
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Combining Application Layer and
Network Layer Filtering in Pub/Sub

Systems

Fadi Sakkal

Course of Study: M. Sc. Information Technology

Examiner: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Supervisor: Dr. rer. nat. Sukanya Bhowmik

Commenced: Mars 10, 2018

Completed: October 10, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/162897297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Content-based Publish/Subscribe systems deliver notifications from publishers to subscribers based
on the content of the notifications. Low latency and bandwidth efficiency are two major concerns in
these systems. Hybrid Publish/Subscribe systems were developed to take advantage of the new
trend of Software Defined Networking (SDN). In these systems, notifications can be filtered on two
layers, namely the application-layer and the network-layer. Since each one of these two layers has
advantages over the other, it was important to have a selection algorithm to decide on which layer a
certain notification has to be filtered. When choosing to filter notifications on the application layer,
notifications have to be sent to software filters (servers) located in the topology. The placement of
these servers is important for the overall performance of the system. In this thesis, we propose three
different placement algorithms, each of which considers a different aspect of the system and tries to
place the servers in a way that improves this aspect. The K-Center placement algorithm aims at
minimizing the maximum distance between the sending node and the destination server. This will
give an upper bound on the worst-case scenario regarding the latency. TheK-Median placement
algorithm is designed to minimize the average distance that the sent notifications have to pass to
reach the server. The Utilitarian placement algorithm focuses on providing faster service to the
packets which are intended for many subscribers, giving better overall service to the majority of the
users at the expense of a worse service for some others. We have evaluated the proposed placement
algorithms and compared them to each other according to different categories using two different
topologies and two different distributions for the published notifications. As expected, the K-Center
algorithm proved to be better in minimizing the maximum distance required for a notification to
reach a server, while the K-Median and the Utilitarian algorithms showed similar results in most of
the cases and were better in minimizing the average distance.

3

Contents

1 Introduction 15
1.1 Thesis Overview . 17

2 Background 19
2.1 Software Defined Networks . 19
2.2 Data Plane Internals . 20
2.3 Publish/Subscribe Systems . 24
2.4 Optimization Problems and the Need for Approximation 26

3 Server Placement Algorithms 29
3.1 Defining the Problem . 29
3.2 The K-Center Placement Algorithm . 30
3.3 The K-Median Placement Algorithm . 34
3.4 Walkthrough for the K-Median Placement Algorithm 36
3.5 The Utilitarian Placement Algorithm . 40

4 Analysis and Results 41
4.1 The Experiments Setups . 41
4.2 ’Tree Topology’ Experiment’s Results . 41
4.3 ’Mixed Topology’ Experiment’s Results . 50

5 Conclusion and Outlook 61

A Experiments Results Organized in Tables 63

Bibliography 69

5

List of Figures

2.1 conceptual figure showing the distributed control plane in traditional networks . . 20
2.2 SDN Data, Control and Management Planes . 21
2.3 Key internal processing points in a typical switch 21
2.4 Management Plane for Configuration of Control and Data Plane 22
2.5 Centralized Control Plane and Distributed Data Plane 23
2.6 Java API, Java application communicates with controller 23
2.7 Overview of the Components and Operations in a Publish/Subscribe System . . . 25

3.1 Example Topology for the K-Center Placement Algorithm 31
3.2 The Topology for the K-Median Placement Algorithm Walkthrough Example . . 36
3.3 The Normal Distribution of the Generated P Values 37
3.4 The Normal Distribution of the Generated T Values 37

4.1 Maximum Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Normal
Distribution . 43

4.2 Average Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Normal
Distribution . 44

4.3 Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has
To Cover Using Different Placement Algorithms For Different K Values When
Publishers Use Normal Distribution . 45

4.4 Maximum Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Uniform
Distribution . 47

4.5 Average Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Uniform
Distribution . 48

4.6 Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has
To Cover Using Different Placement Algorithms For Different K Values When
Publishers Use Normal Distribution . 49

4.7 The ’Medium Topology’ Used for Evaluation 50
4.8 The Distribution of the P and T values Published In the Medium Topology 52
4.9 Maximum Distance Between a SSA-Node and its Closest Server Using Different

Placement Algorithms for Different K Values When Publishers Use Normal
Distribution . 53

4.10 Average Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Normal
Distribution . 54

7

4.11 Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has
To Cover Using Different Placement Algorithms For Different K Values When
Publishers Use Normal Distribution . 55

4.12 Maximum Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Uniform
Distribution . 57

4.13 Average Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Uniform
Distribution . 58

4.14 Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has
To Cover Using Different Placement Algorithms For Different K Values When
Publishers Use Uniform Distribution . 59

8

List of Tables

3.1 Nodes After Sorting . 32
3.2 Finding Farthest Node After the First Server (S2) Has Been Placed 32
3.3 Finding Farthest Node After two servers (S2 and S9) Have Been Placed 33
3.4 The Responsible Server for Each of The Nodes 33
3.5 Information about publishers and subscribers in figure 3.2 36
3.6 The Importance Values . 38
3.7 The Cost Value for Each of The Nodes . 38
3.8 The Modified Importance Values After That The First Server Has Been Placed on S3 39

4.1 Publishers and Subscribers Information in the Mixed Topology 51

A.1 The Results of Applying the K-Center Placement Algorithm on the Tree Topology 63
A.2 The Results of Applying the K-Center Placement Algorithm on the Mixed Topology 63
A.3 The Results of Applying the K-Median Placement Algorithm on the Tree Topology

When Publishers Use the Normal Distribution 64
A.4 The Results of Applying the K-Median Placement Algorithm on the Mixed Topology

When Publishers Use the Normal Distribution 64
A.5 The Results of Applying the K-Median Placement Algorithm on the Tree Topology

When Publishers Use the Uniform Distribution 64
A.6 The Results of Applying the K-Median Placement Algorithm on the Mixed Topology

When Publishers Use the Uniform Distribution 65
A.7 The Results of Applying the Utilitarian Placement Algorithm on the Tree Topology

When Publishers Use the Normal Distribution 65
A.8 The Results of Applying the Utilitarian Placement Algorithm on the Mixed Topology

When Publishers Use the Normal Distribution 66
A.9 The Results of Applying the Utilitarian Placement Algorithm on the Tree Topology

When Publishers Use the Uniform Distribution 66
A.10 The Results of Applying the Utilitarian Placement Algorithm on the Mixed Topology

When Publishers Use the Uniform Distribution 67
A.11 The Results of Applying a Random Placement on the Tree Topology 67
A.12 The Results of Applying a Random Placement on the Mixed Topology 68

9

List of Algorithms

3.1 K-Center Placement Algorithm . 31
3.2 K-Median Placement Algorithm . 35

11

List of Abbreviations

API Application Programming Interface. 22

ASIC Application-Specific Integrated Circuit. 20

BFS Breadth-First Search. 32

CLI Command-Line Interface. 22

CORBA Common Object Request Broker Architecture. 15

EIGRP Enhanced Interior Gateway Protocol. 22

FPS Frames Per Second. 20

IP Internet Protocol. 19

JEDI Java Event-Based Distributed Infrastructure. 15

JMS Java Message Service. 15

LAN Local Area Network. 20

MAC Medium Access Control. 19

NBI Northbound Interface. 23

NMS Network Management System. 20

ONF Open Networking Foundation. 22

OS Operating System. 20

SBI Southbound Interface. 22

SDN Software Defined Networking. 16

SNMP Simple Network Management Protocol. 22

SSA Switch Selection Algorithm. 25

SSH Secure Shell. 22

TCAM Ternary Content-Addressable Memory. 16

13

1 Introduction

A growing amount of information is being exchanged on a daily basis over networks. Applications
nowadays require more flexibility and real-time ability which demands a new communication
paradigm. Publish/Subscribe systems realized this different paradigm by providing an application-
independent middleware that offers loose coupling 1 and allows for asynchronous message exchange
between involved parties.

In a publish/subscribe system, a participant does not have to maintain information about other
publishers/subscribers in the network. It can instead rely on the system which provides many-
to-many communication. This makes pub/sub systems flexible and scalable, in contrast to the
Client/Server communication paradigm which revolves around the request/response model. In
Client/Server paradigm, as the number of clients requesting a service increases, the time spent
by the server for handling messages increases as well. This makes the Client/Server paradigm
unsuitable for hard or soft real-time applications [ZSL08]. Some of the existing publish/subscribe
systems include: Common Object Request Broker Architecture (CORBA) Notification Service
[GCSO01], Java Message Service (JMS) [HBS+02], Java Event-Based Distributed Infrastructure
(JEDI) [CDF01], and SIENA [CRW01]

In Publish/Subscribe systems, there are three types of actors: The Publishers (producer), Subscribers
(consumer), and a Communication Middleware. Publishers provide information about the type of
events they are going to publish (topics) and then publish these generated events to the middleware.
Subscribers subscribe to specific topics or contents and expect to start receiving events that match
their subscription. The middleware’s goal is to determine the set of subscribers that should receive
a particular event, route the event message as quickly and efficiently 2 as possible to the interested
subscriber(s).

