difference by the point estimate of the return levels. The NCR offers the advantage that it is314

independent of units of measurement, and can thus be used to compare regions with very different315

mean precipitation. Smaller values of the NCR imply a more confident estimate of the ARI; for316

example, an NCR value of 1 corresponds to an ARI estimate that lies within 100% of its magnitude317

with 95% confidence. Since the return level estimates vary according to the time of year, we take a318

conservative approach and compute the maximum value the NCR obtains during the year. Figure319

5 reveals that the majority of the regions on the map correspond to high confidence estimates (e.g.320

NCR < 1), both for 5 and 20 year ARIs. The general pattern in the NCR maps is very similar321

to the results of Zhou et al. (2015), with low confidence regions primarily located in exceedingly322

dry areas such as Northern Africa, the Arabian peninsula, and the southeast Pacific Ocean, though323

the values in the 5 and 20 year NCR maps based on our methodology are generally much smaller324

than those in Zhou et al. (2015). As pointed out in Zhou et al. (2015), as the data length of the325

TRMM-GPM precipitation records increases, the degree of confidence in the ARI estimates will326

increase even further.327
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b. Comparison to previous models328

To put our results into perspective, we compare the return level maps resulting from our pro-329

posed methodology with those based on the annual maxima/GEV framework as in Zhou et al.330

(2015). Both methods are applied to the same 3B42 daily precipitation data, but because Zhou331

et al. (2015) did not use the data from 2013 in their analysis, we restrict the data for our model to332

the 1998− 2012 span to facilitate model comparisons. As a benchmark for comparison, we also333

show the return level maps generated using NOAA’s Climate Prediction Center (CPC) daily uni-334

fied precipitation dataset, which is a gauge-based, gridded, and quality controlled product derived335

from daily and hourly precipitation measurements from 1948− 2012, where measurements were336

taken from over 13,000 stations (8,000 before 2012) over CONUS. The CPC data also have the337

same 0.25◦ spatial resolution as the 3B42 data. The CPC data were modeled using the single-site,338

annual maxima/GEV framework in Zhou et al. (2015). To make our results directly comparable to339

both of these sets of return level maps which were constructed under the assumption of stationar-340

ity (implying a single return level map for the entire year), we also assume stationarity in our PP341

approach and thus do not allow for seasonality in the rest of this section. That is, we take a single342

threshold for the entire time series (the 99th percentile of precipitation values) of a given region,343

and assume that the location, scale and shape parameters do not vary with time or other covariates.344

In Figure 6, we compare the return level maps corresponding to ARIs of 2 and 25 years produced345

using the three different approaches stated above. The most striking feature of these diagrams is346

the reduction in noise when using the regional analysis over the existing single-site methodology.347

In the return level maps corresponding to an ARI of 25 years, for example, the return level map348

based on the TRMM data using the single-site block maxima approach is quite coarse, with many349

isolated grid points exhibiting return levels that are in sharp contrast to their surrounding neigh-350
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bors. The short data record for this approach (15 data points per site) means that the GEV model351

fitting procedure could not effectively separate the signal from the statistical noise. Of course, it352

is possible that some of the isolated “spikes” in the return level maps reflect actual contrasts in353

precipitation extremes. However, since the same GEV method was used on both the 65-year CPC354

data and the 15 year TRMM data, and since using a longer data record smoothed away most of the355

spikes, it is reasonable to conclude that most of the contrasts were indeed a result of the short data356

record. From the maps, it is apparent that our methodology results in a smoother return level map357

when compared with the single-site, annual-maxima framework, capturing the general pattern in358

the CPC results using less data.359

c. Model fit360

To assess how well the stationary PP approach models the observed data, we constructed several361

diagnostic plots including kernel density plots as well as QQ plots. The results for one randomly362

selected region, corresponding to 4 grid points in Western Colombia, are displayed in Figure 7.363

The density and QQ plots indicate that both the PP and single-site GEV models fit to the TRMM364

3B42 series explain the data reasonably well (note the bimodality in the empirical distribution of365

the block maxima model - this issue is discussed further in the Discussion section). Figure 7 also366

includes return level plots for both methods, which plot the return levels (in mm) expected to occur367

on average once during the corresponding recurrence interval (given in years). The return level368

plots suggest that the two models differ in their characterizations of the tail behavior of extreme369

events. Indeed, at the 5% level of significance, the PP model fit implies a finite upper bound370

for extreme precipitation intensity, while the GEV model fit indicates unbounded tail behavior.371

