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Abstract 

Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins which are 

present in a wide variety of organisms. Two of their characteristic properties are the reducibility 

by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides 

of the membrane. Here we show that the tonoplast-localized (TCB) and the putative tumour 

suppressor (TSCB) Cyt-b561 proteins can be reduced by other reductants than ASC and 

dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-

dependent reduction of these two Cyt-b561 proteins are also presented. Our results are discussed 

in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of 

other antioxidant compounds of cells. These results allow us to speculate on new biological 

functions for the trans-membrane Cyt-b561 proteins.  
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Introduction 

 

Cytochrome b561 (Cyt-b561) proteins are ascorbate (ASC)-reducible, trans-membrane, di-heme 

proteins identified in a great variety of organisms, including invertebrates, vertebrates, and plants 

(Asard et al. 2001; Tsubaki et al. 2005; Glanfield et al. 2010). All Cyt-b561 proteins are predicted 

to consist of six trans-membrane helices, with four highly conserved His residues localized on 

four consecutive trans-membrane helices and likely involved in the coordination of the two hemes 

(Okuyama et al. 1998). One of their major properties is their significant reducibility by ASC, 

although many other b-type or c-type cytochromes can also be reduced by ASC. The first member 

of the Cyt-b561 protein family that was discovered is the chromaffin granule cytochrome b561 

(CGCB; Flatmark and Terland 1971). This protein was found to function as an electron 

transporter providing electrons from cytosolic ASC to intravesicular dopamine -hydroxylase 

(Kelley and Njus 1986; Kent and Fleming 1987; Fleming and Kent 1991). CGCB is the only 

member of the protein family, however, that has so far been purified from its native membranes in 

sufficient amounts for biophysical or biochemical studies. It seems that other members of the 

protein family are present in a very small amount in their natural sources and appropriate amounts 

of these Cyt-b561 proteins could be obtained only after establishing a heterologous expression 

system for producing recombinant Cyt-b561 proteins.  Such expression systems were developed 

and successfully used in the characterization of CGCB (Bérczi et al. 2005; Liu et al. 2005, 2007), 

of the duodenum-localized Cyt-b561 (DCB; Ludwiczek et al. 2008; Oakhill et al. 2008), of the 

lysosome-localized Cyt-b561 (LCB; Zhang et al. 2006), of the putative tumour suppressor Cyt-

b561 (TSCB; Mizutani et al. 2007; Bérczi and Asard 2008; Recuenco et al. 2009), and of the 

tonoplast-localized Cyt-b561 (TCB; Griesen et al. 2004; Bérczi et al. 2007; Cenacchi et al. 2011) 

in the last 10 years. Only speculations exist, however, for the biological function of Cyt-b561 

proteins other than CGCB and DCB (e.g. participation of TCB in iron redistribution in plant cells 
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(Griesen et al. 2004; Preger et al. 2005) or participation in the energy dissipation (Nanasato et al. 

2005)). 

Alpha-Lipoic acid (LA) and its reduced form, dihydrolipoic acid (DHLA), are naturally-

occurring thiol compounds found ubiquitously in microorganisms, plants, and animals (Reed et al. 

1974; Herbert and Guest 1975) and are potent antioxidants with capacity to scavenge reactive 

oxygen species (ROS) and recycle endogenous antioxidants (Packer et al 1995; Li et al 2004). In 

cells, very little lipoate exists in the free acid form; almost all is tethered to the ε-amino group of 

conserved lysine residues on lipoyl-accepting domains of proteins (Biewenga et al. 1997a; Booker 

2004). DHLA is a metabolic product formed in vivo from LA (Biewenga et al. 1997b), which is 

widely used as a therapeutic agent in a variety of diseases. Clinical application of LA/DHLA 

includes treatment of excitotoxic amino acid brain injury, mitochondrial dysfunction, diabetes and 

diabetic neuropathy, inborn errors of metabolism, cataracts, glaucoma, ischemia-reperfusion 

injury, and mushroom poisoning (Packer et al. 1996; Nichols 1997). Several lines of evidence 

suggest that the antioxidant properties of LA/DHLA are, at least in part, responsible for the 

therapeutic effect. The antioxidant activity of LA/DHLA, however, was observed only in the 

presence of other compounds which act as antioxidant mediators, such as tocopherol, and only 