There are many variations of Publish/Subscribe systems like Channel-Based, Topic-Based and
Content-Based. Content-Based is one variation which is notably bandwidth efficient. In these
systems, As the name suggests, the content of the message determines its recipients. Rather
than having the destination address in the header as an indication of the message’s recipient(s),
components placed inside the network called software routers (brokers) mediate between publishers
and subscribers performing message filtering based on installed filters (subscribers interests).

The advantage of having broker-based Publish/Subscribe solution is that software brokers is able
to perform perfect filtering. This means that the bandwidth efficiency is maximized and the false
positives 3 is minimized. The disadvantage is that the filtering at the brokers happens at the

1In space and time
2Regarding bandwidth usage
3Notifications that are falsely forwarded to unintended subscribers

15

1 Introduction

application layer. Application layer filtering cannot match up the performance of communication
protocol implemented at the network layer, thus resulting in a higher end-to-end latency and lower
throughput rates [Bho13].

Many applications suitable for the publish/subscribe paradigm are delay sensitive and require quick
notifications delivery. E.g., online gaming, smart grid, traffic control, and financial applications.
Therefore, recent efforts have been made to tackle the performance issue of content-based Pub-
lish/Subscribe systems by integrating Software Defined Networking (SDN) with them [BTK+17]
[TKBR14]

When using SDN, with the help of protocols such as OpenFlow [Fun12], content filters are installed
in a special type of memory called the Ternary Content-Addressable Memory (TCAM) inside the
routers. TCAM filtering is line-rate filtering. Therefore, solving the end-to-end latency and low
throughput issues that non-SDN content-based pub/sub systems usually suffer from.

Before installing a filter, the content has to be represented in a binary string which can then be
placed in one of the message’s header fields (content propagation). The number of bits available in
the message’s header is limited; thus, an efficient way of propagating the content to the header has to
be implemented [CMT+11; KARW16]. The filter can then be installed on the router’s TCAM via an
SDN controller(s) 4 [Bho13; BTK+15]. Spatial Indexing [BTK+17], Workload-Based Indexing and
Dimension Selection [BTG+18; BTGR16] are used by Bhowmik et al. in PLEROMA [TKBR14] as
efficient mechanisms for representing message’s content as a binary string that can then be put into
one of the message’s header and used in TCAM filtering.

TCAM is an expensive resource and therefore is limited in size [KLRW13]. A router that is
SDN-compatible has usually TCAM size that can host up to a couple of thousands of filters.
Bhowmik et al. introduced a solution to this limitation based on aggregating some of the content
filters to reduce TCAM space usage while keeping the false positives as minimal as possible
[BTBR17].

Back to the technology that made it all possible, one crucial component in SDN is the controller.
An SDN controller is a logically centralized component responsible for installing and modifying
filters in routers. To ensure consistent flow tables update in the network, the controller can only
process one subscription request at a time, introducing a bottleneck in the system. Improvement
can be made by using multiple controllers capable of processing multiple simultaneous requests in
disjoint network partitions. With one controller present in the system, every request will be sent to
that only one available controller. In contrast, with many controllers available, the requests will be
sent to the controller responsible for the partition from which the request was generated.

From all this, we conclude that, although a network of software brokers provides accurate filtering,
it suffers regarding responsiveness to event delivery. On the other hand, an SDN-based solution
provides line-rate performance but falls short in terms of bandwidth efficiency. Bhowmik et. Al.
Combined the benefits of the two worlds and provided a hybrid solution [BTHR16] that can perform
filtering in software (application layer) using brokers and in hardware (network layer) using filters
installed on TCAM. They have also provided mechanisms to determine the layer on which each
event is filtered while minimizing false positives and considering delay requirements of the network.

4Some SDN architectures use multiple controllers

16

1.1 Thesis Overview

Thus, according to application requirements, some events will be filtered at the network layer
while others will be filtered in software by a centralized server capable of concurrent processing of
publications.

1.1 Thesis Overview

In this thesis, we will explore the spectrum between having one server responsible for filtering
events at the application layer and a number of servers distributed across the network. The goal is
to examine the difference between a purely centralized and completely decentralized application
layer solution. We will identify the best possible placement of servers inside the network in an
SDN Publish/Subscribe system implementing hybrid filtering of events at both application layer as
well as the network layer. In chapter 3, we will introduce and discuss three placement techniques:
the K Center Placement, the K Median Placement, and the Utilitarian Placement techniques
which will optimize the system performance considering different factors. The K center placement
technique will consider minimizing the maximum end-to-end delay as a placement factor. The
K median placement technique will minimize the average end-to-end delay under different loads.
The utilitarian placement technique is based on the philosopher Jeremy Bentham’s ethical theory
[Gra06], and its target is having a lower delay for the events that are interested for the larger number
of subscribers, resulting in lower ’all in all’ delay in the system. Following that, in chapter 4, we will
introduce example scenarios and the results of the evaluation against a random placement of servers
will be shown. Then, we will conclude and present our ideas regarding possible future work.

17

2 Background

The main objective of this chapter is to provide a good understanding of the key concepts that
form the basis of this thesis. In the following sections we discuss the basic principles of the
publish/subscribe paradigm, the basics of Software-Defined Networking and we introduce the
notion of optimization problem and the usage of approximation algorithms to solve them.

2.1 Software Defined Networks

The goal of a network1 is to deliver data from a source to a destination. It does so based on a set of
protocols that regulate its operation. Software Defined Networks (SDN) is a networking architecture
which was developed to tackle the fact that traditional networks architecture is decentralized
and therefore complicated to manage while current networks require more flexibility and easy
troubleshooting.

2.1.1 SDN Planes

To understand how things are arranged in an SDN architecture, it helps to take a look at the three
planes that a networking device operates on. Everything that a networking device does can be
related to one particular plane of the following three:

The Data Plane

The data plane contains the tasks that a networking device does to forward a data message. For
example receiving, processing and forwarding data, de-encapsulating and re-encapsulating messages,
matching the Medium Access Control (MAC) address to the MAC table entries or matching the
Internet Protocol (IP) addresses to the routing table entries. Any action that is performed on the
data message or directly aims at forwarding it is categorized under the data plane.

The Control Plane

Networking devices depend on their control plane to make a decision regarding the data they are
handling. For example, routers need IP routes that are stored in the routing table; switches use entries
in the MAC address table so that they can forward layer-two (L2) data frames. This information

1In most cases

19

2 Background

Figure 2.1: conceptual figure showing the distributed control plane in traditional networks

supplied by the control plane controls the work of the data plane. A traditional networking
environment (non-SDN architecture) have the functionalities of the control plane distributed into
each device. This means that the control plane logic is distributed among all devices. Figure 2.1.

The Management Plane

In contrast to the control plane, the management plane contains the overhead tasks that do not
directly impact the data plane. Instead, this plane contains the protocols and tasks that allow
managing networking devices. For example, Telnet [NKY+04] and SSH [VSP17] are two popular
network management protocols that operate in the management plane. Network management
protocols allow a Network Management System (NMS) to manage or monitor a networking device.
Figure2.2

2.2 Data Plane Internals

Local Area Network (LAN) switches have to process and forward a large number of Frames Per
Second (FPS). Today, even low-end switches are expected to handle millions of frames per second
on each of their ports and the switch’s general purpose CPU is not fast enough to cope with this
huge volume of frames. Instead, switches use specialized hardware circuits to process and forward
frames at the data plane [OW17]

An Application-Specific Integrated Circuit (ASIC), As the name suggests, is a chip built to perform
a specific purpose, like message processing in a switch. ASICs in switches need to perform MAC
address table lookup. To make this lookup operation fast, the switch uses a particular type of
memory to store the MAC address table. This memory is called the Ternary Content-Addressable
Memory (TCAM). This memory can be considered as an ordered array with parallel look-up ability
[QYZ+18]

20

2.2 Data Plane Internals

Figure 2.2: SDN Data, Control and Management Planes

Figure 2.3: Key internal processing points in a typical switch

21

2 Background

Figure 2.4: Management Plane for Configuration of Control and Data Plane

By having ASICs in a switch, the CPU will handle the switch’s Operating System (OS) general
operations, while the ASICs and the TCAM will handle the Switch’s data plane operations as shown
in figure2.3. Figure 2.4 connects the ideas of the three planes in one figure.

2.2.1 Network Architecture When Using SDN

SDN has many distinctions compared to traditional networking approach, one of which is where
the control plane functions occur. In particular, SDN moves parts of the control plane tasks into
software that runs on a centralized component 2 called a controller.

The Controller

As depicted in figure2.1, in non-SDN architectures, networking devices use a distributed control
plane architecture, i.e., each device has its own control plane. To cooperate, the distributed control
planes use messages to exchange information and communicate with each other. An example is
when a router running Enhanced Interior Gateway Protocol (EIGRP) sends a multicast “query”
message. Hence we say that the traditional networks use a distributed control plane. On the other
hand, a controller in SDN plays the role of a centralized control plane in which all critical control
plane functions run. A program running on the controller directly programs the data plane of the
networking devices and can populate their forwarding tables via a Southbound Interface (SBI).

