
А. И. Грабченко, В. Л. Доброскок, В. А. Федорович

ЗД МОДЕЛИРОВАНИЕ АЛМАЗНО-АБРАЗИВНЫХ ИНСТРУМЕНТОВ И ПРОЦЕССОВ ШЛИФОВАНИЯ

« »

3D

2 02.06.04 .

```
34.59
    75
     621.92
                                                   3D
                                                               3D
 75
       3D
                          / . .
», 2006. – 364
ISBN 966-593-457-0
                                               3D
                                3D
  . 149.
             . 27.
                            . 46
                                                        34.59
                                     ©
```

, 2006

ISBN 966-593-457-0

	7
1. 3D -	
	11
1.1.	11
1.2	15
1.3.	
	18
1.4.	
-	20
1.5. 3D -	
	26
1.6.	
2.	
	32
2.1.	
	32
2.2.	
	38
2.2.1.	
, -	39
2.2.2.	
	57
2.3.	
	61
2.4.	
3. 3D -	
	74
3.1. 3D	74
3.2. 3D	
	78
3.3.	

	3.3.1.
86	
89	3.3.2.
	3.3.3.
	3.3.4.
3D109	3.4.
3D -	3.5.
	3.6.
3D -	
	-
	3.7.
	3.7.1.
137	2.7.2
	3.7.2.
	2.0
152	3.8.
1.7.4	4. 3D
	4.1
154	4.1.
– – »154	4.2
-	4.2.
	12
	4.3.
150	
	4.4.
ענ	'+.'+.
1.50	

		4.5.
- »176	« – –	
		4.6.
		4.7.
181		
3D -	3D	4.8.
		4.0
191		4.9.
-		5.
192	2D	<i>E</i> 1
- 192	3D	5.1.
192	•	5.2. 3D
– »198	, <u>-</u> « – –	J.2. JD
	2.1. 3D	521
199		3.2.1.
	2.2. 3D	5.2.2.
204		
	2.3. 3D	5.2.3.
		5.3.
213		
3D		5.4.
218	-	
225		5.5.
		6.
226		
		6.1.
226	•••••	6.0
« – »		6.2.
239		

6.3. 6.4.249 7. 3D250 7.1.250 7.1.1.251 7.1.2.256 7.1.3. 3D 7.1.4.268 7.1.5.276 7.2. 3D279 7.3. » 286 **«** 7.4.296 7.5. 3D 7.6.306319

Alea iacta est –

- ,

,

2D 3D .

. -

. 3D

8 3D

3D 3D 3D **«** 3D 3D 3D (3D 1. *3D* 3D

2.

9

3. *3D* 3D 3D 4. 3D 3D **«** », 3D 3D 3D 5. **«** *6*. 3D 7. *3D* 3D

- -

3D Visual FoxPro; MathCad Maple; Statistica; Cosmos Third Wave AdvandEdge. 1-3, 7.1; 4–6, 7.2–7.5 – . . : 61002, . , 21, **«** », » (E-mail: grabchenko@kpi.kharkov.ua).

1. 3D

Nulla aetas ad discendum sera –

,

,

3D -

1.1.

10–15

,

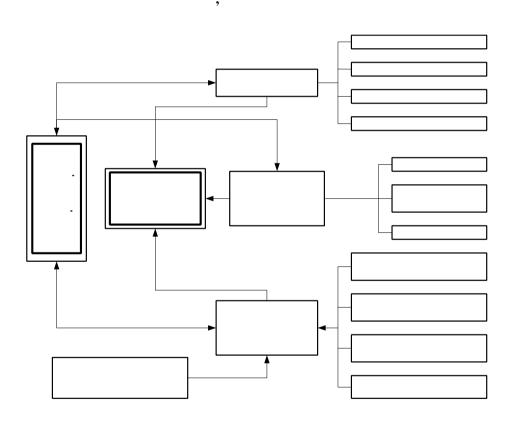
-;

;

```
. 1.1).
```

,

1. 3D - 13


•

•

•

•

--

1.1 –

, -

,

,

.

.

.

· , -

•

,

1. 3D - 15

1.2.

,

```
16 3D
```

[21].). [1]. ε.)

```
1.
                                    3D
                                                                                                                                                                    17
\Delta_{\text{max}} \cong (\mu + 3\sigma)(1 - \varepsilon),
                                                       \mu, \sigma –
- 3
\mu \cong (0.45 \; ... \; 0.30) \; \Delta_{max} \; ; \quad \; \sigma \; \cong \Delta_{max} \; / \; 6. \label{eq:max_def}
                                                                                    [4].
                                                                                                                           [35]
```

18 3D -

```
3D
1.3.
```

```
1.
                3D
                                                                        19
y = f(x)
                                                 h ),
                                                                      h.
                  ),
```

, ,

.

1.4.

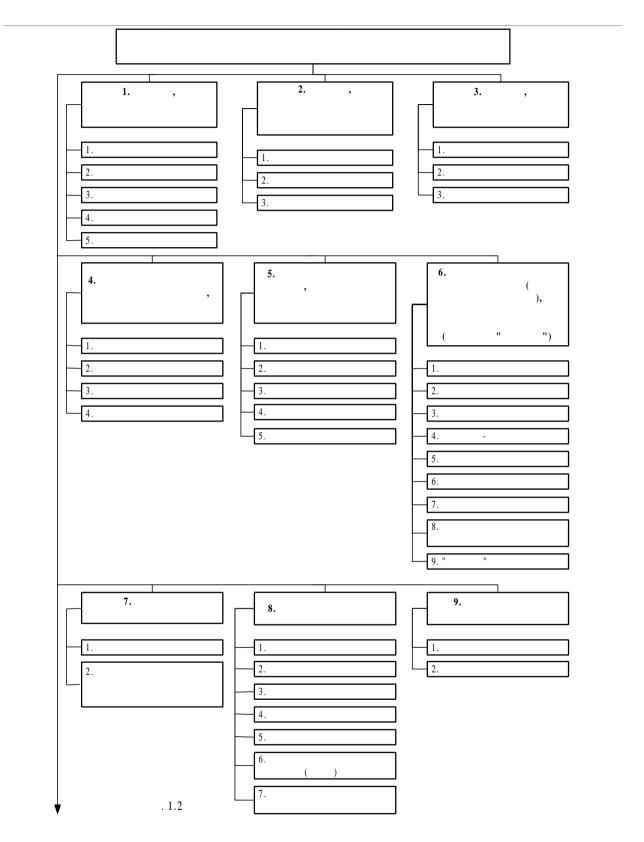
,

(, ,), ,

,

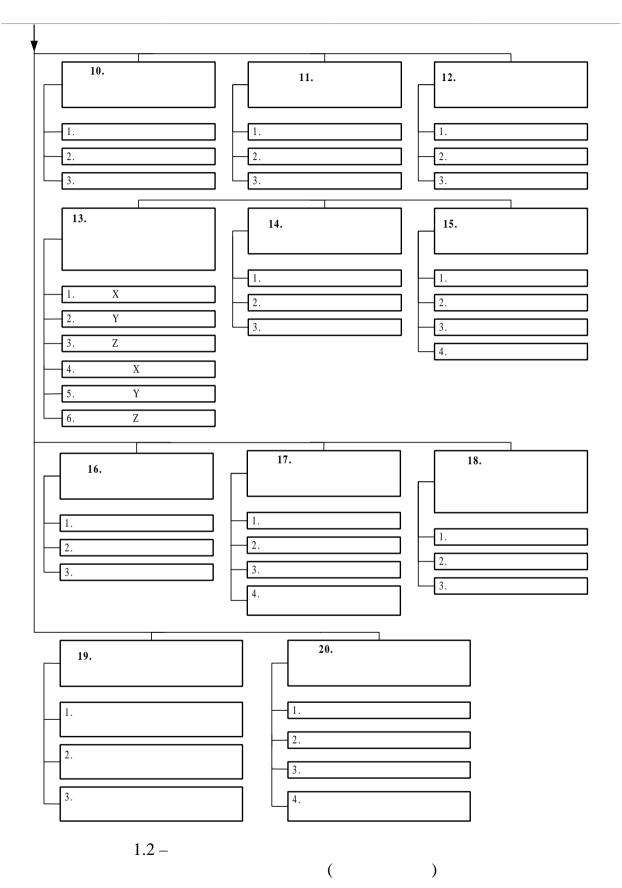
,

· .


•

```
(«
                                                      », «
                                                                  », «
                    .).
«
                                      );
  ).
         -
( . 1.2)
                                  20
```

21


1.

3D

1.2 –

1. 3D - 23

24 3D

```
1
2
3
4
5
6
7
8 9
).
10
                                                        : 1 -
   ; 2 –
                 ; 3 –
```

1. 3D - 25

```
(
               11
                12 ... 14
                                                                                  ), -
                                                                                   X, Y,
Z),
                           14)
                        -10^{-9}...10^{-3} ^{-1}
                       ; -10^{-3}...10^{1} ^{-1} -
                 -10^{1}...10^{2} ^{-1} ^{-}
               15
                                                                      1 %;
2...20 %;
                             20 %.
               16
                       1 \quad {}^{3} \quad {}^{-1};
                                                          3 –1
                                                - 1...5
   3 –1
5
               17
                16, 18 ... 20
```

```
26
[33].
                18
                                                                               ).
                19
                         (
                                         «
                                                                 »,
                                    ).
                20
                                            (
                                                         ).
                           (
                                                    1).
. 1.2)
                                     19,
```

3D

1.5. 3D 3D

1. 3D - 27

-

•

. –

,

•

3D - . -

_

,

,

.

3D - -

,

```
28 3D
```

```
3D
            3D
                                             2D
                             );
Microsoft Visual FoxPro.
```

```
1.
          3D
                                                                   29
                              Visual FoxPro) –
        Visual FoxPro
                                                                . 1.3.
```

```
30 3D -
```

```
«
                                           >>
                                         )
                                                                                         2 D
                                        i = 1 ... Nz
                                                                i = 1 ... Nz
                          1.3 –
                                                                 3D
                                                                                         3D
```

, .)

.

	1.6.					
	1					
	1. 2.			-		•
	۷.					-
	3.					_
	<i>J</i> .	?				
	4.	•		,		_
	- -			,		
	5.		3E)		-
				•		
	6.	,				-
	-					
	7.					
	-	?				
	8.				,	
	9.				?	
	9.					-
	10.					
	11.			,	•	_
				,		_
	12.					
	•					
	13.					-
	-			?		
	14.	25				?
	15.	3D	?			-
	16.					
	10.			?		-
	17.	_		•		
	18.					_
_	9					

31

1.

3D

2.

Decipimur Specie recti –

2.1.

-: 2. 33

```
\phi = \sqrt[10]{10} = 1,259.
3584-73,
                                                                              9206-80
3292-95).
                                                              -a_{0},
                                                                             . 2.1).
```

34 *3D*

2.1-

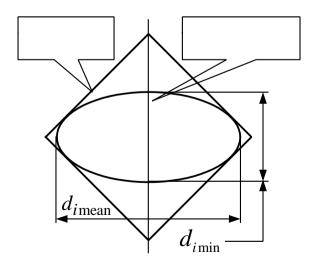
	,		-	-
			(c)	, %
	$a = a_0 \varphi^{2 \cdot k}$	$a_0 \varphi^{1 \cdot k}$		<i>P</i> ≤ 0,1
	$a = a_0 \varphi^{1 \cdot k}$	a_0		$P \le 8 \dots 15$
	a_0	$a_0 \varphi^{-1 \cdot k}$		$P \ge 90 \dots 75$
-	$a = a_0 \varphi^{-1 \cdot k}$	$a_0 \varphi^{-2 \cdot k}$		P = 100 - (P + P + P + P + P)
	$a = a_0 \varphi^{-2 \cdot k}$	0		<i>P</i> ≤ 2

1. k = 1, -k = 2.

2.

 $-a_0 = 2500 \dots 50$ (-

 $- \varphi$); $- a_0 = 2500 \dots 63$ (-


 $-\varphi^2 = 1,585$).

3. $a_0 = 50$ (

) $a_0 = 63$ (

, -

. 2.1.

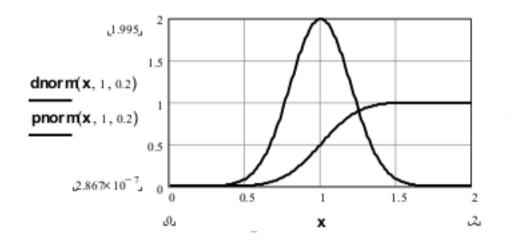
2.1 –

2. 35

,

,

--


-

9206-80 (18 9) -

 $a_0 = 1,$

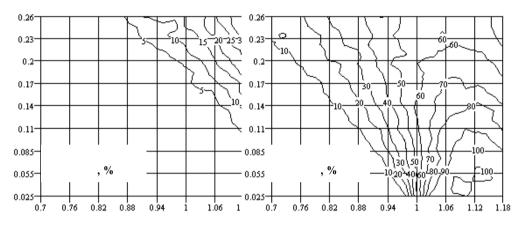
MathCad.

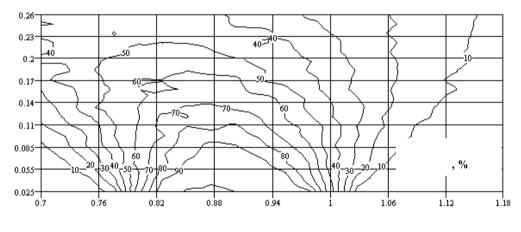
(. 2.2) : dnorm (x, μ, σ) , pnorm (x, μ, σ) , $\mu - \sigma$; $\sigma - \sigma$

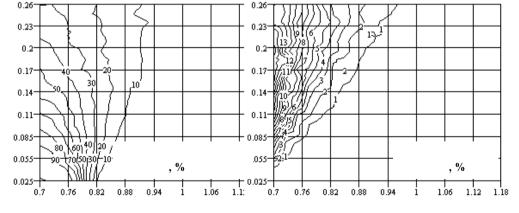
2.2 – MathCad

36 3D -

 $\begin{array}{c} \textbf{Vs}(\mu,\sigma\,,c,\textbf{b}) \equiv & \mu \leftarrow \mu \, (& - & - &) \\ & \sigma \leftarrow \sigma \, (& - & - & - &) \\ & \textbf{b} \leftarrow \textbf{b} \, (& - & - & - &) \\ & \textbf{b} \leftarrow \textbf{b} \, (& - & - & - &) \\ & \textbf{Vs} \leftarrow 0 \, (& - & - &) \\ & \textbf{for} \quad \textbf{i} \in 1... \, \textbf{N} \, (& - &) \\ & & \textbf{d}_{\textbf{X}} \leftarrow \textbf{qnorm}(\textbf{rnd}(1), \mu\,, \sigma\,) \, (& - & - & \textbf{X} \,) \\ & \textbf{d}_{\textbf{y}} \leftarrow \textbf{qnorm}(\textbf{rnd}(1), \mu\,, \sigma\,) \, (& - & - & \textbf{Z} \,) \\ & \textbf{D} \leftarrow \, \left(\, \textbf{d}_{\textbf{X}} \, \, \textbf{d}_{\textbf{y}} \, \, \textbf{d}_{\textbf{z}} \, \right) \, (& - & - & - &) \\ & \textbf{d}_{\textbf{min}} \leftarrow \, \textbf{Ds}_{1,1} \, (& - & - & - &) \\ & \textbf{d}_{\textbf{mean}} \leftarrow \, \textbf{Ds}_{1,2} \, (& - & - & - &) \\ & \textbf{d}_{\textbf{mean}} \leftarrow \, \textbf{Ds}_{1,2} \, (& - & - & - &) \\ & \textbf{if} \, \, (\textbf{a} \leq \textbf{c}) \cdot (\textbf{a} > \textbf{b}) \, (& - & - & - &) \\ & \textbf{Vs} \leftarrow \, \textbf{Vs} + \textbf{v} \, (& - & - & - & - &) \\ & \textbf{Vs} \leftarrow \, \textbf{Vs} + \textbf{v} \, (& - & - & - & - &) \\ & \textbf{Vs} \, (& - & - & - & - & - &) \\ & \textbf{Vs} \, (& - & - & - & - & - & - &) \\ \end{array} \right)$


2.3 –


(. . 2.4) ,


 $\mu \cong 0.88$

 σ . $0,88 a_0$

.

,

•

2.2.

, -

- ·

,

•

,

,

,

```
»)
2.2.1.
```

```
)
                                                                                                                                         , \mu + \Delta(F),
                                                                                 μ
                                            \Delta(F)
                                 f_{\text{Norm}}(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[ -\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2 \right],
                                                                                                                                                                            (2.1)
   \mu \sigma^2 –
```

40

3D

```
\boldsymbol{x}
(\ln x)
                                                                                                                                                                                                         :
                          f_{\text{lnNorm}}(x; \mu, \sigma) = \begin{cases} \frac{1}{x\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^{2}\right] & x > 0; \\ 0 & x \le 0. \end{cases}
                                                                                                                                                                                                   (2.2)
          μ
                    \sigma –
                                                                             (\mu = E -
                                                                                                                                           ; \sigma^2 = D -
```

);

```
42
       3D
```

$$\hat{x} = \ln x;$$

$$x \to E, D = f(\mu, \sigma^2);$$

 μ , σ^2 .

2.2 –

		-			
, <i>E</i>	μ	$\exp\left(\mu + \frac{1}{2}\sigma^2\right)$			
, <i>D</i>	σ^2	$\exp\left(2\mu + \sigma^2\right)\left[\exp\left(\sigma^2\right) - 1\right]$			
, x _{mod}	μ	$\exp\left(\mu-\sigma^2\right)$			
, x _{med}	μ	$\exp(\mu)$			
, β	0	$\left[\exp(\sigma^2) - 1\right]^{\frac{1}{2}} \cdot \left[\exp(\sigma^2) + 2\right]$			
, γ	0	$\left[\exp(\sigma^2) - 1\right] \cdot \left[\exp(3\sigma^2) + 3\exp(2\sigma^2) + 6\sigma^2\right]$	$\exp(\sigma^2) + 6$		
	,		a_0		
	(-	$k_m = \frac{E}{a_0}$		
			$k_v = \frac{\sqrt{D}}{E}$		

```
9206-80)
                                                                          -a_0,
                                                                                                    . 2.3).
                                                                             ( %)
                                                                           ).
      a<sub>0</sub> –
     k_{v} = \frac{\sqrt{D}}{E} = \frac{\sigma}{E} = \frac{\sigma}{a_{0}k_{m}} - \frac{\sigma}{a_{0}k_{m}}
                                                                         );
),
 E-
 D –
                     μ, σ ( . 2.3)
                                   a_0, k_m, k_v.
```

2.3 –

	(c)	, %
	$a = a_0 \varphi^k$	$P = 100 \int_{a_0 \varphi^k}^{\infty} f(x) dx < 0,1$
	$a = a_0$	$P = 100 \int_{a_0}^{a_0} \phi^k f(x) dx \le 815$
	$a = a_0 \varphi^{-k}$	$P = 100 \int_{a_0 \phi^{-k}}^{a_0} f(x) dx \le 90 \dots 75$
-	$a = a_0 \varphi^{-2k}$	$P = 100 \int_{a_0 \phi^{-2k}}^{a_0 \phi^{-k}} f(x) dx = 100 - (P + P + P + P)$
	<i>a</i> = 0	$P = 100 \int_{0}^{a_0 \phi^{-2k}} f(x) dx \le 2$

k = 1, -k = 2. (2.1)

:

$$\mu = E = a_0 k_m \; ; \tag{2.3}$$

$$\sigma = \sqrt{D} = s = a_0 k_m k_v; \tag{2.4}$$

$$f_n(x; a_0, k_m, k_v) \equiv f_n(x; \mu, \sigma),$$
 (2.5)

$$\mu, \sigma =$$
 ; $E -$; $D -$

s- ; a_0-

(); k_m –

); k_{ν} – ().

(

:

E, D

$$E = a_0 k_m, \ \sqrt{D} = s = a_0 k_m k_v$$

 $f(x; a_0, k_m, k_v) \equiv f(x; p_1, p_2)$

$$p_1, p_2 = f \left[E = a_0 k_m; D = (a_0 k_m k_v)^2 \right].$$

(2.2)

μ,σ (

. 2.2) a_0, k_m, k_v :

$$\begin{cases}
E = e^{\mu + \frac{1}{2}\sigma^{2}} \\
D = e^{2\mu + \sigma^{2}} \left(e^{\sigma^{2}} - 1 \right)
\end{cases}$$
(2.6)

:

$$\mu = \ln\left(\frac{a_0 k_m}{\sqrt{k_v^2 + 1}}\right);\tag{2.7}$$

$$\sigma = \sqrt{\ln\left(k_{\nu}^2 + 1\right)}. (2.8)$$

, (2.1)

 $(a_0, k_m, k_v) -$

$$\mu, \sigma = f \left[E = a_0 k_m; D = (a_0 k_m k_v)^2 \right].$$

$$-$$
 (2.2) $-$ (2.5)

(. 2.4, 2.5).

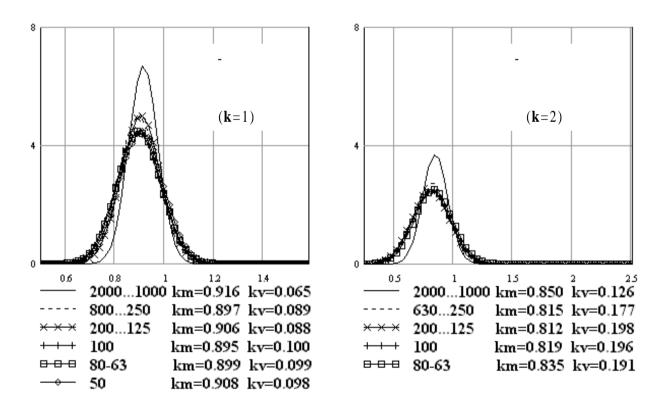
```
46 3D
```

9206-80). (P)(P) $\begin{cases} 100 \int_{a_0 \varphi^{-k}}^{a_0} f(x; a_0, k_m, k_v) dx &= P; \\ 100 \int_{a_0}^{a_0 \varphi^k} f(x; a_0, k_m, k_v) dx &= P, \end{cases}$ (2.9)(2.1) $f(x; a_0, k_m, k_v)$ – (2.2). 2.3. $(a_0 = 1).$. 2.4, 2.5. . 2.5, 2.6.

,

2.4 –

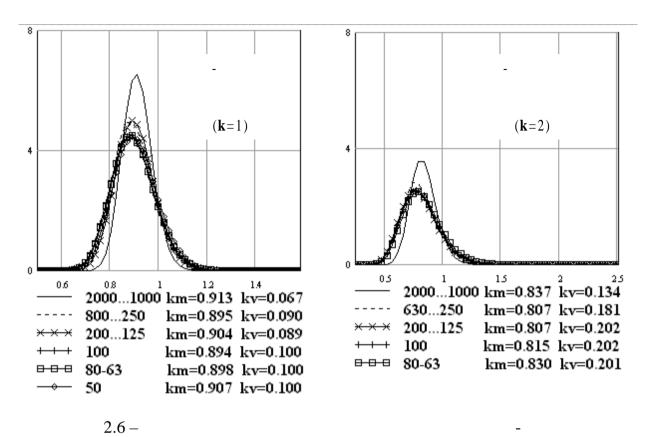
•							, %
				1			
	k_m	k_{v}	P	P	P	P	P
	Γ	T			Γ		
2000–1000	0,916	0,065	$8,511\cdot10^{-5}$	2,050	90,035	7,915	6,280·10 ⁻⁵
800250	0,897	0,089	0,043	9,852	80,230	9,849	0,026
200125	0,906	0,088	0,028	7,997	80,014	11,919	0,042
100	0,895	0,100	0,159	12,834	74,931	12,034	0,043
8063	0,899	0,099	0,130	11,804	75,199	12,820	0,047
50	0,908	0,098	0,092	9,949	74,868	15,055	0,035
2000–1000	0,850	0,126	$1,225\cdot 10^{-3}$	2,040	89,891	8,067	5,284·10 ⁻⁸
630250	0,815	0,177	0,193	9,908	79,915	9,984	4,291·10 ⁻⁴
200125	0,812	0,198	0,502	12,499	74,879	12,113	5,654·10 ⁻³
100	0,819	0,196	0,437	11,628	74,953	12,975	6,731·10 ⁻³
8063	0,835	0,191	0,308	9,721	75,919	15,043	9,404·10 ⁻³


.

_

<u>-</u>

17


```
(Rand); 2 –
                               ): 1 –
                                          (lnNorm); 4 –
(Norm); 3 –
                                                            (logNorm); 5 –
                         (Weibull); 6 –
              (Exp); 7 –
                                             (Gamma); 8. –
                           (Hi^2); 10 –
      (Beta); 9 - -
                                              (F); 11 -
               (ArcSin); 12 –
                                                                    (Simp-
son); 13 –
                (Relay); 14 –
                                        (Maxwell); 15 –
           (Logistic); 16 –
                            (Pareto); 17 –
                (Simpson2).
```


2.5 -

2.5 –

,						, %	
	k _m	k_{v}	P	P	P	P	P
2000–1000	0,913	0,067	2,184·10 ⁻⁶	2,027	89,794	8,174	5,974·10 ⁻³
800250	0,895	0,090	5,980·10 ⁻³	9,923	80,009	10,022	0,041
200125	0,904	0,089	3,121·10 ⁻³	7,881	80,210	11,879	0,027
100	0,894	0,100	0,029	12,776	75,148	12,012	0,036
8063	0,898	0,100	0,024	11,865	75,141	12,928	0,042
50	0,907	0,100	0,017	10,011	74,784	15,145	0,044
2000–1000	0,837	0,134	1,863·10 ⁻⁶	2,007	89,921	8,068	3,456·10 ⁻³
630250	0,807	0,181	6,008·10 ⁻³	9,987	80,032	9,950	0,025
200125	0,807	0,202	0,030	12,863	75,032	12,030	0,045
100	0,815	0,202	0,025	11,875	75,023	13,043	0,034
8063	0,830	0,201	0,016	10,038	74,926	14,975	0,044

 $f_{\text{Rand}} = \frac{1}{x_{\text{max}} - x_{\text{min}}} = \frac{1}{2\delta}, \qquad x_{\text{min}} \le x \le x_{\text{max}}$ (2.10)

 $x_{\text{max}}, x_{\text{min}}$ –

 δ -

 $\delta = \frac{x_{\text{max}} - x_{\text{min}}}{2} = \sqrt{3D} = \sqrt{3}a_0 k_m k_v.$ (2.11)

 $(-\infty < x < \infty)$: 2. (2.1);(2.3), (2.4).

3.
$$(0 < x < \infty)$$
:

$$(2.2);$$
 $(2.7), (2.8)$

$$4. \qquad - \qquad \qquad$$

$$f_{\text{logNorm}} = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left[\frac{1}{\sigma} \left(\frac{\ln(x)}{\ln(b)} - \mu\right)\right]^{2}\right\}, \qquad x >$$
 (2.12)

$$b-$$
 ; μ , σ – :

$$\sigma = \frac{1}{\ln(b)} \sqrt{\ln(k_v^2 + 1)} \quad (\sigma > 0); \tag{2.13}$$

$$\mu = \frac{1}{\ln(b)} \ln\left(\frac{a_0 k_m}{\sqrt{k_v^2 + 1}}\right). \tag{2.14}$$

$$5. (0 \le x < \infty). :$$

$$f_{\text{Weibul}} = \frac{\delta}{\eta} \left(\frac{x}{\eta} \right)^{(\delta - 1)} \exp \left[-\left(\frac{x}{\eta} \right)^{\delta} \right], \qquad \leq x < \infty \qquad , \qquad (2.15)$$

$$\delta, \eta$$
 – .

:

$$E = \eta \Gamma \left(\frac{1}{\delta} + 1\right); \tag{2.16}$$

$$D = \eta^2 \left[\Gamma \left(\frac{2}{\delta} + 1 \right) - \Gamma^2 \left(\frac{1}{\delta} + 1 \right) \right], \tag{2.17}$$

$$\Gamma(z)$$
 - , $\Gamma(z) = \int_{0}^{\infty} \exp(-u) u^{z-1} du$.

52 3D -

- (z),

$$\Gamma(z) \cong \sqrt{\frac{2\pi}{z}} z^z \exp\left(-z + \frac{1}{12z} - \frac{1}{360z^3}\right).$$
 (2.18)

MathCad $z = 1 \dots 5$.

,

 $-0.05 \% \to 0,$

z.

_

(2.16) (2.17) -

(2.10) (2.17) :

 $k_{v} = \frac{\sqrt{D}}{E} = \frac{\sqrt{\eta^{2} \left[\Gamma\left(\frac{2}{\delta}+1\right) - \Gamma^{2}\left(\frac{1}{\delta}+1\right)\right]}}{\eta\Gamma\left(\frac{1}{\delta}+1\right)} = \frac{\sqrt{\Gamma\left(\frac{2}{\delta}+1\right) - \Gamma^{2}\left(\frac{1}{\delta}+1\right)}}{\Gamma\left(\frac{1}{\delta}+1\right)}.$ (2.19)

(2.19)

 k_{v} δ .

 k_{v} , . . δ

 $\delta = f(k_v),$

-

 k_{v} δ .

 $\delta = f(k_{\nu}) \qquad \qquad \ln \delta = f(\ln k_{\nu}). \qquad -$

,

 $k_{v} \approx 0.05 \dots 15$ $\delta \approx 30 \dots 0.2$

 $(0 \le x < \infty)$.

100 δ k_v (2.19) MathCad Excel. Nonlinear Estimation) Statistica. $\delta(k_v) \cong \exp\left(a_0 + a_1 \ln k_v + a_2 \ln^2 k_v + a_3 \ln^3 k_v + a_4 \ln^4 k_v\right) + \varepsilon(k_v),$ (2.20) $a_0, a_1, a_2, a_3, a_4, \varepsilon(k_v)$ – k_{v} , δ : $k_v = 0.041176862 - 0.36344650,$ $\delta = 3 - 30,$ $a_0 = -0.0701484$ $a_1 = -1,1855327$, $a_2 = -0,0298041$, $a_3 = 0,0017869$, $a_4 = 0,0006329$, $\varepsilon = +0.0016$... -0.0008; $k_v = 0.36344650 - 1$, $\delta = 1 - 3$, $a_0 = 0.0000617$, $a_1 = -0.9983355$, $a_2 = -0.1556905$, $a_3 = 0.0817673$, $a_4 = 0.0127610$, $\varepsilon = -7.10^{-5}$... 3.10^{-5} ; $k_v = 1 - 15.84297952$, $\delta = 0.2 - 1$, $a_0 = 0.0006418$, $a_1 = -1,0123317$, $a_2 = -0,1912559$, $a_3 = -0,0014621$, $a_4 = -0,0042408$, $\varepsilon = +0,001 \dots -0,0006.$ (2.16)η $\eta = E / \Gamma \left(\frac{1}{\delta} + 1 \right) = a_0 k_m / \Gamma \left(\frac{1}{\delta} + 1 \right),$ (2.21) $\Gamma(z)$ – (2.18).

54 *3D*

$$f_{\text{Exp}} = \frac{1}{b} \exp\left(-\frac{x}{b}\right), \qquad \leq x < \infty$$
 (2.22)

 $b = E = a_0 k_m -$

7.
$$(0 \le x < \infty).$$
:

$$f_{\text{Gamma}} = \frac{\left(\frac{x}{b}\right)^{(c-1)} \exp\left(-\frac{x}{b}\right)}{b\Gamma(c)}, \qquad \leq x < \infty \qquad , \qquad (2.23)$$

b, c ;

$$b = D/E = a_0 k_m k_v^2$$
 $(b > 0);$ $c = E^2/D = 1/k_v^2$ $(c > 0).$ (2.24)

8.
$$-(-\infty < x < \infty)$$
.

$$f_{\text{Beta}} = \frac{\Gamma(v+w)}{\Gamma(v)\Gamma(w)} \left(\frac{x}{b}\right)^{v-1} \left(1 - \frac{x}{b}\right)^{w-1},\tag{2.25}$$

$$v, w - \qquad ; b - \qquad b = x_{\text{max}} - x_{\text{min}}.$$

•

$$\overline{E} = E/b = a_0 k_m/b; \quad \overline{D} = D/b^2 = (a_0 k_m k_v)^2/b^2.$$
 (2.26)

•

$$v = \overline{E} \left\{ \left\lceil \frac{\overline{E} \left(1 - \overline{E} \right)}{\overline{D}} \right\rceil - 1 \right\} \quad (v > 0); \quad w = \left(1 - \overline{E} \right) \left\{ \left\lceil \frac{\overline{E} \left(1 - \overline{E} \right)}{\overline{D}} \right\rceil - 1 \right\} \quad (w > 0). \quad (2.27)$$

9.
$$(0 \le x < \infty).$$
:

$$f_{\text{Hi}^2} = x^{\frac{v}{2} - 1} \exp\left(-\frac{x}{2}\right) / 2^{\frac{v}{2}} \Gamma\left(\frac{v}{2}\right), \qquad \leq x < \infty \qquad , \qquad (2.28)$$

$$v = E = a_0 \cdot k_m.$$

$$10. \qquad (0 \le x < \infty).$$

$$f_{\rm F} = \frac{\Gamma\left(\frac{v+w}{2}\right)}{\Gamma\left(\frac{v}{2}\right)\Gamma\left(\frac{w}{2}\right)} \cdot \frac{\frac{v}{v^2} \frac{w}{v^2} \frac{v}{x^2} - 1}{\left(vx+w\right)^{\frac{v+w}{2}}}, \qquad \leq x < \infty \qquad , \quad (2.29)$$

v, w -

:
$$E = a_0 k_m$$
; $D = (a_0 k_m k_v)^2$;

$$w = \frac{2E}{E-1} \quad (w > 4); \quad v = \frac{2w^2(w-2)}{D(w-2)^2(w-4)-2w} \quad (v > 1).$$
 (2.30)

11.
$$(-\infty < x < \infty).$$

$$f_{\text{ArcSin}} = \frac{1}{\pi \sqrt{l^2 - (x - a)^2}}, \qquad a - l \le x \le a + l$$
 (2.31)

a, l –

$$a = E = a_0 k_m; \quad l = \sqrt{D/2} = 0,5 a_0 k_m k_v \quad (l > 0).$$
 (2.32)

12.
$$(-\infty < x < \infty).$$

$$f_{\text{Simpson}} = \begin{cases} l + x - a/, & a - l \le x \le a \\ l - x + a/, & a \le x \le a + l \end{cases}$$
 (2.33)

a, l -

$$a = E = a_0 k_m; \quad l = \sqrt{6D} = \sqrt{6a_0 k_m k_v} \quad (l > 0).$$
 (2.34)

$$13. (0 \le x < \infty). :$$

$$f_{\text{Relay}} = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \qquad x \ge \qquad , \qquad (2.35)$$

$$\sigma = E/2\sqrt{\pi} = a_0 k_m/2\sqrt{\pi} -$$

56 3D

 $14. (0 \le x < \infty). :$

$$f_{\text{Maxwell}} = \frac{x^2}{\sigma^3} \sqrt{\frac{2}{\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right), \qquad x \ge \qquad , \qquad (2.36)$$

$$\sigma = E\sqrt{\frac{\pi}{8}} = a_0 k_m \sqrt{\frac{\pi}{8}} \quad - \tag{.}$$

 $15. (-\infty < x < \infty).$

:

$$f_{\text{Logistic}} = \frac{\exp[(x-a)/k]}{k \left\{1 + \exp[(x-a)/k]\right\}^2},$$
(2.37)

a, k-

 $a = E = a_0 k_m; \quad k = \frac{\sqrt{3D}}{\pi} = \frac{\sqrt{3}}{\pi} a_0 k_m k_v \quad (k > 0).$ (2.38)

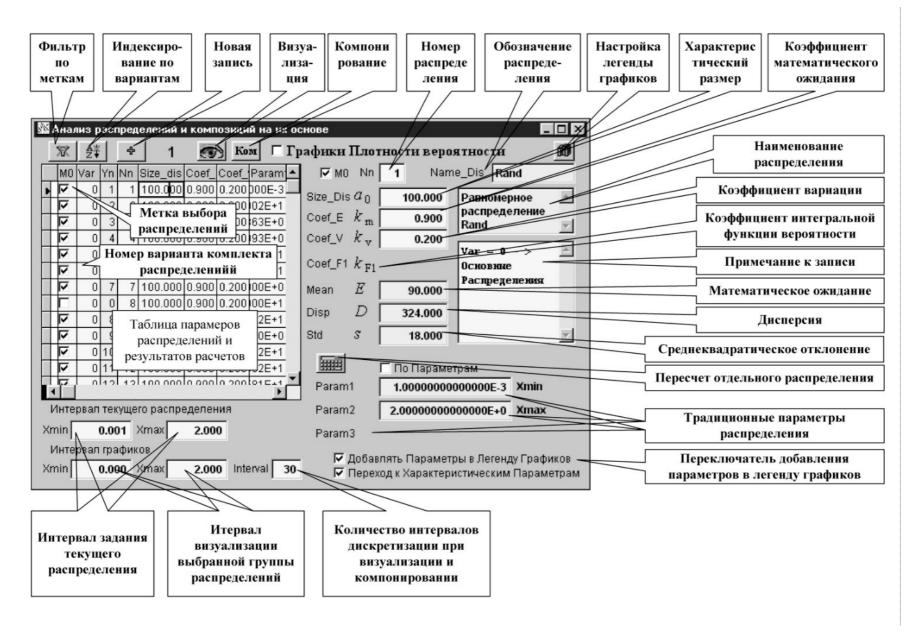
 $16. (1 \le x < \infty). :$

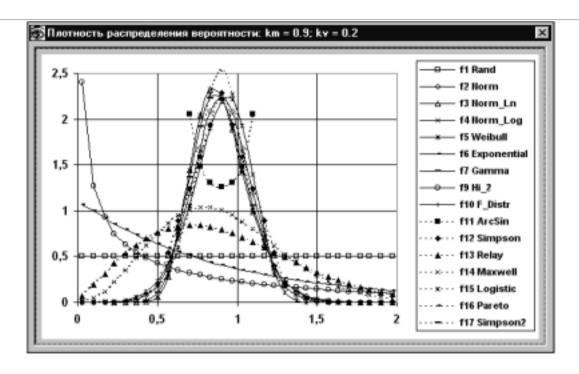
$$f_{\text{Pareto}} = cx^{-c-1}, \qquad x \ge$$
 (2.39)

 $c = \frac{E}{E - 1} = 1 + \frac{1}{a_0 k_m - 1} \quad (c > 0) -$

 $(-\infty < x < \infty).$

:


$$f_{\text{Simpson2}} = \begin{cases} (x-a+l)/(l^2-b^2), & a-l \le x \le a-b \\ 1/(1+b), & a-b \le x \le a+b \\ (a+l-x)/(l^2-b^2), & a+b \le x \le a+l \end{cases}$$
(2.40)


a, l, b - ; $l = 0.5 (x_{\text{max}} - x_{\text{min}}) -$

.