DHLA exerted the outstanding antioxidant activity (Kagan et al. 1992). It is widely accepted that 

LA/DHLA plays an important role in maintaining the redox status of cells and LA 

supplementation can enhance the antioxidant status of cells (Han et al 2008). Therefore, any new 

information on how LA/DHLA might interact with redox proteins in cells enriches our knowledge 

about the biological function of this redox couple.  

The aim of this paper is to show that both a plant Cyt-b561 (TCB) and an animal Cyt-b561 

(TSCB) can be reduced by DHLA almost as efficiently as by ASC. This result reveals the 

possibility of new potential biological functions of both Cyt-b561 proteins and the LA/DHLA 

redox couple. 
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Materials and Methods 

 

Cell growth, membrane preparation, protein purification 

 

Yeast cell growth, microsomal membrane preparation, and protein purification by affinity 

chromatography were performed as detailed previously (Griesen et al. 2004; Bérczi and Asard 

2008). Briefly, mouse (Mus musculus) TSCB (GenBank protein entry NP_062694) and mouse 

cress (Arabidopsis thaliana) TCB (GenBank protein entry NP_567723) with a C-terminal His6-

tag, were cloned into a pESC(-His) expression vector (Stratagene, La Jolla. CA) and grown in 

yeast cells (Saccharomyces cerevisiae, strain YPH499: ura3-52 lys2-801amberade2-101ochre trp1-

Δ63 his3-Δ200 leu2-Δ1) according to the manufacturer's instructions (Stratagene) at 30 °C in a 

bench-top incubator shaker (Excella E24R, New Brunswick Scientific Co., Edison, NJ, USA). 

Cells were broken by a bead-beater (Biospec Products, Bartlesville, OK, USA) and the stripped 

microsomal membrane fraction was obtained by differential centrifugation steps. Membrane 

vesicles were solubilised by n-dodecyl-β-D-maltopyranoside (DM) and the His6-tagged 

recombinant proteins were purified to homogeneity by affinity chromatography using Ni-NTA 

His•Bind resin (Novagen, Madison, WI, USA). Purified TCB and TSCB were stored in phosphate 

buffer (50 mM NaH2PO4, pH 7, 10 % (w/v) glycerol, 0.5 % (w/v) DM) at 80 °C until use. The 

very same phosphate buffer was used in all UV-VIS spectroscopy. 

Protein was measured according to Markwell et al. (1978), using BSA as the standard and 

Na-deoxycholate as detergent, in the presence of phosphate buffer and DM, both in standards and 

in samples.  

 

UV-VIS spectroscopy 
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Absorption spectra were recorded in split beam mode (with buffer as reference) with an OLIS-

updated SLM-Aminco DW2000 spectrophotometer (OLIS Co., Bogart, GA, USA) with 2 nm slit-

width and under continuous stirring.  The cuvette was equipped with a home-made lid for housing 

inert gas inlet-outlet tubing. Anaerobic conditions were created by continuous streaming of 

humidified Ar gas over the solution in the cuvette. Anaerobic measurements started after 15-20 

min equilibration of the solution in the cuvette. The spectrum of the oxidized form of the proteins 

was recorded first and the dithionite-reduced spectrum was recorded last. When improvement of 

the signal-to-noise ratio was needed, multiple scans were averaged. Where mentioned, the 

cytochrome b content was calculated from the dithionite-reduced minus ferricyanide-oxidized 

difference spectra by considering a molar extinction coefficient of 561nm = 30 mM-1 cm-1 (Tsubaki 

et al. 1997; Liu et al. 2005).  

