TAXONOMICAL AND CHOROLOGICAL NOTES 6 (71–74)

Dávid Schmidt1*, János Csiky2*, Gábor Matus3*, Rebeka Balogh3, Erzsébet Szurdoki4, Mária Höhn5, Péter Ábrán6, Krisztina Buczkó4 and László Lőkös4*

1Institute of Botany and Nature Conservation, University of Sopron, H–9400 Sopron, Bajcsy-Zsilinszky u. 4, Hungary; *schmidt.david@uni-sopron.hu
2Department of Ecology, Institute of Biology, Faculty of Sciences, University of Pécs, H–7624 Pécs, Ifjúság útja 6, Hungary; *moon@ttk.pte.hu
3Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, H–4032 Debrecen, Egyetem tér 1, Hungary; *matus.gabor@science.unideb.hu
4Department of Botany, Hungarian Natural History Museum, H–1431 Budapest, Pf. 137, Hungary; *lokos.laszlo@nhmus.hu
5Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Budapest, Hungary; hohn.maria@kertk.szie.hu
6Agenţia de Protecţie a Mediului Mureş, Târgu Mureş, Romania


Abstract: The present part of the series of miscellaneous new records provides new chorological data of one lichen-forming fungus and three vascular plants. One basidiolichen species (Multiclavula mucida) is reported for the first time from the territory of Romania as native and one (Oenothea oehlkersii) from Hungary as a garden escape. One species (Dryopteris affinis) is new for the Bakony Mts and one is confirmed for the Great Hungarian Plain (Danthonia decumbens).

Keywords: Clavulinaceae, Dryopteridaceae, Hungary, Onagraceae, Poaceae, Romania

INTRODUCTION

This paper is the sixth part of the series launched in Studia botanica hungarica focusing on the new chorological records, nomenclature, and taxonomy of plant species from algae to vascular plants and fungi (Barina et al. 2015, Csiky et al. 2017, Mesterházy et al. 2017, Papp et al. 2016, Takács et al. 2016).

MATERIAL AND METHODS

Nomenclature of vascular plants follows Király (2009) and The Plant List (2013).

Codes of the Central European flora mapping grid are in square brackets. Coding of forest lots has been based on www.erdoterkep.nebih.gov.hu.
Coordinates if not recorded by GPS devices are in square brackets. Abbreviations of herbaria follow THIERS (2017).

NEW RECORDS WITH ANNOTATIONS

Lichen-forming fungi

(71) Multiclavula mucida (Pers.) R. H. Petersen (Clavulinaceae)

Romania. Mureş County, Lunca Bradului (Palotailva), steep siliceous rocky ridges in Mureş valley at the southwestern border of the Călimani Mts (Eastern Carpathians), ca 1.1 km ENE of Neagra, on heavily wet stump of a fallen coniferous tree, 46.969478° N, 25.170562° E, ca 725 m; leg. L. Lőkös, H. Höhn and E. Szurdoki, 26.09.2017 [BP 96315].

Multiclavula mucida is a conspicuous, easily recognisable, crustose, basidiolichen species (Fig. 1). Its thallus consists of tiny granules forming a thin, bright green (when wet) or greyish (dry) layer on the surface of the substrate. Fruit-bodies are ascending, small, 1–2 cm tall, cylindrical, club-shaped, simple or rarely branched, straight or curved, whitish or pale crème or ochre colour. The 4–6 basidiospores are produced by the basidia at the darker brownish, pointed tips of the basidiomata.

Multiclavula mucida has been reported from several countries in Europe, but only with a few records from most of the places. From the Carpathian region it is known from Poland (Kościelniak et al. 2016), Slovakia (Guttová Fig. 1. Multiclavula mucida, thallus and fruit-bodies (Photo: E. Szurdoki).
and Palice 1999) and Ukraine (Holec 2008, Pilát 1940, Vondrák et al. 2010) (Fig. 2). It is considered as the first Romanian record (cf. Ciurchea 2004, Eliade 1965), which is ca 130 km far from the closest known localities in the Ukrainian Carpathians (Maramaros Mts). This occurrence has already been announced recently in a poster presentation without exact locality information (Lőköș et al. 2018).