 $a = E = a_0 k_m; \quad b = \sqrt{6D - l^2} = \sqrt{6(a_0 k_m k_v)^2 - l^2}.$ (2.41)

			,		
- -	: 3D		-		;
2.2.2.					
-	,		,		
; - ,					
•				. 2.7.	
(100).	2.8		
	,		. 2.8.		
	; $k_v = 0$,	2 –			$: k_m = 0.9$
	2 5				

2.8-

_

. . 2.9

(2.10)

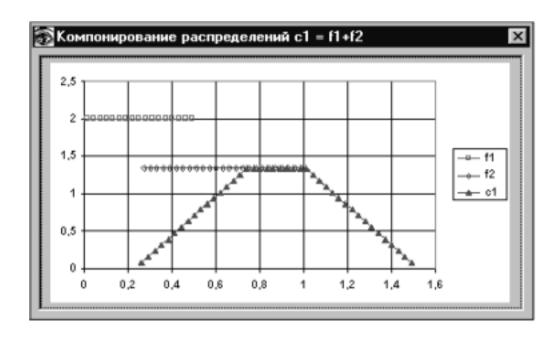
f1 =
$$f_{\text{Rand}}$$
 ($x_{\text{min}} = 0$, $x_{\text{max}} = 0.5$) f2 = f_{Rand} ($x_{\text{min}} = 0.25$, $x_{\text{max}} = 1$).
c1 = f1*f2 (2.40).

(2.10)

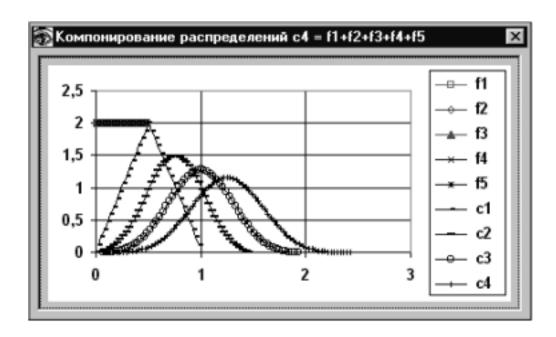
$$f1 = f2 = f3 = f4 = f5 \equiv f_{Rand} (x_{min} = 0, x_{max} = 0.5)$$

. 2.10.

-


: c1 = f1*f2, c2 = c1*f3 . . (3 = c2*f4, c4 = c3*f5).

f1*f2 = 1


(. 2.10)

(2.33).

(2.1)

 $2.9 - f1 \Leftrightarrow f2$

2.10 - : f1 = f2 = f3 = f4 = f5

2.3. **« »**. .). . 2.11. », . .);

62 3D

« >> « [0, 1] μ, σ Xi y = f(x)

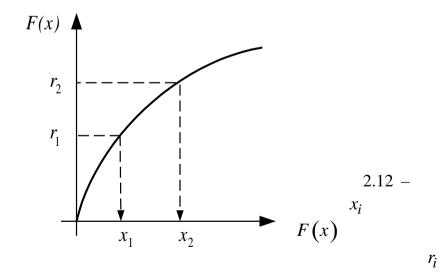
y_i

```
RAND ([nSeedValue])
  Microsoft Visual FoxPro.
            [0, 1].
                                                                 [nSeedValue]
                                                          (
                                   ).
                   nSeedValue
100001.
                                                           RAND (nSeedValue).
   nSeedValue
                                                        ).
                                                  1
                                                                       \boldsymbol{F}
             R-
                 [0, 1], a F –
                      X = \sup_{z \in A} \left\{ z : F(z) \le R \right\}
                                                                              (2.42)
F
                          . 2.12).
```

64 3D

.

,


· ,

,

,

. 12 2 45° 150 10 3 AC6 100/80

2 ... 18 .

F. F-

$$F(X) = R, X = F^{-1}(R)$$

 $(2.42). r_1, r_2, ...$

[0, 1], :

$$x_i = F^{-1}(r_i), \quad i = 1, 2, ...,$$
 (2.43)

F.

-

.

 μ

 σ^2 :

$$\Phi(x; \, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx.$$
 (2.44)

$$\Phi(x; \mu, \sigma) = \Phi\left(\frac{x - \mu}{\sigma}; 0, 1\right), \tag{2.45}$$

$$\Phi() = \Phi(; 0, 1),$$

•

$$\Phi(x) = \int_{-\infty}^{x} \varphi(x) dx, \qquad (2.46)$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 (2.47)

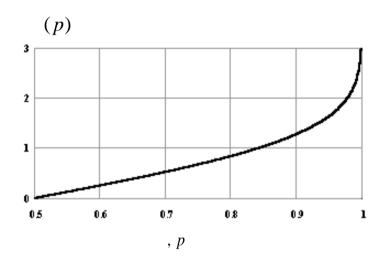
 $\Phi(x)$:

$$\Phi(-x) = 1 - \Phi(x). \tag{2.48}$$

 $\Phi(x; \mu, \sigma)$

 $\Psi(p; \mu, \sigma)$.

66 3D


$$\Psi(p; \mu, \sigma) = \mu + \sigma \cdot \Psi(p), \qquad (2.49)$$

 $\Psi(p)$ – , . .

$$\Phi (\Psi (p); 0, 1) = p \quad (0 (2.50)$$

$$p \in (0, 1)$$
 $\forall (p) + \forall (1-p) = 0,$
$$\forall (p)$$
 $0,5$

. 2.13

2.13 -

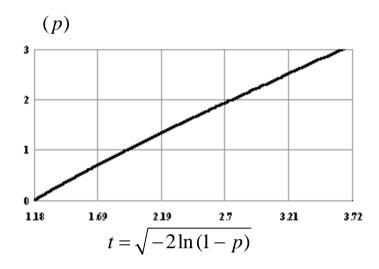
MathCad:

$$\psi(p) = \operatorname{qnorm}(p, 0, 1)$$

$$t = \sqrt{-2\ln(1-p)}$$
, 0,5 < p < 1:

$$\psi_1(p) = t - \frac{c_0 + c_1 t}{1 + d_1 t + d_2 t^2} + \varepsilon_1(p), \qquad (2.51)$$

$$c_0 = 2,30753, c_1 = 0,270061, b_1 = 0,99229, d_2 = 0,04481 -$$
;
 $\varepsilon_1(p) -$;

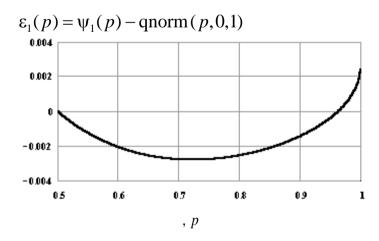

$$\psi_2(p) = t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} + \varepsilon_2(p), \qquad (2.52)$$

 $c_0 = 2,515517$, $c_1 = 0,802853$, $c_2 = 0,010328$,

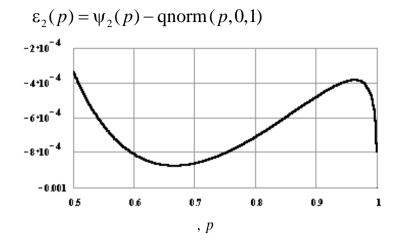
 $d_1 = 1,432788, \quad d_2 = 0,189269, \quad d_3 = 0,001308.$

$$t = f(p),$$
(-

), . 2.14.



67


 $\psi(p) = f\left(\sqrt{-2\ln(1-p)}\right)$

$$|\varepsilon_1(x)| < 2.8 \cdot 10^{-3},$$

$$(2.52) - |\varepsilon_2(x)| < 8.8 \cdot 10^{-4}$$
).

 $\psi_1(p) = t - \frac{a_0 + a_1 t}{1 + b_1 t + b_2 t^2} + \varepsilon_1(p)$

2.16 - :

$$_{2}(p) = t - \frac{c_{0} + c_{1}t + c_{2}t^{2}}{1 + d_{1}t + d_{2}t^{2} + d_{3}t^{3}} + _{2}(p)$$

,

(2.51), (2.52):

68

3D

$$\psi_3(p) = t - \frac{c_0 + c_1 t + c_2 t^2 + c_3 t^3}{1 + d_1 t + d_2 t^2 + d_3 t^3 + d_4 t^4} + \varepsilon_3(p). \tag{2.53}$$

(2.53)

MathCad

:

$$\begin{cases}
\psi(p)_1 = f(t_1, c_0, c_1, c_2, c_3, d_1, d_2, d_3, d_4) \\
\vdots \\
\psi(p)_8 = f(t_8, c_0, c_1, c_2, c_3, d_1, d_2, d_3, d_4)
\end{cases} (2.54)$$

2.6 –

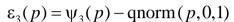
i	p	$t = \sqrt{-2\ln\left(1 - p\right)}$	x			-			
1	0,50000	1,1774100225	0	c_0	1	3,2555230991			
2	0,60000	1,3537287261	0,2533471031	c_1	0,1	10,2051357400			
3	0,71000	1,5734512106	0,5533847196	c_2	0,01	3,2615610115			
4	0,90000	2,1459660263	1,2815515655	c_3	0,001	0,1452486750			
5	0,95000	2,4477468307	1,6448536270	d_1	1	6,0002774126			
6	0,99900	3,7169221888	3,0902323062	d_2	0,1	5,3170230129			
7	0,99990	4,2919320526	3,7190164855	d_3	0,01	0,9367393163			
8	0,99999	4,7985259122	4,2648907939	d_4	0,001	0,0244291756			

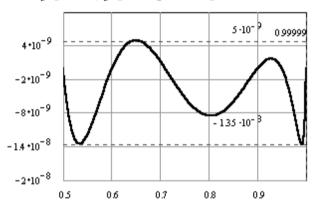
MathCad - qnorm (p, 0, 1).

(2.53)
$$|\varepsilon_3(x)| < 1.35 \cdot 10^{-8},$$

, (2.52).

(2.53).


, (2.53)


 $(0 \le p \le 1),$

.

$$\psi(p) = \begin{cases}
t = \sqrt{-2\ln(1-p, p < p)} \\
t - \frac{c_0 + t\left[c_1 + t\left(c_2 + c_3t\right)\right]}{1 + t\left\{d_1 + t\left[d_2 + t\left(d_3 + d_4t\right)\right]\right\}}
\end{cases},$$
(2.55)

 $c_0 = 3,2555230991$, $c_1 = 10,20513574$, $c_2 = 3,2615610115$, $c_3 = 0,145248675$, $d_1 = 6,0002774126$, $d_2 = 5,3170230129$, $d_3 = 0,9367393163$, $d_4 = 0,0244291756$.

2.17 -

$$\psi_3(p) = t - \frac{c_0 + c_1 t + c_2 t^2 + c_3 t^3}{1 + d_1 t + d_2 t^2 + d_3 t^3 + d_4 t^4} + \varepsilon_3(p)$$

Microsoft Visual FoxPro

[0, 1] , (. 2.18).

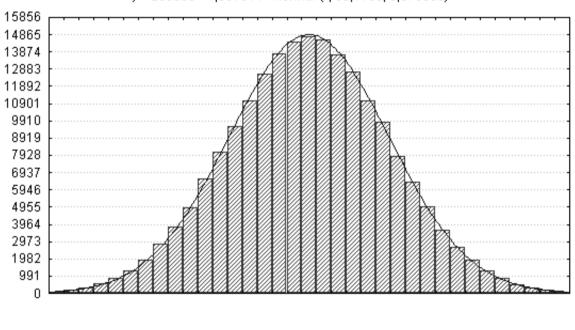
(100/80)

```
2.
                                                                           71
                      (\mu = 89.5) , \sigma = 8.95
                                                  ).
12 2 45° 150 10 3
                                                  4 (100 %),
  1/4
                                          Visual FoxPro.
     8788322
                               FoxPro
                                                                      X, Y, Z,
                            : \hat{\mathbf{u}} = 89,498; 89,496; \hat{\mathbf{\sigma}} = 8,8748; 8,8760;
8,8735.
     FUNCTION X_p
     LPARAMETERS pNum
     IF pNum < 0.5
          adjust = .T.
                                            [0.5, 1]
     ELSE &&
          pNum = 1 - pNum
          adjust = .F.
```

2.18 – (Visual FoxPro) - [0,1] ,

Statistica.

Visual FoxPro (*.dbf)


Statistica (*.sta)

(

72 *3D*

X (200,000 Statistica) . 2.19. $(\mu = 89,5; \sigma = 8,95)$ $(\hat{\mu}, \hat{\sigma})$

Histogram (ZERO_01.STA 1v*200000c) y = 200000 * 1,651914 * normal (x; 89,4768; 8,870635)

2.19 – Statistica

2.4.

- 1.
- 2.
- 3.
- . 4. ?

2.		73
5.		
6.	-	-
7.	?	-
8.	?	
	,	-
9.	?	-
10.	?	
		-
11.		-
12.	?	
13.	•	?
14.		
15.	•	-
?		-
		-

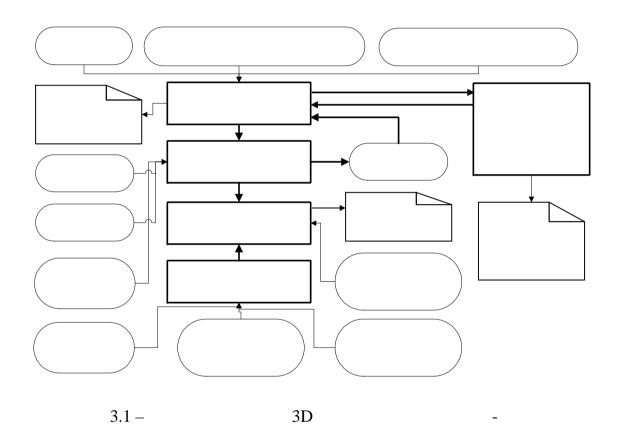
3D 3.

Feci quod potui, faciant meliora potentes –

3D

3D

3D

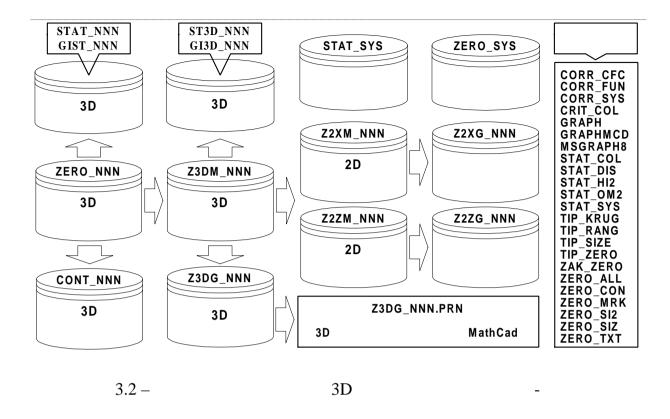

3.1. **3D**

3D

«

>>

crosoft Visual FoxPro.


:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

```
76 3D -
```

```
(
                         );
                   3D
                                                       );
                                                    ;
3D
3D
                              );
                                                                          3D
                               , 3D
                                );
3D
                                                               (
                                                                    )
                  3D
                                                                       );
                                    );
                                         );
```

```
3.
            3D
                                                             77
                            3D
                                  2D
  ).
                         3D
                       . 3.2.
                               ).
                 «_NNN»,
                             NNN -
         3D
                                           : ZERO_NNN -
                                                              );
CONT_NNN -
    ; STAT_NNN, GIST_NNN -
                                                  ; Z3DM_NNN -
               ); ST3D_NNN, GI3D_NNN -
Z3DG_NNN -
                      3D
                        ); Z3DG_NNN.PRN -
            3D
                                 MathCad; Z2XM_NNN, Z2ZM_NNN
                               (
                                   ); Z2XG_NNN, Z2ZG_NNN -
                                               3D
```

.

3D 2D c
Visual FoxPro Microsoft Graph. 3D
MathCad.

Visual FoxPro Microsoft Graph MathCad OLE (Object Linking and Embedding).

3.2. 3D

()

```
3.
           3D
                                                                             79
                                                                          ,
. 3.1)
3D
                                               );
                                          (
                                                               ).
```

```
80 3D -
```

>> « 3D 3D 3D ?

• ,

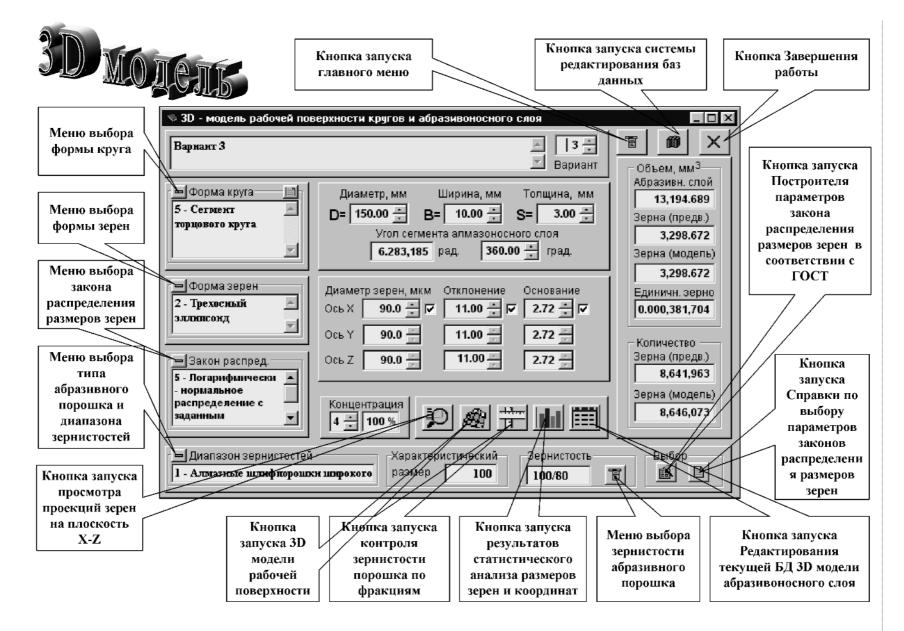
3. 3D - 81

,

· , , , ;

». « » « » « »

 $(i=1\ldots n)$ « (i)» « »,


Visual FoxPro. -

, . 3D

. 3.3. 3D

; -

2D ;


```
3. 3D –
```

83

3.3. 3D). 3D . 3.3.): 1 –); 2 –); 3 –); 4 – (); 5 –); 6-); 7 –);): 1 – ; 2 – -): 1 -); 2 – (); 3 –

);

```
84
        3D
                                                             (1 ... 8
25 ... 200 %);
                                        -3,53 / ^{3});
                                                -1). ( . . 3.3)
                                                          2)
                                                    (
1 –
                                                            ; 2 –
                                           ; 3 –
     );
                         ).
                ;
).
                                         :
                              V = LBS,
                                                                     (3.1)
```

L,-; B-;

3. 3D - 85

$$V = \pi B S(D - B); (3.2)$$

_

$$V = \pi BS(D - S), \tag{3.3}$$

B- ; S- ; D-

_

$$V = 2\pi B S(D - B) \varphi \qquad ; \tag{3.4}$$

_

$$V = 2\pi BS (D - S)\varphi \qquad , \tag{3.5}$$

B-

;
$$S-$$
 ; $D-$

.

(. . 3.3)

 φ (.) = φ (.) π / 180.

).

,

:

$$V_{()} = V \frac{K}{16},$$
 (3.6)

V –

(1 ... 8). % (. . 3.3)

$$K_{(\%)} = 25 \cdot K$$
.

()

(. . 3.3):

_

$$V_{1(} = \frac{\pi}{6}E^{3}\{d\},$$
 (3.7)

 $E\left\{d\right\}-$;

_

$$V_{1(}) = \frac{\pi}{6} E\{d_X\} E\{d_Y\} E\{d_Z\},$$
 (3.8)

```
86 3D
```

```
E \{d_X\}, E \{d_Y\}, E \{d_Z\}, -
                              X, Y, Z.
                                             V ( .) (3.6),
        V<sub>1(</sub> .)•
  3.3.1.
                                       . 3.3).
                                         (3.6)
         \sum_{i} k \cdot V_{1(i)} = \sum_{i} k \frac{\pi}{6} d_{X(i)} d_{Y(i)} d_{Z(i)} = V \ge V_{(i)},
                                                                            (3.9)
                                             ( )  ; V_{1(i)} -
k -
             i- ; d_{X(i)}, d_{Y(i)}, d_{Z(i)} – i-
X, Y, Z; V, V_{(} ) ( )
                                           (3.6).
                                                                  2.3.
 )
                               c
```

```
3.
                    3D
                                                                                                                       87
                                                                               E «
                    . 3.3):
                s «
                                         b \ll
                                                               ».
                                     d_i = E = \text{const.}
       d_{\min} = E - s \le d_i \le E + s = d_{\max}
              d_i = d_{\min} + (d_{\max} - d_{\min}) \text{RAND}() = E - s [1 + 2 \text{RAND}()],
                                                                                                                 (3.10)
RAND() -
                [0, 1].
                                                                                                  (
                                                                                                                     2.3)
                                    d_i = E + \psi [RAND()] s,
                                                                                                                 (3.11)
\Psi(p) –
                                                                                     (0 \le p \le 1).
             (2.55)
              k_{v} = s/E; \quad \hat{E} = \ln\left(\frac{E}{\sqrt{k_{v}^{2} + 1}}\right); \quad \hat{s} = \sqrt{\ln\left(k_{v}^{2} + 1\right)},
                                                                                                                  (3.12)
                                                                                                              ; \widehat{E}, \widehat{s} –
k_{v} –
        (3.11):
                                      \hat{d}_i = \hat{E} + \psi [RAND()] \hat{s}.
                                                                                                                 (3.13)
```

.

88 *3D*

```
d_i = \exp(\widehat{E} + \widehat{d}_i \widehat{s}),
                                                                                                                                         (3.14)
        \hat{E}, \hat{s}, \hat{d}_i -
b:
                     k_{v} = s/E; \quad \widehat{E} = \frac{1}{\ln b} \ln \left( \frac{E}{\sqrt{k_{v}^{2} + 1}} \right); \quad \hat{s} = \frac{1}{\ln b} \sqrt{\ln (k_{v}^{2} + 1)},
                                                                                                                                         (3.15)
                                                                                                                                     ; \widehat{E}, \widehat{s} –
       k_v –
                                                     ; b –
                       (3.13).
                           (3.14): d_i = b^{\hat{E} + \hat{d}_i \hat{s}}, \quad b - 
                                                                             ) ZERO_NNN,
                                                                                                                   NNN -
X, Y, Z
                            ZERO_SYS ( . 3.2).
«
                                                                                                  3D
                             ( . . 3.3).
```

3.3.2. 3D 3D *3D* 9206-80 (2486-94). Microsoft Visual FoxPro 3D 100/80

89

3.

3D

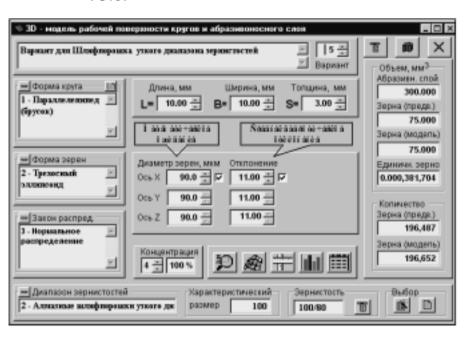
. 3.4.

```
90 3D
```

(n = 196652 .). $d_{X(i)}, d_{Y(i)}, d_{Z(i)}$

X, *Y*, *Z*.

 $(\quad .\quad .\ 3.4)$


: « »

 $E = 90 \qquad \qquad \text{``} \qquad \text{``} \qquad \text{``} \qquad s = 11 \qquad .$

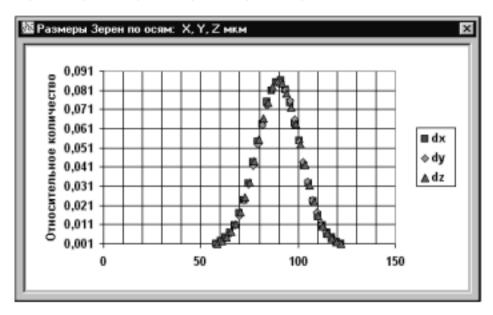
, . .

 $d_{X(i)} \neq d_{Y(i)} \neq d_{Z(i)}$. 3.5.

. 3.6.

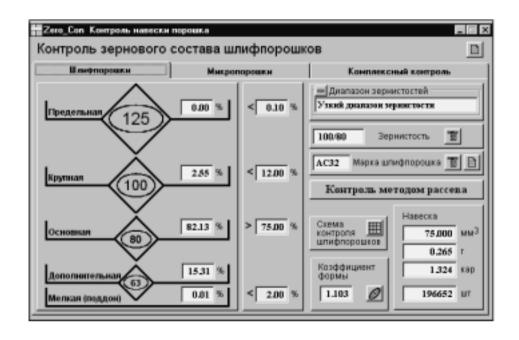
3.4 -

- («


» — «2500/1600, 1600/1000, 1000/630, 630/400, 400/250, 250/160, 160/100, 100/63, 63/40»; «

» — «2500/2000, 2000/1600,

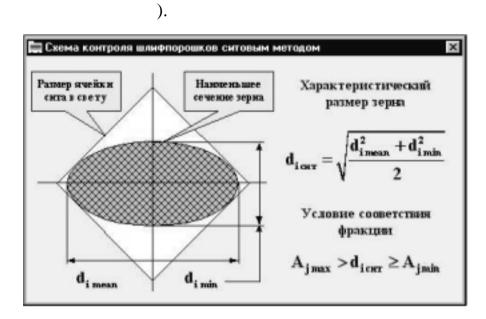
1600/1250, 1250/1000, 1000/800, 800/630, 630/500, 500/400, 400/315, 315/250, 250/200, 200/160, 160/125, 125/100, 100/80, 80/63, 63/50, 50/40»;


- : « 1, 2, 3, 5, 8, 2, 4,

6, 15, 20, 32, 50, 1, 4, 3».

3.5 -

X, Y, Z




```
92
        3D
```

(. . 3.6,).

».

. 3.7

3.7 –

$$A_{j\max} > d_i \ge A_j \qquad (3.16)$$

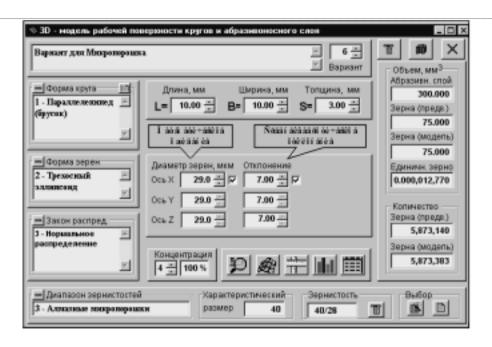
 $A_{j\text{max}}, A_{j\text{min}}$ –

; d_i – j-

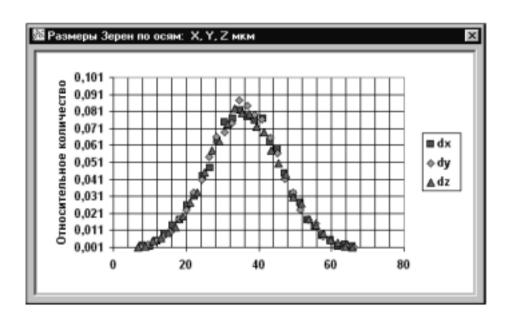
```
3. 3D –
```

93

(3.20)


 d_i i $d_{X(i)}, d_{Y(i)}, d_{Z(i)},$ $d_i = \sqrt{\frac{d_{i\text{mean}}^2 + d_{i\text{min}}^2}{2}},$ (3.17) $d_{i\text{mean}}, d_{i\text{min}}$ – $d_{X(i)}, d_{Y(i)}, d_{Z(i)}$ $i = 1 \dots n, \qquad n -$ $V_{(i)} = \frac{\pi}{6} d_{X(i)} d_{Y(i)} d_{Z(i)},$ (3.18) $d_{X(i)}, d_{Y(i)}, d_{Z(i)}$ – *X*, *Y*, *Z*; $d_{X(i)}, d_{Y(i)}, d_{Z(i)} \Rightarrow d_{i\max}, d_{i\max}, d_{i\min};$ (3.19) d_i (3.17);(3.16);j- $V_j = V_j + V_{(i)}, \qquad V_{(i)} (3.18);$ (.3.15): $\sum_{i} d_{i \max}$; $\sum_{i} d_{i \max}$, $d_{i\max}$, $d_{i\mathrm{m}}$ _n –):

 $P_j = 100 \frac{V_j}{\sum V_i} \%,$


```
94 3D
```

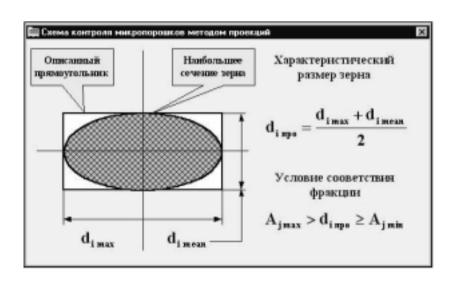
 V_j , $\sum V_j$ – j- $K = \sum_{i}^{n} d_{i \max} / \sum_{i}^{n} d_{i \text{mean}},$ (3.21) $d_{i\max}$, $d_{i\min}$ n – (. . 3.6)) ; P = 2.55 < 12 % -: P = 0 < 0.1 % -; P = 0.01 < 2 % -; P = 82,13 > 75 % -P = 15,31 %. K = 1,103.(n = 5873383)40/28 . 3.8. E = 29*» s* = 7 **«** . 3.9. . 3.10. : «60/40, 40/28, 28/20, 20/14, 14/10, 10/7, 7/5, 5/3, 3/2, 2/1, 1/0»; : « **»**.

3. 3D – 95

3.8 -

3.9 – *X*, *Y*, *Z*

(. . 3.10,).


```
96
            3D
      )
                                                                                ».
                                      - «
                                                                            . 3.11
                                                                                          (
                                                                                     d_i
              (3.17)
                                   d_i = \frac{d_{i\max} + d_{i\text{mean}}}{2},
                                                                                               (3.22)
                                                                                        d_{X(i)}, d_{Y(i)},
     d_{i\max}, d_{i\mathrm{mean}} –
       d_{Z(i)}
                  (3.20),
                                    P_j = 100 \frac{N_j}{\sum N_j} \%,
                                                                                               (3.23)
    N_j , \sum N_j –
                                             . 3.10)
       : P = 3.24 < 5\%
                                                           ; P = 78,5 > 65 \%
P = 18,26 < 30 \% -
                                                               K = 1,203.
        ( . .).
```

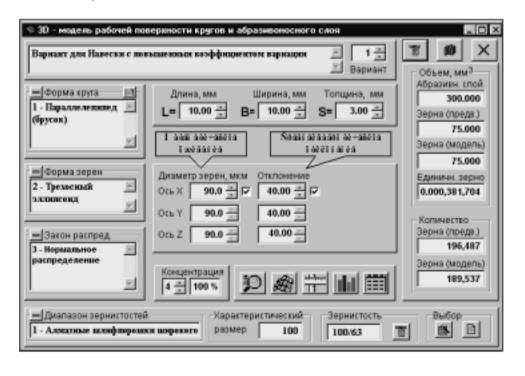
;

(2500/2000 ... 1/0);

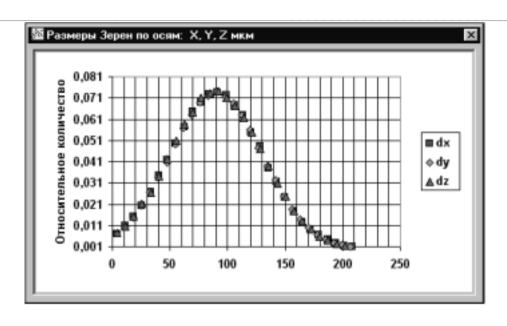
3.10 -

3.11 -

```
98 3D
```


(n = 189537 .) . 3.12.

« s = 40 . 3.13.

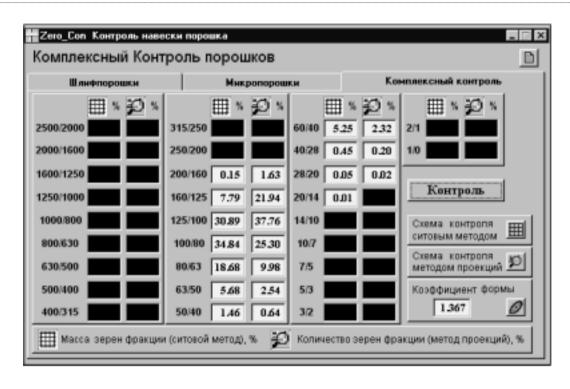

. 3.14.

- « ».

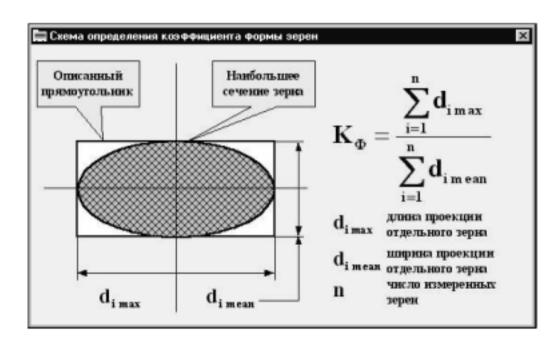
. 3.15

3. 3D – 99

3.13 – *X*, *Y*, *Z*


(. . 3.14)

-100/80 (34,84 %);


- 125/100 (37,76 %);

.

. 3D -

3.14 -

3.15 -

```
3. 3D – 101
```

3.3.3.

), (ZERO_NNN), $d_{X(i)}$, $d_{Y(i)}, d_{Z(i)}$. L, BS. 2. i $x_{(i)} = 0.5d_{X(i)} + (B - d_{X(i)})RAND();$ (3.24) $y_{(i)} = 0.5d_{Y(i)} + (S - d_{Y(i)}) \text{RAND}();$ (3.25) $z_{(i)} = 0.5d_{Z(i)} + (L - d_{Z(i)})RAND(),$ (3.26) $d_{X(i)}, d_{Y(i)}, d_{Z(i)}$ – i- ; B, S, L – ; RAND () – , [0, 1];**«** » j- (j = 1 ... i-1)(3.27) $\Delta_{ji} \le r_j + r_i,$

j- i- ; r_j , r_i –

102 3D

- « » i- « -

» *j*- , (3.27).

,

.

100.

, (3.27),

.

j- i- :

$$\Delta_{ji} = \left(x_{(j)} - x_{(i)}\right)^2 + \left(y_{(j)} - y_{(i)}\right)^2 + \left(z_{(j)} - z_{(i)}\right)^2, \tag{3.28}$$

x (j), y (j), z (j), x (i), y (i), z (i) –

j- i- , -

,

$$\cos_{X(j,i)} = \left(x_{j} - x_{i}\right) / \Delta_{ji}; \qquad (3.29)$$

$$\cos_{Y(j,i)} = \left(y - y - y \right) / \Delta_{ji}; \qquad (3.30)$$

$$\cos_{Z(j,i)} = \left(z - z \right) / \Delta_{ji}. \tag{3.31}$$

 $r_{j} = \sqrt{\left(0.5d_{X(j)}\cos_{X(j,i)}\right)^{2} + \left(0.5d_{Y(j)}\cos_{Y(j,i)}\right)^{2} + \left(0.5d_{Z(j)}\cos_{Z(j,i)}\right)^{2}}, (3.32)$

 $d_{X(j)}, d_{Y(j)}, d_{Z(j)} - j$ - j- X, Y, Z;

$$r_i = \sqrt{\left(0.5d_{X(i)}\cos_{X(j,i)}\right)^2 + \left(0.5d_{Y(i)}\cos_{Y(j,i)}\right)^2 + \left(0.5d_{Z(i)}\cos_{Z(j,i)}\right)^2}, \quad (3.33)$$

 $d_{X(i)}, d_{Y(i)}, d_{Z(i)} - i - X, Y, Z.$

3. 3D –

103

.

, -

,

3.3.4.

3D -

. 3.16.

_

MS Graph (. 3.17, 3.18).