 

Spectrum analysis 

 

Light scattering-related randomly varying baselines were subtracted from the absorption spectra 

to ensure isosbestic points of the oxidized and partially or fully reduced spectra at 544 and 572 

nm. The oxidized spectrum was subtracted from all consecutive spectra to generate a data matrix 

of reduced-minus-oxidized difference spectra (column vectors). To obtain the difference spectra 

corresponding to the individual hemes the data matrix was subjected to a chemometric analysis. 

Singular value decomposition (SVD; Shrager 1986; Henry and Hofrichter 1992) yielded a rank of 

2 for the data matrices based on both the singular values and the autocorrelation of the spectral 

and titration eigenvectors (U and V vectors, respectively; Shrager 1986). Self-modelling (SM) in 

the two dimensional space of the V vectors was performed to calculate the combination 

coefficients and the corresponding difference spectra, which characterise the single-heme 

reduced-minus-oxidised forms of the protein (see results). The so obtained “pure” difference 

spectra were resolved into two Lorentzian bands and a skewed baseline as before (Bérczi et al. 
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2010) to quantitatively characterize the spectra of the two hemes. All calculations were performed 

with Matlab (The MathWorks, Natick, MA).   

Results are from one series of measurements but at least one more series of experiments 

with both TSCB and TCB gave similar results.  

 

Results and Discussion 

 

Reducing agents 

 

All Cyt-b561 proteins can readily be reduced by ASC and dithionite (DTH), however, no 

experimental data have been published with respect to reducibility of any native or recombinant 

Cyt-b561 by other potential reducing agents. Fig. 1 shows that both TCB and TSCB could be 

reduced not only by ASC and DTH but also by DHLA and dithiothreitol (DTT). Moreover, 

DHLA seemed to be as efficient as ASC, since both TCB and TSCB could be reduced to a similar 

extent at the same concentration (1 mM) of the two reductants. However, neither reduced 

glutathione (GSH) nor reduced pyridine dinucleotides (NADH and NADPH) were capable of 

reducing either TSCB or TCB (not shown) even at 10 mM concentration. Until now only Terland 

and Flatmark (1980) showed that CGCB in the highly purified chromaffin granule ghosts 

membranes, isolated from bovine adrenal medulla, could not be reduced by NADH. 

Lakshminarasimhan et al. (2006) also tested some reductants and measured the DHLA-dependent 

reduction of mouse recombinant CGCB. It was shown that DHLA could reduce CGCB but it 

appeared that only the so-called high-affinity-side (HA-side) heme was reduced. Similar studies 

have not been done with any other Cyt-b561 protein yet. Our present results obtained with 

NAD(P)H and GSH as reducing agents support and verify the results mentioned above.  

 

Reduction by ASC and DHLA 
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The reduction by ASC and DHLA were chosen for detailed spectral analysis, since these two 

reductants are natural compounds and are present in considerable concentration in both plant and 

animal cells. Furthermore, results have shown that the thiol groups in LA/DHLA might be 

involved in regeneration of ASC, vitamin E (tocopherol), glutathione, and ubiquinone (Bast and 

Haenen 1988; Scholich et al. 1989; Lykkesfeldt et al. 1998; Kozlov et al. 1999). It is widely 

accepted that LA/DHLA are present in cells mostly in lipoamine form, in which the 1,2-dithiolene 

moiety of LA/DHLA is linked to a lysine residue ε-amino group via a butyl arm and an amide 

bond. The lipoyl linkage provides rather high flexibility for the 1,2-dithiolane moiety, and the two 

–SH groups have the capability to reduce appropriate electron acceptors on the surface as well as 

below the surface of proteins. Furthermore, since CGCB is known to be involved in the trans-

membrane regeneration of ASC in the chromaffin granule (Srivastava et al 1984; Kent and 

Fleming 1987), we were interested to see in detail, and compare, the ASC- and the DHLA-

reducibility of the two different Cyt-b561 proteins.  

