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Abstract� The itinerary planning problem in an urban 

public transport system constitutes a common routing and 
scheduling decision faced by travelers. The objective of this 
paper is to present a new formulation and an algorithm for 
solving the itinerary planning problem, i.e., determination of the 
itinerary that lexicographically optimizes a set of criteria (i.e. 
total travel time, number of transfers, and total walking and 
waiting time) while departing from the origin and arriving at 
the destination within specified time windows. Based on the 
proposed formulation, the itinerary planning problem is 
expressed as a shortest path problem in a time schedule 
multimodal network with time windows and time dependent 
travel times. A dynamic programming based algorithm has been 
developed for the solution of the emerging problem. The special 
case of the problem involving a mandatory visit at an 
intermediate stop within a given time window is formulated as 
two nested itinerary planning problems which are solved by the 
aforementioned algorithm. The proposed algorithm has been 
integrated in a web based journey planning system while its 
performance has been assessed by solving real life itinerary 
planning problems defined on the Athens Urban Public 
Transport Network providing fast and accurate solutions. 
 

Index Terms� itinerary planning, multimodal transportation 
network, multi-criteria, shortest path 
 

I. INTRODUCTION 
 journey in an urban public transport system usually 
involves the combined use of the available public 

transport services. Each conventional urban public transport 
service is defined by a sequence of stops on a given route and 
a specified schedule. In this context, any journey may be 
realized by a path that consists of alternate interconnected 
route segments of the underlying public transport services. 
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Any such path enhanced with a feasible schedule of 
traversing it, is called itinerary. It is evident that a journey 
may be realized by several alternative itineraries. A major 
decision that arises for the traveler relates to the selection of 
the itinerary that complies with his/her preferences and 
requirements. The major complexities of this type of decision 
relate to: i) the lack of information on the schedule and the 
routes of the public transport services, ii) the difficulty in 
determining feasible itineraries within the dense urban public 
transport network, and iii) the intensive task of assessing 
alternative feasible itineraries in terms of multiple traveling 
criteria. The provision of real time journey planning services 
through an online advanced public transport information 
system may alleviate the aforementioned difficulties [1], [2] 
and contribute to the enhancement of the usability and 
accessibility of the public transport services. During the past 
decade many advanced public transport information systems 
have been developed providing journey planning services 
with the objective of determining the shortest itineraries in 
terms of the travel time or the cost [3], [4]. Nowadays this 
type of services are directly accessible by the travelers through 
on-line web-based applications [2], [5], [6], [7] . The existing 
journey planning services aim to determine the itinerary 
between an origin-destination pair that optimizes one of the 
travel time, number of transfers, or walking time, given the 
preferable departure or arrival time stated by the user and 
considering constant (average) travel times. 

In general the itinerary planning problem constitutes a 
multi-criteria routing and scheduling problem, providing a 
traveler with many alternative itineraries for a specific urban 
journey. However, this implies that the user should take on 
the tedious task (especially for the user who is unfamiliar 
with the specific public transport system) of selecting an 
itinerary from a list of alternative solutions. This issue could 
be resolved by the incorporation of the lexicographical 
ordering in the solution process of the itinerary planning 
problem. Under this approach, more than one criteria are 
taken into account, while only a single solution is provided to 
the user.  

This paper provides a new formulation of the itinerary 
planning problem which apart from the lexicographically 
optimal itinerary aims to determine the optimal departure 
time of the journey. The proposed formulation enhances the 
existing trip planning models mentioned above by 
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simultaneously taking into account time-dependent travel 
times and multiple traveling criteria. The research in this 
paper, also addresses a variant of the above problem which 
includes the additional constraint of visiting an intermediate 
stop (e.g. a sightseeing) within a given time window. A 
dynamic programming algorithm is presented that solves the 
itinerary planning problem while it constitutes the basic 
procedure for solving the above variant. The computational 
performance of both algorithms have been tested on a wide 
range of real life journey planning problems defined on the 
urban public transport network of Athens, Greece. The 
emerging computational results indicate that the test 
problems were solved within a reasonable amount of time, 
hence both algorithms were integrated in a web-based 
decision support system for the real-time planning of urban 
and interurban journeys.  

The remainder of the paper consists of five sections. The 
second section presents the formulation of the itinerary 
planning problem while the third section discusses the related 
work on addressing this category of problems. The fourth 
section presents the proposed algorithms for solving the 
itinerary planning problems while the fifth section is devoted 
to the computational performance of the proposed algorithms. 
Finally the sixth section includes the major concluding 
remarks. 
 

II. PROBLEM DEFINITION 

Assume that N  is the set of nodes (vertices) that denote 
the stops of the urban public transport network. Any service is 
defined by a sequence of nodes },...,,{ 21 kvvv  implicitly 
specifying the route sR ={ ),v(v 21 , ),v(v 32 ,�, ),v(v kk 1− } 
while the departure from each node iv  is allowed at specified 

points in time s
vi

ST :={ 1
ivτ , 2

ivτ ,�, γτ
iv } within a time horizon 

],0[ T . In general, the travel time on any arc sii R),v(v ∈+1  is 
stochastic and dynamic, i.e., the travel time is a random 
variable and its distribution function depends on the 
departure time from the upstream node [8]. However, in the 
present paper this feature is simplified by assuming that the 
travel time is time dependent, i.e., it depends on the departure 
time τ  from the upstream node iv  and it is denoted by 

),( 1+iis vvtτ . The set of arcs formed by the routes Ss,Rs ∈  is 

denoted with A . In addition assume A′  as the set of walking 
arcs 2121 ss,sv,sv),,v(v jiji ≠∈∈  which denote the transfer 

between any two services 21,ss . The departure for traversing 
any interchange arc A),v(v ji ′∈  may occur at any point in 
time while the corresponding walking time, denoted by 

),v(vt ji
τ
w , is also assumed dependent on the departure time 

from the upstream node iv . Thus, an urban public transport 
network can be modeled by a multimodal time-schedule 

network, denoted by ,S,ST)AG(N,A, ′  where U U
Ss Nv

s
v

i
i

STST:
∈ ∈

= . 

It should be clarified that the term multimodal is used in the 
sense of multiple fixed scheduled transport services. Note also 
that the origin and destination of a journey may be two 
locations with no public transport stops in their vicinity. This 
type of locations (e.g. points of interest, hotels etc.) are 
included in the above network as nodes and they are 
connected with their nearest public transport stops with 
walking arcs. 