The Southbound Interface

In an SDN architecture, the controller has to communicate with the networking devices. It has
become the norm in network drawings to draw the controller above the networking devices, just like
in Figure 2.5. Hence the name of the interface between the controller and the networking device
came to be known as the Southbound Interface or SBI. In other words, we can say that an SBI is an
Application Programming Interface (API) between the controller (a program) and another program
(on the networking device).

Several options exist to be used as an SBI: OpenFlow from the Open Networking Foundation (ONF)
[Fou], OpFlex from Cisco [Cis], and more traditional Command-Line Interface (CLI) tools like
Telnet, Secure Shell (SSH), and Simple Network Management Protocol (SNMP) [KKKK11].

2Some SDN architectures have multiple controllers

22

2.2 Data Plane Internals

Figure 2.5: Centralized Control Plane and Distributed Data Plane

Figure 2.6: Java API, Java application communicates with controller

The Northbound Interface

The controller needs to know information about the networking devices before it can start modifying
their control plane. Some of this information include: (i) A list of the devices comprising the
network, (ii) Devices models and their capabilities, (iii) The ports/interfaces of each device, (ix)
The topology and over which ports are the devices connected to each other.

A Northbound Interface (NBI) allows the use of the controller’s collected data and functions by
other programs. Programs can pull (via NBI) information from the controller. NBIs also allows
the programs to use the controller’s abilities to program flows into the devices via SBI. Like the
case with SBI, the NBI gets its name from its drawing location. NBI is typically drawn above the
controller, in what would be north on a map. Figure 2.6 shows the NBI as red arrows.

23

2 Background

Figure 2.6 happens to depict the case where the controller and the application are running on the
same machine. The program can as well run on a different machine. In both cases, the program
would use an NBI as an API so that both programs can communicate.

2.3 Publish/Subscribe Systems

A Publish/Subscribe system is a communication paradigm that provides asynchronous message
exchange between loosely-coupled parties [Gre].

Participants

In the Publish/Subscribe paradigm we have three involved actors: Publishers, Subscribers, and
Communication Middleware. A publisher is an information producer that wants to share information
with interested subscribers using messaging. A subscriber is an information sink that is interested in
a subset of the information produced and published by the publishers. The middleware is a mean to
communicate and provide loose coupling between publishers and subscribers [EFGK03]. Neither
publishers nor subscribers need to have any pre-knowledge about each other; they can instead rely
on the middleware to achieve the intended many-to-many communication. The middleware consists
of a set of elements called routers or brokers.

Content-Based Publsih/Subscribe Systems

Rather than having the destination address in the header as an indication of the message’s recipient(s),
in content-based publish/subscribe systems, as the name suggests, the content of the message
determines its recipients.

Paths between publishers and subscribers are determined on the basis of content filters (subscriber
interests) installed on the routers [HW04]. These routers examine the content of the packets they
receive and forward them 3 specifically to the interested subscribers, effectively filtering unneeded
packets and avoid having them flowing through the network. The publishers and subscribers interact
with the middleware using operations provided by it [Bho13]. This is depicted in figure 2.7

Publishers can either advertise (i.e., declare the nature of information they intend to pub-
lish), or publish information. Subscribers can perform two operations. These are: sub-
scribe i.e., defining their interests and its reverse operation un-subscribe. The published
information, generally called notifications, can be described as attribute-value pairs, e =<
attr0, value0; attr1, value1; attr2, value2; > For example, a publisher (P1) can advertise that
it intends to publish the reading of two sensors, one is for temperature (T), and the other is for power
consumption (P). P1 can then publish a notification like: e1 =< T = 30, P = 100 >

A subscribe operation yields a subscription and is also in the form of attribute-value pairs. In the
case of Content-Based Publish/Subscribe system, the subscriber will announce its interests in the
form of filters s =< f 1, f 2 > where f1, f2 denote advertisement filters. For example, a subscriber

3According to the installed filters

24

2.3 Publish/Subscribe Systems

Figure 2.7: Overview of the Components and Operations in a Publish/Subscribe System

S1 can issue a subscription request in the form of s =< T > 10, P > 30 > which is translated to an
interest in the T values which are greater than 10 and P values which are greater than 30. We say
that a notification e matches a subscription s if e satisfies a filter f from the subscriber’s filters.

Many important factors determine the quality of the middleware. Bandwidth efficiency 4 and
end-to-end delay 5 are two important performance measures. False positives are closely related
to bandwidth efficiency, so it is beneficial to have an understanding of two terms, namely, false
positives and false negatives. False Positives are events which are delivered to a subscriber that is
not interested in receiving them. Whereas, False Negatives are events that were not delivered to
a subscriber which had expressed its interest in receiving them [Bho13]. It is clear that, the less
false positives that a Publish/Subscribe system deliver, the better the bandwidth efficiency will be.
However, with filtering performed in software, this kind of implementation falls short (in terms of
throughput and latency) compared to communication protocols implemented on the network layer.
Recently, this has led to the realization of content-based publish/subscribe systems that utilize the
capabilities of Software Defined Networking (SDN) [KDT13] [TKBR14]. Moreover, Bhowmik
proposed a solution [Bho13] for the scalability issue that a single controller in an SDN-based
Publish/Subscribe system may suffer from. This was achieved by introducing multiple controllers
and having each controller responsible for a disjoint part of the network.

Whereas, application layer filtering has an advantage over network layer filtering, in terms of reduced
false positives, it loses regarding end-to-end latency and throughput. In [BTHR16], Bhowmik et al.
use a combination of application layer filtering and network layer filtering in a hybrid content-based
SDN solution. They introduced the Switch Selection Algorithm (SSA) to identify the switches that
need to have their packets filtered at the application layer. This thesis is concerned with introducing

4Minimizing the unnecessary bandwidth consumption
5The time needed for a published event to reach the interested subscribers

25

2 Background

placement algorithms for servers capable of filtering events at the application layer. The placement
strategy greatly impacts the delay of the system, since sending events from SSA-switches 6 to a
server incurs more delay as the distance between the server and the switch increases.

2.4 Optimization Problems and the Need for Approximation

Optimization problems are common in many domains and disciplines. In an optimization problem,
one has to find an optimal or near-optimal solutions with respect to some goal(s). An optimization
problem can be a minimization problem or a maximization problem, depending on the objective
function describing the problem [Rot11]. Usually, this kind of problems cannot be solved in one
step; the solution instead requires multiple iterations. The number of iterations may vary depending
on the nature and difficulty of the optimization problem. To find an exact solution to the problem,
one has to design what is called an optimal algorithm. Choosing to apply an optimal algorithm
to solve an optimization problem that requires lots of iterations might render the execution time
unfeasible.

As an example, we will see that the placement problem we are trying to solve requires finding the
best combination of server positions in a certain topology. Assuming that we have a relatively small
topology consisting of 30 switches (n = 30) and that we have to place 15 servers (r = 15), then we
will have according to the equation:

C(n, r) =
n!

r!(n − r)!

more than 155 millions different combinations to examine. It is clear that a brute force algorithm will
not scale well with the problem size. Thus, for such problems, we utilize what we call approximation
algorithms or heuristic algorithms.

2.4.1 The NP-Hard Problems

In theoretical computer science, it is widely believed that P , NP. To prove or falsify this conjecture
is considered to be the most important open question in computer science today [For09]. Under
the conjecture that P , NP, a broad class of optimization problems cannot be solved exactly in
polynomial time [Joh74]. The facility location problem is one such problem. We used the facility
location problem as a starting point to develop the placement algorithm we will introduce in the
next chapter.

Approximation Algorithms and Heuristics Algorithms

For an approximation algorithm, we need a mathematical proof certifying the quality of the solution
produced by an approximation algorithm. This proof should consider the produced result in the
worst-case scenario and then compare it to the optimal solution. The ratio between the two solutions
is what is called the approximation ratio.

6Switches that have been chosen by SSA algorithm to send their events to the servers

26

2.4 Optimization Problems and the Need for Approximation

More formally: For an optimization problem X we call an approximation algorithm A a γ-
approximation if for all problem instances I of X the algorithm A produces a result R for I with
C(R) ≤ γ ∗C(Ropt) for a minimization problem and C(R) ≥ γ ∗C(Ropt) for a maximization where
Ropt denotes the optimum solution and C(.) the cost associated with a solution.

In contrast, a heuristic algorithm does not require a mathematical investigation regarding the
produced solutions quality or any proof regarding the approximation ratio [Hro13]. Computational
complexity theorists evaluate heuristic algorithms by considering average-cases and measure the
required complexity of the execution. They also consider how well can heuristic algorithms perform
on average for instances of the problem where the input is supplied by some specific distribution.

27

3 Server Placement Algorithms

3.1 Defining the Problem

Let G = (V, E) be an undirected graph with edge costs satisfying the triangle inequality, where G
represents the topology of a hybrid Publish/Subscribe SDN-based system [BTHR16],V is the set
of nodes and E is the set of edges. Let RSSA ⊆ V be the result of the Switch Selection Algorithm
(SSA) [BTHR16], and 1 ≤ k ≤ |V| , is the number of the application-layer filtering servers to be
placed in the topology. The goal is to place k servers on V and for any si ∈ RSSA , Assign si to its
closest server such that one of the following objectives is achieved:

• The maximum distance between any node si ∈ SSA and its assigned server is minimized.

