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Abstract

Age-period-cohort models used in life and general insurance can be over-

parameterized, and actuaries have used several methods to avoid this, such

as cubic splines. Regularization is a statistical approach for avoiding over-

parameterization, and it can reduce estimation and predictive variances com-

pared to MLE. In Markov Chain Monte Carlo (MCMC) estimation, regu-

larization is accomplished by the use of mean-zero priors, and the degree

of parsimony can be optimized by numerically efficient out-of-sample cross-

validation. This provides a consistent framework for comparing a variety

of regularized MCMC models, such as those built with cubic splines, linear

splines (as ours is), and the limiting case of non-regularized estimation. We

apply this to the multiple-trend model of Hunt and Blake [2014].
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1. Introduction

Age-period-cohort (APC) models model an array of data by assigning

parameters to each row, column, and diagonal of the array. The values in

each cell are then arithmetic combinations of the row, column and diago-

nal parameters. These models thus have parameters but no independent

variables, although dummy variables can be constructed to mimic the arith-

metic calculations. Actuaries use these models for mortality, and also for

emergence of claims liabilities, by age and year. They can have many pa-

rameters, so it is easy to overfit to data noise. Regularization can reduce

some of the response to noise and produce more parsimonious models.

Regularization is typically traced back to Hoerl and Kennard [1970].

It’s most common forms are ridge regression and Lasso. These minimize the

negative loglikelihood (NLL) plus the sum of the squares or absolute values,

respectively, of the parameters. See Blei [2015]. The goal is to reduce

estimation and predictive variance, even though shrinkage introduces bias

in the estimate. The estimate is biased but closer to its true value.

Both ridge regression and Lasso actually start by scaling all explanatory

variables to have mean zero and variance one, then minimize the NLL plus

a selected shrinkage parameter λ times the sum of the squares or absolute

values of the parameters. Part of the motivation for these approaches is that

bigger parameters tend to be the source of much of the parameter variance.

The constant term, which absorbs all the means of the explanatory variables,

is not shrunk. The shrinkage is thus towards the overall mean. Lately Lasso

is more popular because a number of the coefficients actually become zero,

so it becomes a method of variable selection as well. Hastie et al. [2015] is

a comprehensive source.
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The Bayesian versions of ridge regression and Lasso impose shrinkage

priors on the parameters. The ridge regression analogue is to use mean-zero

normal priors with a small selected variance. Lasso is related to using low-

variance Laplace (double exponential) priors, which push the parameters

more strongly towards zero but also accept a few larger parameters. In

the Bayesian version the Lasso parameters might get small without actually

becoming zero, at least not in all samples. A major advantage of the MCMC

implementation is the availability of a computationally efficient method of

cross-validation – leave-one-out, or “loo” – that can be used to optimize the

degree of shrinkage.

Actuarial credibility theory was shrinking rating class and territory pa-

rameters towards the mean before 1970, so can be considered to be the orig-

inal form of regularization. The related James-Stein estimator was shown in

a striking example by Efron and Morris [1975] to greatly reduce prediction

variance by employing similar shrinkage.

APC models are reviewed in section 2 and MCMC optimization of them

in section 3. We apply one such to US male mortality rates in section 4.

Section 5 considers the results and possible extensions. Section 6 concludes.

2. The Model Class

Time-based data can come in any frequency, but for simplicity we will

call our units “years”. Modeled arrays have observations for each age in

the column for that age, though ages are sometimes called lags in general

insurance. Period refers to the observation time, i.e., the calendar year of

the measurement. Cohort, or year of origin, is thought of as the year of birth

in mortality and any sort of specifying year for liability, such year lawsuit
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filed or year contractually obliged. Year-of-birth cohorts are actually defined

by year of death minus age at death. This will be the year of birth if death

occurs after that year’s birthday, otherwise it will be the year after birth.

We denote cohorts as n = 1, ..., N and years as u = 0, ..., U. This produces

periods of n+ u = 1, ...N + U , although typically the observations run out

before N + U . This puts a cohort in each row of the data, and periods are

on NW to SE diagonals. Another popular notation system would make the

periods the rows.

With a bit of loss of generality we denote y[n, u] as the log of the in-

cremental observation in the n, u cell, which could be mortality rates or

incremental claims payments, for instance. More generally y could be some

other transform of the data that nonetheless is modeled as below.

The oldest models in the actuarial literature use just two of the time di-

mensions. For instance the model of Lee and Carter [1992] models mortality

by age with the q parameters and period, by r, but not cohort:

y[n, u] = q[u] + r[n+ u]s[u] + ǫ[n, u] (1)

The idea of the s[u] trend-weight-by-age parameters is that some ages benefit

from the trend over periods more than others do. Verbeek [1972] used

this AP model without the s[u] factors for claims count emergence, and

Taylor [1977] popularized that version for claim amounts. General insurance

actuaries have been using AC models informally since at least the 1930s.

Hachemeister and Stanard [1975] formalized these to show that a popular

method is in fact MLE for a Poisson model.