Fig. 2 shows the concentration dependent reduction by ASC and DHLA of purified 

recombinant TCB (Fig. 2A) and TSCB (Fig. 2B) in detergent micelles given as gradual increase 

of the integral (between 550 nm and 570 nm) of the α-band (the Q0,0 band) of the reduced-minus-

oxidized absorption difference spectrum. With increasing concentration of reductants the level of 

reduction approaches (but never reaches) a saturation level. In case of TCB, (1) the ASC-

dependent reduction is very similar to that obtained earlier for the membrane-bound TCB (Bérczi 

and Asard 2006) and (2) similar levels of reduction need higher DHLA than ASC concentrations. 

In the case of TSCB, (1) the ASC-dependent reduction is very similar to that obtained earlier 

(Bérczi and Asard 2008) but (2) similar levels of reduction need lower DHLA than ASC 

concentrations and (3) already at the lowest DHLA concentration used (1.5 µM) the protein is 

significantly reduced. If we characterize the concentration-dependent reduction of TCB and 

TSCB with the apparent affinity constants (KHA and KLA) used to fit the experimental results by 
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single or double hyperbole (see the saturation curves in Figs. 2A and 2B) and compare the present 

results with those obtained earlier for the ASC- and DHLA-dependent reduction of CGCB (Bérczi 

et al. 2005; Lakshminarasimhan et al. 2006), the following observations can be made: (1) the 

ASC-dependent reduction of TCB (KHA=5.4 µM, KLA=336 µM)  is close to that of CGCB 

(KHA=16 µM and 21 µM, KLA=1.24 mM and 1.5 mM) , (2) the ASC-dependent reduction of 

TSCB (KHA=268 µM, KLA=7.3 mM) occurs at about 5 to 10 times  higher ASC concentrations 

than that of CGCB, (3) the DHLA-dependent reduction of TCB (KHA=13.6 µM, KLA=291 µM) 

occurs at slightly higher concentrations than the ASC-dependent reduction and shows two 

apparent affinities while that of CGCB (K=71 µM) shows a single affinity, and (4) the DHLA-

dependent reduction of TSCB (K=137 µM) is close to that of CGCB. It is well seen that the high 

apparent affinity site for the DHLA reduction could not be resolved either earlier (in case of 

CGCB) or in this case with TSCB. Explanation for these differences remains the subject for 

further studies.      

 

Analysis of the absorption spectrum series 

 

SVD of the data matrices with the difference spectra as column vectors was performed and the 

singular values (in matrix S) as well as the spectral (in matrix U) and titration (in matrix V) 

eigenvectors inspected to determine the rank of the data matrices. Both the singular values and the 

autocorrelation of the eigenvectors confirmed a rank of 2 for the data matrices, indicating that the 

set of difference spectra can be adequately described by the evolution of two spectrally 

independent components during the titration (see also Bérczi et al. 2010). The two significant 

spectral eigenvectors for the ASC titration of TCB (data in Fig. 3A) are shown in Fig. 3B. The 

combination coefficients of these eigenvectors, i.e. the two titration eigenvectors are shown in 

Fig. 3C as a V1-V2 plot. Each measured spectrum in Fig. 3A is represented in Fig. 3C as an open 

symbol. The evolution from the fully oxidized form (the origin, “ox:ox”, as the analysis involves 
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reduced minus oxidized spectra) towards the fully DTH-reduced form through increasingly more 

ASC-reduced states can be clearly followed. This plot eventually allows the construction of the 

individual spectra of the singly reduced species by SM (Zimányi 2004). It is reasonable to assume 

that at low ASC concentrations (first 4 symbols) only the HA-side heme is reduced, hence, a 

straight line connecting these points will lead to the combination coefficients and allow the 

construction of the spectrum of the singly reduced HA-side heme (see Fig. 3D). The direction of 

the evolution changes during the titration as the reduction of the LA-side heme sets in. At 

saturation with ASC both hemes are reduced to different extents. A species with the HA-side 

heme partially reduced and the LA-side heme still oxidized (redp:ox) is obtained at the 

intersection of the lines connecting the first 4 data points and the next 8 data points. Conversely, a 

species with the HA-side heme oxidized and the LA-side heme partially reduced (experimentally 

not accessible) is calculated by subtracting the former species from the ASC-saturated spectrum. 