X Y, -

 $r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}},$ (3.34)

 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

|r| $r_{m;q}$ $m=n-2, q=1-\frac{\alpha}{2}, m-$; q-

 $|r| > r_{m;q}$,

104 *3D*

(3.34)(3.34) $\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2,$ (3.35)(3.35) $r_{ij} = \frac{n\sum x_i \cdot x_j - \sum x_i \cdot \sum x_j}{\sqrt{n\sum x_i^2 - \left(\sum x_i\right)^2} \cdot \sqrt{n\sum x_j^2 - \left(\sum x_j\right)^2}},$ (3.36)*n* –); x_i, x_j – [23] $n = 1 \dots 1000$ n > 1000[23]. . 3.19. X «Dx», Y «Dy», Z «Dz»;

«Dk»;

«Dv»;

X «Xc», Y «Yc», Z «Zc»

«Dm»;

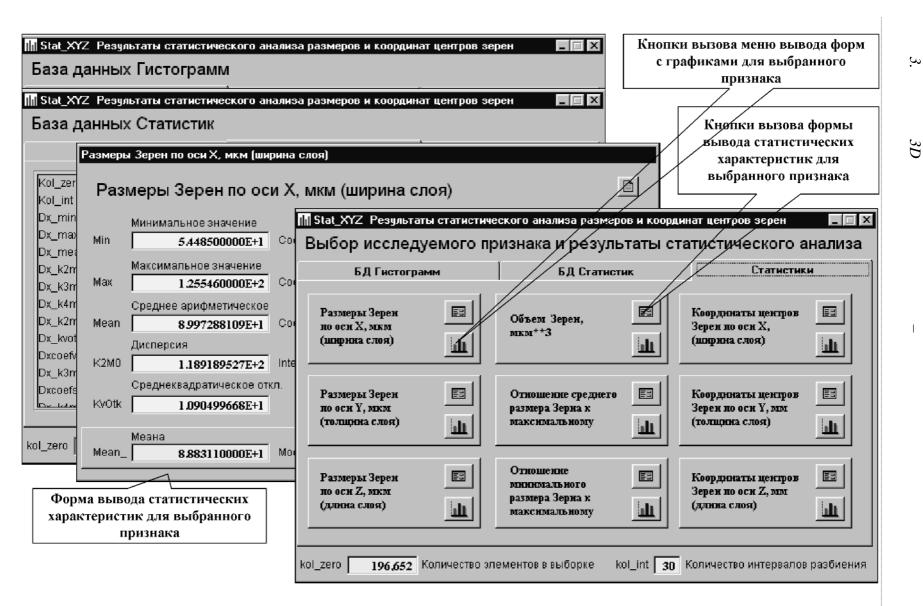


Рисунок 3.16 – Результаты статистического анализа алмазосодержащего слоя

Рисунок 3.17 – Формы с графиками распределения размеров зерен по осям X, Y, Z и объемов зерен

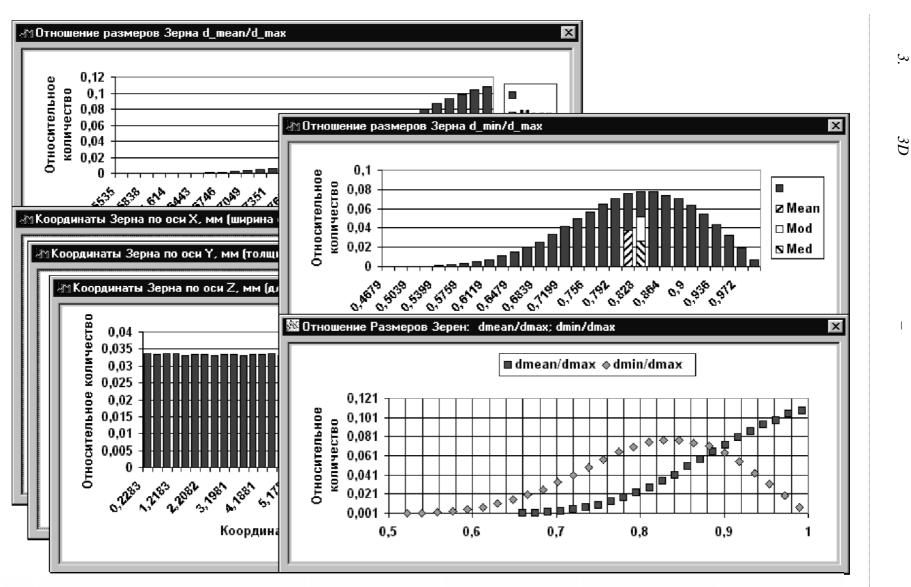


Рисунок 3.18 — Формы с графиками распределения координат центров зерен по осям X, Y, Z и соотношений размеров зерен

107

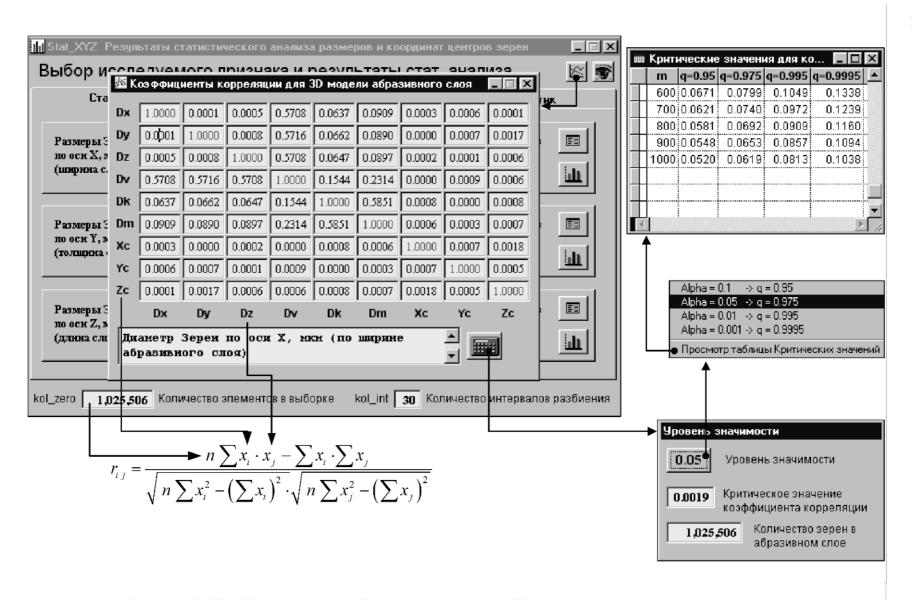


Рисунок 3.19 - Корреляционный анализ элементов 3D модели алмазосодержащего слоя

3.4. 3D

3D :

- (. 3.20);

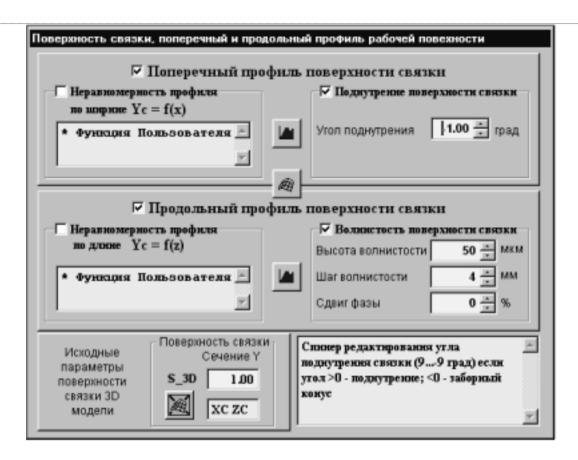
$$- Y_{c(x, z)} = Y_{c(0)} + f_x(x) + f_z(z), \qquad Y_{c(0)} - Y_{c(0)$$

 $, f_{x}(x) -$; $f_{z}(z) -$

(. 3.21);

- ()

(. . 3.20).


« »,

- 3D (. . 3.20);

– 3D

3D -

(. . 3.20), (. 3.22).

3.21 -

3D

. 3.23, 3.24)

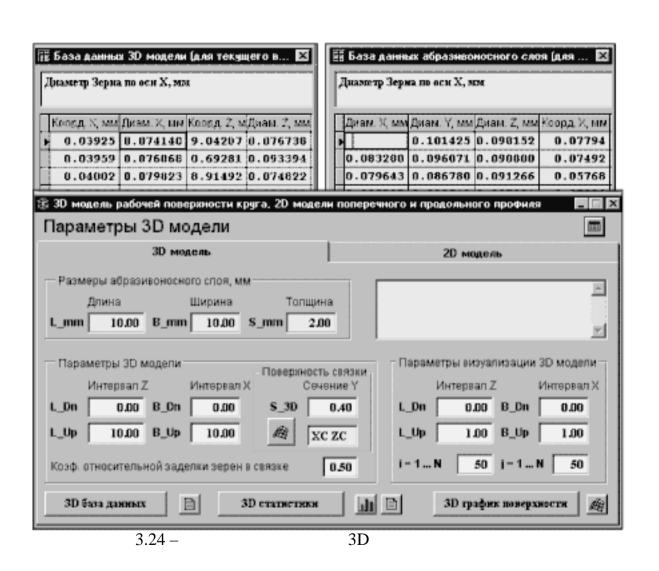
: DxN, DyN, DzN, X_N, Y_N, Z_N; DxN, DyN, DzN – ; X_N, Y_N, Z_N -

X, Y, Z.

(

```
ZERO_SYS
                                                              3 D
          ZERO_NNN
                                  Z3DM_NNN
                                                         YcX + YcZ
                                                                                 nS3D
                                   ► DxN
                                                                               nCoefZer
             DxN •
                                    DyN
             DyN
                                                     nS3D + YcX + YcZ
                                                                                nL3DDn
                                    DzN
                                                                                nL3DUp
                                                     - ZERO_NNN.Y_N
             DzN
                                    X_N
                                                                                nB3DDn
                                    Z_N
                                                                                nB3DUp
             Z_N
                                                   IIF(nS3D + YcX + YcZ -
                                     Y_C
                                                                                nAngle
             Y_N
                                                    ZERO_NNN.Y_N >=
                                     Y_N
                                                                                nCone
                                                    (nCoefZer - 0.5) * 2 *
                                     Z_T ◀
                                                                               nZWaveH
                                                 ZERO_NNN.DyN, "
         BETWEEN(ZERO_NNN.Z_N,
                                                                               nZWaveL
        nL3DDn - ZERO_NNN.DzN / 2,
                                                                               nZWaveF
        nL3DUp + ZERO_NNN.DzN / 2)
                 AND
        BETWEEN(ZERO_NNN.X_N,
        nB3DDn - ZERO_NNN.DxN / 2,
        nB3DUp + ZERO_NNN.DxN / 2)
                                          YcX = YAnglBond(nAngle, nCone, ZERO_NNN.X_N)
                 AND
          ABS(nS3D + YcX + YcZ - ZERO_NNN.Y_N) <
                                   YcZ = YWaveBond(nZWaveH, nZWaveL, nZWaveF, ZERO_NNN.Z_N)
            ZERO_NNN.DyN / 2
                  3.23 -
                                                3D
            (ZERO_NNN)
                               3D
                                                                      (Z3DM_NNN)
                                                                                          Integer
         -2147483647 ... 2147483647).
                                                                                    Integer
nCoefZero = 1000 -
                                                                           )
            Integer; nCoefCoord = 100000 -
   ).
                                     Numeric:
```

112 *3D*


```
( ) -3000000 (8 ) ; 

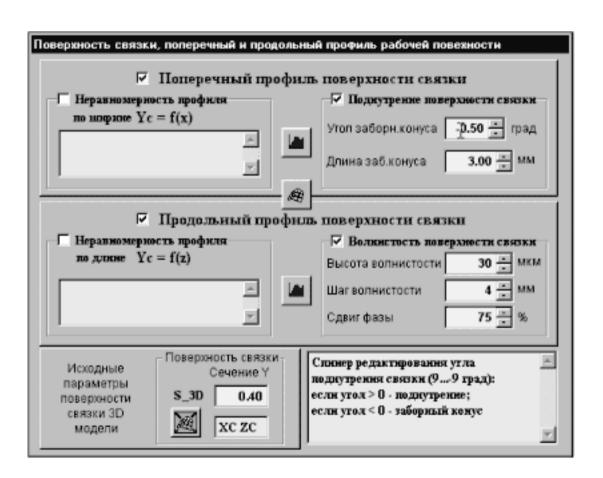
-2147483647 (11 ) . 

Numeric -3 (8+11) = 57 , Integer -6 \cdot 4 = 24. 

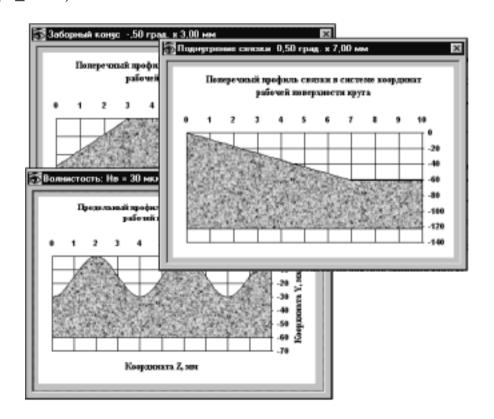
, Integer . 

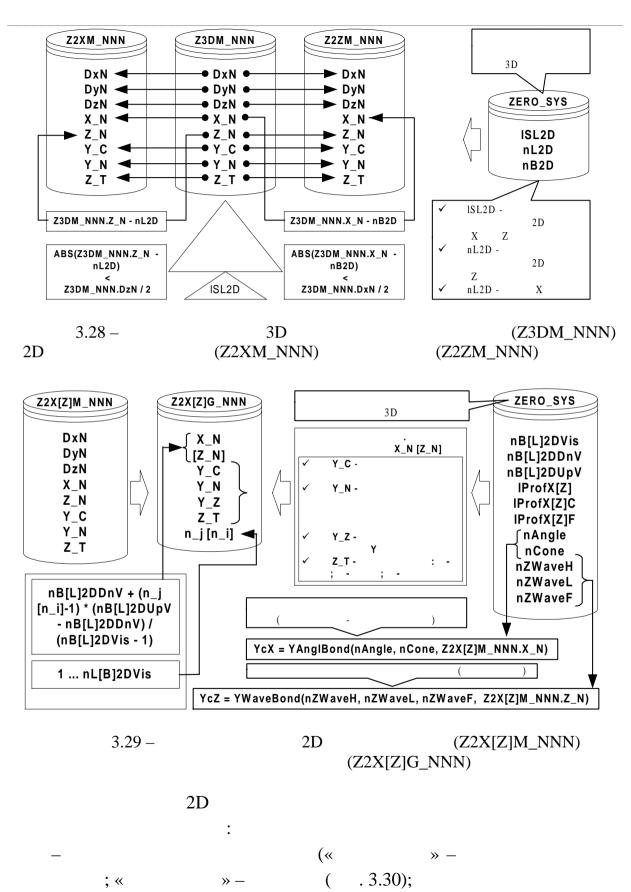
3D ,
```


Integer

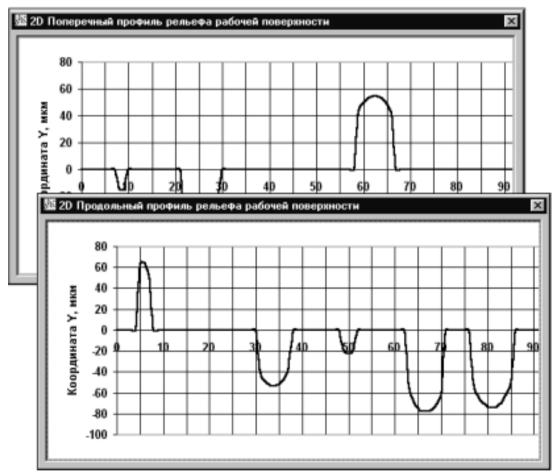

```
nCoefCoord_ = 1 / n oefCoord;
                          nCoefZero_ = 1 / oefZero/1000;
                           nCoefRadius_ = nCoefZero_ / 2.
         ( . . 3.23), (
                               . 3.25):
                                Yc = nS3D - YcX - YcZ
                                                                                    (3.37)
                                                                     Y (
    nS3D -
                               ); YcX, YcZ -
                                      Z)
        X)
                                                                           ZERO_SYS
                         Z3DG_NNN
    Z3DM_NNN
                                                        3D
       DxN
                           \begin{array}{c} X_- N \\ Z_- N \end{array}
                                                                           nB[L]3DVis
                                                         X_N, Z_N
       DyN
                                                                          nB[L]3DDnV
                                                Y_C -
       DzN
                                                                          nB[L]3DUpV
       X_N
                                                Y_N -
                                                                            IProfX[Z]
        Z_N
                            ΖT
                                                                           IProfX[Z]C
        Y_C
                                                                           IProfX[Z]F
        Y_N
                                                                            nAngle
                                                Z_T -
        \mathbf{Z}_{\mathbf{T}}
                                                                            nCone
                                                                           nZWaveH
                                                                           nZWaveL
                                   Z3DG NNN.PRN
                                                      MathCad
     nB[L]3DDnV + (n_j)
                                                                            nZWaveF
   [n_i]-1) * (nB[L]3DUpV
       - nB[L]3DDnV) /
      (nB[L]3DVis - 1)
                                     YcX = YAnglBond(nAngle, nCone, Z3DM_NNN.X_N)
       1 ... nL[B]3DVis
                             YcZ = YWaveBond(nZWaveH, nZWaveL, nZWaveF, Z3DM_NNN.Z_N)
          3.25 -
                                      3D
                                                                          (Z3DM_NNN)
                                                     (Z3DG_NNN)
                                   3D
                                                                                   . 3.26):
                                                                             Z(
nL3DDn, nL3DUp -
                             ); nB3DDn, nB3DUp -
                     X(
                                                                   ); nS3D -
                                          Y(
                                                                                         );
nCoefZer -
                                                                 Y,
                                                  0,001 ... 0,999.
                          ),
```

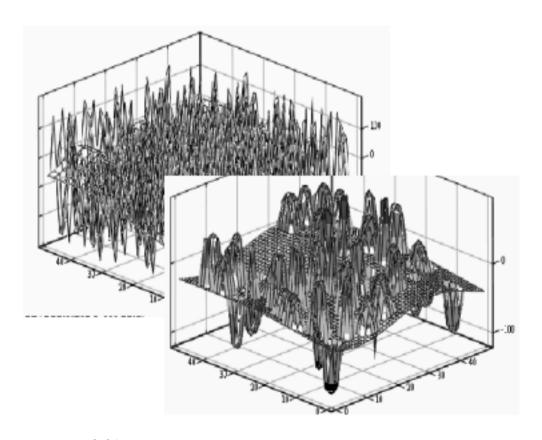
```
114 3D
```


```
. 3.26, 3.27):
                            : lProfX -
                                3D
lProfXC -
                                                            Yc = nS3D +
YAnglBond (nAngle, nCone, nX),
                                     nAngle –
             ; nCone (nConeInteg = nCone * nCoefCoord) -
                         (nAngle > 0)
                                                             (nAngle < 0);
Nx -
                X
  ); lProfXF –
YcX = YUserBond (nX); cYUserBond -
                            : lProfZ -
                          3D
                                                               ; lProfZC -
                                             YcZ = YWaveBond(nZWaveH,
                            nZWaveH (nZWaveHInteg = nZWaveH / 1000 *
nZWaveL, nZWaveF, nZ),
nCoefCoord) -
                                 (0 ... 9999),
                                               ; nZWaveL (nZWaveLInteg
= nZWaveL * nCoefCoord) -
                                           (0...9999),
                                                        ; nZWaveF –
                  \pm (0...100), %; nZ –
                                                \boldsymbol{Z}
                                ); lProfZF –
                  YcZ = YUserWave (nZ); cYUserWave -
                                (
                                                        ) 3D
                                                                  SELECT
                                   SQL (Structured Query Language)
                                                      Visual FoxPro.
SELECT-SQL
                                                        FoxPro.
```


3. 3D – 115

SELECT-SQL) SELECT < > AS >] < > AS < >] < FROM < > INTO TABLE < WHERE ORDER BY <


```
Z3DM_NNN ( .
  .3.24),
                       : DxN, DyN, DzN, X_N, Z_N, Y_C, Y_N, Z_N;
                 8
   DxN, DyN, DzN -
                                             ; X_N, Z_N -
                            X, Z, Y; C -
                                                 Y
                                           3D ; Y_N -
      Y
                                          (
                                      3D
                                        ; [-] - ); Z_N -
              : [+] -
                           3D
                                   (« » – ; « » –
                              ).
                                                      (.3.27)
                                             Visual FoxPro
   Microsoft Graph.
                                   3D
(Z3DM_NNN)
               2D
                                     (Z2XM_NNN)
(Z2ZM_NNN)
                                        3.28.
2D
                     (Z2X[Z]M_NNN)
(Z2X[Z]G_NNN) -
                  . 3.29.
```



118

3.30 - 2D

```
3.
       3D
                                                            119
                   2D
                                        ( . . 3.30):
           Z);
2D
           3D
                   2D
                                              ( . . 3.30):
                  X);
    2D
                  3D
                                                . 3.31)
                 3D
                                 MathCad
                                            Microsoft Graph.
          3D
                                      (Z3DM_NNN)
          (Z3DG_NNN)
                                    . 3.25.
```


3.5. 3D

Mi-

crosoft Graph, Microsoft Office 3D

Microsoft Visual FoxPro.

6-Visual FoxPro, Microsoft

Component Objects Model -Microsoft,

COM-

COM-

Visual FoxPro, Visual Basic Visual C++. Microsoft Graph

```
3.
              3D
                                                                    121
                                                       3D
                           )
         MS Graph.
                              MS Graph
                         Visual FoxPro
                                        MS Graph
                                        (Object Linking and Embedding -
OLE). OLE -
                        COM.
                                           OLE
                ),
                                                                  ).
                               OLE-
               OLE-
                                     Visual FoxPro
                         OLE-
                                    (OLE Bound Control)
                    OLE-
OLE-
                                    (OLE Container Control)
    OLE-
                                          OLE
   OLE-
General
              Visual FoxPro.
           . 3.32
                                                       Visual FoxPro
                                       MS Graph.
```

Graph_NN.vsx,

```
Visual FoxPro – Form.
                                                      Graph_NN.vsx (
   .3.32)
                               : Txt_Grapht (
                                                           TextBox); Ole-
                             OleBoundControl);
BoundControl1 (
                                   : c_Graph_Dbf -
    ; c_Path -
                                ; c_Path_Tmp -
   ; c_Path_Work -
                                             ; n_Row_Graph -
            c_Graph_Dbf;
                           : m_Graph_Size -
                                                   (
                                                ); m_Graph_Data -
cData
                     MS Graph (
                                                   MS Graph
                                            MS Graph -
          )
                                                   : TAB = CHR(9) -
                         ; CRLF = CHR(13) + CHR(10) -
         CHR(n)
                                                     ANSI
     n.
                                                MS Graph
                     . 3.33, 3.34
```

MS Graph

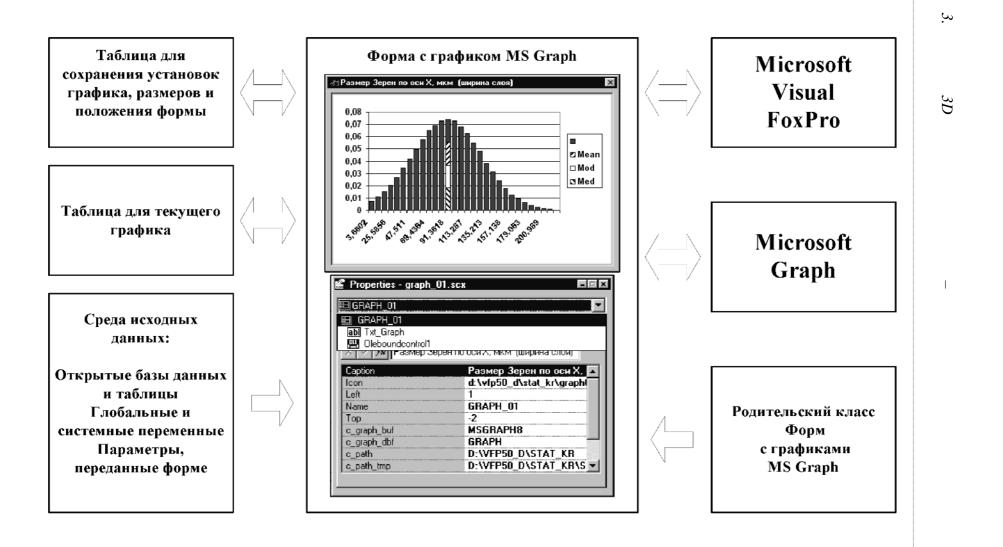
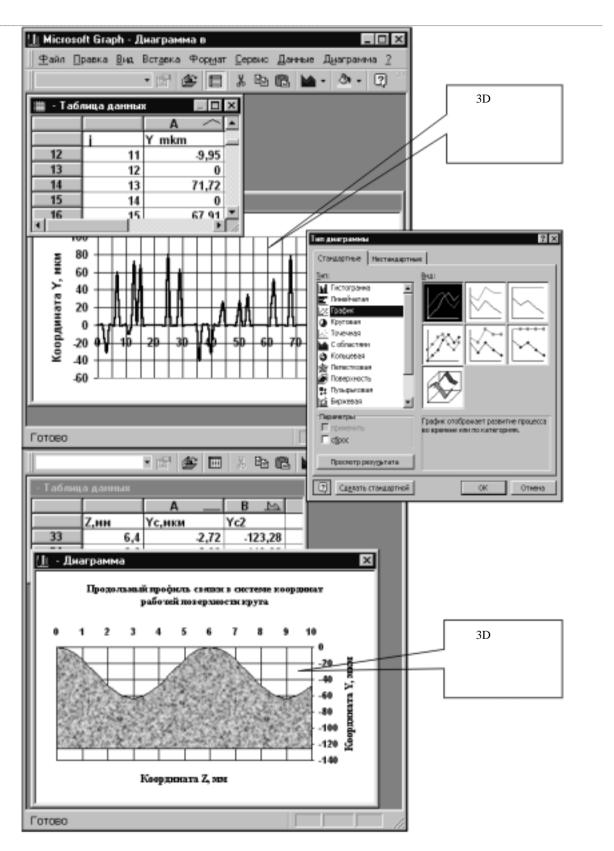
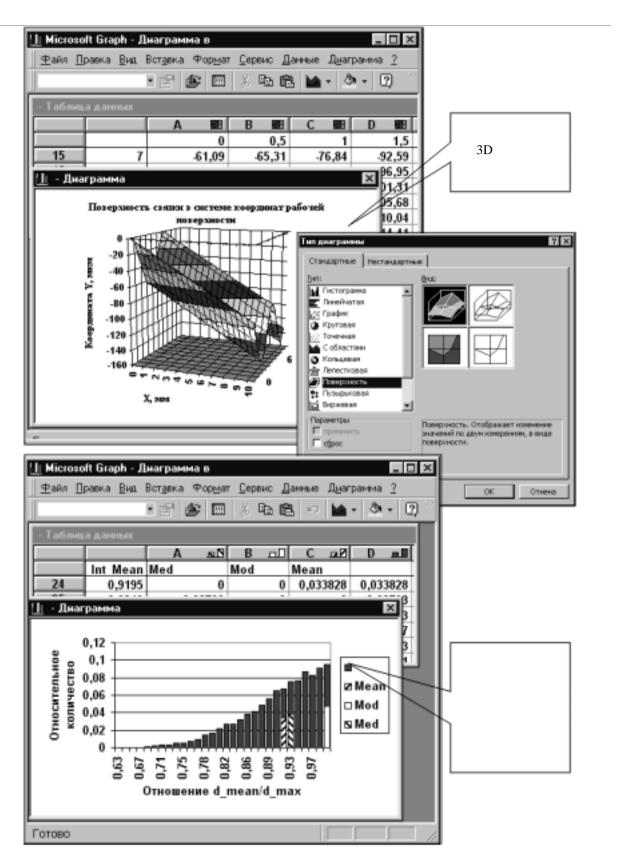




Рисунок 3.32 - Структурная схема формы Visual FoxPro для визуализации данных с использованием MS Graph

3.33 -

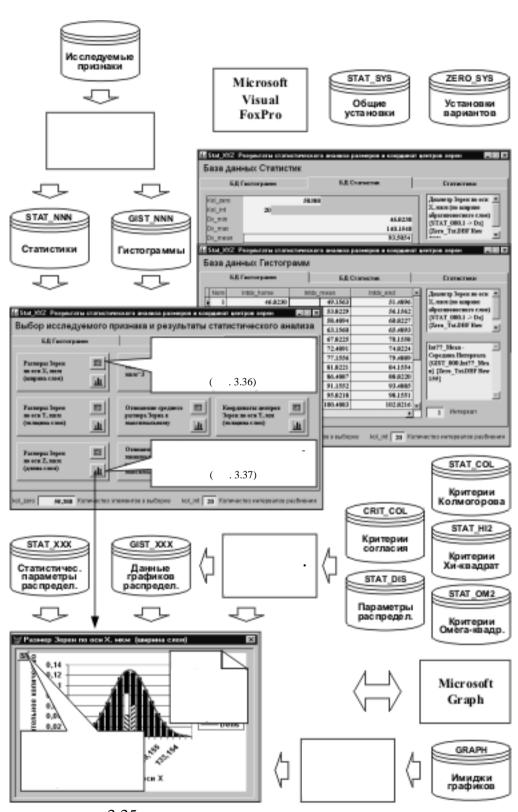
3.34 -

MS Graph

```
126
        3D
     2D
                                                           . 3.33)
                                                   ( .
        2D
                                                . 3.33),
                               . 3.34)
3D
MS Graph,
            ( . . 3.34)
     3.6.
                        3D
3D
                                                                3.1, 3.2.
                                                                  3.3.2,
                                                              3.5.
                   . 3.35.
                                                  ( ) ZERO_NNN ( -
                          Z3DM_NNN (
                                                                 NNN -
                                                           ),
```

```
3.
                  3D
                                                                                      127
                                      STAT_NNN (
ST3D_NNN (
                                                                  GIST_NNN (
                           GI3D_NNN (
                                                                         NNN -
                    )
                                                                  ),
                                         (STAT_NNN)
                                                                     x_i (i = 1, ..., n)
       x_{\min}, x_{\max} -
                                                              1, 2, 3, 4-
       m_1, m_2, m_3, m_4 -
       m_4^{(0)}\,,m_2^{(0)}\,,\;m_3^{(0)}\,,\;m_4^{(0)}\,-\,
                                                             2, 3, 4-
                                        (E = m_1);
      E-
                       (D=m_2^{(0)});
      D-
       s -
       k_v –
       \beta –
       γ —
       \Delta x –
                                                                                    ).
    . 3.36.
                                                                          (STAT_NNN
     ST3D_NNN)
                                                       (GIST_NNN
                                                                           GI3D_NNN)
```

. -


```
128 3D
```

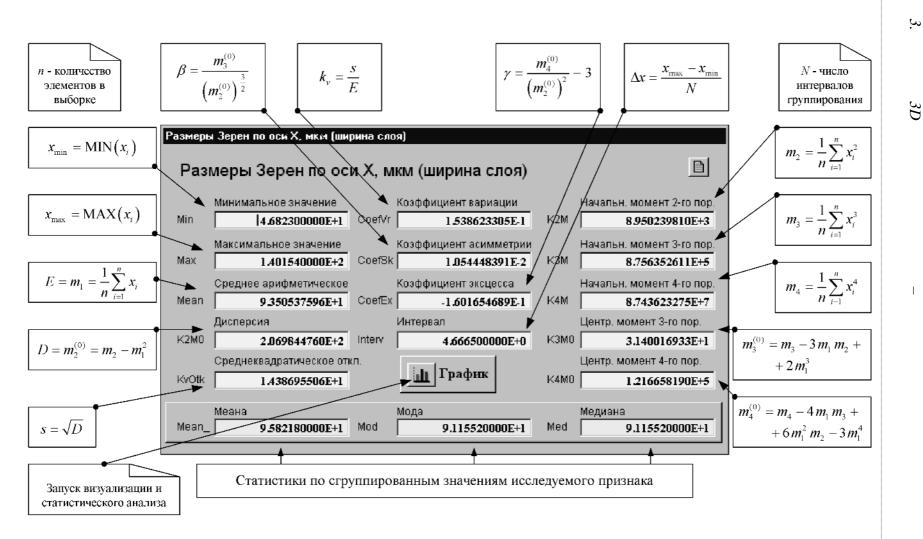
 $x_i(x_1, ..., x_n),$ N nN). [2, 18]: $N = \log_2(n) + 1$, (3.38) $N = 1 + 3{,}322\lg n(n \le 100), N = 5\lg n(n > 100);$ (3.39)(3.38) [2], (3.39) [18] : $n = 10 \Rightarrow N = 4$; $n = 10^2 \Rightarrow N = 8 - 10$; $n = 10^3 \Rightarrow N = 11 - 15$; $n = 10^4 \Rightarrow N = 14 - 20;$ $n = 10^5 \Rightarrow N = 18 - 25;$ $n = 10^6 \Rightarrow N = 21 - 30;$ $n = 10^7 \Rightarrow N = 24 - 35.$: $x_{\min} = \text{MIN}(x_i)$; $x_{\max} = \text{MAX}(x_i)$; $\Delta x = (x_{\text{max}} - x_{\text{min}}) / N;$ (j = 1, ..., N): $x_{\text{home}(j)} = x_{\min} + \Delta x \cdot (j-1);$ $x_{\text{mean(j)}} = x_{\text{home}} + 0.5\Delta x;$ $x_{end(i)} = x_{home} + \Delta x;$ x_i (i = 1, ..., n), $x_{\text{home}(j)} \le x_i < x_{\text{end}(j)} \ (x_i < x_{\text{max}}), \ j = N(x_i = x_{\text{max}}).$

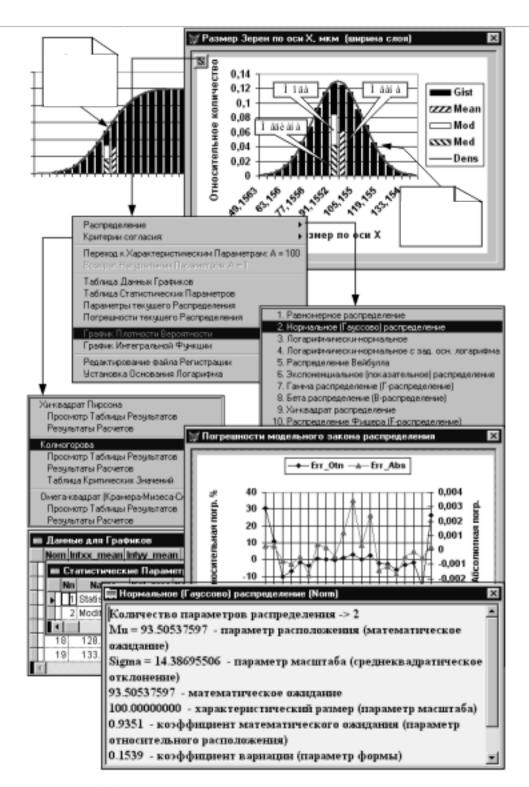
j

3. 3D – 129

```
: j = INT((x_i - x_{min}) / \Delta x) + 1 (x_i < x_{max}),
                                                                                                                 INT(z) –
                                                       z;
                                                     p_j = n_j / n;
                                                           X_{home(j)}, X_{mean(j)}, X_{end(j)}, n_j, p_j
                                                                                                                                    N.
                                                                                                                       . 3.36)
                                                                                                                                           x<sub>mean</sub>,
                                         x_{\text{med}}.
             mod
                                                                                                                                           x<sub>mean</sub>,
                                             x_{\text{med}}
              mod
                                                                                            x_{\text{mean}}, mod, x_{\text{med}}
                                                                                                       x_{\text{mean}}, mod, x_{\text{med}}
                                                                   \Delta x
                                                                                      x_{\text{mean}}
                          \boldsymbol{\mathit{E}}
x_{\text{home}(j)} \le E < x_{\text{end}(j)}:
                                                 j_{\text{mean}} = \text{INT}((E - x_{\text{min}}) / \Delta x) + 1;
                                                                                                                                           (3.40)
                                                                                                            j_{\text{mean}}: x_{\text{mean}} = x_j,
j = j_{\text{mean}}.
```


3.35 -




Рисунок 3.36 — Форма вывода статистических характеристик исследуемого признака (пример для размера зерен) и расчетные зависимости

```
132 3D
```

```
) mod
                                                                  (
                                                            p_j
                                                                       p_{\text{mode}} = p_{\text{max}} = \text{MAX}(p_j)
      j = j_{\text{mod}};
                                                                                                j_{\text{mod}}: x_{\text{mod}} = x_j,
j = j_{\text{mod}}.
                                             x_{\text{med}}
                                                      x_{\text{med}},
                         x_{\text{med}}.
                                                                                                    SUM(p_j) > 0.5,
                                                        p_j
                                      j = j_{\text{med}};
j_{med}: x_{med} = x_j,
                               j = j_{\text{med}}.
                                                x_{\text{mean}}, x_{\text{mod}}, x_{\text{med}}
(STAT_NNN
                              ST3D_NNN)
         ( . . 3.35).
                                                                                     . 3.35):
- «
                                                                                           ».
                                            », «
     - «
                                                                                                                            »:
                              . 3.36);
                              . 3.37).
                                                                                                              . 3.37)
                                                    MS Graph
```

.

```
3.
                           3D
                                                                                                                                    133
                                                                                                                                       ),
                                                                                      (
      . 3.37).
                                      («
                                                                                                               »)
                                                             («
                                                                            »)
                                                                                                                              ).
                                                                          x_j
          \boldsymbol{E}
                                     D:
                                     \hat{x}_j = \frac{x_j}{a_0}; \ \hat{E} = \frac{E}{a_0}; \ \hat{D} = \frac{D}{{a_0}^2},
                                                                                                                                (3.41)
      \hat{x}_j,\,\hat{E},\,\hat{D} –
                                                                            ; a<sub>0</sub> –
«
                                      GIST_XXX); «
STAT\_XXX); \  \, «
                                                                                          ; «
«
                                                           ».
                                          p_j (j = 1, ..., N)
```


3.37 -

: « » –

; « »

```
135
                                        (
                                                        – 10).
                             17
                                                                    . 3.38):
                            , 3 –
1 –
6 –
                                                                 ); 8 –
              ); 9 –
                                                      ); 10 –
(B-
                                                                        (F-
              ); 11 –
                                                      ; 12 –
                                ; 14 –
                         ; 13 –
                                                      ; 15 –
16 –
           ; 17 –
           (2.2).
                          :\chi^2,
                                                         3D
     3.7.
                     3D
```

3.

3D

3D 3D

3D

1. Равномерное

$$f_{Rand} = \frac{1}{x_{max}} - x_{min}$$

2. Нормальное распределение

$$f_{Norm} = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

3. Логарифмически-нормальное

$$f_{lnNorm} = \frac{1}{x \cdot \sigma \cdot \sqrt{2 \cdot \pi}} exp \left[-\frac{1}{2} \left(\frac{ln(x) - \mu}{\sigma} \right)^{2} \right]$$

4. Логнормальное с зад. осн. логарифма

$$f_{log \, Norm} = \frac{1}{x \cdot \sigma \cdot \sqrt{2 \cdot \pi}} \exp \left\{ -\frac{1}{2} \left[\frac{1}{\sigma} \left(\frac{ln(x)}{ln(b)} - \mu \right) \right]^{2} \right\}$$

$$f_{WeibnB} = \frac{\delta}{\eta} \cdot \left(\frac{x}{\eta}\right)^{(\delta-1)} exp\left[-\left(\frac{x}{\eta}\right)^{\delta}\right]$$

7. Гамма распределение

$$f_{Gamma} = \frac{\left(\frac{x}{b}\right)^{(c-1)} \cdot exp\left(-\frac{x}{b}\right)}{b \cdot \Gamma(c)}$$

Исходные выборочные статистические характеристики

исследуемого

признака

9. Хи-квадрат

$$f_{Ih^2} = \frac{x^{\frac{v}{2}-1} \cdot exp\left(-\frac{x}{2}\right)}{2^{\frac{v}{2}} \cdot \Gamma\left(\frac{v}{2}\right)}$$

6. Экспоненциальное

$$f_{\rm Exp} = \frac{1}{b} \cdot \exp \biggl(-\frac{x}{b} \biggr)$$

$x_{\min} = \text{MIN}(x_i)$ $x_{\max} = \text{MAX}(x_i)$ $E = m_1 = \frac{1}{n} \sum_{i=1}^{n} x_i$ $11. По закону арккоси <math display="block">f_{ArcSin} = \frac{1}{\pi \cdot \sqrt{l^2 - (x - a)^2}}$ $k_{v} = \frac{\sqrt{D}}{E}$

8. Бета

$$f_{Gamma} = \frac{\left(\frac{x}{b}\right)^{(c-1)} \cdot exp\left(-\frac{x}{b}\right)}{b \cdot \Gamma(c)} \qquad f_{IR^2} = \frac{x^{\frac{v}{2}-1} \cdot exp\left(-\frac{x}{2}\right)}{2^{\frac{v}{2}} \cdot \Gamma\left(\frac{v}{2}\right)} \qquad f_{Beta} = \frac{\Gamma(v+w)}{\Gamma(v) \cdot \Gamma(w)} \cdot \left(\frac{x}{b}\right)^{v-1} \cdot \left(1 - \frac{x}{b}\right)^{w-1}$$

10. F-распределение

6. Экспоненциальное
$$f_{Exp} = \frac{1}{b} \cdot exp\left(-\frac{x}{b}\right) \qquad \qquad f_F = \frac{\Gamma\left(\frac{v+w}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \cdot \Gamma\left(\frac{w}{2}\right)} \cdot \frac{v^{\frac{v}{2}} \cdot w^{\frac{w}{2}} \cdot x^{\frac{v}{2}-1}}{(v \cdot x + w)^{\frac{v+w}{2}}}$$

11. По закону арккосинуса

$$f_{ArcSin} = \frac{1}{\pi \cdot \sqrt{l^2 - (x - a)^2}}$$

12. Треугольное распределение Симпсона

$$f_{Simpson} = \begin{cases} l + x - a / l^2, \\ l - x + a / l^2 \end{cases}$$

5. Распределение Вейбулла

$$f_{Weibull} = \frac{\delta}{\eta} \cdot \left(\frac{x}{\eta}\right)^{(\delta-1)} exp \left[-\left(\frac{x}{\eta}\right)^{\delta}\right]$$

17. Трапециидальное

распределение Симпсона
$$f_{Simpson2} = \begin{cases} (x-a+l)/(l^2-b^2), \\ 1/(1+b), \\ (a+l-x)/(l^2-b^2) \end{cases}$$

13. Релея

$$f_{Rekay} = \frac{x}{\sigma^2} exp \left(-\frac{x^2}{2 \cdot \sigma^2} \right)$$

14. Максвелла

$$f_{Maxowell} = \frac{x^2}{\sigma^3} \sqrt{\frac{2}{\pi}} exp\left(-\frac{x^2}{2 \cdot \sigma^2}\right)$$

15. Логистическое

$$f_{Relay} = \frac{x}{\sigma^2} exp\left(-\frac{x^2}{2 \cdot \sigma^2}\right) \qquad \qquad f_{Moovwell} = \frac{x^2}{\sigma^3} \sqrt{\frac{2}{\pi}} exp\left(-\frac{x^2}{2 \cdot \sigma^2}\right) \qquad \qquad f_{Logistic} = \frac{exp\left[(x-a)/k\right]}{k\left\{1 + exp\left[(x-a)/k\right]\right\}^2}$$

16. Парето

$$f_{Pareto} = c \cdot x^{-c-1}$$

Рисунок 3.38 – Плотности основных законов распределения, используемых при статистическом анализе исследуемых признаков

3.	3D	_	137
			-
		,	-
		:	-
•			
		3D	,
(,	DxN, DyN, DzN –)	, -
`			
		\sqrt{D}	D-
•			_
		,	
		1,	-
	,	3 30	
3.7.1.	,		
		()	_
,		,	_
3D		,	-
	_).	-
		,	-
	:	100/80;	100
1			

 $a_0 = 100$ Характеристические $k_m = 0.95;$ параметры закона распределения размеров $E = \mu = a_0 k_{\rm m} = 95$ зерен a_0, k_m, k_v $\sigma = E \cdot k_v$ $a_0 \cdot k_m \cdot k_v = 14,25$ $k_v = 0.15$. Параметры распределения размеров зерен . 3.40. μ, σ . 3.41). Формирование .3.42)экземпляров 3D модели навески зерен b = 0.68 (Имитационный контроль); зернового состава навесок c = 14,709 (зерен, % Рп - предельная Рк - крупная Ро - основная Рд - дополнительная Рм - мелкая Корреляционный и регрессионный анализ взаимосвязи . 3.39): $P = f(k_m, k_v)$ \sqrt{D} ; 3.39 -. 3.40).