Any path ),v(vp n
τ

0  between two nodes 0v  and nv  
enhanced with the schedule of traversing it, i.e., the departure 
time 

ivτ  from each node included in the path (apart from the 

destination), is called itinerary. Note that the superscript τ  in 
the notation of an itinerary denotes the ready time of the path, 
i.e., the earliest possible start time for traversing the path. 
Any itinerary may be written as a sequence of arcs enhanced 
with the associated departure times and the services used for 
traversing them, i.e. 
 

),v(vp n
τ

0 := {[ 010 0
;s);τ,v(v v ], [ 121 1

;s);τ,v(v v ], �, 

[ 11 1 −− − nvnn ;s);τ,v(v
n

]}               (1) 

 
The itinerary planning problem relates to the determination 

of the itinerary that satisfies the scheduling constraints (2)-(4) 
while optimizing a set of criteria including the total travel 
time ( 1c ), the number of transfers ( 2c ), and the total time 
transfer time, i.e., walking and waiting time ( 3c ).  
 

11 +
≤+ + i

iv

i vii
τ
sv τ),v(vtτ , ),v(vp),v(v n

t
ii 01 ∈+ , s

v
ivi

STτ ∈   (2) 
l
vv

e
v dτd

000
≤≤                   (3) 

l
vnn

τ
sv

e
v a),v(vtτa qv

nn 0

1

1 1 ≤+≤ −
−

−
           (4) 

 
Constraint (2) implies that the departure from node 1+iv  of 

the itinerary, should occur after the arrival at it from the 
preceding node iv . Constraint (3) implies that the departure 
time from the origin should occur within the time window 

][
00

l
v

e
v ,dd  where e

vd
0
, l

vd
0
 denote the earliest and latest 

departure times, respectively. On the other hand, constraint 
(4) expresses that the arrival at the destination node should 
occur within the time window ],[ l

v
e
v nn

aa , where e
vn

a , l
vn

a  

denote the earliest and latest arrival times, respectively.  
It should be noted that total time of transfers (waiting and 

walking time) constitutes part of the travel time of the 
itinerary and therefore these two criteria cannot be considered 
totally conflicting. However, the criterion referring to the 
number of transfers is usually conflicting with the travel time 
criterion, thus justifying the multi-criteria feature of the 
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problem. In this context, the itinerary planning problem 
constitutes a multi-criteria shortest path problem with time 
windows in a multimodal time schedule network with time 
dependent travel times. Due to the incorporation of multiple 
criteria in the emerging decision making problem, non-
dominated rather than optimum solutions may be determined. 
A non-dominated solution of the itinerary planning problem 
between nodes 0v  and nv  at time τ , is defined as any 

feasible itinerary ),( 0 nvvpτ , i.e., satisfying (2)-(4), such that 

there does not exist any other ),( 0 ′nvvpτ ),( 0 nvvpτ≠  for 

which )),(( 0 nk vvpc τ )),(( 0 ′≥ nk vvpc τ  for any criterion k  
among those under consideration and 

)),(( 00 nk vvpc τ )),(( 00
′> nk vvpc τ  for at least one criterion 0k . 

Determining the entire set of non-dominated solutions is a 
tedious task since the complexity of the problem grows 
exponentially with the size of the network [9]. Alternatively, 
the incorporation of the lexicographical ordering in the 
solution process of the itinerary planning problem results to 
the prompt determination of the lexicographically minimum 
itinerary, taking into account the ranking of the evaluation 
criteria. Under this approach, more than one criteria are taken 
into account for the journey planning, while only a single 
solution is provided to the user. Given the ranking of the 
evaluation criteria {

321
,, kkk ccc } and any two itineraries 

),(),,( 0201 nn vvpvvp ττ  (or ττ
21 , pp  if no confusion is created 

about the origin and destination), the lexicographical 
ordering relationship ( L≤ ) is defined as follows: ττ

21 pp L≤  iff 

there exists j  such that )()( 21
ττ pcpc

jj kk <  and 

)()( 21
ττ pcpc

ii kk =  for 1,..,1 −= ji . In this case, we say that 

itinerary τ
1p  lexicographically dominates τ

2p . In this context, 

an itinerary τ
0p  is lexicographically minimal if there does not 

exist an itinerary τp  that lexicographically dominates τ
0p . 

Note that based on the proposition 1 that follows, any 
lexicographically minimal itinerary is non-dominated.  
 
Proposition 1. If τ

1p  is a lexicographically minimal itinerary 
from node 0v  to node nv  of the multimodal time schedule 
network ),,,,( STSAANG ′ , then it is non-dominated for time 
τ .  
Proof: Assume that τ

1p  is a lexicographically minimal 

itinerary, i.e., there does not exist itinerary τp  that 

lexicographically dominates it. Let�s assume now that ∃ τ
2p  

which dominates τ
1p , i.e., )()( 12

ττ pcpc
kk ii ≤  }3,2,1{∈∀ k  and 

}3,2,1{0 ∈∃ k : )()( 12
00

ττ pcpc
kk ii < . With no loss of generality 

assume that 
0ki  is the index of the first criterion for which 

)()( 12
00

ττ pcpc
kk ii < , implying also that )()( 12

ττ pcpc
kk ii =  for 

0kk < . However this last statement contradicts with the 

hypothesis that τ
1p  is a lexicographically minimal.  

 
An important extension of the itinerary planning problem 

pertains to the incorporation of an additional mandatory visit 
to an intermediate node. This type of constraint emerges from 
the intention of the traveller to temporarily interrupt his/her 
journey in order to perform a prespecified activity at a given 
location and then continue his/her way to the destination. The 
incorporation of the intermediate visit constraint in the 
itinerary planning problem gives rise to the composite 
itinerary planning problem which aims to determine the 
lexicographically minimal itinerary from 0v  to nv  passing 

through qv  (denoted by ),,( 0 nq vvvpτ ) satisfying constraints 
(2)-(4) described earlier and the following additional 
constraints:  

l
vqqsv

e
v q

qv

qq
avvta ≤+≤ −

−

−
),( 1

1

1

τ
τ              (5) 

qq

qv

q vvqqsv tvvt ττ τ ≤++ −
−

−
),( 1

1

1
             (6) 

l
vv

e
v qqq

dd ≤≤ τ                  (7) 

 
where e

vq
a  and l

vq
a  denote the earliest and latest arrival times 

at the intermediate node qv  respectively, 
qvt  denotes the 

duration of the visit at stop qv , while 
qvτ  and 

1−qvτ  denote the 

departure times from nodes qv  and 1−qv  respectively.  
Constraint (5) implies that the arrival time at the 

intermediate node qv  should lie within the time window 

],[ l
v

e
v qq

aa . Constraint (6) implies that the mandatory visit at 

stop qv  should last for at least 
qvt  time units while constraint 

(7) expresses that the departure from the intermediate stop 
should occur within the time window ],[ l

v
e
v qq

dd .  