These two pure forms have been used to fit the spectrum of the fully (DTH-) reduced form in Fig. 

3D. The fit is good, as shown by the residuals, and the obtained coefficients allow the calculation 

of the pure red:ox and ox:red spectra which are represented with their combination coefficients in 

Fig 3C. Earlier (Bérczi et al. 2010) the HA-side and LA-side heme spectra of TSCB were 

estimated by subtracting the oxidized spectrum from the partially ASC-reduced spectrum and the 

partially reduced one from the fully reduced one, yielding spectra closely resembling the ones 

calculated here.  

Similar analyses were carried out for the DHLA titration of TCB and the ASC and DHLA 

titration of TSCB. The HA-side and LA-side (i.e. red:ox and ox:red) heme spectra obtained were 

identical, within the noise, for the ASC and DHLA titrations, but clearly distinct for the two 

proteins (Figs. 4A and 4D). The pure spectra from the ASC and DHLA titrations were averaged 

and resolved into two Lorentzian components (Fig. 4 B, C, E, F) and a skewed linear baseline. 

The parameters of the Lorentzian bands are summarized in Table 1.   
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The most striking result obtained by the SVD-SM spectral analysis was the difference in 

the shape and relative location of the split α-band absorption spectra of the HA-side hemes in 

TCB and TSCB (Fig. 4 and Table 1). In case of TCB, the split α-band of the HA-side heme is 

slightly red-shifted compared to the split α-band of the LA-side heme and the red-side peak of the 

split α-band is higher than the blue-side peak. In contrast, in case of TSCB, the split α-band of the 

HA-side heme is significantly blue-shifted compared to the split α-band of the LA-side heme and 

the blue-side peak of the split α-band is higher than the red-side peak. These spectral alterations 

might point to significant differences between the two heme-binding pockets. Although the amino 

acids of the two interloop regions between TM2 and TM3 as well as between TM4 and TM5 (Fig. 

5) might be spatially rather far from the HA-side heme-binding pockets in both proteins, there is a 

considerable difference between the number of positively charged residues in these two interloop 

regions between TCB and TSCB. While there are only 5 Lys (K) residues in the two interloops in 

TCB, there are 5 Arg (R) and 4 Lys (K) residues in TSCB. This difference might result in a 

significant difference in the electrostatic field at the HA-side heme-binding pocket in the two 

proteins, possibly resulting in significant differences in the location and shape of the split α-band 

of the HA-side hemes. We should also recall that there is a significant difference between the 

location of the EPR signal attributed to the HA-side heme in TCB and TSCB (Bérczi et al. 2007, 

2010; Desmet et al. 2011). While gz=3.14 (Bérczi et al. 2007) and gz=3.16 (Desmet et al. 2011) 

was obtained for the HA-side heme in TCB in sucrose monolaurate and DM micelles, 

respectively, a considerably lower value of gz=2.96 (Bérczi et al. 2010) was obtained for the HA-

side heme in TSCB in DM micelles. The latter value raised the question whether the HA-side 

heme in TSCB is really coordinated by the two highly conserved His residues or if other heme-

coordinating side chains may play a role in the HA-side heme binding. It seems that our present 

results support the EPR spectroscopy results indicating a significant difference between the HA-

side binding pockets in TCB and TSCB.    
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Physiological relevance and outlook 

 

Cyt-b561 proteins are members of a trans-membrane redox protein family found in animals, 

plants as well as bacteria. Their biological function(s), however, have not yet been fully 

elucidated. The most probable and widely accepted function (role) assumed is related to their 

ASC reducibility. Each Cyt-b561 is expected to participate in ASC metabolism and/or in iron 

acquisition (McKie et al. 2001; Asrad et al. 2003; Griesen et al. 2004; Tsubaki et al. 2005). 