L. Lőköș, E. Szurdoki, M. Höhn, P. Ábrán and K. Buczkó

Pteridophyta

(72) Dryopteris affinis (Lowe) Fraser-Jenk. (Dryopteridaceae)

Hungary, Győr-Moson-Sopron County, Bakonyalja: Fenyőfő, North from the village, in a Pinus sylvestris dominated forest (plantation), at the edge, close to the forest road, 47° 21’ 5.46” N, 17° 45’ 32.73” E, 267 m [8672.2]; leg. Csiky J. and Csikyné R. É., 11.05.2018, det. Csiky J. (photodocumented) (Fig. 3).

This native and expansive fern was thought to be rare with some occurrences in the Transdanubian half of the country in the last century (Farkas 1999). Nowadays (Bartha et al. 2015) it is widespread in West and South Transdanubia, but small populations are also known in the Gerecse Mts (Barina 2006), Buda
Mts (Csiky and Somlyay 2005) and in the Eastern half of Hungary (Mátra, Nyírség). It is new for the Bakony Mts (Vesprimense).

Fig. 3. Dryopteris affinis at Fenyőfő (Photo: J. Csiky).
With its single, but strong specimen on the edge of the so called “Fenyőfői Ös-fenyves” it contributes to the local list of mountain species, which prefer moist and shady habitats, typical for conifer forests and plantations in Hungary. Associated herb species within 1 m² are ruderal taxa and/or plants preferring nutrient rich soils: *Anthricus cerefolium*, *Chelidonium majus*, *Dryopteris filix-mas*, *D. carthusiana*, *Geranium lucidum*, *Poa pratensis*, *Rubus caesius*, *Rubus sp.*, *Urtica dioica*.

J. Csiky

Vascular plants

(73) *Danthonia decumbens* (L.) DC. [syn.: *Sieginglia decumbens* (L.) Bernh.] (Poaceae)


The common heath grass is native to Europe, the Azores and the Madeira Islands, North Africa (Morocco, Algeria, and Tunisia) and parts of western Asia (Turkey, Georgia). After introduction it is naturalized in some temperate regions of Australia, New Zealand, and North (USA) and South America (Chile) but rarely reported as invasive (Alfonso 2010, Mallett 2005, https://www.cabi.org/isc/datasheet/113791). In Hungary, where the acidophilous subsp. *decumbens* is present (Soó 1973), it is widespread in West Hungary and present in Bakonyalja and the Vértes Mts. In South Hungary it is present in Belső-Somogy (on acidic sand) and the Mecsek Mts (Csiky et al. 2014). It also occurs in the Visegrád Mts and in all those regions of the North Hungarian Mountain Range where acidic bedrocks are present (Csiky 1999, Simon 1992, Soó and Kárpáti 1968). In contrast, in lowlands, only sporadic records are known from the southern edge of the Small Hungarian Plain (Vitnyéd, Csapod, Röjtökmuszaj) as well as Drávamenti-síkság (Endrőc, Csiky 2005). In the Great Hungarian Plain (Alföld) no data had been reported till the early 1980s (Boros 1932, Soó 1973, Soó and Kárpáti 1968).

The species was first collected in the Great Hungarian Plain in the Nyírség, a sandy plain split between Hungary and Romania, by Z. Siroki at Vámospércs (HU) [8497.4] in 1984–1985 (Simon 1992, as DE–siroki–011668–01672.jpg in Takács et al. 2015). No record has been published yet from the Romanian part of the region (Karácsonyi 1995). Records close to those in the Nyírség were documented in the Mátra Mts, the Bükk Mts, Bükkalja and the Zemplén Mts (HU).
and the Oaș (Avas) Mts (RO) (Bartha et al. 2015, Karácsonyi 1995, Matus et al. ined., Schmotzer 2015, Valkó et al. 2009, 2010, Vojtkó 2001). Later it was also found near Bagamér (Daruhegyek = Malom-gát [8597.2], Matus and Papp 2001) and was rediscovered at the original site (Vámospércs: Villongó [8497.4]) in 2002 (Király et al. 2011, Matus and Papp 2003, DE-soo-03431.jpg in Takács et al. 2014). The original sheets of the floristic survey for the 8497.4 and 8597.2 grids compiled by G. Matus and M. Papp were not used in the construction of Atlas Florae Hungariae. Bartha et al. (2015) did not publish the presence of the common heath grass from the Nyírség since they did not record the species during remapping neither reviewed the available literature. In 2017 and 2018 we confirmed the presence of the species near the original site of Vámospércs and recorded it from three further grid cells near Monostorpályi and Létavértes. Further occurrences in the Nyírség along the Kék-Kálló stream (HU) as well as in the Romanian part of the Nyírség (Cimpia Nirului) are likely in similar habitats as near the Ér brook. Some newly collected specimens have been deposited at BP and DE, respectively.