The remainder of this paper presents an overview of the 
previous related work on this area and provides the proposed 
algorithms for solving the itinerary planning problem and its 
variant mentioned above. 
 

III. PREVIOUS RELATED WORK 
The previous related work on this area of research is 

mainly focused on the path finding problem in a transit 
network. The major research effort on this problem relates to 
the determination of optimum itineraries based on a specific 
departure or arrival time. Two major types of formulations 
have been proposed up to date: i) the headway based, and ii) 
the schedule based models. The former approach assumes a 
constant headway for the transit lines while the interarrival 
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time at each node is approximated by the average headway of 
the transit lines visiting that node. In this context, the 
relevant path finding algorithms search for optimal paths in 
the underlying static network [10].  

On the other hand, the schedule based approach assumes a 
fixed timetable for the transit lines with deterministic and 
specified departure times from every stop. Label correcting 
and label setting algorithms have been proposed for solving 
this category of problems [2], [11]-[14], while for the 
formulations with non-additive objective function, branch and 
bound schemes have been developed [15], [16]. Moreover, 
heuristic routines have been developed and integrated into 
transit information systems [17], [18] ,[19] where the fast 
solution of the problem is essential.  
 The formulation of the itinerary planning problem 
presented in this paper falls under the schedule based 
approaches while it enhances the existing ones by addressing 
simultaneously the following aspects: i) incorporation of 
multiple criteria through lexicographical ordering, ii) 
allowing the departure and arrival times to lie within 
specified time windows, iii) assuming time dependent travel 
times, and iv) taking into account the special case where an 
intermediate stop at a given time window should be 
scheduled. According to the knowledge of the authors no 
research on this problem has been focused on incorporating 
simultaneously the above features.  

The proposed formulation of the itinerary planning 
problem gives rise to a shortest path problem in a multimodal 
time-schedule network with time dependent travel times. 
Ziliaskopoulos and Wardell [20] developed a label correcting 
algorithm for determining least time paths from all nodes of a 
multimodal network to a single destination node for every 
transport mode and departure times assuming time-dependent 
arc travel times and switching delays between two modes. 
The complexity of their algorithm is )( 352 MnTO  where 

M  denotes the number of modes. Moreover, the most 
relevant work to the composite itinerary planning problem, 
has been provided by Bé-rubé, Potvin, and Vaucher [21]. In 
their work they propose a decomposition scheme for solving 
the travel planning problem, i.e., optimum path problem in a 
transportation network with deterministic time-dependent 
travel times under the constraint of visiting a sequence of 
specified nodes. The objective of their formulation is to 
determine the path in the corresponding time-expanded 
network that minimizes a generalized cost function of the 
travel time and the waiting time, while passing through a 
specified set of nodes in a predetermined order. Their 
algorithm utilize a heap implemented Dijkstra routine for 
determining the shortest path from intermediate node iv  to 
the next in sequence intermediate node 1+iv  for all possible 
departure times ],0[ T∈τ . The shortest paths identified in 
stage i  of the algorithm are taken into account in initializing 

the shortest path routine for stage 1+i , i.e., the shortest path 
of stage 1+i  from intermediate node 1+iv  to intermediate 
node 2+iv  at time τ  constitutes the expansion of the shortest 
path of stage i  that arrives at node iv  from 1−i  at time 

id−τ  where id  is the duration of the visit at node i . The 
computational complexity of their approach is 

))log(( ** nKmO  where K  is the number of intermediate visit 

nodes and *m , *n  denote the number of arcs and nodes of the 
time expanded network.  

Special case of the proposed itinerary planning problem 
relates to the time-dependent shortest path problem on a 
unimodal network for which many alternative solution 
methods have been developed. Cooke and Halsey [22] 
provided a dynamic programming algorithm for solving the 
fastest path problem between any node of a network with 
time-dependent travel times and a single destination for any 
possible departure time in the discrete time horizon [0,T]. 
Each iteration k of their algorithm, compares the temporarily 
optimal path from each node i and time τ in [0,T] that 
comprises k-1 or less arcs with the emerging path consisting 
of k arcs. Based on the approach proposed by Cooke and 
Halsey, Ziliaskopoulos and Mahmassani [23] developed a 
label correcting algorithm for the fastest and minimum cost 
path problem.  

An alternative category of algorithms for the time 
dependent shortest path problem has been based on 
determining efficient techniques in searching for optimum 
paths in the time-expanded network. Along this line, Cai, 
Kloks, and Wong [24] proposed an algorithm for the time 
dependent minimum cost path problem from a single origin 
to a single destination under the constraint that the total time 
of the path does not exceed a specified standard value T, i.e., 
the arrival time at the destination should occur within the 
time window [0,T]. For any time τ (from τ=1 up to T), their 
algorithm scans every node iv  of the network for which an 
ingoing arc arrives at time τ, by selecting the minimum value 
between the cost of the currently optimal path from the origin 
to node i  that arrives at time τ-1 or earlier and the cost of the 
new paths that traverse the ingoing arcs arriving at iv  at time 
τ. The backward version of this approach has been proposed 
by Chabini [25] for the time dependent shortest path problem 
from all nodes to a single destination for all departure times. 
This algorithm moves backward in time (from τ=T up to 0) 
scanning every node iv  by assessing all new paths from iv  to 
the destination that depart at time τ and traverse any outgoing 
arc from iv .  

The multiple criteria time-dependent shortest path problem 
was initially addressed by Kostreva and Wiecek [26]. The 
algorithm they proposed is based on modifying the iterative 
process proposed by Cooke and Halsey for the single criterion 
case [22]. Hamacher, Ruzika, and Tjandra [27] proposed a 
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backward label setting algorithm for identifying the entire set 
of non-dominated solutions for the all to one multiple criteria 
time-dependent shortest path problem with positive waiting 
cost values.  

The proposed itinerary planning problem is solved by a 
new backward labeling algorithm based on the algorithmic 
approach proposed by Chabini [25] for the all to one time-
dependent shortest path problem. An enhanced version of the 
proposed algorithm is also used for solving the composite 
itinerary planning problem. It is proved that the proposed 
algorithm outperforms any relevant work in terms of worst 
case computational performance.  