LA/DHLA has recently gained substantial interest in biochemistry, food and pharmaceutical 

sciences as antioxidant, nutritional supplement and therapeutic agent (Packer et al. 1996, 1997; Li 

et al. 2004; Han et al. 2008). The mechanism(s) by which LA/DHLA can modulate cellular 

activities has(have) not yet been fully characterized. LA/DHLA content range between 5 and 25 

nmoles per g fresh weight in mammalian tissues (Stokstad et al. 1956; Kataoka et al. 1993) or 

between 5 and 10 µg per g fresh weight in chicken liver (Shih and Steinsberger 1981). Similar 

values are published for the LA/DHLA content in wheat roots and leaves (20-50 µg per g dry 

weight; Sgherri et al. 2002) but somewhat lower values have been reported for leaves, roots, and 

flowers of Arabidopsis (170, 90, and 290 ng per g fresh weight, respectively; Yasuno and Wada 

1998), and for the14-day-old barley leaves (4-6 µg per g dry weight; Pérez-López et al. 2010). 

These values are equivalent to about 1-100 µM concentration at whole tissue level. However, we 

know very little about the compartmentalization and the LA/DHLA distribution. DHLA:LA ratios 

of 7−44 are measured, depending on the plant species and climate conditions studied (Sgherri et 

al. 2002; Pérez-López et al. 2010). Thus it seems that DHLA is the predominant form in 

biological tissues and local compartmental concentrations can be around 100 µM. According to 

our results 100 µM DHLA is a concentration at which the TSCB and CGCB are partially reduced, 

while TCB reduction is hardly detectable. The significantly higher sensitivity of TSCB (and of 

CGCB) than of TCB to reduction by DHLA might point to a major and important difference 

between the mammalian and plant Cyt-b561 proteins.  
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The rather low concentration of LA/DHLA in biological tissues, as compared to that of 

ASC/DHA and/or GSH/GSSG, might provide some explanation on why this redox couple, for a 

long time, has not been included in studies of metabolic regulation of redox pools in biological 

tissues. Our results connect the redox properties of Cyt-b561 proteins and LA/DHLA. Based on 

the present observations it is theoretically possible that (1) ASC can be regenerated from ascorbyl 

free radicals by accepting electrons from Cyt-b561 that was reduced by DHLA, (2) the LA/DHLA 

balance in cells is partly regulated/maintained by Cyt-b561 proteins, and (3) Cyt-b561 proteins 

might play a significant role in the regulation and/or maintenance of the cellular redox status.  

 

Conclusion 

 

We have shown that two distinct recombinant Cyt-b561 proteins, TCB and TSCB, can be reduced 

not only by ASC and dithionite but also by other thiol-containing reductants, and cannot be 

reduced by the abundant and known cytosolic reductants, NAD(P)H and GSH. DHLA that exists 

in cells mostly in protein-linked form is capable of reducing both Cyt-b561 proteins studied 

almost as efficiently as ASC.  A detailed analysis of the split α-band of the absorption spectra 

obtained after reduction by ASC or DHLA of highly purified TCB and TSCB has shown that, 

while the LA-side heme in the two proteins might have rather similar electronic states, the HA-

side hemes exhibit significantly different electronic states in these two Cyt-b561 proteins. We 

speculate that the difference might be the result of the presence of more positively charged 

residues in two interloop regions in the vicinity of the HA-side heme-binding pocket of TSCB as 

compared to that of TCB. The present results may contribute to new views on the biological 

function of Cyt-b561 proteins in connection to the biological importance of LA/DHLA in cells.   
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Figure legends 

 

Fig. 1. Reduction by different reducing agents of purified TCB (A) and TSCB (B) in detergent 

micelles and in phosphate buffer (50 mM NaH2PO4, 10% (w/v) glycerol, 0.5 mM DM, pH 7). 

Spectra shown are the reduced-minus-oxidized difference spectra in the presence of 1 mM or 10 

mM reducing agents.  