The species in Hungary is known as typical of acidic mountain meadows as well as heathlands. It is considered as Nardetalia species present most often in Nardo-Festucetum ovinae and in acidic fen and marsh meadows Junco-Molinietum, Deschampsietum cespitosae as well as in fens (Carici echinatae-Sphagnetum, Caricetum davallianae) and several other grassland and forest communities such as Thymo-Festucetum ovinae, Quercetum paetraeae-cerris, Aulocomnio-Pinetum sylvestris, Festucetum pratensis, Lolio-Cynosuretum, Genisto pilosae-Festucetum ovinae, Festucetum rubrae (Simon 1992, Soó 1973).

All Nyírség habitats proved to be temporarily moist acidic grasslands and meadows in shallow dune slacks on calcium-free, acidic sand. Soil traits at Létavértes a) are as follows at the 0–10 cm layer, pH(KCl): 4.2, organic material (m/m)%: 4.7, P₂O₅ (mg/kg): 73, K₂O (mg/kg): 185.

Matus, G. and Balogh, R.

(74) Oenothera oehlkersii KAPPUS ex ROSTAŃSKI (Onagraceae)

Hungary, Veszprém county, Balatonkenese, “Kikötő street” 47° 01’ 54.4” N 18° 06’ 14.4” E, a few specimens in a ruderal place; leg.: D. Schmidt, 04.07.2015 (8974.4), photodocumented (Fig. 4).

Oenothera oehlkersii is a presumed hybrid between Oe. glazioviana and Oe. suaveolens, which is originated in Europe (ROSTAŃSKI et al. 2010). Its main characteristics are the yellowish green flower bud and the stigma which hangs out of the flower (longer than the petals). The stigma of Oe. suaveolens is significantly shorter, however, it is much less glandular but white hairy, and the flowers are smaller than Oe. oehlkersii. Oe. glazioviana has got red striped flower bud and sepal, furthermore the colour of the stem and the rachis is also red. In contrast,
Fig. 4. *Oenothera oehlkersii* at Balatonkenese (Photo: D. Schmidt).
in the inflorescence of *Oe. oehlkersii* reddish colour cannot be found. Based on these specific diagnostic characters, this tall and big-flowered plant is more easily recognisable than other taxa in the *Oenothera* series of the genus.

The newly discovered occurrence has been located near Lake Balaton, in the recreation area of Balatonkenese, at the roadside of Kikötő street in a weed association. The population consisted of only three or four specimens, all rich branched and with a number of flowers. Based on the photos, the correctness of the determination had been confirmed by Michael Hassler and Helmut Kiesewetter (members of “GEFD-Arbeitsgruppe Oenothera” in Germany). *ROSTAŃSKI* (1995) described it as a cultivated plant, which escapes very rarely. In Balatonkenese, it grows close to the gardens, but clearly in a wild plant community. None of the parents were observed in the broader verge of the location. According to ROSTAŃSKI et al. (2010) it occurs in the wild in eight European countries, mostly in the western part of the continent. In Central Europe it is known only in Slovakia and Poland (WOLANIN and WOŹNIAK 2011). Neither in the critical revision and synthesis of the Hungarian *Oenothera* species published by ROSTAŃSKI (1966), nor in the relevant checklist of neophytes (BALOGH et al. 2004) no mention of *Oe. oehlkersii* can be found, therefore *Oe. oehlkersii* is a new alien species in the flora of Hungary.

D. Schmidt

* * *

Acknowledgement - The fieldwork of Lőkös L. et al. was supported by the project NKFI K119208.


REFERENCES