Barnett and Zehnwirth [2000] discuss an APC model for claims, and

recommend parameter reduction when using it, with cohort parameters p[n]:

y[n, u] = p[n] + q[u] + r[n+ u] + ǫ[n, u] (2)
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Renshaw and Haberman [2006] add age weights to both the period and

cohort effects for mortality modeling:

y[n, u] = p[n]w[u] + q[u] + r[n+ u]s[u] + ǫ[n, u] (3)

Cairns et al. [2009] however find problems with applying age weights

to the cohorts. Our initial fitting suggested that with parameter reduction

these age weights quickly collapse to a constant for our data. By using con-

strained parameterized curves, Xu et al. [2015] were able to fit age weights

separately by cohort, and found different age sensitivity in different cohorts.

That may explain why a single weighting function often does not work.

We ended up leaving out the age weights for cohorts, but used the multi-

trend model described in Hunt and Blake [2014]:

y[n, u] = p[n] + q[u] +
∑

i

ri[n+ u]si[u] + ǫ[n, u] (4)

The original model with a single trend assumes that the changes causing that

trend, such as advances in medical treatments, always affect the various ages

in the same way although to different degrees. But in some cases they differ

more broadly. Modernization of more primitive societies is an example,

where youth mortality rates decline substantially initially, then mortality

trends at older ages become more significant. The additional trends allow

different age take-up rates for the different trends at different times. They

also allow for modeling events that may last several years but predominately

affect specific age groups. The HIV epidemic is an example.

APCmodels have even a longer history in social sciences. See for example

Ryder [1965]. Perhaps the original paper with a model having parameters

in all three directions was the epidemiology paper of Greenberg et al. [1950],

who in turn cite Frost [1939] for pioneering statistical analysis in the three
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directions. That literature early on addressed the issue of identifiability

in such models. Fienberg and Mason [1978] summarizes that discussion.

Basically you can get the same fit to every cell by using offsetting effects

among the different parameters.

Actuaries use various constraints on the parameters to achieve identifi-

ability. We adopt the following constraints:

• There is no long-term average trend across cohorts. We achieve this

by making the cohort parameters the residuals of a regression over the

years of birth. This forces the long-term trend to be represented by

the period parameters only. The cohort parameters represent relative

differences among the cohorts given that the overall trend is entirely

taken up by the period parameters.

• The period trend is the trend for the age or ages with the greatest

mortality change over the entire period. Such an age will get an age

weight s[u] of 1.0. The other ages will get lower age weights, which

represent the degree to which they are affected by that trend. The

assumption of the model is that every age u gets s[u] times each year’s

trend, with the variability around that going into the residuals. There

is a new trend parameter for each year, so an additional trend series

is needed only when the age weights change.

Of course all these parameters are estimated simultaneously to find the

combination of parameters that best fits the data under this model. The

advantage of this particular choice of constraints is that each parameter

group can be interpreted as having a precise meaning. The period parame-

ters r[n+ u] are the by-period cumulative changes in mortality for the ages

with the highest trend, given that there is no trend in the cohorts. The
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cohort parameters p[n] are the relative cohort effects given that the over-

all trend is all in the period parameters, and the base mortality curve q[u]

represents the starting mortality rate for each age estimated across all the

observations, given that the trends and weights s[u] are as estimated.

Some recent papers apply MCMC to APC models. Although they do not

aim at regularization, they find that MCMC provides a useful framework for

estimation of more complex APC models. For instance, Antonio et al. [2015]

uses MCMC to simultaneously estimate models for different populations.

Chung Fung et al. [2016] uses it to incorporate stochastic volatility into

APC models.

We estimate all the p, q, r and s parameters on linear splines – that is, line

segments. There is a single-period line segment between any two adjacent

parameters. The slope changes at each point are the underlying parameters

of the model. These are second differences in the level parameters p, q, r, s.

The level parameters are cumulative sums of the previous slopes, and the

slopes are the cumulative sums of the previous slope changes.

The changes in slope at each period are the parameters that are shrunk

towards zero. This produces little change in slope for most points, but larger

changes occasionally. To model this, each slope change is given a Laplace

(double exponential) prior with small variance. Smaller prior variances give

more parsimonious models and smoother curves when graphing the parame-

ters. Larger prior variances increase the likelihood, but allow more effective

parameters, so do not necessarily increase the penalized log-likelihood. We

use loo, a cross-validation method of penalizing the log-likelihood, to deter-

mine the optimal degree of shrinkage.

Since we are emphasizing the parameter shrinkage methodology, we just

assume a normal distribution for y. However independent Bernoulli deaths
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would create a binomial distribution for number of deaths, and ages with

a low number of deaths would then show greater proportional volatility of

rates. Such distributional issues under this methodology would be a topic

for further research.

