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Aerospace structures comprised of composite materials are traditionally certified 

empirically via the Building Block Approach (BBA). While this approach has been performed 

successfully in the past, it is expensive and time consuming. One means to improve the overall 

efficiency of composite structural certification is to reduce the cost of the BAA by eliminating 

the need for some tests by incorporating damage analysis tools. For an analysis to replace a 

given test, the tool must first be validated using other similar test data. The subject of this 

paper is a description of an analysis technique for simulating compression after damage 

strength of a solid laminate. The analysis technique is one that is practical for use in an applied 

engineering context due to efforts to minimize necessary computational resources and 

complexity of the model. 

  

I. Introduction 

 Carbon-fiber reinforced polymer (CFRP) laminate materials are becoming increasingly common in aerospace 

structures. Often design requirements include a need for damage tolerance. The most widely accepted certification 

methodology to meet strength and damage tolerance requirements is use of the Building Block Approach (BBA) [1, 

2]. The BBA consists of a test program beginning with basic material characterization, followed by more focused 

testing including damage tolerance, evaluation of structural features/elements, and concluding with full scale hardware 

tests under flight load conditions. The biggest drawback of this methodology is that it is very cost and time intensive. 

One opportunity for reducing this cost is incorporating damage simulation analyses that can reduce the number of 

required tests. This may be achieved by validating a modeling technique using tests performed to a level of confidence 

that the model can be applied in place of other similar tests that would have otherwise been required.  

 When considering damage tolerance, a common design driver for composite laminates is in-plane compression 

strength [3]. Therefore, the compression after impact (CAI) test is a common component in a typical BBA 

characterization effort. The CAI test is used to determine reduced compressive strength of a material system after 

impact damage has occurred. Prediction of this reduced strength using damage tolerance analysis tools [4-6] can 

potentially reduce the need for some of these tests provided that the modeling technique is validated using similar test 

data.  

CAI testing was performed on a solid laminate carbon-fiber reinforced polymer composite material system as part 

of the BBA for the Orion spacecraft structural design and certification. Retroactively, a finite element analysis 

technique was developed using the Orion test data that could be used in future similar projects. The Orion BBA test 

data was used to help develop and correlate the modeling technique described in this paper, however, the model itself 

was never applied within the Orion program as suggested. Therefore, the modeling technique presented in this paper 

is best viewed as a proposed component of a future composite certification program. Use of the Orion context and 

Orion test data provides an excellent context for this demonstration of how damage simulation may be applied. 
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II. Testing 

 Compression after impact tests were performed as part of the Orion BBA for all of the composite material 

configurations (i.e., layups). While many configurations are used throughout the vehicle, testing and analysis of one 

solid laminate layup will be discussed in this paper. Test coupons consist of a woven IM7/977-3 CFRP material 

system. The layup consists of two [+45°/0°/-45°/90°]2s laminates bonded to one another with a film adhesive layer 

(16-plies/adhesive/16-plies).  Lamina properties for this material system that were used in the analyses described later 

in this paper are shown in Table 1. The adhesive layer was ignored in the analysis by treating it as if it were the same 

as any other ply interface in the layup. All material and strength properties are typical values. In addition to the 

properties listed in Table 1, fracture properties including critical energy release rate and a mixed-mode exponential 

parameter were used in the modeling, however, this data is not available for publication.  

 

Table 1. Material properties. 

 
 

 An overview of the CAI test setup that was used is shown in Figure 1. The CAI test procedure consisted first of 

impacting 4” x 6” test coupons in an impact fixture according to ASTM-D7136 (Standard Test Method for Measuring 

Damage Resistance for Fiber Reinforced Polymer Matrix Composite to a Drop Weight Impact Event) [7]. Various 

impact test parameters were evaluated in the Orion BBA, with boundary conditions selected to represent the relevant 

manufacturing threat environment (i.e., handling damage, tool drops, etc.).  The model correlation exercise described 

in this paper is based on use of an energy level of 15 ft-lbs and an impactor tip geometry of ½” diameter semi-sphere. 