• The average distance that a packet sent from an SSA node to its correspondent server has to
cover is minimized.

• Minimize the sum of the delays incurred on packets interested to the subscribers.

The nature of the application using the Publish/Subscribe system will determine the goal we have to
achieve:

If the goal is to bind the worst case scenario of the end-to-end notification delay, we have to
achieve the first objective. This objective is achieved by applying the K-Center Placement algorithm
discussed later.

In case we want to achieve the second objective, we will favor SSA nodes 1 with higher traffic at the
expense of SSA nodes with lower traffic. This is achieved by applying the K-Median Placement
Algorithm.

If we decided that a packet which has to be delivered to a higher number of subscribers should be
delivered faster than a packet subscribed to 2 by a smaller number of subscribers, we can use the
Utilitarian Placement Algorithm.

Lastly, we have implemented a Random Placement Algorithm than will merely place the k servers
randomly on the topology. This was done to be able evaluate the quality of each of the algorithms
against the random placement. The results of the evaluation are available in chapter 4

1si ∈ RSSA
2Satisfies a subscriber’s filter

29

3 Server Placement Algorithms

The Proposed Solutions

3.2 The K-Center Placement Algorithm

Having the presented general definition of the placement problem from the previous section and the
objective of minimizing the maximum distance between an SSA-selected node and its responsible
center 3, we can formally define the K-Center problem as follows:

Given an undirected tree G = (V, E), a subset RSSA , and natural number k, the K-Center problem
is to select a subset C ⊆ V with |C| = k such that, ∀si ∈ RSSA , max d(si, ci) is minimized. Where
ci is the closest point from C to si.

Remarks

• The facility location problem [SKBJ17] is one famous variation of the K-Center problem.

• Since the problem is NP-hard [HS85], approximation techniques have to be used. In the
following we will introduce an algorithm based on the greedy approach.

3.2.1 The Greedy Approach to Solve the K-Center Problem

The idea of this algorithm is to start by placing the first server on the node with the highest degree
and is selected from the SSA. Then for the placement of the rest of the servers, in each iteration, the
algorithm searches for the node which is the farthest from all previously placed servers between all
the SSA selected nodes. This will effectively shorten the maximum distance between an SSA node
and the closest server to it. The algorithm terminates when there are no more servers to be placed.
See algorithm 3.1.

The input of the algorithm is the set of nodesV, the set of lines E, and the number of centers to be
placed K . In line 2, the function sortDegree sortsV in ascending order according to the degree of
the nodes. In lines 3 −→ 7, the algorithm tries to place the first server on the node which has the
highest degree and was selected from the SSA. In line 10, the algorithm enters in a loop until K
reaches 0. In each iteration, the algorithm tries to find the farthest node from all the previously
placed centers. This is done through the function findFarthest which assign the found node to the
variable newCenter. The placement phase is done at this point and the next phase of assigning each
SSA-node to its closest center can start. In line 15, the algorithms loops the nodes and for each
SSA-node, it searches for its closest center via the functioon findClosestCenter.

3.2.2 Walkthrough for the K-Center Placement Algorithm

In the following, we will use figure 3.1 as a walkthrough example for the K-Center Placement
algorithm and see how the algorithm will place K = 3 servers on the topology. For the sake of
simplicity and without the loss of generality, we will assume that all switches have been selected by

3The terms ’center’ and ’server’ are used interchangeably in this context

30

3.2 The K-Center Placement Algorithm

Algorithm 3.1 K-Center Placement Algorithm
Require: The set of nodes (V), the set of links (E) and k are available as input

1: function KCenter(V, E, k)
2: V ← sortDegree(V)
3: for i ←V .size() to 1 do
4: if Vi ∈ RSSA then
5: Vi .isCenter ← true
6: k − −
7: Break
8: end if
9: end for

10: while k > 0 do
11: newCenter ← f indFarthest(V, E)
12: newCenter .isCenter ← true
13: k − −
14: end while
15: for si ∈ V do
16: if si ∈ RSSA then
17: si .responsibleCenter ← f indClosestCenter(si)
18: end if
19: end for
20: returnV
21: end function

Figure 3.1: Example Topology for the K-Center Placement Algorithm

31

3 Server Placement Algorithms

Node S2 S3 S1 S4 S5 S6 S7 S8 S9 S10
Degree 4 4 2 2 1 1 1 1 1 1

Table 3.1: Nodes After Sorting

Node S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Closest Server S2 S2 S2 S2 S2 S2 S2 S2 S2 S2
Distance to Closest Server 1 0 2 1 1 1 3 3 3 2

Table 3.2: Finding Farthest Node After the First Server (S2) Has Been Placed

the SSA. The algorithm works in 2 phases, namely: the placement phase (lines 2 −→ 14) in which
the K servers are placed on the topology, and the assignment phase (lines 15 −→ 19) in which we
assign every SSA-node to its closest server.

The input of the algorithm will be: The set of nodesV which contains all the nodes (S1 −→ S10),
the set E will be comprised of all the links between the switches, and K will be 3.

The Placement Phase

The algorithm starts by an ascending in-place sorting of the nodes setV according to the degree of
the node. The sorting result is shown in table 3.1. After the setV is sorted, we can start with the
placement phase which in turns can be split into two phases.

First Server Placement

S2 has the highest degree4 between all nodes; therefore the first server should be placed on S2. The
reason behind placing the first server on the node with the highest degree is that a higher degree
means more edges from/to the node which will increase the reachability of the node. This means
that a node with a higher degree is a more ’strategical’ node than one with a lower degree.

At this point the first server has been placed and the value of K is decreased by one (K = 2).

Second and Third Servers Placement

Now the algorithm enters in a loop (lines 10 −→ 11 in the algorithm) as long as K > 0. By using
Breadth-First Search (BFS) [LS10] and the sets V and E, the algorithm can find the distance
between each node and its closest center.

Table 3.2 shows that all of S7, S8, and S9 have the largest distance to reach their closest server (S2).
Hence, the new server could be placed on any one of the three nodes. We will assume that S9 has
been chosen and the second server can now be placed on S9.

The value of K is decreased once again by one (K = 1) since we have placed a new server.

4The same can be said about S3

32

3.2 The K-Center Placement Algorithm

Node S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Closest Center S2 S2 S9 S2 S2 S2 S9 S9 S9 S2
Distance to Closest Center 1 0 1 1 1 1 2 2 0 2

Table 3.3: Finding Farthest Node After two servers (S2 and S9) Have Been Placed

Node S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Responsible Server S2 S2 S9 S10 S2 S2 S9 S9 S9 S10
Distance to Responsible Server 1 0 1 1 1 1 2 2 0 0

Table 3.4: The Responsible Server for Each of The Nodes

The execution continues by recalculating the distance between each node and the closest placed
server (S2 or S9).

Table 3.3 shows that S7, S8, and S10 are the farthest nodes from the two placed servers. with a
distance of two to reach the closest server. Therefore, the third and final server could be placed on
any one of S7, S8, and S10. We will assume that S10 has been chosen for the server placement.

The Assignment Phase

After that all three servers have been placed, the placement phase is done. The assignment phase
can start. In the algorithm, lines 12 −→ 15 loops the nodes and assign for each SSA node its closest
center. This is done by the function findClosestCenter, which execute a BFS starting from the node
until a server is found. In our example, the assignment phase will give the values shown in table
3.4.

33

3 Server Placement Algorithms

3.3 The K-Median Placement Algorithm

Having the presented general definition of the placement problem from the previous section 3.1,
and the goal of minimizing the average distance between an SSA-selected node and its responsible
center, we can formally define the K-Median problem as follows:

Given an undirected tree G = (V, E), a subset RSSA , and natural number k, the K-Median problem
is to select a subset C ⊆ V with |C| = k such that the average distance that a packet sent from a
SSA-node to its server has to travel is minimized.

Unlike the K-Center placement algorithm where all SSA-nodes are treated equally, in the K-Median
placement algorithm we differentiate between the nodes, and we give some nodes are more
importance than others. The importance is initially established based on the packets handled by
a node in a defined time interval. For example: in SDN, the controller can periodically query
the switches’ counters and get the number of packets they have handled so far. According to this
information, we can assign an importance value to each node. This value should reflect that the
node that handles more packets is more important than one that handles fewer packets. If we think
how the large corporations geographically place their branches, we notice that they tend to open
branches in/or close to places where a large number of their customers reside. This is logical since
they want the majority of their customers to spend less time to reach their branches. The K-Median
placement algorithm retains the same concept. In contrast, the K-Center Placement Algorithm
does not take into consideration the handled packets on each node (the number of customers in
the example). For the K-Center, all cities are equal, and the goal was to minimize the maximum
distance from a city to the closest opened branch.

