
Safety and Trustworthiness of Deep Neural

Networks: A Survey∗

Xiaowei Huang1, Daniel Kroening2, Marta Kwiatkowska2,
Wenjie Ruan2, Youcheng Sun2, Emese Thamo1, Min Wu2, and

Xinping Yi1

1University of Liverpool, UK,
{xiaowei.huang, emese.thamo, xinping.yi}@liverpool.ac.uk

2University of Oxford, UK,
{daniel.kroening, marta.kwiatkowska, wenjie.ruan,

youcheng.sun, min.wu}@cs.ox.ac.uk

Contents

0.1 List of Symbols . 5
0.2 List of Acronyms . 6

1 Introduction 7
1.1 Certification . 8
1.2 Explanation . 9
1.3 Organisation of This Survey . 9

2 Preliminaries 11
2.1 Deep Neural Networks . 11
2.2 Verification . 13
2.3 Testing . 13
2.4 Interpretability . 14
2.5 Distance Metric and d-Neighbourhood 15

3 Safety Problems and Safety Properties 17
3.1 Adversarial Examples . 18
3.2 Local Robustness Property . 19
3.3 Output Reachability Property . 19
3.4 Interval Property . 20

∗Authors are listed in alphabetical order

1

ar
X

iv
:1

81
2.

08
34

2v
1

 [
cs

.L
G

]
 1

8
D

ec
 2

01
8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/162999697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3.5 Lipschitzian Property . 21
3.6 Relationship between Properties 21
3.7 Instancewise Interpretability . 22

4 Verification 23
4.1 Approaches with Deterministic Guarantees 24

4.1.1 SMT/SAT . 24
4.1.2 Mixed Integer Linear Programming (MILP) 25

4.2 Approaches to Compute a Lower Bound 26
4.2.1 Abstract Interpretation 26
4.2.2 Convex Optimisation . 27
4.2.3 Interval Analysis . 28
4.2.4 Output Reachable Set Estimation 28
4.2.5 Linear Approximation of ReLU Networks 28

4.3 Approaches with Converging Upper and Lower Bounds 29
4.3.1 Layer-by-Layer Refinement 29
4.3.2 Reduction to A Two-Player Turn-based Game 30
4.3.3 Global Optimisation Based Approaches 31

4.4 Approaches with Statistical Guarantees 31
4.4.1 Lipschitz Constant Estimation by Extreme Value Theory 31
4.4.2 Robustness Estimation . 31

4.5 Computational Complexity of Verification 32
4.6 Summary . 32

5 Testing 33
5.1 Coverage Criteria for DNNs . 33

5.1.1 Neuron Coverage . 33
5.1.2 Safety Coverage . 34
5.1.3 Extensions of Neuron Coverage 34
5.1.4 Modified Condition/Decision Coverage (MC/DC) 35
5.1.5 Quantitative Projection Coverage 38
5.1.6 Surprise Coverage . 38
5.1.7 Comparison between Existing Coverage Criteria 39

5.2 Test Case Generation . 39
5.2.1 Input Mutation . 39
5.2.2 Fuzzing . 40
5.2.3 Symbolic Execution and Testing 40
5.2.4 Testing using Generative Adversarial Networks 41
5.2.5 Differential Analysis . 41

5.3 Model-Level Mutation Testing . 41
5.4 Summary . 42

2

6 Attack and Defence 44
6.1 Adversarial Attacks . 44

6.1.1 Limited-memory BFGS Algorithm (L-BFGS) 45
6.1.2 Fast Gradient Sign Method (FGSM) 45
6.1.3 Jacobian Saliency Map based Attack (JSMA) 46
6.1.4 DeepFool: A Simple and Accurate Method to Fool Deep

Neural Networks . 47
6.1.5 Carlini & Wagner Attack 47

6.2 Adversarial Attacks by Natural Transformations 48
6.2.1 Rotation and Translation 48
6.2.2 Spatially Transformed Adversarial Examples 49
6.2.3 Towards Practical Verification of Machine Learning: The

Case of Computer Vision Systems (VeriVis) 49
6.3 Input-Agnostic Adversarial Attacks 50

6.3.1 Universal Adversarial Perturbations 50
6.3.2 Generative Adversarial Perturbations 50

6.4 Summary of Adversarial Attack Techniques 51
6.5 Defence . 52

6.5.1 Adversarial Training . 53
6.5.2 Defensive Distillation . 53
6.5.3 Dimensionality Reduction 53
6.5.4 Input Transformations . 54
6.5.5 Combining Input Discretisation with Adversarial Training 54
6.5.6 Activation Transformations 55
6.5.7 Characterisation of Adversarial Region 55
6.5.8 Defence against Data Poisoning Attack 55

6.6 Certified Defence . 55
6.6.1 Robustness through Regularisation in Training 56
6.6.2 Robustness through Training Objective 56

6.7 Summary of Defence Techniques 56

7 Interpretability 58
7.1 Instancewise Explanation by Visualising a Synthesised Input . . 58

7.1.1 Optimising over Hidden Neuron 58
7.1.2 Inverting Representation 58

7.2 Instancewise Explanation by Ranking 59
7.2.1 Local Interpretable Model-agnostic Explanations (LIME) 59
7.2.2 Integrated Gradients . 60
7.2.3 Layer-wise Relevance Propagation (LRP) 60
7.2.4 Deep Learning Important FeaTures (DeepLIFT) 61
7.2.5 Gradient-weighted Class Activation Mapping (GradCAM) 61
7.2.6 SHapley Additive exPlanation (SHAP) 61
7.2.7 Prediction Difference Analysis 62
7.2.8 Testing with Concept Activation Vector (TCAV) 62
7.2.9 Learning to Explain (L2X) 62

7.3 Instancewise Explanation by Saliency Maps 63

3

7.3.1 Gradient-based Methods 63
7.3.2 Perturbation-based Methods 64

7.4 Model Explanation by Influence Functions 64
7.5 Model Explanation by Simpler Models 65

7.5.1 Rule Extraction . 65
7.5.2 Decision Tree Extraction 65
7.5.3 Linear Classifiers to Approximate Piece-wise Linear Neural

Networks . 65
7.5.4 Automata Extraction from Recurrent Neural Networks . . 66

7.6 Information-flow Explanation by Information Theoretical Methods 66
7.6.1 Information Bottleneck Method 66
7.6.2 Information Plane . 67
7.6.3 From Deterministic to Stochastic DNNs 68

7.7 Summary . 68

8 Future Challenges 69
8.1 Distance Metrics closer to Human Perception 69
8.2 Improvement to Robustness . 69
8.3 Other Machine Learning Models 70
8.4 Verification Completeness . 70
8.5 Scalable Verification with Tighter Bounds 71
8.6 Validation of Testing Approaches 71
8.7 Learning-Enabled Systems . 72
8.8 Distributional Shift and Run-time Monitoring 72
8.9 Formulation of Interpretability 72
8.10 Application of Interpretability to other Tasks 73
8.11 Human-in-the-Loop . 73

9 Conclusions 74

4

Symbols and Acronyms

0.1 List of Symbols

N a neural network
f function represented by a neural network
W weight
b bias
nk,l l-th neuron on the k-th layer
vk,l activation value of the l-th neuron on the k-th layer
` loss function
x input
y output
η a region around a point
∆ a set of manipulations
R a set of test conditions
T test suite
G regularisation term
X the ground truth distribution of the inputs
ε error tolerance bound
L0(-norm) L0 norm distance metric
L1(-norm) L1 norm distance metric
L2(-norm) L2 norm distance metric
L∞(-norm) L infinity norm distance metric

E probabilistic expectation

5

0.2 List of Acronyms

DNN Deep Neural Network
ML Machine Learning
DL Deep Learning
MILP Mixed Integer Linear Programming
SMT Satisfiability Modulo Theory
MC/DC Modified Condition/Decision Coverage
B&B Branch and Bound
ReLU Rectified Linear Unit

6

1 Introduction

In the past few years, significant progress has been made on deep neural networks
(DNNs) in achieving human-level intelligence on several long-standing tasks such
as image classification [Russakovsky et al., 2015], natural language processing
[Collobert et al., 2011], the ancient game of Go [Silver et al., 2017], etc. With
broader deployment of DNNs on various applications, the concerns on its safety
and trustworthiness have been raised, particularly after the fatal incidents of
self-driving cars [Tes, 2018, Ube, 2018]. Research to address these concerns is
very active, with many papers released in the past few years. It is therefore
infeasible, if not impossible, to cover all the research activities. This survey paper
is to conduct a review1 of the current research efforts on making DNNs safe and
trustworthy, by focusing on those works that are aligned with our humble visions
about the safety and trustworthiness of DNNs. Figure 1 gives a yearly change
on the number of papers surveyed (started from 2008). In total, we surveyed
178 papers, most of which were published in the most recent two years, i.e., 2017
and 2018.

Trust, or trustworthiness, is a general term and its definition varies in different
contexts. We base our definition on a practise that has been widely adopted
in established industries, e.g., automotive and avionics. In these established
industries, trustworthiness is addressed mainly with two processes: a certification
process and an explanation process. A certification process is held before the
deployment of the product to make sure that it functions correctly (and safely).
During the certification process, the manufacturer needs to demonstrate to
the relevant certification authority, e.g., the European Aviation Safety Agency
or the Vehicle Certification Agency, that the product behaves correctly with
respect to a set of high-level requirements. An explanation process is held
whenever needed in the lifetime of the product. The user manual explains a set
of expected behaviour of the product that its user may frequently experience.
More importantly, an investigation can be conducted, with a formal report
produced, to understand any unexpected behaviour of the product. We believe
that similar practise should be carried out when working with data-driven deep
learning systems. That is, in this survey, we address trustworthiness based on
the following vision:

Trustworthiness = Certification + Explanation

In other word, a user is able to trust a system if the system has been certified by a
certification authority and any of its behaviour can be well explained. Moreover,
we will discuss briefly in Section 8.11 our view on the impact of interactions to
the trust.

The survey will be concerned with the advance of enabling techniques for
the certification and the explanation processes of DNNs. Both processes are
challenging, owing to the black-box nature of DNNs and the lack of rigorous
foundations.

1The readers are welcomed to point to us any sources that are relevant to this survey but
were not picked up, and/or provide any comments.

7

Figure 1: Number of publications surveyed with respect to the year

1.1 Certification

For certification, an important low-level requirement for DNNs is the robustness
to input perturbations. DNNs have been shown suffering from poor robustness
because of their susceptibility to adversarial examples [Szegedy et al., 2014].
These are small modifications to an input, sometimes imperceptible to humans,
that make the network unstable. Significant efforts have been developed in
the area of machine learning on the attack and defence techniques. Attack
techniques aim to find adversarial examples which the DNN is unknown about
by e.g., classifying them with high probability to wrong classes, while defence
techniques aim to enhance the DNN so that it can identify or eliminate adversarial
examples. These techniques cannot be directly applied to certify a DNN, for
their inability to provide assurance to their results. Nevertheless, we review some
prominent methods since they provide useful insights to certification techniques.

The certification techniques we cover in this survey include verification and
testing, both of which have been proved useful for checking the dependability
of software and hardware systems. However, traditional techniques developed
in these two areas, see e.g., [Ammann and Offutt, 2008, Clarke Jr et al., 2018],
cannot be be directly applied to deep learning systems, which exhibit complex
internal behaviours that are not commonly seen for traditional verification and
testing.

DNN verification techniques are to determine whether a property, e.g., the
local robustness for a given input x, holds on a DNN. If holds, they are able to
supplement the answer with a mathematical proof. Otherwise, they will return
a counterexample. If a deterministic answer is hard to achieve, an answer with
certain error tolerance bounds may suffice in many practical scenarios. While
verification techniques are promising, they suffer from the scalability problem,

8

due to the high computational complexity of the verification problems and the
large size of the DNN. Up to now, DNN verification techniques are either working
with small scale DNNs or working with approximate methods with convergence
guarantees on the bounds.

DNN testing techniques arise as a complement to the verification techniques.
Instead of providing mathematical proofs to the satisfiability of a property on the
system, testing techniques aim to either find bugs (i.e., counterexamples to the
property) or provide assurance cases [Rushby, 2015], by exercising the system
with a large set of test cases. They are computationally less expensive and
therefore are able to work with state-of-the-art systems. In particular, coverage-
guided testing generates test cases according to a set of pre-specified coverage
metrics. Intuitively, a high coverage suggests that most of the DNN’s behaviours
have been tested and therefore the DNN has a lower chance of containing
undetected bugs. Research is needed to clarify how such coverage-guided testing
can contribute to assurance cases.

1.2 Explanation

Explainable AI [exp, 2018], or interpretability problem of AI [Voosen, 2017], is
to explain why the AI arrived at a specific decision, say to give or not give loan
to a person. EU’s General Data Protection Regulation (GDPR) [GDR, 2016]
mandates a “right to explanation” from machine learning models, meaning that
an explanation of how the model reached its decision can be asked for. While
this “explainability” request is definitely beneficial to the end consumer, it can
be hard for the system developers who design systems with ML components.

1.3 Organisation of This Survey

The structure of this survey is summarised as follows. In Section 2, we will
present preliminaries on the DNNs and a few key concepts such as verification,
testing, and interpretability. This is followed by Section 3, which discusses
safety problems and safety properties. In Section 4 and Section 5, we review
DNN verification and DNN testing techniques, respectively. The attack and
defence techniques are reviewed in Section 6. This is followed by Section 7, which
reviews a set of interpretability techniques for DNNs. Finally, we discuss future
challenges in Section 8 and conclude in Section 9.

Figure 2 gives a causality relation between sections. We use dashed arrows
from attack and defence techniques (Section 6) to a few other sections for its
technical supports to certification and explanation techniques.

9

Figure 2: Relationship between sections

10

2 Preliminaries

In the following, we provide preliminaries over deep neural networks, automated
verification, software testing, and interpretability.

2.1 Deep Neural Networks

A (deep and feedforward) neural network, or DNN, is a tuple N = (S,T,Φ),
where S = {Sk | k ∈ {1..K}} is a set of layers, T ⊆ S× S is a set of connections
between layers and Φ = {φk | k ∈ {2..K}} is a set of functions, one for each
non-input layer. In a DNN, S1 is the input layer, SK is the output layer, and
layers other than input and output layers are called hidden layers. Each layer Sk
consists of sk neurons (or nodes). The l-th node of layer k is denoted by nk,l.

Each node nk,l for 2 ≤ k ≤ K and 1 ≤ l ≤ sk is associated with two
variables uk,l and vk,l, to record its values before and after an activation function,
respectively. The Rectified Linear Unit (ReLU) [Nair and Hinton, 2010] is one
of the most popular activation functions for DNNs, according to which the
activation value of each node of hidden layers is defined as

vk,l = ReLU(uk,l) =

{
uk,l if uk,l ≥ 0

0 otherwise
(1)

Each input node n1,l for 1 ≤ l ≤ s1 is associated with a variable v1,l and each
output node nK,l for 1 ≤ l ≤ sK is associated with a variable uK,l, because
no activation function is applied on them. Other popular activation functions
include sigmoid, tanh, and softmax.

Except for the nodes at the input layer, every node is connected to nodes
in the preceding layer by pre-trained parameters such that for all k and l with
2 ≤ k ≤ K and 1 ≤ l ≤ sk

uk,l = bk,l +
∑

1≤h≤sk−1

wk−1,h,l · vk−1,h (2)

where wk−1,h,l is the weight for the connection between nk−1,h (i.e., the h-th
node of layer k − 1) and nk,l (i.e., the l-th node of layer k), and bk,l the the
so-called bias for node nk,l. We note that this definition can express both
fully-connected functions and convolutional functions2. The function φk is the
combination of Equation (1) and (2). Owing to the use of the ReLU as in (1),
the behavior of a neural network is highly non-linear.

Let R be the set of real numbers. We let Dk = Rsk be the vector space
associated with layer Sk, one dimension for each variable vk,l. Notably, every
point x ∈ D1 is an input. Without loss of generality, the dimensions of an
input are normalised as real values in [0, 1], i.e., D1 = [0, 1]s1 . A DNN N can
alternatively be expressed as a function f : D1 → DK such that

f(x) = φK(φK−1(...φ2(x))) (3)

2Many of the surveyed techniques can work with other types of functional layers. Here for
simplicity, we omit their expressions.

11

Finally, for any input, the DNN N assigns a label, that is, the index of the node
of output layer with the largest value:

label = argmax1≤l≤sKuK,l (4)

Moreover, we let L = {1..sK} be the set of labels.

Example 1 Figure 3 is a simple DNN with four layers. Its input space is
D1 = R2.

v1,1

v1,2

v4,1

v4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

Figure 3: A simple neural network

Given one particular input x, the DNN N is instantiated and we use N [x] to
denote this instance of the network. In N [x], for each node nk,l, the values of the
variables uk,l and vk,l are fixed and denoted as uk,l[x] and vk,l[x], respectively.
Thereby, the activation or deactivation of each ReLU operation in the network
is also determined. We define

signN (nk,l, x) =

{
+1 if uk,l[x] = vk,l[x]

−1 otherwise
(5)

The subscript N will be omitted when clear from the context. The classification
label of x is denoted as N [x].label .

Example 2 Let N be a DNN whose architecture is given in Figure 3. Assume
that the weights for the first three layers are as follows:

W1 =
[
4 0 −1
1 −2 1

]
, W2 =

 2 3 −1
−7 6 4
1 −5 9


and that all biases are 0. When given an input x = [0, 1], we get sign(n2,1, x) =
+1, since u2,1[x] = v2,1[x] = 1, and sign(n2,2, x) = −1, since u2,2[x] = −2 6= 0 =
v2,2[x].

12

2.2 Verification

Given a DNN N and a property C, verification is a set of techniques to check
whether the property C holds on N . A verification technique needs to provide
provable guarantees to its results. A provable guarantee can be in the form
of either a Boolean guarantee or a statistical guarantee. A Boolean guarantee
means that the verification technique is able to provide a mathematical proof,
when the property holds, or a counterexample, otherwise. When a mathematical
proof is hard to achieve, a statistical guarantee provides a quantitative error
tolerance bound on the resulting claim. It might also be the case that this error
bound can be continuously improved until converged.

We will formally define the safety properties in Section 3, together with their
associated verification problems and provable guarantees.

2.3 Testing

Verification problems usually have high computational complexity, such as NP-
hard when the properties are simple input-output constraints [Katz et al., 2017,
Ruan et al., 2018a]. This, compounded with the high-dimensionality and the
high non-linearity of DNNs, makes the exisitng verification techniques hard
to work with industrial scale DNNs. This computational intensity can be
partially alleviated by considering testing techniques, at the price of the provable
guarantees. Instead, assurance cases are pursued, as is done for existing safety
critical systems [Rushby, 2015].

The goal of testing DNNs is to generate a set of test cases, so that the
developer can be more confident on the performance of a developed DNN when it
passes the test cases. Usually, the generation of test cases is guided by coverage
metrics. Let N be a set of DNNs, R a set of test condition sets, and T a set of
test suites. We use N ,R, T to range over N,R and T, respectively. Note that,
normally both R and T contain a set of elements by themselves. The following
is an adaption of a definition in [Zhu et al., 1997] for software testing.

Definition 1 A test adequacy criterion, or a test coverage metric, is a function
M : N× R× T→ [0, 1].

Intuitively, M(N ,R, T) quantifies the degree of adequacy to which a DNN
N is tested by a test suite T with respect to a set R of test conditions. Usually,
the greater the number M(N ,R, T), the more adequate the testing. We may
use criterion and metric interchangeably.

We let F be a set of covering methods, and R = O(N) be the set of test
conditions to be covered. In [Sun et al., 2018b] O(N) is instantiated as the set
of causal relationships between feature pairs while in [Pei et al., 2017a] O(N) is
instantiated as the set of statuses of hidden neurons.

Definition 2 (Test Suite) Given a DNN N , a test suite T is a finite set of
input vectors, i.e., T ⊆ D1 ×D1 × ...×D1. Each vector is called a test case.

13

Usually, a test case is a single input, e.g., in [Pei et al., 2017a], or a pair of
inputs, e.g., in [Sun et al., 2018b]. Ideally, given the set of test conditions R
according to some covering method cov, we run a test case generation algorithm
to find a test suite T such that

∀α ∈ R∃(x1, x2, ..., xk) ∈ T : cov(α, (x1, x2, ..., xk)) (6)

In practice, we might want to compute the degree to which the test conditions
are satisfied by a generated test suite T .

Definition 3 (Test Criterion) Given a DNN N with its associated function
f , a covering method cov, test conditions in R, and a test suite T , the test
criterion Mcov(R, T) is as follows:

Mcov(R, T) =
|{α ∈ R|∃(x1, x2, ..., xk) ∈ T : cov(α, (x1, x2, ..., xk))}|

|R|
(7)

Intuitively, it computes the percentage of the test objectives that are covered
by test cases in T w.r.t. the covering method cov.

We will elaborate various covering methods and test objectives in Section 5.
Moreover, a testing oracle is a mechanism that determines whether the DNN
behaves correctly for a test case. It depends on the properties to be tested, and
therefore will be discussed in Section 3.

2.4 Interpretability

Interpretability is an issue aroused due to the black-box nature of the DNNs.
Intuitively, it is to provide a human-understandable explanation to the behaviour
of a DNN. An explanation procedure can be separated into two steps: an
extraction step and an exhibition step. The extraction step is to obtain an
intermediate representation, and the exhibition step is to present the obtained
intermediate presentation in a way easy for human users to understand. Given
the fact that DNNs are usually high-dimensional and that simpler information
can be easier to be understood by human users, the intermediate representation
needs to be lower dimensional. Since the exhibition step is closely related to the
intermediate representation and are usually conducted by e.g., visualising the
representation, we will focus on the extraction step.

Depending on the requirements, the explanation can be either an instance-
wise explanation or a model explanation. In the following, we give two general
definitions, trying to cover as many as possible techniques to be reviewed.

Definition 4 Given a function f : Rs1 → RsK , which represents a DNN N ,
and an input x ∈ Rs1 , an instance-wise explanation expl(f, x) ∈ Rt is another
representation of x such that t ≤ s1.

Intuitively, for instance-wise explanation, it is to find another representation
of an input x (with respect to the function f associated to the DNN N), with

14

the expectation that the representation carries simple, yet essential, information
that can help the user understand the decision f(x). Most of the techniques
surveyed in Section 7.1, Section 7.2, and Section 7.3 fit with this definition.

Definition 5 Given a function f : Rs1 → RsK , which represents a DNN N , a
model explanation expl(f) includes two functions g1 : Ra1 → Ra2 , which is a
representation of f such that a1 ≤ s1 and a2 ≤ sK , and g2 : Rs1 → Ra1 , which
maps original inputs to valid inputs of the function g1.

Intuitively, for model explanation, it is to find a simpler model which can not
only be used for prediction by applying g1(g2(x)) (with certain loss) but also be
comprehended by the user. Most of the techniques surveyed in Section 7.5 fits
with this definition. There are other model explanations such as the influence
function based approach reviewed in Section 7.4, which explains by comparing
different learned parameters by e.g., up-weighting some training samples.

Besides the above two deterministic methods for the explanation of data and
models, there is another stochastic method for the explanation of information
flow in the DNN training process.

Definition 6 Given a function family F , which represents a stochastic DNN,
an information-flow explanation expl(F) includes a stochastic encoder g1(Tk|X),
which maps the input X to a representation Tk at layer k, and a stochastic
decoder g2(Y |Tk), which maps the representation Tk to the output Y .

Intuitively, for information-flow explanation, it is to find the optimal in-
formation representation of the output at each layer when information (data)
flow goes through, and understand why and how a function f ∈ F is chosen
as the training outcome given the training dataset (X,Y). The information is
transparent to data and models, and its representations can be described by
some quantities in information theory, such as entropy and mutual information.
This is an emerging research avenue for interpretability, and a few information
theoretical approaches will be reviewed in Section 7.6, which aim to provide a
theoretical explanation to the training procedure.