3. 3D – 139

-

 k_m k_v .

,

 k_m, k_v , ,

 κ_m, κ_v , , , ,

φ. -

, ,

 $\varphi = \sqrt[10]{10} = 1,259$

 $\varphi = \sqrt[5]{10} = 1,585.$ $k_m \qquad 1/\varphi \qquad 1.$

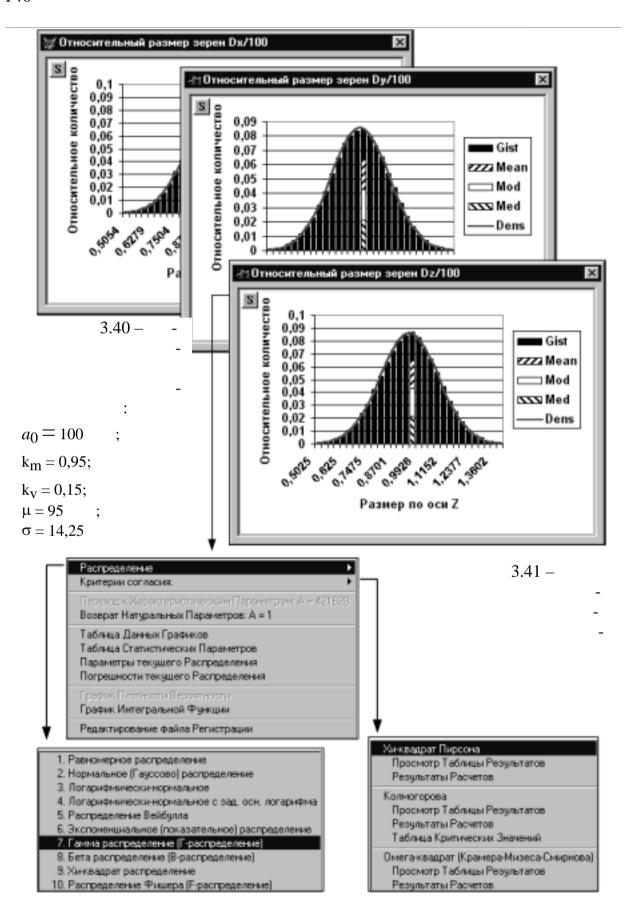
0,8 ... 1

0,05; $-0,63 \dots 1$ 0,0925. k_{v}

; -

 $-0.05 \dots 0.15;$ $-0.05 \dots 0.25.$ 0.05. k_{v}

[1].


 k_m k_v - σ , -

,

: $E = \mu = a_0 k_m$; $\sigma = a_0 k_m k_v$, $a_0 -$

; k_m –

; k_{ν} –

142 *3D* -

= 100 . . .

, (10 . .)

1 %.

3D -

Visual FoxPro.

Statistica Nonlinear Estimation.

_

 $k_m, P = f(k_m);$

·-

 $P = f(k_m) k_{v};$

 $k_m \quad k_{v}, P = f(k_m, k_v);$

 $P = f(k_m, k_v).$

,

,

,

5 %. . 3.43.

 k_m , :

$$P(k_m) = Ak_m^2 + Bk_m + C; (3.42)$$

, ,

$$P(k_m) = \exp(Ak_m^2 + Bk_m + C),$$
 (3.43)

 $A, B, C - P = f(k_m);$

 $P = f(k_m) k_v :$

$$A(k_v) = a_A k_v^{b_A} + c_A; \ B(k_v) = a_B k_v^{b_B} + c_B; \ C(k_v) = a_C k_v^{b_C} + c_C, \quad (3.44)$$

$$, b, \dots c -$$

, *b* , ... *c*

:

$$P(k_{v}, k_{m}) = a_{1}(k_{v}^{b} + c_{1})k_{m}^{2} + a_{2}(k_{v}^{b} + c_{2})k_{m} + a_{3}(k_{v}^{b} + c_{3});$$
(3.45)

, ,

$$P(k_v, k_m) = \exp\left[a_1(k_v^b + c_1)k_m^2 + a_2(k_v^b + c_2)k_m + a_3(k_v^b + c_3)\right], \quad (3.46)$$

 $a_1, a_2, a_3, b, c_1, c_2, c_3 -$

$$P = f(k_m, k_v) -$$

,

2/1 1/0).

$$P$$
 $k_m, k_v,$

•

144 *3D* -

2 .

$$y_1 = ax + b \qquad \qquad y_2 = ax^2 + bx + c$$

$$y_3 = \frac{a}{x} + b \qquad \qquad y_4 = a \exp(-x) + b$$

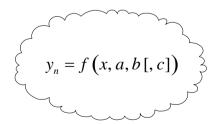
$$y_5 = a \lg x + b \qquad \qquad y_6 = \frac{a}{1/x + b}$$

$$y_7 = \frac{1}{a \exp(-x) + b}$$

$$y_8 = bx^a$$

$$y_9 = b \exp(ax)$$
 $y_{10} = b \exp\left(\frac{a}{x}\right)$

$$y_{11} = cx^b \exp(ax)$$
 $y_{12} = c \exp(ax^2 + bx)$


$$y_{13} = \frac{1}{ax+b}$$

$$y_{14} = \frac{x}{ax+b}$$

$$y_{15} = \sqrt{ax^2 + bx + c}$$
 $y_{16} = \frac{1}{\sqrt{ax^2 + bx + c}}$

$$y_{17} = \frac{x}{\sqrt{ax^2 + bx + c}}$$
 $y_{18} = \frac{a}{x^2} + \frac{b}{x} + c$

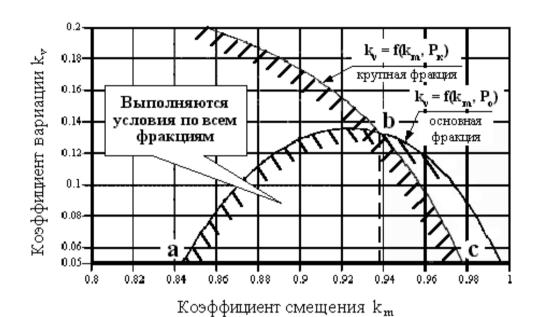
$$y_{19} = a \ln^2 x + b \ln x + c$$
 $y_{20} = \exp(ax^2 + bx + c)$

3. 3D

145

3.7.2.

 $\begin{cases} P < \exp[a_{1}(k_{v}^{b} + c_{1})k_{m}^{2} + a_{2}(k_{v}^{b} + c_{2})k_{m} + a_{3}(k_{v}^{b} + c_{3})] \\ P < \exp[a_{1}(k_{v}^{b} + c_{1})k_{m}^{2} + a_{2}(k_{v}^{b} + c_{2})k_{m} + a_{3}(k_{v}^{b} + c_{3})] \\ P \ge a_{1}(k_{v}^{b} + c_{1})k_{m}^{2} + a_{2}(k_{v}^{b} + c_{2})k_{m} + a_{3}(k_{v}^{b} + c_{3}) \\ P < \exp[a_{1}(k_{v}^{b} + c_{1})k_{m}^{2} + a_{2}(k_{v}^{b} + c_{2})k_{m} + a_{3}(k_{v}^{b} + c_{3})], \end{cases}$


(3.47)

 $\begin{cases} P \ge a_{01}(k_{v}^{b_{0}} + c_{01})k_{m}^{2} + a_{02}(k_{v}^{b_{0}} + c_{02})k_{m} + a_{03}(k_{v}^{b_{0}} + c_{03}) \\ P < \exp(a_{k1}(k_{v}^{b_{k}} + c_{k1})k_{m}^{2} + a_{k2}(k_{v}^{b_{k}} + c_{k2})k_{m} + a_{k3}(k_{v}^{b_{k}} + c_{k3})). \end{cases}$ (3.48)

250/200.

 k_{v} .

a-c

 $3.44 - k_m k_v,$

$$k_{v}$$
 $k_{m}(,b).$ k_{v} (3.48):

$$k_{v} = f(k_{m}, P) = \left[\frac{P - a_{o1}c_{o1}k_{m}^{2} - a_{o2}c_{o2}k_{m} - a_{o3}c_{o3}}{a_{o1}k_{m}^{2} + a_{o2}k_{m} + a_{o3}} \right]^{\frac{1}{b_{o}}}.$$
 (3.49)

$$k_{v}$$
 $k_{m}(b,c).$ k_{v} (3.48):

$$k_{v} = f(k_{m}, P) = \left[\frac{\ln(P) - a_{k1}c_{k1}k_{m}^{2} - a_{k2}c_{k2}k_{m} - a_{k3}c_{k3}}{a_{k1}k_{m}^{2} + a_{k2}k_{m} + a_{k3}}\right]^{\frac{1}{b_{k}}}.$$
 (3.50)

-	

...

Фракция	Коэффициенты уравнений регрессии процентного содержания фракций в навеске зерен								
	a_1	a_2	<i>a</i> ₃	b	c_1	c_2	<i>c</i> ₃		
Предельная	0,338978	0,329152	-0,726992	-0,13158	-6,26542	-6,26542	-6,26542		
Крупная	25,29969	-1170,90	1156,000	0,024049	-0,819016	-0,964135	-0,964135		
Основная	-14577,5	26683,58	-12043,8	-0,150038	-1,13832	-1,13650	-1,13832		
Дополнит.	-1,11152	1,492705	-0,481025	-1,53694	22,82648	25,96829	22,09619		
Мелкая	-0,619358	0,293392	0,114161	-2,02502	-7,87232	2,873374	-4,78872		

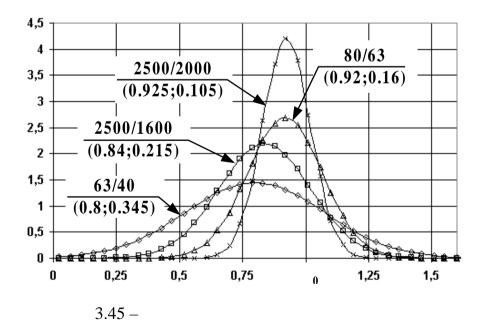
Филипи	К	Коэффициенты уравнений регрессии процентного содержания фракций в навеске зерен							
Фракция	a_1	<i>a</i> ₂	<i>a</i> ₃	b	c_1	c_2	<i>c</i> 3		
Предельная	1,513854	-0,850623	-0,785667	-2,065039	-3,66619	-3,95389	-6,84056		
Крупная	-80,0392	-1,44710	83,16444	0,190398	-0,091059	-77,5830	-1,40897		
Основная	-134,618	222,6682	-87,3972	-1,11507	3,138588	3,259210	2,826839		
Дополнит,	-76,3200	17,61101	20,28459	-0,151003	-1,00768	-0,352155	-1,18374		
Мелкая	1,795918	-3,25852	1,277851	-1,84513	-8,79984	-5,40053	-1,20326		

148 3D

```
k_m, k_v
                                                                               k_v
                    k_v
                                                  k_m, k_v c
                                                                    0,005
     k_v.
              (3.49)
                        (3.50).
                          ).
    . 3.45–3.48.
                          ( . . 3.48)
                                                               k_v
                                                                                 0,105 -
0,160 \ (k_m = 0,915 - 0,925).
                                                                                       k_{v}
                 0,215 - 0,345 \ (k_m = 0,800 - 0,840).
                                                                      k_v
                                   0,245 - 0,800 \ (k_m = 0,450 - 0,735).
                                       _{=}a/a
                                 φ
    (
          . )
```

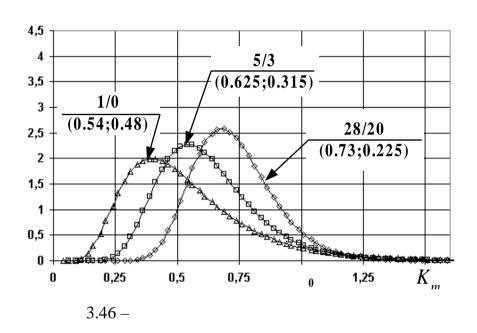
3. 3D149).

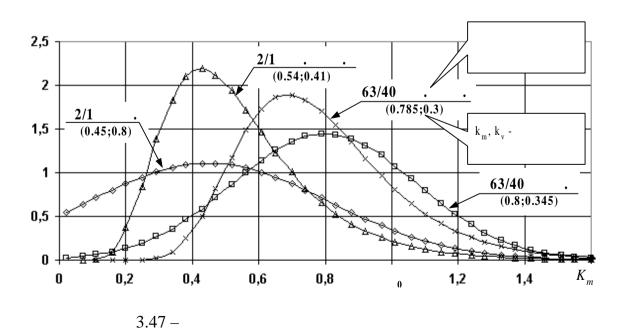
1,4-2).φ (


 $k_v = 0.16$

 k_{v} $+7 \div -15$ %; $-4 \div -95 \%$.

 $k_v > 0.16$ (.


3.45 - 3.48.

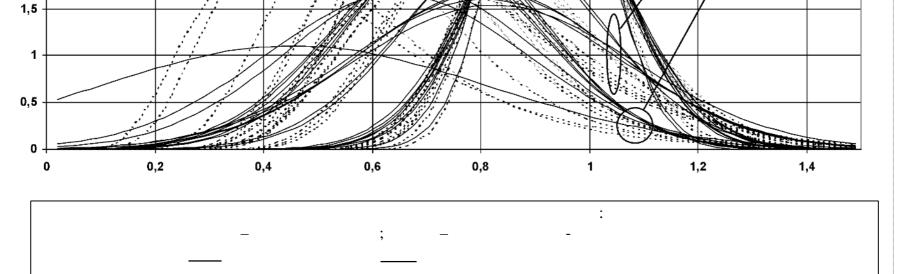

 k_m 0.

(.),

, , , . . .

узкий диапазон

шлифпорошков


широкий диапазон

 шлифпорошков

микропорошки

логарифмически -

нормальный закон

 $k_v = 0.220 \dots 0.300$

 $k_{\rm m}^{\rm v} = 0.775 \dots 0.845$

 $k_v = 0.110 \dots 0.165$ $k_m = 0.920 \dots 0.935$

 $k_v = 0.225 \dots 0.480$ $k_m = 0.540 \dots 0.730$

4,5

2,5

2

нормальный закон

 $k_v = 0.215 \dots 0.345$ $k_m = 0.800 \dots 0.840$

 $k_v = 0.105 \dots 0.160$ $k_m = 0.915 \dots 0.925$

 $k_v = 0.245 \dots 0.800$ $k_m = 0.450 \dots 0.735$

152	<i>3D</i>		-				
	3.8.						
	1.				3D		-
3D	2.				-		?
3 D	3.	•				3D	-
	-						
	4.		25				
	5.		3D	•			-
	6.			,		3D	
	7.			•		_	-
	8. ? 9.						-
	, 10.	:	?		,	,	_
	3D			_			
	11.	3D					-
	12.						-
	13.			•			
	14.			•			

?

3.	<i>3D</i>	-		153
15.		?		
16. ?		·		-
17.			3D	-
18.	9		3D	-
19.	?			(Ohio at
Linking and I 20.	Embedding – OLE)?			(Object
21.	?			-
22.				-
23.				
24.			?	
25.			0	3D -
26.			?	-
27.			?	-
28.		,	·	

			Panlatir	n summ	a petuntur –	•		
	»,		3D 3D		, «		I .	
3D -	ŕ			(,			3E
4.1.	«				,	*		
«		,	-		- (3D)	».		
	(),	,		,		,	

[3]: (4.1) = 0,5 ... 0,7. < 0,5); > 0,7 > 0,6 < 0,5, . . 2 > 0,7,

.

,

. > 0,7,

[33] (, 3-(3D) [5, 22]

« »: (4.2) 3, 3D E^1 , (4.3)

,

 $V_{
m p}$

158 *3D* 3D **«** 4.2. [19]

_ ;

,

				,	
			•		
				(
).		(
	•				
			•	;	
				,	
•					
_					
				«	_
	<i>»</i> ,				
					,

•

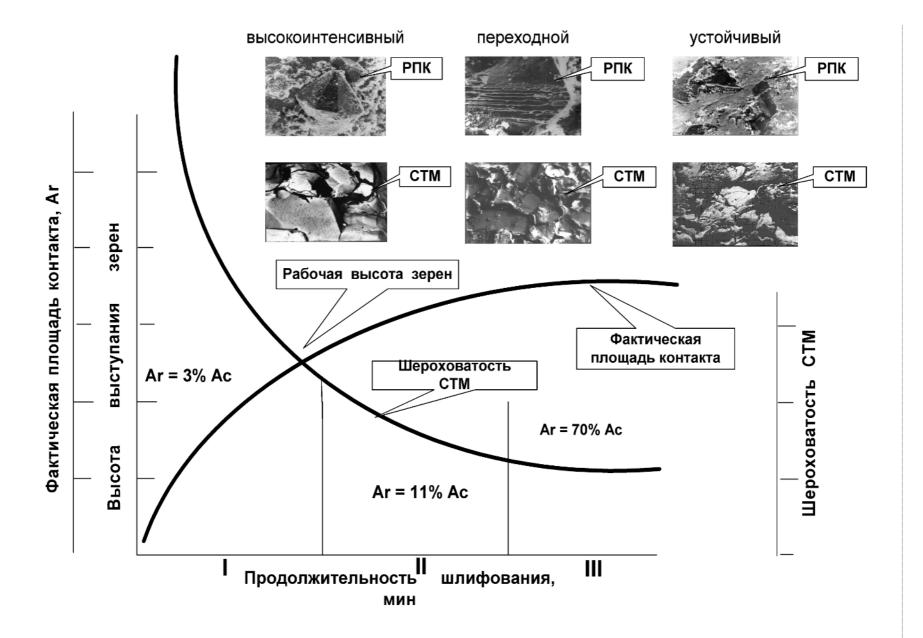
1,5-2,0 .

4.3.

(

```
160 3D -
```

. .). (1 - 2)) [33]. 1,5–2 » [33]. **«** [19], ($\int_{0}^{V} \frac{\Delta E(V)}{A} dV = \min;$ (4.4)


 $\frac{A}{}=\max,$ (4.5)

- ;

```
V-
                  (
                         ),
                           «
                                                                     ).
                                                                      3D
```

```
162 3D
```

```
: 1)
        )
                                                                  «
                        ); 2)
                      ; 3)
                                   «
                                               (
                                    ),
             (
),
                                                                    «
                                                                                    ».
    ):
                                (I),
                                                   (II),
                                                                       (III) (
                                                                                  . 4.1).
```


164 *3D* -

_

,

.

(.4.1).

4.1 –

			,
	20	20–50	. 50
	35	35–90	.80
	40	40–80	.80
	50	50–100	.100
-	170	170–240	.240
-	210	210–270	.270
	250	250–300	.300
-16*	350	350–370	.370
-20*	920	920–960	.960
-60*	1200	1200–1400	.1400
	* 1700	1700–1900	.1900
-765*	1300	1300–1500	.1500
*	1800	1800–1900	.1900

•

P = 2,0 ; V = 30 /; S = 1 / .

· ·

:

$$A = K \cdot \tau$$
,

```
; τ –
«
                                     » ( . . 4.1).
                        «
```

166 *3D*

3/ 4.2 -

10³

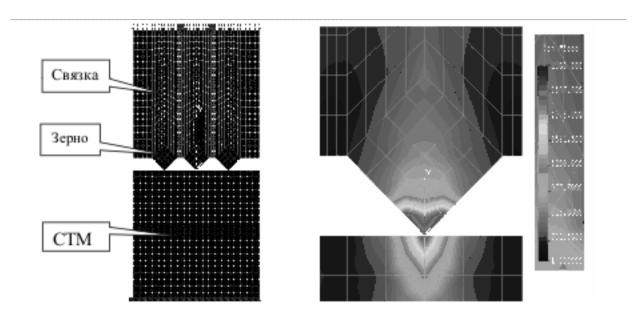
			«	- »,	%	
	0,1	1	7	25	45	60
	75	46	29	11	4	1
	125	79	51	21	8	1
	193	131	88	41	19	3
-	912	718	506	453	438	311
-	1102	620	406	292	210	121
	205	152	111	63	34	2
	1106	789	622	409	307	302
-16*	9600	7300	6500	5400	4700	3700
-20*	18300	12500	8700	7400	6300	5800
-60*	54300	49600	43200	39600	35700	31600
*	62600	58600	52700	48600	41500	38500
-765*	9400	8400	7300	6700	5480	4740
*	12000	9800	8700	7300	6500	5870

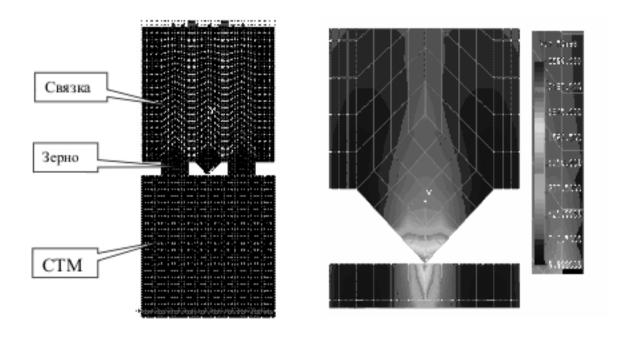
: 12 2-45 150×10×3×32 6 50/40 6-14 4;

P = 2.0 ; V = 30 /; S = 1 / .

 t_{ps} t_{ps} t_{ps}

 t_{ps}


() 3D


«

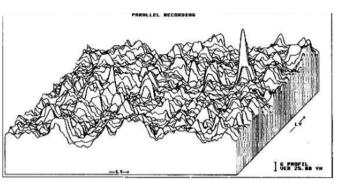
5–10

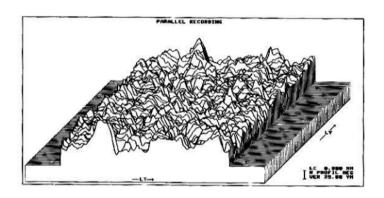
```
5-10
                        - ».
  5 ( .4.2).
S = 5 / .
P = \frac{P}{A_c}
                              A_c
                           0,001 12 2, ...
10000
                                      10000
                                  100
                                         ).
                           (
```

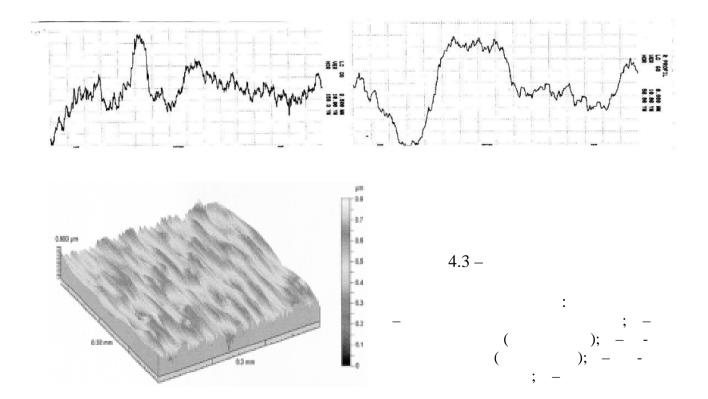
3D

3D			3D
- ». ,		« ,	
1)	,	, » , ; 2)	, -
3)	, -	,	_
«	_	•	
	,		·

4.4. 3D


()

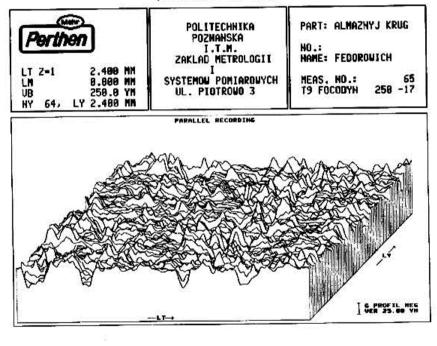

,


170 *3D*

```
[29],
                                        3D
                  3D
                   «Perthometer S8P»
FOCODYN,
                                                                  \pm 250
               630/500 (
                         . 4.3 ).
      9
                     86
        [9],
                 4.3 - 4.5:
     R –
                                                  ; R -
                 R ; RQ -
                                                                 ; RT –
                                         ; RSM -
           ; RSK –
                                                (R_z); TPK –
 ; RZISO –
                                                              ; S –
                                ); VER –
               ; (
                              ; LT –
HOR -
GS –
```



```
172 3D
```


3D (), NEG.

(.4.3), (.4.3). (NEG) ,

,

3 (.4.4 4.5).

perthometer S8P 6.22

4.4 – 3D

, ,

,

(.4.3). 3D

> 2,38 100 30

perthometer SBP 6.22

POLITECHNIKA
POZNANSKA
I.T.M.
ZAKLAD METROLOGII
I
SYSTEMOW POMIAROWYCH
UL. PIOTROWO 3 2.400 MM 0.800 MM 250.0 YM LY 2.400 MM

NO.: NAME: FEDOROVICH

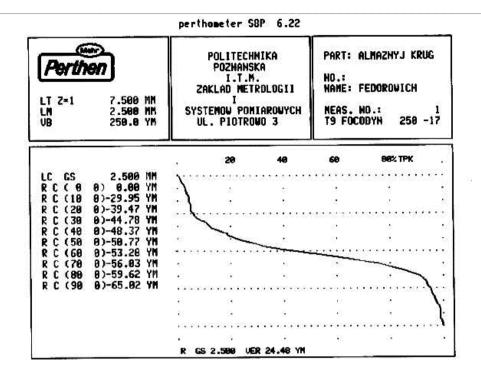
MEAS. NO.: T9 FOCODYN 65 250 -17

PART: ALMAZNYJ KRUG

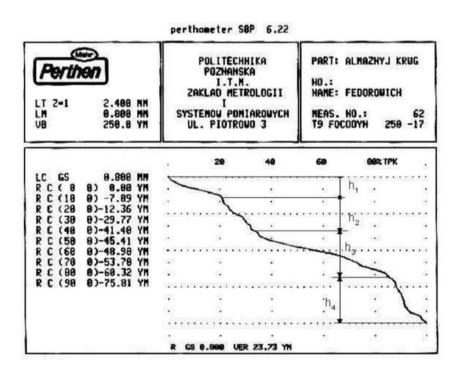
4.5 – 3D 2

 $(t_{ps}),$

». 3D


« 0.5-1 ,

1


= 5 % $h_{\rm p} = 20$

174 *3D*

```
3D
                                                                               (
                                                t_{ps}
            ),
                                                          >>
                                                                  »,
                                                  «
                            0 – 1
                                         (
                                                                        )
                                                                                           «
      ».
                                                                                  t_{ps}
  = 5 %,
                                                                                     «
                                                                                             . 4.6)
   »,
t_{ps}
                                                                 t_{ps}.
                                                                          . 4.7).
                                    t_{ps}
                                                                                            ».
                                                                            «
               [9].
                                                        ( . . 4.3 )
                             [4].
```


4.6 -


```
176 3D
```

. 4.3). R_a R_z , t_{ps} , 4.5. **« »**. **«** [12, 16, 32].). »: 1)

; 2)

, - ; 3) - () _p

,

 A_r , ,

 $A_r = \frac{A_r}{n}, \qquad n -$

,

 $A_r' = \frac{A_r}{m}, \qquad n_1 - \qquad ,$

•

_

[44]:

 $\overline{q} = \frac{0.43H_{\text{max}}E^{0.5}}{IP^{0.5}},\tag{4.6}$

- ;

I- ;

P- ;

 H_{\max} –

« – »

,

. . [12] -

 $A_{r} = A_{c} \left\{ \frac{2,35b^{\frac{1}{2\delta}}r^{\frac{1}{2}}(1-\mu^{2})V}{2^{\frac{1}{2\delta}}K_{2}h_{\max}^{\frac{1}{2}}EA_{c}} \right\}^{\frac{2\delta}{2\delta+1}},$ (4.7)

```
178 3D -
```

```
K_2 –
                     δ;
N –
\mu –
E –
r –
h_{\max} –
b \delta –
                                                  «
                                                            >>
                        (4.7)
                                                 «
                                                             >>
                                                                        ),
                                                                   t_{ps} –
                                          0 – 1
                        t_{ps}
```

.

,

,

· -

,

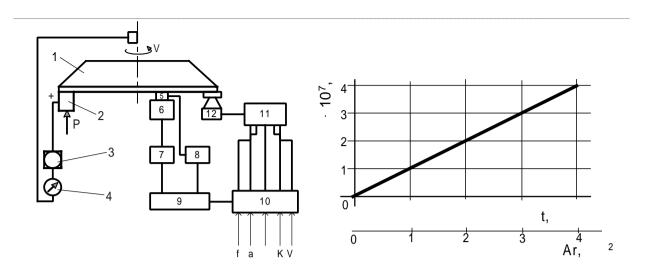
4.6.

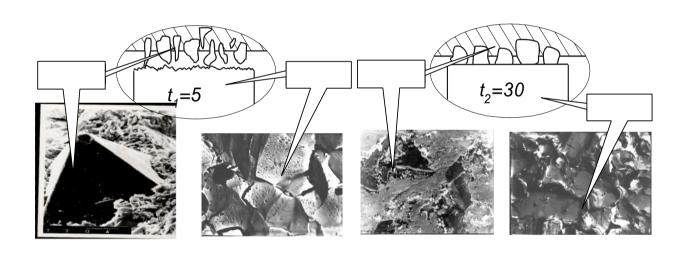
-

« – ». ,

.

,


,


« – » « – ». -

-(.4.8 ,).

« – » .4.8 .

3D

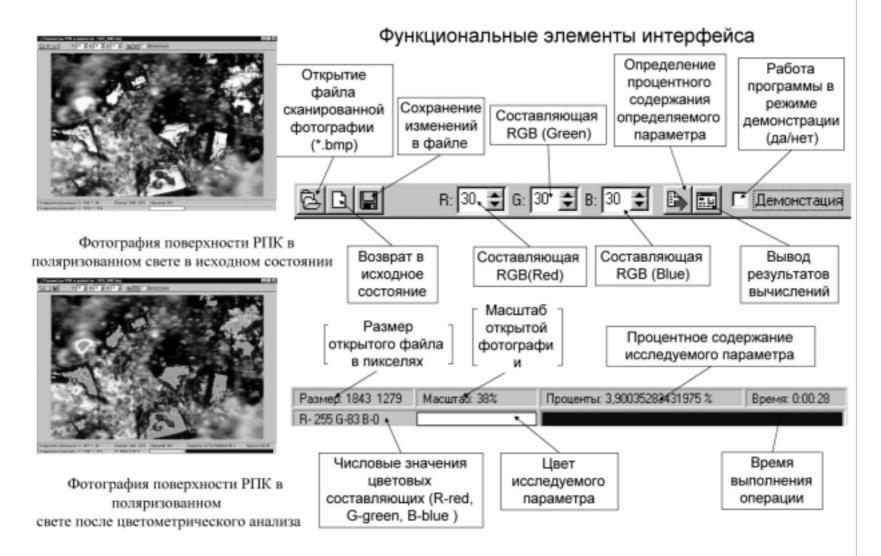
4. 3D

	,
	(.4.8).
5	6,
	. 3
7	9.
10, 11	, .
	,
,	
, « – ».	,

.

4.7.

.


182 *3D* -

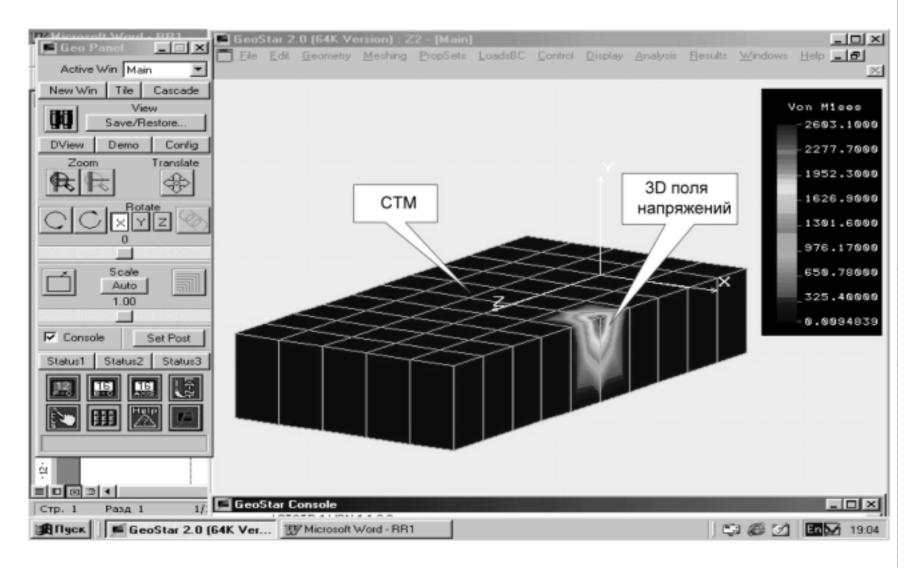
100 ... 160 . 4.9) *.bmp. (. 4.9) 16

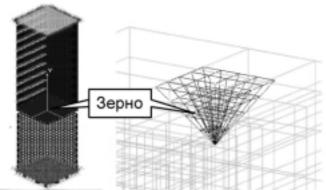
(R, G, B) –

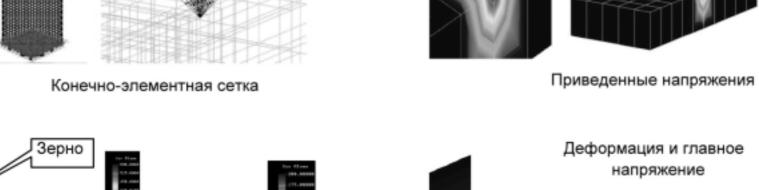
,

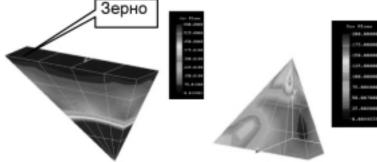
,

Borland Delphi 5.0 Windows 95/98 Windows 95/98 : 1) IBM PC AT ; 2) 486SX-33 VGA 512 16 ; 4) 40 ; 3) ; 5) Windows 95/98 Delphi (. . 4.9). **4.8. 3D**

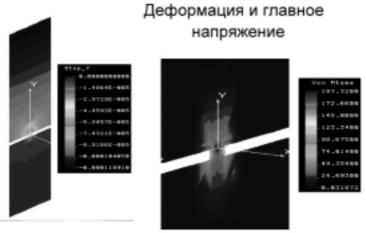

,


4. 3D


```
(
                                                ).
                   «Cosmos», «Ansys»
                                       Nostr n.
                                        «Cosmos»
                                                   «Ansys».
                               (3D
                                         )
  . 4.10.
3D
                                               . 4.11
           «
                                                : Von Mises –
                    ; ENERGY -
                                                , SED –
                   ; ESTRN –
                                         ; Princ_1(2,3) -
              3D
                                                  ».
                               «
                                                   [22],
                                                          3D
```

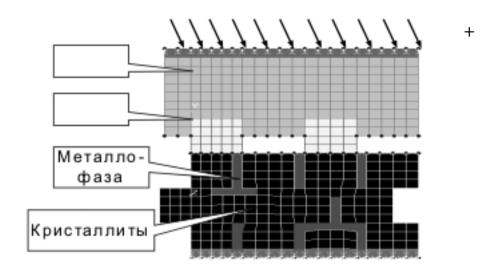

```
186 3D
                                                                   1\times1\times3
1\times1\times2
                                                     200×140×140 ,
                  . 4.11.
                               ),
                                                     ).
               SOLID.
                                                              : 1)
                                              (
            U_{y}
                                    ); 2)
                                 S
                   (
                                                                       ).
                                                              3D
1)
                                                               (
               ) - U ; 2)
              )-U ; 3)
                                    )-U ; 4)
(
       )
                                                     -\sigma;5)
```

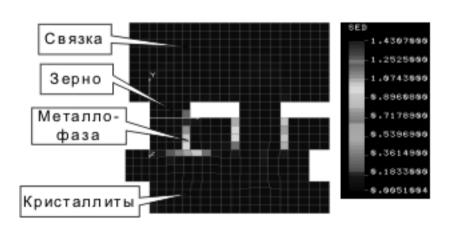
-σ.



Приведенные напряжения

Зерно


CTM


4. 3D

```
(
                                                       )
                                                       ).
(
                                     20–150 %.
                                        3D
                                    «
  (
               . 4.12.
         (
             ),
                             )
  «
```

(

 10^{-4} 3

4. 3D

4.9.							
1.							
2.							
3.	٠	3D					
4.	•						
5.	-				•		
6.							
7.				«			_
	_	»					
8.			3D				2D
9.				3D			
10.							
11.				٠			
12.	».			•	«	_	
13.	″·						
14.			()	•		
15.	3D		-			()

5.

Rem tene, verba sequentur – **«** 3D ». **« 5.1. 3D** (3D)

5. 193) [7], 3-(3D) 3D 50-150 %. 3D [25, 34] [001]

```
(110) \quad (\overline{110})
                                                                                                         [001].
\sigma_p, . .
```

1 • (5.1) d h P; σ – σ [] 3D S P, V, Ζ, . 5.1 **«**

)

), 3D

12 -

5.1 -

1. , -

2. , -

4.

,

5. -

,

198 *3D* -

18,4 10,6 / ² [33].

.

5.2. 3D -

«

.

, [13].