 

IV. ALGORITHMS FOR THE ITINERARY PLANNING PROBLEMS 

A. Solving the Elementary Itinerary Planning Problem 
The proposed algorithm moves backward in time starting 

from the latest arrival time l
vn

a  at nv  down to the earliest 

departure time e
vd

0
, specifying the lexicographically minimal 

itineraries from all nodes to node nv  for any possible start 

time ],[
0

l
v

e
v n

ad∈τ . The intuition behind this process is that 

given a departure of service Ss ∈  on the arc Avv ji ∈),(  at 
time 10 −τ  then the lexicographically minimal itinerary from 
node iv  to the destination nv  at time 10 −τ  can be determined 
by comparing (in terms of lexicographical ordering) the 
following alternative solutions: i) the new itinerary departing 
at time 10 −τ  that includes the arc ( ji vv , ) joined with the 

lexicographically minimal itinerary ),( nj vvpτ ′  

where ),()1( 1
0

0

jis vvt −+−=′ τττ , ii) the itinerary that is produced 
by adding one unit of waiting time at the existing 
lexicographically minimal itinerary from iv  to nv  departing 
at time 0τ  , and iii) any other itinerary departing at time 

10 −τ  that is produced by joining a walking arc ( qi vv , ) with 

the existing lexicographically minimum itinerary ),( nq vvpτ ′′  

where ),()1( 1
0

0

qiw vvt −+−=′′ τττ . Repeating this process until 

the earliest departure time e
vd

0
 is reached, results to the 

determination of the lexicographically minimal itinerary from 
every node (including the origin 0v ) to the destination nv  for 
every ],[

0

l
v

e
v n

ad∈τ . Thus, comparing the emerging itineraries 

),( 0 nvvpτ  for ],[
00

l
v

e
v dd∈τ  in terms of lexicographical ordering 

leads to the lexicographically minimal solution of the 
itinerary planning problem. 

Each itinerary constructed by the above process for node rv  
and time τ , is associated with a label 

)( rvτλ :=( )(
1

rc v
k

τλ , )(
2

rc v
k

τλ , )(
3

rc v
k

τλ ). Each attribute of the 

label 3,2,1),( =ivrc
ik

τλ  refers to the criterion value (
ikc ) of the 

associated itinerary from node rv  to nv  starting at time τ . 

The order in which the attributes )( r
t
c v

jk
λ  appear in the above 

label implies the order of preference of the corresponding 
criteria. The lexicographically minimal label identified at 
each step of the algorithm is denoted by 

)( rvlτ :=( )(
1

rc vl
k

τ , )(
2

rc vl
k

τ , )(
3

rc vl
k

τ ) followed by a pointer 

)( rvτψ  which points to the next node of the corresponding 
itinerary.  

The steps of the proposed algorithm are presented in the 
logical diagram provided in Fig. 1. Step 0 of the algorithm 
involves the initialization of the labels ∈∀ ττ )( rvl ],[

0

l
v

e
v n

ad , 

Nvr ∈∀ . The attributes in )( nvl τ  are set equal to: i) zero for 

],[ l
v

e
v nn

aa∈τ  and ii) a very large number M for the remaining 

values of τ. The corresponding pointers )( nvτψ  are set to nil.  

 
The attributes of any other label )( rvl τ  are set equal to a 

very large number M apart from any node rv  that is 

neighboring to the destination nv , i.e., there exists a walking 
arc ( nr vv , ) A′∈ . These nodes are passed to step 1, where for 

Step 2: For every node v r create new labels for time κ based on the existing
optimal labels specified for time κ+1:

If                               then

Step 0: Initialize the labels of all nodes for all times:

Set:

Step 3: For every departure time τ in ST associated with link (v r,vj) through
service  s such that τ=κ, create a new list of labels as follows:

 If                                then

STOPΥ

Ν

l
vn

ακ =

e
vd

0
<κ

],[,)(,)(,0)(
0

l
v

e
vrrcnc nikik

adnilvvlvl ∈∀→∞== τψ τττ

Step 1.  For  every τ and each node v r neighboring  to v n  such that:
create a new label of labels:

nrnrsrcrcnrsrc vvvvtvlvlvvtvl →=== )(),,()(,1)(),,()(
321

ττττττ ψ

1−= κκ

)()(),()(),(),()( ),(),(),(
332211 j

vvt
crcj

vvt
crcj

vvt
cjrsrc vlvvlvvlvvtv jrsjrsjrs

τττ τττττττ λλλ +++ ==+=

)()( rLr vlv ττλ ≤

)()( rLr vlv ττλ ≤

1)()(),()(,1)()( 111
332211

+==+= +++
rcrcrcrcrcrc vlvvlvvlv ττττττ λλλ

)(:)( rr vvl ττ λ=

START

Step 4: For each node v j neighboring  to v r , create a new list of labels:

If                               then

),()()(,1)()(),,()()(
332211 rjsrcrcrcrcrjsrcjc vvtvlvvlvvvtvlv τκτκττκτ λλλ ′′′′′ +=+=+=

)()( rLr vlv ττλ ≤ )(:)( jj vvl ττ λ ′′ =

l
vnrs

e
v

l
vv nnn

avvtaandad ≤+≤∈ ),(],[ 0
0

τττ

rr vv →)(τψ

jr vv →)(τψ

jj vv →′ )(τψ

)(:)( rr vvl ττ λ=

 
Fig. 1.  Logical diagram of the proposed algorithm for solving the (elementary) 
itinerary planning problem. 
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each time ],[
0

l
v

e
v n

ad∈τ , the attributes )(
1 rc vlτ  and 

)(
3 rc vlτ expressing the total travel time and transfer time 

respectively, are set equal to the corresponding walking time 
),( nrw vvt τ  while the attribute )(

2 rc vlτ  is set equal to 1 since this 
is the first transfer confronted so far. The corresponding 
pointers )( rvτψ  point to the node nv .  

Moving to steps 2-4, the variable κ is a counter that counts 
time backwards. Initially, κ is set equal to the latest arrival 
time l

vn
a  at the destination. Then, a sequence of 

)1(:
0

+−= e
v

l
v daT

n
 iterations of steps 2-4 are executed. In Step 

2, a new label )( rvκλ  is created for each node rv  based on 

the existing label )(1
rvl +κ . The attributes of the new label are 

presented by (8)-(10).  
1)()( 1

11
+= +

rcrc vlv κκλ                (8) 

)()( 1
22 rcrc vlv += κκλ                  (9) 

1)()( 1
33

+= +
rcrc vlv κκλ                 (10) 

This label is associated with the new itinerary which involves 
adding one unit of waiting time to the lexicographically 
minimal itinerary from rv  to nv  for time 1+κ . If the label 

)( rvl κ  is lexicographically dominated by )( rvκλ  then 

)( rvl κ := )( rvκλ  and rr vv =:)(κψ  else the values of )( rvl κ  
are retained. 