The algorithm starts by querying how many packets each node has handled in a unified interval.
This can be done through the function getHandledPackets. This will then be used by the function
initializeImportance to assign an importance value to each node. At this point, the importance value
of the node is equal to the number of packets it has handled which will give a busier node a higher
importance value than a more idle one. After having the importance values, we can calculate the
cost values. The cost value in this context refers to the cost of placing a server on a certain node and
is calculated according to the equation 3.1.

Cost(Sj) =
∑

Si ∈Rssa

d(Si, Sj) ∗ importance(Si) (3.1)

Equation 3.1 ensures that the cost of each node will be proportional to its distance from all SSA
nodes. The algorithm then sorts the nodes according to the cost and chooses the one which has the
lowest cost to place a server on it. Each time a server is placed, the importance values should be
modified to reflect the changes that have been made in the topology, namely that a server has been
placed and that the importance values of the nodes should be reduced proportionally with their
distance to the placed server. This is done according to equation 3.2

importance(Sj) = importance(Sj) −
1

d(i, j) + 1
∗ importance(Sj) (3.2)

34

3.4 Walkthrough for the K-Median Placement Algorithm

Algorithm 3.2 K-Median Placement Algorithm
Require: The set of nodes (V), the set of links (E) and k are available as input

1: function KMedian(V, E, k)
2: for i ← 1 toV .size() do
3: Vi .hanledPackets← getHandledPackets(Vi)

4: initializeImportance(Vi)

5: end for
6: while k > 0 do
7: for j ← 1 toV .size() do
8: for i ← 1 toV .size() do
9: if Vi ∈ RSSA then

10: Vj .cost ←Vj .cost + d(Vi,Vj) ∗ Vi .importance
11: end if
12: end for
13: end for
14: V ← sortCost(V)
15: for i ← 1 toV .size() do
16: if Vi .isCenter = f alse then
17: Vi .isCenter ← true
18: index ← i
19: k − −
20: Break
21: end if
22: end for
23: for j ← 1 toV .size() do
24: if j = index then
25: Vj .importance← 0
26: else
27: Vj .importance←Vj .importance/(d(Vindex,Vj) + 1)
28: end if
29: end for
30: end while
31: returnV
32: end function

Equation 3.2 calculates the new importance values of the nodes. With these modified importance
values, the algorithm is now ready for a new iteration. The cost values are calculated once again,
and a new server is placed accordingly.

35

3 Server Placement Algorithms

Figure 3.2: The Topology for the K-Median Placement Algorithm Walkthrough Example

Node Type Published/Subscribed values
P1 Publisher Publishes P values

Sub1 Subscriber Subscribed to P = [25,30]
Sub2 Subscriber Subscribed to P = [50,100]
Sub3 Subscriber Subscribed to T >40
Sub4 Subscriber Subscribed to P >100
Sub5 Subscriber Subscribed to T <100
Sub6 Subscriber Subscribed to T [10,30]
P2 Publisher Publishes T values

Table 3.5: Information about publishers and subscribers in figure 3.2

3.4 Walkthrough for the K-Median Placement Algorithm

Assume having the topology shown in figure 3.2, where (P) denotes a publisher, and (Sub) denotes
a subscriber. The information regarding the publishers/subscribers is given in table 3.5. Having the
paths installed between the publishers and subscribers so that packets generated by P1, and P2 can
reach the intended subscribers, We want to place K servers according to the K-Median placement
algorithm.

36

3.4 Walkthrough for the K-Median Placement Algorithm

Figure 3.3: The Normal Distribution of the Generated P Values

Figure 3.4: The Normal Distribution of the Generated T Values

We will generate 1000 packets at P1 distributed normally with a mean (µ = 50) and a standard
deviation (σ1 = 20). The distribution is depicted in figure 3.3. Also, 1000 packets are generated at
P2 according to the normal distribution with a mean (µ = 15) and standard deviation (σ = 10) as
shown in figure 3.4.

The packets will then flow in the network from publishers to interested subscribers. As the packets
flow through the network, the incoming packets counters on each switch (S1 −→ S10) will store
the number of packets handled by each node. When the execution of the algorithm starts, it can
then query these counters and get the number of handled packets as shown in table 3.6. This is
done through the function getHandledPackets in line 3 of the algorithm 3.2. Here, we need to
explain the term ’importance value’ which is initially equal to the node’s handled packets value.
The importance value will be used as an indication of how important is it to place a server close to
the node. Remember that only SSA-nodes will send their packets to servers for filtering, therefore
as we will see, only these SSA-nodes will affect the calculation of the ’cost’ directly influencing the
placement of the servers. As the algorithm progresses and servers are placed, the importance value

37

3 Server Placement Algorithms

Node Handled Packets Importance SSA-node
S1 2 2 Yes
S2 143 143 Yes
S3 168 168 Yes
S4 973 973 No
S5 141 141 Yes
S6 168 168 Yes
S7 1000 1000 No
S8 1000 1000 No
S9 132 132 Yes
S10 141 141 Yes
S11 0 0 Yes
S12 2 2 Yes
S13 166 166 Yes
S14 812 812 Yes
S15 1000 1000 No

Table 3.6: The Importance Values

Node S1 S2 S3 S4 S5 S6 S7 S8
Cost 4688 5449 3931 7060 6760 5134 4182 8935
Node S9 S10 S11 S12 S13 S14 S15
Cost 8671 8353 8635 7005 6677 4433 6075

Table 3.7: The Cost Value for Each of The Nodes

of each node will be modified to reflect how important is it to place the next server closer to each of
the nodes. To make the example interesting, we will assume that the SSA has not selected S4, S7,
S8, and S15.

From the importance values in table 3.6 we can then calculate the cost of placing a server on a
certain node using equation 3.1.

The cost of a node is a score value that indicates how suitable is the node to host a server where
a lower cost indicates a better suitability. The cost is proportional to the sum of the importance
values and the distance between the nodes. For example, assume that we want to calculate the cost
of placing a server on S1. S1 is one hop away from S2, and S3. It is two hops away from S5 and S6
and it is three hops away from the rest of the nodes. To calculate the cost of placing a server on S1,
we will have:

Cost(S1) = 1∗importance(S2, S3)+2∗importance(S5, S6)+3∗importance(S9, S10, S11, S12, S13, S14)

Note that the nodes: S4, S7, S8 and S15 were not included in the cost calculation because they are
not SSA-nodes.

By calculating the costs for all nodes, we will have the values shown in table 3.7.

38

3.4 Walkthrough for the K-Median Placement Algorithm

Node Importance Host a Server SSA-node
S1 1 No Yes
S2 96 No Yes
S3 0 Yes Yes
S4 730 No No
S5 106 No Yes
S6 84 No Yes
S7 500 No No
S8 800 No No
S9 106 No Yes
S10 113 No Yes
S11 0 No Yes
S12 2 No Yes
S13 111 No Yes
S14 542 No Yes
S15 667 No No

Table 3.8: The Modified Importance Values After That The First Server Has Been Placed on S3

Since S3 has the lowest cost value of 3931, the first server should be placed on S3. The k value
should be decreased to become 2. Before starting with a new iteration, the importance values should
be decreased proportionally according to the distance between the node and the newly placed server.
The node’s importance where the server has been placed will become 0, while the other nodes’
importance values will be calculated according to equation 3.2.

Where i is the index of the node where the last server has been placed (3 in our example).

As a result, the new calculated importance values are shown in table 3.8. At this point an iteration
of the algorithm is completed, the execution goes back to line 6 in algorithm 3.2. The algorithm
repeats until all K servers have been placed. The setV is returned and the execution terminates.

39

3 Server Placement Algorithms

3.5 The Utilitarian Placement Algorithm

Introduction to Utilitarianism

Before starting with the algorithm’s explanation, it is beneficial to briefly introduce the ethical
theory of utilitarianism. Utilitarianism suggests that the best action is the one that maximizes utility.
’Utility’ is usually defined as the well-being of sentient entities. Jeremy Bentham, the founder of
utilitarianism, described utility as the sum of all pleasure that results from an action, minus the
suffering of anyone involved in the action [Ben96].

As discussed in section 2.3, in content-based publish/subscribe systems, subscribers subscribe to
specific content. The middleware is then responsible for delivering the notifications which match
subscribers’ interests to them. Here, we need to differentiate between popular contents which
are interested and subscribed to by many subscribers from the unpopular contents which are less
subscribed to. If we follow the utilitarian theory, it is better to quickly deliver the notifications that
hold popular content at the expense of slower delivery for the notification that holds unpopular
content. By doing so, many subscribers will receive their notifications faster, and only a few will
have slower notifications delivery. This will maximize the sum of the satisfaction in the system,
which is what utilitarian aims for.

In section 3.3, for the implementation of the KMedian-Placement algorithm, we query the value of
the packet counter of each node. We then use this value to calculate the initial importance value of
the node. Here, in the utilitarian placement algorithm, it is not sufficient to only query the packet
counters to calculate each node’s importance value; instead, we need to know how many subscribers
are interested in each packet. This can be done at the controller which has a global view of all the
subscriptions. This is only done at the beginning of the execution and before the placement so that
the overhead of this procedure does not affect the controller.