2.5 Distance Metric and d-Neighbourhood

Usually, a distance function is employed to compare inputs. Ideally, such a
distance should reflect perceptual similarity between inputs, comparable to e.g.,
human perception for image classification networks. A distance metric should
satisfy a few axioms which are usually needed for defining a metric space.

• ||x|| ≥ 0 (non-negativity),

• ||x− y|| = 0 implies that x = y (identity of indiscernibles),

• ||x− y|| = ||y − x|| (symmetry),

• ||x− y||+ ||y − z|| ≥ ||x− z|| (triangle inequality).

15

In practise, Lp-norm distances are used, including

• L1 (Manhattan distance): ||x||1 =
∑n
i=1 |xi|

• L2 (Euclidean distance): ||x||2 =
√∑n

i=1 x
2
i

• L∞ (Chebyshev distance): ||x||∞ = maxi |xi|

Moreover, we also consider L0 norm such that ||x||0 = |{xi | xi 6= 0, i = 1..n}|,
i.e., the number of non-zero elements. Note that, L0 norm does not satisfy the
triangle inequality.

Given an input x and a distance metric Lp, its neighbourhood is defined as
follows.

Definition 7 Given an input x, a distance function Lp, and a distance d, we
define the d-neighbourhood η(x, Lp, d) of x wrt Lp

η(x, Lp, d) = {x̂ | ||x̂− x||p ≤ d} (8)

as the set of inputs whose distance to x is no greater than d with respect to Lp.

16

3 Safety Problems and Safety Properties

Figure 4: Examples of Erroneous Behaviour on Deep Learning Models. Example-
1 [Finlayson et al., 2018]: In a medical diagnosis system, a “Benign” tumour is
misclassified as “Malignant” after adding a small amount of human-imperceptible
perturbations; Example-2 [Wu et al., 2018]: By just changing one pixel in a

“Green-Light” image, a state-of-the-art DNN misclassifies it as “Red-Light”;
Example-3 [Ebrahimi et al., 2018]: In a sentiment analysis task for medical
record, with two misspelling words, a well-trained deep learning model classifies
a “Positive” medical record as “Negative”.

Despite the success of deep learning (DL) in many areas, serious concerns
have been raised on applying DNNs to real-world safety-critical systems such
as self-driving cars, automatic medical diagnosis, etc. In this section, we will
discuss the key safety problem of DNNs and present a set of safety features that
the analysis techniques are working with.

For any f(x) whose value is a vector of scalar numbers, we use fj(x) to
denote its j-th element.

Definition 8 (Erroneous Behavior of DNNs) Given a (trained) deep neu-
ral network f : Rs1 → RsK , a human decision oracle H : Rs1 → RsK and an

17

legitimate input x ∈ Rs1 , an erroneous behavior of DNNs is such that

arg max
j
fj(x) 6= arg max

j
Hj(x) (9)

Intuitively, an erroneous behaviour is witnessed by the existence of an input
x on which the DNN and a human user have different perception.

3.1 Adversarial Examples

Adversarial examples [Szegedy et al., 2014] represent a class of erroneous be-
haviour.

Definition 9 (Adversarial Example) Given a (trained) deep neural network
f : Rs1 → RsK , a human decision oracle H : Rs1 → RsK and a legitimate input
x ∈ Rs1 with arg maxj fj(x) = arg maxj Hj(x), an adversarial example of DNNs
is defined as:

∃x̂ : arg maxj Hj(x̂) = arg maxj Hj(x)
∧ ||x− x̂||p ≤ d
∧ arg maxj fj(x̂) 6= arg maxj fj(x)

(10)

where p ∈ N, p ≥ 1, d ∈ R and d > 0.

Intuitively, x is an input on which the DNN and an human user have the
same classification and, based on this, an adversarial example is another input
x̂, which is classified differently with x by the network f (i.e., arg maxj fj(x̂) 6=
arg maxj fj(x)) even when human believes that they should be the same (i.e.,
arg maxj Hj(x̂) = arg maxj Hj(x)) and they are semantically similar (i.e., ||x−
x̂||p ≤ d).

Figure 4 shows three concrete examples of such safety concerns brought by
DNNs on safety-critical application scenarios including medical diagnosis systems,
self-driving cars and automated sentimental analysis on medical records.

Example 3 In classification tasks, by adding a small amount of adversarial
perturbations (w.r.t. Lp-norm distance), the DNNs will misclassify an image of
traffic sign “red light” into “green light” [Wicker et al., 2018, Wu et al., 2018].
In this case, the human decision oracle H is approximated by stating that two
inputs within a very small Lp-norm distance are the same.

Example 4 In a DL-enabled end-to-end controller deployed in autonomous
vehicles, by adding some natural transformations such as “rain”, the controller
will output an erroneous decision, “turning left”, instead of a righteous decision,
“turning right” [Zhang et al., 2018]. However, it is clear that, from human driver’s
point of view, adding “rain” should not change the driving decision of a car.

Example 5 For an fMRI image, a human-invisible perturbation will turn a
DL-enabled diagnosis decision of “malignant tumour” into “benign tumour”. In
this case, the human oracle is the medical expert [Finlayson et al., 2018].

18

As we can see, those unsafe, or erroneous, phenomenon acting on deep neural
networks are essentially caused by the inconsistency of the decision boundaries
from DL models (that are learned from various training datasets) and human
oracles. They inevitably raise significant concerns on when deep learning models
can be applied in safety-critical domains.

In the following, we review a few safety properties that have been studied in
the literature.

3.2 Local Robustness Property

Robustness requires that the decision of a DNN is invariant against small
perturbations. The following definition adapts from that of [Huang et al., 2017b].

Definition 10 (Verification of Local Robustness) Given a DNN N with
its associated function f , and an input region η ⊆ [0, 1]s1 , the (un-targeted) local
robustness of f on η is defined as

Robust(f, η) , ∃l ∈ [1..sK]∀x ∈ η∀j ∈ [1..sK] : fl(x) ≥ fj(x) (11)

For targeted local robustness of a label j, it is defined as

Robustj(f, η) , ∀x ∈ η∃l ∈ [1..sK] : fl(x) > fj(x) (12)

Intuitively, local robustness says that all inputs in the region η have the same
class label. Usually, the region η is defined with respect to an input x and a
norm Lp, as in Definition 7. If so, it means that all inputs in η have the same
class with the input x. For targeted local robustness, it is required that none of
the inputs in the region η is classified as a given label j.

In the following, we define test oracle for local robustness property. Note
that, all existing testing approaches are on local robustness, and therefore we
only provide the test oracle for local robustness.

Definition 11 (Test Oracle of Local Robustness Property) Let D be a
set of correctly-labelled inputs. Given a norm distance Lp and a real number d,
a test case (x1, ..., xk) ∈ T passes the oracle if

∀1 ≤ i ≤ k∃x0 ∈ D : xi ∈ η(x0, Lp, d) (13)

Intuitively, a test case (x1, ..., xk) passes oracle if all of its components xi are
close to one of the correctly-labelled inputs, with respect to Lp and d. Recall
that, we define η(x0, Lp, d) in Definition 7.

3.3 Output Reachability Property

Output reachability is to compute the set of outputs with respect to a given
set of inputs. We follow the name from [Xiang et al., 2018, Ruan et al., 2018a].
Formally, we have the following definition.

19

Definition 12 (Output Reachability) Given a DNN N with its associated
function f , an input region η ⊆ [0, 1]s1 , the output reachable set of f and η is to
compute a set Reach(f, η) such that

Reach(f, η) , {f(x) | x ∈ η} (14)

The continuity of the region η suggests the existence of infinite number of
inputs in η. The output reachability problem is highly non-trivial for the facts
that η is a continuous region and f is highly non-linear (or black-box). Based
on this, we can define the following verification problem.

Definition 13 (Verification of Output Reachability) Given a DNN N with
its associated function f , an input region η ⊆ [0, 1]s1 , and an output region Y,
the verification of output reachability on f , η, and Y is to determine if

Reach(f, η) = Y. (15)

Intuitively, the verification of reachability is to check whether all inputs in
η are mapped onto Reach(f, η), and at the meantime, whether all outputs in
Reach(f, η) has a corresponding x in η.

3.4 Interval Property

Interval property is to compute a convex over-approximation of the output
reachable set. We follow the name from interval-based approaches which are
a typical class of methods to compute this property. Formally, we have the
following definition.

Definition 14 (Interval Property) Given a DNN N with its associated func-
tion f , and an input region η ⊆ [0, 1]s1 , the interval property of f and η is to
compute a convex set Interval(f, η) such that

Interval(f, η) ⊇ {f(x) | x ∈ η} (16)

Ideally, we expect this set to be a convex hull of points in {f(x) | x ∈ η}. A
convex hull of a set of points is the smallest convex set that contains the points.

While the computation of such a set can be trivial since [0, 1]s1 ⊇ {f(x) | x ∈
η}, it is expected that Interval(f, η) is as close as possible to {f(x) | x ∈ η},
i.e., ideally it is a convex hull. Intuitively, an interval is an over-approximation
of the output reachability. Based on this, we can define the following verification
problem.

Definition 15 (Verification of Interval Property) Given a DNN N with
its associated function f , an input region η ⊆ [0, 1]s1 , and an output region Y
represented as a convex set, the verification of interval property on f , η, and Y
is to determine if

Y ⊇ {f(x) | x ∈ η} (17)

In other word, it is to determine whether the given Y is an interval satisfying
Expression (16).

20

Intuitively, the verification of interval property is to check whether all inputs
in η are mapped onto Y.

3.5 Lipschitzian Property

Lipschitzian property, inspired by the Lipschitz continuity (see textbooks such
as [OSearcoid, 2006]), is to monitor the changes of the output with respect to
small changes of the inputs.

Definition 16 (Lipschitzian Property) Given a DNN N with its associated
function f , an input region η ⊆ [0, 1]s1 , and the Lp-norm,

Lips(f, η, Lp) ≡ sup
x1,x2∈η

|f(x1)− f(x2)|
||x1 − x2||p

(18)

is a Lipschitzian metric of f , η, and Lp.

Intuitively, the value of this metric is the best Lipschitz constant. Therefore,
we have the following verification problem.

Definition 17 (Verification of Lipschitzian Property) Given a Lipschitzian
metric Lips(f, η, Lp) and a real value d ∈ R, it is to determine whether

Lips(f, η, Lp) ≥ d. (19)

3.6 Relationship between Properties

Figure 5 gives the relationship between the four properties we discussed above.
An arrow from a value A to another value B represents the existence of a simple
computation to enable the computation of B based on A. For example, given
a Lipschitzian metric Lips(f, η, Lp) and η = η(x, Lp, d), we can compute an
interval

Interval(f, η) = [f(x)− Lips(f, η, Lp) · d, f(x) + Lips(f, η, Lp) · d] (20)

It can be checked that Interval(f, η) ⊇ {f(x) | x ∈ η}. Given an interval
Interval(f, η) or a reachable set Reach(f, η), we can check their respective
robustness by determining the following expressions:

Interval(f, η) ⊆ Yl = {y ∈ RsK | ∀j 6= l : yl ≥ yj}, for some l (21)

Reach(f, η) ⊆ Yl = {y ∈ RsK | ∀j 6= l : yl ≥ yj}, for some l (22)

where yl is the l-entry of the output vector y. The relation between Reach(f, η)
and Interval(f, η) is actually an implication relation such that every Reach(f, η)
is also an interval Interval(f, η).

Moreover, we use a dashed arrow between Lips(f, η, Lp) and Reach(f, η), as
the computation is more involved by e.g., algorithms from [Ruan et al., 2018a,
Wicker et al., 2018, Weng et al., 2018].

21

Figure 5: Relationship between properties

3.7 Instancewise Interpretability

First of all, we need to have a ranking among explanations for a given input.

Definition 18 (Human Ranking of Explanations) Let N be a network with
associated function f and E ⊆ Rt be the set of possible explanations. We define
an evaluation function evalH : Rs1 × E → [0, 1], which assigns for each input
x ∈ Rs1 and each explanation e ∈ E a probability value evalH(x, e) in [0, 1] such
that higher value suggests a better explanation of e over x.

Intuitively, evalH(x, e) is a ranking of the explanation e by human users,
when given an input x. For example, given an image and an explanation
algorithm which highlights part of an image, human users are able to rank all
the highlighted images. While this ranking can be seen as the ground truth for
the instance-wise interpretability, similar as the distance metric based on human
perception, it is hard to approximate. Based on this, we have the following
definition.

Definition 19 (Validity of Explanation) Let f be the associated function of
a DNN N , x an input, and ε > 0 a real number, expl(f, x) ∈ E ⊆ Rt is a valid
instance-wise explanation if

evalH(x, expl(f, x)) > 1− ε. (23)

Intuitively, an explanation is valid if it should be among the set of explanations
that are ranked sufficiently high by human users.

22

4 Verification

In this section, we review verification techniques on DNNs. According to the
underlying techniques, existing works on the verification of DNNs largely fall
into the following categories: constraints solving, search based approach, global
optimisation, and over-approximation. Figure 6 classifies works surveyed in this
paper into different categories.

search based
[Wu et al., 2018]

[Wicker et al., 2018]

[Huang et al., 2017b]

global optimisation

[Ruan et al., 2018a]

[Ruan et al., 2018b]

[Dutta et al., 2018]

constraints solving

[Katz et al., 2017]

[Ehlers, 2017, Bunel et al., 2017]

[Lomuscio and Maganti, 2017]

[Cheng et al., 2017, Xiang et al., 2018]

[Narodytska et al., 2018]

[Narodytska, 2018]

over-approximation

[Pulina and Tacchella, 2010]

[Wong and Kolter, 2018]

[Mirman et al., 2018]

[Gehr et al., 2018]

[Wang et al., 2018]

[Raghunathan et al., 2018]

Figure 6: A taxonomy of verification works for DNNs.

In this survey, we classify these techniques with respect to the type of
guarantees they can achieve. Basically, the guarantees can be

• an exact deterministic guarantee, which states exactly whether a property
holds; We will omit the word exact and call it deterministic guarantee
below.

• an one-sided guarantee by providing either a lower bound or an upper
bound to a variable, as a sufficient condition for a property to hold;

• a guarantee with converging lower and upper bounds to a variable; or

• a statistical guarantee quantifying the probability that a property holds.

23

Note that, algorithms with the one-sided guarantee and the bound-converging
guarantee are to compute the real values for e.g., output reachability property
(Definition 12), interval property (Definition 14), or Lispchitzian property (Defi-
nition 16). Their respective verification problems are based on these values, see
Definition 13, Definition 15 and Definition 17.

Remark. All existing verification works focus on feedforward neural networks.

4.1 Approaches with Deterministic Guarantees

The deterministic guarantees are achieved by transforming a verification problem
into a set of constraints (with or without optimisation objectives), so that they
can be solved with a constraint solver. The name “deterministic” comes from
the fact that solvers usually return a deterministic answer to an query, i.e.,
either satisfiable or unsatisfiable. This is based on the current success of various
constraint solvers such as SAT solvers, linear programming (LP) solvers, mixed
integer linear programming (MILP) solvers, Satisfiability Modulo Theories (SMT)
solvers, etc.

4.1.1 SMT/SAT

An abstraction-refinement approach based on SMT solving. A solu-
tion to the verification of interval property (can be easily extended to work with
reachability property for ReLU activation functions) is proposed in [Pulina and Tacchella, 2010]
by abstracting a DNN into a set of Boolean combinations of linear arithmetic
constraints. It is shown that whenever the abstracted model is declared to be
safe, the same holds for the concrete one. Spurious counterexamples, on the other
hand, trigger refinements and can be leveraged to automate the correction of
misbehaviour. The approach is validated on DNNs with fewer than 10 neurons.

SMT solvers for DNNs. Two SMT solvers Reluplex [Katz et al., 2017] and
Planet [Ehlers, 2017] were put forward to verify DNNs on properties expressible
with SMT constraints. SMT solvers often have good performance on problems
which can be represented as a Boolean combination of constraints over other
variable types. Typically an SMT solver combines a SAT solver with specialised
decision procedures for other theories. In the verification of DNNs they adapt
linear arithmetic over real numbers, in which an atom (i.e., the most basic
expression) is of the form

∑n
i=1 aixi ≤ b, where ai and b are real numbers.

In both Reluplex and Planet, they use the architecture of the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm in splitting cases and rule out conflict
clauses, while they are slightly different in dealing with the intersection. For
Reluplex, it inherits rules in the algorithm of Simplex and add some rules for
the ReLU operation. Through the classical pivot operation, it first looks for a
solution for the linear constraints, and then applies the rules for ReLU to satisfy
the ReLU relation for every node. Differently, Planet uses linear approximation

24

to over-approximate the neural network, and manage the condition of ReLU and
max pooling node with a logic formula.

SAT approach. [Narodytska et al., 2018, Narodytska, 2018] propose to verify
properties of a class of neural networks, i.e., binarised neural networks on which
both weights and activations are binary, by reduction to the well-known Boolean
satisfiability. Using this Boolean encoding, they leverage the power of modern
SAT solvers along with a proposed counterexample-guided search procedure
to verify various properties of these networks. A particular focus is on the
robustness to adversarial perturbations. The experimental results demonstrate
that this approach scales to medium-size deep neural networks used in image
classification tasks.

4.1.2 Mixed Integer Linear Programming (MILP)

MILP formulation for DNNs. [Lomuscio and Maganti, 2017] encodes the
behaviours of the fully connected neural networks with MILP. For instance, a
hidden layer zi+1 = ReLU(Wizi + bi) can be described with the following MILP:

zi+1 ≥Wizi + bi,

zi+1 ≤Wizi + bi +Mti+1,

zi+1 ≥ 0,

zi+1 ≤M(1− ti+1),

where ti+1 has value 0 or 1 in its entries and has the same dimension as zi+1,
and M > 0 is a large constant which can be treated as ∞. Here each integer
variable in ti+1 expresses the possibility that a neuron is activated or not. The
optimisation objective can be used to express the bounds, and therefore this
approach can work with both reachability property and interval property.

However, it is not efficient to simply use MILP to verify DNNs or to compute
the output range. In [Cheng et al., 2017], a number of MILP encoding heuristics
are developed to speed up solving process, and moreover, parallelisation of
MILP-solvers are used to result in an almost linear speed-up in the number (up
to a certain limit) of computing cores in experiments. In [Dutta et al., 2018],
Sherlock alternately conducts local and global search to efficiently calculate the
output range. In a local search phase, it uses gradient descent method to find
a local maximum (or minimum), while in a global search phase, it encodes the
problem with MILP to check whether the local maximum (or minimum) is the
global output range.

Moreover, [Bunel et al., 2017] presents a branch and bound (B&B) algorithm
and claims that both SAT/SMT-based approaches and MILP-based approaches
can be regarded as its special cases.

25

4.2 Approaches to Compute a Lower Bound

The approaches to be surveyed in this subsection consider the computation of a
lower (or by duality, an upper) bound, and are able to claim the sufficiency of
achieving properties. While these approaches can only have a bounded estimation
to the value of some variable, it is able to work with larger models, for e.g.,
up to 10,000 hidden neurons. The other advantage is its potential to avoid
floating point issues in existing constraint solver implementations. Actually,
most state-of-the-art constraint solvers implementing floating-point arithmetic
only give approximate solutions, which may not be the actual optimal solution
or may even lie outside the feasible space [Neumaier and Shcherbina, 2004]. It
may happen that a solver wrongly claims the satisfiability or un-satisfiability
of a property. For example, [Dutta et al., 2018] reports several false positive
results in Reluplex, and mentions that this may come from unsound floating
point implementation.

4.2.1 Abstract Interpretation

Abstract interpretation is a theory of sound approximation of the semantics
of computer programs [Cousot and Cousot, 1977]. It has been used in static
analysis to verify properties of a program without actually running it. The
basic idea of abstract interpretation is to use abstract domains (represented as
e.g., boxes, zonotopes, polyhedra) to over-approximate the computation of a
set of inputs. It has been explored in a few papers, including [Gehr et al., 2018,
Mirman et al., 2018, Li et al., 2018].

Generally, on the input layer, a concrete domain C is defined such that the
set of inputs η is one of its elements. To enable an efficient computation, a
comparatively simple domain, i.e., abstract domain A, which over-approximates
the range and relation of variables in C, is chosen. There is a partial order ≤ on
C as well as A, which is the subset relation ⊆.

Definition 20 A pair of functions α : C → A and γ : A → C is a Galois
connection, if for any a ∈ A and c ∈ C, we have α(c) ≤ a⇔ c ≤ γ(a).

Intuitively, a Galois connection (α, γ) expresses abstraction and concretisation
relations between domains, respectively. A Galois connection is chosen because
it preserves the order of elements in two domains. Note that, a ∈ A is a sound
abstraction of c ∈ C if and only if α(c) ≤ a.

In abstract interpretation, it is important to choose a suitable abstract domain
because it determines the efficiency and precision of the abstract interpreta-
tion. In practice, a certain type of special shapes is used as the abstraction
elements. Formally, an abstract domain consists of shapes expressible as a set of
logical constraints. The most popular abstract domains for the Euclidean space
abstraction include Interval, Zonotope, and Polyhedron.

• Interval. An interval I contains logical constraints in the form of a ≤
xi ≤ b, and for each variable xi, I contains at most one constraint with xi.

26

• Zonotope. A zonotope Z consists of constraints in the form of zi =
ai +

∑m
j=1 bijεj , where ai, bij are real constants and εj ∈ [lj , uj]. The

conjunction of these constraints expresses a centre-symmetric polyhedron
in the Euclidean space.

• Polyhedron. A polyhedron P has constraints in the form of linear in-
equalities, i.e.,

∑n
i=1 aixi ≤ b, and it gives a closed convex polyhedron in

the Euclidean space.

Example 6 Let x̄ ∈ R2. Assume that the range of x̄ is a discrete set X =
{(1, 0), (0, 2), (1, 2), (2, 1)}. We can have abstraction of the input X with Interval,
Zonotope, and Polyhedron as follows.

• Interval: [0, 2]× [0, 2].

• Zonotope: {x1 = 1 − 1
2ε1 −

1
2ε2, x2 = 1 + 1

2ε1 + 1
2ε3}, where ε1, ε2, ε3 ∈

[−1, 1].

• Polyhedron: {x2 ≤ 2, x2 ≤ −x1 + 3, x2 ≥ x1 − 1, x2 ≥ −2x1 + 2}.

The abstract interpretation based approaches can verify interval property,
but cannot verify reachability property.

4.2.2 Convex Optimisation

A method is proposed in [Wong and Kolter, 2018] to learn deep ReLU-based clas-
sifiers that are provably robust against norm-bounded adversarial perturbations
on the training data. For previously unseen examples, the approach is guaran-
teed to detect all adversarial examples, though it may flag some non-adversarial
examples as well. Therefore, the approach works with interval property, but
not reachability property. The basic idea is to consider a convex outer over-
approximation of the set of activations reachable through a norm-bounded
perturbation, and the authors develop a robust optimisation procedure that min-
imises the worst case loss over this outer region (via a linear program). Crucially,
it is shown that the dual problem to this linear program can be represented
itself as a deep network similar to the back-propagation network, leading to very
efficient optimisation approaches that produce guaranteed bounds on the robust
loss. The end result is that by executing a few more forward and backward passes
through a slightly modified version of the original network (though possibly with
much larger batch sizes), a classifier can be learned that is provably robust to
any norm-bounded adversarial attack. They illustrate the approach on a number
of tasks to train classifiers with robust adversarial guarantees (e.g. for MNIST,
they produce a convolutional classifier that provably has less than 5.8% test
error for any adversarial attack with bounded L∞ norm less than ε = 0.1).

Moreover, [Dvijotham et al., 2018] works by taking a different formulation
of the dual problem, i.e., applying Lagrangian relaxation on the optimisation.
This is to avoid working with constrained non-convex optimisation problem.