3. MCMC estimation of age-period-cohort models

MCMC is a method to simulate (Monte Carlo) a sequence of samples

from a probability distribution, where each sample is generated based on

only the immediately previous sample (Markov Chain). It’s main application

is generating samples from the posterior distribution of a parameter vector

θ when only the prior and conditional distributions are known. Thus it

provides a way to do Bayesian estimation without being able to specify

conjugate priors, or in fact any specific form of the posterior distribution.

Good introductions are Ntzoufras [2010] and van Ravenzwaaij et al. [2016].

The key methodology to accomplish this is the Metropolis sampler. By

Bayes’ Theorem, the posterior distribution of θ given a sample X is:

p(θ|X) =
p(X|θ)p(θ)

p(X)
(5)

The denominator is usually intractable. Considering X to be constant, the

posterior can be expressed as:

p(θ|X) ∝ f(θ) (6)

A sample from the posterior has to have more scenarios where the posterior

probability is higher. Finding a new parameter set θ that increases f(θ)

increases the posterior proportionally. To get from the latest θ to the next

sample θ∗, the Metropolis sampler goes one parameter θj at a time, using a

proposal distribution. For θj , this is a symmetric distribution, like normal,
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Laplace, or t, centered at θj . A parameter is drawn from the proposal

distribution. If it makes f(θ∗) > f(θ), it is accepted. If not another random

number ρ is drawn, and if ρ < f(θ∗)/f(θ), the parameter is accepted anyway.

Otherwise the old θj is kept until the next round. The acceptance rule is

designed to produce samples that conform in probability to the posterior

distribution.

The Metropolis sampler is known to create a sample from the posterior

under fairly general conditions, after a burn in period to get the parameters

in the region of the maximum. The implementation after that is engineering,

like the choice of the proposal distribution. It has been found that a narrow

distribution produces too high an acceptance rate and can keep the sampler

from getting to the maximum. But too low an acceptance rate prevents

the sampler from moving much at all. Practice suggests that a rate around

40% is ideal, with anything in the range (0.25, 0.75) workable. The first

major advance in methodology was the Metropolis-Hastings sampler, which

no longer requires the proposal distribution to be symmetric, but has a bit

more complicated acceptance rule.

Another major step was the use of the Gibbs sampler. See Casella and

George [1992]. This started as a method of generating a sample from a bi-

variate distribution p(x, y) by alternatively sampling from p(x|y) and p(y|x),
using the last x to generate the next y and vice versa. The higher probabil-

ity points are more likely to be drawn, so starting anywhere this eventually

gets to be a sample of the bivariate distribution. For multivariate distribu-

tions, denote θ−j as the vector without the jth element. Then the sampling

proceeds through the variables sampling from p(θj |θ−j).

The application to Metropolis-Hastings is to take f(θj |θ−j) as the pro-

posal distribution and to set the acceptance rule to accept all samples. Here
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θ−j consists of the latest draws for all the other variables, so you can consider

all of them as constants in f(θj |θ−j), which is thus a univariate function. It

is proportional to f(θ−j), so basically all you need is to be able to sample

from a density proportional to f(θ−j), which might be done numerically.

Popular MCMC packages are JAGS, which uses the Gibbs sampler, and

Stan, which is based on Hamilton mechanics, a method of dynamically tun-

ing the proposal distribution of the Metropolis-Hastings sampler (Calder-

head and Radde [2014]), which is itself controlled by the no U-turn sampler

(NUTS). See Hoffman and Gelman [2014].

User-reported advantages of Stan include good error diagnostics, reliable

convergence for a large class of models, and being able to work well with

default settings. JAGS however may be considerably faster for some models.

We used Stan but found our model, with a large dataset and more than

400 parameters, to be about at the limit of what could be run on a personal

computer. We drew samples of 3000 simulations, accepting the default of

half of them as burn in. Convergence was verified by running several inde-

pendent sampling chains, which can be done simultaneously with multiple

processors, and doing a graphical comparison of the estimated parameters

across the chains. A more formal test for each parameter is to take the ratio

of its variance across all samples to its average variance inside the chains.

The ratio is usually desired to be less than an admittedly subjective value of

1.1 for the model to be viewed as having converged. The runs took 4 days

on the latest Mac laptops – which have a problem of erasing some needed

temp files after 4 days of non-access. Mainframe systems or cloud computing

would appear to be needed for any larger models. JAGS is certainly worth

trying as well.
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3.1. Priors

Priors can be used to constrain the parameters or to make some sets

more likely. However it is typical to use fairly wide priors just to get the

process going, except for the mean-zero priors for shrinking. For a parameter

that can be positive or negative, just saying it has a prior that is uniform on

the real line gives a wide prior. Typically MCMC packages will use double

precision numbers, so this would give a uniform prior on ±1.8 ∗ 10308. A

flat prior on the real line would have the vast majority of its probability

outside of this interval. This would be easier to discuss with an extension

of the real numbers to include infinitesimals, as in Keisler [2000]. Then

the density of a uniform prior on the reals would just be an infinitesimal

ǫ and the probability of being in or out of the interval [−K,K] would be

2Kǫ or 1 − 2Kǫ. In any case, there are not any truly improper priors in

MCMC applications using double precision numbers, but that would not be

noticeable in the posteriors.