Formal Definition

Given an undirected tree G = (V, E), a subset RSSA , and natural number k, select a subset C ⊆ V
with |C| = k such that the sum of the delay incurred on all subscribers from sending notifications
for application-layer filtering is minimized.

The only modification that should be done to the K-Median placement algorithm shown in 3.2
has to do with the function getHandledPackets in line 3. Instead of merely getting the number
of handled packets, this function should now register the number of packets multiplied by the
number of subscribers interested in each of them. For example: if a packet handled by a node Si is
subscribed to by 5 subscribers, then this single packet should be calculated as 5. The algorithm
can then continues as explained in the K-Median placement algorithm section with the function
initializeImportance benfiting from the output of the function getHandledPackets to assign the
importance value for each node. This will increase the overhead of the Utilitarian placement
algorithm compared to the K-Median placement algorithm.

40

4 Analysis and Results

4.1 The Experiments Setups

For the evaluation of the placement algorithms introduced in chapter 3, we will use two sample
topologies. The first one is called ’Tree Topology’, it is made up of 15 nodes, two publishers and
six subscribers as shown in figure (3.2). The second topology is called ’Mixed Topology’, it is
composed of 25 nodes, three publishers and 13 subscribers. The mixed topology is shown in figure
(4.7).

For each of the algorithms introduced in chapter 3, we ran the execution on both of the topologies
six times. Three executions when the publishers are using normal distribution[Bry12] and three
executions when the publishers are using uniform distribution1[JVV86]. The collected results are
averaged and organized in tables. Moreover, the figures comparing the placement algorithms with
random placement of servers are provided as well.

In the experiments, we will assume that the publishers generate two types of published information,
namely the ’P’ values and the ’T’ values.

4.2 ’Tree Topology’ Experiment’s Results

In this experiment, we will use the topology shown in figure (3.2) and the information about the
publishers/subscribers from table (3.5). Publishers can publish integer values according to two
different distributions, namely the normal distribution and the uniform distribution. We will show
the results when using the normal distribution first and then we will move on to show the results
when using the uniform distribution.

4.2.1 Case 1: Published Information Follow the Normal Distribution

In this case, P1 publishes ’P’ values with a mean (µ = 50) and a standard deviation (σ = 20).
The publisher P2 publishes normally distributed ’T’ values with a mean (µ = 15) and a standard
deviation (σ = 10).

Figure (4.1) shows the maximum distance between a SSA-node and its responsible server. We see
that the K-Center starts with a worse result when K = 1, but then manages to provide the best
result at K = 6. The random placement performed the worst. The results are not surprising as the
K-Center algorithm consider minimizing the maximum distance. Figure (4.2) shows the average

1Details regarding the distributions will be clarified later

41

4 Analysis and Results

distance between a SSA-node and its responsible server. We recorded almost a tie between the
K-Median and the Utilitarian algorithms. This is due to the similarities between the two algorithms.
The K-Center started poorly when K = 1, but quickly recovered at higher K values. Figure (4.3)
shows the average hops that a packet sent from a SSA-node has to cover to reach the responsible
server. We recorded very small differences between the K-Median and Utilitarian algorithms.

42

4.2 ’Tree Topology’ Experiment’s Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.1: Maximum Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Normal Distribution

43

4 Analysis and Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.2: Average Distance Between a SSA-Node and its Closest Server Using Different Placement
Algorithms for Different K Values When Publishers Use Normal Distribution

44

4.2 ’Tree Topology’ Experiment’s Results

(a) K-Median

(b) Utilitarian

Figure 4.3: Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has To
Cover Using Different Placement Algorithms For Different K Values When Publishers
Use Normal Distribution

45

4 Analysis and Results

4.2.2 Case 2: Published Information Follow the Uniform Distribution

In this case, P1 publishes (P) values while each of P2 and P3 publishes (T) values. All of the
publishers’ published information follow the uniform distribution in the range [0, 50]. In the
following, we will show the plots depicting the results we got from executing each one of the
developed placement algorithms on the small topology shown in figure (3.2).

Note that the K-Center placement algorithm and the random placement do not take the handled
packets into account when placing servers. Therefore, the results of the placement in these two
cases will not be affected by the change of the distribution and are still identical to the results shown
in figure (4.1) and figure (4.2) when normal distribution was used. For the sake of completion
and ease of comparison they are presented here with the results of the K-Median and Utilitarian
algorithms. Figure (4.4) shows the maximum distance between a SSA-node and its responsible
server. Once again the K-Center performed better for K = 6 registering maximum distance of 1. In
figure (4.5), we have the average distance between a SSA-node and the responsible server. Once
again the K-Median and the Utilitarian gave the best results in this category. Figure (4.3) shows the
average hop-count that a packet has to travel to reach the responsible server.

46

4.2 ’Tree Topology’ Experiment’s Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.4: Maximum Distance Between a SSA-Node and its Closest Server Using Different Place-
ment Algorithms for Different K Values When Publishers Use Uniform Distribution

47

4 Analysis and Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.5: Average Distance Between a SSA-Node and its Closest Server Using Different Placement
Algorithms for Different K Values When Publishers Use Uniform Distribution

48

4.2 ’Tree Topology’ Experiment’s Results

(a) K-Median

(b) Utilitarian

Figure 4.6: Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has To
Cover Using Different Placement Algorithms For Different K Values When Publishers
Use Normal Distribution

49

4 Analysis and Results

Figure 4.7: The ’Medium Topology’ Used for Evaluation

4.3 ’Mixed Topology’ Experiment’s Results

The information regarding the publishers and subscribers in the medium topology is shown in
table (4.1). The topology is shown in figure (4.7). We will start by presenting the results when the
information published by the publishers is distributed according to the normal distribution; then
we will show the results when the published information is distributed according to the uniform
distribution.

4.3.1 Case 1: Published Information Follow the Normal Distribution

In this case the published information follow the normal distribution. Namely: publisher Pub1
publishes P values that have mean (µ = 25), and standard deviation (σ = 15) as shown in figure
(4.8a), Publisher Pub2 publishes T values that have mean (µ = 15) and standard deviation (σ = 10)
as shown in figure (4.8b) and Publisher Pub3 publishes T values with the following properties:
mean (µ = 25) and standard deviation (σ = 10) as shown in figure (4.8c). Figure (4.9 shows the
results of the maximum distance between a SSA-node and its responsible server. The K-Center

50

4.3 ’Mixed Topology’ Experiment’s Results

Node Type Published/Subscribed values
Pub 1 Publisher Publishes P values
Pub 2 Publisher Publishes T values
Pub 3 Publisher Publishes T values
Sub 1 Subscriber Subscribed to all P values
Sub 2 Subscriber Subscribed to P=[20,30]
Sub 3 Subscriber Subscribed to P = [30,40]
Sub 4 Subscriber Subscribed to T >40
Sub 5 Subscriber Subscribed to T <0
Sub 6 Subscriber Subscribed to T = [10,15]
Sub 7 Subscriber Subscribed to T <15
Sub 8 Subscriber Subscribed to T >15
Sub 9 Subscriber Subscribed to all T values
Sub 10 Subscriber Subscribed to T >40
Sub 11 Subscriber Subscribed to T <0
Sub 12 Subscriber Subscribed to T = [10,20]
Sub 13 Subscriber Subscribed to all T values

Table 4.1: Publishers and Subscribers Information in the Mixed Topology

suffers from a bad initial choice of the first placed server. The K-Median and Utilitarian algorithms
keep showing strong similarities in their results. The random placement gives unpredicted results.
Figure (4.10) shows the average distance between a SSA-node and its responsible server. Here the
K-Median and the Utilitarian algorithms give slightly better results than the K-Center. Figure (4.11)
shows the average hop-count that a packet has to travel to reach the responsible server.

51

4 Analysis and Results

(a) The Distribution of the P values Published By Pub1

(b) The Distribution of the T values Published By Pub2

(c) The Distribution of the T values Published By Pub3

Figure 4.8: The Distribution of the P and T values Published In the Medium Topology

52

4.3 ’Mixed Topology’ Experiment’s Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.9: Maximum Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Normal Distribution

53

4 Analysis and Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.10: Average Distance Between a SSA-Node and its Closest Server Using Different Place-
ment Algorithms for Different K Values When Publishers Use Normal Distribution

54

4.3 ’Mixed Topology’ Experiment’s Results

(a) K-Median

(b) Utilitarian

Figure 4.11: Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has To
Cover Using Different Placement Algorithms For Different K Values When Publishers
Use Normal Distribution

55

4 Analysis and Results

4.3.2 Case 2: Published Information Follow the Uniform Distribution

In this case, neither the random placement of servers nor the K-Center placement will be affected by
the change of the distribution. Therefore, the results are identical to the previous case and are shown
in figures (4.9), and (4.10). Figure (4.12) shows the maximum distance between a SSA-node and
its responsible server. The K-Center reaches 1 at K = 12, while the K-Median and the Utilitarian
algorithms get to only 2. Figure (4.13) shows the average distance between a SSA-node and its
responsible server. The K-Median and the Utilitarian algorithms produce slightly better results in
this category. Figure (4.14) shows the average hop-count that a packet is required to go over to
reach the responsible server.