 

Fig. 2. Concentration dependent reduction of purified TCB (A) and TSCB (B) by ASC (A, from 1 

µM to 10 mM; B, from 10 µM to 115 mM) and DHLA (A, from 1 µM to 10 mM; B, from 1.5 µM 

to 10 mM) in detergent micelles. The relative values of reduction were obtained as follows. The 

integral of the α-band between 550 nm and 570 nm was taken and a single or double saturation 

curve was fitted to the integral values obtained. All experimental values and the fitting curves are 

normalized with the calculated saturation value of the ASC titration and the normalized values are 

presented at different reductant concentrations. 

 

Fig. 3. Determination of the reduced-minus-oxidized difference absorption spectra of the high and 

low affinity-side hemes of TCB from the ASC titration by SVD–self-modelling. (A) 

Concentration dependent reduction of purified TCB by ASC in detergent micelles (from the 

bottom to the top curve the concentrations are from 1 µM to 10 mM).  (B) The two significant 

spectral eigenvectors. (C) The V1-V2 plot corresponding to the experimental spectra (open 

circles), the fully oxidized and fully (DTH-) reduced spectra (the latter shown in D), and locations 

corresponding to the partially and fully reduced HA-side and LA-side hemes with the other heme 

oxidized (see text for details). (D) Experimental difference spectrum of the fully (DTH-) reduced 

TCB, calculated spectra corresponding to the species with singly reduced hemes and the 

difference between the fully reduced spectrum and the sum of the two singly reduced spectra 

(marked as residuals). Gray code corresponds to the symbols in C.    
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Fig. 4. Fit of the high affinity (B, E) and low affinity (C, F) heme difference spectra for TCB (A-

C) and TSCB (D-F). (A, D) Calculated high and low affinity spectra from the ASC (black) and 

DHLA (gray) titrations. (B, C, E, F) The averages of the calculated difference spectra from the 

ASC and DHLA titrations are fitted by two Lorentzian components plus a skewed linear baseline 

(not shown). The gray curves are the residuals of the fits.     

       

Fig. 5. Comparison of the primary structure of the CB domain region (Verelst and Asard 2003) of 

the Bos taurus CGCB (Bot-CGCB), Arabidopsis thaliana TCB (Art-TCB), and Mus musculus 

TSCB (Mum-TSCB). The four highly conserved His residues (H), the two bis-His coordinated 

hemes (the thick bars with central circle between the H residues), and the four consecutive trans-

membrane helices (TM2 through TM5; bold and underlined amino acids) are shown. HA-side 

heme is seen between TM3 and TM5, LA-side heme is seen between TM2 and TM4. The putative 

ascorbate free radical binding motif (SLHSW) in the vicinity of the LA-side heme and the 

putative ASC binding motif (ALLVYRVFRN) in the vicinity of the HA-side heme in CGCB are 

boxed. Multiple alignment was obtained by CLUSTALW2 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html). Trans-membrane helices were obtained by 

using the HMMTOP prediction (Tusnády and Simon 1998, 2001). 
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Table 1. Parameters used for the fit of the split α-band of the HA-side and LA-side hemes in TCB 

and TSCB. 

 

 

 
 
 
  

Peak position Error Peak width Error Peak height Error Peak separation Error
nm nm nm nm nm nm

TCB
   HA heme 558.52 0.32 4.9948 0.4381 0.0259 0.0023 6.34 0.35

564.86 0.14 4.5811 0.2507 0.0484 0.0026
   LA heme 557.77 0.30 5.1980 0.3522 0.0395 0.0028 5.68 0.34

563.45 0.15 3.7103 0.2850 0.0431 0.0034
TSCB
   HA heme 554.54 0.12 5.4533 0.2433 0.0157 0.0004 8.35 0.18

562.89 0.13 4.0438 0.3032 0.0099 0.0005
   LA heme 556.89 0.22 2.9742 0.3967 0.0063 0.0008 5.46 0.27

562.35 0.16 4.8803 0.2415 0.0186 0.0007



23 
 

 
Fig. 1. 
 

                  
 
 
 
  



24 
 

Fig. 2. 
 

                 
 
 
  



25 
 

Fig. 3. 
 
 

 
 
  



26 
 

 
Fig. 4.  
 

      
 



27 
 

 
Fig. 5. 
 

   
 
 