The 95% confidence limits (dashed gray lines) indicate a higher level of confidence in the results372

produced by the PP method than the single-site GEV approach. We also note that the 95% NCR373
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maps corresponding to our method in the stationary setting (not included here for brevity) are very374

similar to those in Figure 5, indicating an overall increase in statistical confidence.375

d. Case study376

We applied our methodology to evaluate the severity of a particular climate event, Typhoon377

Fitow, the strongest Typhoon to hit mainland China in more than 60 years. Specifically, we es-378

timated the annual probabilities of the precipitation event that occurred on 6 October 2013 for379

the non-stationary PP model with regional clustering, as well as for the stationary GEV model of380

annual maxima without regional clustering used in Zhou et al. (2015).381

Figure 8 shows the 1 day precipitation total on 6 October 2013 over China’s Zhejiang province,382

as well as the predicted annual probabilities of the corresponding precipitation intensities of both383

models. The estimated probabilities for the precipitation totals recorded during this event are gen-384

erally higher under the PP model than those of the GEV model, implying that such extreme events385

are more common than the existing method in Zhou et al. (2015) would have predicted. Most of386

the probabilities under the GEV model are less than 0.01, and given the short length of the data387

record, the validity of such estimates is questionable. Though there are also low probability events388

(< 0.01) predicted by the PP model, more than 80% of the predicted probabilities are larger than389

3%, thus the reliability of the PP estimates is less affected by the short data record. The PP model390

predictions in Figure 8 reveal that there were 3 distinct regions of particularly rare precipitation391

intensity, with the largest region overlapping with the area of heaviest precipitation. The GEV392

approach failed to make the distinction between these 3 regions.393
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e. Trends in extreme precipitation intensity394

A straightforward modification of the non-stationary PP model allows an analysis of long-term395

trends. A simple starting point is to model the GEV location parameter as a linear function of396

time, i.e.397

µ(t) = µ0 +µ1 · t, (5)

and to assume constant scale and shape parameters. In this setup and for any fixed probability p,398

the coefficient µ1 measures the change in the GEV quantile function over the data period (given t399

is scaled to lie in [0,1]); positive values of µ1 reflect more intense extreme precipitation events and400

negative values reflect less intense extreme events. To visualize the results, we adopt the approach401

used in Katz et al. (2002) and set p = 0.5 and compute the percentage change in the median of402

the fitted GEV distribution over the data period; intuitively, we are calculating how much the un-403

derlying distributions of extreme precipitation intensities shifted from 1998 to 2013. The percent404

changes in the medians of extreme precipitation intensities are shown in Figure 9 (only trends405

significant at the 5% level are shown). We stress that these results should not be extrapolated to406

periods outside of the data record and are only used here to study the behavior of extreme events407

from 1998-2013.408

Figure 9 shows generally increasing intensities of extreme precipitation in the tropical ITCZ,409

including the tropical Indian Ocean, Maritime continent, West Pacific warm pool, Caribbean and410

Gulf regions. Decreases in extreme precipitation are observed in most of the tropical and sub-411

tropical land regions, i.e. South America, tropical and south Africa, north and west Australia,412

consistent with the results of Wu and Lau (2016). Negative trends are also observed over most413

of CONUS, especially in the southwest US, contributing to the drying trend in the region (Prein414

et al. 2016). However, decreases in extreme precipitation in the mid-latitude oceans in the Pacific415
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and north Atlantic, together with increases in extreme precipitation in the southern (north) edge of416

the subtropical jet in the northern and southern hemisphere could indicate an equator-ward shift417

of heavy precipitation regions as opposed to a general expansion of the ITCZ (Zhou et al. 2011,418

Lucas et al. 2014).419

We emphasize that only linear trends in time have been investigated here, and therefore420

our model can only detect static increases/decreases in precipitation extremes. One possible421

workaround to this problem would be to use the average temperature within each cluster as a422

covariate instead of time; the resulting model could then capture more complex behaviors in the423

global precipitation system. In addition, since the data record is relatively short, the estimated424

trends might be capturing part of a longer-period fluctuation. For example, even models that cor-425

rectly identify a trend over a short time period may fail to identify a reversal of the trend if such a426

reversal occurred over a time span longer than the data record (Fu et al. 2010, Kunkel et al. 2013).427

4. Application to surface air temperature data428

The generality of the PP framework implies that our clustering and model fitting procedures429

can easily be applied to model various types of data other than precipitation data. As a proof of430

concept, in this section we apply our methodology to analyze trends in extreme temperature in-431

tensity. Specifically, we use surface air temperature data from NOAA’s NCEP North American432

Regional Reanalysis (NARR) product (NOAA/NCEP 2004). The data are daily surface temper-433

atures (in degrees Celsius) spanning from 1 Jan. 1979 to 31 Dec. 2013 over North America at434

a resolution of approximately 0.3 degrees (32 km) at the lowest latitude, and the number of grid435

squares is 349×277. Here, we restrict our analysis to CONUS. More information about the NARR436

product can be found at http://www.esrl.noaa.gov/psd/data/gridded/data.narr.html437