Wide uniform priors generally produce estimates similar to classical un-

biased estimates, with posteriors close to classical estimation-error distri-

butions. This is not the case for parameters that have to be positive. A

uniform prior on the positive line will tend to pull the estimate up a bit from

the unbiased value. Heuristically this prior can be thought of as having an

infinite pull upwards, compared to the uniform on all the reals which has bal-

ancing infinite pulls up and down. On the positive reals a prior proportional

to 1/x has infinite weight at both ends and again tends to give classically

unbiased estimates. This is sometimes easier to specify by making the log

of the parameter uniform on the real line.

Mean-zero priors basically come in three varieties: light, medium, and

heavy-tailed. The normal distribution is light-tailed. The double exponen-
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tial, which is the exponential for positive values and its mirror image for

negative, is medium-tailed. The Cauchy distribution (t-distribution with

one degree of freedom) is heavy-tailed, as is the horseshoe distribution. The

latter is a normal with σ2 mixed with a Cauchy. It has a lot of probability

near zero, so shrinks most parameters a good deal, but also has a heavy

tail that allows occasional parameters to be large. It is regarded as being

efficient in parameter reduction.

We use the double exponential shrinkage prior.

x > 0 : f(x) = e−x/b/2b (7)

x < 0 : f(x) = ex/b/2b (8)

The b parameter produces the standard deviation of the double expo-

nential distribution. We are finding an optimal value around 0.04 for slope

changes in the US male mortality model. The Cauchy is discussed in Ap-

pendix A.

3.2. Comparing Models

There is a growing view within statistics that models are approximations

to more complex processes that are generating the sample data. This poses

a challenge to traditional model testing, which is almost always based on

the idea that the model generates the sample. The emerging consensus is

that the most reliable model testing and comparison methods are based on

testing the predictive power of the model on holdout samples.

MCMC does not maximize the likelihood – rather it generates the pos-

terior distribution of the parameters. Also in non-linear models, and par-

ticularly for mean-zero priors, getting the effective number of parameters

used, in order to adjust likelihoods for model comparison, is not clearcut.
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But the likelihood of each holdout sample is a standard measurement it can

do. This is called cross-validation.

A particularly appealing cross-validation test, popular lately because of

a fast new algorithm for it, is leave-one-out cross validation, or loo. Each

point is left out, one at a time, and the resulting model is tested on that

point. Details may be found in Vehtari et al. [2016].

That part is not particularly new – see for instance Gelfand et al. [1992]

or Gelfand [1996] – but estimates have tended to be unstable. What is

new is a method called “Pareto-smoothed importance sampling,” which ad-

dresses the instability. It is applicable to parameter sample sets generated

by MCMC and is available in an R package loo. That takes the output of

an MCMC run and estimates what the likelihood would be for a data point

from the parameters fit by leaving it out.

Importance sampling is a numerical method often useful in Monte Carlo

integration, used to compute the integral as the weighted average over a

simulated sample of a more easily calculated integrand, using selected im-

portance weights. It is used when, as with the hold-out sample here, the

actual simulation of the process is too resource-intensive to be practical.

In the notation of Vehtari et al. [2016], y is the sample, an individual

observation is yi, and the sample leaving that point out is y−i. A sample of

S of the parameters is denoted as θS . Gelfand [1996] shows that

1/p(yi|y−i) =

∫
p(θ|y)

p(yi|y−i, θ)
dθ (9)

Using the MCMC-generated sample θS of simulated parameter sets, with

importance weights ws
i for yi in the sth parameter set, this can be estimated

as:

1/p(yi|y−i) ≈
∑

sw
s
i∑

sw
s
i p(yi|θs)

(10)
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or

p(yi|y−i) ≈
∑

sw
s
i p(yi|θs)∑
sw

s
i

(11)

Gelfand suggests trying weights of ws
i = p(yi|θs)−1. These give most

weight to the samples that have poor fits at yi, which can be anticipated

to be more likely for the data excluding yi. They result in estimating the

holdout point’s probability as its harmonic mean over the sample:

p(yi|y−i) ≈
1

averages (p(yi|θs)−1)
(12)

Over time these weights have been found to be problematic in that some

samples can give very low probabilities to the holdout point, giving a very

high contribution to the average. As Wikipedia’s page on the harmonic

mean succinctly puts it, the harmonic mean tends to “mitigate the impact

of large outliers and aggravate the impact of small ones.”

Vehtari et al. [2016] address this basically using extreme value theory.

They fit a Pareto to the probability reciprocals for each holdout point sepa-

rately, and for each of these use the Pareto percentiles instead of the sample

for the largest 20% of the 1/ps. Their weights ws
i are Gelfand’s for 80%

of the sample and the Pareto percentiles for the top 20% – with possible

capping applied in some cases.