27

4.2.3 Interval Analysis

In [Wang et al., 2018], the interval arithmetic is leveraged to compute rigorous
bounds on the DNN outputs, i.e., interval property. The key idea is that, given
the ranges of operands, an over-estimated range of the output can be computed
by using only the lower and upper bounds of the operands. Starting from the
first hidden layer, this computation can be conducted through to the output
layer. Beyond this explicit computation, symbolic interval analysis along with
several other optimisations are also developed to minimise over-estimations
of output bounds. These methods are implemented in ReluVal, a system for
formally checking security properties of ReLU-based DNNs. An advantage of
this approach, comparing to constraint-solving based approaches, is that it can
be easily parallelisable. In general, interval analysis is close to the interval-based
abstract interpretation, which we explained in Section 4.2.1.

In [Peck et al., 2017], lower bounds of adversarial perturbations needed to
alter the classification of the neural networks are derived by utilising the layer
functions. The proposed bounds have theoretical guarantee that no adversarial
manipulation could be any smaller, and in this case, can be computed efficiently -
at most linear time in the number of (hyper)parameters of a given model and any
input, which makes them applicable for choosing classifiers based on robustness.

4.2.4 Output Reachable Set Estimation

In [Xiang et al., 2018], the output reachable set estimation is addressed. Given
a DNN N with its associated function f , and a set of inputs η, the output
reachable set is Reach(f, η) as in Definition 12. The problem is to either
compute a close estimation Y ′ such that Reach(f, η) ⊆ Y ′, or to determine
whether Reach(f, η) ∩ ¬S = ∅ for a safety specification S, where S is also
expressed with a set similar as the one in Equation (14). Therefore, it is actually
to compute the interval property. First, a concept called maximum sensitivity is
introduced and, for a class of multi-layer perceptrons whose activation functions
are monotonic functions, the maximum sensitivity can be computed via solving
convex optimisation problems. Then, using a simulation-based method, the
output reachable set estimation problem for neural networks is formulated into
a chain of optimisation problems. Finally, an automated safety verification is
developed based on the output reachable set estimation result. The approach is
applied to the safety verification for a robotic arm model with two joints.

4.2.5 Linear Approximation of ReLU Networks

[Weng et al., 2018] analyses the ReLU networks on both interval property and
Lipschitzian property. For interval property, they consider linear approximation
over those ReLU neurons that are uncertain on their status of being activated
or deactivated. For Lipschitzian property, they use the gradient computation for
the approximation computation.

28

Figure 7: The layer-by-layer refinement framework of [Huang et al., 2017b].

4.3 Approaches with Converging Upper and Lower Bounds

While the above approaches can work with small networks (up to a few thousands
hidden neurons), state-of-the-art DNNs usually contain at least multi-million
hidden neurons. It is necessary that other approaches are developed to work
with real-world systems. In Section 4.3 and Section 4.4, the approaches are able
to work with large-scale networks, although they might have other restrictions or
limitations. Since the approaches surveyed in this subsection compute converging
upper and lower bounds, they can work with both output reachability property
and interval property.

4.3.1 Layer-by-Layer Refinement

[Huang et al., 2017b] develops an automated verification framework for feedfor-
ward multi-layer neural networks based on Satisfiability Modulo Theory (SMT).
The key features of this framework are that it guarantees a misclassification
being found if it exists, and that it propagates the analysis layer-by-layer, i.e.,
from the input layer to, in particular, the hidden layers, and to the output layer.

In this work, safety for an individual classification decision, i.e., pointwise
(or local) robustness, is defined as the invariance of a classifier’s outcome to
perturbations within a small neighbourhood of an original input. Formally,

N , ηk,∆k |= x

where x denotes an input, N a neural network, η a region surrounding the
input, ∆ a set of manipulations, and subscript k means at layer k. Later, in
[Wicker et al., 2018, Wu et al., 2018], it is shown that the minimality of the
manipulations in ∆ can be guaranteed with the existence of Lipschitz constant.

To be more specific, its verification algorithm uses single-/multi-path search
to exhaustively explore a finite region of the vector spaces associated with the
input layer or the hidden layers, and a layer-by-layer refinement is implemented
using the Z3 solver to ensure that the local robustness of a deeper layer implies
the robustness of a shallower layer, as shown in Figure 7. The methodology is
implemented in the software tool DLV, and evaluated on image benchmarks such
as MNIST, CIFAR10, GTSRB, and ImageNet. Though the complexity is high,
it scales to work with state-of-the-art networks such as VGG16. Furthermore,
in [Wicker et al., 2018, Wu et al., 2018], the search problem is alleviated by
Monte-Carlo tree search.

29

Figure 8: The feature robustness (FR) problem [Wu et al., 2018], which aims
to find, on an original image x, a feature, or a subset of features, that is the
most robust against adversarial perturbations. Given a benign image, first apply
feature extraction or semantic partitioning methods to produce a set of disjoint
features (‘Sky’, ‘Trees’, ‘Cat’, etc.), then find a set of robust features that is most
resilient to adversarial perturbations (‘Grass’ in the figure), which quantifies the
most robust direction in a safe norm ball.

4.3.2 Reduction to A Two-Player Turn-based Game

In [Wu et al., 2018], two variants of pointwise robustness are studied:

• the maximum safe radius (MSR) problem, which for a given input sample
computes the minimum distance to an adversarial example, and

• the feature robustness (FR) problem, which aims to quantify the robustness
of individual features to adversarial perturbations, as shown in Figure 8.

It demonstrates that, under the assumption of Lipschitz continuity, both
problems can be approximated using finite optimisation by discretising the
input space, and the approximation has provable guarantees, i.e., the error is
bounded. It subsequently reduces the resulting optimisation problems to the
solution of a two-player turn-based game, where Player I selects features and
Player II perturbs the image within the feature. While Player II aims to
minimise the distance to an adversarial example, depending on the optimisation
objective Player I can be cooperative or competitive. An anytime approach is
employed to solve the games, in the sense of approximating the value of a game
by monotonically improving its upper and lower bounds. The Monte-Carlo tree
search algorithm is applied to compute upper bounds for both games, and the
Admissible A* and the Alpha-Beta Pruning algorithms are, respectively, used to
compute lower bounds for the MSR and FR games.

30

4.3.3 Global Optimisation Based Approaches

DeepGO [Ruan et al., 2018a] shows that most known layers of DNNs are Lipschitz
continuous, and presents a verification approach based on global optimisation.
For a single dimension, an algorithm is presented to always compute the lower
bounds (by utilising the Lipschitz constant) and eventually converge to the
optimal value. Based on this single-dimensional algorithm, the algorithm for
multiple dimensions is to exhaustively search for the best combinations. The
algorithm is able to work with state-of-the-art DNNs, but is restricted by the
number of dimensions to be perturbed.

In [Ruan et al., 2018b], the authors focus on the L0 norm, and study the
problem of quantifying the global robustness of a trained DNN, where global
robustness is defined as the expectation of the maximum safe radius over a testing
dataset. They propose an approach to iteratively generate lower and upper
bounds on the network’s robustness. The approach is anytime, i.e., it returns
intermediate bounds and robustness estimates that are gradually, but strictly,
improved as the computation proceeds; tensor-based, i.e., the computation is
conducted over a set of inputs simultaneously, instead of one by one, to enable
efficient GPU computation; and has provable guarantees, i.e., both the bounds
and the robustness estimates can converge to their optimal values.

4.4 Approaches with Statistical Guarantees

This subsection reviews a few approaches aiming to achieve statistical guarantees
on their results, by claiming e.g., the satisfiability of a property, or a value is a
lower bound of another value, etc., with certain probability.

4.4.1 Lipschitz Constant Estimation by Extreme Value Theory

[Weng et al., 2018] proposes a metric, called CLEVER, to estimate the Lipschitz
constant, i.e., the approach works with Lipschitzian property. It estimates the
robustness lower bound by sampling the norm of gradients and fitting a limit dis-
tribution using extreme value theory. However, as argued by [Goodfellow, 2018],
their evaluation approach can only find statistical approximation of the lower
bound, i.e., their approach has a soundness problem.

4.4.2 Robustness Estimation

[Bastani et al., 2016] proposes two statistics of robustness to measure the fre-
quency and the severity of adversarial examples, respectively. Both statistics
are based on a parameter ε, which is the maximum radius within which no
adversarial examples exist. The computation of these statistics is based on
the local linearity assumption which holds when ε is small enough. Except for
the application of the ReLU activation function which is piece-wise linear, this
assumption can be satisfied by the existence of the Lipschitz constant as shown
in [Ruan et al., 2018a].

31

4.5 Computational Complexity of Verification

There are two ways to measure the complexity of conducting formal verifica-
tion. The first, appeared in [Katz et al., 2017], measures the complexity with
respect to the number of hidden neurons. This is due to the fact that their
approach is to encode the DNN into a set of constraints, and in the constraints
every hidden neuron is associated with two variables. On the other hand, in
[Ruan et al., 2018a], the complexity is measured with respect to the number of
input dimensions. This is due to the fact that their approach is to manipulate
the input. For both cases, the complexity is shown NP-complete, although it
is understandable that the number of hidden neurons can be larger than the
number of input dimensions.

4.6 Summary

We summarise the existing approaches to the verification of DNNs in Table 1,
from the aspects of the type of achievable guarantees, underlying algorithms,
and objective properties, i.e., robustness, reachability, interval, and Lipschitzian.

Table 1: Comparison between the verification approaches of deep neural networks

Guarantees Algorithm
Property

Robustness Reachability Interval Lipschitzian

[Pulina and Tacchella, 2010]

Deterministic
Guarantees

Constraints
Solving

SMT

X X X

[Katz et al., 2017] X X X

[Ehlers, 2017] X X X

[Narodytska et al., 2018]
[Narodytska, 2018]

SAT X X X

[Lomuscio and Maganti, 2017]

MILP

X X X

[Cheng et al., 2017] X X X

[Dutta et al., 2018] X X X

[Bunel et al., 2017] X X X

[Gehr et al., 2018]

Lower/Upper
Bound

Abstract
Interpretation

X

[Mirman et al., 2018] X

[Li et al., 2018] X

[Wong and Kolter, 2018] Convex Optimisation X

[Wang et al., 2018]
Interval Analysis

X

[Peck et al., 2017] X

[Xiang et al., 2018] Set Estimation X

[Weng et al., 2018] Linear Approximation X X

[Huang et al., 2017b]

Converging
Bounds

Search
Based

Layer-by-Layer
Refinement

X X X

[Wicker et al., 2018] Two-Player
Turn-based Game

X X X X

[Wu et al., 2018] X X X X

[Ruan et al., 2018a] Global
Optisimation

X X X X

[Ruan et al., 2018b] X X X

[Weng et al., 2018] Statistical
Guarantees

Extreme Value Theory X

[Bastani et al., 2016] Robustness Estimation X

32

5 Testing

Similar to traditional software testing against software verification, DNN testing
provides a certification methodology with a balance between completeness and
efficiency. In established industries, e.g., avionics and automotive, the needs
for software testing has been settled in various standards such as DO-178C and
MISRA. However, due to the lack of logical structures and system specification,
it is still unclear how to extend such standards to work with systems with DNN
components. In the following, we survey testing techniques from three aspects:
coverage criteria (Section 5.1), test case generation (Section 5.2), and model-
level mutation testing (Section 5.3). The first two do not alter the structure of
the DNN, while the mutation testing involves the change to the structure and
parameters of the DNN.

5.1 Coverage Criteria for DNNs

Research in software engineering has resulted in a broad range of approaches to
test software. Please refer to [Zhu et al., 1997, Jia and Harman, 2011, Su et al., 2017]
for comprehensive reviews. In white-box testing, the structure of a program
is exploited to (perhaps automatically) generate test cases. Structural cover-
age criteria (or metrics) define a set of test objectives to be covered, guiding
the generation of test cases and evaluating the completeness of a test suite.
E.g., a test suite with 100% statement coverage exercises all statements at
least once. While it is arguable whether this ensures functional correctness,
high coverage is able to increase users’ confidence (or trust) in the testing re-
sults [Zhu et al., 1997]. Structural coverage analysis and testing are also used as
a means of assessment in a number of safety-critical scenarios, and criteria such
as statement and modified condition/decision coverage (MC/DC) are applicable
measures with respect to different criticality levels. MC/DC was developed by
NASA[Hayhurst et al., 2001] and has been widely adopted. It is used in avionics
software development guidance to ensure adequate testing of applications with
the highest criticality [RTCA, 2011].

5.1.1 Neuron Coverage

Neuron coverage [Pei et al., 2017a] is the first coverage criterion designed for
DNNs. It can be seen as the statement coverage variant for DNN testing.

Definition 21 [Pei et al., 2017a] A node nk,i is neuron covered by a test case
x, denoted as N (nk,i, x), if sign(nk,i, x) = +1.

The set of objectives to be covered is O(N) = {∃x : N (nk,i, x) | 2 ≤ k ≤
K − 1, 1 ≤ i ≤ sk}. Each test case is a single input, i.e., T ⊆ DL1 . The covering
method is as follows: cov(nk,i, x

′) if and only if N (nk,i, x
′).

A search algorithm DeepXplore [Pei et al., 2017a] is developed to generate
test cases for neuron coverage. It takes multiple DNNs {fk | k ∈ 1..n} as the
input and maximises over both the number of observed differential behaviours

33

and the neuron coverage while preserving domain-specific constraints provided
by the users. Let fk(x)[c] be the class probability that fk predicts x to be c.
The optimisation objective is as follows.

obj(x) = (
∑
k 6=j

fk(x)[c]− λ1fj(x)[c]) + λ2vj,i(x) (24)

where λ1 and λ2 are a tunable parameters,
∑
k 6=j fk(x)[c]− λ1fj(x)[c] denotes

differential behaviours, and vj,i(x) is the activation value of neuron nj,i on x.
Moreover, in [Tian et al., 2018] greedy search combining image transforma-

tions is used to increase neuron coverage, and is applied to DNNs for autonomous
driving. In [Sun et al., 2018c], the conclic testing algorithm can work with a set
of coverage metrics including neuron coverage and some other coverage metrics
to be surveyed below.

5.1.2 Safety Coverage

In [Wicker et al., 2018], the input space is discretised with a set of hyper-
rectangles, and then one test case is generated for each hyper-rectangle.

Definition 22 Let each hyper-rectangle rec contain those inputs with the same
pattern of ReLU, i.e., for all x1, x2 ∈ rec, 2 ≤ k ≤ K − 1 and 1 ≤ l ≤ sk, we
have sign(nk,l, x1) = sign(nk,l, x2). A hyper-rectangle rec is safe covered by a
test case x, denoted as S(rec, x), if x ∈ rec.

Let Rec(N) be the set of hyper-rectangles. The set of objectives to be covered
is O(N) = {∃x : S(rec, x)|rec ∈ Rec(N)}. Each test case is a single input, i.e.,
T ⊆ DL1

. The covering method is as follows: cov(rec, x) if and only if S(rec, x).
Moreover, there are different ways to define the set of hyper-rectangles.

For example, the boxing clever method in [Ashmore and Hill, 2018], initially
proposed for designing training datasets, divides the input space into a series of
representative boxes. When the hyper-rectangle is sufficiently fine-grained with
respect to Lipschitz constant of the DNN, the method in [Wicker et al., 2018]
becomes exhaustive search and has provable guarantee on its result. In terms of
the test case generation algorithm, it uses Monte Carlo tree search to exhaustively
enumerate for each hyper-rectangle a test case.

5.1.3 Extensions of Neuron Coverage

In [Ma et al., 2018a], several coverage criteria are proposed by following similar
rationale as neuron coverage to focus on individual neurons’ activation values.

Definition 23 [Ma et al., 2018a] A node nk,i is neuron boundary covered by a
test case x, denoted as NB(nk,i, x), if vk,i[x] > vuk,i.

Let rank(nk,i, x) be the rank of vk,i[x] among those values of the nodes at
the same layer, i.e., {vk,j [x] | 1 ≤ j ≤ sk}.

34

Definition 24 [Ma et al., 2018a] For 1 ≤ m ≤ sk, a node nk,i is top-m neuron
covered by x, denoted as TNm(nk,i, x), if rank(nk,i, x) ≤ m.

Let vlk,i = minx∈X vk,i[x] and vuk,i = maxx∈X vk,i[x] for some input x. We

can split the interval Ik,i = [vlk,i, v
u
k,i] into m equal sections, and let Ijk,i be the

jth section.

Definition 25 [Ma et al., 2018a] Given m ≥ 1, a node nk,i is m-multisection
neuron covered by a test suite T , denoted as MNm(nk,i, T), if ∀1 ≤ j ≤ m∃x ∈
T : vk,i[x] ∈ Ijk,i, i.e., all sections are covered by some test cases.

Each test case is a single input, i.e., T ⊆ DL1
. We omit the definition of test

objectives O and covering methods cov, which are similar to the original neuron
coverage case.

No particular algorithm is developed in [Ma et al., 2018a] for generating test
cases for the criteria proposed; instead, they apply adversarial attack methods
(e.g., [Goodfellow et al., 2014b]) to generate an extra set of new inputs that is
shown to increase the coverage. Following [Ma et al., 2018a], an exploratory
study on combinatorial testing is conducted in [Ma et al., 2018c] to cover combi-
nations of neurons’ activations at the same layer.

5.1.4 Modified Condition/Decision Coverage (MC/DC)

Modified Condition/Decision Coverage (MC/DC) [Hayhurst et al., 2001] is a
method of ensuring adequate testing for safety-critical software. At its core is
the idea that if a choice can be made, all the possible factors (conditions) that
contribute to that choice (decision) must be tested. For traditional software, both
conditions and the decision are usually Boolean variables or Boolean expressions.

Example 7 The decision

d ⇐⇒ ((a > 3) ∨ (b = 0)) ∧ (c 6= 4) (25)

contains the three conditions (a > 3), (b = 0) and (c 6= 4). The following six test
cases provide 100% MC/DC coverage:

1. (a > 3)=false, (b = 0)=true, (c 6= 4)=false

2. (a > 3)=true, (b = 0)=false, (c 6= 4)=true

3. (a > 3)=false, (b = 0)=false, (c 6= 4)=true

4. (a > 3)=false, (b = 0)=true, (c 6= 4)=true

The first two test cases already satisfy both condition coverage (i.e., all possibilities
of the conditions are exploited) and decision coverage (i.e., all possibilities of the
decision are exploited). The other two cases are needed because, for MC/DC each
condition should evaluate to true and false at least once, and should independently
affect the decision outcome

35

Motivated by the MC/DC testing for traditional software, an MC/DC vari-
ant for DNNs are initially proposed in [Sun et al., 2018a], which is further
refined in [Sun et al., 2018b]. Different from these criteria in [Pei et al., 2017a,
Ma et al., 2018a] that only consider individual neurons’ activations, the criteria
in [Sun et al., 2018a, Sun et al., 2018b] take into account the causal relation
between features in DNNs: the core idea is to ensure that not only the presence
of a feature needs to be tested but also the effects of less complex features on a
more complex feature must be tested.

We let Ψk be a set of subsets of nodes at layer k. Without loss of generality,
each element of Ψk, i.e., a subset of nodes in the k-th layer, represents a feature
learned at layer k.

At first, different from the Boolean case, where changes of conditions and
decisions are straightforwardly switches of true/false values, the change observed
on a feature can be either a sign change or a value change.

Definition 26 (Sign Change) Given a feature ψk,l and two test cases x1 and
x2, the sign change of ψk,l is exploited by x1 and x2, denoted as sc(ψk,l, x1, x2),
if

• sign(nk,j , x1) 6= sign(nk,j , x2) for all nk,j ∈ ψk,l.

Moreover, we write nsc(ψk,l, x1, x2) if

• sign(nk,j , x1) = sign(nk,j , x2) for all nk,j ∈ ψk,l.

Note that nsc(ψk,l, x1, x2) 6= ¬sc(ψk,l, x1, x2). When the ReLU activation
function is assumed, the sign change of a feature represents switch of the two
cases, in which neuron activations of this feature are and are not propagated to
the next layer.

A feature’s sign change is sometimes too restrictive and its value change
compensates this. We can denote a value function as g : Ψk ×DL1

×DL1
→

{true, false}. Simply speaking, it expresses the DNN developer’s intuition (or
knowledge) on what contributes as a significant change on the feature ψk,l, by
specifying the difference between two vectors ψk,l[x1] and ψk,l[x2]. The following
are a few examples.

Example 8 For a singleton set ψk,l = {nk,j}, the function g(ψk,l, x1, x2) can

express e.g., |uk,j [x1]−uk,j [x2]| ≥ d (absolute change), or
uk,j [x1]
uk,j [x2] > d∨ uk,j [x1]

uk,j [x2] <

1/d (relative change), etc. It can also express the constraint on one of the values
uk,j [x2] such as uk,j [x2] > d (upper boundary).

Example 9 For the general case, the function g(ψk,l, x1, x2) can express the
distance between two vectors ψk,l[x1] and ψk,l[x2] by e.g., norm-based distances
||ψk,l[x1] − ψk,l[x2]||p ≤ d for a real number d and a distance measure Lp, or
structural similarity distances such as SSIM [Wang et al., 2003]. It can also
express constraints between nodes of the same layer such as

∧
j 6=i vk,i[x1] ≥

vk,j [x1].

36

Consequently, the value change of a feature is defined as follows.

Definition 27 (Value Change) Given a feature ψk,l, two test cases x1 and
x2, and a value function g, the value change of ψk,l is exploited by x1 and x2

with respect to g, denoted as vc(g, ψk,l, x1, x2), if

• g(ψk,l, x1, x2)=true.

Moreover, we write ¬vc(g, ψk,l, x1, x2) when the condition is not satisfied.

Based on the concept of sign changes and value changes, a family of four
coverage criteria are proposed in [Sun et al., 2018a, Sun et al., 2018b], i.e., the
MC/DC variant for DNNs, to exploit the causal relationship between the changes
of features at consecutive layers of the neural network.

Definition 28 (Sign-Sign Coverage, or SS Coverage) A feature pair α =
(ψk,i, ψk+1,j) is SS-covered by two test cases x1, x2, denoted as SS(α, x1, x2), if
the following conditions are satisfied by the DNN instances N [x1] and N [x2]:

• sc(ψk,i, x1, x2) and nsc(Pk \ ψk,i, x1, x2);

• sc(ψk+1,j , x1, x2).

where Pk is the set of nodes in layer k.

Definition 29 (Sign-Value Coverage, or SV Coverage) Given a value func-
tion g, a feature pair α = (ψk,i, ψk+1,j) is SV-covered by two test cases x1, x2,
denoted as SV g(α, x1, x2), if the following conditions are satisfied by the DNN
instances N [x1] and N [x2]:

• sc(ψk,i, x1, x2)and nsc(Pk \ ψk,i, x1, x2);

• vc(g, ψk+1,j , x1, x2) and nsc(ψk+1,j , x1, x2).

Definition 30 (Value-Sign Coverage, or VS Coverage) Given a value func-
tion g, a feature pair α = (ψk,i, ψk+1,j) is VS-covered by two test cases x1, x2,
denoted as V Sg(α, x1, x2), if the following conditions are satisfied by the DNN
instances N [x1] and N [x2]:

• vc(g, ψk,i, x1, x2) and nsc(Lk, x1, x2);

• sc(ψk+1,j , x1, x2).

Definition 31 (Value-Value Coverage, or VV Coverage) Given two value
functions g1 and g2, a feature pair α = (ψk,i, ψk+1,j) is VV-covered by two test
cases x1, x2, denoted as V V g1,g2(α, x1, x2), if the following conditions are satis-
fied by the DNN instances N [x1] and N [x2]:

• vc(g1, ψk,i, x1, x2) and nsc(Lk, x1, x2);

• vc(g2, ψk+1,j , x1, x2) and nsc(ψk+1,j , x1, x2).

37

For all the above, each test case is a pair of inputs, i.e., T ⊆ DL1 × DL1 .
The test objectives O is a set of feature pairs, provided by the user or computed
automatically according to the structure of the DNN. The covering methods cov
has been defined in the above definitions.