(Mesinger et al. 2006). Again, we stress that the results from the short data record cannot be ex-438
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trapolated into the future.439

We used 50 clusters for the first round of k-means and 30 clusters for the second round, resulting440

in a total of 1500 disjoint regions. We used location and the 90th percentile of temperature values441

as input for clustering, though more extensive analyses should consider a more comprehensive set442

of variables. The Viglione et al. (2007) homogeneity test identified 1431 out of 1500 regions as443

being acceptably homogeneous. Next, we fit a non-stationary PP model to the data in each region444

following the procedure outlined in Section 2. Since we will be examining long-term trends, for445

the threshold function in (2), we took one threshold per year, taken to be the 95th percentile of tem-446

perature intensities for that year (using the 95th percentile instead of the 99th percentile produced447

more stable parameter estimates). As before when examining trends in precipitation extremes, we448

assumed constant scale and shape parameters and a linear trend in the location parameter. A map449

showing the percent change of the median of the fitted extreme temperature distributions is shown450

in Figure 10, along with a map of average temperatures for comparison. Only trends significant at451

the 5% level are shown.452

According to our model, most of CONUS experienced an increase in the intensities of extreme453

temperature events during this time period. Figure 10 indicates that the largest increase in the454

medians of extreme temperatures was about 4% in southern Louisiana and eastern Texas. The455

east coast also showed a consistent increase in extreme temperature intensities, with the largest456

increase of about 2% occurring in eastern Maryland and Delaware. The trends are reversed near457

parts of the Rocky Mountains, with decreases in the median of temperature intensities as large as458

2% in western Colorado. Some smaller decreases are observed in the northern Great Plains and459

parts of central California. These results are generally in line with the analyses and projections460

of Schoof and Robeson (2016), who predict a consistent increase across the United States in the461

number of excessively warm days over the 21st century. Our findings are also consistent with the462
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behavior of extreme heat waves over this time period, particularly with the increased number of463

extreme heat waves occurring from 2000-2010 (Kunkel et al. 2013). Notably, unlike the findings464

in Peterson et al. (2013), our results do not reflect any cooling trends over the “warming hole”465

(Meehl and Arblaster 2012, Kunkel et al. 2006) in the southeastern United States. The phase re-466

versal of the Interdecadal Pacific Oscillation in the tropical Pacific in the late 1990s may explain467

the disappearance of the warming hole after 2000 (Meehl et al. 2015), and therefore part of the468

difference in our findings may be due to differences in the data period (1950-2007 in Peterson et al.469

2013 vs. 1979-2013 here). Once again, we emphasize that we have assumed a simple linear trend470

in time, and that more complicated trend structures would be able to capture more sophisticated471

behavior in temperature extremes.472

5. Discussion473

In this paper, we propose an alternative methodology for the statistical modeling of the TRMM474

extreme precipitation monitoring system. Our regional clustering algorithm, in conjunction with475

the POT approach for modeling extremes, allows us to leverage more data than the single-site476

block maxima method, yielding more accurate estimates of the regional ARIs. The resulting return477

level maps produced by our method (Figure 6) reveal that our algorithm can more effectively478

separate out the statistical noise than the existing Zhou et al. (2015) approach. Our model provides479

a useful tool for studying the global and regional characteristics and trends of extreme variables,480

whether these are precipitation events or other climate events.481

There are several possible extensions to our analysis. First, in this paper we only consider482

1-day precipitation totals. More complete information about return levels and trends in extreme483

precipitation can be obtained by considering multi-day cumulative precipitation totals, e.g. 3 or484

5 day precipitation totals reflecting the severity of multiple-day precipitation events. However,485
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when modeling such accumulated precipitation events, we noticed significant multi-modality486

in the intensity of the accumulated precipitation events. While multimodality in precipitation487

occurrences and intensity has been previously reported (Schindler et al. 2012, Tye et al. 2016),488

we are not aware of any statistical models that have specifically been developed to model489

multimodality in accumulated precipitation totals. We are currently developing a framework490

based on mixture modeling that would be able to deal with this realistic scenario.491

Second, we did not attempt to model the spatial dependence among grid locations in each492

regional cluster. Future studies should aim at developing models that are flexible enough to493

accommodate a wide range of dependence structures while being careful to avoid over-fitting.494