After impacting the coupons, flash infra-red thermography (Flash IR) non-destructive evaluation (NDE) was 

performed to ascertain the size of impact damage. Additionally, x-ray computed tomography (CT) and was performed 

to characterize the impact damage in greater detail. A representative view of NDE results of an impacted specimen 

(before compression loading) is shown in Figure 2. Note that different projected damage areas are observed using 

flash IR on the front and back sides of the specimen.  After impact and NDE of the test coupons, the specimens were 

loaded in displacement controlled edgewise compression according to ASTM-D7137 (Standard Test Method for 

Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates) [8] in a hydraulic-servo 

100kip load frame. Strain data was collected from gauges bonded on both sides of each specimen. Applied force data 

was collected from the test frame load cell. 

 The goal of the test was to observe the critical compression strain of the material at ultimate failure and use this 

information to generate a structural allowable for the material with impact damage present. In the case of this test, the 

critical force is coincident with unstable onset of growth from the initial impact damage. The analysis results later in 

this paper use critical force as the correlation metric between the model and test.  

 

Property Value Units Description

E 11 10.19 Msi 0° elastic modulus

E 22 10.77 Msi 90° elastic modulus

E 33 1.29 Msi Transverse elastic modulus

G 12 0.40 Msi 12 shear modulus

G 13  = G 23 0.43 Msi 13 and 23 shear modulus

ν 12 0.044 Poisson's ratio

ν 13  = ν 23  0.081 Poisson's ratio

X
T

149.11 ksi 0° tensile strength

X C 122.6 ksi 0° compressive strength

Y
T

149.11 ksi 90° tensile strength

Y
C

122.6 ksi 90° compressive strength

Z T 7.315 ksi Transverse tensile strength

Z
C

50.0 ksi Transverse compressive strength

S 12 17.2 ksi 12 shear strength

S 13 10.19 ksi 13 shear strength

S
23

10.19 ksi 23 shear strength
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Figure 1. Compression after impact test setup 

 

 
Figure 2. Representative Non-destructive Evaluation of Impact Damage. (a) X-ray CT scan at impact site and (b) 

Flash IR scan of impacted side (left) and back side (right) 

 

III. Model Definition 

 Abaqus Standard 2017 was used to perform finite element simulations of the test. The following is an overview 

description of the finite element model and modeling technique used in this study. Sensitivity of certain model details 

on results is discussed in the following sections, however, the details of this baseline model description are constant 

throughout this paper.  

 

A. Model Description: Baseline 

 An overview of the model is shown in Figure 3. The boundary conditions are shown in Figure 3 are representative 

of the test fixture shown in Figure 1. Compressive loading was applied as prescribed displacements at nodes along 

one boundary of the coupon. An Abaqus plug-in and Graphical User Interface, as shown in Figure 4, were developed 
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to create and run all of the models in this study. The plug-in is noteworthy as it lends itself well to use of the analysis 

technique in an applied engineering context where quick modifications and rapid turnaround of analyses is useful. The 

plug-in functions such that the user enters a limited predesignated set of parameters and the model generation, solution 

and determination of damage initiation forces are executed automatically. 

 The modeling discussed in this paper does not include simulation of the actual impact event, therefore, it must 

contain a representation of the preexisting damage that was caused by the impact as an initial feature of the model 

definition. Preexisting impact damage is represented in this modeling technique as discrete circular delaminations in 

a three-dimensional mesh composed of continuum shell elements. The preexisting damage size corresponds to 

projected damage diameter observed in the flash IR NDE scans. If multiple preexisting delaminations are included in 

the model, the damage sizes of the outermost delaminations within the layup correspond to the different observed 

NDE sizes from each face of the coupon. Intermediate cracks are sized based on a linear interpolation through the 

layup thickness. If only one preexisting delamination is included in the model definition, its diameter corresponds to 

the maximum measured NDE damage size. A goal of this study was to confirm that this means of representing initial 

damage, while a simplification of the actual damage as seen in CT scan in Figure 2, is sufficient to achieve accurate 

predictions of critical force. 