For more precise comparison of the results, you can take a look at appendix (A). The appendix
contains the collected results which were used to draw the plots in this chapter.

56

4.3 ’Mixed Topology’ Experiment’s Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.12: Maximum Distance Between a SSA-Node and its Closest Server Using Different
Placement Algorithms for Different K Values When Publishers Use Uniform Distribu-
tion

57

4 Analysis and Results

(a) K-Center

(b) K-Median

(c) Utilitarian

(d) Random Placement

Figure 4.13: Average Distance Between a SSA-Node and its Closest Server Using Different Place-
ment Algorithms for Different K Values When Publishers Use Uniform Distribution

58

4.3 ’Mixed Topology’ Experiment’s Results

(a) K-Median

(b) Utilitarian

Figure 4.14: Average Hops That a Packet Sent From an SSA-Node To Its Closest Server Has To
Cover Using Different Placement Algorithms For Different K Values When Publishers
Use Uniform Distribution

59

5 Conclusion and Outlook

In this thesis, we implemented three different server placement algorithms for hybrid SDN-based
Publish/Subscribe systems. By experimenting with the number of servers to be placed (K), we
explored the spectrum between a centralized and a decentralized application layer solutions. Each
one of the three developed algorithms considers a different usage scenario of the system and place
the servers in a way that optimize the usage scenario. That it is why it is important to understand the
goal of the Publish/Subscribe system in order to choose the placement algorithm which will give
the better results. Since the topology can change over time, the algorithms can be ran periodically
to cope with the changes and modify the placement decision.

The results of our experiments showed that the K-Center placement algorithm gave better results
when the measured value was the maximum distance between a SSA-node and the responsible server.
On the other hand, the K-Median and the Utilitarian algorithms gave better results when measuring
the average distance between a SSA-node and the responsible server. Unlike the K-Median and the
Utilitarian, the K-Center is not affected by the published information and hence it was not affected
by the change of the distribution that the published notifications were following. The random
placement gave results that ranged between similar and worse (compared to the other algorithms).

In this thesis, we assumed that the distance that a packet has to travel is directly affecting the latency
in the system. Despite that this assumption is valid, it would be interesting to compare the results
shown in this thesis with ones from a real SDN testing environment that can measure the latency in
terms of time.

61

A Experiments Results Organized in Tables

This appendix includes the results of the conducted experiments from which we have drawn the
figures in chapter 4.

K Max Distance Average Distance
1 5 3
2 4 2.33
3 3 1.62
4 3 1.57
5 2 1.33
6 1 1

Table A.1: The Results of Applying the K-Center Placement Algorithm on the Tree Topology

K Max Distance Average Distance
1 4 2.63
2 4 2.50
3 4 2.35
4 3 2
5 3 1.86
6 3 1.64
7 2 1.38
8 2 1.33
9 2 1.27
10 2 1.20
11 2 1.11
12 1 1

Table A.2: The Results of Applying the K-Center Placement Algorithm on the Mixed Topology

63

A Experiments Results Organized in Tables

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 1239 2444 1.97 4 2.27
2 1274 1686 1.32 4 2.18
3 1277 1370 1.07 3 1.63
4 1272 1121 0.88 2 1.18
5 1275 292 0.22 2 1.09
6 1267 246 0.19 2 0.81

Table A.3: The Results of Applying the K-Median Placement Algorithm on the Tree Topology
When Publishers Use the Normal Distribution

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 7657 16707 2.18 3 2
2 7651 14663 1.91 3 1.75
3 7636 14623 1.91 3 1.45
4 7660 12698 1.65 3 1.20
5 7650 9052 1.18 2 1.05
6 7621 9680 0.91 2 0.95
7 7615 9697 0.91 2 0.90
8 7579 6952 0.91 2 0.85
9 7632 6532 0.73 2 0.80
10 7630 5630 0.73 2 0.65
11 7619 6319 0.47 1 0.55
12 7638 1638 0.21 1 0.50

Table A.4: The Results of Applying the K-Median Placement Algorithm on the Mixed Topology
When Publishers Use the Normal Distribution

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 1543 2670 1.73 4 2.20
2 1521 1252 0.82 2 1.36
3 1508 1136 0.75 2 1.27
4 1527 1150 0.75 2 1
5 1518 1096 0.72 2 0.72
6 1532 806 0.52 2 0.63

Table A.5: The Results of Applying the K-Median Placement Algorithm on the Tree Topology
When Publishers Use the Uniform Distribution

64

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 6870 14182 2.06 3 2
2 6864 12158 1.77 3 1.75
3 6830 12085 1.76 3 1.45
4 6906 10245 1.48 3 1.20
5 6860 8172 1.19 3 1.10
6 6874 5338 0.77 2 0.95
7 6875 5307 0.77 2 0.90
8 6878 5294 0.76 2 0.85
9 6900 3361 0.48 2 0.80
10 6889 1345 0.19 2 0.70
11 6857 1278 0.18 2 0.65
12 6863 1283 0.18 2 0.50

Table A.6: The Results of Applying the K-Median Placement Algorithm on the Mixed Topology
When Publishers Use the Uniform Distribution

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 1263 2428 1.92 4 2.27
2 1259 1637 1.30 4 2.18
3 1271 1427 1.12 3 1.36
4 1288 1090 0.84 2 1.18
5 1254 256 0.20 2 1.09
6 1285 268 0.20 2 0.81

Table A.7: The Results of Applying the Utilitarian Placement Algorithm on the Tree Topology
When Publishers Use the Normal Distribution

65

A Experiments Results Organized in Tables

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 7644 16650 2.17 3 2
2 7667 14738 1.92 3 1.75
3 7636 14620 1.91 3 1.45
4 7605 12548 1.64 3 1.20
5 7630 10583 1.38 3 1.10
6 7638 6996 0.91 2 0.95
7 7615 6930 0.91 2 0.80
8 7641 7008 0.91 2 0.85
9 7632 7002 0.91 2 0.70
10 7641 5020 0.65 2 0.60
11 7641 3641 0.47 1 0.55
12 7632 1632 0.21 1 0.50

Table A.8: The Results of Applying the Utilitarian Placement Algorithm on the Mixed Topology
When Publishers Use the Normal Distribution

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 1509 2788 1.75 4 2.27
2 1531 1904 1.24 3 1.72
3 1511 1094 0.72 2 1.27
4 1517 1150 0.75 2 1
5 1523 1150 0.75 2 0.72
6 1541 794 0.51 2 0.63

Table A.9: The Results of Applying the Utilitarian Placement Algorithm on the Tree Topology
When Publishers Use the Uniform Distribution

66

K Total
Packets

Total
Hops

Average
Hops

Max Distance Between
an SSA-Node and Its Center

Average Distance Between
an SSA-Node and Its Center

1 6900 14246 2.06 3 2
2 6869 12136 1.76 3 1.75
3 6915 12268 1.77 3 1.45
4 6872 10181 1.48 3 1.12
5 6851 8156 1.19 3 1.10
6 6897 5365 0.77 2 0.95
7 6866 5306 0.77 2 0.90
8 6882 5338 0.77 2 0.85
9 6882 5305 0.77 2 0.70
10 6930 3381 0.48 2 0.60
11 6904 3362 0.48 2 0.55
12 6855 1300 0.18 2 0.50

Table A.10: The Results of Applying the Utilitarian Placement Algorithm on the Mixed Topology
When Publishers Use the Uniform Distribution

K Max Distance Average Distance
1 6 4.30
2 4 2.55
3 4 1.75
4 3 1.57
5 3 1.50
6 2 1.60
7 2 1.26
8 2 1.33

Table A.11: The Results of Applying a Random Placement on the Tree Topology

67

A Experiments Results Organized in Tables

K Max Distance Average Distance
1 6 4.21
2 4 2.50
3 5 2.76
4 3 2.18
5 4 1.60
6 3 1.71
7 3 2
8 3 1.41
9 3 1.72
10 3 1.60
11 2 1.11
12 3 1.50

Table A.12: The Results of Applying a Random Placement on the Mixed Topology

68

Bibliography

[Ben96] J. Bentham. The collected works of Jeremy Bentham: An introduction to the principles
of morals and legislation. Clarendon Press, 1996 (cit. on p. 40).

[Bho13] S. Bhowmik. “Distributed control algorithms for adapting publish/subscribe in
software defined networks”. MA thesis. 2013 (cit. on pp. 16, 24, 25).

[Bry12] W. Bryc. The normal distribution: characterizations with applications. Vol. 100.
Springer Science & Business Media, 2012 (cit. on p. 41).

[BTBR17] S. Bhowmik, M. A. Tariq, A. Balogh, K. Rothermel. “Addressing TCAM limitations
of software-defined networks for content-based routing”. In: Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems. ACM. 2017,
pp. 100–111 (cit. on p. 16).

[BTG+18] S. Bhowmik, M. A. Tariq, J. Grunert, D. Srinivasan, K. Rothermel. “Expressive
Content-Based Routing in Software-Defined Networks”. In: IEEE Transactions on
Parallel and Distributed Systems (2018) (cit. on p. 16).