Step 3 scans the list of departure times of all services for 
time κτ = . For each departure time found related to service 
s and arc ( jr vv , ), a new label )( rvκλ  is created based the 

existing label )(),(
j

vvt vl jrs
κκ +  as indicated by (11)-(13). 

),()()( ),(
11 jrsj

vvt
crc vvtvlv jrs κκκ κ

λ += +           (11) 

)()( ),(
22 j

vvt
crc vlv jrs

κκκλ +=               (12) 

)()( ),(
33 j

vvt
crc vlv jrs

κκκλ +=               (13) 

This new label refers to the itinerary departing at time κ  
produced by joining arc ( rv , jv ), arriving at jv  at time 

),( jrs vvtκκτ +=′  with the lexicographically minimal 

itinerary from jv  to nv  starting at τ ′ . If label )( rvlτ  is 

lexicographically dominated by )( rvτλ  then )( rvlτ := )( rvτλ  

and jr vv =:)(τψ  else the attributes of )( rvlτ  are retained.  

Finally, if there exists a node rv  from the previous step 

(step 3), for which the corresponding label )( rvlτ  has been 

updated, step 4 is performed. In this step, for any node iv  

neighboring to rv  (i.e., Avv ri ′∈),( ), a new label )( ivτλ ′′  is 
created as presented in (14)-(16) with τ ′′  denoting the 

earliest departure time from iv  so that rv  is reached at time 
τ . 

),()()(
11 riwrcic vvtvlv τττλ ′′′′ +=             (14) 

1)()(
22

+=′′
rcic vlv ττλ                 (15) 

),()()(
33 riwrcic vvtvlv τττλ ′′′′ +=             (16) 

If label )( ivlτ ′′  is lexicographically dominated by )( ivτλ ′′  

then )( ivlτ ′′ := )( ivτλ ′′  and ri vv =:)(τψ  else the attributes of 

)( ivlτ ′′  are retained.  

When the time counter κ reaches 1
0

−e
vd  then the above set 

of iterations terminates and the emerging labels for stop 0v  

are processed as follows: i) selection of the labels )( 0vlτ  with 

],[
00

l
v

e
v dd∈τ , and ii) determination of the lexicographically 

minimal among the selected labels. 
A major feature of the proposed algorithm is that given the 

0κ  first iterations described above, the label of any node at 
time κ , later than the current time 0κ  (i.e., 0κκ > ) is not 
affected by the remaining iterations of the solution process. 
This observation implies that there is no need to assume the 
well known FIFO condition for the underlying network. The 
definition and lemmas presented below lead to the proof of 
correctness of the proposed algorithm.  

 
Definition 1. Assume an itinerary 

),v(vp n
τ

0 :={ ][ 010 0
;s);τ,v(v v , 

121 1
;s);τ,v(v v ,�, ][ 11 1 −− − nvnn ;s);τ,v(v

n
} in ),,,,( STSAANG ′ . If 

node rv  is reached by ),( 0 nvvpτ , then the part of the itinerary 
),( 0 nvvpτ  from rv  to nv  starting at time 

∈′τ ]),,([ 1
1

11 r

rv

rvr vrrsv vvt ττ τ
−

−

−−
+  is called sub-itinerary of 

),( 0 nvvpτ  from rv  to nv . 
 
Definition 2. A label )( rvτλ  is lexicographically minimal iff 

its associated itinerary ),( nr vvpτ  is lexicographically 
minimal.  
 
Lemma 1. If an itinerary ),( nr vvpτ  is lexicographically 
minimal for time τ  then any of its sub-itineraries 

τττ >′′ ),,( nk vvp  from kv  to nv  is also lexicographically 
minimal for τ ′ . 
 
Lemma 1 expresses a modified version of the well known 
Bellman�s optimality condition for dynamic programming. 
Note that Lemma 1 implies that the problem at hand could be 
solved through a backward dynamic programming algorithm. 
On the other hand, a similar optimality condition cannot be 
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sustained for the forward case, i.e. if an itinerary ),( nr vvpτ  is 
lexicographically minimal for time τ  then it cannot be 
proved that any of its sub-itineraries ),( 0 kvvpτ  from 0v  to 

kv  is also lexicographically minimal for τ ′ . See also in [26] 
for more details on this issue.  
 
Lemma 2. If labels 1),( 0 +≥ ττλ τ

rv  where ]1,[
00 −∈ l

v
e
v n

adτ  

for every node Nvr ∈  are lexicographically minimal for time 

τ , then any label )(0
rvlτ  determined by the proposed 

algorithm is also lexicographically minimal.  
Proof: Assume that for some node rv  the corresponding label 
created by the proposed algorithm is lexicographically 
dominated, i.e., there exists an alternative itinerary with label 

)(0
rvτλ :=( )(0

1
rc v

k

τλ )(0

2
rc v

k

τλ )(0

3
rc v

k

τλ ) such that }3,2,1{∈∃ i : 

ij
jkjk cc <≤ ,00 ττ λλ  and 00 ττ λλ

kiik cc < . However, any itinerary from 

rv  to nv  at time 0τ  (including the itinerary associated with 

)(0
rvτλ ) could be analyzed in one of the following ways: i) 

one unit of waiting time at rv  and then follow the 
lexicographically minimal sub-itinerary (see Lemma 1) from 

rv  το nv  at time 10 +τ , ii) proceed from rv  το jv  through a 

walking arc Avv jr ′∈),(  and then follow the 

lexicographically minimal sub-itinerary from jv  to nv  at 

time ),(0
0 jrw vvtτττ +=′ , or iii) depart from rv  to kv  through 

service s  and continue from kv  at time ),(0
0 krs vvtτττ +=′′  

through a lexicographically minimal sub-itinerary leading to 
nv . In any of the above cases the labels of the itineraries 

),(0
nr vvpτ

λ , ),( nj vvpτ
λ

′ , ),( nk vvpτ
λ

′′  are identical to the labels 
associated with the corresponding lexicographically 
minimum itineraries ),(0

nrl vvpτ , ),( njl vvpτ ′ , ),( nkl vvpτ ′′  
produced by the proposed algorithm. However, by the 
completion of th)( 0τ  iteration of the proposed algorithm, the 
above cases have already been specified and assessed and only 
the lexicographically minimal is held. Thus )(0

nr vvl τ  

coincides with )(0
nr vvτλ . 