They test this and find that it performs reasonably well for many prob-

lems, especially for the sum over the dataset of the log of the holdout predic-

tive probabilities, which is the loo cross-validation goodness-of-fit measure.

The symbol for this measure is êlpdloo, standing for “expected log point-

wise predictive density.” The true elpd is the expected value of the sum of

the log of the probability densities for a new dataset not used in the fitting,

where the expectation is over the actual distribution, not the fitted. This is

not directly calculable and has to be estimated in some way.
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The loglikelihood of the sample data is such an estimate, but it overstates

the probability in that the parameters came from the same data. Fit testing

measures like the AIC, etc. in fact can be viewed as attempts to correct for

this bias. The priority of loo over other cross-validation metrics is that it is

also a good estimate - some say the best available - of elpd, and so improves

on AIC, etc. as well as being a cross-validation measure.

To summarize, then, êlpdloo is a penalized log-likelihood measure that

is arguably preferable to AIC, BIC, etc., particularly in shrinkage estima-

tion where the parameter count is problematic. It can be used to determine

the degree of shrinkage of a regularized model estimated by MCMC. That

is a significant advantage to using Bayesian shrinkage instead of the classi-

cal versions. When the shrinkage is minimal, the standard MLE estimate

results, so êlpdloo includes that as a special case.

In seeking the degree of shrinkage, i.e., the b in the Laplace prior, that

maximizes êlpdloo, for this model we found that increasing b from a low

starting value gradually increases êlpdloo up to a point, then increases both

the loo penalty and the log-likelihood in step for considerably higher values

of b, leaving êlpdloo relatively stable around its maximum.

In such cases we prefer the lowest value of b that maximizes êlpdloo. This

is the most parsimonious such model, which seems desirable in itself. But an-

other point in its favor is that the derivation of the êlpdloo estimate makes

the usual statistical assumption that the data is generated by the model.

Thus even though it is an out-of-sample test, êlpdloo does not penalize for

potential mis-specification of the model as being a somewhat simplified rep-

resentation of a more complex process. It only penalizes for potential bias

created by fitting to one particular sample of the process. This fact also

tends to support using a more parsimonious estimator.
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4. US Male Mortality

We model US male mortality rates from the Human Mortality Database

(HMD) for ages 30–89, cohorts 1891–1975, and years 1970–2014. The data

is considered error-prone prior to 1970.

Figure 1 graphs the cumulative changes in mortality by age decade (20s,

30s, 40s,...,80s) for 1970 – 2014. These are the changes in the log rates since

1970 averaged over each group. This does not look much like a single trend

that the different ages participate in to various degrees.

The most dramatic exception to a single trend is the slowing or even

reversal of the downward trend from 1985 – 1995 for ages under 50. Probably

a good deal of this can be traced to HIV and the drug wars. There is also a

flattening out of the downward trend starting in about 1997 for ages under

60, but less so for the 40s age group. The 80s ages have a much lower trend

than the other ages up until about 2002, after which they appear to follow

the general downward trend for the 70s, 60s and 40s age groups.

Figure 1: Cumulative trends in mortality rate by age group 1970-2014

16



These are challenging aspects for age / period / cohort models, which

assign each age a constant percentage of the base cumulative trend for the

entire period. However with several trends, each with their own weights, it

may be possible to model much of the data. There are possibly a number

of ways of defining multiple trends to model all this. One approach, which

we will go through in detail, uses four key trends:

• A base trend that applies to all ages, which get their own weights.

• A trend from 1985 to 1995 forced to be non-negative, so towards higher

mortality, for which ages get a possibly different set of weights.

• A trend, also forced to be positive, for ages in the 80s from 1975 until

2007, with all those ages getting the same weights.

• Another positive trend starting in 1997 which all ages under 80 par-

ticipate in with their own weights.

• Because of volatility and differing trends, we did not include the 20s

ages in the model.

There are thus 84 cohort parameters, for 1892 – 1975, with 1891 getting

zero initially and 59 age parameters for 31 – 89, with age 30 getting zero.

For trend there are 44 parameters for 1971 – 2014, with 1970 getting zero.

Each age gets a weight, so there are 60 weight parameters for trend. These

end up being constrained to have a maximum of 1.0. The HIV trend takes

11 parameters for 1985 – 1995. To these are applied age factors for ages 30

– 79, so 50 more parameters. There are 33 parameters for the additional

trend for ages in the 80s from 1975 – 2007. The extra trend from 1997 takes

18 parameters, and it applies to ages 30 – 79, taking 50 more parameters.
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All of these get double exponential priors with parameter b. The constant,

consistent with Lasso practice, is not shrunk towards zero. Here it gets

a uniform parameter on the reals, as does the log of the normal standard

deviation. Thus there are 411 parameters that get priors. The shrinkage

produces a smaller number of effective parameters.

For the cohort parameters a regression line to cohort year is fit to the

p parameters. Then the residuals to this line become the detrended p pa-

rameters. For a regression of y1, ..., yn on the integers 1,...,n, the slope and

intercept are:

slope =
6
∑

j(2j − n− 1)yj

n3 − n
(13)

intercept = average(y)− (slope)(n+ 1)/2 (14)

Making the age weights s positive was not so straightforward either.