. ()

·

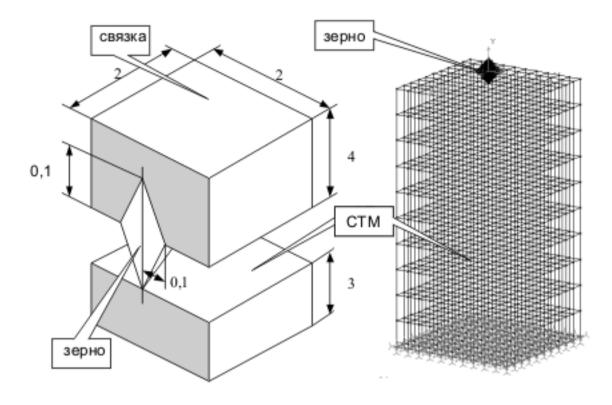
,

 $R_{2} = 100$

V = 30 /, = 800 , - = 800 , - = 800 ,

 $P_z = 0$, P_y) $P_z/P_y = 0.1-0.4,$ 3D 0,0005 $1\times1\times2$ $2\times2\times3$ 200×150×150 5.2.1. 3D

- »
SOLID (4847, 1640) (. 5.2).


200 *3D*

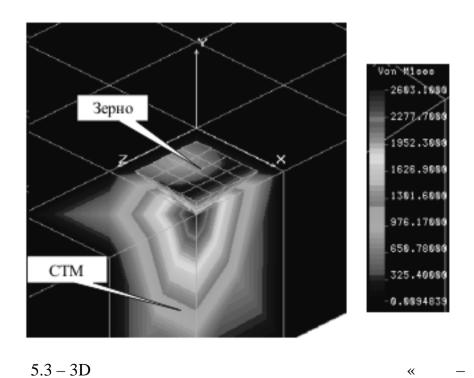
$$U_x, U_y, U_z$$
.

. 5.2 .

: = 1000G = 545 ; $\mu = 0,1$; = 1000 ; G = 545 ; $\mu = 0,1$;

=72 ; G=28 ; $\mu=0.24$ (

5.2 - ()


 U_y :

) –

; -

- (29) $U_y^3;$

. 5.3.

202 3D

236 365 V = 0,023 3 V = 0,018(): $= 13,93 \ U_y^c,$ (5.2); U_y – = 13,93 U_{v}^{c} ; (5.3)»: $= 13,93 U_{v}^{c}.$ (5.4)(5.2)–(5.4)(5.2)–(5.4). $= 13,93 U_{v}^{c},$ $U_y^c = 5$, S . **»**: =72 ; G=28 ;); = 100 ; G = 40 ; $\mu = 0.24$; $\mu = 0.24$ (G = 50 ; $\mu = 0.24$; : = 1000 ; G = 454 ; $\mu = 0.1$ (

= 1000

); = 800 ; G = 360 ; $\mu = 0.1$;

G = 545 ; $\mu = 0.1$ (); = 800 ; G = 360 ; $\mu = 0.1$; = 500 ; G = 227 ; $\mu = 0.1$.

3D -

3D -

. 5.1.

,

 $\frac{\Delta U_y^3}{\Delta E} = 0.00222 \qquad / \qquad ,$

;

 $\frac{\Delta U_y^3}{\Delta E} = 0,00023 \qquad / \qquad .$

.

 $\frac{\Delta U_y^3}{\Delta E} = 0,00045 \qquad / \qquad .$

5.1 - 3D

		=100	=130	=800	=1000	=800
U_{y} ,	0,473	0,546	0,602	0,307	0,248	0,427
σ ,	14717	17125	19000	15230	15448	13363
σ ,	4620	5314	5817	4790	4849	4164

().

204 *3D* -

•

 $\frac{\Delta\sigma}{\Delta E} = 0,0738,$

.

(0,00677) (0,00146).

.

 $\frac{\Delta\sigma}{\Delta E} = 0,0206,$

(0,0023 0,00046).

,

·

5.2.2. 3D

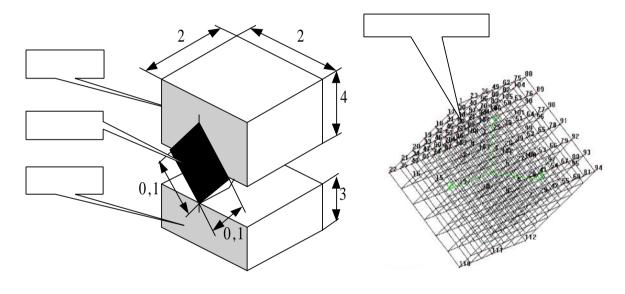
3D (.5.4 .

2248 SOLID, 8761 (. 5.4).

,

· : – (98)

 U_y ; - (98) σ_{von} ; - (16)


 σ_{von} .

 $U_{y}^{c}=5$, -

:
$$U_y^3 = 0.5638$$
 ; (-

)
$$\sigma_{von} = 4448,4$$
 ; $\sigma_{von} = 1502,3$.

 $\sigma_{von} = 812,54$

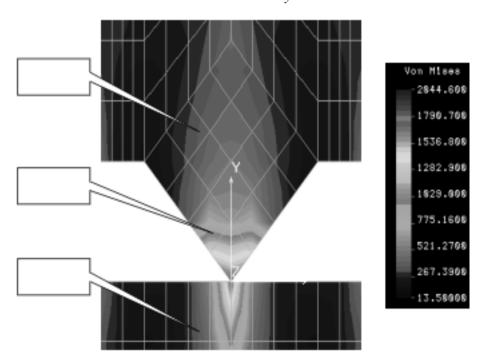
$$V = 0,019$$
 3 $V = 0,012$ 3 .

$$U_y^c = 5$$
 . 5.5.

$$= 14,79 \ U_y^c; \tag{5.5}$$

206 3D -

 $= 14,79 \ U_y^c; \tag{5.6}$


:

$$= 14,79 \ U_y^c. \tag{5.7}$$

(5.7)

(5.7)

 $= 14,79 \ U_y^c. \tag{5.8}$

5.5 –

5.2.1,

(5.7),

 $U_y^c = 5 .$

, 5.2.1

() . 5.2.

, ,

,

$$\frac{\Delta U_y^3}{\Delta E} = 0,00288 \qquad / \qquad ,$$

$$\frac{\Delta U_y^3}{\Delta E} = 0,00024 \qquad / \qquad ,$$

:

$$\frac{\Delta U_y^3}{\Delta E} = 0,000528 \qquad / \qquad .$$

5.2 - 3D

		=100	=130	=800	=1000	=800
U_{y} ,	0,564	0,658	0,731	0,369	0,300	0,516
σ ,	4449	5192	5770	4554	4591	4025
σ,	1502	1807	2059	1576	1603	1405

,

$$\frac{\Delta\sigma}{\Delta E} = 0,02277,$$

$$()$$

$$\frac{\Delta\sigma}{\Delta E} = 0,00212,$$

208 3D -

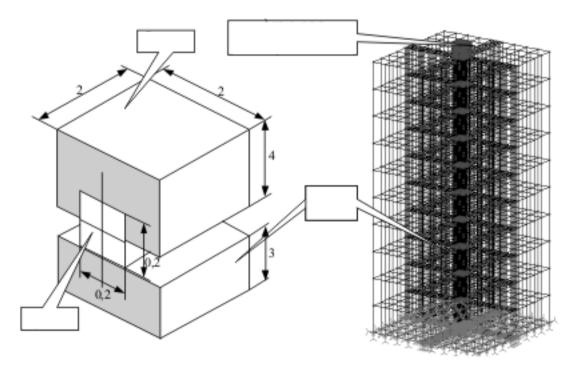
 $\frac{\Delta\sigma}{\Delta E} = 0,000284$.

, 5.2.1,

_

,

.


5.2.3. 3D

3D

() .5.6 . SOLID, 8561 (.5.6).

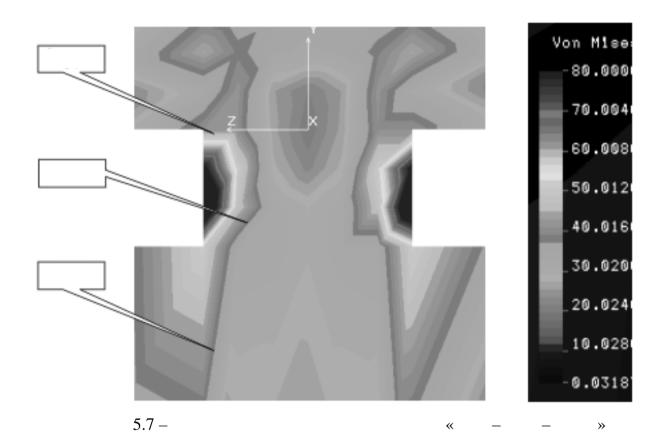
,

5.3.1, 5.3.2

5.6 - « - - » ()

```
5. - 209
```

```
( 88)
                                                          U_y;
                         ( 88)
                                                                           \sigma_{von};
                                                 ( 13)
\sigma_{von}.
                                                 U_y^c = 5 ,
                      U_y^3 = 0,6553
      ) \sigma_{von} = 753,12 ;
                                                      \sigma_{von} = 946,7
                                                    = 10 ,
           = 0,4 ,
U_y^3 = 0.2719 ;
                                                            ) \sigma_{von} = 314 ;
                    \sigma_{von} = 392,25
                            U_y^c = 5
                                                               . 5.7.
                                                     (
                                    = 19,188 \ U_y^c;
                                                                                (5.9)
                                   = 19,308 \ U_y^c;
                                                                               (5.10)
                                   = 19,28 U_{v}^{c}.
                                                                               (5.11)
                     (5.9)–(5.11)
```


210 *3D*

. , 5.2.1, 5.2.2, . -

_

, (5.9)–(5.11)

 $= 19,28 \ U_y^c. \tag{5.12}$

5.2.1 5.2.2,

 $U_y^c = 5$

,

$$\frac{\Delta U_y^3}{\Delta F} = 0.0059$$

:

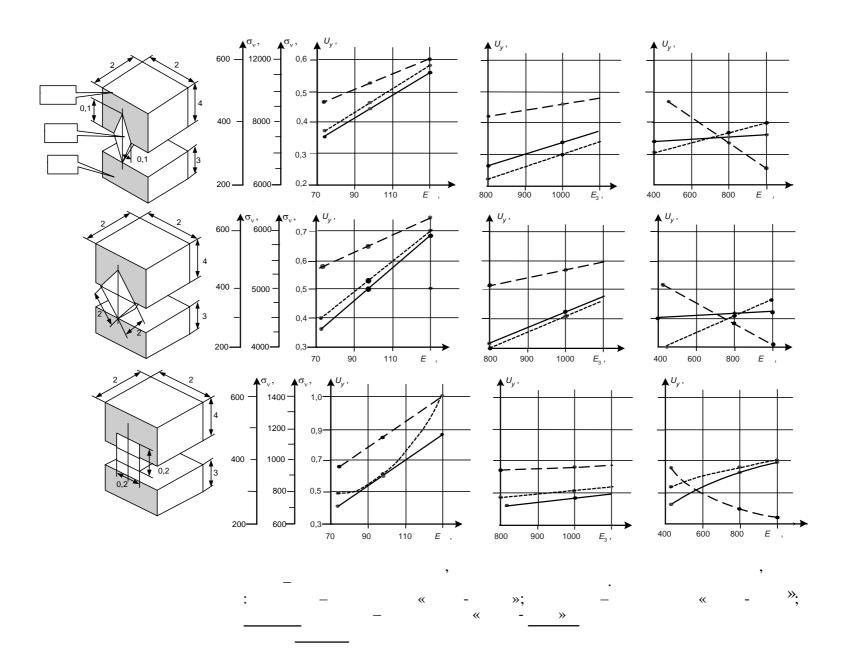
$$\frac{\Delta U_y^3}{\Delta E} = 0,000076 \qquad / \qquad ;$$

$$\frac{\Delta U_y^3}{\Delta E} = 0,0006 \qquad / \qquad .$$

$$\frac{\Delta\sigma}{\Delta E} = 0,02278 \qquad \frac{\Delta\sigma}{\Delta E} = 0,00212 \qquad \frac{\Delta\sigma}{\Delta E} = 0,000284.$$

5.2.2 ,

,


•

$$5.3 - 3D$$

		=100	=130	=800	=1000	=800
U_y ,	0,6653	0,840	1,010	0,443	0,3649	0,6501
σ ,	753,1	960,7	1150	915,0	987,1	789,2
σ ,	946,7	1159	1354	989,2	1004	894

- ,

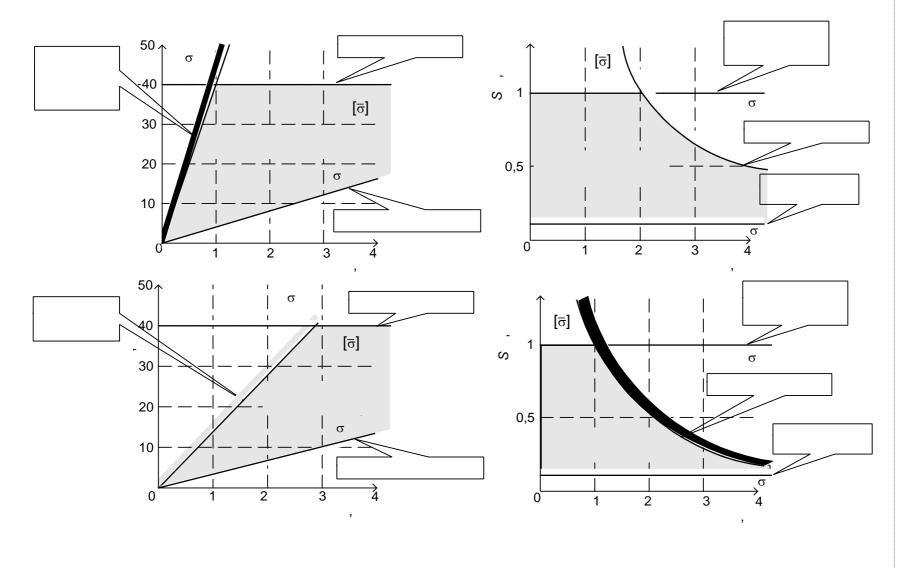
3D « – – » . 5.8.


```
5.
                                                                                                               213
                            . 5.1–5.3
                                                   . 5.8
                                                                                  20
             );
 6);
 5.3.
    Ν,
                                              \overline{n} , \overline{n}
                                                             \overline{n} ,
```

U

, (5.8) (5.11) :

```
214 3D
```


```
P = N(P \overline{n} + P \overline{n} + P \overline{n}) = N(4,125\overline{n} + 7,369\overline{n} + 9,285\overline{n})U (5.13)
          (5.11) \overline{n}, \overline{n}
                                                 \overline{n} + \overline{n} + \overline{n} = 1.
                                                                                                                               (5.14)
                                                                                       . 5.1–5.3
      (
                                                                                 ),
                       = 8184,82 \cdot \frac{1}{N(4,125\overline{n} + 7,369\overline{n} + 9,285\overline{n})} \ge [\sigma] ;
                                                                                                                               (5.15)
                       = 339,93 \cdot \frac{1}{N(4,125\overline{n} + 7,369\overline{n} + 9,285\overline{n})} \le [\sigma] .
                                                                                                                               (5.16)
                                             \sigma = \frac{1}{F} \leq \left[\overline{\sigma}\right] ,
                                                                                                                               (5.17)
                                                      (F=1 	 <sup>2</sup>)
F –
                               [N] (
     ).
                                               \overline{n} = 1, \ \overline{n} = \overline{n} = 0,
```

 $\overline{n} = \overline{n} = \overline{n} = 0.33$.

(5.17) (5.15) (5.17): $N(4,125\overline{n} + 7,369\overline{n} + 9,285\overline{n})U \le [\overline{\sigma}]$. (5.18)() . 5.9 () U)), $V = (V^2 \overline{n} + V \overline{n} + V \overline{n}),$ (5.19)V , V , V – . 5.4 . 5.9)).

, – ; , –

5.4 –

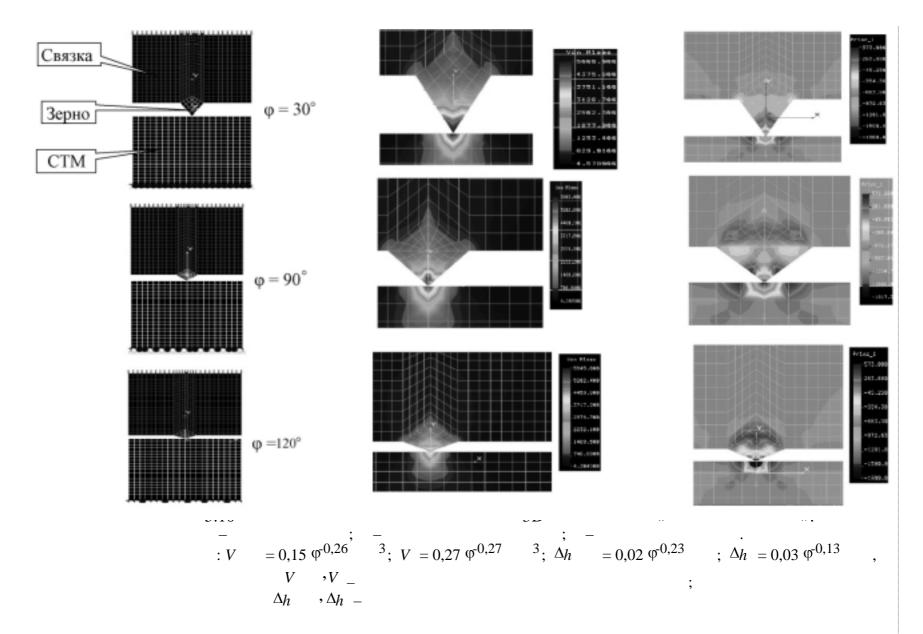
100

	1	1		100			
		h_{\max} ,				,	3
			$0.1h_{\text{max}}$	$0,2h_{\max}$	$0.3h_{\text{max}}$	$0,4h_{\text{max}}$	$0.5h_{\text{max}}$
0,2	50/40	51,568	0,00001	0,0002	0,0017	0,0076	0,0236
	80/63	85,021	0,00002	0,0003	0,0021	0,0100	0,0328
	100/80	103,118	0,00003	0,0004	0,0032	0,0144	0,0453
	200/160	202,622	0,00006	0,0007	0,0064	0,0295	0,0936
	315/250	321,013	0,00008	0,0013	0,0111	0,0494	0,1529
0,3	50/40	47,183	0,000003	0,0001	0,0006	0,0036	0,0129
	80/63	75,299	0,000008	0,0002	0,0013	0,0062	0,0209
	100/80	88,447	0,000036	0,0005	0,0029	0,0121	0,0357
	200/160	172,216	0,000080	0,0010	0,0063	0,0265	0,0765
	315/250	275,135	0,000070	0,0012	0,0086	0,0387	0,1161
0,4	50/40	38,084	0,000008	0,0001	0,0009	0,0037	0,0111
	80/63	62,017	0,000018	0,0002	0,0012	0,0052	0,0160
	100/80	72,440	0,000035	0,0005	0,0030	0,0107	0,0284
	200/160	141,945	0,000075	0,0010	0,0061	0,0222	0,0589
	315/250	225,086	0,000089	0,0015	0,0099	0,0362	0,0955
0,5	50/40	32,918	0,000002	0,00004	0,0003	0,0016	0,0054
	80/63	53,070	0,000006	0,0001	0,0005	0,0024	0,0080
	100/80	65,819	0,000007	0,0001	0,0006	0,0030	0,0105
	200/160	127,348	0,000013	0,0002	0,0014	0,0070	0,0236
	315/250	202,800	0,000022	0,0002	0,0021	0,0107	0,0362
0,6	50/40	26,099	0,000003	0,000008	0,0002	0,0009	0,0031
	80/63	41,969	0,000005	0,00005	0,0003	0,0016	0,0050
	100/80	49,861	0,000010	0,00013	0,0008	0,0029	0,0080
	200/160	96,190	0,000025	0,0003	0,0019	0,0067	0,0180
	315/250	153,338	0,000033	0,0004	0,0025	0,0093	0,0256

```
5.4.
                                                                    3D
                  ).
                                                            2
«
                                                             [41].
                                                            3D
                Cosmos
                                                 ,
120°
                                          30°
( . 5.10, 5.11).
                                                  >>
                                                                 3
                                        0,256
                                                 0,07,
```

5.5 - (V)

			,	
, 3	50	100	150	200
V	0,248	0,365	0,483	0,564
V	0,117	0,183	0,214	0,283
	30°	60°	90°	120°
V	0,317	0,265	0,113	0,09
V	0,256	0,183	0,11	0,07


· -

--

, () -S (« ») -

(. . 5.13).

5. - 221

CBR3K2

3epho

Z

CTM

5.11

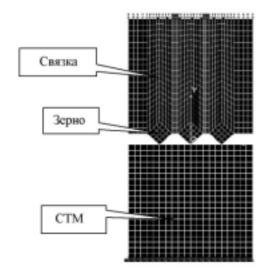
Von Hilee

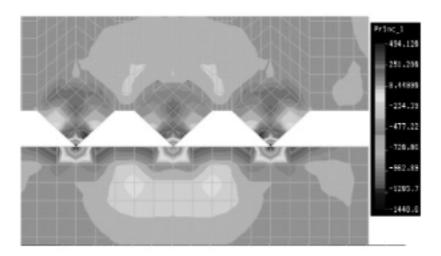
1000.000

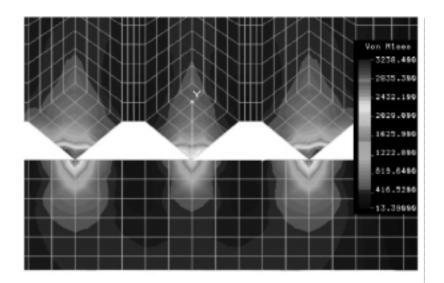
4376.766

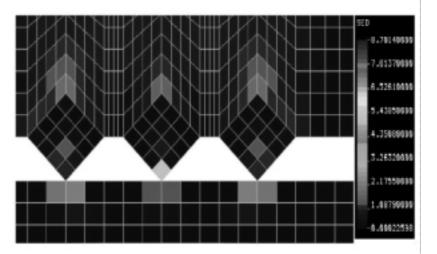
17136.266

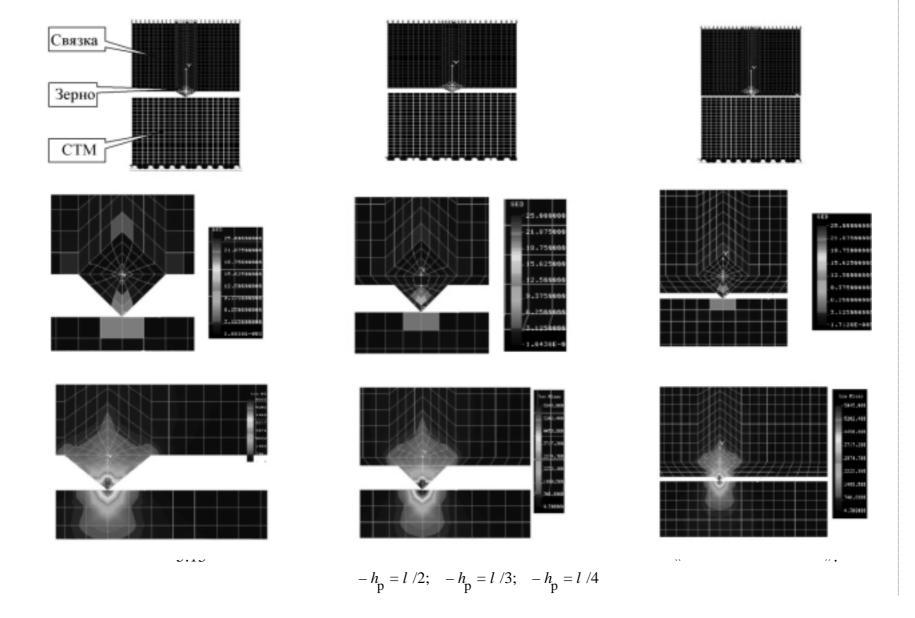
11063.606


1269.466


17.83266


** —


, « » -


, . . . (. . 5.11).

223

224 *3D* -

32 3200 , 100 (). (), **« >>**). h, , 80 % 10 % 45 25 h 3D $(h_{p} \neq 0), . .$ $(h_{\rm p}=0),$ (). **« >> «**

.

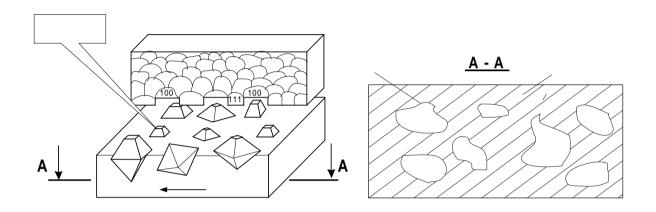
5. - 225

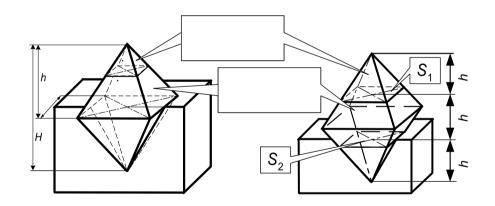
	5.5.					
	1.					
	2.				«Cosmos», «Ansy	s», «Nostran».
	4.				«Wave Advand Ed	ge».
	5.	3D			«Cosn	nos».
	6.	3D		«	_	
		»	«Cosmos».			
	7.	3D		«	_	
		» .				
	8.				«	_
			».			
	9.				«	_
			».			
	10.				«	_
			».			
	11.					«
	_			».		
	12.					
	13.					
	14.					
	15.					
3D						

```
Tempus fugit, aeternitas manet –
                              3D
      (
                           «
6.1.
                                                          ),
                       ).
                                                 )
```

```
3D
                                            3D
    ).
                             ( . 6.1 ).
                                                              200/160
= 200, = 160) ( .6.1 , ).
                                                 \sum S_i
                                100 % ( = 4)
```

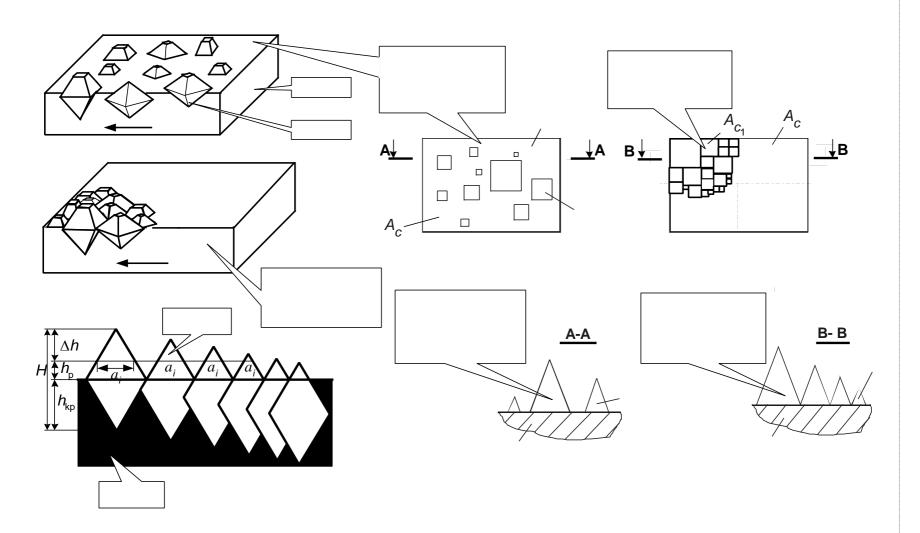
228 3D -


 $\frac{r^3}{R^3} = \frac{a^3}{A^3} = \frac{K}{16},$ (6.1) (100 % = 4; 50 % = 2 . .);R-S S - $S = S\left(\frac{K}{16}\right)^{2/3},$ (6.2)S-» (. . 6.1) S $S = \frac{1}{2}S\left(\frac{K}{16}\right)^{2/3}$. (6.3)0,5 H, H – $h = \cdot H ,$ (=0...1, ...= 0,5).() $\sum_{i=1}^{n} S_{i} = \alpha S \left(\frac{K}{16}\right)^{2/3}.$ (6.4) t_{ps} t_{ps} .


 $t_p)$

%
$$h_{\text{max}}$$
 (

)
$$\eta = \sum S_i$$
 :
$$t_{ps} = \frac{\sum S_i}{A_c} \cdot 100 \%, \qquad (6.5)$$


 $S_i = a_i^2.$

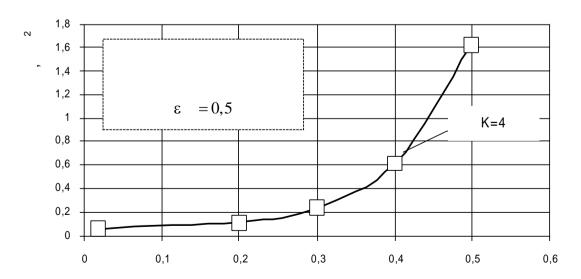
h — $h_{
m p}$ —

. 6.2 .

- , -

```
t_{ps}
                                       t_{ps} = \frac{\alpha}{S} \left(\frac{K}{16}\right)^{2/3} \cdot 100\% .
                                                                                                              (6.6)
                                                                                                         t_{ps}
         100 %
        1) 0
                        39,73 %.
   0
                                               t_{ps}
                                                                                                 0)
                                                   19,84 %.
                                            0
                                                                                        t:
                                       t_p = \alpha \left(\frac{K}{16}\right)^{1/3} \cdot 100\%.
                                                                                                              (6.7)
                                                                                                              0
                                                          h = 0.5 l,
≈63 %.
            32 %.
                                                                                        100 % [29].
                                        ),
                   \Delta h.
                                                                               : 1) (
                                                            ; 2)
```

232 *3D* -


```
, II –
                                                 (
                                                                                                           (h)
                                                                                      , IV –
                      (h )), III –
                                     1–3 ( . 6.3 ),
( .4.1–4.3)
                                                           h
                                                                                               t_{ps}
                                                                                           t_{ps}
                                     . 6.2 .
                                                                                                      t'_{ps}:
                                    t'_{ps} = \frac{\alpha (H - h_{\rm p})}{H} \left(\frac{K}{16}\right)^{2/3} \cdot 100\%.
                                                                                                                       (6.8)
                                                                         h = aH = H - h ,
                                    t_{ps} = \frac{(H - h - h_{\rm p})}{H} \left(\frac{K}{16}\right)^{2/3} \cdot 100\%.
                                                                                                                       (6.9)
```

 t_{S} ,

, () (), . 6.1–6.2. 6.1 – ()

()

%		h = l									
		a = 0	a = 0,1	a = 0,2	a = 0,3	a = 0,4	a = 0.5	a = 0.6			
t _s ()	12,5	9,8	7,2	4,9	3,2	2,5	1,2			
t _s ()	12,3	9,7	7,0	4,5	3,1	2,4	1,1			
		, %									
		10	20	30	50	100	150	200			
t _s ()	0,25	0,71	0,82	1,25	2,5	3,75	5,0			
t _s ()	0,23	0,69	0,78	1,21	2,42	3,62	4,83			
		,									
		0,5	1,0	1,5	2,0	2,5	3,0	3,5			
t _s ()	1,25	2,34	3,45	4,21	6,25	7,5	12,6			
t _s ()	1,18	2,17	2,37	4,11	6,19	7,64	12,5			
						h = l					
		a = 0,2	a = 0,3	a = 0,4	a = 0.5	a = 0.6	a = 0.7	a = 0.8			
t _s ()	10	8,5	7,5	5,1	2,5	1,32	0,7			
t _s ()	9,89	8,61	7,48	4,6	3,47	1,29	0,66			

2

6.2 –

		h_{\max} ,					
		max,	$0.1h_{\text{max}}$	$0.2h_{\text{max}}$	$0.3h_{\text{max}}$	0,4 _{max}	$0.5h_{\text{max}}$
0,2	50/40	51,684	0,0082	0,1072	0,5670	1,9099	4,4858
	80/63	85,021	0,0072	0,0784	0,4312	1,6029	3,9715
	100/80	103,118	0,0073	0,0956	0,5418	1,8256	4,3724
	200/160	202,622	0,0069	0,0934	0,5564	1,9340	4,5824
	315/250	321,013	0,0084	0,1062	0,6037	1,9866	4,6698
0,3	50/40	44,078	0,0018	0,0369	0,2674	1,1326	2,9893
	80/63	75,299	0,0036	0,0505	0,3046	1,1470	2,9262
	100/80	88,447	0,0129	0,1065	0,5304	1,7073	3,7768
	200/160	172,216	0,0142	0,1188	0,6055	1,8912	4,0673
	315/250	275,135	0,0084	0,0960	0,5444	1,8042	3,9804
0,4	50/40	39,415	0,0070	0,0725	0,3817	1,2124	2,7950
	80/63	62,017	0,0081	0,0636	0,3230	1,0657	2,5524
	100/80	72,440	0,0166	0,1397	0,6152	1,6313	3,3845
	200/160	141,945	0,0160	0,1482	0,6543	1,7370	3,5434
	315/250	225,086	0,0151	0,1505	0,6738	1,7814	3,5986
0,5	50/40	31,883	0,0019	0,0281	0,1744	0,6737	1,7347
	80/63	53,070	0,0032	0,0276	0,1638	0,6119	1,6192
	100/80	65,819	0,0022	0,0258	0,1631	0,6512	1,7358
	200/160	127,348	0,0022	0,0333	0,1986	0,7695	1,9314
	315/250	202,800	0,0017	0,0309	0,1908	0,7465	1,8648
0,6	50/40	25,140	0,0020	0,0221	0,1383	0,4866	1,1988
	80/63	41,969	0,0023	0,0258	0,1424	0,4951	1,1927
	100/80	49,861	0,0058	0,0545	0,2350	0,6669	1,4641
	200/160	96,190	0,0075	0,0691	0,2835	0,7772	1,6325
	315/250	153,338	0,0066	0,0608	0,2424	0,6901	1,5055

: ε –

; h_{max} –

,

$$S, h = 0$$

$$\sum S = \frac{(H - h)^{S}}{H} \left(\frac{K}{16}\right)^{2/3}, \tag{6.10}$$

:

$$n = \frac{(H - h)S}{HS} \left(\frac{K}{16}\right)^{2/3},$$
 (6.11)

$$S$$
 – . . .

, :

$$n = \frac{S(H - h)}{H^{2}} \left(\frac{K}{16}\right)^{2/3}.$$
 (6.12)

 $() \qquad \qquad () \qquad \qquad n - 1 - 2$

. 6.3.

 $(\quad .)$

									100	2
		ξ								ξ
	ξ =	= 0, 2	ξ =	= 0,3	$\xi = 0,3$ $\xi = 0,4$		$\xi = 0.5$		٣	= 0,6
	•	•	•	•	•	•	•	•	•	•
50/40	17857	18668	15625	16268	13393	13956	11161	11641	8928	9372
80/63	7051	7693	6170	6709	5289	5749	4407	4783	3526	3867
100/80	4464	4924	3906	4320	3348	3714	2790	3081	2232	2468
200/160	2464	2926	1906	1822	1348	1712	790	481	232	271
315/250	1049	1072	943	915	537	562	331	370	225	228

236 3D

h .

 $h = \alpha \cdot H$,

 $(\alpha = 0-1).$ α –

 $n = \frac{2\alpha S \left(H - h\right)}{H^{2}} \left(\frac{K}{16}\right)^{2/3}.$ (6.13)

. 6.4.

5

100

[9],

h .

 h_{p} ,

 $A_{\mathbf{r}}$

3D

1–3.

6.10-6.13,

4,3–9,7 %.

6.4 –

6.

100 2

		10	<i>J</i> O				
		h					
		h_{\max} ,	$0.1h_{\text{max}}$	$0.2h_{\text{max}}$	$0.3h_{\text{max}}$	0,4 _{max}	$0.5h_{\text{max}}$
0,2	50/40	51,684	52	353	1411	3248	5620
	80/63	85,021	18	118	468	1202	2159
	100/80	103,118	6	90	331	846	1483
	200/160	202,622	1,8	24	87	226	385
	315/250	321,013	0,8	9	35	90	155
0,3	50/40	44,078	61	382	1348	3033	5143
	80/63	75,299	13	90	362	958	1798
	100/80	88,447	22	103	369	819	1363
	200/160	172,216	6	30	106	223	360
	315/250	275,135	2,2	10	38	87	143
0,4	50/40	39,415	18	189	837	2186	3967
	80/63	62,017	16	112	394	954	1727
	100/80	72,440	33	154	409	825	1314
	200/160	141,945	8	42	112	217	340
	315/250	225,086	3	17	46	88	137
0,5	50/40	31,883	38	247	879	2030	3544
	80/63	53,070	8	69	247	718	1354
	100/80	65,819	2	52	174	499	898
	200/160	127,348	0,5	14	53	143	241
	315/250	202,800	0,1	6	20	55	93
0,6	50/40	25,140	33	215	799	1796	3004
	80/63	41,969	6	69	276	638	1136
	100/80	49,861	17	85	233	498	832
	200/160	96,190	4	28	69	141	225
	315/250	1 53,338	2	10	26	53	86

: ε –

; h_{max} –

238 *3D* -

 t_{s} H, h h . (), Δh (. . 6.2). $\Delta h = cH$, $n = \frac{S(\alpha + c)K}{2}.$ (6.14) t_{ps} h t_p h , n t_{ps}

 $A_{\mathcal{C}}'$

```
. . [20, 39].
     6.2.

\eta = \frac{A_r}{A_a} = \eta_1 \cdot \eta_2; \quad \eta_1 = \frac{A_r}{A_c}; \quad \eta_2 = \frac{A_c}{A_a},

                                                                                                                                                 (6.15)
\eta_1\,-\,
\eta_2 –
                           . 6.1 .
```

240 *3D* **>> « »**.),),), . 6.4 , , . ») (« t_{ps} , [39]. A_r \boldsymbol{A} [12]:

 $\frac{A_r}{A_c} = ab\varepsilon^{\delta}, \tag{6.16}$ $b \quad \delta =$

 ε – $(\varepsilon = h/h_{\text{max}})$.

[12]

```
t_{ps},
        ),
                                                                     » ( . 6.4 , , ).
«
                                                                                       Субмикрокромки
зерна
                                                                      Зерно
       . 6.4.
                                                                                                 »:
                                             ),
```

«

>>

242

$$A_{r} = A_{c} \left\{ \frac{\frac{1}{2.35b^{2\delta}} \frac{1}{r^{2}} (1 - \mu^{2}) N}{\frac{1}{2^{2\delta}} \frac{1}{K_{2}} h_{\max}^{2} F A_{c}} \right\}^{\frac{2\delta}{2\delta + 1}},$$
(6.17)

 K_2 –

δ; *N* –

3D

E –

 h_{max} –

(. . 6.2).

δ

$$\delta = \frac{3KH (H - h - Kh_p) + 0.75Kh_p^2}{H^2 - h_p H};$$
 (6.18)

$$b = \left(\frac{0.25K(H - h)}{H} - \frac{0.25Kh_{p}}{2H}\right) \left(\frac{H - h}{H - h - 0.5h_{p}}\right)^{\delta}.$$
 (6.19)

$$r = \frac{\left(0,0125K(H - h)\right)^2}{8\left(H - h - 0,95h_p\right)},$$
(6.20)

(6.3)–(6.11).

3D

1 - 3

. 6.5.

3D

«

(*b* γ),

>>

. 6.5.