 
Proposition 2 (Proof of Correctness). The labels for each 

[ ]l
v

e
v dd

00
,∈τ  determined by the proposed algorithm for the 

origin 0v  are lexicographically minimal for time τ .  
Proof. The proof may be derived by induction making use of 
lemma 2.  
 
Proposition 3. The worst case computational complexity of 
the proposed algorithm is )( 3 TSNO  where N  denotes the 

number of nodes of the time-schedule network, S  is the 
number of services under consideration and T  denotes the 
time steps between the latest arrival time at the destination 
and the earliest departure time from the origin (i.e., 

1:
0

+−= e
v

l
v daT

n
).  

TABLE I 
RESULTS OF THE  NUMERICAL EXAMPLE.  

 s A1 B1 A2 B2 A3 B3 t 
14 (M,M,M) (M,M,M) (M,M,M) (M,M,M) (M,M,M) (M,M,M)  (M,M,M)  (0,0,0);- 
13 (M,M,M) (M,M,M) (M,M,M) (M,M,M) (M,M,M) (M,M,M)  (M,M,M)  (0,0,0);- 
12 (M,M,M) (M,M,M) (M,M,M) (M,M,M) (M,M,M) (2,2,1);- (2,2,1);- (0,0,0);- 
11 (M,M,M) (M,M,M) (M,M,M) (M,M,M) (M,M,M) (2,2,1);- (2,2,1);- (0,0,0);- 
10 (M,M,M) (M,M,M) (M,M,M) (M,M,M) 

(4,2,1);A3 
(M,M,M) (2,2,1);- (2,2,1);- (0,0,0);- 

9 (M,M,M) (M,M,M) (M,M,M) (5,3,1);A2 (M,M,M) 
(5,3,2);A2 

(2,2,1);- (2,2,1);- (0,0,0);- 

8 (M,M,M) (M,M,M) 
(6,2,1);A2 

(M,M,M) (6,4,1);A2 (6,4,2);B2 (2,2,1);- (2,2,1);- (0,0,0);- 

7 (M,M,M) 
(7,3,2);A1 

(7,3,1);A1 (M,M,M) (7,5,1);A2 (7,5,2);B2 
(3,2,1);B3 

(2,2,1);- (2,2,1);- (0,0,0);- 

6 (8,4,2);s (8,4,1);A1 (M,M,M) (4,3,2);B2 
(8,6,1);A2 
(4,2,1);A3 

(4,3,1);B2 (2,2,1);- (2,2,1);- (0,0,0);- 

5 (9,5,2);s (9,5,1)A1 (M,M,M) (5,3,1);A2 (5,3,2);A2 
(4,2,1);B3 

(2,2,1);- (2,2,1);- (0,0,0);- 

4 (10,6,2);s (10,6,1);A1 
(6,2,1);A2 

(M,M,M)(6,
3,1);B2 

(5,3,2);B2 
(6,4,1);A2 

(5,3,1);B2 (2,2,1);- (2,2,1);- (0,0,0);- 

3 (11,7,2);s 
(7,3,2);A1 

(7,3,1);A2 (7,7,2);A1 
(7,4,1);B1 

(6,4,2);A2 (6,4,1);B2 (2,2,1);- (2,2,1);- (0,0,0);- 

2 (8,4,2);s (8,4,1);A1 (8,5,1);B1 
(7,3,1);B2 

(7,5,2);A2 (7,5,1);B2 (2,2,1);- (2,2,1);- (0,0,0);- 

1 (9,5,2);s (9,5,1);A1 (8,4,1);B1 (8,6,2);A2 (8,6,1);B2 (2,2,1);- (2,2,1);- (0,0,0);- 
0 (10,6,2);s 

(9,5,2);B1 
(10,6,1);A1 (9,5,1);B1 (9,7,2);A2 (9,7,1);B2 (2,2,1);- (2,2,1);- (0,0,0);- 
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Proof:  Steps 0-1 are executed only once at the beginning of 
the algorithm. Step 0 involves at most )( TNO  operations 

while step 1 )( 2TNO  operations. Steps 2-4 are iterated at 

most T  times. Step 2 includes )( NO  operations, step 3 

)( SNO  and step 4 )( 3 SNO  operations at most. 
Therefore, the iterations of steps 2-4 require at most 

)( 3 TSNO  operations.  
It is evident that the proposed algorithm depends only 

linearly on the width of the time horizon T  as opposed to the 
complexity of Ziliaskopoulos and Wardell�s algorithm [20] 
which depends on 2T . 

 

B. Numerical Example 
The steps of the proposed algorithm are illustrated and 

explained through the example that follows. Fig. 2 presents 
the routes of two transport services A and B and the 
associated timetable of their operation. Nodes s and t denote 
the origin and destination points respectively. The stops of 
transport service A ( 3,2,1 AAA ) are denoted by octagons 
while circles are used for the stops of transport service B  
( 3,2,1 BBB ). Any possible transfer between two nodes is 
represented by a dimmed line while the corresponding 
walking time is written beside each arc. The objective of the 
itinerary planning problem under consideration is to 
determine the itinerary from s to t that lexicographically 
minimizes the total travel time ( 1c ), the total walking and 
waiting time ( 3c ), and the number of transfers ( 2c ) in that 
order, under the following scheduling constraints: i) the 
earliest departure time is 0, i.e., 0:=e

sd , and ii) the latest 

arrival time is 14, i.e., 14:=l
ta . No latest departure and 

earliest arrival times are taken into account, i.e., 14:=l
sd  and 

0:=e
ta .  

Table I presents the labels ( )(),(),(
231 rcrcrc vvv τττ λλλ ) that 

were calculated for every node rv  and time ]14,0[∈τ  during 
the solution of the problem, followed by the corresponding 
pointer )( rvτψ  (separated from the label with a semicolon). 
The first column of the table presents the time steps of the 
problem while the first row contains the nodes of the network 
under consideration. Each of the remaining cells of the table 
includes the labels created throughout the entire execution of 
the solution process written in the order that they were 
created. A strikethrough is placed on the vectors which were 
found lexicographically dominated.  

The completion of the first row is equivalent to initializing 
the labels of all nodes at time 14 (step 0), i.e., node t gets the 
label (0,0,0) while the remaining nodes get the label 
(M,M,M) (where M is a very large number). Given the label 

of node t at time 14, nodes 3A  and 3B  are assigned the label 
(2,2,1) for times 0-12 (step 1). These labels refer to the trivial 
itineraries from nodes 3A  and 3B  to node t through the 
corresponding walking arcs ),3( tB  and ),3( tA . 