For the test case generation, [Sun et al., 2018a] develops an algorithm based
on liner programming (LP). This is complemented with an adaptive gradient
descent (GD) search algorithm in [Sun et al., 2018b] and a concolic testing
algorithm in [Sun et al., 2018c].

5.1.5 Quantitative Projection Coverage

In [Cheng et al., 2018b], it is assumed that there exist a number of weighted
criteria for describing the operation conditions. For example, for self-driving
cars, the criteria can be based on e.g., weather, landscape, partially occluding
pedestrians, etc. With these criteria one can systematically partition the input
domain and weight each partitioned class based on its relative importance. Based
on this, the quantitative k-projection is proposed such that the data set, when
being projected onto the k-hyperplane, needs to have (in each region) data points
no less than the associated weight. While the criteria in [Cheng et al., 2018b] are
based on self-driving scenes, [Cheng et al., 2018c] present a few further criteria
that take into account DNN internal structures, focusing on individual neurons’
or neuron sets’ activation values.

In terms of the test case generation, a method based on 0-1 Integer Linear
Programming is developed. It has been integrated into the nn-dependability-
kit [Cheng et al., 2018a].

5.1.6 Surprise Coverage

[Kim et al., 2018b] aims to measure the relative novelty (i.e., surprise) of the
test inputs with respect to the training dataset, by measuring the difference
of activation patterns [Sun et al., 2018a] between inputs. Given a training set
T ⊆ DL1

, a layer k, and a new input x, one of the measurements is to compute
the following value

− log(
1

|T|
∑
xi∈T

KH(vk(x)− vk(xi))) (26)

where vk(x) is the vector of activation values for neurons in layer k when the
input is x. Moreover, K is a Gaussian kernel function and H is a bandwidth
matrix, used in Kernel Density Estimation [Wand and Jones, 1994]. Based on
this, the coverage is defined, similar as the m-multisection [Ma et al., 2018a], to
cover a few pre-specified segments within a range (0, U]. Intuitively, a good test
input set for a DNN should be systematically diversified to include inputs ranging
from those similar to training data (i.e., having lower values for Expression (26))
to those significantly different (i.e., having higher values for Expression (26)).

In terms of test case generation, [Kim et al., 2018b] utilises a few existing
algorithms for adversarial attack, including FGSM [Goodfellow et al., 2014b],

38

Basic iterative method [Kurakin et al., 2016], JSMA [Papernot et al., 2016c],
CW attack [Carlini and Wagner, 2017a].

5.1.7 Comparison between Existing Coverage Criteria

Figure 9 gives a diagrammatic illustration of the relationship between most of
the coverage criteria we survey above. An arrow from A to B denotes that the
coverage metric A is weaker than the coverage metric B. We say that metric
Mcov1 is weaker than another metric Mcov2 , if for any given test suite T on N , we
have that Mcov1(obj1, T) < 1 implies Mcov2(obj2, T) < 1, for their respective ob-
jectives obj1 and obj2. Particularly, as discussed in [Salay and Czarnecki, 2018],
when considering the use of machine models in safety critical applications like
automotive software, DNN structural coverage criteria can be applied in a similar
manner as their traditional software counterparts (e.g., statement coverage or
MC/DC) to different Automotive Safety Integrity Levels (ASALs).

Figure 9: Relationship between test criteria

5.2 Test Case Generation

In the following, we survey the test case generation methods for DNNs that have
not been covered in Section 5.1 and that do not employ the existing adversarial
attack algorithms.

5.2.1 Input Mutation

Given a set of inputs, input mutation generates new inputs (as test cases) by
changing the existing input according to some predefined transformation rules
or algorithms. For example, [Wicker et al., 2018] systematically mutates input
dimensions with the goal of enumerating all hyper-rectangles in the input space.
Moreover, aiming at testing the fairness (i.e., free of unintended bias) of DNNs,
AEQUITAS [Udeshi et al., 2018] essentially employs an input mutation technique
to first randomly sample a set of inputs and then explore the neighbourhood of
the sampled inputs by changing a subset of input dimensions, however, it has
not been applied to DNN model.

39

5.2.2 Fuzzing

Fuzzing, or fuzz testing, is an automated software testing technique that efficiently
generates a massive amount of random input data (possibly invalid or unexpected)
to a program, which is then monitored for exceptions and failures. A fuzzer can
be mutation-based that modifies existing input data. Depending on the level
of awareness of the program structure, the fuzzer can be white/grey/block-box.
There are recent works that adopt fuzz testing to deep neural networks.

TensorFuzz [Odena and Goodfellow, 2018] is a coverage-guided fuzzing method
for DNNs. It randomly mutates the inputs, guided by a coverage metric over the
goal of satisfying user-specified constraints. The coverage is measured by a fast
approximate nearest neighbour algorithm. TensorFuzz is validated in finding
numerical errors, generating disagreements between DNNs and their quantized
versions, and surfacing undesirable behaviour in DNNs. Similar to TensorFuzz,
DeepHunter [Xie et al., 2018] is another coverage-guided grey-box DNN fuzzer,
which utilises these extensions of neuron coverage from [Ma et al., 2018a]. More-
over, DLFuzz [Guo et al., 2018] is a differential fuzzing testing framework. It
mutates the input to maximise the neuron coverage and the prediction difference
between the original input and the mutated input.

5.2.3 Symbolic Execution and Testing

Though input mutation and fuzzing are good at generating a large amount of
random data, there is no guarantee that certain test objectives will be satisfied.
Symbolic execution (also symbolic evaluation) is a means of analysing a program
to determine what inputs cause each part of a program to execute. It assumes
symbolic values for inputs rather than obtaining actual inputs as normal execution
of the program would, and thus arrives at expressions in terms of those symbols
for expressions and variables in the program, and constraints in terms of those
symbols for the possible outcomes of each conditional branch.

Concolic testing is a hybrid software testing technique that alternates between
concrete execution, i.e., testing on particular inputs, and symbolic execution.
This idea still holds for deep neural networks. In DeepConcolic [Sun et al., 2018c,
Sun et al., 2018d], coverage criteria for DNNs that have been studied in the
literature are first formulated using the Quantified Linear Arithmetic over
Rationals, and then a coherent method for performing concolic testing to increase
test coverage is provided. The concolic procedure starts from executing the
DNN using concrete inputs. Then, for those test objectives that have not been
satisfied, they are ranked according to some heuristic. Consequently, a top
ranked pair of test objective and the corresponding concrete input are selected
and symbolic analysis is thus applied to find a new input test. The experimental
results show the effectiveness of the concolic testing approach in both achieving
high coverage and finding adversarial examples.

The idea in [Gopinath et al., 2018] is to translate a DNN into an imperative
program, thereby enabling program analysis to assist with DNN validation.
It introduces novel techniques for lightweight symbolic analysis of DNNs and

40

applies them in the context of image classification to address two challenging
problems, i.e., identification of important pixels (for attribution and adversarial
generation), and creation of 1-pixel and 2-pixel attacks. In [Agarwal et al., 2018],
black-box style local explanations are first called to build a decision tree, to
which the symbolic execution is then applied to detect individual discrimination
in a DNN: such a discrimination exists when two inputs, differing only in the
values of some specified attributes (e.g., gender/race), get different decisions
from the neural network.

5.2.4 Testing using Generative Adversarial Networks

Generative adversarial networks (GANs) are a class of AI algorithms used in
unsupervised machine learning. It is implemented by a system of two neural
networks contesting with each other in a zero-sum game framework. Deep-
Road [Zhang et al., 2018] automatically generate large amounts of accurate
driving scenes to test the consistency of DNN-based autonomous driving systems
across different scenes. In particular, it synthesises driving scenes with various
weather conditions (including those with rather extreme conditions) by applying
the Generative Adversarial Networks (GANs) along with the corresponding
real-world weather scenes.

5.2.5 Differential Analysis

We have already seen differential analysis techniques in [Pei et al., 2017a] and
[Guo et al., 2018] that analyse the differences between multiple DNNs to max-
imise the neuron coverage. Differential analysis of a single DNN’s internal states
has been also applied to debug the neural network model by [Ma et al., 2018d],
in which a DNN is said to be buggy when its test accuracy for a specific output
label is lower than the ideal accuracy. Given a buggy output label, the differential
analysis in [Ma et al., 2018d] builds two heat maps corresponding to its correct
and wrong classifications. Intuitively, a heat map is an image whose size equals
to the number of neurons and the pixel value represents the importance of a
neuron (for the output). Subsequently, the difference between these two maps
can be used to highlight these faulty neurons that are responsible for the output
bug. Then, new inputs are generated (e.g., using GAN) to re-train the DNN so
to reduce the influence of the detected faulty neurons and the buggy output.

5.3 Model-Level Mutation Testing

Mutation testing is a white-box testing technique that performs by changing
certain statements in the source code and checking if the test cases are able to
find the errors. Once a test case fails on a mutant, the mutant is said to be
killed. Mutation testing is not used to find the bugs in software but evaluate the
quality of the test suite which is measured by the percentage of mutants that
they kill.

41

[Shen et al., 2018] proposes five mutation operators, including (i) deleting
one neuron in input layer, (ii) deleting one or more hidden neurons, (iii) changing
one or more activation functions, (iv) changing one or more bias values, and (v)
changing weight value. [Ma et al., 2018b] considers data mutations, program
mutations, and model-level mutations. For data mutations, a few operations
on training dataset are considered, including duplicating a small portion of
data, injecting faults to the labels, removing some data points, and adding
noises to the data. For program mutations, a few operations are considered,
including adding or deleting a layer and remvoing activation function. Model-level
mutations include changing the weights, shuffling the weights between neurons
in neighboring layers, etc. Moreover, [Cheng et al., 2018d] simulates program
bugs by mutating Weka implementations of several classification algorithms,
including Naive Bayes, C4.5, k-NN, and SVM.

5.4 Summary

We compare the testing methods for DNNs in Table 2. Overall, search algorithms,
including greedy search and gradient ascent (GA) search, are often used in the
testing. For simple coverage criteria such as neuron coverage and its extensions
and surprise coverage, established machine learning adversarial attack algorithms
(e.g., FGSM [Goodfellow et al., 2014b] and JSMA [Papernot et al., 2016c]) are
sufficient enough for test case generation. In the more complex cases, Linear
Programming (LP) or Integer Linear Programming (ILP) approaches can be
used, and the Monte Carlo Tree Search (MCTS) method is called for generating
tests for the safety coverage. Advanced testing methods like concolic testing and
fuzzing have been also developed for DNNs.

Sometimes, distances between test inputs need to be taken into account
in DNN testing to guide the tests generation. As in the last column of Table
2, different norm distances have been applied, however, there is no conclusion
on which one is the best. Works like [Pei et al., 2017a, Guo et al., 2018] are in
principle based on differential analysis of multiple DNNs, thus more than one
DNN inputs are expected.

Up to now, most techniques are developed by extending the existing tech-
niques from software testing with simple adaptations. It is necessary to validate
the developed techniques (as discussed in Section 8.6) and study the necessity of
developing dedicated testing techniques.

42

Table 2: Comparison between different DNN testing methods

Test generation Coverage criteria DNN in-
puts

Distance
metric

[Pei et al., 2017a] dual-objective
search

neuron coverage multiple L1

[Tian et al., 2018] greedy search neuron coverage single Jaccard dis-
tance

[Wicker et al., 2018] MCTS safety coverage single n/a

[Ma et al., 2018a] adversarial
attack

neuron coverage ex-
tensions

single n/a

[Sun et al., 2018a,
Sun et al., 2018b]

LP, adaptive
GA search

MC/DC single L∞

[Cheng et al., 2018b] 0-1 ILP quantitative projec-
tion coverage

single n/a

[Kim et al., 2018b] adversarial
attacks

surprise coverage single n/a

[Sun et al., 2018c] concolic testing MC/DC, neuron
coverage and its
extensions

single L0, L∞

[Odena and Goodfellow, 2018]fuzzing fast approximate
nearest neighbour

single n/a

[Xie et al., 2018] fuzzing neuron coverage ex-
tensions

single n/a

[Guo et al., 2018] fuzzing neuron coverage multiple n/a

[Gopinath et al., 2018,
Agarwal et al., 2018]

symbolic execu-
tion

n/a single n/a

[Zhang et al., 2018] GAN n/a single n/a

[Ma et al., 2018d] GAN n/a single n/a

43

6 Attack and Defence

Attack techniques are to provide evidence (i.e., adversarial example) to the lack
of robustness of a DNN without having a provable guarantee. Defence techniques
are dual to the attacking techniques, by either improving the robustness of
the DNN to reduce the adversarial examples or differentiating the adversarial
examples from the correct inputs. From Section 6.1 to Section 6.3, we review
the attack techniques from different aspects. These techniques are compared in
Section 6.4 with a few other techniques from verification. Then, in Section 6.5
and Section 6.6 we review defence techniques and certified defence techniques,
respectively.

6.1 Adversarial Attacks

Given an input, an adversarial attack (or attacker) is to craft a perturbation or
distortion to the input to make it misclassified by a well-trained DNN. Usually,
it is required that the adversarial example is misclassified with high confidence.
Attack techniques can be roughly classified into two groups based on the choice
of misclassification.

• For targeted perturbation, the attacker is able to control the resulting
misclassification label;

• For un-targeted perturbation, the attacker can enable the misclassification
but cannot control its resulting misclassification label.

According to the amount of information an attacker can access, adversarial
perturbations can also be classified into two categories.

• White-box perturbation: an attacker needs to access the parameters and
the internal structure of the trained DNN, and may also need to access
the training dataset;

• Black-box perturbation: an attacker can only query the trained DNNs
with perturbed inputs, without the ability to access the internal structure
and parameters of the DNN.

Moreover, according to the norm-distances used to evaluate the difference
between a perturbed input and the original input, adversarial attacks can be
classified as L0, L1, L2 or L∞-attack. Please noted that all perturbations can
be measured with the norms, but an attack technique can produce adversarial
examples which are better measured with a particular norm.

Most previous attacks focus on adversarial examples for computer vision tasks.
Multiple techniques to create such adversarial examples have been developed
recently. Broadly, such attacks can be categorised, in terms of technical point of
view, as either using costs gradients such as works in [Goodfellow et al., 2014b,
Moosavi-Dezfooli et al., 2017, Biggio et al., 2013], or the forward gradient of
the neural network such as work in [Papernot et al., 2016c], or perturbing

44

along most promising direction or directly solving an optimisation problem
(possibly using gradient ascent/descent) to find a perturbation such as works
in [Moosavi-Dezfooli et al., 2016, Carlini and Wagner, 2017c].

In addition, adversarial examples have been shown to be transferable be-
tween different network architectures, or DNNs trained on disjoint subsets of
data [Szegedy et al., 2014, Papernot et al., 2016c]. Adversarial examples have
also been shown to be transferable to real world scenarios [Kurakin et al., 2016],
specifically, adversarial images remain misclassified even after being printed out
and recaptured with a cell phone camera. In the following, we will review a few
notable works with greater detail.

6.1.1 Limited-memory BFGS Algorithm (L-BFGS)

[Szegedy et al., 2014] noticed the existence of adversarial examples, and described
them as ‘blind spots’ in DNNs. Adversarial examples are misclassified by the
DNNs and appear in the neighbourhood of correctly-classified examples. It is
claimed that, since the adversarial examples have low probability of occurrence,
they cannot be found efficiently by sampling around correctly-classified inputs.
However, the adversarial examples can be found via an optimisation scheme.
Formally, assume a classifier f : Rs1 → {1 . . . sK}, mapping inputs to one of sK
class labels, a given input x ∈ Rs1 , and the target label t ∈ {1 . . . sK} such that
t 6= arg maxl fl(x), the goal is to find additive adversarial perturbation r ∈ Rs1
with the following optimization expression:

• Minimize ||r||2 subject to:

1. arg maxl fl(x+ r) = t

2. x+ r ∈ Rs1

Since exact computation is hard, an approxmate algorithm based on limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) is used. Fur-
thermore, [Szegedy et al., 2014] notices that adversarial examples are abundant
and, with the above framework, one could generate an unlimited number of
adversarial examples. They also note that these adversarial examples generalise
across both model and training sets - an adversarial example generated for one
DNN classifier will likely be an adversarial example for another classifier with
different architectures or training dataset.

6.1.2 Fast Gradient Sign Method (FGSM)

Fast Gradient Sign Method [Goodfellow et al., 2014b] is able to find adversarial
perturbations with a fixed L∞-norm constraint. FGSM conducts a one-step
modification to all pixel values so that the value of the loss function is increased
under a certain L∞-norm constraint. The authors argue that this provides a
linear explanation to the existence of adversarial examples. They highlight that
since the precision of an individual input feature is typically limited, e.g., digital
images often use only 8 bits per pixel and therefore are precise up to 1/255, it is

45

therefore unreasonable for a classifier to respond differently to two inputs if they
only differ on each feature by an amount that is less than the level of precision.
However, consider the dot product between a weight vector w and an adversarial
example x′ = x+ r:

wTx′ = wTx+ wT r

and let r = ε sign(w), the activation growth can be maximized. If w has n
dimensions with elements having average magnitude m, the activation growth is
εmn, i.e. increases linearly with respect to the dimensionality of the problem,
whereas ||η||∞ remains less than ε. Thus for high-dimensional problems, FGSM
can make many small changes to the input to produce a large difference in model
output. Based on this linear explanation, [Goodfellow et al., 2014b] suggests a
fast linear algorithm to generate adversarial examples. Denoting θ as the model
parameters, x an input to the model, y the label associated with x, and J(θ, x, y)
the cost function used to train the model, then an adversarial perturbation r
can be generated by

r = ε sign (∇xJ(θ, x, y)) (27)

A larger ε leads to a higher success rate of attacking but potentially results in a
bigger human visual difference. This attacking method has since been extended
into a targeted and iterative version [Kurakin et al., 2016].

6.1.3 Jacobian Saliency Map based Attack (JSMA)

Papernot et al [Papernot et al., 2016c] present an algorithm based on the forward
derivative of a DNN, defined as the Jacobian matrix of the output probability
distribution (over the set L of labels) with respect to the input dimensions, which
is used to highlight those features that the DNN’s prediction is most sensitive
to and are therefore most likely to cause miss-classification when perturbed.
For a given target class c ∈ L and a given input x ∈ [0, 1]s1 , each dimension
of the input is assigned a salient value based on the forward derivative. The
salient value captures, for each input dimension, the sensitivity of the output
probability assigned to a class c. For the adversarial perturbation, the input
dimension with largest salient value is perturbed by a maximum distortion
parameter τ > 0. If this perturbation results in a miss-classification, then the
algorithm terminates. Otherwise, the forward derivative is computed again
over the distorted input and the algorithm proceeds. The algorithm may also
terminate when a maximum distance threshold d > 0 is reached. This algorithm
does not require the computation of the derivative of the perturbation measured
with Lp-norm, and can be used to generate adversarial perturbations that are
minimised under L0 norm. This method is generally slower than FGSM and
aims to find an adversarial image that has a lower L0-norm distance to the
legitimate image.

46

6.1.4 DeepFool: A Simple and Accurate Method to Fool Deep Neu-
ral Networks

[Moosavi-Dezfooli et al., 2016] proposes an iterative algorithm to generate un-
targeted adversarial examples that are minimized under the Lp-norm, where
p ∈ [1,∞). Firstly, they consider generating adversarial examples for simple
case of affine binary classifiers: g(x) = sign(wT · x+ b). In this case, the optimal
adversarial example for a given input image x0 can be computed analytically
as the orthogonal projection of x0 onto the hyperplane G = {x|wT · x+ b = 0}.
This is generalised to the multi-class case:

g(x) = argmax
i∈{1...k}

(WTx+ b)

where W ∈ Rm×k and b ∈ Rk. Now in order to find the optimal adversarial
example, the inupt x0 is projected onto the nearest face of the hyper-polyhedron
P , defined as follows:

P (x0) =

k⋂
i=1

{x|gk0(x) ≥ gi(x)}

where k0 = g(x0). In other words, P is the set of all inputs that are classified with
the same label as x0. In order to generalise to non-affine multi-class classifiers,
e.g. DNNs, the optimal adversarial example is found iteratively, where at each
step the adversarial example is updated by linearly approximating the classifier
and then affine-projected as described above. Although this is a greedy heuristic
algorithm and as such is not guaranteed to find the optimal adversarial examples,
the perturbations are observed to be small and believed to be good approximation
of the minimal.

6.1.5 Carlini & Wagner Attack

C&W Attack [Carlini and Wagner, 2017c] is an optimisation based adversarial
attack method which formulates finding an adversarial example as image distance
minimisation problem such as L0, L2 and L∞-norm. Specifically, it defines an
optimisation problem over loss function

`(υ) = ||υ||p + c · f(x+ υ), (28)

where f is a function that is negative when the DNN N miss-classifies x+υ, under
the constraint that x+υ is a valid input. The optimisation problem is solved using
the gradient-descent method described in Adam [Kingma and Ba, 2014]. This
approach is applied for three distance metrics - L2, L0 and L∞ - the algorithm
is adjusted slightly in each case. In particular for the L0 case, an iterative
algorithm identifies a subset of features having low impact on classification and
are therefore not considered candidates for perturbation, this subset grows with
each iteration, until its complement set is sufficiently small, giving a minimal
feature subset salient to classification. At each iteration the feature i selected for

47

Figure 10: Rotation-Translation: Original (L) ‘automobile’, adversarial (R) ‘dog’
from [Engstrom et al., 2017]. The original image of an ‘automobile’ from the
CIFAR-10 dataset is rotated (by at most 30◦) and translated (by at most 3 pixels)
results in an image that state-of-art classifier ResNet [He et al., 2016] classifies
as ‘dog’.

exclusion is the one that minimises ∇f(x+υ)i ·υi. A smart trick in C&W Attack
lies on that it introduces a new optimisation variable to avoid box constraint
(image pixel need to within [0, 1]). This approach is similar in intuition to
[Papernot et al., 2016c] in that a subset of salient features is identified based
on the first-order derivatives, and [Carlini and Wagner, 2017c] is shown to be
more effective than [Papernot et al., 2016c]. C&W Attack is able to find an
adversarial example that has a significant smaller image distance, especially
based on L2-norm metric.

6.2 Adversarial Attacks by Natural Transformations

Additional to the above approaches which perform adversarial attack on pixel-
level, research has been done on crafting adversarial examples by applying natural
transformations.

6.2.1 Rotation and Translation

[Engstrom et al., 2017] argue that many existing adversarial attacking techniques
produce adversarial examples that are particularly contrived and as such highly
unlikely to occur ‘naturally’. It shows that DNNs are vulnerable to examples that
might occur in less-contrived settings, for example rotating and/or translating
input images the target classifier’s performance significantly degrades. Tech-
nically, [Engstrom et al., 2017] aims to find the optimal angle of rotation and
magnitude of translation of a given image that causes misclassification within
an acceptable range: ±30◦ ×±3 pixels. A few methods are proposed, including
(i) a first-order iterative method using the gradient of the DNN’s loss function,
(ii) a grid search by descretising the parameters space and exhaustively testing
all possibilities, and (iii) a worst-of-k method by randomly sampling k possible
parameter values and choosing the value that cause the DNN to perform the
worst.

48

(a) Original: ‘9’ (b) Adversarial: ‘8’ (c) x-dimension (d) y-dimension

Figure 11: Applying spatial transformation to MNIST image of a ‘9’. the Image
(a) on the left is the original MNIST example image of a ‘9’, and image (b) is
the spatially transformed adversarial version that a simple convolutional network
[Papernot et al., 2018] labels as ‘8’. Notice how minor the difference between
the two images is - the ‘9’ digit has been very slightly ‘bent’ - but is sufficient
for miss-classification. The flow-field that defines the spatial transformation
is visualised in Image (c) (x-dimension) and Image (d) (y-dimension). The
brighter areas indicate where the transformation is most intense - leftwards in
the x-dimension and upwards in the y-dimension.