In Stan you can define parameters as being positive, but here the APC

parameters are sums of slopes that can be negative. Just capping the final

parameters from below at zero does not work well either, as that capping

collapses derivatives that Stan uses to find posteriors. We ended up squaring

the final parameters to make them positive, then dividing all those by the

one with the highest value across the ages to make the maximum 1.0.

5. Fits

5.1. Optimizing Shrinkage

Besides being an out-of-sample test, êlpdloo also is a correction of the

loglikelihood for in-sample bias. The AIC is also derived to be a correction

to the loglikelihood for in-sample bias. The small sample AIC, denoted by

AICc, is an improved version of the AIC. With k parameters and sample size
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n, the AICc correction subtracted from the loglikelihood is p = kn/(n−k−1).

Essentially a small sample here is any that makes this adjustment noticeable.

Like AICc, êlpdloo is lower than the loglikelihood by a quantity a bit

larger than the number of parameters. But it can be calculated in settings

like ours where the effective number of parameters is not so apparent. In

an attempt to count parameters in nonlinear models, Ye [1998] defines the

generalized degrees of freedom used by a model as the sum of the derivatives

of the fitted values with respect to the actual values. This agrees with the

number of parameters in linear models (sum of diagonal of the hat matrix),

and is a measure of how much the data can pull the fitted values towards it.

The generalized degrees of freedom itself is as quantitatively extensive

to compute as the grind out loo elpd, which is prohibitive in many cases.

Thus the R package loo appears to be the most effective way to penalize the

loglikelihood for in-sample bias. The package also gives the elpd penalty p,

denoted as p−loo. From this it is possible to back out how many parameters

it would take for AICc to give the same penalty. This is k = p(n−1)/(p+n).

We will use this as an estimate of the parameter count, to get a sense of

how much reduction from the original 411 parameters the shrinkage has

produced.

Parameters can be fit for any selected value of the double exponential

parameter b. Lower values of b restrict changes in slope of the final pa-

rameters more. A higher b can allow the model to fit more closely to the

data. This can reduce the standard deviation σ of the normal distribution

of the observations around their means, and can increase the loglikelihood.

However it does not necessarily increase elpd. We will use the response of

êlpdloo to b to select b.

What we find is that higher values of b tend to give more parameters and
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Multiple σ b count elpd

0.25 0.0196 0.005 175.1 6580.5

2.0 0.0160 0.032 282.0 6885.5

2.5 0.0158 0.040 285.2 6892.1

3.5 0.0159 0.056 290.1 6885.6

5.0 0.0155 0.078 304.1 6885.2

Cauchy 0.0161 239.4 6873.2

Table 1: The êlpd
loo

measure and p − loo count by Laplace b, itself modeled as selected

multiple of residual standard deviation σ

a better in-sample fit. Up to a point this also increases êlpdloo. Eventually

however, increasing b no longer improves êlpdloo. This is all measured with

a bit of noise. The standard deviation of êlpdloo in all these fits is around

45, and for p− loo it is about 10.

In the fitting, b was not set explicitly. The model specifies b as an

externally defined multiple of the residual standard deviation σ. When

the multiple is made larger, σ decreases a bit but b still increases. Higher

or lower values of b are obtained by making the multiple higher or lower.

This has been recommended by some authors as a way to allow the model

to more quickly get away from poor fitting local maxima of the posterior

density, which would have higher σ. Table 1 shows various selected values of

the multiple and the resulting values of σ, b, the parameter count calculated

from p− loo and êlpdloo.

Starting at about 2, this multiple gives models within a fairly narrow

range of the maximum êlpdloo, even though higher values give more pa-

rameters and bit better σ. The parameter counts in this range are around

285, which is about a 30% reduction from the original 411. A much smaller

multiple of 0.25 is shown for comparison. We also tried a Cauchy prior for
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reference, discussed in the Appendix.

For the range of multiples we used, we did not see clear over-fitting,

where êlpdloo significantly decreases with more parameters. This may not

even be possible within this model, with 411 parameters compared to 2600

observations. On the basis of parsimony, as discussed above, we selected

the multiple of 2.5, and those are the parameters discussed below. However

there is little difference among the parameter sets in this range. The lower

multiples tend to have just a bit smoother looking parameter graphs.

5.2. Parameters

Figure 2 graphs the estimated parameters with the exception of the base

mortality, which in this log model looks very close to a straight line. The

parameters interact in complex ways, so it is a bit risky to comment on them

separately, but a few patterns seem to emerge.

For the cohorts, remember that these were forced to have no overall

trend, so the trend would all be in the trend parameters. The pattern

showing up is lowest mortality for the earliest and most recent births, with

highest mortality rates for those born 1910 – 1935 and again for those from

the 1950s. There are some demographic changes that could explain much of

this.