6.5 –

E	70	90	110	130	150	200
A_r	4,08	3,23	2,77	2,4	2,13	1,44
r	10	20	30	40	50	100
A_r	0,77	1,29	1,75	2,17	2,57	4,32
N	10	20	30	40	50	100
A_r	1,98	2,51	3,11	3,98	4,8	5,64
h_{p}	5	10	20	30	40	50
A_r	7,27	4,32	2,57	1,9	1,53	1,1

: *E* –

r – *N* –

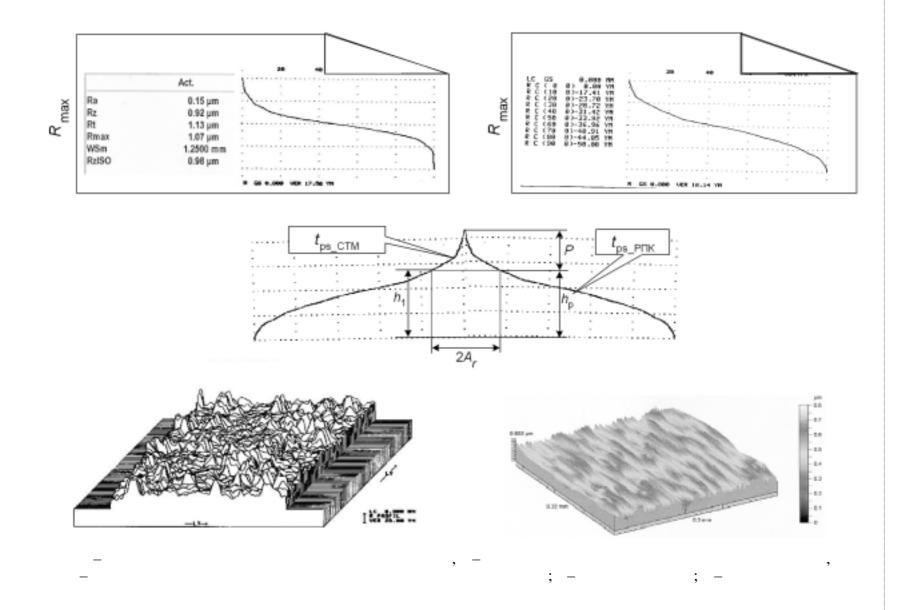
*h*_p –

```
244 3D
```

 t_{ps} , (5–10) h_{p} , 12,5 %,) 0,125 %. P = 2P = 1600

•

5000 [33], $P = \frac{N}{S_K} = \frac{4N}{KaS},$ (6.21) $P = \frac{4N}{K(a+c)S}.$ (6.22)), <


246 3D

6.3. 3-86 t_{ps} . (), t_{ps} », **«** 3D . 4.1–4.3. t_{ps} = 5 %, **«** », . 4.4) t_{ps} t_{ps} . 4.5 25 t_{ps} 0 5 % t_{ps}

.

1

```
t_{ps}
11
            20 %,
                                                           t_{ps}
            ( . . 4.5).
                                                                     t_{ps}
                                         4
                                              h_1
                                       5
                                                  h_2 –
                 , h_{3} -
                                                                       h_4 –
          . 4.5 t_{ps}
                                                                  29
          20 %,
                                       45
t_{ps}
                            t_{ps}
                                                        3D
         . 6.5.
                                                 60
                                                   4–5 .
         t_{ps}
                      t_{ps}
                      R_z R_a.
                                                                    «
    » ( . . 6.5).
       ( . .6.5 , ) ( . .6.5 , )
[46] ( . . 6.5 ).
```


« >> 6.4. 1. 2. **« »**. 3. 4. 5. **« >>** 6. t_{ps} 7. **« ».** 8. **« »**. 9.

10.

«

7. 3D

Excudent alii, spirantia mollius aera. –

3D -

- . 3D

« – – ».

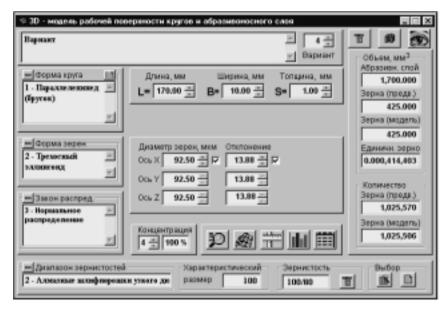
3D

7.1.

[1, 4, 21, 26, 38]

-

7. 3D 251


7.1.1.

,

 $X_{(\text{max})}, Y_{(\text{max})}, Z_{(\text{max})}$

,

L = 170; B = 10; S = 1 (. 7.1).

.

n . i- (i = 1, ..., n)

, $d_{X(i)}, d_{Y(i)}, d_{Z(i)}$.

.

 D_X, D_Y, D_Z .

n = 1025506 .

2.3.

_..

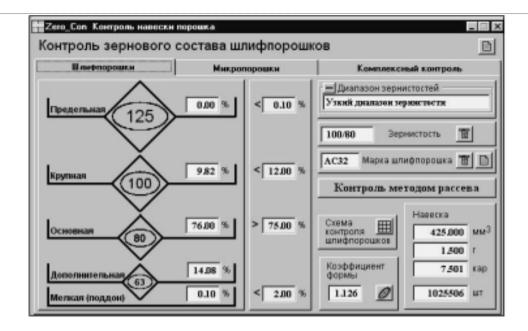
: $\mu = 92,50$;

```
252 3D -
```

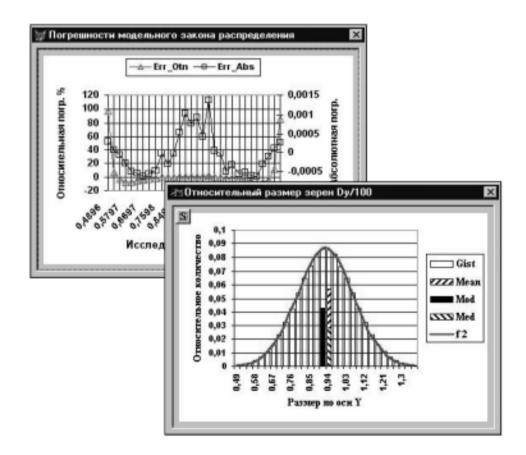
```
\sigma = 13,88
                                                                       . 7.1).
                                                      ( .
                          100/80.
                                                                       (
                                                                                                a_0 = 100
                                                                                                    ) k_m = \mu / a_0 = 0.925;
                 (
                                                                                   ) k_v = \sigma / \mu = 0.15.
        . 7.2).
k_m = X \rightarrow 0.9248,
                                        Y→0,9251,
                                                                      Z \rightarrow 0,9252;
k_v = X \rightarrow 0.1489, Y \rightarrow 0.1489, Z \rightarrow 0.1487;
                                                                                                            , \% = X \rightarrow 1,52, Y \rightarrow 1,65,
Z \to 1,64.
                                                                                                                                                 . 7.3.
                )
                    X (i), Y (i), Z (i).
X, Y, Z.
                X, Y, Z
                (y) = \begin{cases} k \frac{1}{\delta} \left[ \Phi \left( \frac{\Delta_{\text{max}} - y + \delta}{\sigma} \right) - \Phi \left( \frac{\Delta - y - \delta}{\sigma} \right) \right], \\ 0 \le y \le \Delta_{\text{max}}; \quad 0, \qquad , \end{cases}
```

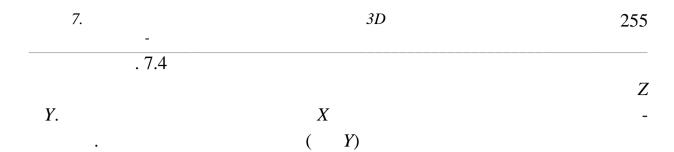
```
3D
                                253
```

7. $d_{X, Y, Z(i)} \Rightarrow d_{X(i)}, d_{Y(i)}, d_{Z(i)}$ i-X, Y, Z (max) $\Rightarrow X$ (max), Y (max), Z (max) – Rand (0, 1) – 0 ... 1. *X*, *Y*, *Z*:


$$X, Y, Z = \begin{cases} f_{\text{Rand } X, Y, Z} \left(\frac{1}{X, Y, Z_{\text{(max)}} - E_{D_{X, Y, Z}}} \right); \\ \frac{E_{D_{X, Y, Z}}}{2} \le x, y, z \le X, Y, Z_{\text{(max)}} - \frac{E_{D_{X, Y, Z}}}{2}; \end{cases}$$
(7.2)

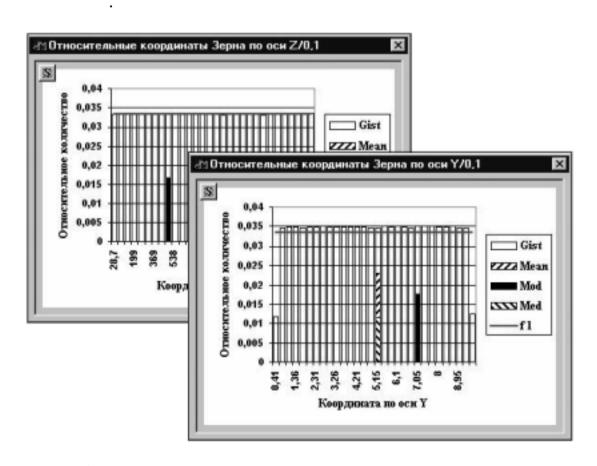
 f_{Rand} –


$$1/X, Y, Z_{(\text{max})} - E_{D_{X,Y,Z}};$$


 $X,Y,Z_{(\text{max})} \Rightarrow X_{(\text{max})}, Y_{(\text{max})}, Z_{(\text{max})} -$

$$E_{D_{X,Y,Z}} \Rightarrow E_{D_X}, E_{D_Y}, E_{D_Z}$$
 ().

7.2 -



$$X \rightarrow B / a_0 = 100; Y \rightarrow S / a_0 = 10; Z \rightarrow L / a_0 = 1700.$$

$$\delta$$
 ,

 $% = X \rightarrow 1,44, Y \rightarrow 17,31, Z \rightarrow 0,40.$

7.1.2.

```
y_c = y_{c0} + f_X(x) + f_Z(z),
                                                                                                                                      (7.3)
                                                                                                    Y (
y 0-
                                       ),
                                                                              ; f_X(x) –
                                                                      y <sub>0</sub>)
                                                                                                                                            );
   f_{\mathbb{Z}}(z) –
                                                                                                                                Z (
                                      ).
                                                                                                (
    )
                                                                   \phi =
                               x \operatorname{tg} \varphi
                                                                                        x \le l
    f_X(x; \varphi, l) = \begin{cases} l \operatorname{tg} \varphi \\ (x - l) \operatorname{tg} \varphi \\ 0 \end{cases}
                                                                                                                                     (7.4)
                                                                   \phi >
                                                                                        x \ge l
                                                                   φ<
                                                                                        x \le l
                                                                   φ<
                                                                                        x \ge l
                                                                     (\phi > 0)
                                                                                                                                (\phi < 0),
\phi -
\phi = 0
                                                               X (
                                                                                                                                     ); l –
                ;x –
                                      (\phi > 0)
                                                                                               (\phi < 0).
```

. -

:

 $f_{Z}(z; H, L, F) = \frac{H}{2} \left\{ 1 + \sin \left[2\pi \left(\frac{z}{L} - \frac{F}{100} \right) \right] \right\},$ (7.5) ; L - ; F -

_

x, z

:

H-

 $x_{(i)} = x_{(i)}; \quad z_{(i)} = z_{(i)},$ (7.6)

 $x_{(i)}, z_{(i)}$

 $X, Z; x_{(i)}, z_{(i)}$. Y

(7.3) (7.6):

 $y_{(i)} = y_0 + f_X(x_{(i)}) + f_Z(z_{(i)}),$ (7.7)

 $y_0 - f_X(x), f_Z(z) - f_Z(z)$

 $X, Z; x_{(i)}, z_{(i)}$

. (7.6)

X, Z. :

(7.7):

 $X = X \; ; \quad Z = Z \; , \tag{7.8}$

X , Z –

X,Z;X,Z

Y -

(7.8)

 $Y = y_0 + f_X(X) + f_Z(Z), (7.9)$

258 3D -

```
Y
                                                                          Y; y_0 -
                                           ;f_{X}\left( X\right) -
                                                            X
                                                                              X; f_Z(Z) -
         \boldsymbol{Z}
                          Z; X, Z
                                                          X, Z.
                              (7.9)
                                                  Y (
     ):
      1.
       2.
                Y
                                                             : y<sub>0</sub> -
(y_0 = const); X, Z -
      X, Z
                                                                       ; f_X(X), f_Z(Z)–
                                         Y
                                                  f_X(X) f_Z(Z)
       3.
                                         Y_X
                                                                Y_{Z}
                                       (7.9)
                                                                                      :
                               Y = y_0 + Y_X + Y_Z.
                                                                                    (7.10)
```

```
7.
                                        3D
                                                                          259
```

U(X)X,

 $\varphi_1(x)$,

[38]: $U\left(X\right)$ 1.

 $\varphi(u) = \left[\frac{d\left[x(u)\right]}{du}\right] \varphi_1[x(u)],$ (7.11)

x(u) – u(x).

U(X)

 $\varphi(u) = \sum_{f} \left| \frac{d \left[x(u) \right]}{du} \right| \varphi_{1} \left[x_{f}(u) \right].$ (7.12)

u(x),

и.

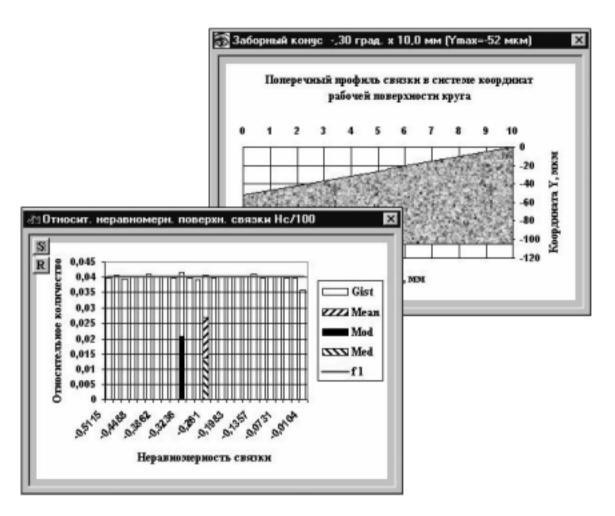
(7.4).

(7.4)

 $\varphi > x \le l$ $\varphi < x \le l$ $f_X(x; \varphi, l) = \begin{cases} x \operatorname{tg} \varphi \\ (x - l) \operatorname{tg} \varphi \end{cases}$ (7.13)

 $(\phi < 0);$ $(\phi > 0)$ φ –

); *l* – X (x - $(\phi > 0)$ $(\phi < 0)$.


```
260 3D
```

```
f_X(x; \varphi, l)
                                                                                                                     \boldsymbol{x}
                    (7.11)
  Y_X = f_X(X) = f_{\text{Rand}}(y_X; H) = \begin{cases} \frac{1}{H}; \\ 0 \le y_X \le H; \end{cases}
                                                                                                                       (7.14)
                                                                                                 ; H = |l| tg (\Phi)| -
       y_X -
                     . 7.5
                                                                                    : \varphi = -0.3 .; l = 10
H = |l \operatorname{tg}(\varphi)| = 52 \qquad .
                             (7.14).
(7.5).
                                                                                      (7.12).
                                                       [38]
                                                         \sin \left[ 2\pi \left( \frac{z}{L} - \frac{F}{100} \right) \right]
                                                                                          ; L –
                     : F = 0 -
```

$$Y_{Z} = f_{Z} (Z) = f_{ArcSin} \left(y_{Z}; H \right) = \begin{cases} \frac{1}{\pi \sqrt{H^{2} - \left(y_{Z} - \frac{H}{2} \right)^{2}}}; \\ 0 \le y_{Z} \le H; \end{cases}$$
(7.15)

 y_Z- ; H-

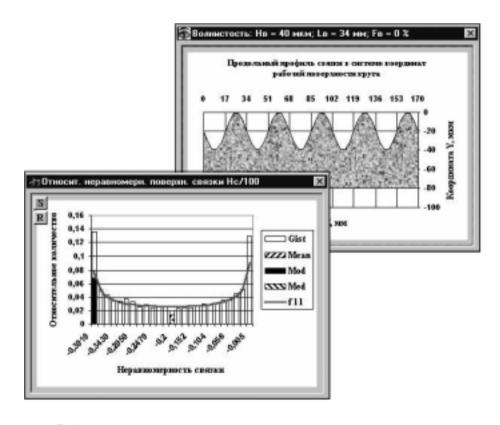
.

7.5 –

arcsin)

[38]:

$$f_{\text{ArcSin}}(a, l, u) = \begin{cases} \frac{1}{\pi \sqrt{l^2 - (u - a)^2}}; & (7.16) \\ a - l \le u \le a + l; & 0, \end{cases}$$


$$(7.16)$$

 $E_{\operatorname{ArcSin}} = a$,

$$D_{\text{Ar Sin}} = l^2/2.$$

. 7.6

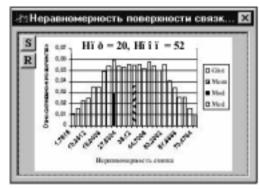
: H = 40 ; L = 34 ; F = 0.

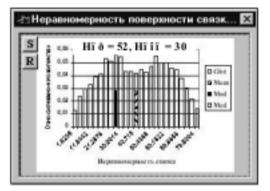
(7.15).

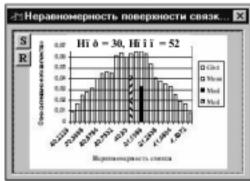
7.6 -

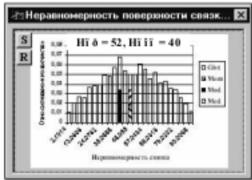
U


```
7.
                                                                             3D
                                                                                                                                       263
\overline{(,Y,Z...)}
                                                                                \overline{U}
                                                        (X, Y, Z ...).
        * [38].
                                                                                         X, Y, Z ...
                               \varphi_1(\ ), \varphi_2(y), \varphi_3(z) ...,
                                          \varphi(u) = \varphi_1(x) * \varphi_2(y) * \varphi_3(z) \dots
                                                                                                                                   (7.17)
                                                                 Υ,
\varphi_1(\ ) \quad \varphi_2(y),
                        \varphi(u) = \varphi(x + y) = \varphi_1(x) * \varphi_2(y) = \int_{-\infty}^{+\infty} \varphi_1(x) \varphi_2(u - x) dx.
                                                                                                                                   (7.18)
                                       . 7.7
                                      H
                                            (
                                                                                  (
                                                                        H
(7.15);
                                               ) –
```


•







7.7 -

Н –

H

7.1.3.	3D	
3D	•	-
	3D :	
1.	X (-
). 3D	,	:
$X (\min) > 0, X$	(\max) , $< X_{(\max)}$.	
	$X_{(\min)} - \frac{d_{X(i)}}{2} \le x_{(i)} \le X_{(\min)} + \frac{d_{X(i)}}{2},$	(7.19)
$x_{(i)}$ –	$X; X (\min), X (\max) -$	-
	$X; X_{(\max)}$ –	-
	$X; d_{(i)} - X.$	
2.	Z (-
)	X:	
	$Z_{(\min)} - \frac{d_{Z(i)}}{2} \le z_{(i)} \le Z_{(\min)} + \frac{d_{Z(i)}}{2},$	(7.20)
$z_{(i)}$ –	$Z; Z_{(\min)}, Z_{(\max)} -$	-
	$Z; Z_{(max)} -$	-
	$Z; d_{Z(i)}$ – Z .	
X-	$(7.19) Z - \tag{7.20}$	-

3D

3D

265

3D

7.

. 3. 266 3D -

 $(i=1 \dots n) ,$ », $\left|y_{(i)} - y_{(i)}\right| < \frac{d_{Y(i)}}{2},$ (7.21) $y_{(i)}$ –); $y_{(i)}$ – (); $d_{Y(i)}$ – *Y*. -i-3D *Y*. (7.19) - (7.21)3D (i = 1 ... n)(j = 1 ... n)3D 3D 1. $Y = -Y_a$. (7.22)**«** 2. 3D

 $y_{(j)} = -[f_X(x_{(j)}) + f_Z(z_{(j)})],$ (7.23)

 $f_X(x_{(j)}) -$

), $(7.4) - f_X(\varphi, l, x)$,

 $x = x_{(j)} = x_{(i)}; f_Z(z_{(j)}) - Z$ (7.5) -

 $f_Z(H, L, F, z), z = z_{(j)} = z_{(j)}; x_{(i)}, z_{(i)} - X, Z.$

3.

3D :

 $y_{(j)} = y_{(j)} - [y_0 + f_X(x_{(j)}) + f_Z(z_{(j)})],$ (7.24)

 $y_{(i)} = y_{(i)} -$

 y_{0} Y((7.23).

4. -

Y, - :

 $\varepsilon = \frac{d_{Y(j)}}{h_{(j)}},\tag{7.25}$

 $d_{Y(j)}, h \quad (j) - \qquad \qquad j- \qquad Y.$ $(7.21) \qquad \qquad \ll \qquad - \qquad \gg \qquad -$

 $\begin{cases}
0,5 - \frac{y}{d_{Y(j)}} > \varepsilon & << >>; \\
<< >>,
\end{cases} (7.26)$

. Y . y . - $-\delta \leq y \leq \delta.$

 $-\delta \le y \le \delta.$

$$\varphi (y) = \frac{1}{2\delta}; \qquad -\delta \le y \le \delta \qquad , \tag{7.27}$$

Y -

 $\varphi(y) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \frac{(y - \mu)^2}{\sigma^2} \right], (-\infty < y < \infty),$ (7.28)

 $\phi (y) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \frac{1}{\sigma^2}\right], (-\omega < y < \omega), (7.28)$ $\mu, \sigma = \frac{1}{\sigma} \frac{1}{\sigma^2} \exp\left[-\frac{1}{2} \frac{1}{\sigma^2}\right]$

$$\varphi(y) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \frac{(y - \mu)^2}{\sigma^2} \right], \quad (-\infty < y < \infty),$$
 (7.29)

 μ , σ –

[38]

$$\mu = \mu / 2; \quad \sigma = \sigma / 2.$$
 (7.30)

,

,

- -

•

$$\varphi(y)$$

:

$$\varphi (y) = \varphi (y) * \varphi (y),$$
 (7.31)

$$\Phi(y)$$
 –

$$(7.27); \varphi (y) -$$

$$(7.29) \qquad \mu \ = 0.$$

$$\varphi (y) * \varphi (y)$$

 $(y - \delta)$ $(y + \delta)$:

$$\varphi(y) = \frac{1}{2\delta} \frac{1}{\sigma \sqrt{2\pi}} \int_{y-\delta}^{y+\delta} \exp\left(-\frac{1}{2} \frac{y^2}{\sigma^2}\right) dy, \quad (-\infty < y < \infty).$$
 (7.32)

 $270 \qquad 3D$

(7.32)

[2]:

$$\Phi(z) = \Phi\left(\frac{x-\mu}{\sigma}\right) = \Phi(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left[-\frac{1}{2} \frac{(x-\mu)^2}{\sigma}\right] dx, \quad (7.33)$$

$$x \equiv y$$
; $\mu \equiv \delta$; $\sigma \equiv \sigma$.

:

$$\varphi (y) = \frac{1}{2\delta} \left[\Phi \left(\frac{y + \delta}{\sigma} \right) - \Phi \left(\frac{y - \delta}{\sigma} \right) \right], \quad (-\infty < y < \infty), \quad (7.34)$$

 σ – $(\sigma = 0.5\sigma);$

 $\delta -$,

 $\Phi(z)$

[36], $|\varepsilon(z)| < 1.5 \cdot 10^{-7}$

 $0 \le z < \infty$:

$$P(z) = 1 - \frac{1}{2} \left(1 + d_1 z + d_2 z^2 + d_3 z^3 + d_4 z^4 + d_5 z^5 + d_6 z^6 \right)^{-16}, \quad (7.35)$$

 $d_1 = 0.0498673470, d_2 = 0.0211410061, d_3 = 0.0032776263,$

 $d_4 = 0,0000380036, \ d_5 = 0,0000488906, \ d_6 = 0,0000053830.$

$$\Phi\left(-z\right)=1-\Phi\left(z\right),$$

 $-\infty < z < \infty$

(7.35) :

 $\Phi(z) = P(z); \Phi(-z) = 1 - P(z).$

. 7.8

(7.34)

 $\delta = 0.5 \dots 4 \qquad \sigma = 0.1. \qquad , \qquad .$ $\delta / \sigma \qquad .$

7. 3D 271

•

.

.

$$\varphi (y) = \frac{1}{\delta} \left[\Phi \left(\frac{y + \delta}{\sigma} \right) - \Phi \left(\frac{y - \delta}{\sigma} \right) \right], \quad (0 \le y < \infty), \quad (7.36)$$

$$\delta, \sigma-$$
 ,

 δ , σ

S .

,

$$(\mu = E, \sigma = s)$$
 :
$$\delta = E (1 - \epsilon); \quad \sigma = s (1 - \epsilon),$$
 (7.37)

ε –

$$0 \quad \infty$$
. $\delta = 0.5 \dots 4 \qquad \sigma = 0.1$. 7.9. (7.36)

(7.34)

7.9 -

(7.26)

$$0 \le y \le y$$
 (max).

:

$$\phi \qquad (y \qquad) = \begin{cases}
k \frac{1}{\delta} \left[\Phi \left(\frac{y}{\sigma} \right) - \Phi \left(\frac{y}{\sigma} \right) \right], \\
0 \le y \qquad \le y \qquad \text{(max)}; \quad 0, \qquad ,
\end{cases} (7.38)$$

```
7. 3D 273
```

k- , (k>1, $k\cong 1).$

$$k = 1 / \int_{0}^{y} \int_{0}^{(\text{max})} \frac{1}{\delta} \left[\Phi \left(\frac{y + \delta}{\sigma} \right) - \Phi \left(\frac{y - \delta}{\sigma} \right) \right]. \tag{7.39}$$

 $y c (max) \equiv \Delta_{max}$

[1]

$$\Delta_{\text{max}} \approx d_{Y\text{max}} (1 - \varepsilon) = (\mu + 3\sigma)(1 - \varepsilon),$$
(7.40)

 $d_{Y \max}$ – (

); ε –

;
$$\mu$$
 , σ –

Y.

. 7.10.

 δ σ . 7.8, 7.9.

,

 $\delta = 0.5, 1, 2, 3, 4$ $\Delta_{\text{max}} = 1, 2, 3, 4, 5.$

(7.36), (7.38) 3D . -

 $\epsilon = 0.1 \dots 0.9.$

 $\varepsilon = 0.5$ (25.

52134 ., –

52031 . 65,827 .

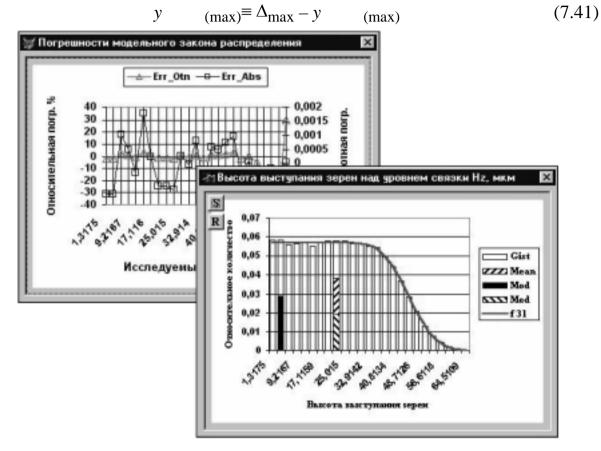
: $\mu = 47,415$;

 $\sigma = 6{,}794 \qquad .$

7.10 - -

_

_


- y

(7.38), - (). - y ()

 $y \qquad \text{(max)} \equiv \Delta_{\text{max}} (7.40).$

.

 Δ_{\max} ,

7.11 -

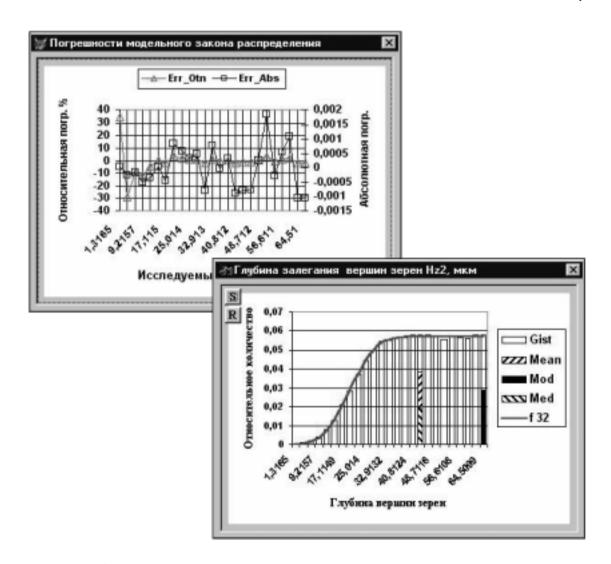
:

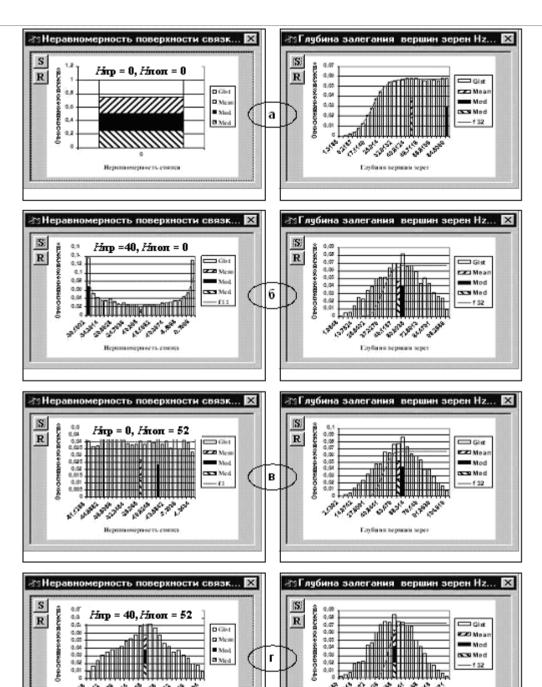
$$\phi \qquad (y \quad) = \begin{cases}
k \frac{1}{\delta} \left[\Phi \left(\frac{\Delta_{\text{max}} - y + \delta}{\sigma} \right) - \Phi \left(\frac{\Delta - y - \delta}{\sigma} \right) \right], & (7.42) \\
0 \le y \quad \le \Delta_{\text{max}}; \quad 0, \quad , \\
k - \quad , \quad (k > 1, \quad -k \cong 1); \quad \Delta_{\text{max}} - \\
\vdots \quad \delta - \quad ,
\end{cases}$$

```
; <del>o</del> –
        . 7.12.
                                                              ) 0,001836 (
       :
                                 (
20);
                                                               ) 34,12 % (
                                  (
                                              1,461 %;
1);
                          1,90 %.
                                                                    3D
                                                                     (0,1-0,9),
```

7.1.5.

. -7.12


, , , . 7.13. (. 7.13),


(.7.13 , ,)

7.

.

(7.38).

O Gist

■ Mod

D Med

Г

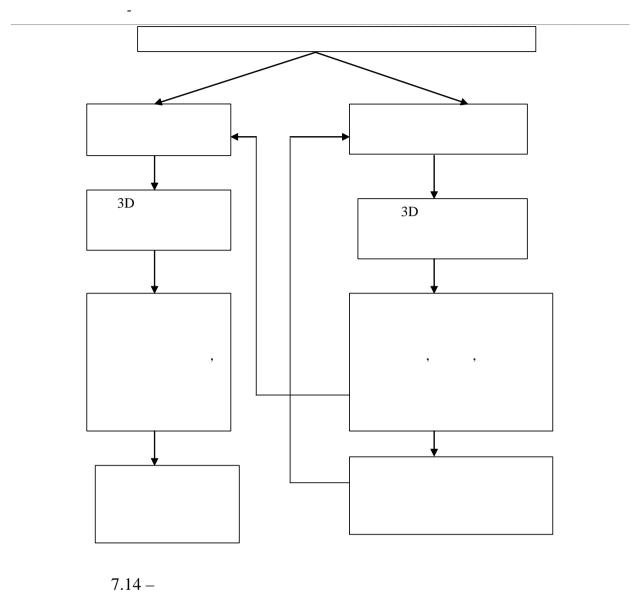
EXI Mean Mod.

DCS Med

--- f 32

The state of the state of the state of the state of

Глубина вермин зерег


7.13 -

and the state of t

7. *3D* 279 7.2. 3D 2-[1]. 160 , 2

		•		(25, 50
100, 150, 200 %)		•		
()	,			
,		, ,		
			•	
-			3D	
	,			
	,		3D	•
	,			
(.7.14).		,		•
	3D			
			,	
	F4 41			
	[14],	,		
,	[25]			

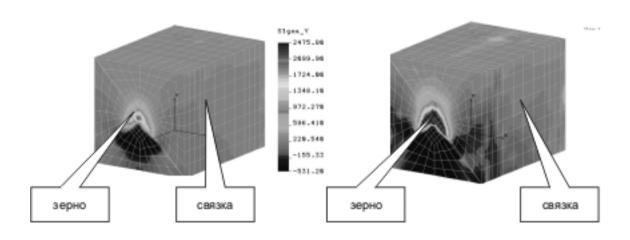
[25].

,

400/315, 50 , , , -10–20 % .

,

. , 50 150 % - 2,8 .


,

3D -

	,		(),
	, ()	20–30 % [17].
	,		
	3D	,	300 300 300 ,
	50 %	100 %	100 100
	5–10		
().	. ,	,
		3D . 7.15.	, – 2 160 .
	,		
,	,		•
		,	6-14 7 %,
		U	/ /0,

7. *3D* 283

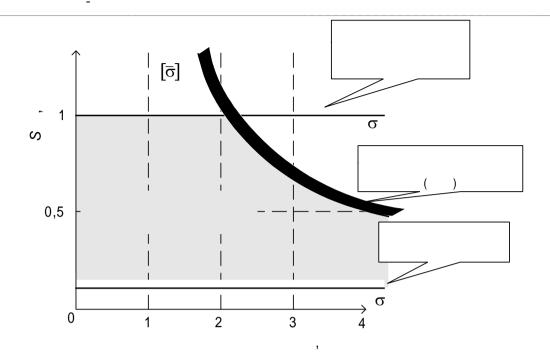
10–15 %

7.15 – 3D 1-01;

8

100 %

. 7.1.


7.1 –

1-01	2-09	6-14	
6	32	50	160

```
284 3D
```

```
3D
                                )
                                                              );
                                               >>
                                    «
                        );
                                                                                 ).
                                                                  3D
                                           . 5.4–5.5.
                       >>
«
                                                        »,
                                                                               . 7.16)).
```

7. 3D 285

7.16 –

· , · · ·

· (. 7.2).

7.2 -	

-		-	-	-	,
		,		,	
	160	600	5–7	40–50	3–4
	85	500	8–11	35–40	2,5–3
	60	400	12–15	30–35	2–2,5
	32	300	17–22	25–30	1,5–2
-	15	100	25–35	20–30	1–1,5
-	15	100	35–50	20–30	1–1,5

,

,

,

, , ,

·

7.3.

« – – »

« – – »

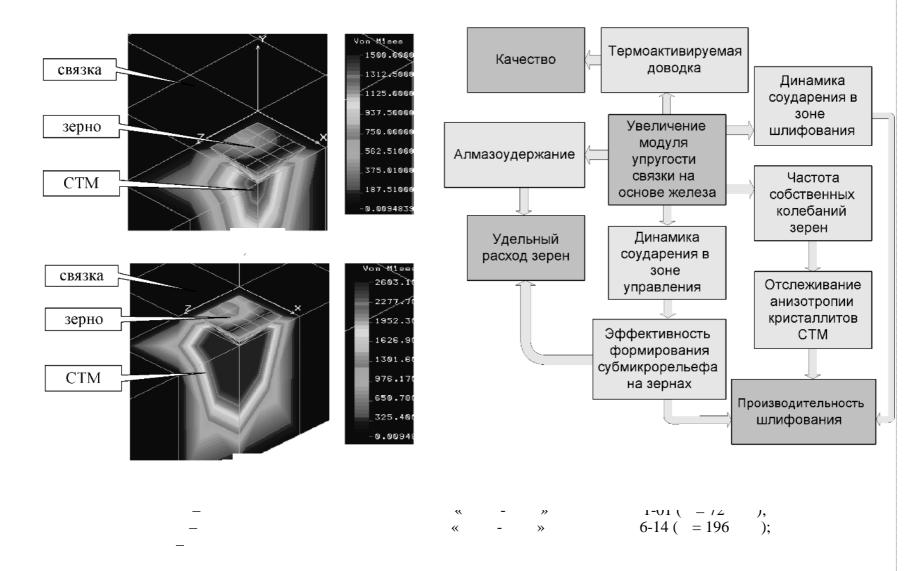
, -

7. 3D 287

-

), 3D **>> « « « >>**

10 ,) .


· « – – ».

```
288 3D
```

```
29,5-
                            6-16
                                      6-14
                                                                     66
       / <sup>2</sup> [17].
61,4
                                   200, 270
                                                              [43].
                                                 470
  6-16 ( -3),
                            = 193,7
                                        . 7.17.
                                                                   h
             3D
                                             3D
                     . 7.3.
                     =h /l,
             . 7.3).
                                                                MathCAD
                  ),
                                            h,
                     V ,
                     h :
                               h_{\rm p} = K_1 E_{\rm c} h_{\rm p} \quad ;
                                                                           (7.43)
                               h = K_2 p;
                                                                           (7.44)
                               h = K_3 ,
                                                                           (7.45)
                                                               D
```

```
289
h -
                                                         »;
                                           «
S
  [41].
                                                     3D
                                                           0,02-0,036-0,164
                           8
                                                                                   5
                                1-01 ( = 72
                                                                      4 \cdot 10^{-10}
                              6-14 ( = 196
34\cdot10^{-10}
3.
```

3D

-

7.3 –

,	70	90	110	130
$V \cdot 10^{10}, ^{3}$	11	14	17	21
V ·10 ¹⁰ , 3	3	6	8	11
V ·10 ¹⁰ , 3	67	54	43	32
	15	30	45	90
$V \cdot 10^{10}, ^{3}$	11	8	6	4
V ·10 ¹⁰ , 3	3	1,1	0,6	0,2
V ·10 ¹⁰ , 3	67	56	51	47
(%)	80	60	30	10
V·10 ¹⁰ , 3	18	12	7	5
$V \cdot 10^{10}, ^{3}$	6	4	2	0,8
V ·10 ¹⁰ , 3	67	54	49	43
,	700	900	1100	1300
V·10 ¹⁰ , 3	5	8	12	18
V ·10 ¹⁰ , 3	2	1	0.6	0.3
V ·10 ¹⁰ , 3	65	68	69	73
,	1050(100)	1160(110)	1200(111)	1100()
V·10 ¹⁰ , 3	8	5	3	1
V ·10 ¹⁰ , 3	2	3	2	11
V ·10 ¹⁰ , ³	65	62	58	63
, / 2	10,6(111)	13(110)	18(100)	14()
V·10 ¹⁰ , 3	7	5	3	6
V ·10 ¹⁰ , 3	2	3	5	8
V ·10 ¹⁰ , 3	12	15	17	16

```
292 3D
```

[3]: $R_a = 2,6 \cdot 10^{-10} d^4 \left(HV_c\right)^{0,67} \left(HV\right)^{0,54},$ (7.46) *d* – HV,HV_c – (6-14 (). 3D **«** [43, 45],

. . [45],

```
7.
                             3D
                                                      293
       63/40
                        [9]),
                                       Δ
                         3D
      . 7.4.
                 P = 1,645H \quad d^2 \xi^{0,83},
                                                    (7.47)
                                        σ
                                     ξ:
            (7.48)
```

294 *3D*

h

, . .