6.2.2 Spatially Transformed Adversarial Examples

[Xiao et al., 2018] propose to generate realistic adversarial examples by changing
the location of pixels through spatial transformations rather than directly alter-
ing pixel values. These spatial transformations are defined by a displacement
field (or ‘flow field’), which defines for each pixel location a displacement of
the pixel value to a new location. Using a bi-linear interpolation technique
the resulting adversarial output is differentiable with respect to the flow field -
this facilitates an optimisation-problem approach to generating the adversarial
flow field. Technically, [Xiao et al., 2018] introduce a distance measure Lflow(·)
(rather than the usual Lp distance) to capture the local geometric distortion.
The flow field is generated in a similar manner as [Carlini and Wagner, 2017c]
via an optimisation problem whereby the loss function is defined to balance
between the adversarial loss function and the Lflow loss. Through human per-
ceptual study, [Xiao et al., 2018] show that spatially transformed adversarial
images are more difficult for humans to distinguish from original images, compar-
ing to the adversarial images generated in e.g., [Goodfellow et al., 2014b] and
[Carlini and Wagner, 2017c].

6.2.3 Towards Practical Verification of Machine Learning: The Case
of Computer Vision Systems (VeriVis)

Pei et al [Pei et al., 2017b] propose a generic framework (VeriVis) for evaluat-
ing the robustness of DNNs with a set of twelve ‘real-world’ transformations:
Average smoothing, Median smoothing, Erosion, Dilation, Contrast, Brightness,
Occlusion, Rotation, Shear, Scale, Translation and Reflection. Each transforma-
tion is defined by a critical parameter having a polynomial-sized domain. These

49

are applied exhaustively to a set of inputs which are used to assess the robustness
of a given DNN. VeriVis is used to test a number of state-of-the-art classifiers,
and their results show that all classifiers exhibit a significant number of safety
violations. It is also argued that, VeriVis is capable of generating significantly
more violations than gradient-based adversarial techniques.

6.3 Input-Agnostic Adversarial Attacks

A key characteristic of the above approaches is that an adversarial perturbation
is generated with respect to a specific input, and therefore cannot be applied to
the other input. It is not surprising that an input-agnostic perturbation would
be a far more powerful tool.

6.3.1 Universal Adversarial Perturbations

[Moosavi-Dezfooli et al., 2017] define universal adversarial perturbations (UAP)
as those that can mis-classify any example input with high probability. Techni-
cally, the algorithm iterates over a subset T of inputs sampled from the input
distribution X . At each iteration it updates the perturbation υ as follows: for
each xi ∈ T, the algorithm updates υ by finding the minimal ∆υi (with respect
to L2-norm) such that xi + υ + ∆υi is miss-classified by the DNN N . Once
computed, υ + ∆υi is projected onto the Lp-ball of radius d to ensure that the
perturbation is sufficiently small, i.e.,

υ ← arg min
υ′
{||υ′ − (υ + ∆υi)||2 | ||υ′||p ≤ d}. (29)

The algorithm continues until the empirical error of the sample set is sufficiently
large, i.e., no less than 1− δ for a pre-specified threshold δ. The optimisation
problem of finding the minimal ∆υi is solved using the DeepFool algorithm
[Moosavi-Dezfooli et al., 2016].

6.3.2 Generative Adversarial Perturbations

[Hayes and Danezis, 2018] ‘universalize’ the approach in [Carlini and Wagner, 2017c]
by training a universal adversarial network (UAN), and generates input-agnostic,
rather than input-specific, perturbations. Given a maximum perturbation dis-
tance d and an Lp norm, a UAN Uθ samples a random input vector z from a
normal distribution and outputs a raw perturbation υ, which is then scaled by
w ∈ [0, d

||υ||p] to have υ′ = w · υ. Then, the new input x+ υ′ needs to be checked

with DNN N to see if it is an adverarial example. The parameters θ is learned
using the gradient descent algorithm on a loss function similar to the one used
in [Carlini and Wagner, 2017c].

[Poursaeed et al., 2018] adopt a similar technique to [Hayes and Danezis, 2018]
for generating universal adversarial perturbations. A random noise image is
fed into a UAN, the raw output is scaled to satisfy an Lp constraint, then
added to input data, clipped, and then fed into a trained classifier. Their ap-
proach differs to [Hayes and Danezis, 2018] in two aspects. Firstly, they test

50

two UAN architectures U-Net [Ronneberger et al., 2015] and ResNet Generator
[Johnson et al., 2016], and find that the ResNet Generator outperforms in most
cases. Secondly, they develop a method for training the UAN using multiple
target classifiers so that the generated UAP is explicitly trained to be able to fool
multiple classifiers. This is achieved by a ‘multi-fool’ loss function lmulti−fool:

lmulti−fool(λ) = λ1 · lfool1 + · · ·+ λm · lfoolm (30)

where m is the number of target classifiers, and lfooli is the loss pertaining to
target classifier i. Moreover, λi is a weight parameter for setting target classifier
priority, for example one may want to set higher weights for those classifiers that
are harder to fool.

6.4 Summary of Adversarial Attack Techniques

Table 3: Comparison between different adversarial attacks

Distance Metric Targeted/
Untar-
geted

Accessed In-
formation

Dataset
Tested

Core Method

L-BFGS
[Szegedy et al., 2014]

L2 Untarget Model
Parameters

MNIST L-BFGS

FGSM
[Goodfellow et al., 2014b]

L∞ Untarget Model
Parameters

MNIST, CI-
FAR10

Fast linear algo-
rithm

DeepFool
[Moosavi-Dezfooli et al., 2016]

Lp, p ∈ [1,∞) Both Model
Parameters

MNIST, CI-
FAR10

Iterative lin-
earization

C & W
[Carlini and Wagner, 2017c]

L0, L2, L∞ Both Logits MNIST, CI-
FAR10

Adam Opti-
mizer

JSMA
[Papernot et al., 2016c]

L0 Both Model
Parameters

MNIST, CI-
FAR10

Jacobian
Saliency

DeepGame
[Wu et al., 2018]

L0, L1, L2, L∞ Untarget Logits MNIST, CI-
FAR10

Game-based ap-
proach

L0-TRE
[Ruan et al., 2018b]

L0 Untarget Logits MNIST, CI-
FAR10, Im-
ageNet

Tensor-based
grid search

DLV
[Huang et al., 2017b]

L1, L2 Untarget Model
Parameters

MNIST, CI-
FAR10, GT-
SRB

Layer-by-layer
search

SafeCV
[Wicker et al., 2018]

L0 Both Logits MNIST, CI-
FAR10

Stochastic
search

[Engstrom et al., 2017] N/A (Natural
Transforma-
tions)

Both Logits MNIST, CI-
FAR10, Im-
ageNet

Rotating and/or
translating
input images

[Xiao et al., 2018] Lflow(·) (Mea-
suring geomet-
ric distortion)

Both Logits MNIST, CI-
FAR10, Im-
ageNet

Minimising
adversarial and
Lflow loss

VeriVis
[Pei et al., 2017b]

N/A (Natural
Transforma-
tions)

Both Logits MNIST, CI-
FAR10, Im-
ageNet

A set of 12 ‘real-
world’ transfor-
mations

UAP
[Moosavi-Dezfooli et al., 2017]

L2 (Universal
perturbation)

Both Logits MNIST, CI-
FAR10, Im-
ageNet

Generalizing
DeepFool into
universal adver-
sarial attacks

UAN
[Hayes and Danezis, 2018]

Lp (Universal
perturbation)

Both Logits MNIST, CI-
FAR10, Im-
ageNet

Generalizing
C&W into
universal adver-
sarial attacks

[Poursaeed et al., 2018] Lp (Universal
perturbation)

Both Logits MNIST, CI-
FAR10, Im-
ageNet

Training a gen-
erative network

51

This section summarises the main similarities and differences of the well-
established adversarial attacks from five aspects: distance metric, whether the
attack is targeted or un-targeted, the level of accessed information required (i.e.,
model structures/parameters, logits, output confidences, label), dataset tested
and core method used. The details are in Table 3.

We roughly classify the adversarial attacks into four categories according
to their technical differences. One line of attacking techniques is featured by a
fact that adversarial perturbations are designed based on a specific input im-
age, including L-BFGS [Szegedy et al., 2014], FGSM [Goodfellow et al., 2014b],
DeepFool [Moosavi-Dezfooli et al., 2016], JSMA [Papernot et al., 2016c] and
C&W [Carlini and Wagner, 2017c], etc. Most of those attacking methods are
well-established and widely-recognised, which are also the very first works that
discover the vulnerability of DNNs to adversarial perturbations. Another line
of works are generalised the point-wise attacks into input-agnostic attacks (or
called Universal Adversarial Perturbations). The representative research works
includes UAP [Moosavi-Dezfooli et al., 2017], UAN [Hayes and Danezis, 2018,
Poursaeed et al., 2018], etc. The basic ideas of those works either generalise
the techniques in point-wise attacks into universal ones, or training genera-
tive neural networks to directly produce such universal perturbations. The
third line of attacks however focus on generating more “natural” or “human-
visually similar” adversarial perturbations. The most notable works are including
[Engstrom et al., 2017], [Xiao et al., 2018] and VeriVis [Pei et al., 2017b]. The
final technical line of adversarial attacks are stemmed from various search-based
safety verification works for DNNs, including DeepGame [Wu et al., 2018], L0-
TRE [Ruan et al., 2018b], DLV [Huang et al., 2017b] and SafeCV [Wicker et al., 2018],
etc. The distinction of those works to the other attacks lies on that the adver-
sarial images are served as counter-examples to verify the unsafety of DNNs
otherwise the tested DNNs are safe (w.r.t. a certain safety requirement) with
provable guarantees.

6.5 Defence

In response to the susceptibility of neural networks to adversarial examples
[Szegedy et al., 2014, Biggio et al., 2013], there have been significant interests
recently in developing defence techniques, which are to either identify or re-
duce adversarial examples so that the decision of the DNN can be more ro-
bust. The development of attack and defence techniques has been seen as
an “arm-race”. For example, most defences against adversarial examples in
the white-box setting, including [Papernot et al., 2016a, Metzen et al., 2017,
Hendrycks and Gimpel, 2016, Meng and Chen, 2017a], have been demonstrated
to be vulnerable to e.g., iterative optimisation-based attacks [Carlini and Wagner, 2017b,
Carlini and Wagner, 2017a].

52

6.5.1 Adversarial Training

Originally proposed by [Goodfellow et al., 2014b], adversarial training solves
a min-max game through a conceptually simple process: train on adversarial
examples until the model learns to classify them correctly. Given a training data
T and a loss function `(·), standard training chooses network weights θ as

θ∗ = arg min
θ

E
(x,y)∈T

`(x; y; fθ). (31)

where fθ is a DNN parameterized by θ. The adversarial training approach of
[Madry et al., 2017] is, for a given ε-ball (represented as a d-Neighbourhood), to
solve

θ∗ = arg min
θ

E
(x,y)∈T

[
max

δ∈[−ε,ε]s1
`(x+ δ; y; fθ)

]
. (32)

Intuitively, it is to assume that all neighbours within the ε-ball should have the
same class label and should be considered during the training. To approximately
solve this formulation, the authors solve the inner maximization problem by
generating adversarial examples using projected gradient descent.

Aiming at defending iterative attacks, cascade adversarial machine learning
[Na et al., 2018] is proposed to generate adversarial examples at each mini-batch.
Technically, it trains a first model, generates adversarial examples (with iterative
attack methods) on that model, adds these to the training set, then trains a second
model on the augmented dataset, and so on. Moreover, [Tramèr et al., 2018]
introduces ensemble adversarial training, which augments training data with
perturbations transferred from other models.

6.5.2 Defensive Distillation

Distillation [Hinton et al., 2015] a training procedure which trains a DNN using
knowledge transferred from a different DNN. Based on this idea, [Papernot et al., 2016b]
proposes defensive distillation which keeps the same network architecture to
train both the original network as well as the distilled network. It proceeds by
(i) sampling a set {(x, f(x))} of samples from the original network and training
a new DNN f1, and (ii) sampling a set {(x, f1(x))} of samples from the new
DNN f1 and training another new DNN fd. It is shown that the distilled DNN
fd is more robust than the original DNN.

6.5.3 Dimensionality Reduction

[Xu et al., 2018] explores two feature squeezing methods to map original inputs
into: reducing the color bit depth of each pixel and spatial smoothing, and shows
that by comparing a DNN model’s prediction on the original input with that on
squeezed input, adversarial examples can be detected.

[Bhagoji et al., 2017] reduces the high dimensional inputs (e.g., 784 for
MNIST) to a much smaller k-dimensional input (e.g., 20) and trains a DNN on
the smaller inputs.

53

6.5.4 Input Transformations

A popular defence approach is to do input transformations before feeding an input
into the DNN. [Meng and Chen, 2017b] observes that an adversarial example
can be either far away from existing data or close to the decision boundary.
For the former, one or more separate detector networks are used to learn to
differentiate between normal and adversarial examples by approximating the
manifold of normal examples. For the latter, a reformer network implemented
by an auto-encoder moves adversarial examples towards the manifold of normal
examples so that they can be classfied correctly.

[Song et al., 2018] argues that adversarial examples mainly lie in the low-
probability region of the data distribution, and neural density models are good
at detecting imperceptible image perturbations. In their tool PixelDefend, a
PixelCNN generative model [van den Oord et al., 2016] is applied to project a
potential adversarial example onto the data manifold before feeding it into a
classifier. Technically, a greedy decoding procedure is developed to approximate
finding the highest probability example within an ε-ball of the input image.
Along this line, instead of using a PixelCNN, [Samangouei et al., 2018] uses a
Generative Adversarial Network [Goodfellow et al., 2014a].

[Guo et al., 2017] exercises over five input transformations, including (i)
random image cropping and re-scaling, to altering the spatial positioning of the
adversarial perturbation; (ii) conducting bit-depth reduction to removes small
(adversarial) variations in pixel values from an image; (iii) JPEG compression to
remove small perturbations; (iv) total variance minimisation by randomly drop
pixels; and (v) image quilting, which reconstructs images by replacing small
(e.g., 5× 5) patches with patches from clean images.

[Xie et al., 2017] propose to defend against adversarial examples by adding a
randomisation layer before the input to the classifier. For a classifier that takes
a 299× 299 input, the defence first randomly rescales the image to a r× r image,
with r ∈ [299, 331), and then randomly zero-pads the image so that the result is
331× 331. The output is then fed to the classifier.

6.5.5 Combining Input Discretisation with Adversarial Training

Input discretization is to separate continuous valued pixel inputs into a set
of non-overlapping buckets, which are each mapped to a fixed binary vector.
Similar as input transformations, input discretization based approaches apply a
non-differentiable and non-linear transformation (discretization) to the input,
before passing it into the model. [Buckman et al., 2018] suggests the approach
of combining thermometer encoding with adversarial training. Given an image
x, for each pixel colour xi,j,c, the l-level thermometer encoding τ(xi,j,c) is
a l-dimensional vector where τ(xi,j,c)k = 1 if xi,j,c > k/l, and 0 otherwise
(e.g., for a 10-level thermometer encoding, τ(0.66) = 1111110000). Due to the
discrete nature of thermometer encoded values, it is not possible to directly
perform gradient descent on a thermometer encoded neural network. The
authors therefore construct Logit-Space Projected Gradient Ascent (LS-PGA) as

54

an attack over the discrete thermometer encoded inputs. Using this attack, the
authors perform the adversarial training of [Madry et al., 2017] on thermometer
encoded networks, and show that the vulnerability of neural network models to
adversarial attacks is reduced.

6.5.6 Activation Transformations

Stochastic activation pruning (SAP) [Dhillon et al., 2018] introduces randomness
into the evaluation of a DNN, by adapting the activation of hidden layers on their
way to propagating to the output. The idea is that, in each layer during forward
propagation, it stochastically drops out nodes, retains nodes with probabilities
proportional to the magnitude of their activation, and scales up the surviving
nodes to preserve the dynamic range of the activations. Applying SAP increasing
robustness at the price of slightly decreaseing clean classification accuracy.

6.5.7 Characterisation of Adversarial Region

Adversarial region is a connected region of the input domain in which all points
subvert the DNN in a similar way. Summarised in [Ma et al., 2018e], they are of
low probability (i.e., not naturally occurring), span a contiguous multidimensional
space, lie off (but are close to) the data submanifold, and have class distributions
that differ from that of their closest data submanifold.

[Feinman et al., 2017] uses Kernel Density (KD) estimation as a measure to
identify adversarial subspaces. Given an input x and its label t, it is to compute

KDE(x) =
1

|Tt|
∑
x∈Tt

exp(
|fK−1(x)− fK−1(x)|2

σ2
) (33)

where fK−1 is the function for the first K − 1 layers, i.e., fK−1(x) is the logit
output of the input x from f , and σ is a Gaussian bandwidth. With a threshold
τ , it reports x as adversarial if KDE(x) < τ , otherwise reporting x as natural.

[Ma et al., 2018e] uses Local Intrinsic Dimensionality (LID) [Houle, 2017] to
measure the adversarial region by considering the local distance distribution
from a reference point to its neighbours

6.5.8 Defence against Data Poisoning Attack

Instead of defencing against adversarial attacks, [Jacob Steinhardt, 2017] consid-
ers a data poisoning attack in which the attacker is to manipulate a percentage
ε of the training dataset T to have a new dataset Tp such that |Tp| = ε|T|. The
purpose of the attacker is to mislead the defender who trains the model over the
set T ∪Tp. The success of defence or attack is defined with respect to a loss
function `.

6.6 Certified Defence

The approaches in Section 6.5 cannot provide guarantee over the defence results.
In this subsection, we review a few principled approaches on achieving robustness.

55

Basically, they adapt the training objective (either the loss function or the
regularisation terms) to enforce some robustness constraints.

6.6.1 Robustness through Regularisation in Training

Attempts have been made on achieving robustness by applying dedicated reg-
ularisation terms in the training objective. Since training with an objective
does not necessarily guarantee the achievement of the objective for all inputs,
the robustness is approximate. For example, [Hein and Andriushchenko, 2017]
trains with a cross-entropy loss, which makes the difference fc(x) − fk(x) as
large as possible for c the class of x and all k = 1, . . . , sK , and a Cross-Lipschitz
regularisation term

G(f) =
1

nK2

n∑
i=1

sK∑
l,k=1

||∇fc(xi)−∇fk(xi)||22 (34)

where {xi}, i = 1..n is the training dataset. The goal of this regularisation term
is to make the differences of the classifier functions at the data points as constant
as possible. Moreover, in [Raghunathan et al., 2018], DNNs with one hidden
layer are studied. An upper bound on the worst-case loss is computed, based on
a semi-definite relaxation. Since this upper bound is differentiable, it is taken as
a regularisation term.

6.6.2 Robustness through Training Objective

[Sinha et al., 2018] considering the problem

min
θ

sup
X∈P

EX [`(θ;x, y)] (35)

where P is a set of distributions around the data-generating distribution X0, and
x ∼ X0. The set P includes the distributions that are close to X0 in terms of the
Wasserstein metric. Then, considering a Lagrangian penalty formulation of the
Wasserstein metric, a training procedure is applied so that the model parameters
can be updated with worst-case perturbations of training data.

6.7 Summary of Defence Techniques

In summary, defence techniques in are either to identify adversarial examples or
to reduce adversarial examples. Since these do not lead to any guarantees on the
robustness, the so-called “arm race” with attack techniques appears. Certified
defence aims to improve on this situation by adding robustness constraints into
the training procedure (either through regularisation term or training objective).

Moreover, defence techniques are closely related to the verification techniques.
Every verification method can serve as a defence method, for its ability to
identify the adversarial examples with guarantees. For an adversarial input, it
may be classified wrongly if directly passing the DNN. To defence this, a DNN

56

verifier can step in and determine if it is an adversarial example. If it is, the
verification output can be utilised to alert that the classification from the DNN
is not trustable.

57

7 Interpretability

The interpretability (or explainability) has been an active area of research, due
to the black-box nature of DNNs. DNNs have shown the ability of achieving high
precision on their predictions. However, to gain the trust from human users, it
is essential to enable human users to understand the decisions a DNN has made.
Moreover, it is also possible that the results in interpretability can enhance the
other techniques such as verification, testing, and adversarial attacks.

In the following, we review three categories of interpretability methods. First
of all, instancewise explanation, which aims to explain the decision made by
a DNN on a given input, is given in Section 7.1, Section 7.2, and Section 7.3.
Second, model explanation, which aims to provide a better understanding on the
complex model, is reviewed in Section 7.4 and Section 7.5. Finally, in Section 7.6
we review the recent progress of using information theoretical methods to explain
training procedure.

7.1 Instancewise Explanation by Visualising a Synthesised
Input

The first line of research aims to understand the representation learned by
DNNs through visualisation over another input generated based on the current
input. It focuses on convolutional neural networks (CNNs) with images as their
inputs, and is mainly for instance-wise explanation. Technically, with respect to
Definition 4, it is to let t = s1 and expl(f, x) ∈ Rs1 .

7.1.1 Optimising over Hidden Neuron

Recall that uk,l(x) is the activation of the l-th neuron on the k-th layer for the
input x. [Erhan et al., 2009] synthesises images that cause high activations for
particular neurons by treating the synthesis problem as an optimisation problem
as follows.

x∗ = arg max
x

uk,l(x) (36)

In general, the optimisation problem is non-convex, and therefore a gradient
ascent based algorithm is applied to find a local optimum. Starting with some
initial input x = x0, the activation uk,l(x) is computed, and then steps are taken
in the input space along the gradient direction ∂uk,l(x)/∂x to synthesize inputs
that cause higher and higher activations for the neuron nk,l, and eventually
terminates at some x∗ which is deemed to be a preferred input stimulus for the
neuron in question.

7.1.2 Inverting Representation

[Mahendran and Vedaldi, 2015] computes an approximate inverse of an image
representation. Let rep : Rs1 → Ra1 be a representation function, mapping an

58

input to a representation of a1 dimensions. Now given a representation T0 to be
inverted, it is to find an input x∗ such that

x∗ = arg min
x∈Rs1

`(rep(x), T0) + λG(x) (37)

where ` is a loss function comparing two representations, G(x) is a regularisation
term, and λ is a multiplier to balance between the two terms. For the loss
function `, Euclidean distance norm is taken. For the regulariser, they use either
an image prior

Gα(x) = ||x||αα (38)

where α = 6 is taken in their experiments, or a total variation, which encourages
images to consist of piece-wise constant patches. For the algorithm to solve the
above optimsation expression (37), the gradient descent procedure is extended
to use momentum.

[Dosovitskiy and Brox, 2015] proposes to analyse which information is pre-
served by a feature representation and which information is discarded. Given
a feature vector, it trains a DNN to predict the expected pre-image, i.e., the
weighted average of all natural images which could have produced the given
feature vector. Given a training set of images and their features {xi, φi}, it is to
learn the weight w of a network f(φ,w) to minimise a Monte-Carlo estimate of
the loss as follows:

ŵ = arg min
w

∑
i

||xi − f(φi, w)||22 (39)

Moreover, it has been argued in [Yosinski et al., 2015] that gradient-based
approaches do not produce images that resemble natural images.

7.2 Instancewise Explanation by Ranking

The next major thread of research is to compute a ranking of a set of features.
Specifically, given an input x and a set Ψ of features, it is to find a mapping
rx : Ψ → R such that each feature ψ ∈ Ψ has a rank rx(ψ). Intuitively, the
ranking rx provides a total order between features on their contributions to a
decision making of N on the input x.

7.2.1 Local Interpretable Model-agnostic Explanations (LIME)

Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016]
interprets individual model prediction by locally approximating the model around
a given prediction. Given an image x, LIME treats it as a set of superpixels,
and to compute the rank, it minimises over the following objective function:

expl(f, x) = arg min
e∈E

`(f, e, πx) + G(e) (40)

where `(f, e, πx) is a loss of taking the explanation e with respect to the original
model f , under the condition of a local kernel πx. The reguralisation term G(e)
is to penalise the complexity of the explanation e. For instance, if G is the

59

class of linear models with weights we, G(e) can be chosen as L0 norm ||we||0
to encourage sparsity, and the explainer expl(f, x) is the sparse weights which
rank the importance of dominant features.