 The mesh is subdivided according to the preexisting damage. Mesh regions adjacent to and in between 

delaminations may represent multiple plies using composite laminate theory. This technique of mesh division 

combined with the use of continuum shell element types allows for an efficient solution process. Mesh convergence 

studies were performed globally and local to the preexisting delamination fronts to verify that the size used would not 

produce significantly different results if refined further. Figure 5 shows the force-strain data correlation between the 

model and test data. This is useful as baseline observation that, damage predictions aside, the model is capturing the 

elastic response well. 

 

 

 
Figure 3. Finite element model overview (boundary conditions are applied such that displacement normal to the 

plate is restrained at all edges). 
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Figure 4. Snapshot of the Abaqus plug-in. 

 

 

 
Figure 5. Force-strain data correlation between model and test (multiple strain gauges on front and back specimen). 

 

B. Model Description: Damage Prediction 

 A major component of this investigation was determining a damage prediction technique that is accurate as well 

as computationally efficient. Recall, that the scope of this analysis is limited to prediction of the onset of growth from 

preexisting damage. There was no attempt to predict damage propagation as this behavior is not needed or observed 

in this particular BBA test. The numerical techniques to predict onset of growth from the preexisting damage were the 

Virtual Crack Closure Technique (VCCT) [9] and several first ply failure stress combination techniques including 

Hashin-Rotem [10], Tsai-Wu [10], Tsai-Hill [10], and Azzi-Tsai [10]. All damage onset numerical techniques were 

used in the form that is implemented in Abaqus 2017 (i.e., no user subroutines were used). Generally, the VCCT 

would be more adept at predicting damage if the critical failure model is interply (i.e., delamination) and the first-ply-

failure stress criteria would be better at prediction damage if the failure mode if intraply (i.e., fiber failure). Mixed 

mode delamination onset was accounted for in VCCT using the Benzeggah-Kenane equation [11] to determine a 

critical energy release rate as a function of mode-mixity.  
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IV. Parametric Study on Model Sensitivity and Abaqus Parameters 

 An investigation was performed to study model sensitivity to various features and options within Abaqus. This 

investigation is summarized and presented here concluding with a modeling technique recommendation. The reader 

should also keep in mind that the purpose of these analyses was to develop a practical engineering tool and for this 

reason, simulation techniques requiring very fine meshes, multiple CPUs, or finely detailed representation of cracks 

were not considered. Sensitivity is posed in the context of correlating the critical force prediction in the model with 

that of the test. In the case of the 15 ft-lb impact, the test value to match is 43.9 kip. In the case of Hashin-Rotem, the 

value is shown that corresponds to the first failure index to exceed 1.0.  

 The main focus of the parametric study was to study details of how the preexisting damage should be defined in 

the mesh. The first sensitivity noticed was that of the type of contact algorithm definition used between delamination 

surfaces. Several contact algorithms exist for use in Abaqus. The contact algorithms considered in this study are listed 

in Figure 6. The effect on global response of the coupon in the model is illustrated qualitatively in Figure 6. The failure 

prediction is highly dependent on the global response. Case 1 and 4 are most representative of the global response 

observed in the test. Note that, in Abaqus 2017, when VCCT is enabled, the user has no control over the contact 

algorithm that is used. 

 

 
Figure 6. Sensitivity to contact algorithm. 

 

 Figure 7 illustrates other model parameters that were included in the sensitivity study: (a) starting depth of damage, 

(b) spread of two cracks, (c) eccentricity of two cracks, and (d) number of cracks. Results of the sensitivity study for 

the parameters illustrated in Figure 7 are shown in Figure 8. The experimentally observed critical force of 43.9 kip is 

identified as “target” in Figure 8. 
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Figure 7. Definition of Parameters Included in Study. 