,

7.4 –

								h
,	70 100			130		198		
h ,	62		53 46		38			
:								
h ,	62		50)			34
,	1	2			3		4	5
h ,	32	44		5	1		58	62
, <i>V</i> /	10		15			20		30

, , ,

47

63

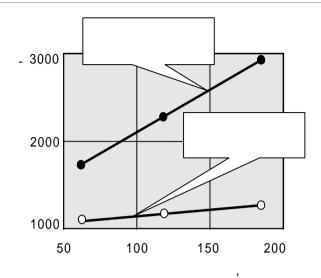
82

.

32

,

•


,

- ,

. 7.18

```
7.
                                  3D
                                                               295
                        3D
                                         «
                                        . 7.17
                                                    ( 160 )
                                        »,
```

296 3D -

0,8 0,6 0,4 0,2 0 50 100 150 200 5

7.18 – (),

7.4.

,

. , 5–15 %

3D 7. 297 95–85 % , 10 32 [10]. 3D **>>** . 7.3 V VV

298 *3D*

3D « - - » , V V , h V V . V

, « »

 $\left(q = \frac{V}{V}\right) \qquad \left(q = \frac{V + V}{V}\right)$

. 7.6.

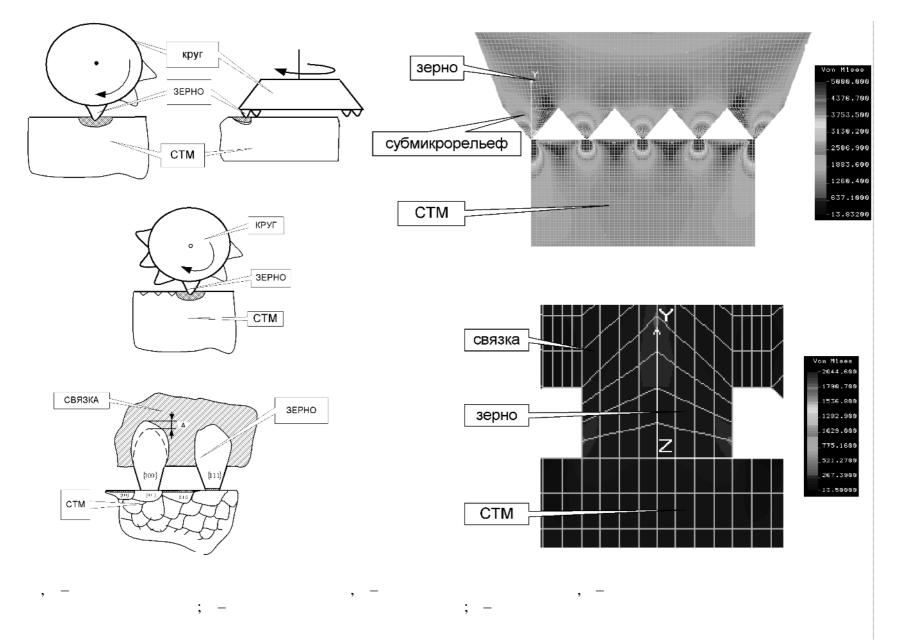
7.5 –

S ,	1	2	3	4
Δ ,	0,07	0,11	0,81	1,3
S ,	1	2	3	4
Δ ,	0,012	0,032	0,06	0,19
S ,	1	2	3	4
Δ ,	0,006	0,011	0,03	0,08

7.6 –

٥	30°	60°	90°	120°
q , /	1	1,6	2	2,4
,	70	120	160	200
q , /	3,2	2,3	1,6	1

-


),

3D « - - » -

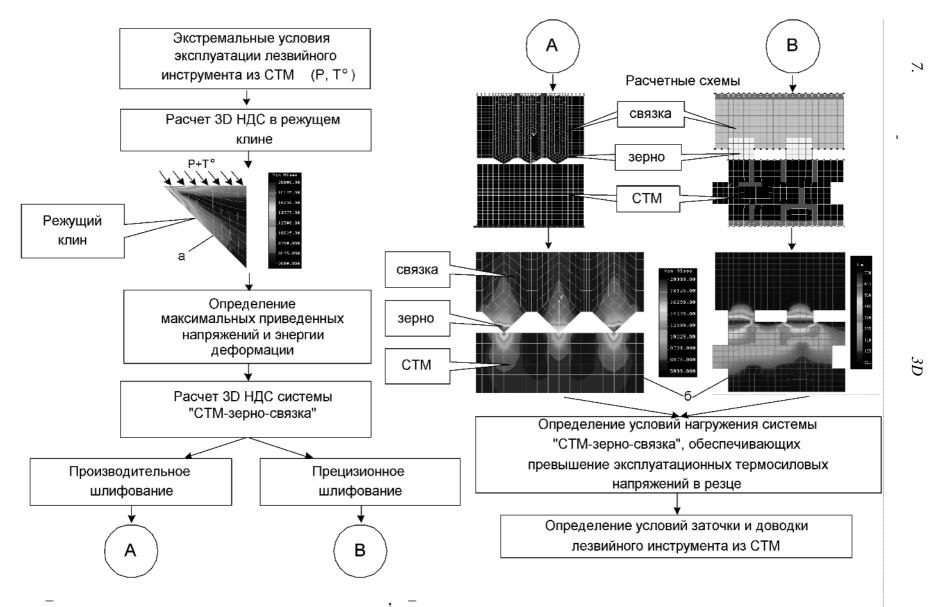
,

```
299
                         ( ).
                                                        3D
(h_p \neq 0), . .
        ).
                                                 (h_{\rm p}=0)
  )( .7.19 , ).
                                       ( .7.19 , )
                  ( .7.19 , )
```

3D

(111). (600–700°), 47 %.

3D


3D

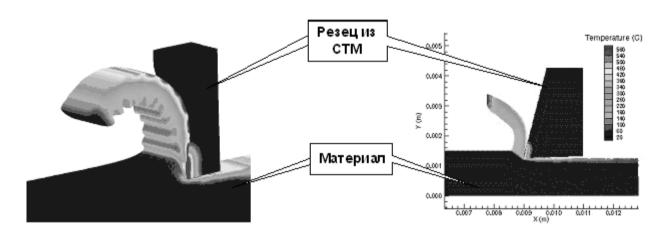
301

7.

7.5.

```
(
              ),
         ( .7.20 ).
```


304 *3D*


3D

«Third Wave AdvantEdge».

,

,

. 7.21.

7.21 - 3D ()

_

(3D),

_

, , ,

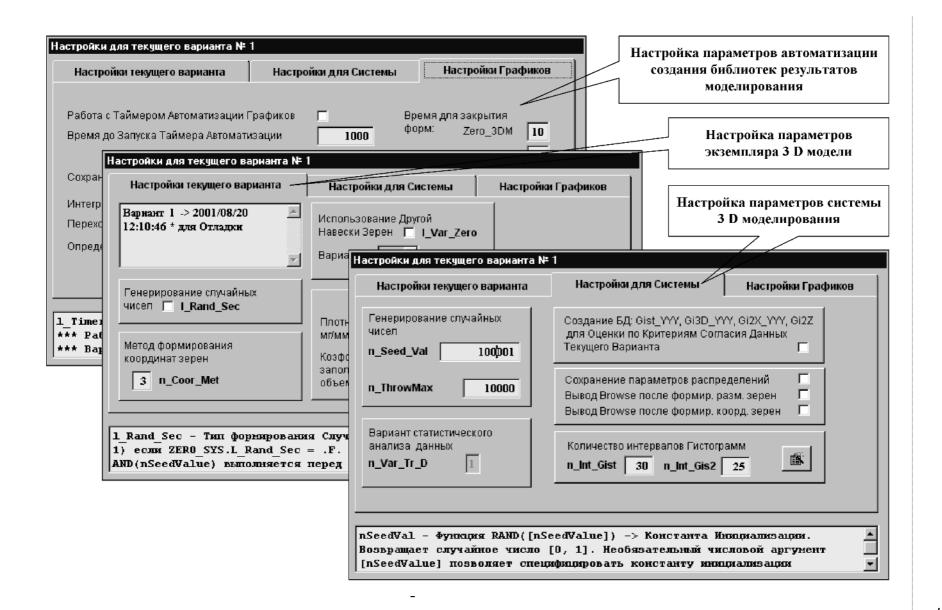
```
7.
                                   3D
                                                                  305
```

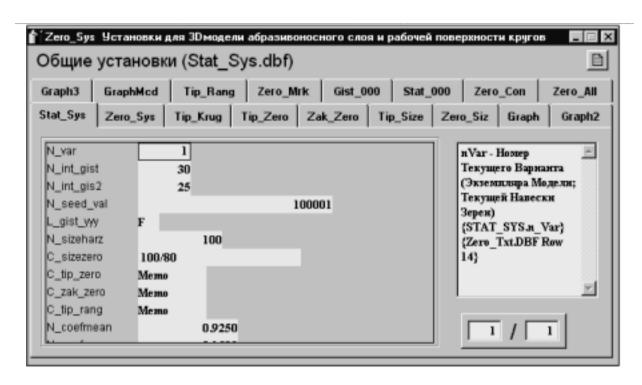
(. . 7.20).

(. . 7.20),

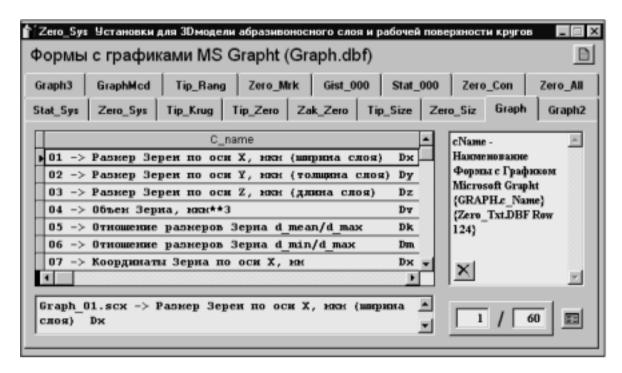
· , , . .), (. . 7.20)

306 3D -


«	_	»,						
	,			,			/	
					,			
	,				ŕ			
	7.6.							
	1.							
	?						-	
	2.							
	3.					,		
	4.			?				
	5.		?					
			?					
	6.						?	
	7.							
	8.	•						
3D	9.		•					
	9.							


-

?


7.	_		<i>3D</i>			307
10.						
					-	-
11.						-
12.	·			3D		-
13.					3D	-
14.					٠	3D
15. 3D						-
16.						3D
17.		•				3D
18.		•				
19.						
20.			•			
21.		•				-

3D			,	-	
3D		-		(),	
3D .	•				
A.1.	,		3D		
· (2)	3D : .1), , .3)	()	- - -
.1.1. STAT_SYS .3 .				3D	
.1.2. ZERO_SYS 4				() 3D
.1.3. TIP_KRUG – TIP_RANG – TIP_SIZE – TIP_ZERO –	;		;	;	
ZAK_ZERO –				•	

.2 – STAT_SYS – 3D

.3 – GRAPH – MS GRAPH (

```
.1.4.
  GRAPH -
MS GRAPH (
            Graph_NN.scx);
  GRAPH2, GRAPH3 -
                                             );
   GRAPHMCD -
MathCad (
          GrMcd).
    .1.5.
  ZERO_ALL -
   ZERO_MRK -
   ZERO_SIZ, ZERO_SI2 -
    .1.6.
                                                         3D
  CORR_FUN -
                                       )
   CORR_CFC -
     );
   CORR_SYS -
   STAT_DIS -
   STAT_COL, STAT_HI2, STAT_OM2 -
\chi^2, \omega^2.
     A.2.
                                                     3D
                      3D
   NNN -
   ZERO_NNN -
                                     (
            );
```

```
CONT_NNN -
STAT_NNN, GIST_NNN -
Z3DM_NNN -
                                                   );
ST3D_NNN, GI3D_NNN -
                       3D
Z3DG_NNN -
                          );
Z3DG_NNN.PRN -
                                               3D
   MathCad;
Z2XM_NNN, Z2ZM_NNN -
                                                         );
Z2XG_NNN, Z2ZG_NNN -
A.3.
                                   STAT_SYS
                  3D
c_Order_01 -
c_SizeZero -
                                        );
                     (
1_Brow_1 -
                         Browse
1_Brow_2 -
                         Browse
1_DistrCum -
1_Grapg2Sv -
                                          c_Graph2
```

```
1_Memu_Bar -
L_SAVE_1 -
                                                 Zero_Dis;
L_SAVE_2 -
                Zero_Siz (
                                                  Zero_Dis);
1_SizeHarZ -
1_Stat_3DM -
                                      ST3D_000, GI3D_000;
n_Gi3D_000 -
n_Gist_000 -
n_Intg_Cor -
                                                                )
Integer (
                     );
n_Intg_Zer -
                                                       )
                                                                Integer
            );
n_Int_Gis2 -
                          3D
n_Int_Gist -
                          3D
                                               RAND([nSeedValue]);
n\_Seed\_Val -
n_SizeHarZ -
n_St3D_000 -
n_Stat_000 -
n_Stat_3DM -
                                          Stat_3DM
.;
n_Stat_XYZ -
                                          Stat_XYZ
n_ThRowMax -
n_Timer_Gr -
n_Var -
                                                    );
```

```
314 3D
```

```
n_Zero_3DM -
                                            Zero_3DM
       .4.
                     (
                                                )
                              3D
                                  ZERO_SYS
   Base_Log_X, Base_Log_Y, Base_Log_Z -
                             X, Y, Z
                                                         );
   B_mm -
   c_Prof_XZ -
                                                       3D
   c_SizeZero -
                                                 );
                           (
   c_Yc_X, c_Yc_Z –
Yc = f(x), Yc = f(z);
   Dx_mkm, Dy_mkm, Dz_mkm-
           X, Y, Z,
                                             );
   F_Grd -
   F_Rad -
   K_Abr -
                                                     1...8 (25...200 %);
   1_Bxyz -
                                      : X, Y, Z;
   1_Dxyz -
                           : X, Y, Z;
   L_mm -
                                           (
                                                              );
   1_{Prof}X -
                                                                 3D
   1_Prof_X_C -
                  YcX = YAnglBond (nAngle, nCone, nX),
   nAngle -
                                     (9...-9)
                                               ); nCone -
                         ); nX -
                                                  X;
   1_Prof_X_F -
                      YcX = f(x);
```

```
1 Prof Z –
                                                                 3D
   1_Prof_Z_C -
          YcZ = YWaveBond(nZWaveH, nZWaveL, nZWaveF, nZ),
                                        ; nZWaveL -
   nZWaveH -
nZWaveF -
                                  , %; nZ –
                                                              Z;
   1 Prof Z F-
                      YcZ = f(z);
   1 Rand Sec –
RAND(nSeedValue):
   1)
    ZERO\_SYS.L\_Rand\_Sec = .F. \Rightarrow nSeedValue = STAT\_SYS.n\_Seed\_Val
  RAND(nSeedValue)
   2)
       ZERO_SYS.L_Rand_Sec = .T. \Rightarrow nSeedValue = 1000* SECONDS()
 RAND(nSeedValue)
    (
                                              );
   1_SL_2D -
                                                             2D
   X = Z:
   1_Sxyz -
                                   : X, Y, Z;
   1_Var_Zero -
         3D
   n_B_2D -
                                            2D
                                                               X,
                                                                     (
                                     );
   n_B_2D_DnV, n_B_2D_UpV –
2D
                 X,
                                    );
                       (
                                                                       2D
   n_B_2D_Vis -
              X (10...500);
```

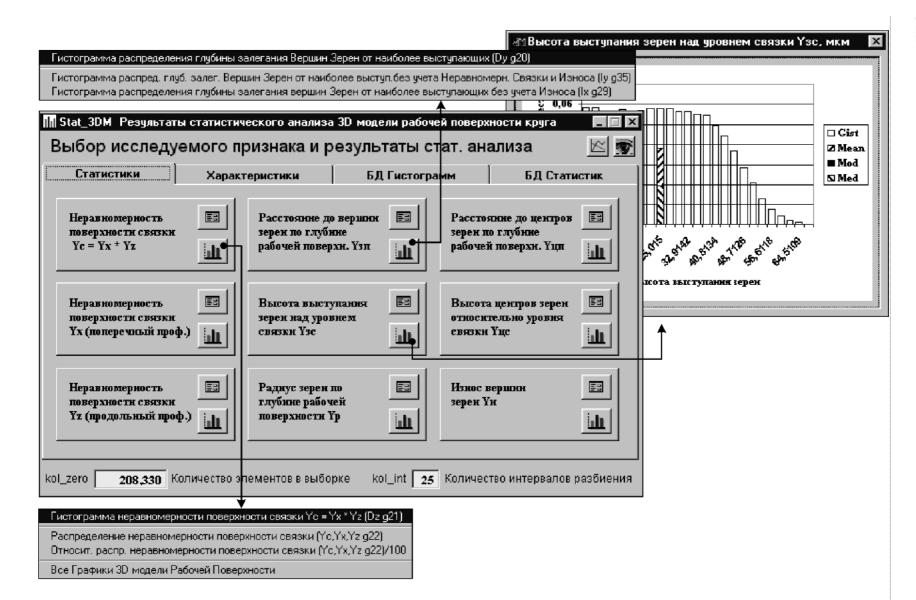
```
316 3D
```

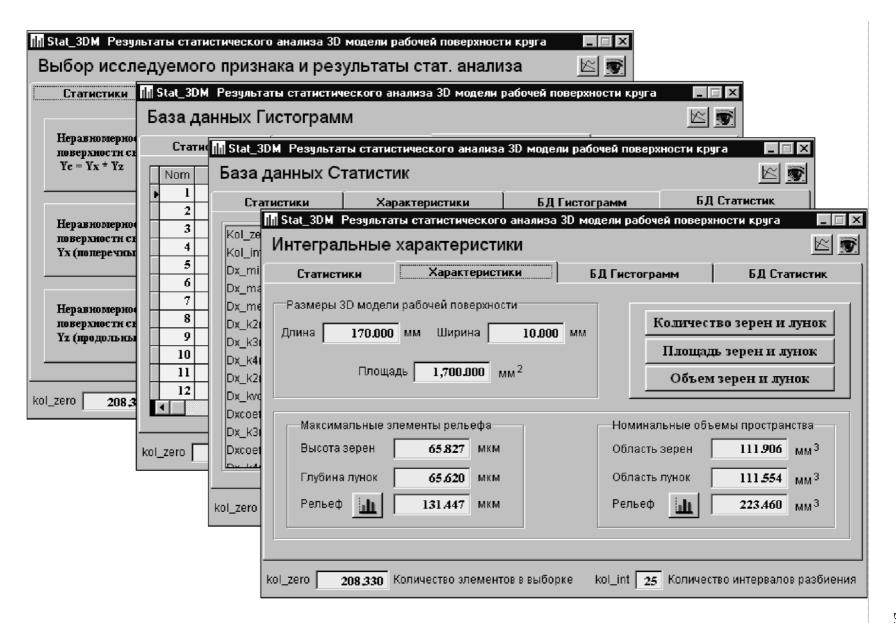
```
n B 3D Dn, n B 3D Up-
                                                      3D
X;
   n_B_3D_DnV, n_B_3D_UpV –
3D
                 X;
                                                                     3D
   n_B_3D_Vis -
             X (10...100);
   n_Coef_Zer -
      (
                                         : 0 ... 1,0.
                     ).
                                                          3D
   n_Coor_Met -
                                (1, 2, 3, 4)
   n_Fret_nC1, n_Fret_nC2, n_Fret_nC3, n_Fret_nC4 -
                                                                      2,
                                                                   1,
 3, C4
                                                : 0 -
   n_Fret_nD -
1 –
                       ; 2 –
   n_H_L_Max -
                                                                     );
   n_H_Z_Max -
                 );
   n_L_2D -
                                                            Z,
                                           2D
                                                                  (
                                   );
   n_L_2D_DnV, n_L_2D_UpV -
                                                                     2D
             Z,
                   (
                              );
                                                                 2D
   n_L_2D_Vis -
           Z (10...500);
   n_L_3D_Dn, n_L_3D_Up –
                                                     3D
                                                                      Z;
   n_L_3D_DnV, n_L_3D_UpV –
                                                                     3D
             Z;
   n_L_3D_Vis -
                                                                 3D
           Z (10...300);
   n_Max_Boun -
   n_Max_Wair -
```

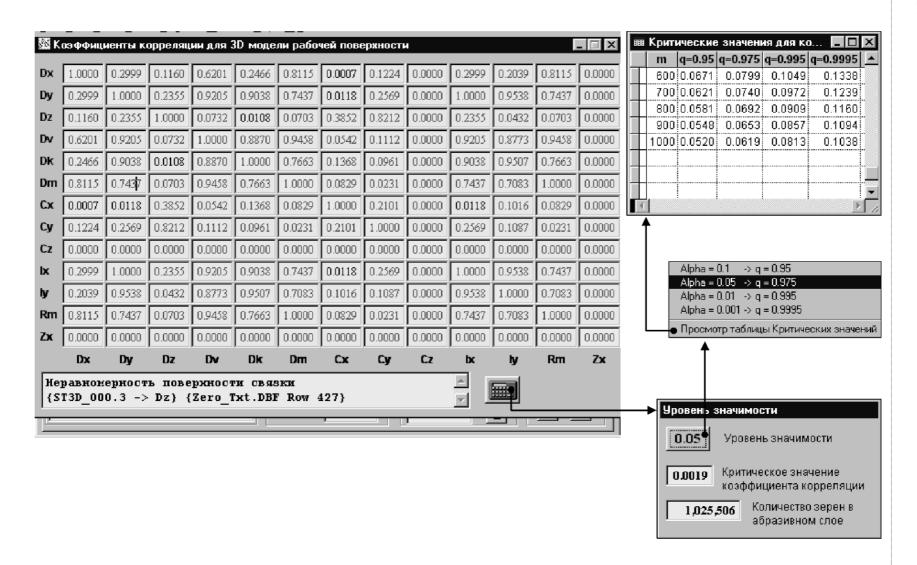
```
n_Mic_B_cM -
                    (0-100\%);
   n_Mic_B_cV -
                 (0-100\%);
   n_Mic_B_nD -
(0, 1, 2);
   n_Mic_Z_cM -
         (0-100\%);
   n_Mic_Z_cV -
                (0-100\%);
   n_Mic_Z_nD -
                                                                 (0, 1, 2);
   n_Rang_Tip -
                                                       : 1 -
                                 ; 2 –
         ; 3 –
   n_Rel_Z -
                                                    );
   n_Rel_ZB -
                                                    );
   n_Rel_ZBW -
                                          );
   n_Rel_ZW -
                                                    );
   n_SizeHarZ -
   n_S_3D -
                                           3D
                                                             Y;
   n_Var_Zero -
                         3D
   n_Wair_3DM -
   n_Wair_p1, n_Wair_p2, n_Wair_p3 -
   n_X_Angle -
                                         9...-9,
                                                    (
                   < 0 -
```

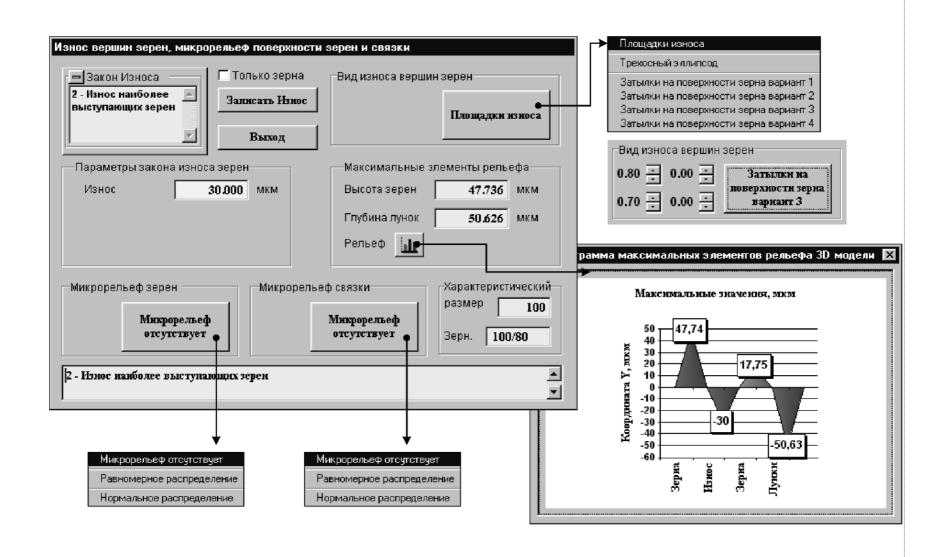
```
n_X_Cone -
                                 (
                                                        )
                                                 : 0 ...
n_Zero_All –
);
n_Zero_Car -
                                                         -9);
                                                          3 (
n_Zero_Den -
                        -3.53);
n_Zero_Fil -
n_Zero_mGr -
                                                       -10);
n_Zero_mm3 -
                                                            -11);
n_Zero_Mod -
                                                );
n_Zero_Num -
                                                           (
  -8);
n_Z_Wave_F -
                                            0 ... 100 %;
n_Z_Wave_H -
                                         0 ... 9999,
n_Z_Wave_L -
                                      0 ... 9999,
Sx_mkm, Sy_mkm, Sz_mkm -
              X, Y, Z,
                                                );
S_mm -
Tip_Krug -
Tip_Range -
Tip_Zero -
Variant -
                                            3D
V_Krug -
                                        (
                                                      );
V_Zero_1 -
V_Zero_All -
                                                                    );
V_Zero_Mod -
Zak_Zero -
```

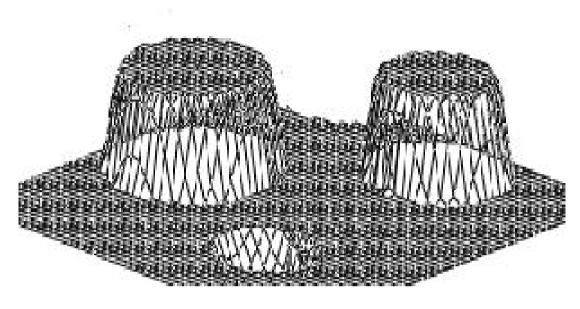
3D 3D 3. .1. 3D . .1. 3D (): 1 (Dx) –); 2 (Dy) –)); 3 (Dz) –); 4 (Dv) – (); 5 (Dk) – 6 (Dm) – **Y**x (7(Cx) –); Yz (8 (Cy) -); 9 (Cz) –

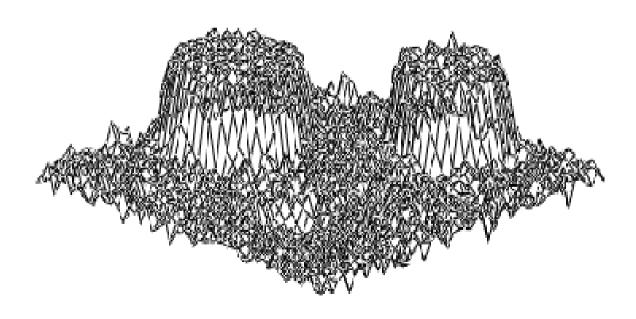

```
10 (Ix) –
                                            (
                                                              )
                 (
                                                              );
  11 (Iy) –
                                            (
                        )
);
                                                               (
  12 (Rm) –
  13 (Zx) –
                   . .2.
         . .3.
                                          12
                                                             . .1).
    .2.
             .4
                                                                      3D
                                                                 (
                                                                      )
                                                 3D
          . .5, .6
. .6).
                  3D
                                                . .7.
    .3.
       3D
```

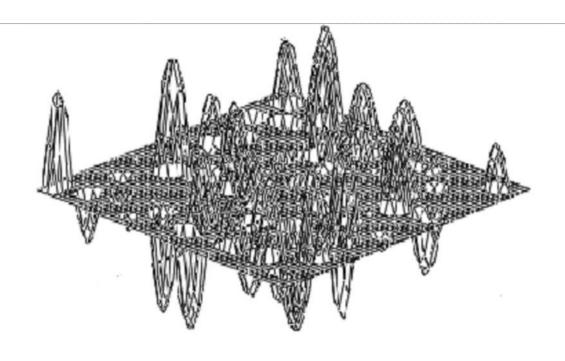

320

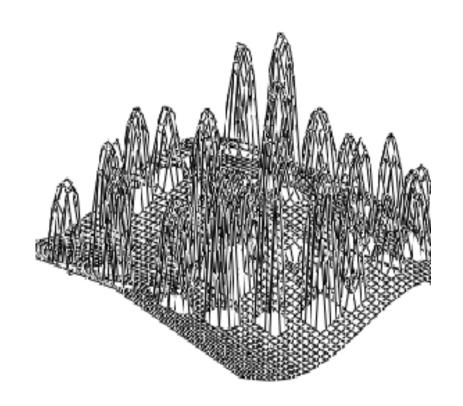

3D

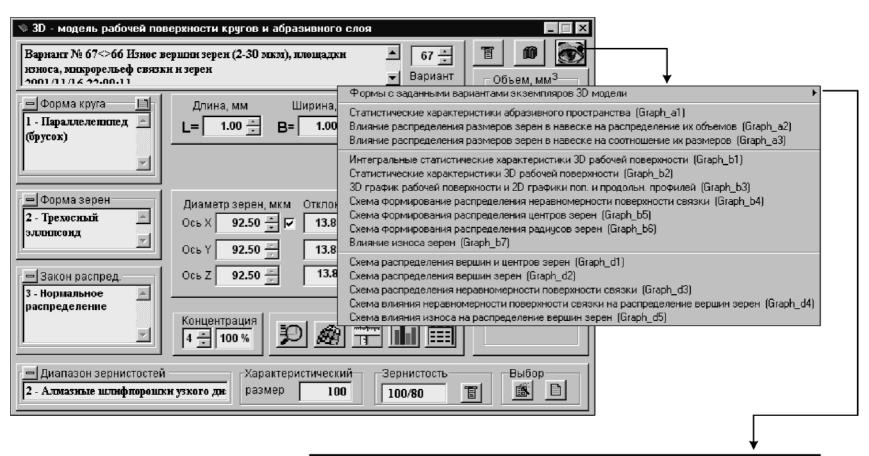

3D -


(. . .8): .8. (Graph_a1 - Graph_a3); (Graph_b1 - Graph_b7); (Graph_d1 - Graph_d5); (Graph_v1 -Graph_v5). (Graph_a1 – Graph_a3, Graph_b1 – Graph_b7)) 3D . .9 – .13. (Graph_b1 - Graph_b7, Graph_v1 -Graph_v5) (.). **>>** . .14 – .20. **3D** .4. 3D Web. . .21).

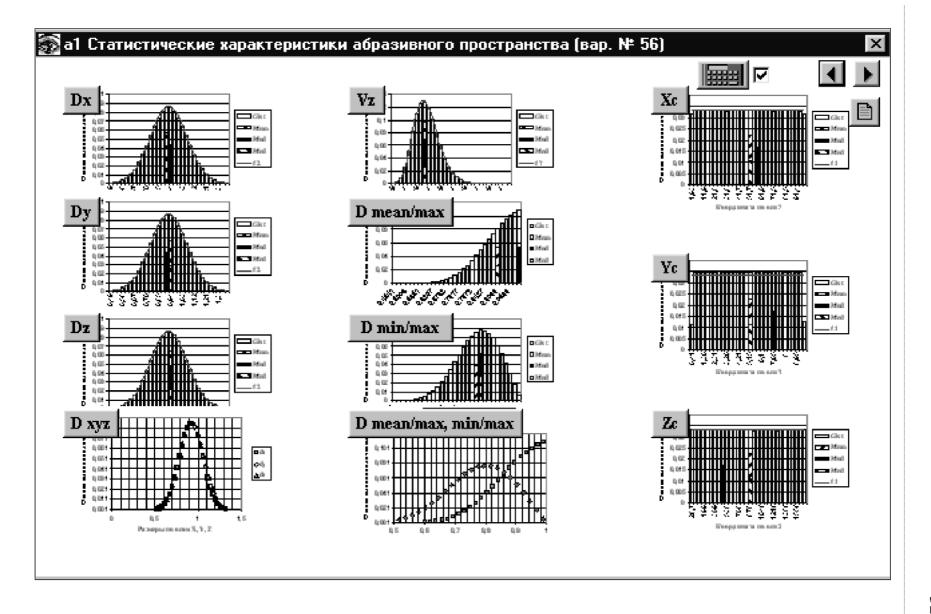


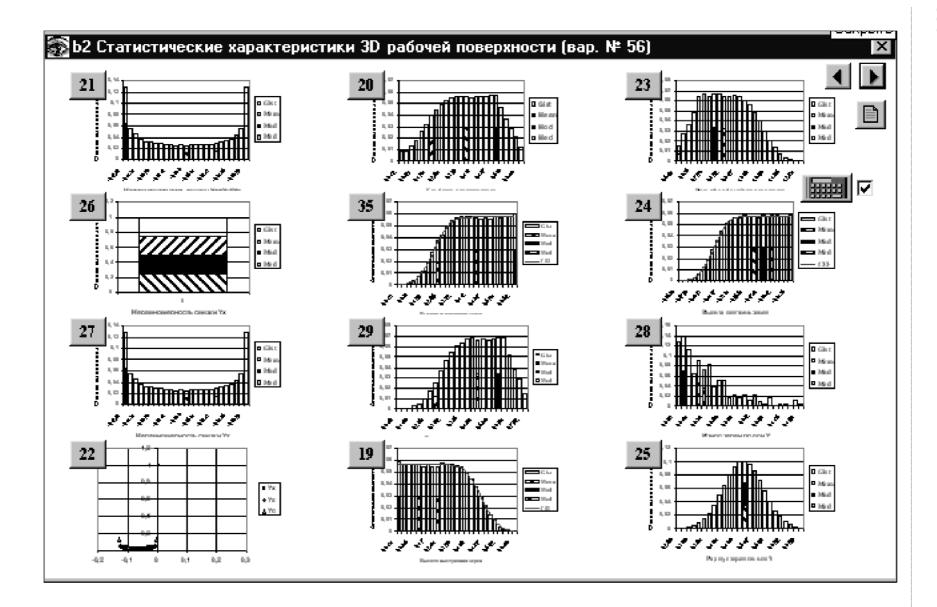


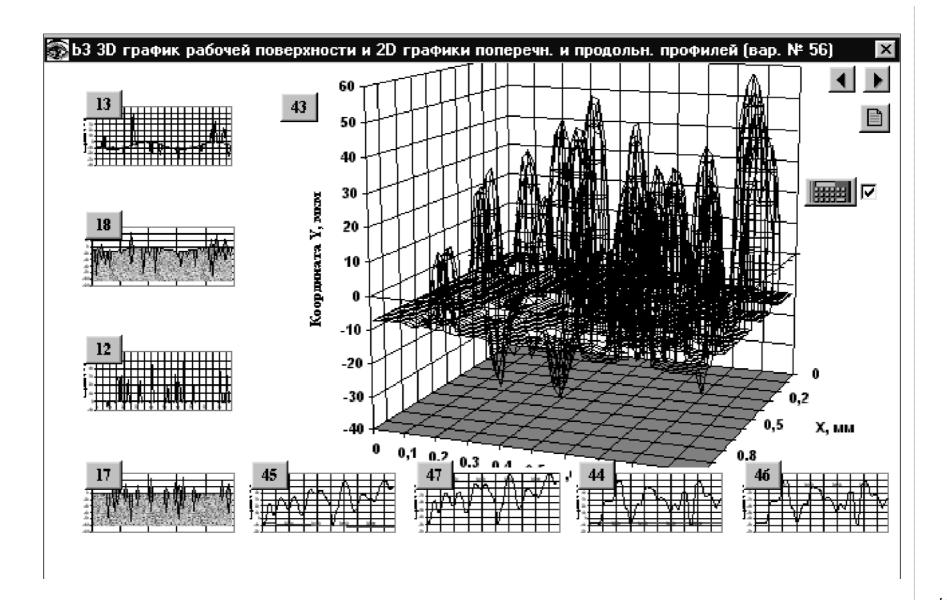

.5 – 3D

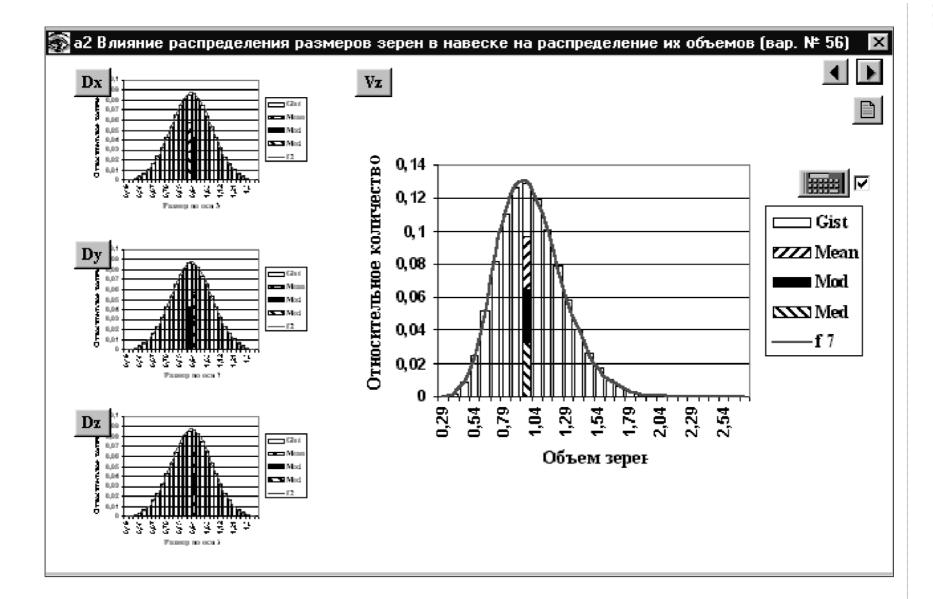

.6 – 3D

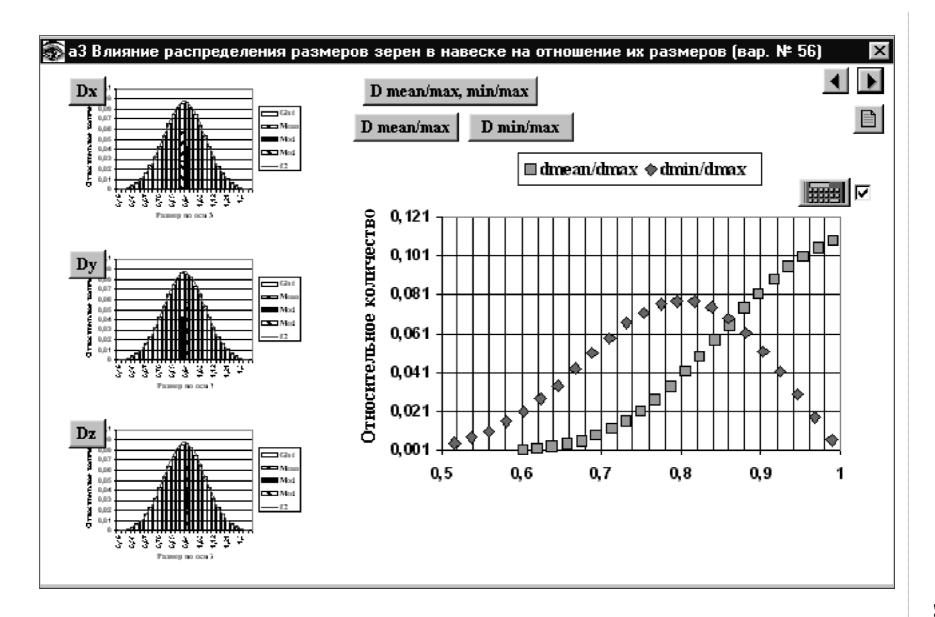
327

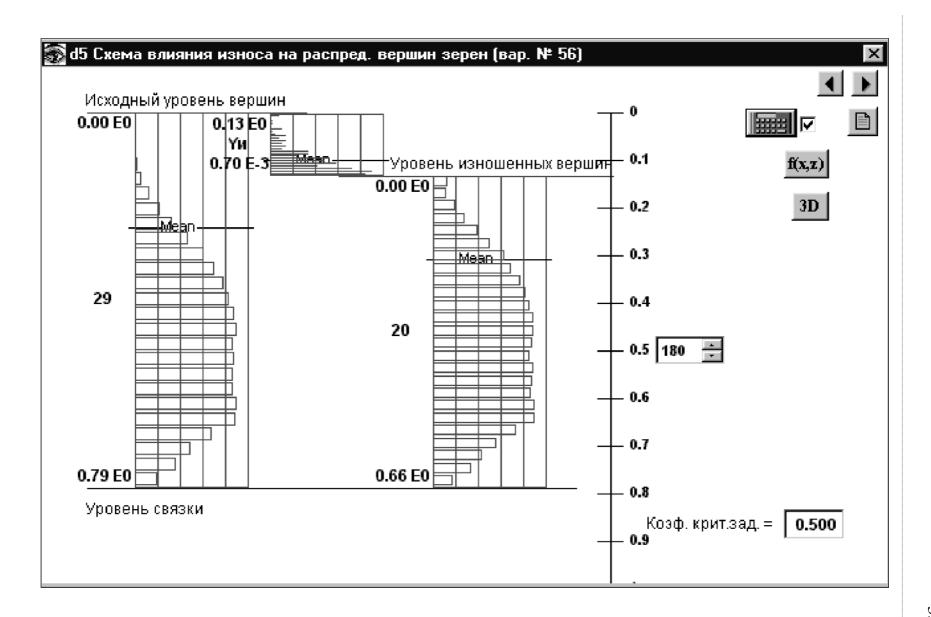


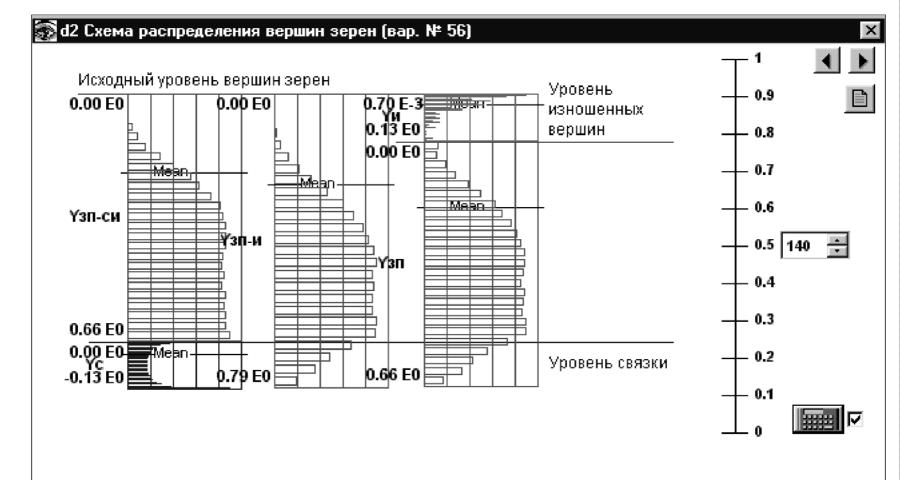

.7 - 3D :