7.2.2 Integrated Gradients

[Sundararajan et al., 2017] suggests that a good explanation should satisfy the
following two axiomatic attributes:

• sensitivity, which requires that, for every input and baseline that differ in
one feature but have different predictions, the differing feature should be
given a non-zero attribution.

• implementation invariance, which requires that the attributions are always
identical for two functionally equivalent networks.

Based on these axiomatic attributes, they propose the integrated gradient
and show that it is the only method to satisfy certain desirable axioms including
sensitivity and implementation invariance. Technically, the integrated gradient
along the i-th dimension for an input x and a baseline x′ is as follows.

IntGradi(x) = (xi − x′i)×
∫ 1

0

∂f(x′ + α× (x− x′))
∂xi

dα (41)

where ∂f(x)
∂xi

is the gradient of f(x) along the i-th dimension. The quantity
IntGradi(x) is used to indicate the contribution of xi to the prediction f(x)
relative to a baseline input x′. If f(·) is differentiable everywhere, then

n∑
i=1

IntGradi(x) = f(x)− f(x′). (42)

For a given baseline x′ subject to f(x′) ≈ 0, an explainer can distribute the
output to the individual features of the inputs.

7.2.3 Layer-wise Relevance Propagation (LRP)

Given an input-output mapping (for example a DNN) f : Rs1 → R, the layer-
wise relevance propagation (LRP) method [Bach et al., 2015] is a concept of
pixel-wise decomposition

f(x) ≈
s1∑
d=1

Rd (43)

to understand how much a single pixel d contributes to the prediction f(x). By
propagating backward the prediction probability of the input through DNN and
calculating the relevance scores, LRP attributes the importance scores to the
pixels. It is suggested in [Shrikumar et al., 2017] that LRP is equivalent to the
Gradient � Input method (to be reviewed in Section 7.3.1) when the reference
activations of all neurons are fixed to zero.

60

7.2.4 Deep Learning Important FeaTures (DeepLIFT)

[Shrikumar et al., 2017] is a recursive prediction explanation method. It at-
tributes to each input xi a value C∆xi∆y that represents the effect of that input
being set to a reference value as opposed to its original value. The reference
value, chosen by the user, represents a typical uninformative background value
for the feature. DeepLIFT uses a “summation-to-delta” property that states:

n∑
i=1

C∆xi∆y = ∆o, (44)

where o = f(x) is the method output, ∆o = f(x)− f(r), ∆xi = xi − ri, and r
is the reference input. DeepLIFT improves over the canonical gradient-based
methods by placing meaningful importance scores even if the gradient is zero,
and avoiding discontinuities due to bias terms.

7.2.5 Gradient-weighted Class Activation Mapping (GradCAM)

By flowing the gradient information into the last convolutional layer of CNNs,
Gradient-weighted Class Activation Mapping (GradCAM) [Selvaraju et al., 2016]
computes a feature-importance map (i.e., a coarse localization) highlighting re-
gions in the image corresponding to a certain concept. Specifically, GradCAM
computes the feature importance scores of a feature map k for a class c as follows.

αck =
1

Z

∑
i

∑
j

∂yc

∂Akij
(45)

where ∂yc

∂Ak
ij

is the gradients of the score via backpropagation with respect to

feature maps Ak of a convolutional layer, and the sums aim at global average
pooling. The weights of the feature maps are used to indicate the importance
of the input. Furthermore, Guided Grad-CAM obtains the more fine-grained
feature importance scores, by multiplying the feature importance scores obtained
from Grad-CAM with those from Guided Backpropagation in an elementwise
manner.

7.2.6 SHapley Additive exPlanation (SHAP)

SHapley Additive exPlanation (SHAP) [Lundberg and Lee, 2017] suggests take
an additive model

g(z′) = φ0 +

M∑
i=1

φiz
′
i

as an explanation model, where M is the number of simplified input features,
z′ ∈ {0, 1}M , and φi ∈ R is a coefficient. It shows that under three properties
(local accuracy, missingness, consistency), there is only one possible explanation
model as follows.

expli(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z′)− fx(z′ \ i)] (46)

61

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all z′

vectors where the non-zero entries are a subset of the non-zero entries in x′.

7.2.7 Prediction Difference Analysis

[Zintgraf et al., 2017] presents a prediction difference analysis (PDA) method
to visualise the influence corresponding to a special input change or element
removal. The idea is to assign a relevance value to each input feature w.r.t. a
class c, so that the influence in terms of prediction difference can be measured
by evaluating the difference between two conditional probabilities p(c|x) and
p(c|x−i), where

p(c|x−i) =
∑
xi

p(xi|x−i)p(c|x) (47)

calculates the conditional probability if xi is removed from the input x.

7.2.8 Testing with Concept Activation Vector (TCAV)

[Kim et al., 2018a] argues that, since most machine learning models operate on
features, such as pixel values, that do not correspond to high-level concepts
that humans understand, existing ranking-based approaches do not produce an
explanation that can be easily accessible to humans. It then works on the idea
of supplementing high level concepts (i.e., concept activation vector, CAV) into
this explanation to make the final explanation closer to human understandable
explanation. The high-level concepts are learned independently from other
user-provided data. Specifically, Testing with CAV (TCAV) uses directional
derivatives

SC,k,l(x) = ∇hl,k(fl(x)) · vlC (48)

to rank a user-defined concept with respect to a classification result, according
to TCAV score

TCAVQC,k,l
=
|{x ∈ Xk : SC,k,l(x) > 0}|

|Xk|
(49)

where C is a concept, l is a layer, k is a class label, hl,k : Rsl → R maps the
activations at layer l to the logit output (i.e., the layer K − 1) of a class k,
vlC ∈ Rsl is a unit CAV vector for a concept at layer l, and fl(x) is the activation
for input x at layer l.

7.2.9 Learning to Explain (L2X)

Learning to explain (L2X) [Chen et al., 2018] utilises an instancewise feature
selection for model interpretation. Roughly speaking, for a given input x,
among a set of n features, it is to choose k most informative features. Let
Pk = {S ⊂ 2s1 | |S| = k} be the set of all subsets of size k. An explainer
expl(f, ·) of size k is a mapping from the feature space Rs1 to the power set Pk.
Then, the problem is to find a solution for the following optimsiation problem:

max
e
I(XS ;Y) subject to S ∼ e(X) (50)

62

where I(XS ;Y) represents the mutual information between features XS and the
output Y . Intuitively, the explainer is to find a set of features to maximise the
mutual information between selected features and the output.

Because the problem is computationally hard to solve, a variational approx-
imation is developed to compute it efficiently, and a subset sampling trick is
applied to relax the categorical distribution of discrete feature subsets to continu-
ous differentiable approximation. The final objective is to optimise the following
approximation

max
θ,α

EX,Y,ξ[log gα(V (θ, ξ)�X,Y)] (51)

where ξ is a set of auxiliary random variables sampled independently from the
Gumbel distribution, V (θ, ξ) is a multi-dimensional random vector, gα is a neural
network for parameterising the family of conditional probabilities invoked by
mutual information quantities, the element-wise product V (θ, ξ)�X is used to
approximate a feature subset sampling XS , and θ is associated with a weight
vector wθ(X) that ranks the importance of the corresponding features in X.

7.3 Instancewise Explanation by Saliency Maps

While the ranking based methods are often used to generate saliency maps for
visualisation purpose, the methods surveyed in this subsection is to compute
saliency maps without computing a ranking.

7.3.1 Gradient-based Methods

Gradient [Simonyan et al., 2013]. Given an image classification model, let Sc(x)
be a score function for an image x with respect to the class c. By back-propagation
method, it aims to find an input locally optimising

max
x

Sc(x)− λ||x||22 (52)

where Sc(x) can be approximated to a linear function Sc(x) = wTx + b by
first-order Taylor expansion in the neighbourhood of a reference image x0, so
that wc(x0) = ∂Sc

∂x

∣∣
x0

serves as an explanation map. Such gradient indicates the
difference a tiny change of each pixel of the input x affects the classification
score c.

To sharpen the sensitive maps, SmoothGrad [Smilkov et al., 2017] ran-
domly perturbs the input x with a small noise and averages the resulting
explanation maps, i.e., ŵc(x) = 1

n

∑n
i=1 wc(x + gi), where gi ∼ N (0, σ2) is a

Gaussian noise enabling random sampling around x.
Moreover, Grad � Input [Shrikumar et al., 2017] method yields another ex-

planation ŵc(x) = x�wc(x) to reduce visual diffusion. DeConvNet [Zeiler and Fergus, 2014]
highlights the portions of a particular image that are responsible for the firing of
each neural unit. Guided Backpropagation [Springenberg et al., 2014] builds
upon DeConvNet and sets negative gradients to zero during backpropagation.

63

7.3.2 Perturbation-based Methods

[Dabkowski and Gal, 2017] proposed an accurate saliency detection method that
manipulates the classification output by masking certain regions of the input
image. Two concepts of saliency maps were considered: a smallest sufficient
region (SSR) that allows for a confident classification, and a smallest destroying
region (SDR) that prevents a confidence classification if removed. For instance, it
applies a mask (e.g., a binary matrix) to the image data matrix by e.g., element-
wise product, so as to set certain regions of the image to zero. A masking model
can be trained to find such a mask for any input image in a single feed-forward
pass.

[Fong and Vedaldi, 2017] proposed a general framework that inspects how
the output of a black-box model is affected by an input perturbation. Given a
mask function m : Λ 7→ [0, 1], a meaningful perturbation by constant mapping,
adding noise, and blurring over a pixel u ∈ Λ can be respectively defined by

Φ(u) =


m(u)x(u) + (1−m(u))µ, Constant mapping

m(u)x(u) + (1−m(u))η(u), Noising∫
g(v − u)x(v)dv, Blurring

(53)

where the constant µ is the average color, η(u) is a random Gaussian noise i.i.d.
over pixels, and g(·) is a Gaussian blur kernel.

7.4 Model Explanation by Influence Functions

The empirical influence function, a classic technique from robust statistics, is a
measure of the dependence of the estimator on the value of one of the points in
the sample. It has been utilised to interpret the effects of training data to the
model. [Koh and Liang, 2017] considers influence functions to trace a model’s
prediction through the learning algorithm and back to its training data, without
retraining the model. Basically, it can be done by e.g., upweighting a training
point or perturbing a training input. For instance, given the training points
{zi = (xi, yi)}ni=1 and the loss function `(z, θ) w.r.t. parameters θ ∈ Θ, the
idea of unweighting is to compute the parameter change with respect to an
infinitesimal ε,

θ̂ε,z = arg min
θ∈Θ

1

n

n∑
i=1

`(zi, θ) + ε`(z, θ) (54)

and evaluate the influence by

I(z) =
dθ̂ε,z
dε

∣∣∣
ε=0

= −H−1

θ̂
∇θ`(z, θ̂) (55)

where Hθ̂ = 1
n

∑n
i=1∇2

θL(zi, θ̂) is the Hessian. The influence of the removal of
one specific training point z from the training set can be directly evaluated by

64

calculating the parameter change

θ̂−z − θ̂ ≈ −
1

n
I(z) (56)

where θ̂−z = arg minθ∈Θ
1
n

∑
zi 6=z L(zi, θ) is the new parameter due to the re-

moval of the training point z.

7.5 Model Explanation by Simpler Models

Interpretability can be achieved by approximating the neural network (either a
feedforward neural network or a recurrent neural network) with a simpler model
(or a set of simpler models), on which an intuitive explanation can be obtained.

7.5.1 Rule Extraction

[Ribeiro et al., 2018] ties a prediction locally to a decision rule (represented as
a set of predicates), based on the assumption that while the model is globally
too complex to be explained succinctly, “zooming in” on individual predictions
makes the explanation task feasible. Let A be a rule, such that A(x) = 1 if
all its feature predicates are true for the input x. A is an anchor (i.e., a valid
explanation) if

E
D(z|A)

[1f(x)=f(z)] > 1− ε and A(x) = 1 (57)

where D(·|A) is the conditional distribution when the rule A applies. Intuitively,
it requires that for inputs on which the anchor holds, the prediction is (almost)
always the same.

7.5.2 Decision Tree Extraction

Extraction of decision tree from complex models is a popular thread of research.
An example of this is [Zilke et al., 2016], which interprets DNN by a decision
tree representation, in which decision rules are extracted from each layer of
DNN by decomposition. It is based on Continuous/discrete Rule Extractor via
Decision tree induction (CRED) [Sato and Tsukimoto, 2001] and C4.5 decision
tree learning algorithm.

7.5.3 Linear Classifiers to Approximate Piece-wise Linear Neural
Networks

[Chu et al., 2018] interprets piecewise linear neural networks (PLNN) by a set
of locally linear classifiers. In PLNN, activation functions are piecewise linear
such as ReLU. Given an input x, its corresponding activation pattern, i.e., the
states of all hidden neurons, is fixed and equivalent to a set of linear inequalities.
Each inequality represents a decision feature, and therefore the interpretation
of x includes all the decision features. Moreover, because all inputs sharing the
same activation pattern form a unique convex polytope, the interpretation of an
input x can also include the the decision features of the polytope boundaries.

65

7.5.4 Automata Extraction from Recurrent Neural Networks

[Weiss et al., 2018] extends the L* automata learning algorithm [Angluin, 1987]
to work with recurrent neural networks (RNNs). L* algorithm requires a
mechanism to handle two types of queries: membership query and equivalence
query. Let A be the learning automaton. For membership query, the RNN
classifier is used to check whether an input is correctly classified. For equivalence
query, it takes an automaton Ap generated by [Omlin and Giles, 1996] and check
if A and Ap are equivalent. If there is a disagreement between the two automata,
i.e., an input has different classes, it will determine whether to return the input
as a counterexample or to refine the automata A and restart the comparison.
This process iterates until it converges (i.e., A and Ap are equivalent) or a specific
limit has been reached.

7.6 Information-flow Explanation by Information Theo-
retical Methods

Information theory is increasingly believed to be one of the most promising
tools to open the black-box of DNN. The key building block is an information
bottleneck method originally proposed by [Tishby et al., 2000].

7.6.1 Information Bottleneck Method

Given two discrete real-valued variables X and Y with joint distribution p(x, y),
the objective of the information bottleneck (IB) method [Tishby et al., 2000] is
to figure out the stochastic encoder p(t|x), i.e.,

IB: min
p(t|x)

LIB = I(X;T)− βI(T ;Y) (58a)

subject to T ↔ X ↔ Y (58b)

for β > 1, where T ↔ X ↔ Y forms a Markov chain and I(X;T) represents the
mutual information between variables X and T . Otherwise if β ≤ 1, the optimal
solution is degenerated I(X;T) = I(T ;Y) = 0. The information-flow explanation
expl(F) is the solution to the above optimisation problem, stochastic encoder
p(t|x) and decoder p(y|t), which can be given by

p(t|x) =
p(t)

Z(x, β)
exp[−βDKL[p(y|x) | p(y|t)]] (59)

p(y|t) =
1

p(t)

∑
x

p(t|x)p(x, y) (60)

where the normalisation factor Z(x, β) is given by

Z(x, β) = exp[
λ(x)

p(x)
− β

∑
y

p(y|x) log
p(y|x)

p(y)
] (61)

66

and λ(x) is a Lagrange multiplier. The computation of the above quantities can
be obtained by applying the iterative Blahut-Arimoto algorithm, which however
becomes computationally intractable when p(x, y) is high-dimensional and/or
non-Gaussian.

7.6.2 Information Plane

Given aK-layer deterministic DNN with Tk being a multivariate random variables
representing the output of k-th hidden layer, [Shwartz-Ziv and Tishby, 2017] in-
troduced the concept of information plane with coordinates (I(X;Tk), I(Tk, Y)).3

By assuming the Markov chain of K-layer DNN, the information bottleneck
method turns to

IB: min
p(tk|x)

LIB = I(X;Tk)− βI(Tk;Y) (62a)

subject to Y ↔ X ↔ T1 ↔ · · · ↔ TK ↔ Ŷ (62b)

where the coordinates of the information planes follow

I(X;Y) ≥ I(T1;Y) ≥ · · · ≥ I(TK ;Y) ≥ I(Ŷ ;Y) (63)

H(X) ≥ I(X;T1) ≥ · · · ≥ I(X;TK) ≥ I(X; Ŷ). (64)

Figure 12: The evolution of Information Plane (I(X;Tk), I(Xk;Y)) during the
training procedure of a 5-layer DNN [qua, 2017], where A-B-C indicates the
fitting phase, and C-D-E is the compression phase.

3According to [Goldfeld et al., 2018], the quantity computed and plotted in
[Shwartz-Ziv and Tishby, 2017] is actually I(X; Bin(Tk)) rather than I(X;Tk), where Bin(·)
is “a per-neuron discretisation of each hidden activity of Tk into a user-selected number of
bins.”

67

In doing so, DNN training procedure can be interpreted by visualising the
information planes with respect to the SGD layer dynamics of the training. It
was suggested by [Shwartz-Ziv and Tishby, 2017] that the training procedure
consists of two phases:

• Fitting Phase: The neurons in higher layers learn as much information as
possible about the inputs, and try to fit it to the outputs. In this phase,
both I(X;Tk) and I(Tk;Y) increase, indicating that neurons are learning.

• Compression Phase: Higher layer neurons try to compress their represen-
tation of the input, while keep the most relevant information to predict
the output. In this phase, while I(Xk;Y) still keeps increasing, I(X;Tk)
is decreasing, which indicates the neurons try to forget what they have
learnt in the fitting phase but only retain the most relevant information of
the output.

It was also claimed in [Shwartz-Ziv and Tishby, 2017] that the compression
phase is responsible for the generalisation performance of DNN. Recently, such
a fresh perspective for interpreting DNN training process has attracted a lot of
attention, and also triggered the ongoing debate on whether or not it is possible
to translate theoretical insights into DNN optimisation in practice.

7.6.3 From Deterministic to Stochastic DNNs

It is argued by several papers (e.g., [Saxe et al., 2018, Amjad and Geiger, 2018,
Goldfeld et al., 2018]) that the IB method suffers from some issues on explaining
the training process of deterministic DNNs. The main issue is that, the quantity
I(X,Tk), whose decrease leads to compression, will not change because it is
either a constaint value (when X is discrete) or infinite (when X is continous),
given a deterministic DNN.

To resolve this issue, several statistical DNN frameworks have been proposed
to transform deterministic DNNs to stochastic ones and make the compression
term I(X,Tk) more meaningful. For instance, [Saxe et al., 2018] suggested
injecting an independent Gaussian noise with user-defined variance to Tk followed
by quantisation. [Amjad and Geiger, 2018] suggested including a (hard or soft)
decision rule to increase the dynamicity or replacing I(X,Tk) by other similar
yet well-behaved cost functions. [Goldfeld et al., 2018] suggested relating the
mapping X 7→ Tk to the input and the output of a stochastic parameterised
communication channel with parameters being DNN’s weights and biases.

This is still an active ongoing research to interpret how DNNs get trained
from an information-theoretic perspective, in the hope to guide DNN practice.

7.7 Summary

In this section, we reviewed the main approaches for DNN interpretability from
data, model, and information perspectives. They are not mutually-exclusive but
complement, and some techniques can be combined to provide instance-wise,
model, and/or information-flow explanation in different dimensions.

68

8 Future Challenges

Research on enhancing the safety and trustworthiness of DNNs is still in its
infancy. In the following, we discuss a few prominent challenges.

8.1 Distance Metrics closer to Human Perception

Distance metrics are key building blocks of the techniques we surveyed, and
are mainly used to measure the similarity between two inputs. Ideally, two
inputs with smaller distance should be more similar with respect to human
perception ability. Given the fact that it is hard to measure human perception
ability, well-known metrics including L0, L1, L2, and L∞-norms, are applied.
While most techniques are orthogonal to the consideration of distance metrics
(under the condition that the distances can be efficiently computed), it has
been argued that better metrics may be needed. For example, [Lu et al., 2017]
argued that adversarial examples found by a few existing methods (mostly based
on L2 or L∞) are not necessarily physical, and [Yosinski et al., 2015] claims
that gradient-based approaches (where the computation of gradients are usually
based on certain norm distance) for interpretability do not produce images that
resemble natural images.

[Lipton, 2018] states that the demand for interpretability arises when there
is a mismatch between the formal objectives of supervised learning (test set pre-
dictive performance) and the real world costs in a deployment setting. Distance
metrics are key components in various training objectives of supervised learning.
Actually, for DNNs on perception tasks, it is the mismatch of distance metrics
used in the training objective and used by human to differentiate objects that
hinders an intuitive explanation of a given decision.

For pattern recognition and image classification, there are other image
similarity distances proposed, such as the structure similarity measure SSIM
[Wang et al., 2003], but they are restricted to the computational efficiency prob-
lem and the existence of analytical solution when computing gradients. It will
be interesting to understand if the application of such metrics become more
practical for the tasks we are concerned with when more efficient computational
methods such as [Bruni and Vitulano, 2017] become available.

8.2 Improvement to Robustness

Traditional verification techniques aim to not only verify (software and hard-
ware) systems when they are correct, but also find counterexamples when-
ever they are incorrect. These counterexamples can be used to either di-
rectly improve the system (e.g., counterexample-guided abstract refinement
[Clarke et al., 2003], etc) or to provide useful information to the system design-
ers for them to improve the system. Similar for the software testing, where
bugs are utilised to repair implementation errors (e.g., automatic repair tech-
niques [Könighofer and Bloem, 2013], etc) and for the programmers to improve
their implementation. While similar expectation looks reasonable since existing

69

DNN verification and testing tools are able to find e.g., counterexamples to
local robustness (i.e., adversarial examples), it is relatively unclear how these
counterexamples can be utilised to improve the correctness (such as the local
robustness) of the DNN, other than the straightforward method of adding the
adversarial examples into the training dataset, which may lead to bias towards
those input subspaces with adversarial examples. Section 6.5 reviews a few
techniques such as adversarial training.

Another pragmatic way can be to design a set of quantitative metrics to
compare the robustness of DNNs with different architectures (for example
different numbers and types of hidden layers) so that a DNN designer is able to
diagnose the DNN and figure out a good architecture for a particular problem.
Relevant study has been started in e.g., [Sun et al., 2018b, Sun et al., 2018c],
with some preliminary results reported in the experiments. A significant next
step will be to automate the procedure and synthesise an architecture according
to some given criteria.

8.3 Other Machine Learning Models

Up to now, most efforts are spent on feedforward DNNs, with image classifi-
cation as one of the main tasks. Research is needed to consider other types
of neural networks, such as deep reinforcement learning models [Mnih et al., 2015,
Schaul et al., 2015, Wang et al., 2016, van Hasselt et al., 2015] and recursive neu-
ral networks, and other types of machine learning algorithms, such as SVM,
k-NN, naive Bayesian classifier, etc. Most deep reinforcement learning mod-
els use feedforward DNNs to store their learned policies, and therefore for
a single observation (i.e., an input) similar safety analysis techniques can
be applied. However, reinforcement learning optimises over the objectives
which may base on the rewards of multiple, or even an infinite number of,
time steps. Therefore, other than the DNN, the subject of study includes
a sequence of observations instead of a single observation. A few attack
techniques, such as [Huang et al., 2017a, Pattanaik et al., 2018, Lin et al., 2017,
Tretschk et al., 2018], have been proposed, with the key techniques based on
generalising the idea of FGSM [Goodfellow et al., 2014b]. For recurrent neural
networks, there are a few attack techniques such as [Wei et al., 2018]. Less works
have been done for verification, testing, and interpretability.