People born in 1900 or before did not get into this data unless they lived

into their 70s. Thus the cohort parameters for them do not reflect the entire

cohort, but just the quite select group who lived well past the life expectancy

for that period. It is a reasonable possibility that this subgroup had lower

mortality than did later-born populations at the same ages just because of

this selection effect.

At the other end, those born in 1970 or later only show up here at ages
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30 – 44. Thus the mortality rates are not necessarily representative of the

entire cohort, and could well be interacting with other trends, so the cohort

parameters in themselves might not be meaningful.

The dip for those born in the 1940s corresponds with the demographic

research of Carlson [2008]. He is looking at a bit broader cohort – namely

1929-45 – which substantially overlaps. He shows that the smaller size of

this generation, compared to those before and after, created unique eco-

nomic opportunities, especially for males. This generation had the lowest

unemployment rates and highest lifetime earnings, inflation adjusted, of any

in US history, as well as lower mortality. They quickly ascended to man-

agement jobs managing the larger boomer generation that followed – and

which they partially blocked from similar success. Other demographic trends

like smoking rates probably interacted to make the lowest mortality group

slightly different from the generation overall.

Looking at trends and trend weights, the main trend is pretty constant

downward, but leveling off in the last few years. The ages most affected

are 65 – 89, with a peak at 75. The HIV trend, from 1986 to 1996, most

strongly affects men in their 30s, with some impacts at all ages. It may be

due to a wider range of influences.

What we are calling the 30+ trend is generally upward from 2000 on,

and has a similar age spectrum as the HIV trend. It is not clear what this

trend is due to. It shows up as a leveling of mortality, except as an increase

in the last 3 – 4 years for some ages.

The trend for the 80+ age group is more of a fine tuning. It was modeled

with all ages in this range getting the same weight. Its small size means that

the cohort impact of the earliest years largely accounts for the apparent

slower declining mortality rates of the 80+ age group before 2000.
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Figure 2: Final Level Parameters
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Further parameter reduction may be possible in a few directions. The

80+ trend probably is not contributing much to the fit and could possibly

be eliminated. However it is probably using only a very few effective pa-

rameters as well. Similarly the base mortality may be just as good with

a parameterized curve, but again is probably not using very many effec-

tive parameters. Another possibility would be to have the HIV and 30+

trends use the same age weights, since those are fairly similar. That could

save parameters. However a somewhat different pattern arises here with the

Cauchy prior, discussed in Appendix A.

Future projections from this model would have to have a wide range of

uncertainty. Two of the four trends continue to 2014, and these are what

would need to be projected. The trouble is that the main trend has stopped,

and it is hard to know how temporary that may be. The 30+ trend continues

steadily upward, but it is not clear why or whether or not that may continue.

5.3. Goodness of Fit

Figure 3 graphs the age-group trends for the data, best fitting param-

eters, and the parameters from the multiple of 0.25. Both models show

reasonably good fits by this measure.

The 0.25 and best models have residual standard deviations of 1.96% and

1.58%, respectively. Since these are on the log scale they are relative devia-

tions from the means unlogged. Three times these give 99.73% probability

of a point being within 5.9% or 4.7% of its mean, respectively.

The out-of-sample test shows the 0.25 model providing a worse fit as

well. With 175 parameter equivalents compared to 285 for the best fit, it

is considerably more parsimonious. Its trends are smoother and give an

adequate intuitive feel for what the model trends are. The worst fit for both
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Figure 3: Cumulative Trend by Age Group. Top: 30s, 40s, 50s. Bottom: 60s, 70s, 80s.

Solid: Actual; Dash: Best Fit; Dots: 0.25 Fit.
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Figure 4: Loglikelihood by Data Point.

models is for ages in the 30s for the last ten years.

Figure 4 shows the loglikelihood at each data point. Here the rows are

the periods of observation and the columns are the ages. The darker red

points are the better fits, i.e., with the data closer to the fitted means. The

poorer fitting points here are all lighter red or bluer colors regardless of the

sign of the residual.

The worse fits tend to be at the younger ages and the earlier periods.

This could be due to the distributional issues noted earlier – those ages have

higher volatility.
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6. Conclusions

Age-period-cohort modeling, either in mortality or general insurance loss

reserving, appears to be an area where regularization can provide better fits

than MLE, if measured by penalizing the log-likelihood for over-fitting by the

use of cross-validation. Also, shrinkage facilitates simultaneous estimation

of several trends in the Hunt and Blake model, which looks to be able to

model complex trend patterns quite well.

For our model, Laplace b parameters greater than 0.04, and so by exten-

sion straight MLE, produce higher loglikelihoods, but were not better after

penalizing for overfitting. We used linear splines for parameter shrinkage,

but cubic splines could be formulated in MCMC and could be compared to

linear splines by the êlpdloo measure.

Although this model has four trends, the age 80+ trend appears to be

handled well enough by cohorts, and the HIV and 30+ trends are non-

overlapping in time and have somewhat similar weights by ages so could

possibly be combined. Thus two trends, one fairly complex, could give a

reasonable fit.