 

 
The remaining cells of the table get the label (M,M,M). 

Each iteration of steps 2-4 from time 13 down to 0, is 
equivalent in completing the corresponding row of the table 
starting from the cell referring to 2B  up to the cell referring 
to s. By the end of the execution of these iterations, the 
second column of the table (referring to node s) includes the 
lexicographically minimal labels of the problem for each 
point in time ]14,0[∈τ . Label (7,3,2) is the lexicographically 
minimal among them which is realized by two alternative 
itineraries: 

 
),(3

1 tsp :={ ];3);1,[( wAs , ];4);2,1[( AAA , ];6);3,2[( AAA , 
];8);,3[( wtA }                  (17) 

),(7
2 tsp :={ ];7);1,[( wAs , ];8);2,1[( AAA , ];10);3,2[( AAA  

];12);,3[( wtA  }                  (18) 
 

C. Solving the Composite Itinerary Planning Problem  
Any solution of the composite itinerary planning problem 

consists of two elementary (i.e., with no intermediate stop) 
itineraries: i) ),( 0 qvvpτ  which departs from 0v  within 

],[
00

l
v

e
v dd  and terminates at the intermediate node qv  within 

],[ l
v

e
v qq

aa , and ii) ),( nq vvpτ ′  which departs  from the 

intermediate node  within ],[ l
v

e
v qq

dd  but later than the time 

( v
e
v ta

q
+ ) while it arrives at the destination nv  within 

],[ l
v

e
v nn

aa . Thus, the composite itinerary planning problem 

may be decomposed to the following nested optimization 
problems: (P1) Determine the lexicographically minimal 

B1 B2 B3

A1 A2 A3

210(A2,A3)
208(A1,A2)
107(B2,B3)
206(A2,A3)
205(B2,B3)
204(B1,B2)
204(A1,A2)
302(B1,B2)

Travel TimeDeparture TimeLink

1
1

2

2

2
s t

Fig. 2.  The network and the timetable of the numerical example.  
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itineraries from the intermediate node qv  to node nv  
satisfying the above time windows constraints, (P2) 
Determine the lexicographically minimal among the 
itineraries from node 0v  to node nv  created by appending to 

any itinerary ),( 0 qvvpτ  arriving in qv  at time τ ′′ , the 

lexicographically optimal itinerary from qv  to nv  for time 

vqt+′′τ  determined in (P1).  

Given this intuition, the proposed solution process for the 
composite itinerary planning problem consists of two 
sequential stages, i.e., stage I and II. The objective of stage I 
is to determine the lexicographically minimal itineraries from 
the intermediate node qv  to the destination nv  for each τ  in 

],[ l
v

e
v qq

dd . Stage II aims to determine the itinerary from the 

origin 0v  at time ],[
00

l
v

e
v dd∈τ  to qv  arriving at 

],[ l
v

e
v qq

aa∈′τ  which when attached to the lexicographically 

optimal itinerary from qv  to nv  for departure time vt+′τ , 
provides a lexicographically minimal solution for time τ . 
The algorithm for solving the elementary itinerary planning 
problem enhanced with some modifications in step 0, is used 
in both stages in order to determine the lexicographically 
optimal solution to the composite problem.  

The presentation of the steps of the proposed solution 
approach requires the introduction of 

)( rvmτ =( ),(
1

rc vm
k

τ ),(
2

rc vm
k

τ ))(
3

rc vm
k

τ

 
which denotes the 

lexicographically minimal label for any stop rv  involved in 
the stage I of the solution process. Each such label refers to 
the lexicographically minimal itinerary from stop rv  to nv  

for ],[ l
v

e
v nq

ad∈τ . Any label produced during the execution of 

stage I of the solution process is denoted by 
)( rvτµ =( ),(

1
rc v

k

τµ ),(
2

rc v
k

τµ ))(
3

rc v
k

τµ . For stage II, )( rvlτ = 

( ),(
1

rc vl
k

τ ),(
2

rc vl
k

τ ))(
3

rc vl
k

τ denotes the label for any stop rv  

while it refers to the composite itinerary from any node rv  to 

node nv  for ],[
0

l
v

e
v n

ad∈τ . Any label produced during the 

execution of stage II of the solution process is denoted by 
))(),(),(()(

321
rcrcrcr vvvv

kkk

ττττ λλλλ = . During stage II, it is 

assumed that once the itinerary from rv  reaches node qv  at 

time τ ′ , then the corresponding optimal itinerary from stop 
qv  to 

nv  (determined in stage I) starting at time vt+′τ , is 
attached to it. 

Stage I of the proposed algorithm for determining the 
lexicographically minimal composite itinerary is identical to 
the algorithm for the elementary itinerary planning problem. 
The output of stage I includes the lexicographically minimum 
labels )( qvmτ  from qv  to nv  for ],[ l

v
e
v qq

dd∈τ .  

On the other hand, Stage II involves the following steps: 
1. Initialize the labels ( )( rvlτ ) which refer to the itineraries 

from any stop rv  to the intermediate stop qv . In 
particular, the attributes of any label of the intermediate 
stop qv  are set as follows: )(:)( r

t
r vmvl v+= ττ  for 

],[ l
v

e
v qq

aa∈τ  and ],[ l
v

e
vv qq

ddt ∈+τ . For any node xv  that 

has an outgoing walking arc to qv , then its attributes of its 

labels for ],[
0

l
v

e
v q

ad∈τ  such that 

],[),( l
v

e
vqjw qq

aavvt ∈′′=+ ττ τ , are set as follows:   

),()()(
11 qxwqcxc vvtvlvl τττ += ′′           (19) 

1)()(
22

+= ′′
qcxc vlvl ττ               (20) 

),()()(
33 qxwqcxc vvtvlvl τττ += ′′           (21) 

2. The attributes of the label of any other node are set equal 
to a very large number. 

3. Perform T ′ (:= 1
0
+− e

v
l
v da

q
) iterations of steps 2-4 of the 

algorithm for the itinerary planning problem in order to 
determine the lexicographically minimal labels for every 
time ],[

00

l
v

e
v dd∈τ . 

4. Determine the lexicographically minimal composite 
itinerary by comparing the emerging itineraries (step 3 
above) from 0v  to nv  for any time ],[

00

l
v

e
v dd∈τ .  