8.4 Verification Completeness

Additional to the properties we mentioned in Section 3, the correctness of a DNN
may include other properties. More importantly, the properties in Section 3
are expressed in different ways, and for each property, a set of ad hoc analysis
techniques are developed to work with them. See e.g., Table 1 for a comparison
of verification technqiues. Similar with the logic languages LTL (linear time
logic) and CTL (computational tree logic) which can express various temporal
properties related to the safety and liveness properties of a concurrent system,
research is needed to develop a high-level language that can express a set of

70

properties related to the correctness of a DNN. Such a language will enable the
development of general, instead of ad hoc, formal analysis techniques to work
with various properties expressible with that language. The development of a
high-level specification language for DNNs is hindered by the lack of specifications
for data-driven machine learning techniques, which learn the model directly from
a set of data samples. A possible direction can be to obtain specifications from
the training data, e.g., by studying how the data samples are scattered in the
input high-dimensional space.

8.5 Scalable Verification with Tighter Bounds

Existing verification approaches either cannot scale to work with state-of-the-art
networks (e.g., for constraint-solving based approaches) or cannot achieve a tight
bound (e.g., for over-approximation approaches). After the initial efforts on
conducting exact computation, such as [Huang et al., 2017b, Katz et al., 2017,
Lomuscio and Maganti, 2017, Ehlers, 2017], recent efforts have been on approx-
imate techniques to alleviate the computational problem while still achieve
tangible bounds, e.g., [Wicker et al., 2018, Ruan et al., 2018a, Gehr et al., 2018].
Significant research efforts are required to achieve tight bounds with approximate
techniques for state-of-the-art DNNs. It can be hard to work with real-world mod-
els which usually contain complex structures and lots of real-valued parameters.
A possible direction will be to develop an abstraction and refinement framework,
like [Clarke et al., 2000] did for concurrent systems, and it will be interesting to
see how it is related to the layer-by-layer refinement [Huang et al., 2017b].

8.6 Validation of Testing Approaches

Up to now, testing DNNs is mainly on coverage-based testing, trying to emulate
the structural coverage testing developed in software testing. However, different
with traditional (sequential) software in which every input is associated with a
single activated path and eventually leads to an output, in DNNs every input
is associated with a large set of activated paths of neurons and the output is
collectively determined by these paths, i.e., activation pattern [Sun et al., 2018a].
Such semantic difference suggests a careful validation of the coverage-based
testing is needed to make sure that the extended methods can work effectively
in the context of DNNs.

In particular, for most proposals up to now, neurons are treated as the most
basic elements in the coverage definitions and are regarded as the variables in
the traditional software. However, unlike a variable which usually holds certain
weight in determining the execution path, a single neuron in most cases cannot
solely determine, or change, the activation path of an input. Therefore, the
testing coverage based on neurons does not examine the actual functionality of
DNNs. It can be reasonable to consider emulating variables in traditional software
with a set of neurons (instead of a single neuron) and therefore let paths be the
sequences of sets of neurons. A preliminary study appears in [Sun et al., 2018b]
with more sophisticated design on the coverage metrics required. The lift of the

71

most basic element from neuron to a set of neurons will also affect the design of
test case generation algorithms. Moreover, it is expected that interpretability
techniques can be employed as building blocks for test case generation algorithms.

8.7 Learning-Enabled Systems

Real-world systems contain both logic components, to handle e.g., high-level
planning, etc, and data-drive learning components, to handle e.g., perception
tasks, etc. To analyse such learning-enabled systems, methods are needed to
interface the analysis techniques for individual components. Compositional and
assume-guarantee reasoning can be applied in this context. Significant efforts are
needed to be on a few topics such as how to utilise logic components to identify
safety properties of DNN components (e.g., a set of constraints DNN components
need to satisfy, a subspace of the input domain needed to be considered, etc),
how the safety assurance cases of DNN components can be streamlined into the
assurance cases of the whole system, etc.

8.8 Distributional Shift and Run-time Monitoring

DNNs are trained over a set of inputs sampled from the real distribution.
However, due to its high-dimensionality, the training dataset may not be
able to cover the input space. Therefore, although it is reasonable to be-
lieve that the resulting trained models can perform well on new inputs close
to the training data, it is also understandable that the trained models might
not perform correctly in those inputs where there is no neighbouring training
data. While techniques are being requested to achieve better generalisability
for DNN training algorithm including various regularisation techniques (see
e.g., [Goodfellow et al., 2016] for a comprehensive overview), as suggested in
e.g., [Amodei et al., 2016, Ashmore and Hill, 2018, Moreno-Torres et al., 2012],
it is also meaningful (particularly for the certification of safety critical systems)
to be able to identify those inputs on which the trained models should not
have high confidence. Technically, such inputs can be formally defined as both
topologically far away from training data in the input space and being classified
with high probability by the trained models. Moreover, [Abbasi et al., 2018]
suggests to have an extra class “dustbin” for such inputs.

The ubiquity of experiencing distributional shift in the application of deep
neural networks, and the difficulty of having the verification completeness,
suggest the importance of developing run-time monitoring techniques to enable
the detection of safety problems on-the-fly.

8.9 Formulation of Interpretability

Interpretability has been widely discussed without a rigorous definition, although
there are comprehensive surveys such as [Lipton, 2018] aiming to study this
concept from many different angles. Existing research is able to provide various
partial information about the DNNs, and these works can hardly be compared

72

with each other, due to the lack of a systematic definition. Recently, a few
works have been done towards accommodating several similar approaches with a
single, unified approach, to enable a comparison. For example, [Olah et al., 2017]
suggest that many visualization methods are based on optimisation with different
regularisation terms, [Lundberg and Lee, 2017] use Shapley value to explain a few
attribute-based approaches with an additive model, and [Ancona et al., 2018] use
a modified gradient function to accommodate a few gradient-based approaches.
While it may be infeasible to have a single definition for interpretability, it is
necessary to formally define it from a few aspects.

8.10 Application of Interpretability to other Tasks

Except for the size of DNNs, the key difficulty of verifying, testing, or attacking
DNNs are on the fact that DNNs are black-box. It is therefore reasonable to
expect that, the information provided by interpretability techniques will be able
to enable better verification and testing approaches. For testing, interpretability
can potentially enhance, or refine, the design of coverage metrics and enable
more efficient test case generation algorithms. For verification, it is expected that
interpretability can help identify more specifications to enhance the verification
completeness. The application of interpretability in attack techniques have been
seen in e.g., [Papernot et al., 2016c] and [Ruan et al., 2018b], where a ranking
over the input dimensions provides heuristics to find good adversarial examples.

8.11 Human-in-the-Loop

All the techniques reviewed are to improve the trust of human users on the DNNs
through the angles of certification and explanation. Certification techniques
improve the confidence of the users on the correctness of the DNNs, and the
explanation techniques increases human users’ understanding about the DNNs
and thus improve the trust. These can be seen as a one-way enhancement of
confidence from the DNNs to the human users. The other direction, i.e., how
can human users help on improving the trustworthiness of the DNNs, is less
explored, with only a few works such as [Tamagnini et al., 2017], where a visual
analytic interface is presented to enable expert user by interactively exploring a
set of instance-level explanations.

Trust is a complex notion, viewed as a belief, attitude, intention or be-
haviour, and is most generally understood as a subjective evaluation of a truster
on a trustee about something in particular, e.g., the completion of a task
[Hardin, 2002]. A classical definition from organisation theory [Mayer et al., 1995]
defines trust as the willingness of a party to be vulnerable to the actions of
another party based on the expectation that the other will perform a particular
action important to the trustor, irrespective of the ability to monitor or control
that party. It is therefore reasonable to assume that the interaction between the
DNNs and their human users can significantly affect the trust, and the trust is not
a constant value and can be fluctuated. The formulation of the changes of trust

73

in terms of the interaction has been started in [Huang and Kwiatkowska, 2017]
with a comprehensive reasoning framework.

9 Conclusions

In this survey, we review techniques to determine, and improve, the safety and
trustworthiness of deep neural networks, based on the assumption that trust-
worthiness is determined by two major concepts: certification and explanation.
This is a new, and exciting, area requiring expertise and close collaborations
from several existing areas which do not have much overlaps before, including
formal verification, software testing, machine learning, and logic reasoning.

74

References

[GDR, 2016] (2016). General data protection regulation. http://data.
europa.eu/eli/reg/2016/679/oj.

[qua, 2017] (2017). New theory cracks open the black box of deep learn-
ing. https://www.quantamagazine.org/new-theory-cracks-open-the-black-box-
of-deep-learning-20170921/.

[exp, 2018] (2018). Explainable artificial intelligence. https://www.darpa.
mil/program/explainable-artificial-intelligence.

[Tes, 2018] (2018). NTSB releases preliminary report on fatal Tesla crash
on autopilot. https://electrek.co/2018/06/07/tesla-fatal-crash-autopilot-ntsb-
releases-preliminary-report/.

[Ube, 2018] (2018). Why Uber’s self-driving car killed a pedestrian.
https://www.economist.com/the-economist-explains/2018/
05/29/why-ubers-self-driving-car-killed-a-pedestrian.

[Abbasi et al., 2018] Abbasi, M., Rajabi, A., Sadat Mozafari, A., Bobba, R. B.,
and Gagne, C. (2018). Controlling Over-generalization and its Effect on
Adversarial Examples Generation and Detection. ArXiv e-prints.

[Agarwal et al., 2018] Agarwal, A., Lohia, P., Nagar, S., Dey, K., and Saha, D.
(2018). Automated test generation to detect individual discrimination in ai
models. arXiv preprint arXiv:1809.03260.

[Amjad and Geiger, 2018] Amjad, R. A. and Geiger, B. C. (2018). How (not) to
train your neural network using the information bottleneck principle. CoRR,
abs/1802.09766.

[Ammann and Offutt, 2008] Ammann, P. and Offutt, J. (2008). Introduction to
Software Testing. Cambridge University Press.

[Amodei et al., 2016] Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. (2016). Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

[Ancona et al., 2018] Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. (2018).
Towards better understanding of gradient-based attribution methods for deep
neural networks. In International Conference on Learning Representations.

[Angluin, 1987] Angluin, D. (1987). Learning regaular sets from queries and
counterexamples. Information and Computation, 75:87–106.

[Ashmore and Hill, 2018] Ashmore, R. and Hill, M. (2018). Boxing clever: Prac-
tical techniques for gaining insights into training data and monitoring distri-
bution shift. In First International Workshop on Artificial Intelligence Safety
Engineering.

75

http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.economist.com/the-economist-explains/2018/05/29/why-ubers-self-driving-car-killed-a-pedestrian
https://www.economist.com/the-economist-explains/2018/05/29/why-ubers-self-driving-car-killed-a-pedestrian

[Bach et al., 2015] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. (2015). On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation. PLoS ONE, 10(7).

[Bastani et al., 2016] Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis,
D., Nori, A. V., and Criminisi, A. (2016). Measuring neural net robustness
with constraints. In NIPS.

[Bhagoji et al., 2017] Bhagoji, A. N., Cullina, D., and Mittal, P. (2017). Dimen-
sionality reduction as a defense against evasion attacks on machine learning
classifiers. CoRR, abs/1704.02654.

[Biggio et al., 2013] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N.,
Laskov, P., Giacinto, G., and Roli, F. (2013). Evasion attacks against machine
learning at test time. In Joint European conference on machine learning and
knowledge discovery in databases, pages 387–402. Springer.

[Bruni and Vitulano, 2017] Bruni, V. and Vitulano, D. (2017). An entropy
based approach for ssim speed up. Signal Processing, 135:198–209.

[Buckman et al., 2018] Buckman, J., Roy, A., Raffel, C., and Goodfellow, I.
(2018). Thermometer encoding: One hot way to resist adversarial examples.
In International Conference on Learning Representations.

[Bunel et al., 2017] Bunel, R., Turkaslan, I., Torr, P. H., Kohli, P., and Kumar,
M. P. (2017). Piecewise linear neural network verification: A comparative
study. arXiv preprint arXiv:1711.00455.

[Carlini and Wagner, 2017a] Carlini, N. and Wagner, D. (2017a). Adversarial
examples are not easily detected: Bypassing ten detection methods. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
pages 3–14. ACM.

[Carlini and Wagner, 2017b] Carlini, N. and Wagner, D. (2017b). Magnet and”
efficient defenses against adversarial attacks” are not robust to adversarial
examples. arXiv preprint arXiv:1711.08478.

[Carlini and Wagner, 2017c] Carlini, N. and Wagner, D. (2017c). Towards eval-
uating the robustness of neural networks. In Security and Privacy (SP), IEEE
Symposium on, pages 39–57.

[Chen et al., 2018] Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I.
(2018). Learning to explain: An information-theoretic perspective on model
interpretation. In International Conference on Machine Learning.

[Cheng et al., 2018a] Cheng, C.-H., Huang, C.-H., and Nührenberg, G. (2018a).
nn-dependability-kit: Engineering neural networks for safety-critical systems.
arXiv preprint arXiv:1811.06746.

76

[Cheng et al., 2018b] Cheng, C.-H., Huang, C.-H., and Yasuoka, H. (2018b).
Quantitative projection coverage for testing ML-enabled autonomous systems.
In International Symposium on Automated Technology for Verification and
Analysis. Springer.

[Cheng et al., 2018c] Cheng, C.-H., Nührenberg, G., Huang, C.-H., and Yasuoka,
H. (2018c). Towards dependability metrics for neural networks. In Proceedings
of the 16th ACM-IEEE International Conference on Formal Methods and
Models for System Design.

[Cheng et al., 2017] Cheng, C.-H., Nührenberg, G., and Ruess, H. (2017). Maxi-
mum resilience of artificial neural networks. In D’Souza, D. and Narayan Ku-
mar, K., editors, Automated Technology for Verification and Analysis, pages
251–268. Springer.

[Cheng et al., 2018d] Cheng, D., Cao, C., Xu, C., and Ma, X. (2018d). Mani-
festing bugs in machine learning code: An explorative study with mutation
testing. In International Conference on Software Quality, Reliability and
Security (QRS), pages 313–324. IEEE.

[Chu et al., 2018] Chu, L., Hu, X., Hu, J., Wang, L., and Pei, J. (2018). Exact
and consistent interpretation for piecewise linear neural networks: A closed
form solution. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1244–1253. ACM.

[Clarke et al., 2000] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
(2000). Counterexample-guided abstraction refinement. In Emerson, E. A.
and Sistla, A. P., editors, Computer Aided Verification, pages 154–169, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Clarke et al., 2003] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
(2003). Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794.

[Clarke Jr et al., 2018] Clarke Jr, E. M., Grumberg, O., Kroening, D., Peled,
D., and Veith, H. (2018). Model checking. The MIT Press.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost)
from scratch. J. Mach. Learn. Res., 12:2493–2537.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract interpre-
tation: A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Fourth ACM Symposium on Principles of
Programming Languages (POPL), pages 238–252.

[Dabkowski and Gal, 2017] Dabkowski, P. and Gal, Y. (2017). Real time image
saliency for black box classifiers. In NIPS.

77

[Dhillon et al., 2018] Dhillon, G. S., Azizzadenesheli, K., Lipton, Z. C., Bern-
stein, J., Kossaifi, J., Khanna, A., and Anandkumar, A. (2018). Stochastic
activation pruning for robust adversarial defense. In International Conference
on Learning Representations.

[Dosovitskiy and Brox, 2015] Dosovitskiy, A. and Brox, T. (2015). Inverting
convolutional networks with convolutional networks. CoRR, abs/1506.02753.

[Dutta et al., 2018] Dutta, S., Jha, S., Sanakaranarayanan, S., and Tiwari, A.
(2018). Output range analysis for deep neural networks. arXiv preprint
arXiv:1709.09130.

[Dvijotham et al., 2018] Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A.,
and Kohli, P. (2018). A dual approach to scalable verification of deep networks.
CoRR, abs/1803.06567.

[Ebrahimi et al., 2018] Ebrahimi, J., Rao, A., Lowd, D., and Dou, D. (2018).
Hotflip: White-box adversarial examples for text classification. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 31–36.

[Ehlers, 2017] Ehlers, R. (2017). Formal verification of piece-wise linear feed-
forward neural networks. In D’Souza, D. and Narayan Kumar, K., editors,
Automated Technology for Verification and Analysis, pages 269–286, Cham.
Springer International Publishing.

[Engstrom et al., 2017] Engstrom, L., Tsipras, D., Schmidt, L., and Madry,
A. (2017). A rotation and a translation suffice: Fooling cnns with simple
transformations. arXiv preprint arXiv:1712.02779.

[Erhan et al., 2009] Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009).
Visualizing Higher-Layer Features of a Deep Network. Technical report,
University of Montreal.

[Feinman et al., 2017] Feinman, R., Curtin, R. R., Shintre, S., and Gardner,
A. B. (2017). Detecting Adversarial Samples from Artifacts. arXiv e-prints,
page arXiv:1703.00410.

[Finlayson et al., 2018] Finlayson, S. G., Kohane, I. S., and Beam, A. L. (2018).
Adversarial attacks against medical deep learning systems. arXiv preprint
arXiv:1804.05296.

[Fong and Vedaldi, 2017] Fong, R. and Vedaldi, A. (2017). Interpretable expla-
nations of black boxes by meaningful perturbation. 2017 IEEE International
Conference on Computer Vision (ICCV), pages 3449–3457.

[Gehr et al., 2018] Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. (2018). Ai2: Safety and robustness certification
of neural networks with abstract interpretation. In 2018 IEEE Symposium on
Security and Privacy (S&P2018), pages 948–963.

78

[Goldfeld et al., 2018] Goldfeld, Z., van den Berg, E., Greenewald, K., Melnyk, I.,
Nguyen, N., Kingsbury, B., and Polyanskiy, Y. (2018). Estimating Information
Flow in Neural Networks. arXiv e-prints, page arXiv:1810.05728.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press.

[Goodfellow et al., 2014a] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014a). Generative
adversarial nets. In Advances in neural information processing systems, pages
2672–2680.

[Goodfellow, 2018] Goodfellow, I. J. (2018). Gradient masking causes CLEVER
to overestimate adversarial perturbation size. CoRR, abs/1804.07870.

[Goodfellow et al., 2014b] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b).
Explaining and harnessing adversarial examples. CoRR, abs/1412.6572.

[Gopinath et al., 2018] Gopinath, D., Wang, K., Zhang, M., Pasareanu, C. S.,
and Khurshid, S. (2018). Symbolic execution for deep neural networks. arXiv
preprint arXiv:1807.10439.

[Guo et al., 2017] Guo, C., Rana, M., Cisse, M., and van der Maaten, L. (2017).
Countering adversarial images using input transformations. arXiv preprint
arXiv:1711.00117.

[Guo et al., 2018] Guo, J., Jiang, Y., Zhao, Y., Chen, Q., and Sun, J. (2018).
DLFuzz: Differential fuzzing testing of deep learning systems. In Proceedings
of the 2018 12nd Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2018.

[Hardin, 2002] Hardin, R. (2002). Trust and trustworthiness. Russell Sage
Foundation.

[Hayes and Danezis, 2018] Hayes, J. and Danezis, G. (2018). Learning universal
adversarial perturbations with generative models. In 2018 IEEE Security and
Privacy Workshops (SPW), pages 43–49. IEEE.

[Hayhurst et al., 2001] Hayhurst, K., Veerhusen, D., Chilenski, J., and Rier-
son, L. (2001). A practical tutorial on modified condition/decision coverage.
Technical report, NASA.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778.

[Hein and Andriushchenko, 2017] Hein, M. and Andriushchenko, M. (2017). For-
mal guarantees on the robustness of a classifier against adversarial manipula-
tion. In NIPS.

79

[Hendrycks and Gimpel, 2016] Hendrycks, D. and Gimpel, K. (2016). Early
methods for detecting adversarial images. arXiv preprint arXiv:1608.00530.

[Hinton et al., 2015] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the
Knowledge in a Neural Network. arXiv e-prints, page arXiv:1503.02531.

[Houle, 2017] Houle, M. E. (2017). Local intrinsic dimensionality i: An extreme-
value-theoretic foundation for similarity applications. In Beecks, C., Borutta,
F., Kröger, P., and Seidl, T., editors, Similarity Search and Applications, pages
64–79, Cham. Springer International Publishing.

[Huang et al., 2017a] Huang, S. H., Papernot, N., Goodfellow, I. J., Duan, Y.,
and Abbeel, P. (2017a). Adversarial attacks on neural network policies. CoRR,
abs/1702.02284.

[Huang and Kwiatkowska, 2017] Huang, X. and Kwiatkowska, M. (2017). Rea-
soning about cognitive trust in stochastic multiagent systems. In AAAI2017,
pages 3768–3774.

[Huang et al., 2017b] Huang, X., Kwiatkowska, M., Wang, S., and Wu, M.
(2017b). Safety verification of deep neural networks. In International Confer-
ence on Computer Aided Verification, pages 3–29. Springer.

[Jacob Steinhardt, 2017] Jacob Steinhardt, Pang Wei Koh, P. L. (2017). Certi-
fied defenses for data poisoning attacks. In Advances in Neural Information
Processing Systems 30.

[Jia and Harman, 2011] Jia, Y. and Harman, M. (2011). An analysis and survey
of the development of mutation testing. IEEE Transactions on Software
Engineering, 37(5):649–678.

[Johnson et al., 2016] Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual
losses for real-time style transfer and super-resolution. In European Conference
on Computer Vision, pages 694–711. Springer.

[Katz et al., 2017] Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. (2017). Reluplex: An efficient SMT solver for verifying deep neural
networks. In International Conference on Computer Aided Verification, pages
97–117. Springer.

[Kim et al., 2018a] Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., and sayres, R. (2018a). Interpretability beyond feature attribution:
Quantitative testing with concept activation vectors (TCAV). In Dy, J. and
Krause, A., editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 2668–2677, Stockholmsmässan, Stockholm Sweden. PMLR.

[Kim et al., 2018b] Kim, J., Feldt, R., and Yoo, S. (2018b). Guiding deep learn-
ing system testing using surprise adequacy. arXiv preprint arXiv:1808.08444.

80

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Koh and Liang, 2017] Koh, P. W. and Liang, P. (2017). Understanding Black-
box Predictions via Influence Functions. In International Conference on
Machine Learning.

[Könighofer and Bloem, 2013] Könighofer, R. and Bloem, R. (2013). Repair
with on-the-fly program analysis. In Biere, A., Nahir, A., and Vos, T.,
editors, Hardware and Software: Verification and Testing, pages 56–71, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Kurakin et al., 2016] Kurakin, A., Goodfellow, I. J., and Bengio, S. (2016).
Adversarial examples in the physical world. CoRR, abs/1607.02533.

[Li et al., 2018] Li, J., Liu, J., Yang, P., Chen, L., and Huang, X. (2018).
Analyzing deep neural networks with symbolic propagation: Towards higher
precision and faster verification. Submitted.

[Lin et al., 2017] Lin, Y., Hong, Z., Liao, Y., Shih, M., Liu, M., and Sun, M.
(2017). Tactics of adversarial attack on deep reinforcement learning agents.
In International Joint Conference on Artificial Intelligence.

[Lipton, 2018] Lipton, Z. C. (2018). The mythos of model interpretability.
Commun. ACM, 61:36–43.

[Lomuscio and Maganti, 2017] Lomuscio, A. and Maganti, L. (2017). An ap-
proach to reachability analysis for feed-forward ReLU neural networks. arXiv
preprint arXiv:1706.07351.

[Lu et al., 2017] Lu, J., Sibai, H., Fabry, E., and Forsyth, D. (2017). NO Need
to Worry about Adversarial Examples in Object Detection in Autonomous
Vehicles. In Conference on Computer Vision and Pattern Recognition, Spotlight
Oral Workshop.

[Lundberg and Lee, 2017] Lundberg, S. and Lee, S. (2017). A unified approach
to interpreting model predictions. NIPS.

[Ma et al., 2018a] Ma, L., Juefei-Xu, F., Sun, J., Chen, C., Su, T., Zhang, F.,
Xue, M., Li, B., Li, L., Liu, Y., Zhao, J., and Wang, Y. (2018a). DeepGauge:
Comprehensive and multi-granularity testing criteria for gauging the robustness
of deep learning systems. In Automated Software Engineering (ASE), 33rd
IEEE/ACM International Conference on.