Parameter constraints are critical for getting convergence to a single

model. The constraints discussed here, along with making the shrinkage

standard deviation b a multiple of the residual standard deviation σ, appear

adequate and allow for a clear interpretation of the parameters. The main

estimation risk is that there may be local maxima for the posterior that are

not good fits. These can usually be avoided by the choice of more specific

priors.

The Cauchy prior seems worthy of future investigation.
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Appendix A. Cauchy Prior

Appendix A.1. Statistical Properties

The Cauchy distribution centered at zero is a t-distribution with 1 degree

of freedom. With parameter σ, its density and distribution function are:

f(x) =
1

π

σ

x2 + σ2
(A.1)

F (x) =
1

2
+

1

π
arctan

(x
σ

)
(A.2)

Its 75th percentile is σ and its 25th percentile is −σ. These could be used to

estimate σ by matching percentiles, for instance.

If X is t-distributed, the distribution of |X| is the folded t, whose density

is twice the positive part of the t density. This is a power-transformed beta

distribution. E.g., see McDonald [1984], Venter [1983] or Klugman et al.

[2008]. The transformed beta density is:

f(x;α, β, τ, θ) =
τ(x/θ)βτ

x(1 + (x/θ)τ )α+β

Γ(α+ β)

Γ(α)Γ(β)
(A.3)

with the kth moment for −βτ < k < ατ being θk Γ(β+k/τ)Γ(α−k/τ)
Γ(α)Γ(β) .

The folded t with ν degrees of freedom is the special case where α =

ν/2, β = 1
2 , τ = 2, θ = σ

√
n. This does not require ν to be an integer.

Having a t-distribution with non-integer degrees of freedom can facilitate

estimation by MLE and MCMC. Its distribution function is an incomplete

beta. With a half of a degree of freedom it becomes a heavier tailed version

of the Cauchy. For ν = 2.1 the variance is 21σ2, so finite.

With one degree of freedom, its kth moment exists only for −1 < k < 1,

and since Γ(12) = π, is given by:

E
(
Xk

)
=

σk

π
Γ

(
1 + k

2

)
Γ

(
1− k

2

)
(A.4)

32



Wolfram [2016] has the identity:

sin(πz) =
π

Γ(z)Γ(1− z)
(A.5)

which with z = (1 + k)/2 gives:

E
(
Xk

)
=

σk

sin
(
π
2 (k + 1)

) (A.6)

The moments of the folded t are the moments for the absolute value of

a Cauchy variable. Thus for a Cauchy with |k| < 1,

E
(
|X|k

)
=

σk

sin
(
π
2 (k + 1)

) (A.7)

For k = 1
2 , this gives σ = 1

2E(
√
|X|)2, which can be used to estimate σ.

Appendix A.2. Parameters from Cauchy Prior

Figure A.5: Cauchy and Double Exponential Densities – Log Scale

In comparison, the double exponential distribution in σ has σ = 4
πE(

√
|X|)2.

Its 75th percentile is σlog(2). Thus its σ parameter is larger than the

Cauchy’s by a factor of 8/π = 2.55 for the moment match, and by a factor

of 1/log(2) = 1.44 for the percentile match.
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The double exponential σ, called b in the text, was 0.04. In the end

we looked at a Cauchy sigma around 0.018, which is more like matching

the moment. This was actually done by setting σ to 1.1 times the residual

standard deviation, which ended up at 0.0161 with this Cauchy prior.

This Cauchy has more weight near 0, but also more in the tails: there is

53% probability it is less than 0.02 in absolute value, compared to 39% for

the double exponential. On the other hand, there is a 5.7% probability it is

outside of [-0.2, 0.2], compared to 1.3% for the double exponential.

This can give it more parameter shrinkage than the double exponential

in many cases, but also allows less shrinkage when needed.

The resulting parameters, graphed in Figure A.4, are usually a bit smoother

than those from the double exponential fit, but the weights on the trends,

graphed in Figure A.4, are an exception. The age weights for the main trend

and the 30+ trend are much smoother than before, but the HIV age weights

are more jagged. This combination may be why the Cauchy prior gave al-

most as good a fit as the double exponential with fewer effective parameters.

The HIV and 30+ weights are fairly different from each other here, which

may be a reason to keep them separate.

Figure A.6: Final Level Parameters Cauchy
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We did not optimize the Cauchy fit, so another σ may give as good a fit

as the double exponential, with fewer parameters. A major drawback to the

Cauchy, however, is that computer run times for it are considerably longer –

like by a factor of 100. This is in part because it requires smaller steps in the

Stan fitting, according to error messages, and that can make the runs much

longer. For a model this complex with a fairly large sample size, that puts

it almost out of the range of feasible computation on a personal computer.

Perhaps model searching can be done with the double exponential prior,

with final fits using the Cauchy. Matching the absolute half moment of the

double exponential seems like a good starting point for the Cauchy.
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