[BTGR16] S. Bhowmik, M. A. Tariq, J. Grunert, K. Rothermel. “Bandwidth-efficient content-
based routing on software-defined networks”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems. ACM. 2016,
pp. 137–144 (cit. on p. 16).

[BTHR16] S. Bhowmik, M. A. Tariq, L. Hegazy, K. Rothermel. “Hybrid content-based routing
using network and application layer filtering”. In: Distributed Computing Systems
(ICDCS), 2016 IEEE 36th International Conference on. IEEE. 2016, pp. 221–231
(cit. on pp. 16, 25, 29).

[BTK+15] S. Bhowmik, M. A. Tariq, B. Koldehofe, A. Kutzleb, K. Rothermel. “Distributed
control plane for software-defined networks: A case study using event-based mid-
dleware”. In: Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems. ACM. 2015, pp. 92–103 (cit. on p. 16).

[BTK+17] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Durr, T. Kohler, K. Rothermel. “High per-
formance publish/subscribe middleware in software-defined networks”. In: IEEE/ACM
Transactions on Networking (TON) 25.3 (2017), pp. 1501–1516 (cit. on p. 16).

[CDF01] G. Cugola, E. Di Nitto, A. Fuggetta. “The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS”. In: IEEE transactions on
Software Engineering 27.9 (2001), pp. 827–850 (cit. on p. 15).

[Cis] Cisco. OpFlex: An Open Policy Protocol White Paper. url: https://www.cisco.
com/c/en/us/solutions/collateral/data-center-virtualization/application-

centric-infrastructure/white-paper-c11-731302.html (cit. on p. 22).

69

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html

Bibliography

[CMT+11] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S. Banerjee.
“DevoFlow: scaling flow management for high-performance networks”. In: ACM
SIGCOMM Computer Communication Review. Vol. 41. 4. ACM. 2011, pp. 254–265
(cit. on p. 16).

[CRW01] A. Carzaniga, D. S. Rosenblum, A. L. Wolf. “Design and evaluation of a wide-area
event notification service”. In: ACM Transactions on Computer Systems (TOCS) 19.3
(2001), pp. 332–383 (cit. on p. 15).

[EFGK03] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec. “The many faces of
publish/subscribe”. In: ACM computing surveys (CSUR) 35.2 (2003), pp. 114–131
(cit. on p. 24).

[For09] L. Fortnow. “The status of the P versus NP problem”. In: Communications of the
ACM 52.9 (2009), pp. 78–86 (cit. on p. 26).

[Fou] O. N. Foundation. OpenFlow. url: https://www.opennetworking.org/ (cit. on p. 22).

[Fun12] O. N. Fundation. “Software-defined networking: The new norm for networks”. In:
ONF White Paper 2 (2012), pp. 2–6 (cit. on p. 16).

[GCSO01] P. Gore, R. Cytron, D. Schmidt, C. O’Ryan. “Designing and optimizing a scalable
CORBA notification service”. In: ACM SIGPLAN Notices. Vol. 36. 8. ACM. 2001,
pp. 196–204 (cit. on p. 15).

[Gra06] C. Grau. “There is noÏïn"Robot": Robots and utilitarianism”. In: IEEE Intelligent
Systems 21.4 (2006), pp. 52–55 (cit. on p. 17).

[Gre] B. W. Gregor Hohpe. Integration Patterns. url: https://www.enterpriseintegratio
npatterns.com/ (cit. on p. 24).

[HBS+02] M. Hapner, R. Burridge, R. Sharma, J. Fialli, K. Stout. “Java Message Service
Specification Version 1.1. Sun Microsystems”. In: Inc. o. Document Number (2002)
(cit. on p. 15).

[Hro13] J. Hromkovič. “Algorithmics for hard problems: introduction to combinatorial
optimization, randomization, approximation, and heuristics”. In: Springer Science &
Business Media, 2013, pp. 431–433 (cit. on p. 27).

[HS85] D. S. Hochbaum, D. B. Shmoys. “A best possible heuristic for the k-center problem”.
In: Mathematics of operations research 10.2 (1985), pp. 180–184 (cit. on p. 30).

[HW04] G. Hohpe, B. Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional, 2004 (cit. on p. 24).

[Joh74] D. S. Johnson. “Approximation algorithms for combinatorial problems”. In: Journal
of computer and system sciences 9.3 (1974), pp. 256–278 (cit. on p. 26).

[JVV86] M. R. Jerrum, L. G. Valiant, V. V. Vazirani. “Random generation of combinatorial
structures from a uniform distribution”. In: Theoretical Computer Science 43 (1986),
pp. 169–188 (cit. on p. 41).

[KARW16] N. Katta, O. Alipourfard, J. Rexford, D. Walker. “Cacheflow: Dependency-aware
rule-caching for software-defined networks”. In: Proceedings of the Symposium on
SDN Research. ACM. 2016, p. 6 (cit. on p. 16).

70

https://www.opennetworking.org/
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/

[KDT13] B. Koldehofe, F. Dürr, M. A. Tariq. “Tutorial: event-based systems meet software-
defined networking”. In: Proceedings of the 7th ACM international conference on
Distributed event-based systems. ACM. 2013, pp. 271–280 (cit. on p. 25).

[KKKK11] S. Kontogiannis, A. Karakos, G. Kokkonis, P. Kitsos. “Snmp for Ethernet networks
SETH: A network benchmark toolkit for managing routers statistical information”. In:
Informatics (PCI), 2011 15th Panhellenic Conference on. IEEE. 2011, pp. 175–179
(cit. on p. 22).

[KLRW13] N. Kang, Z. Liu, J. Rexford, D. Walker. “Optimizing the one big switch abstraction
in software-defined networks”. In: Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies. ACM. 2013, pp. 13–24 (cit. on
p. 16).

[LS10] C. E. Leiserson, T. B. Schardl. “A work-efficient parallel breadth-first search algorithm
(or how to cope with the nondeterminism of reducers)”. In: Proceedings of the twenty-
second annual ACM symposium on Parallelism in algorithms and architectures. ACM.
2010, pp. 303–314 (cit. on p. 32).

[NKY+04] H. Nakano, T. Kita, H. Yokosawa, H. Akiyama, K. Nagamino. “Remote sensing
course, beginning with Telnet and ending with network programming”. In: Information
Technology Based Higher Education and Training, 2004. ITHET 2004. Proceedings
of the FIfth International Conference on. IEEE. 2004, pp. 297–301 (cit. on p. 20).

[OW17] W. Odom, S. Wilkins. “CCENT ICND1 100-105 Official Cert Guide and Network
Simulator Library”. In: Cisco Press, 2017, pp. 20–50 (cit. on p. 20).

[QYZ+18] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, X. Fu. “Fast Lookup Is Not Enough:
Towards Efficient and Scalable Flow Entry Updates for TCAM-Based OpenFlow
Switches”. In: 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2018, pp. 918–928 (cit. on p. 20).

[Rot11] F. Rothlauf. “Design of modern heuristics: principles and application”. In: Springer
Science & Business Media, 2011, pp. 7–44 (cit. on p. 26).

[SKBJ17] B. Sabarish, B. Kailassh, K. Baktha, Y. Janaki. “Recommendations of location for
facilities using domination set theory”. In: Communication and Signal Processing
(ICCSP), 2017 International Conference on. IEEE. 2017, pp. 1540–1544 (cit. on
p. 30).

[TKBR14] M. A. Tariq, B. Koldehofe, S. Bhowmik, K. Rothermel. “PLEROMA: A SDN-
based high performance publish/subscribe middleware”. In: Proceedings of the 15th
International Middleware Conference. ACM. 2014, pp. 217–228 (cit. on pp. 16, 25).

[VSP17] R. Vinayakumar, K. Soman, P. Poornachandran. “Evaluating shallow and deep
networks for secure shell (ssh) traffic analysis”. In: Advances in Computing, Commu-
nications and Informatics (ICACCI), 2017 International Conference on. IEEE. 2017,
pp. 266–274 (cit. on p. 20).

[ZSL08] L. Zhai, L. Sun, Y. Liu. “Modeling and evaluation of high-performance publish-
subscribe system”. In: Computational Intelligence and Design, 2008. ISCID’08.
International Symposium on. Vol. 1. IEEE. 2008, pp. 457–460 (cit. on p. 15).

All links were last followed on October 7, 2018

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Thesis Overview

	2 Background
	2.1 Software Defined Networks
	2.2 Data Plane Internals
	2.3 Publish/Subscribe Systems
	2.4 Optimization Problems and the Need for Approximation

	3 Server Placement Algorithms
	3.1 Defining the Problem
	3.2 The K-Center Placement Algorithm
	3.3 The K-Median Placement Algorithm
	3.4 Walkthrough for the K-Median Placement Algorithm
	3.5 The Utilitarian Placement Algorithm

	4 Analysis and Results
	4.1 The Experiments Setups
	4.2 'Tree Topology' Experiment's Results
	4.3 'Mixed Topology' Experiment's Results

	5 Conclusion and Outlook
	A Experiments Results Organized in Tables
	Bibliography