 

 

 
Figure 8. Parameter sensitivity results. 

 

 Sensitivity of the model to starting depth of damage (i.e., ply interface) is shown in Figure 8a. If the starting depth 

of a crack is near the laminate surface, the critical force is under-predicted. If the crack is moved away from the 

laminate surface, a significant over prediction of the critical force is observed. The over prediction is essentially 

constant for each failure criteria aside from the case where the crack is near the surface. None of the model 

configurations in Figure 8a appear to be useful as a predictive tool. 
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 The sensitivity of the model to the distance of spread of two cracks is shown in Figure 8b. Generally, if VCCT is 

enabled, the model did not converge and in cases where it does, the critical force is close to zero. The stress criteria, 

while generating various levels of predictions, are insensitive to this parameter except for values greater than 0.105”. 

Sensitivity in this range is thought to be a result of one of the cracks being positioned near the surface of the laminate.  

 The sensitivity of two preexisting delaminations to the eccentricity of their location (i.e., distance from the mid-

plane) is shown in Figure 8c. The spread of the two delaminations is fixed at 0.11375”. VCCT and stress-based results 

are sensitivity to this parameter. The results generated by the stress criteria appear correlate well with test data when 

the cracks are placed closer to the surface of the coupon. This matches the physical condition of the coupon itself as 

the impact damage is located near the surface. In the instances where good test correlation is observed in Figure 8c, 

all of the stress based criteria generate approximately the same prediction for critical force. 

 The sensitivity of the model to the number of cracks is shown in Figure 8d. The model is not sensitive to this 

parameter. However, if VCCT is activated, the stress based predictions change significantly. The VCCT prediction 

itself is well below the target value. This is likely due to the effect that the contact algorithm associated with VCCT 

has on the model (see Figure 6). Overall, enabling VCCT introduces convergence problems and has a high sensitivity 

to model parameters.  

 The ideal model configuration should be one that has parameters in a range where a high sensitivity is not observed 

and a good test correlation is observed. If this condition is met, the model will be more likely to produce reliable 

results while accommodating variations in the coupon such as NDE size or layup (as desired in order to use the model 

to replace similar otherwise needed tests). Based on the sensitivity study performed, the model condition that matches 

this requirement and correlates best with the test data is summarized as follows: 

 Two preexisting delaminations spaced less than 0.11375” apart 

 Preexisting delaminations located near the impacted surface of the coupon 

 Sizes of the two preexisting delaminations correspond to projected damage area from flash IR NDE of each 

side of the coupon 

 Continuum shell elements, global mesh sized at approximately 0.2 in., maximum aspect ratio is 11.43 

 

Use of VCCT to predict damage growth onset was not found to be reliable or useful in this application. The reasoning 

behind this is thought to be due to a high sensitivity to the contact algorithm plus the fact that onset of delamination 

does not appear to be the critical failure mode. The contact algorithm and contact behavior in general were found to 

influence prediction of delamination front energy release rate. Any of the stress based criteria appear to produce 

reasonable predictions in the ideal model configuration.  

 

V. Conclusion 

 The overall result of this study is a test correlated damage simulation methodology for damage growth onset 

prediction in a CAI test. The demonstration in this paper is specific to one material system, one layup, and one 

preexisting damage state. Good correlation between the model and test data was observed. Furthermore, based on the 

parametric study that was performed, the model is believed to be configured in a state that is insensitive to slight 

variations in the test configuration. At the time this paper was written, further development of the model consists of 

evaluating the model’s performance against other impact energies (i.e., other initial damage sizes). Because the work 

described in this paper was performed retroactively to the actual certification effort for the Orion vehicle, this work 

best serves as an example of what could be done in the future for a similar composite vehicle certification effort. The 

modeling technique developed in this paper is computationally efficient and implemented in an automated and easy 

to use Abaqus plug-in.  
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