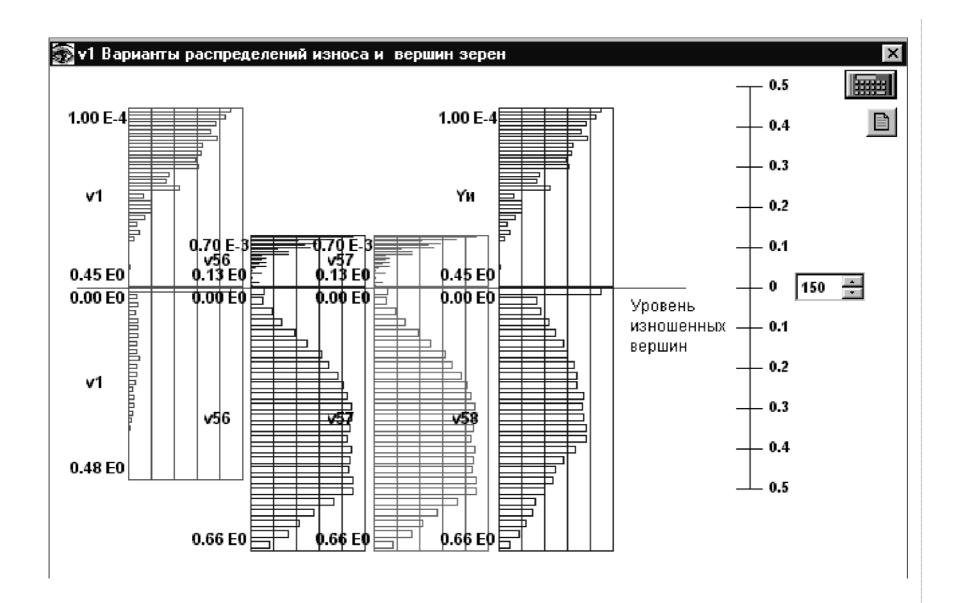


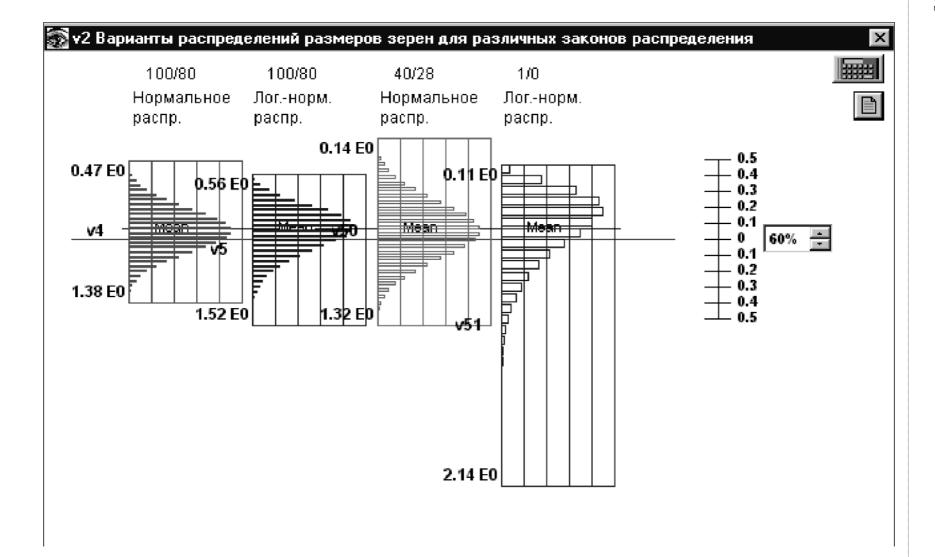

Варианты распределений износа и вершин зерен (Graph_v1)

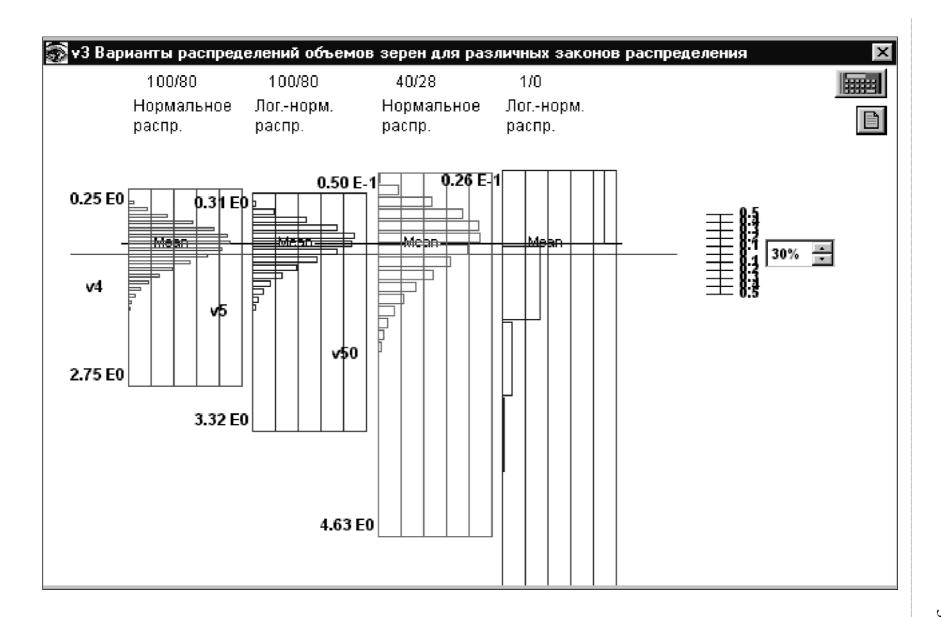

Варианты распределений размеров зерен для различных законов распределения (Graph_v2)
Варианты распределений объемов зерен для различных законов распределения (Graph_v3)
Варианты распределений отношений размеров зерен для различных законов распределения (Graph_v4)

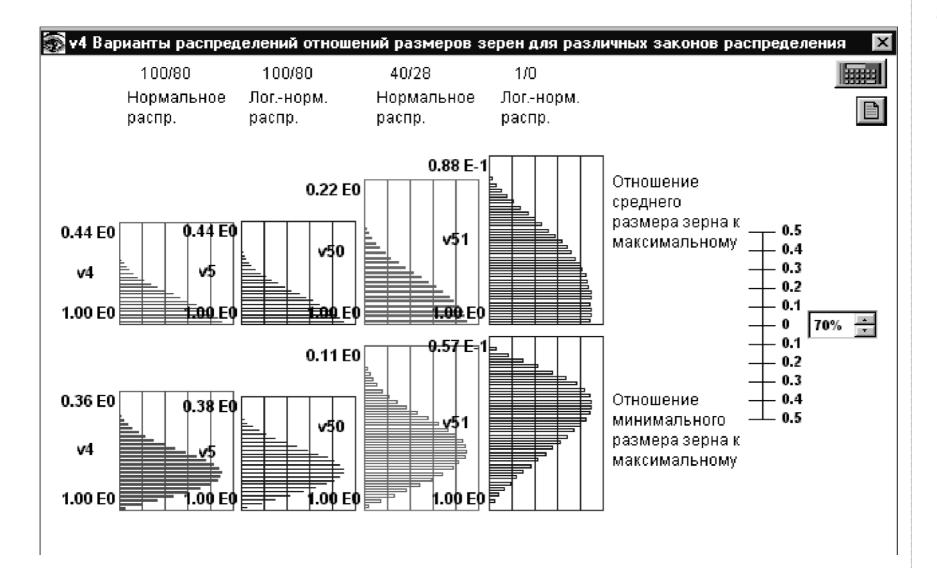


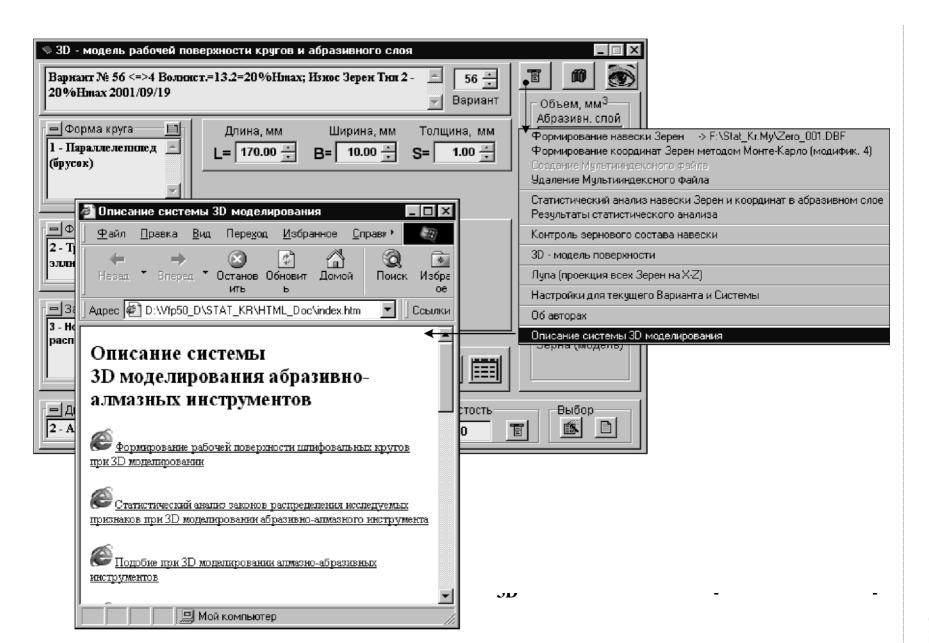












число й		Вакон распределения размеров зерен, моделируемых трехосным эллипсоидом		Парамстры закона распределения		Содержание фракций по массе ппифпорошка, %						
Зурнистость (первос число — характеристический размер k_m) $a_{\rm g}/a_{\rm h}$ мкм	$\Psi_{ar{\mathbf{d}}_{\mathbf{RKT}}}^{}=a_{\mathbf{B}}/a_{\mathbf{H}}$		Усл. обозначение	Кож \mathfrak{h} илиен $_E$	Кохффициент вариании А _у	Мсткая Р _м	Дополиительная $P_{\mathcal{A}}$	Оспов	лая P_{0}	Крупі	тая $P_{\mathtt{K}}$	Предельная <i>Р</i> п
			Шлифпо	рошки ши	рокого ди	аназон	а зерпис	тостей		•		
2500/1/600	1,563	пормальный	NШ01	0,840	0,215	0,23	5,68	90,39	> 90	3,69	< 8	0,01
2500/1600		логнормальн.	LHIOI	0,845	0,220	0,02	5,00	90,53	> 90	4,38	< 8	0,07
1600/1000	1,600	пормальный	NШ02	0,835	0,225	0,37	5,07	90,62	> 90	3,93	< 8	0,01
1600/1000		логпормальн.	LШ02	0,835	0,235	0,07	5,25	90,14	> 90	4,50	< 8	0,04
1000/630	1.607	нормальный	NIII03	0,835	0,225	0,37	5,56	90,13	> 90	3,93	< 8	0,01
1000/630	1,587	лог,-нормальн.	1.11103	0,840	0,230	0,05	5,03	90,27	> 90	4,62	< 8	0,03
630/400	1 676	нормальный	NIII04	0,810	0,295	1,75	11,09	80,46	> 80	6,67	< 10	0,03
030/400	1,575	логнормальн.	LШ04	0,810	0,280	0,72	13,05	80,98	> 80	5,18	< 10	0,07
400/250	1,600	нормальный	NIII05	0,800	0,310	2,23	10,76	80,32	> 80	6,65	< 10	0,04
400/230	1,000	логпормальн.	LШ05	0,795	0,285	1,07	13,49	81,06	> 80	4,29	< 10	0,09
250/160	1.562	нормальный	NIII06	0,810	0,290	1,66	11,75	80,32	> 80	6,24	< 10	0,03
230/100	1,563	логпормалы.	LШ06	0,810	0,275	0,66	13,72	80,65	> 80	4,90	< 10	0,07
160/100	1.600	пормальный	NIII07	0,820	0,315	1,91	9,14	79,13	> 75	9,74	< 12	0,08
100/100	1,600	логпормалы.	LШ07	0,775	0,300	1,93	17,29	76,84	> 75	3,85	< 12	0,09

т й		- Закон		Параметры закона распределения		Содержание фракций по массе шлифпорошка, %							
Зернистость (первое число – характеристический размер k_m) $a_{\bf b}/a_{\bf h}$ мкм	$\Phi_{\Phi \text{KKT}} = a_{\text{B}}/a_{\text{H}}$	распределения размеров зерен, моделируемых трехоеным эллипсоидом	Усл. обозначение	Коэффииснт смещения $k_{\!E}$	Коэффичен вариати k _v	Мелкая Р _м	Дополнительная $P_{_{ m II}}$	Основ	Основная <i>Р</i> о		ная $P_{ m K}$	Предельная P_{Π}	
	Шлифпорошки широкого диапазона зернистостей (продолжение)												
100/63	1,587	нормальный	№Ш08	0,820	0,315	1,91	9,78	78,49	> 75	9,74	< 13	0,08	
100/03	1,387	логнормальн.	LШ08	0,775	0,300	1,93	18,49	75,64	> 75	3,85	< 13	0,09	
63/40	1,575	нормальный	№Ш09	0,800	0,345	_	15,74	75,24	> 75	8,96	< 15	0,06	
03/40		логнормальн.	LIII09	0,785	0,300	_	19,51	75,95	> 75	4,45	< 15	0,09	
			Шлифп	юрошки у		пазона	зернист	остей					
2500/2000	1,250	нормальный	NУ01	0,925	0,105	0,00	5,51	90,54	> 90	3,95	< 8	0,00	
2300/2000		логпормальн.	LУ01	0,930	0,110	0,00	4,82	90,02	> 90	5,16	< 8	0,00	
2000/1600	1,250	нормальный	NУ02	0,925	0,105	0,00	5,51	90,54	> 90	3,95	< 8	0,00	
2000/1000	1,230	логпормальн.	LУ02	0,930	0,110	0,00	4,82	90,02	> 90	5,16	< 8	0,00	
1600/1250	1,280	нормальный	NY03	0,915	0,115	0,00	5,55	90,89	> 90	3,56	< 8	0,00	
1000/1250	1,200	логнормальн.	LУ03	0,920	0,120	0,00	4,78	90,58	> 90	4,64	< 8	0,00	
1250/1000	1,250	нормальный	NУ04	0,925	0,105	0,00	5,51	90,54	> 90	3,95	< 8	0,00	
1230/1000	1,230	логпормальн.	LУ04	0,930	0,110	0,00	4,82	90,02	> 90	5,16	< 8	0,00	
1000/800	1,250	нормальный	NY05	0,925	0,105	0,00	5,51	90,54	> 90	3,95	< 8	0,00	
1000/000	1,230	логнормальн.	LУ05	0,930	0,110	0,00	4,82	90,02	> 90	5,16	< 8	0,00	
800/630	1,270	нормальный	NУ06	0,920	0,145	0,06	11,16	80,66	> 80	8,12	< 10	0,00	
800/030	1,270	логнормальн.	LУ06	0,925	0,150	0,00	10,60	80,44	> 80	8,95	< 10	0,01	

й		_± Закон		Параметры закона распределения		Содержание фракций по массе шлифпорошка, %						
Зернистость (первое число – характеристический размер k_m) $a_{\bf B}/a_{\bf H}$, мкм	$\Phi_{\Phi a \kappa \tau} = a_{\rm B}/a_{\rm H}$	закон распределения размеров зерен, моделируемых трехосным эллипсоидом	Усл. обозначение	Коэффициент смещения k_E	Коэффициент вариации $k_{ m V}$	Мелкая $P_{ m M}$	Дополнительная $P_{ m II}$	Основная P_{0}	Крупная $P_{ m K}$		Предельная P_{Π}	
Шлифпорошки узкого диапазона зернистостей (продолжение)												
630/500	1,260	нормальный	ΝУ07	0,925	0,140	0,05	10,73	80,74 > 80	8,48	< 10	0,00	
030/300	1,200	логнормальн.	LУ07	0,930	0,145	0,00	10,14	80,47 > 80	9,38	< 10	0,01	
500/400	1,250	нормальный	ΝУ08	0,925	0,135	0,02	11,39	80,74 > 80	7,85	< 10	0,00	
300/400		логнормальн.	LУ08	0,930	0,140	0,00	10,77	80,41 > 80	8,82	< 10	0,00	
400/315	1,270	нормальный	ΝУ09	0,920	0,145	0,06	11,16	80,66 > 80	8,12	< 10	0,00	
400/313		логнормальн.	LУ09	0,925	0,150	0,00	10,60	80,44 > 80	8,95	< 10	0,01	
315/250	1,260	нормальный	ΝУ10	0,925	0,140	0,05	10,73	80,74 > 80	8,48	< 10	0,00	
313/230	1,200	логнормальн.	LY10	0,930	0,145	0,00	10,10	80,47 > 80	9,42	< 10	0,01	
250/200	1,250	нормальный	ΝУ11	0,925	0,135	0,04	11,32	80,76 > 80	7,88	< 10	0,00	
230/200	1,230	логнормальн.	LУ11	0,930	0,140	0,00	10,77	80,41 > 80	8,82	< 10	0,00	
200/160	1,250	нормальный	ΝУ12	0,925	0,135	0,01	11,40	80,74 > 80	7,85	< 12	0,00	
200/100	1,230	логнормальн.	LУ12	0,930	0,140	0,00	10,76	80,41 > 80	8,82	< 12	0,00	
160/125	1,280	нормальный	ΝУ13	0,915	0,145	0,10	11,47	80,63 > 80	7,80	< 12	0,00	
100/123	1,200	логнормальн.	LУ13	0,925	0,155	0,01	9,98	80,49 > 80	9,51	> 12	0,01	
125/100	1,250	нормальный	ΝУ14	0,925	0,135	0,04	11,41	80,72 > 80	7,83	> 12	0,00	
125/100	1,230	логнормальн.	LУ14	0,935	0,140	0,00	9,61	80,52 > 80	9,87	> 12	0,00	

число		passiope B separi,		зак	метры она целения		Содерх	кание фр	эакций п	о массе 1	шлифпо	рошка, %	
Зернистость (первое число характеристический размер k_n) $a_{\bf b}/a_{\bf h}$ мкм	$\varphi_{\rm dakT} = a_{\rm B}/a_{\rm H}$		Усл. обозначение	Коэффициент смещения k_E	Коэффициент вариации $k_{ m Y}$	Меткая $P_{\scriptscriptstyle{\mathrm{M}}}$	Дополнительная $P_{_{ m J}}$	Осноі	вная P_{0}	Крупі	ная $P_{ m K}$	Предельная P_{π}	
	Шлифпорошки узкого диапазона зернистостей (продолжение)												
100/80	1,250	пормальный	NY15	0,925	0,150	0,09	14,08	76,07	> 75	9,76	< 12	0,00	
100/80		логнормальн.	LY15	0,935	0,155	0,01	12,55	75,81	> 75	11,62	< 12	10,0	
80/63	1,270	нормальный	NY16	0,920	0,160	0,18	13,55	76,31	> 75	9,96	< 13	0,00	
80/03		логнормальн.	LУ16	0,935	0,165	0,02	11,10	76,22	> 75	12,64	< 13	0,02	
63/50	1,260	нормальный	NY17	0,925	0,155	0,16	13,13	76,14	> 75	10,57	< 13	0,00	
03/30		логнормальн.	LY17	0,930	0,160	0,02	12,84	76,03	> 75	11,10	< 13	0,01	
50/40	1,250	нормальный	NY18	0,925	0,150	0,00	13,91	76,11	> 75	9,98	< 15	0,00	
30/40	1,230	логнормальн.	LY18	0,935	0,155	0,00	12,27	75,92	> 75	11,80	< 15	0,01	
		-		N	Іикропоро	шки							
60/40	1,500	нормальный	NM01	0,725	0,260	12,12	< 25	83,07	> 70	4,81	< 5	_	
20,40	1,200	логнормальн.	LM01	0,685	0,255	24,46	< 25	72,44	> 70	3,10	< 5	_	
40/28	1,429	нормальный	NM02	0,730	0,250	17,45	< 25	78,07	> 70	4,48	< 5	_	
70/20	1,727	логнормальн.	LM02	0,720	0,240	23,57	< 25	71,61	> 70	4,82	< 5		
28/20	1,400	нормальный	NM03	0,735	0,245	19,40	< 25	75,93	> 70	4,67	< 5	_	
20,20	1,400	лог,-нормалын.	LM03	0,730	0,225	24,85	< 25	70,82	> 70	4,33	< 5	_	

число		± Закон		зак	метры она целения	Содержание фракций по массе шлифпорошка, %						рошка, %	
Зернистость (первое число – характеристический размер k_m) $a_{\bf b}/a_{\bf lb}$ мкм	Φ факт = $a_{\rm B}/a_{\rm H}$	распределения размеров зерен, моделируемых трехосным эллипсоидом	Усл. обозначение	Коэффициент смещения k_E	Коэффициент вариации $k_{ m b}$	Мелкая $P_{\mathbf{M}}$	Дополнительная $P_\mathtt{J}$	Основ	Основная P_{0} — Крупная $P_{\mathbf{k}}$		ная $P_{\mathbf{k}}$	Предельная $P_{\mathbf{\Pi}}$	
	Микропорошки (продолжение)												
20/14	1,429	нормальный	NM04	0,730	0,250	17,46	< 25	78,06	> 70	4,48	< 5	_	
20/14		логнормальн.	LM04	0,720	0,240	23,59	< 25	71,56	> 70	4,85	< 5		
14/10	1,400	нормальный	NM05	0,735	0,245	19,41	< 25	75,92	> 70	4,67	< 5	_	
14/10		логнормальн.	LM05	0,730	0,225	24,86	< 25	70,81	> 70	4,33	< 5	_	
10/7	1,429	нормальный	NM06	0,720	0,265	20,05	< 25	75,24	> 70	4,71	< 5		
10,7	1,429	логнормальн.	LM06	0,715	0,240	23,55	< 25	71,73	> 70	4,72	< 5	_	
7/5	1,400	нормальный	NM07	0,725	0,255	21,29	< 25	74,11	> 70	4,60	< 5	_	
113	1,400	логнормальн.	I.M07	0,725	0,225	24,80	< 25	71,05	> 70	4,15	< 5	_	
5/3	1,667	нормальный	NM08	0,640	0,375	17,18	< 25	78,66	> 70	4,16	< 5	_	
3//3	1,007	логнормальн.	LM08	0,640	0,305	20,24	< 25	76,62	> 70	3,14	< 5		
3/2	1,500	нормальный	NM09	0,685	0,300	17,65	< 25	77,43	> 70	4,92	< 5		
3/2	1,500	логнормальн.	LM09	0,685	0,250	20,70	< 25	74,53	> 70	4,77	< 5	_	
2/1	2,000	нормальный	NM10	0,475	0,705	20,05	< 25	75,04	> 70	4,91	< 5	_	
Z _i 1	2,000	логнормальн.	LM10	0,550	0,400	20,40	< 25	77,37	> 70	2,23	< 5	_	
1/0	?	нормальный	NM11	0,460	0,710	_	_	95,48	> 95	4,52	< 5	_	
1/0		логнормальн.	LM11	0,500	0,560			95,44	> 95	4,56	< 5		

1. «COSMOS»

```
1.
     2.
     3.
   1.
   2.
«Open problem files».
   3.
             «
          ».
                                        ».
             »).
   4.
                    ).
   5.
                           XOY (
                                             «Geo Panel»),
             (GEOMETRY, GRID, PLANE)
                                                            (GEOMETRY,
GRID, GRID ON).
                    (GEOMETRY, GRID, GRID OFF),
   6.
                   10
                                 X Y, 20
                                                        X
                                                            30 -
                                                                        Y.
                «Geo Panel»).
                                                            «Translate»
«Scale avto»
«Geo Panel»).
                      1
                                       10, 15, 25.
   7.
   8.
                                                                     «Geo
                                                         (
Panel»).
```

```
348 3D
```

```
9.
                      1
                                                  (GEOMETRY, POINTS,
EDITING, DELATE).
                            XOY (
                                             «Geo Panel»).
   10.
   11.
                                                           (GEOMETRY,
POINTS, DEFINE): 1-0, 0, 0; 2 - 100, 40, 0; 3 - 100, 10, 0; 4 - 160, 10, 0; 5 -
160, 40, 0; 6 - 200, 40, 0; 7 - 200, 0, 0.
   12.
                                                               («Status 1»
  «Geo Panel»).
   13.
                                            1 - 7
(GEOMETRY, CURVES, Line with 2Pts).
                    (GEOMETRY, GRID, GRID OFF).
   14.
                                                     «Geo Panel»).
                                        («Status 1»
   15.
                                                                       Y
(GEOMETRY, CURVES, GENERATION, SYMMETRY).
                                                                      90^{0}
   16.
(GEOMETRY, CURVES, GENERATION, GENERATE).
   17.
                                             «Geo Panel»).
                      (
                                        (GEOMETRY, POINTS, EDITING,
   18.
PLOT), (GEOMETRY, CURVES, EDITING, PLOT).
   19.
                                             «Scale auto»
                                                            «Geo Panel»).
   20.
                                          «Geo Panel»).
                              (
   21.
                                             «Scale auto»
                                                            «Geo Panel»).
   22.
                                               Z,
                                       «Geo Panel»).
                   (
                            «Rotate»
   23.
                      (FILES, EXIT)
                                                 4
1. Geo-
                               1
2.
3.
4.
                                                 2
```

```
Geo-
Active Win -
New Win -
Tile –
Cascade –
View -
                                                    »);
                                          «
Dview - 3D
Demo -
Config -
Zoom-
Translate –
Rotate -
Scale -
        );
Console –
                                                           );
Set Post –
Status 1, 2, 3 –
                                      .).
                                          8
                                    ):
```

350

```
File –
Edit –
Geometry –
Meshing -
PropSets -
Loads –
Control -
Display -
Analysys –
Results -
Windows -
Help -
               (
                                                                      );
                                                              «Geo Panel»
                             (
                              );
                                               «Geo Panel»
                  );
                    .)
                                                         ).
             Escape
                                                     (
                                                              ).
             Input (Enter)
                     ).
                                    (DISPLAY)
VIEW PARAMETER -
View -
View Save –
View Restore –
Axis -
Aspect Ratio -
View Extents -
```

```
Repaint –
Reset -
Clean Screen -
Filter Plot –
Set Entity Color -
                           (PT, CR, VL, ...);
Foreground color -
                                           );
Background color -
Config 3D View -
3D View -
DISPLAY OPTIONS -
Translate -
Rotate -
Scale -
Scale to Window Size -
Zoomin –
                                                    );
Zoomout -
             Zoomin;
Shrink -
Set Hide Option -
Hidden Element Plot -
Shaded Element Plot –
Light Source -
Eval Element Bound -
Set Bound Plot -
XY-PLOTS -
```

«Cosmos». 1. .1.), . .1. Связка (металическая) Зерно (алмаз). Обрабатываемый материал .1 -«CosmosM» Problem name; Geometry, Grid, Plane, X – Geometry, Grid, Grid on -Geometry, Points, Define -Geometry, Points, Generation, Generate –

Geometry, Surfaces, Define by 4 Pt –

Geometry, Surfaces, Generation, Symmetry -

3.

BEAM3D

: 1. . .1. 2. 3. 4. Propsets; Element Group – Propsets; Material Properties – Propsets; Real Constant – Meshing; Parametric Mesh; Curves – Meshing; Nodes; Merge; Compress.

List.

: Loads BC; Structural; Displacement; Define by Nodes. : Loads BC; Structural; Force; Define by Nodes. : Analysis; Static; Run Static Analysis. : Results; Plot; Deformed Shape; Animate; Beam Diagrams; Results;

4. 3D-«COSMOSM» 1. 2. («Open problem files». 3. (**>> »**. **« »**. »). 4. (). 5. XOY («Geo Panel»), (GEOMETRY, GRID, PLANE) (GEOMETRY, GRID, GRID ON). (GEOMETRY, GRID, GRID OFF), 6. 10 X Y, 20 30 – Y. X «Scale avto» «Geo Panel»). «Translate» («Geo Panel»). 7. 1 0, 0, 0. 8. 0, 40, 0. 2 3 100, 40, 0. 9. 4 100, 0, 0. 10. 0, 60, 0. 11. 5 12. 6 0, 100, 0. 13. 7 100, 100, 0. 14. 8 100, 60, 0. 15. 9 50, 40, 0. 16. 10 30, 60, 0. 17. 50, 80, 0. 11

70, 60, 0. (

).

3D-

18.

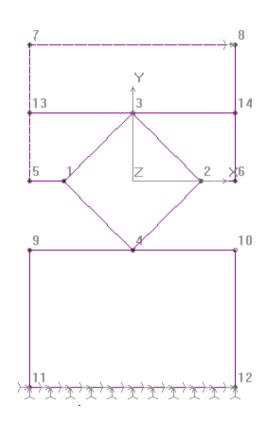
12

356 *3D*

: Line with

2Pts).

19. («Status 1» «Geo Panel»).


20. 1, 3, 2, 4

(GEOMETRY, CURVES, Line with 2Pts).

21. 1, 5, 13, 7, 8, 14, 6, 2 (GEOMETRY, CURVES, Line with 2Pts).

22. 9, 4, 10, 12, 11

(GEOMETRY, CURVES, Line with 2Pts).

.2 –

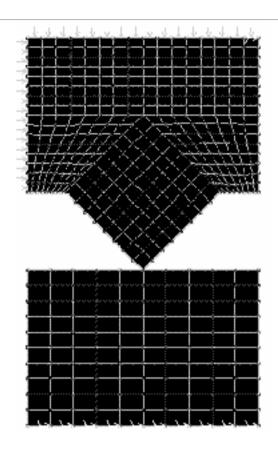
23. Geometry, Surfaces, Define by 3 Pt –

1, 2, 9.

24. Geometry, Surfaces, Define by 3 Pt –

2

1

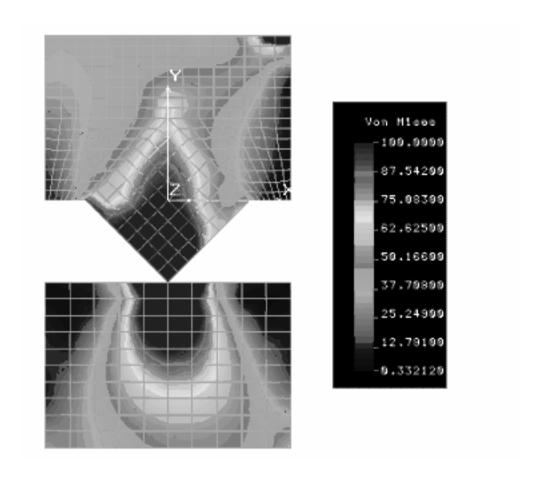

. .2.

1, 9, 4.

25. (Geometry, Surfaces, Define by 3 Pt –	3	_
	9, 3, 4.		
26. (Geometry, Surfaces, Define by 4 Pt –	4	-
	5, 6, 11, 10.		
27. c	Geometry, Surfaces, Define by 4 Pt –		5
	11, 7, 8, 12.		
28. (Geometry, Surfaces, Define by 4 Pt –		6
	10, 11, 12, 9.		
29. I	Propsets, Element Group –		
1-6.	2000000 210000		
	Propsets, Material Properties –		_
1–6			
	•		
21 1	Madian Barray in Mada Carray		
31. N	Meshing, Parametric Mesh, Curves –		-
20	1–6;		
32.	Meshing, Nodes;		
33.	Meshing, Merge, Compress;		
34.	Loads BC, Structural;		
	oads BC, Force;		
	oads BC, Define by Nodes;		
37.	Analysis, Static, Run Static Analysis		
	:		
38. F	esults,Plot		
39. R	esults, Deformed Shape		
40. R	esults, Animate		
	esults, Beam Diagrams		
	esults, List		
	ile, save images		
44.	(FILES, EXIT)		

. .3.

358 *3D*


.3 –

```
( . .4),
( . .) 150 . 3D-
```

.

Analysis, Heat Transfer, Thermal Analysis Options (Transient); Analysis, Heat Transfer, Run Thermal Analysis.

Result, Plot, Thermal.

.4 – «CosmosM»

```
/
     1.
                                                         , 1977. – 391 .
      2.
                    1983. - 471.
      3.
                                                        , 1976. - 160.
      4.
          1978. - 207.
      5.
                                : 05.03.01. – , 1996. – 468 .
      6.
                                   1968. - 474.
 .:
      7.
                                                                  , 1980. –
368
              9206-80
      8.
          , 1981. - 33.
      9.
    . : 05.03.01. –
                                 1995. - 59.
     10.
                                 ., 1985. – 184 .
               3292-95.
     11.
                                       . - 1996. - 71.
     12.
   1970. - 227 .
     13.
                                   . /
                           , 1985. – 296 .
     14.
                    ,2001.-447 .
  : 05.03.01 -
```

```
15.
                                    ,2002.-528 .
     16.
1979. - 244 .
     17.
             .: i , 1988. – 136 .
     18.
                  1976.-200 .
     19.
            1976. - 232.
    .:
     20.
                                     , 1977. – 526 .
     21.
1974. - 320.
     22.
 1982. - 192.
     23.
                                         1982. - 278.
     24.
                             , 1984. – 264 .
     25.
1993. - 220 .
     26.
                                     /
                                              1978. - 192.
     27.
              . - , 1981. – 144 .
     28.
                                             , 1971. – 544 .
                       . – .:
     29.
                                                        1977. - 263.
     30.
                                                            : . -
                                            , 1999. – 436 .
                                   :
     31.
                                                                , 1969. –
288 .
```

```
32.
                                                                 . 1982. – 168 .
      33.
                                                                         , 1980.
-192 .
                                                        . . 2.
     34.
                                                     3-
                                                         .:
                              1986. - 280.
     35.
                                    1971. - 208.
     36.
                 , 1979. - 832.
     37.
                 1976. - 271.
      38.
                                            1973. - 567.
                                                        2- . . 2. /
      39.
                                                          1979. - 358.
      40.
                                                  - , 1998. – 528 .
        /
     41.
                                             : 05.03.01. - ., 2002. - 469 .
     42.
                                   1980. - 95.
     43.
                                      . 1974. – 160 .
                                                                       , 1974. –
     44.
640 .
      45.
                .- , 1982. – 112 .
```

46. Kaczmarek J.: Zastosowanie metodoy SCGC do oceny technolog prognozy uzytkowania powierzchni obrobianych skawaniem.Prace Miedzynaroddowego Sympozjum nt.: "Zaganienia Inzynierii Powiezchni w Obrobce Skawaniem". Wrosław – Szklarska Poreba, czerwiec 1999.

, and the second second

3D -

,


2004, . 90/144-04

300 . . 356. .

« ». 116 10.07. 2000 . 61002, , , , , , 21

« ». 61002, , . , , 21

В учебном пособии излагаются основы 30 моделирования алмазноабразивных инструментов и процессов шлифования. Рассматриваются современные тенденции объектноориентированного статистического моделирования применительно к алмазно-абразивным инструментам, напряженно-деформированному состоянию зоны шлифования, а также вопросы практического применения результатов **3D** моделирования. Предназначено для студентов, магистров и аспирантов, преподавателей технических вузов, а также может быть полезным для специалистов-технологов.

