

Reflectivity based VIL is combined with 5 minute flash counts to create VILFRD which is then objectively tracked via a kmeans tracking algorithm within the Warning Decision Support System – Integrated Information (WDSS-II).

Case Study Pearson Correlations					
	GLM	GLM	GLM	LMA	LMA
Storm:	vs.	vs.	vs.	VS.	vs.
	LMA	VIL	MESH	VIL	MESH
Skyline AL (severe)	0.351	0.127	-0.019	0.507	0.421
Jones AL (severe)	0.569	0.514	0.440	0.643	0.642
N. AL (non-severe)	0.773	0.617	0.650	0.701	0.760
Denver CO (severe)	0.360	0.343	0.178	0.565	0.591
Cen OK (severe)	0.563	-0.211	0.093	0.090	0.266
Cen OK (non-severe)	0.801	0.412	0.517	0.384	0.457
N. TX (severe)	0.439	-0.136	-0.286	0.501	0.351
Average	0.551	0.238	0.225	0.484	0.498

- Overall only moderate correlations between GLM and LMA flashes.
- LMA overall more correlated to radar metrics than GLM
- In the strongest storms (Skyline, N. TX) correlations between GLM and radar/LMA the worst.
- Best agreement in the weakest, two non-severe cases.

Potential Improvements Moving Forward

• In order to reliably use the LJA on the GLM some improvements will need to be made to either or both of the GLM LJA system and GLM flash measurements for better LJA optimization • GLM flash measurements measure at times 2-5 less than LMAs, especially in the more severe storms. Noted potential causes of this are GLM not detecting small flashes and potential optical extinction processes. Increases in DE of the GLM should impact the operational skill of the LJA. There also exists an issue of GLM splitting up large flashes into many small flashes which may cause increased jumps in weak or decaying convection. Currently ongoing CAL/VAL activities working to potentially alleviate some of these issues. The tracking algorithm tended to be more biased towards VIL even when flashes likely associated with the storm falling outside of the tracked feature and not counted. Also, changing how the flashes were gridded had direct impacts on skill scores given similar features. Could move to GLM only tracking using fixed GLM grid. Extended periods of little variability in GLM flash rates not usually seen in LMA caused minimal increases in flash rates to trigger a jump. May need to revisit the actual LJA for its use on GLM.

• Severe: Usually large disagreements in GLM vs LMA flash rates / trends, LMA jumps more during intensification, GLM jumps more during decay. Non-severe: Better agreement in GLM vs LMA flash rates / gross trends, GLM tends to jump more, second jump caused by previous little variability.

References/Acknowledgement

• This project was supported by the NOAA GOES-R Series Risk Reduction Research (R3) program and NASA MSFC through the NASA MSFC and UAH Cooperative Agreement (NNM11AA01A). • Schultz, E. V., C. J. Schultz, L. D. Carey, D. J. Cecil, and M. Bateman, 2016: Automated storm tracking and the lightning jump algorithm using goes-r geostationary lightning mapper (glm) proxy data. Journal of Operational Meteorology, 4 (7), 92-107, doi:10.15191/nwajom.2016.0407.