Finally, we chose to adopt first-order sinusoidal functions to represent the GEV location and495

scale parameters when estimating return levels. While this choice may be a reasonable first496

approximation for modeling seasonality at all locations, a more flexible seasonal cycle would be497

more appropriate. Effectively modeling the seasonal cycle can be beneficial for assessing the498

variability in extreme events throughout the year at any location; the resulting effective return499

levels can be crucial for public policy and disaster relief planning, especially during months where500

extreme precipitation events are particularly intense. A more realistic and flexible seasonal cycle501

warrants further study.502

503

Acknowledgments. Levon Demirdjian was supported by a Burroughs Wellcome Fund Popula-504

tion and Laboratory Based Sciences Award at UCLA, and would like to thank the NASA Goddard505

Space Flight Center internship program. Yaping Zhou was supported by NASA Precipitation506

Measurement Mission (NNH12ZDA001N-PMM) and the Science of Terra and Aqua program507

24



(NNH13ZDA001N-TERAQ). George J. Huffman was supported by NASA Precipitation Mea-508

surement Mission (award 573945.04.18.02.78).509

References510

Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of Daily511

Precipitation and Extreme Precipitation Events in the Northeast United States. J. Hydrometeor.,512

16 (6), 2537–2557, doi:10.1175/JHM-D-14-0147.1.513

Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes514

of temperature and precipitation. J. Geophys. Res.: Atmos., 111 (5), 1–22, doi:10.1029/515

2005JD006290.516
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FIG. 1. Illustration of recursive clustering algorithm. In this example, CONUS is initially clustered into 6

distinct regions (marked by different colors). Each region is further clustered (e.g. region A is itself partitioned

into 5 clusters); this process is repeated for each resulting cluster (e.g. region B is further partitioned into 7

clusters).
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FIG. 2. Results of the clustering algorithm. Each color corresponds to a different cluster. While there are over

28,000 distinct clusters, only those created during the first two stages are depicted.
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FIG. 3. Return level maps for CONUS resulting from the non-stationary PP model using the TRMM 3B42

daily product. The left column contains the maps corresponding to the 2 year return levels on January 1 (top)

and July 1 (bottom). The right column contains the maps corresponding to the 25 year return levels on January

1 (top) and July 1 (bottom).
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FIG. 4. Non-stationary PP model diagnostic plots (A-B) and return level plot (C) for the cluster containing

Los Angeles. A) QQ plot. B) Z plot: The solid gray line is the regression fit of Zk on the expected values of

the observed order statistics under the model. The dashed orange line is a 45◦ reference line, and the dashed

gray lines are 95% confidence bounds. C) Return level plot: Fitted precipitation return levels in Los Angeles for

December 2003 - May 2006. The orange curve corresponds to the seasonal threshold, the red curve corresponds

to the 2 year return level, and the green dashed curve corresponds to the 100 year return level. The 95%

confidence bounds are indicated by gray dot-dashed curves.
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FIG. 5. Maximum of daily 95% NCRs of estimated 5 year (top plot) and 20 year (bottom plot) return levels

from the non-stationary PP model. White values correspond to NCR values above 2.
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FIG. 6. Comparison of the return level maps produced by the CPC measurements (GEV model, CPC daily uni-

fied product), GEV-based TRMM model (TRMM 3B42 product), and the stationary PP TRMM model (TRMM

3B42 product).
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FIG. 7. Comparison of model fit using the PP approach (top row) against the block maxima / GEV approach

(bottom row) for a randomly selected regional cluster corresponding to 4 grid points in Western Colombia (for

the block maxima approach, we randomly selected one of these 4 grid points). Left: Kernel density plots. Black

(solid) curves are empirical data, blue (dashed) curves are model fit. To create the PP density plot, the empirical

density of the annual maxima of the data are calculated (black solid line) and compared to the GEV distribution

implied by the fitted PP (blue dashed curve). Middle: QQ Plots. Right: Return level plots. The dashed curves

are 95% confidence bounds.
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Precipitation (6 Oct 2013)
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FIG. 8. Typhoon Fitow (6 October 2013) precipitation in mm (left) and predicted annual probabilities for

the non-stationary PP model (middle) and stationary GEV model (right). Only precipitation levels greater than

50mm and their corresponding probabilities are shown for clarity. Note the different probability scales.
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Percent change in GEV median, 1998 - 2013
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FIG. 9. Percent change in the median of the fitted GEV distribution of extreme precipitation intensities.

Positive changes reflect more intense extreme precipitation events and negative changes reflect less intense

extreme events (only trends significant at the 5% level are shown).
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FIG. 10. Left: Mean surface air temperatures in CONUS, 1979 - 2013 (NCEP North American Regional

Reanalysis product). Right: Percent change in the median of the distribution of temperature extremes from the

non-stationary PP model (only trends significant at the 5% level are shown).

756

757

758

44