[Ma et al., 2018b] Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., Juefei-Xu, F.,
Xie, C., Li, L., Liu, Y., Zhao, J., et al. (2018b). DeepMutation: Mutation
testing of deep learning systems. In Software Reliability Engineering, IEEE
29th International Symposium on.

81

[Ma et al., 2018c] Ma, L., Zhang, F., Xue, M., Li, B., Liu, Y., Zhao, J., and
Wang, Y. (2018c). Combinatorial testing for deep learning systems. arXiv
preprint arXiv:1806.07723.

[Ma et al., 2018d] Ma, S., Liu, Y., Zhang, X., Lee, W.-C., and Grama, A.
(2018d). MODE: Automated neural network model debugging via state
differential analysis and input selection. In Proceedings of the 12nd Joint
Meeting on Foundations of Software Engineering. ACM.

[Ma et al., 2018e] Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S.,
Houle, M. E., Schoenebeck, G., Song, D., and Bailey, J. (2018e). Characterizing
adversarial subspaces using local intrinsic dimensionality. arXiv preprint
arXiv:1801.02613.

[Madry et al., 2017] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2017). Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083.

[Mahendran and Vedaldi, 2015] Mahendran, A. and Vedaldi, A. (2015). Under-
standing deep image representations by inverting them. 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5188–5196.

[Mayer et al., 1995] Mayer, R. C., Davis, J. H., and Schoorman, F. D. (1995).
An integrative model of organizational trust. Academy of management review,
20(3):709–734.

[Meng and Chen, 2017a] Meng, D. and Chen, H. (2017a). Magnet: a two-
pronged defense against adversarial examples. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages
135–147. ACM.

[Meng and Chen, 2017b] Meng, D. and Chen, H. (2017b). Magnet: a two-
pronged defense against adversarial examples. In ACM Conference on Com-
puter and Communications Security.

[Metzen et al., 2017] Metzen, J. H., Genewein, T., Fischer, V., and Bischoff,
B. (2017). On detecting adversarial perturbations. arXiv preprint
arXiv:1702.04267.

[Mirman et al., 2018] Mirman, M., Gehr, T., and Vechev, M. (2018). Differ-
entiable abstract interpretation for provably robust neural networks. In
International Conference on Machine Learning, pages 3575–3583.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,
G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518:529 EP –.

82

[Moosavi-Dezfooli et al., 2017] Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O.,
and Frossard, P. (2017). Universal adversarial perturbations. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
86–94.

[Moosavi-Dezfooli et al., 2016] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard,
P. (2016). Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2574–2582.

[Moreno-Torres et al., 2012] Moreno-Torres, J. G., Raeder, T., Alaiz-Rodŕıguez,
R., Chawla, N. V., and Herrera, F. (2012). A unifying view on dataset shift
in classification. Pattern Recogn., 45(1):521–530.

[Na et al., 2018] Na, T., Ko, J. H., and Mukhopadhyay, S. (2018). Cascade adver-
sarial machine learning regularized with a unified embedding. In International
Conference on Learning Representations (ICLR).

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear
units improve restricted Boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML), pages 807–814.

[Narodytska, 2018] Narodytska, N. (2018). Formal analysis of deep binarized
neural networks. In IJCAI, pages 5692–5696.

[Narodytska et al., 2018] Narodytska, N., Kasiviswanathan, S. P., Ryzhyk, L.,
Sagiv, M., and Walsh, T. (2018). Verifying properties of binarized deep neural
networks. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence.

[Neumaier and Shcherbina, 2004] Neumaier, A. and Shcherbina, O. (2004). Safe
bounds in linear and mixed-integer linear programming. Math. Program.,
99(2):283–296.

[Odena and Goodfellow, 2018] Odena, A. and Goodfellow, I. (2018). TensorFuzz:
Debugging neural networks with coverage-guided fuzzing. arXiv preprint
arXiv:1807.10875.

[Olah et al., 2017] Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature
visualization. Distill. https://distill.pub/2017/feature-visualization.

[Omlin and Giles, 1996] Omlin, C. W. and Giles, C. L. (1996). Extraction of
rules from discrete-time recurrent neural networks. Neural Networks, 9(1):41–
52.

[OSearcoid, 2006] OSearcoid, M. (2006). Metric Spaces. Springer Science &
Business Media.

83

[Papernot et al., 2018] Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Fein-
man, R., Kurakin, A., Xie, C., Sharma, Y., Brown, T., Roy, A., Matyasko, A.,
Behzadan, V., Hambardzumyan, K., Zhang, Z., Juang, Y.-L., Li, Z., Sheatsley,
R., Garg, A., Uesato, J., Gierke, W., Dong, Y., Berthelot, D., Hendricks, P.,
Rauber, J., and Long, R. (2018). Technical report on the cleverhans v2.1.0
adversarial examples library. arXiv preprint arXiv:1610.00768.

[Papernot et al., 2016a] Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,
A. (2016a). Distillation as a defense to adversarial perturbations against deep
neural networks. In Security and Privacy (SP), 2016 IEEE Symposium on,
pages 582–597. IEEE.

[Papernot et al., 2016b] Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,
A. (2016b). Distillation as a defense to adversarial perturbations against deep
neural networks. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 582–597.

[Papernot et al., 2016c] Papernot, N., McDaniel, P. D., Jha, S., Fredrikson,
M., Celik, Z. B., and Swami, A. (2016c). The limitations of deep learning in
adversarial settings. In Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on, pages 372–387. IEEE.

[Pattanaik et al., 2018] Pattanaik, A., Tang, Z., Liu, S., Bommannan, G., and
Chowdhary, G. (2018). Robust deep reinforcement learning with adversarial
attacks. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

[Peck et al., 2017] Peck, J., Roels, J., Goossens, B., and Saeys, Y. (2017). Lower
bounds on the robustness to adversarial perturbations. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing Systems 30, pages
804–813. Curran Associates, Inc.

[Pei et al., 2017a] Pei, K., Cao, Y., Yang, J., and Jana, S. (2017a). DeepXplore:
Automated whitebox testing of deep learning systems. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 1–18. ACM.

[Pei et al., 2017b] Pei, K., Cao, Y., Yang, J., and Jana, S. (2017b). Towards
practical verification of machine learning: The case of computer vision systems.
arXiv preprint arXiv:1712.01785.

[Poursaeed et al., 2018] Poursaeed, O., Katsman, I., Gao, B., and Belongie, S. J.
(2018). Generative adversarial perturbations. In Conference on Computer
Vision and Pattern Recognition.

[Pulina and Tacchella, 2010] Pulina, L. and Tacchella, A. (2010). An
abstraction-refinement approach to verification of artificial neural networks.
In International Conference on Computer Aided Verification, pages 243–257.
Springer.

84

[Raghunathan et al., 2018] Raghunathan, A., Steinhardt, J., and Liang, P.
(2018). Certified defenses against adversarial examples. arXiv preprint
arXiv:1801.09344.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should I trust you?”: Explaining the predictions of any classifier. In HLT-
NAACL Demos.

[Ribeiro et al., 2018] Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). Anchors:
High-precision model-agnostic explanations. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence.

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015).
U-net: Convolutional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer.

[RTCA, 2011] RTCA (2011). Do-178c, software considerations in airborne sys-
tems and equipment certification.

[Ruan et al., 2018a] Ruan, W., Huang, X., and Kwiatkowska, M. (2018a). Reach-
ability analysis of deep neural networks with provable guarantees. In IJCAI,
pages 2651–2659.

[Ruan et al., 2018b] Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., and
Kwiatkowska, M. (2018b). Global robustness evaluation of deep neural net-
works with provable guarantees for L0 norm. arXiv preprint arXiv:1804.05805.

[Rushby, 2015] Rushby, J. (2015). The interpretation and evaluation of assurance
cases. Technical report, SRI International.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252.

[Salay and Czarnecki, 2018] Salay, R. and Czarnecki, K. (2018). Using machine
learning safely in automotive software: An assessment and adaption of software
process requirements in iso 26262. arXiv preprint arXiv:1808.01614.

[Samangouei et al., 2018] Samangouei, P., Kabkab, M., and Chellappa, R.
(2018). Defense-gan: Protecting classifiers against adversarial attacks using
generative models. In International Conference on Learning Representations
(ICLR).

[Sato and Tsukimoto, 2001] Sato, M. and Tsukimoto, H. (2001). Rule extraction
from neural networks via decision tree induction. In IJCNN’01. International
Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222),
volume 3, pages 1870–1875 vol.3.

85

[Saxe et al., 2018] Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky,
A., Tracey, B. D., and Cox, D. D. (2018). On the information bottleneck theory
of deep learning. In International Conference on Learning Representations.

[Schaul et al., 2015] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015).
Prioritized experience replay. CoRR, abs/1511.05952.

[Selvaraju et al., 2016] Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. (2016). Grad-cam: Why did you say that? visual
explanations from deep networks via gradient-based localization. In NIPS
2016 Workshop on Interpretable Machine Learning in Complex Systems.

[Shen et al., 2018] Shen, W., Wan, J., and Chen, Z. (2018). MuNN: Mutation
analysis of neural networks. In International Conference on Software Quality,
Reliability and Security Companion, QRS-C. IEEE.

[Shrikumar et al., 2017] Shrikumar, A., Greenside, P., and Kundaje, A. (2017).
Learning important features through propagating activation differences. In
Proceedings of Machine Learning Research 70:3145-3153.

[Shwartz-Ziv and Tishby, 2017] Shwartz-Ziv, R. and Tishby, N. (2017). Opening
the black box of deep neural networks via information. CoRR, abs/1703.00810.

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen,
Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and
Hassabis, D. (2017). Mastering the game of Go without human knowledge.
Nature, 550(354–359).

[Simonyan et al., 2013] Simonyan, K., Vedaldi, A., and Zisserman, A. (2013).
Deep inside convolutional networks: Visualising image classification models
and saliency maps. CoRR, abs/1312.6034.

[Sinha et al., 2018] Sinha, A., Namkoong, H., and Duchi, J. (2018). Certifiable
distributional robustness with principled adversarial training. In International
Conference on Learning Representations.

[Smilkov et al., 2017] Smilkov, D., Thorat, N., Kim, B., Viégas, F. B., and
Wattenberg, M. (2017). Smoothgrad: removing noise by adding noise. CoRR,
abs/1706.03825.

[Song et al., 2018] Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman,
N. (2018). Pixeldefend: Leveraging generative models to understand and
defend against adversarial examples. In International Conference on Learning
Representations.

[Springenberg et al., 2014] Springenberg, J. T., Dosovitskiy, A., Brox, T., and
Riedmiller, M. A. (2014). Striving for simplicity: The all convolutional net.
CoRR, abs/1412.6806.

86

[Su et al., 2017] Su, T., Wu, K., Miao, W., Pu, G., He, J., Chen, Y., and
Su, Z. (2017). A survey on data-flow testing. ACM Computing Surveys,
50(1):5:1–5:35.

[Sun et al., 2018a] Sun, Y., Huang, X., and Kroening, D. (2018a). Testing deep
neural networks. arXiv preprint arXiv:1803.04792.

[Sun et al., 2018b] Sun, Y., Huang, X., Kroening, D., Shap, J., Hill, M., and
Ashmore, R. (2018b). Structural test coverage criteria for deep neural networks.

[Sun et al., 2018c] Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M.,
and Kroening, D. (2018c). Concolic testing for deep neural networks. In
Automated Software Engineering (ASE), 33rd IEEE/ACM International Con-
ference on.

[Sun et al., 2018d] Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M.,
and Kroening, D. (2018d). Deepconcolic: Testing and debugging deep neural
networks. In 41st ACM/IEEE International Conference on Software Engi-
neering (ICSE2019).

[Sundararajan et al., 2017] Sundararajan, M., Taly, A., and Yan, Q. (2017).
Axiomatic attribution for deep networks. In International Conference on
Machine Learning.

[Szegedy et al., 2014] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. (2014). Intriguing properties of neural
networks. In In ICLR. Citeseer.

[Tamagnini et al., 2017] Tamagnini, P., Krause, J., Dasgupta, A., and Bertini,
E. (2017). Interpreting black-box classifiers using instance-level visual expla-
nations. In Proceedings of the 2Nd Workshop on Human-In-the-Loop Data
Analytics, HILDA’17, pages 6:1–6:6, New York, NY, USA. ACM.

[Tian et al., 2018] Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). DeepTest:
Automated testing of deep-neural-network-driven autonomous cars. 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pages 303–314.

[Tishby et al., 2000] Tishby, N., Pereira, F. C., and Bialek, W. (2000). The
information bottleneck method. arXiv e-prints, page physics/0004057.

[Tramèr et al., 2018] Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.,
Boneh, D., and McDaniel, P. (2018). Ensemble Adversarial Training: Attacks
and Defenses. In International Conference on Learning Representations.

[Tretschk et al., 2018] Tretschk, E., Oh, S. J., and Fritz, M. (2018). Sequential
attacks on agents for long-term adversarial goals. CoRR, abs/1805.12487.

[Udeshi et al., 2018] Udeshi, S., Arora, P., and Chattopadhyay, S. (2018). Auto-
mated directed fairness testing. In Automated Software Engineering (ASE),
33rd IEEE/ACM International Conference on.

87

[van den Oord et al., 2016] van den Oord, A., Kalchbrenner, N., Vinyals, O.,
Espeholt, L., Graves, A., and Kavukcuoglu, K. (2016). Conditional image
generation with pixelcnn decoders. In NIPS.

[van Hasselt et al., 2015] van Hasselt, H., Guez, A., and Silver, D. (2015). Deep
reinforcement learning with double q-learning. In Association for the Advance-
ment of Artificial Intelligence.

[Voosen, 2017] Voosen, P. (2017). How AI detectives are cracking open the black
box of deep learning. Science.

[Wand and Jones, 1994] Wand, M. P. and Jones, M. C. (1994). Kernel smoothing.
Chapman and Hall/CRC.

[Wang et al., 2018] Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
(2018). Formal security analysis of neural networks using symbolic intervals.
In USENIX Security Symposium. USENIX Association.

[Wang et al., 2016] Wang, Z., de Freitas, N., and Lanctot, M. (2016). Duel-
ing network architectures for deep reinforcement learning. In International
Conference on Machine Learning.

[Wang et al., 2003] Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). Multi-
scale structural similarity for image quality assessment. In Signals, Systems
and Computers, Conference Record of the Thirty-Seventh Asilomar Conference
on.

[Wei et al., 2018] Wei, X., Zhu, J., and Su, H. (2018). Sparse adversarial per-
turbations for videos. CoRR, abs/1803.02536.

[Weiss et al., 2018] Weiss, G., Goldberg, Y., and Yahav, E. (2018). Extracting
automata from recurrent neural networks using queries and counterexamples.
In International Conference on Machine Learning.

[Weng et al., 2018] Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J.,
Boning, D., Dhillon, I. S., and Daniel, L. (2018). Towards fast computation of
certified robustness for relu networks. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pages 5273–5282.

[Weng et al., 2018] Weng, T.-W., Zhang, H., Chen, P.-Y., Yi, J., Su, D., Gao,
Y., Hsieh, C.-J., and Daniel, L. (2018). Evaluating the Robustness of Neural
Networks: An Extreme Value Theory Approach. In International Conference
on Learning Representations (ICLR).

[Wicker et al., 2018] Wicker, M., Huang, X., and Kwiatkowska, M. (2018).
Feature-guided black-box safety testing of deep neural networks. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 408–426. Springer.

88

[Wong and Kolter, 2018] Wong, E. and Kolter, Z. (2018). Provable defenses
against adversarial examples via the convex outer adversarial polytope. In
International Conference on Machine Learning, pages 5283–5292.

[Wu et al., 2018] Wu, M., Wicker, M., Ruan, W., Huang, X., and Kwiatkowska,
M. (2018). A game-based approximate verification of deep neural networks
with provable guarantees. arXiv preprint arXiv:1807.03571.

[Xiang et al., 2018] Xiang, W., Tran, H.-D., and Johnson, T. T. (2018). Output
reachable set estimation and verification for multi-layer neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 29:5777–5783.

[Xiao et al., 2018] Xiao, C., Zhu, J.-Y., Li, B., He, W., Liu, M., and Song,
D. (2018). Spatially transformed adversarial examples. arXiv preprint
arXiv:1801.02612.

[Xie et al., 2017] Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. (2017).
Mitigating adversarial effects through randomization. In International Con-
ference on Learning Representations (ICLR).

[Xie et al., 2018] Xie, X., Ma, L., Juefei-Xu, F., Chen, H., Xue, M., Li, B., Liu,
Y., Zhao, J., Yin, J., and See, S. (2018). Coverage-guided fuzzing for deep
neural networks. arXiv preprint arXiv:1809.01266.

[Xu et al., 2018] Xu, W., Evans, D., and Qi, Y. (2018). Feature squeezing:
Detecting adversarial examples in deep neural networks. In Network and
Distributed System Security Symposium (NDSS).

[Yosinski et al., 2015] Yosinski, J., Clune, J., Nguyen, A. M., Fuchs, T. J., and
Lipson, H. (2015). Understanding neural networks through deep visualization.
In International Conference on Machine Learning (ICML) Deep Learning
Workshop.

[Zeiler and Fergus, 2014] Zeiler, M. D. and Fergus, R. (2014). Visualizing and
understanding convolutional networks. In European Conference on Computer
Vision (ECCV).

[Zhang et al., 2018] Zhang, M., Zhang, Y., Zhang, L., Liu, C., and Khurshid,
S. (2018). DeepRoad: GAN-based metamorphic autonomous driving sys-
tem testing. In Automated Software Engineering (ASE), 33rd IEEE/ACM
International Conference on.

[Zhu et al., 1997] Zhu, H., Hall, P. A., and May, J. H. (1997). Software unit test
coverage and adequacy. ACM Computing Surveys, 29(4):366–427.

[Zilke et al., 2016] Zilke, J. R., Loza Menćıa, E., and Janssen, F. (2016). Deepred
– rule extraction from deep neural networks. In Calders, T., Ceci, M., and
Malerba, D., editors, Discovery Science, pages 457–473, Cham. Springer
International Publishing.

89

[Zintgraf et al., 2017] Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling,
M. (2017). Visualizing deep neural network decisions: Prediction difference
analysis. In International Conference on Machine Learning (ICML).

90

	0.1 List of Symbols
	0.2 List of Acronyms
	1 Introduction
	1.1 Certification
	1.2 Explanation
	1.3 Organisation of This Survey

	2 Preliminaries
	2.1 Deep Neural Networks
	2.2 Verification
	2.3 Testing
	2.4 Interpretability
	2.5 Distance Metric and d-Neighbourhood

	3 Safety Problems and Safety Properties
	3.1 Adversarial Examples
	3.2 Local Robustness Property
	3.3 Output Reachability Property
	3.4 Interval Property
	3.5 Lipschitzian Property
	3.6 Relationship between Properties
	3.7 Instancewise Interpretability

	4 Verification
	4.1 Approaches with Deterministic Guarantees
	4.1.1 SMT/SAT
	4.1.2 Mixed Integer Linear Programming (MILP)

	4.2 Approaches to Compute a Lower Bound
	4.2.1 Abstract Interpretation
	4.2.2 Convex Optimisation
	4.2.3 Interval Analysis
	4.2.4 Output Reachable Set Estimation
	4.2.5 Linear Approximation of ReLU Networks

	4.3 Approaches with Converging Upper and Lower Bounds
	4.3.1 Layer-by-Layer Refinement
	4.3.2 Reduction to A Two-Player Turn-based Game
	4.3.3 Global Optimisation Based Approaches

	4.4 Approaches with Statistical Guarantees
	4.4.1 Lipschitz Constant Estimation by Extreme Value Theory
	4.4.2 Robustness Estimation

	4.5 Computational Complexity of Verification
	4.6 Summary

	5 Testing
	5.1 Coverage Criteria for DNNs
	5.1.1 Neuron Coverage
	5.1.2 Safety Coverage
	5.1.3 Extensions of Neuron Coverage
	5.1.4 Modified Condition/Decision Coverage (MC/DC)
	5.1.5 Quantitative Projection Coverage
	5.1.6 Surprise Coverage
	5.1.7 Comparison between Existing Coverage Criteria

	5.2 Test Case Generation
	5.2.1 Input Mutation
	5.2.2 Fuzzing
	5.2.3 Symbolic Execution and Testing
	5.2.4 Testing using Generative Adversarial Networks
	5.2.5 Differential Analysis

	5.3 Model-Level Mutation Testing
	5.4 Summary

	6 Attack and Defence
	6.1 Adversarial Attacks
	6.1.1 Limited-memory BFGS Algorithm (L-BFGS)
	6.1.2 Fast Gradient Sign Method (FGSM)
	6.1.3 Jacobian Saliency Map based Attack (JSMA)
	6.1.4 DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks
	6.1.5 Carlini & Wagner Attack

	6.2 Adversarial Attacks by Natural Transformations
	6.2.1 Rotation and Translation
	6.2.2 Spatially Transformed Adversarial Examples
	6.2.3 Towards Practical Verification of Machine Learning: The Case of Computer Vision Systems (VeriVis)

	6.3 Input-Agnostic Adversarial Attacks
	6.3.1 Universal Adversarial Perturbations
	6.3.2 Generative Adversarial Perturbations

	6.4 Summary of Adversarial Attack Techniques
	6.5 Defence
	6.5.1 Adversarial Training
	6.5.2 Defensive Distillation
	6.5.3 Dimensionality Reduction
	6.5.4 Input Transformations
	6.5.5 Combining Input Discretisation with Adversarial Training
	6.5.6 Activation Transformations
	6.5.7 Characterisation of Adversarial Region
	6.5.8 Defence against Data Poisoning Attack

	6.6 Certified Defence
	6.6.1 Robustness through Regularisation in Training
	6.6.2 Robustness through Training Objective

	6.7 Summary of Defence Techniques

	7 Interpretability
	7.1 Instancewise Explanation by Visualising a Synthesised Input
	7.1.1 Optimising over Hidden Neuron
	7.1.2 Inverting Representation

	7.2 Instancewise Explanation by Ranking
	7.2.1 Local Interpretable Model-agnostic Explanations (LIME)
	7.2.2 Integrated Gradients
	7.2.3 Layer-wise Relevance Propagation (LRP)
	7.2.4 Deep Learning Important FeaTures (DeepLIFT)
	7.2.5 Gradient-weighted Class Activation Mapping (GradCAM)
	7.2.6 SHapley Additive exPlanation (SHAP)
	7.2.7 Prediction Difference Analysis
	7.2.8 Testing with Concept Activation Vector (TCAV)
	7.2.9 Learning to Explain (L2X)

	7.3 Instancewise Explanation by Saliency Maps
	7.3.1 Gradient-based Methods
	7.3.2 Perturbation-based Methods

	7.4 Model Explanation by Influence Functions
	7.5 Model Explanation by Simpler Models
	7.5.1 Rule Extraction
	7.5.2 Decision Tree Extraction
	7.5.3 Linear Classifiers to Approximate Piece-wise Linear Neural Networks
	7.5.4 Automata Extraction from Recurrent Neural Networks

	7.6 Information-flow Explanation by Information Theoretical Methods
	7.6.1 Information Bottleneck Method
	7.6.2 Information Plane
	7.6.3 From Deterministic to Stochastic DNNs

	7.7 Summary

	8 Future Challenges
	8.1 Distance Metrics closer to Human Perception
	8.2 Improvement to Robustness
	8.3 Other Machine Learning Models
	8.4 Verification Completeness
	8.5 Scalable Verification with Tighter Bounds
	8.6 Validation of Testing Approaches
	8.7 Learning-Enabled Systems
	8.8 Distributional Shift and Run-time Monitoring
	8.9 Formulation of Interpretability
	8.10 Application of Interpretability to other Tasks
	8.11 Human-in-the-Loop

	9 Conclusions