The first stage of the proposed algorithm ends up with a set 
of labels ],[),( l

v
e
vq qq

ddvm ∈ττ . Each label )( qvmτ  refers to 

the lexicographically minimal itinerary from qv  to nv  when 
departing at timeτ . Step 2 of stage II, terminates with a set 
of labels ],[,

00

l
v

e
v ddl ∈ττ  which refer to the lexicographically 

minimal itineraries from 0v  to nv  departing at any time 

],[
00

l
v

e
v dd∈τ . Selecting the lexicographically minimal among 

the emerging composite itineraries provides the solution to 
the problem. 
 

V. COMPUTATIONAL PERFORMANCE 
Given the fact that the increased time in determining the 
optimal itinerary decreases the utility of the journey planning 
service provided to the traveler, the computational time of the 
proposed algorithms constitutes a critical success factor for 
their integration in an on-line journey planning decision 
support system.  

Both algorithms were implemented in Pascal (Delphi 7.0 
Architect) while the assessment of their computational 
performance was based on their application for solving real 
life itinerary planning problems defined on the Athens Public 
Transport Network. Given that the computational complexity 
of the algorithms depends on the width (T) of the time 
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window [ l
v

e
v n

ad ,
0

], a wide range of test problems has been 

developed for various values of the aforementioned 
parameter. In particular, the test problems were built on the 
Athens Public Transportation Network covering the whole 
geographical urban area of Athens. The underlying network, 
consists of 890 stops, 45 public transport services (including 
metro, bus, tram, and trolley bus lines), operated based on a 
timetable with approximately 42000 vehicle departures 
occurring on a daily basis. Seven alternative values for the 
time window width (T), i.e., T1=120 min, T2=180 min, 
T3=240 min, T4=300 min, T5=360 min, T6=420 min, and 
T7=480 min were used. The criteria and their order of 
preference were randomly determined (two out of the three 
considered in this set of test problems) for each problem 
separately. In particular, 200 different itinerary planning 
problems were generated for every alternative value of the 
parameter (T). Moreover, another 200 test problems were 
developed for the composite itinerary planning problem (i.e., 
including a mandatory intermediate visit), with T ranging 
from 180 min to 480 min as above. Note that the alternative 
value T=120 min was omitted since it led to many infeasible 
test problems.  

 
 

The performance of the algorithms was assessed in terms of 
the following statistical measures of the CPU computational 
time: i) the mean, ii) the minimum value and iii) the 
maximum value. Additional statistical measures were 
calculated (i.e., standard error, skewness, kurtosis, median, 
and range) in order to explore further the central tendency of 
the computational time.  

The associated runs for solving the test problems were 
performed on a Pentium IV PC with 2 GB of RAM and a 2.6 
GHz Intel processor. Fig. 3 and 4 present the graphs of the 
mean, maximum, and minimum values for each category of 
test problems. Based on the results presented in these two 
graphs, the computational time of the proposed algorithms 
increases gradually as a function of the parameter (T). 
Furthermore, it is realized that the solution of the real life 
itinerary planning problems under consideration can be 
attained within reasonable computational time (i.e., the worst 
case computational times are less than 7sec for the elementary 
itinerary planning problems and less than 9sec for the 
composite test problems). 

 
 

Table II presents additional statistical measures of the 
computational time measurements collected for the 
elementary itinerary planning test problems. Based on these 
results, the following observations emerge:  

• The largest value of the range of the measurements 
across the problem categories does not exceed 1sec 

• The kurtosis is positive under every problem category. 
Given that the corresponding kurtosis for the normal 
distribution is equal to 0, this observation implies that the 
corresponding histograms of the measurements are 
highly peaked.  
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Fig. 3. Graphical representation of the mean, maximum, and minimum values of 
the computational time for the itinerary selection problems for each alternative 
problem category (indicated by the corresponding T).  
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Fig. 4. Graphical representation of the mean, maximum, and minimum values of 
the computational time for the composite itinerary planning problems for each 
alternative problem category (indicated by the corresponding T)  
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The above observations imply that the vast majority of the 
measurements under each problem set lie very close to the 
corresponding mean value.  

Table III presents the corresponding additional statistical 
measures for the measurements referring to the composite 
itinerary planning test problems. Although the worst case 
range reaches 2,67 sec the kurtosis under each problem 
category is positive, intuitively implying that the 
corresponding measurements lie close to the mean value. 
 

 

VI. CONCLUSION 
The journey planning problem in an urban public transport 

network has been formulated as a shortest path problem with 
time windows on a multimodal time schedule network that 
optimizes lexicographically the en-route time, the number of 
interchanges and the total walking and waiting time (not 
necessarily in this order). This new formulation reflects the 
traveler�s decision taking problem in selecting the point in 
time to start his/her urban journey within a specified time 
window and the sequence of transport legs in order to reach 
destination in time. The incorporation of this flexibility in 
departing from the origin enhances the solution space of the 
problem providing efficient journey planning decisions. 
Lexicographical ordering is utilized for evaluating the 
alternative itineraries instead of applying the time consuming 
task of determining the efficient frontier of the problem. This 

limitation ensures the fast determination of a single itinerary 
and relieves the traveler from the task of selecting on his own 
the most preferred itinerary among the set of the non-
dominated solutions. The examination of the efficient frontier 
of the itinerary selection problem is highly motivated for the 
case of interurban journey planning decisions (i.e., itinerary 
selection on a fixed scheduled network including interurban 
and urban transport services) where the cost of travel should 
also be taken into account apart from the criteria considered 
in this paper.  

A dynamic programming based algorithm was developed 
for determining the lexicographically optimal itinerary. 
Furthermore, the algorithm was enhanced in order to cover 
the variant of the problem that included the visit of an 
intermediate stop within a specified time window. The 
proposed algorithms were tested on a wide range of real life 
itinerary planning problems (with and without intermediate 
stop) defined on the Urban Public Transportation System of 
Athens, Greece. The width of the time window defined by the 
earliest departure time from the origin and the latest arrival 
time at the destination ranged from two to eight hours. The 
scope of these tests was to verify that the computational time 
of the algorithms is not prohibitive in integrating them within 
an on-line journey planning decision support system. The 
worst case mean value of the computational time of the 
algorithm on the simple itinerary selection problems was less 
than 7 sec while the corresponding performance on the 
problems with intermediate stops was 9 sec. These results 
justified the integration of both algorithms in an on-line 
advanced public transport information system that provided 
urban and interurban journey planning services via 
alternative communication channels (i.e., the web and mobile 
phones).  
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